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Abstract: Optical scanning holography (OSH) records a three-dimensional 
object into a two-dimensional hologram through two-dimensional optical 
scanning. The recovery of sectional images from the hologram, termed as 
an inverse problem, has been previously implemented by conventional 

methods as well as the use of 
2

l  norm. However, conventional methods 

require time consuming processing of section by section without 

eliminating the defocus noise and the 
2

l norm method often suffers from the 

drawback of over-smoothing. Moreover, these methods require the whole 
hologram data (real and imaginary parts) to eliminate the twin image noise, 
whose computation complexity and the sophisticated post-processing are far 
from desirable. To handle these difficulties, an adaptively iterative 
shrinkage-thresholding (AIST) algorithm, characterized by fast computation 
and adaptive iteration, is proposed in this paper. Using only a half hologram 
data, the proposed method obtained satisfied on-axis reconstruction free of 
twin image noise. The experiments of multi-planar reconstruction and 
improvement of depth of focus further validate the feasibility and flexibility 
of our proposed AIST algorithm. 
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OCIS codes: (090.1995) Digital holography; (100.3020) Image reconstruction-restoration; 
(100.3190) Inverse problems; (180.6900) Three-dimensional microscopy. 
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1. Introduction 

As an unconventional digital holographic technique utilizing an acquired two-dimensional 
(2D) hologram of an object, optical scanning holography (OSH) can record three-dimensional 
(3D) information of an object [1, 2]. Especially the capability of recording in an incoherent 
mode expands its application to 3D optical microscopy [3, 4]. For obtaining an acceptable 
axial resolution of thick specimens, traditional optical microscopy requires axial scanning. 
Both confocal microscopy and optical coherent tomography (OCT) can provide high axial 
resolution and optical sectioned images, but they suffer from the same drawback of a time-
consuming axial and lateral scanning process. Unlike these optical microcopies, 3D 
microscopy using OSH can take the holographic information of biological specimens in three 

dimensions without axial scanning, and high lateral resolution within 1 mµ  has been made 

possible in a scanning holographic fluorescence microscope [5]. Its potential advantages of 
high image acquisition rates and the abundant information of the reconstructed images offer 
rapid efficient approach to obtain high-resolution 3D sectional mages for biomedical 
applications [6]. 

In order to achieve a good recovery performance of the original 3D object from a 
measured 2D hologram, sectional image reconstruction is the most important part for OSH. In 
a conventional method, reconstructing the original sectional image through Fresnel 
diffraction, was first employed to reconstruct the sectional image of OSH. Based on the 
conventional method, Wiener filtering [7] and Wigner filtering [8] were applied in OSH 
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reconstruction and obtained an improved signal-to-noise ratio. Nevertheless, the computation 
of the spectrum for Wiener filtering relies on the assumption that random noise does not exist, 
which probably leads to significant errors in practice. Wigner filtering is only feasible for 
synthetic two-section object under the ideal conditions. The computation complexity and 
cross-term problem limit its applications. 

Aiming at overcoming the drawbacks of these conventional-based methods (Fresnel 
diffraction, Wiener filtering and Wigner filtering), optimization methods have been applied to 
reconstruct sectional image of OSH. In optimization, one converts sectional image 
reconstruction to resolving system of equations, whose inputs are the measured hologram and 
the system’s point spread function, the outputs are sectional images. 

The 
2

l  norm method [9, 10] has been able to reconstruct all the sectional images (not only 

two sectional images) simultaneously and suppress the defocus noise. However, the 
2

l  norm-

based methods often suffers from the drawback of over-smoothing, such that the localized 
information is lost during the reconstruction [11]. Employing total variation regularization 
(TV) and edge preserving reconstruction method has improved the reconstruction 
performance further [12]. However, the performance of the TV-based method is inevitably 
attacked by the staircase effect [13]. 

Some other optimization methods, such as 
1
l  norm and 

p
l norm methods (where p is 

between 0 and 1), have been proposed [14]. By virtue of their excellent ability of noise 
suppression and accurate reconstruction, these methods have given important value to 
bioluminescence tomography [15–17] and fluorescence molecular tomography [18]. In this 

paper, an adaptively iterative shrinkage-thresholding (AIST) algorithm utilizing 
1
l norm 

regularization, which is characterized by fast computation and adaptive iteration, is proposed 
to study the OSH reconstruction problem. 

To avoid the influence of twin image noise, all the previous methods require two parts in 
OSH physical system, the real part (sine hologram) and the imaginary part (cosine hologram) 
of the complex hologram [19], which virtually increases the OSH physical system cost and 
the computational complexity. If it is possible to recover sectional images without twin image 
noise only using a half hologram data (e.g., the real component or the imaginary component 
of a complex hologram), it will be invaluable to reduce the system cost and improve the 
reconstruction efficiency. The method proposed in this paper gives a positive response to the 
possibility mentioned. 

Optical microscopic imaging system has limited depth of focus (DOF). There is no 
exception for OSH physical system. Spatial resolution is also an important evaluation 
criterion for OSH image quality, but it is well known that the greater the DOF is, the lower 
the lateral resolution will be. Therefore, as the high lateral resolution remains unchanged, an 
expansion of the DOF is meaningful for OSH. In this paper, we analyze the maximum axial 

depth that can be recovered by 
2

l  norm and the proposed method. 

The paper is organized as follows. Section 2 describes the two pupils OSH formulation 
and presents the proposed method. The proposed method is validated on both the whole and a 
half hologram data in section 3. A multi-planar experiment is conducted as well to further 
investigate the performance of the proposed method, followed by the analysis of the 
maximum axial depth. Finally, Section 4 gives conclusion about the OSH reconstruction 
method. 

2. Theory and method 

2.1. OSH formulation 

Assuming the intensity of an object as ( , , )x y zϕ , the complex hologram obtained from OSH 

can be given by 
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M

i ii

g x y x y z h x y z dz

x y z h x y z

ϕ

ϕ

+∞

−∞

=

= ∗

≈ ∗

∫
∑             

 (1) 

where ( , ; )
i

h x y z is the point spread function of the OSH system, ( , , )
i

x y zϕ is the 2D sectional 

image, and asterisk denotes 2D spatial convolution involving the x and y coordinates. In the 

two-pupil OSH paradigm, ( , ; )
i

h x y z is given as 

 
2 2

0 0

1
( , ; ) exp( ( )),

i i

ih x y z j j x y
z z

π

λ λ
= − +  (2) 

where 
0

λ is the wavelength of the laser used in the optical system. In optimization, it is 

necessary to describe Eq. (1) by matrix equation wherein the lexicographic ordering is 

employed. By lexicographic ordering, the N N×  2D hologram ( , )g x y  converts into a vector 

G  with the size of 2 1N × . Similarly, 2D sectional image ( , , )
i

x y zϕ  becomes vector 
i

Φ with 

the size of 2 1N × , and the lexicographic ordering of ( , ; )
i

h x y z is presented by the matrix 

i
H with the size of 2 2

N N× , such that 
i i

H Φ equals ( , , ) ( , ; )
ii

x y z h x y zϕ ∗  after lexicographic 

ordering. Considering noise ε , the equation for an object of M sectional images is presented 

as 

 [ ]

1

2

1 2
+ + ,

M

M

G H H H Hε ε

Φ

Φ
= = Φ

Φ

 
 
 
 
 
 

⋯
⋮

   
 

 (3) 

where [ ]
1 2 M

H H H H= ⋯   and [ ]
1 2 M

T
Φ = Φ Φ Φ⋯   . 

When dealing with the whole hologram data, we use [ ]R(G); (G)G I= , [ ]
1 2
;ε ε ε=  and 

[ ]( ); ( )
i i i

H R H I H= ( 1, 2 ,i M= ⋯ ). The symbols ( )R ⋅  and ( )I ⋅  denote the real part and the 

imaginary part, respectively, of the quantity being bracketed. When using only the real part of 

the hologram, [ ]R(G)G = , [ ]
1

ε ε=  and [ ]( )
i i

H R H= ( 1, 2 ,i M= ⋯ ) are used instead. 

2.2. Computation simplification 

Equation. (3) is the linear system of equations for OSH. By solving it, we can obtain all the 
sectional images simultaneously using optimization methods. Because of the large-scale data 
volume of the matrix H , optimization methods can only process relatively small data volume 
on limited memory desktop computer. For example, the original complex hologram data is 
512× 512 for one sectional image reconstruction. After lexicographic ordering, the size of 
matrix H is 262144× 262144, beyond the capability of most ordinary desktop computers. 
Considering mainly involving multiplication of matrices, and multiplication of matrix and 
vector during optimization processing, two simplified computation modes are implemented to 
meet the large-scale data volume issue of OSH. 

Mode 1: Matrix multiplication 

To calculate the multiplication of two matrices, the following equation is required. 
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where 
i

H has the property of block-circulant-circulant-block (BCCB) [20], corresponding to 

( , ; )
i

h x y z after lexicographic ordering. While T

i
H  is the transpose of 

i
H , it corresponds to 

~

( , ; )
i

h x y z  after lexicographic ordering. 

The relationship between 
~

( , ; )
i

h x y z and ( , ; )
i

h x y z is given by 

 
~

( , ; ) ( ( ( , ; ))),
i i

h x y z Rv T h x y z=  (5) 

where the ( )T ⋅ operator translates ( , ; )
i

h x y z towards negative x  direction and y  direction by 

1 pixel; then the ( )Rv ⋅ operator reverses it along the x axis and the y axis. 

The calculation of the element in Eq. (4) requires the multiplication of matrices with size 

of 2 2
N N× , which is hard to implement on limited memory desktop computer. In this paper, 

we use the convolution of matrices with size of N N×  to replace the multiplication of 

matrices with size of 2 2
N N× , as shown in Eq. (6) below. By using the Fast Fourier 

Transform (FFT) to calculate the matrix convolution, it also reduces the computation load 
significantly. 

 
~

( ( , ; ) ( , ; )),1 , ,
T

i j i j
H H lex h x y z h x y z i j M= ∗ ≤ ≤  (6) 

where ( )lex ⋅  denotes the lexicographic ordering operator. Based on Eq. (6), Eq. (4) can be 

processed block by block. 

Mode 2: Matrix and vector multiplication 

To calculate the multiplication of a matrix and a vector, the following equation is required. 

 [ ]1 2 1 2
[ ] G G ,

M M
HG H H H G H H H G= =⋯ ⋯       (7) 

where 
i

H corresponds to ( , ; )
i

h x y z  and G  corresponds to ( , )g x y  after lexicographic 

ordering. 
Hence the multiplication of the matrix and the vector is shown as 

 ( ( , ; ) ( , )).
i i

H G lex h x y z g x y= ∗  (8) 

Similarly, Eq. (7) can be calculated block by block using Eq. (8). 

2.3. Adaptively iterative shrinkage-thresholding (AIST) algorithm 

The linear system of equations has been obtained in Eq. (3). If the error term ε  is white noise 

whose energy is smaller than a given minimum δ , the ground truth sectional image can be 

well approximated by basis pursuit de-noising [21,22]: 

 
1 2

min , .subject to G H δΦ − Φ ≤    (9) 

Using the Lagrangian method [23], the objective function of Eq. (9) can be rewritten as 
the unconstrained optimization equation: 

 
*

2 1

1
min ( ) min

2
arg arg ,F x G H λ

Φ Φ
Φ = = − Φ + Φ  (10) 
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where λ  is the Lagrangian multiplier controlling the extent of sparsity. Under the separable 

property of the regularization term, the sparse reconstruction of the sectional image can be 
divided into some sub-problems, speeding the resolving of the original problem [24]. When 

the regularization is 
1
l  norm, a unique solution can be obtained. 

In this paper, the adaptively iterative shrinkage-thresholding (AIST) algorithm is 
introduced to resolve the optimization equation of Eq. (10). The AIST method inherits the fast 
iterating of the iterative shrinkage-thresholding (IST) algorithm [25–27]. Different from the 
previous IST algorithm, the AIST algorithm adaptively converges to the global optimal 
solution using simplified computation. The adaptive methodology embodies in three aspects. 
First, an appropriate initial Lagrangian multiplier can be obtained by adaptively iterating of an 
exponential function, which is critical for the determination of the initial solution of Eq. (3). 
Second, after the acquired initial Lagrangian multiplier, a reasonable iterating Lagrangian 
multiplier sequence used for shrinkage soft-threshold is generated by another exponential 
function. Finally, multiple stopping criteria are employed, i.e., the relative error of the 
objective function, a priori knowledge of a terminating threshold (optional) and the maximum 
number of iteration. 

Similar to IST, the AIST method first divides objective function into 

2

2

1
( )

2
f G HΦ = − Φ and 

1
( )g λΦ = Φ , where the second-order expansion of ( )f Φ at kΦ is 

given as 

 
2

2

2

1
( ) ( ) ( ) ( ) ( ).

2

k k T k k k
f f f fΦ ≈ Φ + Φ −Φ ∇ Φ + Φ −Φ ∇ Φ  (11) 

In practice, the Hessen matrix 
2

( )
k

f∇ Φ can be approximated by a diagonal matrix kα Ι , 

such that 
1 1 1
( ) ( ) ( )

k k k k k
f fα + + +Φ −Φ ≈ ∇ Φ −∇ Φ . As a result, 

 
1 1

1

1 1

( ) ( ( ) ( ))

( ) ( )
.

k k T k k

k

k k T k k

f f
α

+ +
+

+ +

Φ −Φ ∇ Φ −∇ Φ
=

Φ −Φ Φ −Φ
 (12) 

Hence, the update of kΦ  is, 

 

1

2

12

min ( ) ( )

min ( ) ( )
2

arg

arg ,

k

K

k T K k k

f x g x

f
α

λ

+

Φ

Φ

Φ = +

≈ Φ −Φ ∇ Φ + Φ −Φ + Φ
 
 
 

 

         
 (13) 

where ( ) ( )
K T K

f H H G∇ Φ = Φ − . According to Eq. (6) and Eq. (8), we rewrite ( )
K

f∇ Φ  as 

( ) ( )
K T K T

f H H H G∇ Φ = Φ − , such that 

 

~ ~

1 1

~ ~

2 2

~~

( ) ( )

( ) ( )
( )

( )( )

,

k

k
K

k
MM

lex h lex h g

lex h lex h g
f

lex h glex h

γ

γ

γ

∗ ∗

∗ ∗∇ Φ = −

∗∗

   
   
   
   
   
   
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 (14) 

where 
1 1 2 2

[ ( ) ( ) ( )]
k k k k

M M
lex h lex h lex hγ ϕ ϕ ϕ= ∗ + ∗ + + ∗⋯ . 

An equivalent update of Eq. (13) is that 

 1

2 1

1
min

2
arg ,

k

k

k

λ
θ

α
+

Φ
Φ = Φ − + Φ  (15) 
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where 
1

( )
k k

k
fθ

α
= Φ − ∇ Φ . 

Using the equivalent soft-threshold, we obtain 

 

2

1 2 1
= min ( , )

2

sgn( ) max ,0 ,

0, ,

arg

,

k
k

k k

k k

k k

sep sepk

k k

soft

if

otherwise

θ λ λ
θ

α α

λ λ
θ θ θ

α α

+

Φ

Φ − Φ
Φ + =

− >
=

  
  
  



    

   
         

                                             

 (16) 

where 
sep

θ represents that the absolute value is calculated separably, indicating that the 

implementation of soft-threshold is based on single element and integrates all the elements 
into a vector afterwards. 

By now, only Lagrangian multiplier has not been determined. Because a reasonable 
Lagrangian multiplier is quite critical to the spares reconstruction of OSH, we have designed a 
dual factor exponential formulation: 

 1, 1 0,

1 2
exp( ), 0, 0,

k p p
p k k pλ λ ζ ζ+ + = − − ≥ ≥  (17) 

where an initial Lagrangian multiplier (at p level) is used for the determination of the sparsest 

initial solution and an iterating Lagrangian multiplier (at k level) is used for iterative 

shrinkage-thresholding. 
In summary, Algorithm 1 gives the pseudo-code of AIST algorithm to reconstruct the 

sectional image of OSH. 
Algorithm 1 Implementation of adaptive iterative shrinkage-thresholding (AIST) algorithm 

Requirement: matrix H , measured hologram vector G . 

Initializing: Adaptive coefficient 
1

ζ and 
2

ζ , 
0,0λ , relative error coefficient ( )f ε and maximum iterating 

number M. ( ) 0, 0p pΦ = ←
�

 . 

1: repeat 

2: 1p p← + . 

3: Shrinkage of the initial Lagrangian multiplier by
0, 0, 1

1
exp( ( 1))

p p
pλ λ ζ−= − − . 

4: Update 
kα  according to Eq. (12). 

5: Update solution ( )pΦ using Eq. (16). 

6: until ( ) 0pΦ ≠
�

. 

7: Output initial Lagrangian multiplier
0, pλ  and re-initial ( ) ( ), 0k p kΦ = Φ ← . 

8: repeat 

9: 1k k← +  

10: Shrinkage of iterating Lagrangian multiplier by
, 0, -1

1 2
exp( ( 1) ( 1))

k p p
p kλ λ ζ ζ= − − − − . 

11: repeat 

12: Update 
kα  according to Eq. (12). 

13: Update solution ( )kΦ  and objective function ( ( ))F kΦ  by Eq. (16) and Eq. (11) respectively. 

14: until ( ( )) ( ( 1))F k F kΦ < Φ −  

15: until the stopping criteria are met. 
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3. Experiments and results 

To validate the feasibility of the AIST method proposed in this paper, three verification 
experiments have been conducted. First, utilizing the hologram obtained by OSH physical 
system, the proposed method was verified on both the whole and a half hologram data. 
Second, the feasibility of the proposed method on multi-planar sectional image reconstruction 
has been investigated. Finally, the maximum axial depth which can be processed by OSH 
system has been studied at a given lateral resolution. 

Subjective observation is not sufficient to demonstrate the performance of different 
methods. Herein a quantitative estimation named Image Quality (ImQ) [28] is adopted to 
compare the reconstruction performances, which is defined as 

 
2 2 2 2

4 ( ) ( )
Im

( )( ( ) ( ))
,

E E
Q

E E

φφ

φ φ

σ φ φ

σ σ φ φ
=

+ +

ɵ

ɵ

ɵ

ɵ
 (18) 

where φ  is the original image and φɵ  is the estimated value of φ  (i.e., the reconstructed 

image); ( )E φ denotes the expectation of original image, while ( )E φɵ  denotes that of the 

reconstructed image; 
2

φσ denotes the variance of original image and 
2

φ
σ ɵ  denotes that of the 

reconstructed image; and 
φφ

σ ɵ  denotes the mutual correlation of the original image and the 

reconstructed image. 

3.1. Sectional image reconstruction by a half data 

The optical part of OSH contains two pupils giving a spherical wave and a plane wave. The 

diameter of the plane wave is 25 mm , and the focal length of the lens used to give a spherical 

wave is 500 mm  [12]. Based on these two parameters, the calculated numerical aperture (NA) 

of the optical system used to record the complex hologram is 0.25. The excitation wavelength 

of the He-Ne laser is 632 nm . Two sectional images lie along the optical axis at 
1

z = 87 cm  

and
2

z = 107 cm . The real and imaginary parts of the complex hologram recorded by the 

physical OSH system are shown in Fig. 1, where the object consists of two transparencies 

with “S” located at 
1

z and “H” at 
2

z . 

 

Fig. 1. Complex hologram obtained by the physical OSH system. (a) Real part of the hologram. 
(b) Imaginary part of the hologram. 

To verify the feasibility of the proposed method, we have conducted two experiments by 
the proposed method using both the whole hologram data and a half hologram data. For 

comparison sake, the conventional method and the 
2

l norm method solved by conjugate 

gradient (CG) algorithm have been implemented as well. 
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Fig. 2. Reconstruction results of OSH sectional images. (a) and (b) are results obtained by 
conventional method using the whole data and a half data. (c) and (d) are results obtained by 

2
l  norm method using the whole data and a half data. (e) and (f) are results obtained by the 

AIST method using the whole data and a half data. 

“S” is the object of the first section, and “H” is that of the second section. The 
reconstructed results shown on the left two columns of Fig. 2 have been obtained using the 
whole hologram data. Compared with the results in Fig. 2(a), the blurred “H” in the first 
section and the blurred “S” in the second section becomes less striking in Fig. 2(c), which 

shows the advantage of the 
2

l  norm method to alleviate defocus noise over the conventional 

method. However, there are still some residual defocus noises in Fig. 2(c). Employing the 
AIST method, the desirable results have been obtained in Fig. 2(e). It is clear that the blurred 
noises in the reconstructed two sections disappear completely, thus demonstrating that the 
high performance of the proposed novel method on eliminating the out-of- focus haze. 

The results on the right two columns have been obtained only using the real part of the 
complex hologram. The reconstructed sectional images in Fig. 2(d) deteriorate almost the 
same degree as those in Fig. 2(b). This is due to, in addition to the defocus noise, the twin 
image noise produced by the loss of the imaginary part of the complex hologram, which is 

hardly coped by the conventional method and the 
2

l  norm method. Nevertheless, the AIST 

method could solve this difficulty as shown in Fig. 2(f). The results are almost as good as 
those shown in Fig. 2(e). These results demonstrate the superiority of our proposed method on 
twin image noise reduction even though with a single channel of post-processing to obtain 
only a real hologram for reconstructions, thereby reducing the cost of the original OSH 
physical system. 

3.2. Multi-planar object reconstruction 

A multi-planar object simulation experiment has been implemented, where three sectional 

images (with different intensities) are located along the optical axis at 1.4 mm , 4.4 mm  and 
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7.4 mm . The lateral resolution is 1 mµ . The real and imaginary parts of the complex hologram 

of the object are presented in Fig. 3. 

 

Fig. 3. Hologram of object with three planar sections. (a) Real part of the hologram. (b) 
Imaginary part of the hologram. 

The reconstruction results of the 
2

l  norm method with the whole hologram are shown in 

Fig. 4(a). The results of the AIST method with the whole hologram and the half hologram are 
shown in Fig. 4(b) and 4(c), respectively. Both methods have the ability of reconstructing the 
in-focus object, but obviously the AIST method is superior in erasing the out-of-focus haze. 
Moreover, we have calculated the ImQs of Fig. 4(a), (b) and 4(c), and they are 0.4395, 0.9212 
and 0.7779, respectively. These results further support the high performance of the proposed 
method on precise reconstruction. 

In Fig. 4(b) and 4(c), we notice that the loss of the imaginary part of the hologram surely 

would decrease the reconstruction quality but the results are acceptable. The results of the 
2

l  

norm method with a half hologram, however, degenerate seriously. 

 

Fig. 4. Reconstruction results of the 
2

l  norm method and the AIST method. (a) Results of 
2

l  

norm method with the whole hologram. (b) Results of the AIST method with the whole 
hologram. (c) Results of the AIST method with the real part of the hologram. 

3.3. DOF analysis 

For 3D imaging, there is a compromise between the lateral resolution and the depth of focus 

(DOF). Herein we analyze the maximum DOF of the 
2

l  norm and the proposed AIST method. 
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We employed two sectional images as shown in Fig. 5. Different from previous experiments, 

we fix the location of one section at the depth of 1.0 mm  but vary the separation of the second 

section to the first section from 0.2 mm  to 49.5 mm . The system has 1 mµ  lateral resolution. 

 

Fig. 5. Sectional images illustration. The first sectional image is fixed at the depth of 1.0mm, 
while the second sectional image varies from0.2mm to 49.5mm. 

Figure 6 gives the reconstruction results of the two methods and Table 1 shows the 

corresponding ImQs. When the distance of two sections is 0.2 mm , the AIST method obtains a 

considerably good reconstruction, but the 
2

l  norm method cannot distinguish the two 

sections. The highest ImQ (0.9780) of the AIST method is acquired when the distance is 

1 mm  between the two sections, as shown in Fig. 6(d). But the corresponding ImQ of the 
2

l  

norm is only 0.6852(Fig. 6(c)). When the distance is 9 mm , the 
2

l  norm method arrives its 

maximum at 0.7277 (Fig. 6(e)), however, the ImQ of the AIST method is as high as 0.9210 

(Fig. 6(f)). Moreover, when the distance of two sections is 49.5 mm  apart from each others, 

the ImQ of the AIST method and the 
2

l  norm method is 0.8085 and 0.4905, respectively. The 

latter method has completely loss the capability to reconstruct the second sectional image 
(Fig. 6(g)). 

Table 1. ImQ’s of the Reconstruction Results 

Distance Separation 0.2mm 1.0mm 9.0mm 49.5mm 

AIST 0.9083 0.9780 0.9210 0.8085 

2
l  norm 0.6650 0.6852 0.7277 0.4905 

The ImQ curves of the AIST method and the 
2

l  norm method from 0.2 mm  to 49.5 mm are 

shown in Fig. 7. The performance of the conventional method is worse than the 
2

l  norm 

method, hence its result is not presented. Although there are some disturbances, the AIST 

method keeps high ImQs at all the distance points as compared with the 
2

l  norm method. 

Moreover, the ImQ of the AIST method descends slowly, while it is not the case for the 
2

l  

norm method. The result implies that the proposed method is non-sensitive to the distance 
increase between two sections. 

From the results indicated, the proposed AIST method may provide a solution to expand 
the maximum recoverable depth. 
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Fig. 6. Reconstruction results by the the 
2

l  norm method and the AIST method. The left two 

columns are the results of the 
2

l  norm method, and the right two columns are the results of the 

AIST method. The distance between two sectional images is (a) (b) 0.2 mm , (c) (d) 1.0 mm , 

(e) (f) 9.0 mm , and (g) (h) 49.5 mm  respectively. 

 

Fig. 7. ImQ of the AIST method and the 
2

l  norm method. 
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4. Conclusion 

We have proposed an AIST method for sectional image reconstruction in OSH. The 
reconstruction results have been improved significantly as compared with the conventional 

method and the 
2

l norm method. More importantly the twin image noise has been eliminated 

using only a half of the original hologram data (i.e., keeping the real part of the complex 
hologram), while both the real and the imaginary parts of the hologram data are needed for the 

conventional and the 
2

l  norm method. We also have applied the proposed method to a multi-

planar object to investigate its validity on a relatively complex situation. Finally we have 

analyzed the maximum reconstructed depth at 1 mµ  lateral resolution, and the results 

demonstrated that the AIST method has the ability to extend the maximum reconstruction 
depth. This study has contributed to the increase of the imaging depth in OSH with relatively 
high resolution, and will widen its prospect on the imaging of thick specimens. 
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