LIST OF FIGURES LIST OF TABLES	x xiii
CHAPTER 1. INTRODUCTION	1
1.1 The Problem	1
1.2 Problem statement	3
1.3 What to do: Upgrade the facility or introduce safety improvement devices?	3
1.4 Problem Solving Approach	4
1.5 Research Objectives	5
1.6 Significance Of The Work	6
1.7 Dissertation Layout	7
CHAPTER 2. LITERATURE REVIEW	8
2.1 Section I: The Safety problem	8
2.1.1 Introduction	8
2.1.2 Accident Statistics	8
2.1.3. Accidents in Virginia	10
2.1.4 Accidents in Rural Areas	10
2.1.5. Crashes by Crash Type and Road Function	11
2.1.6. Economic Costs of Crashes	13
2.2 Section II: ITS and Safety	16
2.2.1 The need for new solutions to safety problem	16
2.2.2 Emerging ITS safety applications	17
2.2.3 Benefits of Intelligent Transportation	18
2.3 Section III: Advanced Rural Transportation Systems (ARTS)	24
2.3.1 Definition and Historical Background	24
2.3.2 Rural ITS user needs	24
2.3.3 ARTS Goals	26
2.3.4 Safety and Security	27
2.3.5 Safety and Security Strategic Objectives	27
2.3.6 Critical Program Areas (CPA's)	28
2.3.7 Traveler Safety and Security	29
2.3.8 Expected Benefits of ARTS	32
2.3.9 Crash Reduction Benefits of ARTS	33
2.3.10 Fatality Reduction Benefits of ARTS	34
2.4 Section IV: Crash Avoidance And Warning Systems	36
2.4.1 Introduction	36
2.4.2 ITS and Degree of Automation	36
2.4.3 Countermeasures Automation and Crash time-Intensity	37
2.4.4 Warning Systems	39
2.4.5 Highway-Based Collision Warning Systems Deployment Concepts	39
2.5 Section V: In-Vehicle Collision Warning Systems	50
2.5.1 Introduction	50
2.5.2 Hazard Scenarios	51

Table of content

2.5.3 The Role of Driver In the CAS	52
2.5.4 Federal Program	54
2.5.5 Collision Countermeasures Systems	56
2.5.6 Traditional Areas of Collision Avoidance	62
2.5.7 Research Tools	63
2.5.8 Long- Term Vision	65
2.5.9 Proven Benefit	65
2.6 Section VI: Photo Camera Enforcement	67
2.6.1 Introduction	67
2.6.2 Applied Technology for Enforcement	68
2.6.3 Automated enforcement.	69
2.6.4 Photo enforcement Technology	69
2.6.5 Effectiveness of Photo Enforcement	75
CHAPTER 3. RESEARCH METHODOLOGY AND ORGANIZATION	77
3.1 Research Methodology	77
3.1.1. Task 1: Literature Review	77
3.1.2. Task 2: Data Collection	78
3.1.3. Task 3: Geometric Characteristics of The Site and Coverage Area	78
3.1.4. Task 4: System Architecture	78
3.1.5. Task 5: System Design	79
3.1.6. Task 6: System Simulation	80
3.1.7. Task 7: System Evaluation	80
3.2 Organization of the research	81
5.2 Ofguillation of the research	01
CHAPTER 4. DATA COLLECTION AND ANALYSIS	83
4.1 Road Attributes.	83
4.1.1 Road Inventory	83
4.1.2 Vertical profile of the site	83
4.2 Traffic characteristics	86
4.2.1Traffic volume	86
4.2.2 Traffic classification	91
4.2.3 Speed survey	94
4.3 Accident Data Analysis.	104
4.3.1 Head on Collision Attributes Analysis	107
4.4 Violation Survey	112
4.4.1 Passings Observed.	112
4.4.2 Violation Rate	116
4.4.2 Violation Rate	110
CHAPTER 5. GEOMETRIC ANALYSIS	119
5.1 Stopping Sight Distance	119
5.2 Passing Sight Distance as determined by AASHTO	119
5.2.1 Crest vertical curves	120
5.3 Surveillance area	125
J.J Suivenialle alea	
5.4 The blind spots	125

CHAPTER 6. SYSTEM ARCHITECTURE	129
6.1 Introduction	129
6.2 The component of the system architecture	129
6.2.1 User service requirement identification	129
6.2.2 Logical Architecture	130
6.2.3 Physical Architecture	135
CHAPTER 7. SYSTEM DESIGN	136
7.1 Introduction	136
7.2 System Algorithm	136
7.3 Detection System Design: Video Image Processing (VIP)	138
7.3.1 Tripline	138
7.3.2 Tracking	139
7.3.3 System Selection Process	141
7.3.4 Layout of The Cameras	142
7.4 Control Processor System: Autoscope Solo	145
7.5 Warning System Design: The Warning Sign	146
7.5.1 Sign Design	148
7.5.2 Infrastructure Components	149
7.6 Communication system Design	150
7.6.1 Choice of video transmission medium systems	150
7.7 Image Capturing Subsystem.	150
7.7.1 Photographic Unit #PGU-35	155
7.7.2 Camera Features	150
7.8 Offline Testing of The System.	157
7.8.1 Field Test results	161
7.0.1 Tield Test results	101
CHAPTER 8. SYSTEM SIMULATION	164
8.1 Introduction.	164
8.2 Code Structure	165
8.3 Defining the Input parameters	166
8.3.1 Roadway-Related Parameters	167
8.3.2 Vehicle-Related Parameters	170
8.3.3 Driver-Related Parameters	178
8.4 Simulation Methodology	189
8.4.1 "Without" warning system case	190
8.4.1 "Without warning system case	190
	191
8.4.3 Post Perception Action	194
8.4.4 Initialized and generated variables	
8.5 Simulation Runs output.	202
8.5.1 Presenting the results of a Violation	202
CHAPTER 9: SYSTEM EVALUATION	210
9.1 Introduction.	210
9.2 ITS Evaluation Guideline	210
9.2.1 ITS goal areas	210
7.2.1 110 gour areas	210

9.2.2 System Performance Evaluation	211
9.3 Safety	212
9.3.1 Risk Comparison Tools	212
9.3.2 Crashes Output Of The "Without System" Simulation	216
9.3.3 Crashes Output Of The "With System" Simulation	217
9.3.4 Accidents Severity	221
9.4 Sensitivity analysis	224
9.4.1 Test 1: Increase In Traffic Volume	225
9.4.2 Test 2: Increase Maximum speed	229
9.4.3 Test 3: Decrease Driving Under Influence DUI Percent	233
9.4.4 Test 4: Increasing DUI Impairment effect	235
9.4.5 Test 5: Overtaking B Ahead on the Slope	238
9.4.6 Test 6: Increase Detection and Verification Time	242
9.4.7 Test 7: Increase Reading Time	244
9.4.8 Test 8: Widening Speed Difference Threshold	246
9.4.9 Test 9: Increase Minimum Emergency Merging Distance	249
9.4.10 Test 10: Risk Taker Violators	251
9.4.11 Test 11: Cooperative Driver of Vehicle B	254
9.4.12 Sensitivity Tests Conclusion	256
9.5 Productivity: Cost savings	258
9.5.1 Costs Of The System	258
9.5.2 Benefits Of The System	259
9.5.3 Financial Analysis and The Economic Indicators	262
CHAPTER 10. CONCLUSIONS AND FURTHER RESEARCH	264
10.1 Research Summary and Conclusions	264
10.2 Recommendation for future researches	267
10.2 Recommendation for future researches	207
References	270
Vita	274
Appendix A4-1	a

LIST OF FIGURES

Figure 1-1: Peppers Ferry (Route 114) Location	1
Figure 1-2: Road Vertical Profile	2
Figure 2-1: Economic Cost Breakdown of Crashes (year 1994)	14
Figure 2-2: Contribution to Fatal Crash Reduction by ITS Countermeasure	19
Figure 2-3: Conceptual Cluster Relationships	28
Figure 2-4: Time-Intensity Graph of Pre-Crash Avoidance Requirement	38
Figure 2-5: Road Layout With an In-The-Road Friction Detector	40
Figure 2-6: Schematic for Guidelight system on curves	41
Figure 2-7: Limited Sight Curve With a Single Sensor-Sign Pair	42
Figure 2-8: Warning Sign on a Limited Sight Curve	42
Figure 2-9: Warning on a Minor Road of The Presence of Vehicles on a Major	
Road	44
Figure 2-10: Warning on a Major Road of The Presence of Vehicles on a Minor	•••
Road	45
Figure 2-11: Approaching Vehicle Warning for Driver Making a Left-hand Turn.	47
Figure 2-12: Idaho Low Visibility Warning System Function	49
Figure 2-13: Portable Driver Performance (DASCAR)	50
Figure 2-14: Distribution of Major Crashes Types	51
Figure 2-15: Driver/Vehicle Interaction With CASs	53
Figure 2-16: Vehicle-Based Drowsy Warning System Schematic	59
Figure 2-17: First Picture Taken By Automated Red Light Enforcement System	70
Figure 2-18: Second Picture Taken By Automated Red Light Enforcement System	
Figure 3-1: The Research Structure	82
Figure 4-1: Original Plan Road layout and Profile	84
Figure 4-2: Site Vertical Curve	85
Figure 4-3a: Thursdays Traffic Distribution (East)	86
Figure 4-3b: Fridays Traffic Distribution (East)	87
Figure 4-3c&d: Saturdays Traffic Distribution (East)	87
Figure 4-3e&f: Sundays Traffic Distribution (East & West)	87
Figure 4-3g: Mondays Traffic Distribution (West)	88
Figure 4-3h&i: Tuesdays Traffic Distribution (Vest)	88
Figure 4-3j&k: Wednesdays Traffic Distribution (East & West)	88
Figure 4-4: Average Daily Traffic Summary	90
Figure 4-5: Two-week daily Classification in Eastbound Direction	93
Figure 4-6: Two-week daily Classification in Westbound Direction	93
Figure 4-7: Speed Distribution for Thursday 09/14/00 East	95
Figure 4-8: Cumulative Speed Distribution for Thursday 09/14/00 East	95
Figure 4-9a,b: Light vehicles Speed Distribution for Week1 – East	97
Figure 4-9c,d: Light Vehicles Speed Distribution for Week1 - West	97
Figure 4-9e,f: Light vehicles Speed Distribution for Week2 – East	98
Figure 4-9g,h: Light Vehicles Speed Distribution for Week2 – West	98
Figure 4-10a,b: Medium vehicles Speed Distribution for Week1 – East	99
Figure 4-10c,d: Medium Vehicles Speed Distribution for Week1 – West	99
rigure + roe, a. meanum venneres speed Distribution for weeki west	"

Figure 4-10e,f: Medium vehicles Speed Distribution for Week2 – East	100
Figure 4-10g,h: Medium Vehicles Speed Distribution for Week2 – West	100
Figure 4-11a,b: Heavy vehicles Speed Distribution for Week1 – East	101
Figure 4-11c,d: Heavy Vehicles Speed Distribution for Week1 – West	101
Figure 4-11e,f: Heavy vehicles Speed Distribution for Week2 – East	102
Figure 4-11g,h: Heavy Vehicles Speed Distribution for Week2 – West	102
Figure 4-12: Fatal Accidents Locations	107
Figure 4-13: Marking Layout at Project Site Centerline	112
Figure 5-1: Breakdown of Passing Distance	122
Figure 5-2a: Vertical Crest Components For S <l< td=""><td>124</td></l<>	124
Figure 5-2b: Vertical Crest Components For S>L	124
Figure 5-3: The East Side Boundary Of The Danger Zone	125
Figure 5-4: The West Side Boundary Of The Danger Zone	126
Figure 5-5: Danger Zone Receiving Surveillance	126
Figure 5-6: The Limits Of The Blind Spots	127
Figure 6-1: System Requirement Definition	130
Figure 6-2: System Functional Design	131
Figure 6-3: System Data flow Diagram	134
Figure 6-4: Physical Architecture of the System	135
Figure 7-1. System Algorithm	137
Figure 7-2: Tripline Type Of Vehicle Video Imaging Detection	139
Figure 7-3: Video Detection Using Tracking Algorithms	140
Figure 7-4: Multi-tracking Technology Detection By VideoTrak	140
Figure 7-5: Video Cameras Locations Layout	140
Figure 7-6: Video Cameras Detection Area	144
Figure 7-7: Overall system Detection Layout	145
Figure 7-8: Location And Placement of Warning Signs	149
Figure 7-9: Layout of Communication System	151
Figure 7-10: 35mm License Plate Capturing Camera	156
Figure 7-11: System Installation	158
Figure 7-12: Detection Zones (Negative pictures)	158
Figure7-12: Detection Zones (Negative pictures) Figure7-13: Autoscope Detection Zones	159
Figure7-14: Passing And Left Turn Tests	160
Figure7-15: Autoscope Boolean Feature	161
	161
Figure7-16: Nighttime Field Tests Figure7-17: Occlusion Problem Tested in Field	161
Figure 8-1: Simulation Code Structure	162
-	165
Figure 8-2: Road Plan and Profile Figure 8-3: Initial locations of vehicles	109
0	
Figure 8-4: Initial Locations Determination of Vehicles A &C	173
Figure 8-5: Speed Distribution and Threshold of Vehicles A & B	175
Figure 8-6: Maximum Acceleration-Speed Relation At Level Grade	176
Figure 8-7: Line-Of—Sights Between Typical Heavy And Light Vehicles	179
Figure 8-8: Line-Of- Sight Verification	180
Figure 8-9. Reaction/Response Time	182
Figure 8-10: Probability Distribution Function of PRT	183

Figure 8-11: Passing Without the Warning System	192
Figure 8-12: Passing with Warning System	193
Figure 8-13: Vehicle A Merging Under Emergency Regime Behind B	196
Figure 8-14: Vehicle A Merging Under Emergency Regime Ahead of B	197
Figure 8-15: Sample of Runs Output (Without/Action1)	204
Figure 8-16: Sample of Runs Output (With/Action1)	205
Figure 8-17: Sample of Runs Output (Without/Action2)	206
Figure 8-18: Sample of Runs Output (With/Action2)	207
Figure 8-19: Sample of Runs Output (With/Action3)	208
Figure 9-1: Crash Summary By Action Type	221
Figure 9-2: Crash Risk Summary	221
Figure 9-3: Number of Crashes by Action Type and Due Spacing Decrease	227
Figure 9-4: Violations by Crash Risk Indicator Due To Spacing Decrease	227
Figure 9-5: Crashes by Action Type Due To Increasing Maximum Speed	231
Figure 9-6: Violations by Crash Risk Indicator Due To Increasing Max. Speed	231
Figure 9-7: Number of Crashes by Action Type and Due To Slope Overtake	240
Figure 9-8: Violations by Crash Risk Indicator Due To Slope Overtake	240

LIST OF TABLES

Table 2-1: Motor vehicle occupants and non occupants killed and injured 88-98.	9
Table 2-2: Persons killed and injured and fatality and injury rates, 1988-98	9
Table 2-3: 1995 Fatal Crashes by Crash Type and Road Function	12
Table 2-4: 1995 Injury Crashes by Crash Type	12
Table 2-5: 1995 injury crashes classified by road function	13
Table 2-6: 1995 Rural Fatal Crashes by weather Condition and Crash Type	13
Table 2-7: Infrastructure ITS Benefits Summary	20
Table 2-8: In-Vehicle ITS Benefits Summary	20
Table 2-9: ITS Benefits Summary	21
Table 2-10: Summary of ITS Countermeasures Impact	22
Table 2-11: Total Fatal Crash Reduction from 100% ITS Deployment	23
Table 2-12: Total Injury Crash Reduction from 100% ITS Deployment	23
Table 2-13: Contribution to Overall Rural ITS Infrastructure	30
Table 2-14: Technology System Applications	32
Table 2-15: Advanced Vehicle Collision Safety System: Five-Prong Program	55
Table 2-16: Possible Countermeasures for Reduced Visibility Crashes	60
Table 2-17: Benefits Chart of Some Collision Avoidance Systems	66
Table 4-1: Daily Traffic Summary	89
Table 4-2: Vehicle Classification by Day & by Direction for Week 1	92
Table 4-3: Vehicle Classification by Day & by Direction for Week 2	92
Table 4-4: Two- Week Average Share of Vehicle Classes	93
Table 4-5: Mean and Standard Deviation Estimation (mi/hr)	103
Table 4-6: Mean and Standard Deviation for the Speed Normal PDF	103
Table 4-7: Accidents By Class and Location (1994-2000)	105
Table 4-8: Accidents per 100 MVMT.	106
Table 4-9: Accident Damages by Collision Type and Location	106
Table 4-10: Head On Collisions On Route 114 (1994 – 2000)	108
Table 4-11: Head On Collisions in Project Site (1994 – 2000)	108
Table 4-12: Summary Of Violation Observations	113
Table 4-13: LOS Of The 15-Minute Violation Period.	115
Table 4-14: Violation Rates Observed (per 10,000 vehicles)	116
Table 4-15: Violation Rates by Direction and Vehicle Class (per 10,000 vehicles)	117
(No Tables in chapters 5, 6 &7)	4
Table 8-1: Road Grade by 50-Feet Step.	167
Table 8-2: Driver's Eye and Vehicle Heights	171
Table 8-3: Normal PDF Of Initial Speeds.	174
Table 8-4: Percentile Estimates of Steady State Deceleration	177
Table 8-5: Breakdown of PRT (85th Percentiles)	183
Table 8-6: Brake PRT Comparison (in seconds)	185
Table 8-7: Performance Under Alcohol Influence	189
Table 8-8: Vehicle- Related Variables.	200
Table 8-9: Driver- Related Variables.	201
Table 8-10: Roadway- Related Variables	201

Table 9-1: MOE's of ITS Goal Areas.	211
Table 9-2: Actions Outcomes By Directions (Without System)	214
Table 9-3: Crash Risk In Term Of Possible Crashes by Direction (Without Sys.)	215
Table 9-4: Actions Outcomes By Directions (With System)	218
Table 9-5: Crash Risk In Term Of Possible Crashes by Direction (With System)	219
Table 9-6: Crashes Speed Of Vehicles A and C (Without Case)	222
Table 9-7: Crashes Speed Of Vehicles A and C (With Case)	222
Table 9-8: Average Speeds Of Vehicles A and C In The Unavoidable Crashes.	223
Table 9-9: Crashes By Action In Decrease of Desired Spacing Test	226
Table 9-10: Violations By Crash Risk Indicator In Decrease Of Spacing Test	226
Table 9-11: Crashes Speed Comparison Of Vehicles A and C (Without Case)	228
Table 9-12: Number of Crashes by Action in Increase of Maximum Speed Test	230
Table 9-13: Violations by Crash Risk in Increase of Maximum Speed Test	230
Table 9-14: Crashes Speed Comparison Of Vehicles A and C (Without Case).	232
Table 9-15: Number of Crashes by Action in Decrease of DUI Percent Test	233
Table 9-16: Violations by Crash Risk Indicator in Decrease of DUI Percent Test	234
Table 9-17: Crashes Speed Comparison of Vehicles A and C (Without Case)	234
Table 9-18: Number of Crashes by Action in Decrease of DUI Effect Test	236
Table 9-19: Violations by Crash Risk Indicator in Decrease of DUI Effect Test	236
Table 9-20: Crashes Speed Comparison of Vehicles A and C (Without Case)	237
Table 9-21: Number of Crashes by Action in Slope Overtaking Test	239
Table 9-22: Violations by Crash Risk Indicator in Slope Overtaking Test	239
Table 9-23: Crashes Speed Comparison of Vehicles A and C (Without Case)	241
Table 9-24: Number of Crashes by Action in Increase of Detection Time Test.	243
Table 9-25: Violations by Crash Risk in Increase of Detection Time Test	243
Table 9-26: Crashes Speed Comparison of Vehicles A and C (Without Case)	244
Table 9-27: Number of Crashes by Action in Increase of Reading Time Test	245
Table 9-28: Violations by Crash Risk Indicator in Increase of Reading Time Test	245
Table 9-29: Crashes Speed Comparison of Vehicles A and C (Without Case)	246
Table 9-30: Number of Crashes by Action in Widening Speed Threshold Test	247
Table 9-31: Violations by Crash Risk in Widening Speed Threshold Test	247
Table 9-32: Crashes Speed Comparison of Vehicles A and C (Without Case)	248
Table 9-33: Number of Crashes by Action in Increasing Merging Distance Test	250
Table 9-34: Violations by Crash Risk in Increasing Merging Distance Test	250
Table 9-35: Number of Crashes in Decrease of Merging Speed Difference Test	252
Table 9-36: Violations by Crash Risk in Decrease of Merging Speed Difference	252
Table 9-37: Number of Crashes by Action in The Dual Modification Test	253
Table 9-38: Violations by Crash Risk Indicator in The Dual Modification Test	253
Table 9-39: Number of Crashes by Action in Cooperating Vehicle B Test	255
Table 9-40: Violations by Crash Risk in The Cooperating Vehicle B Test	255
Table 9-41: Significant Changes Observed Due To Sensitivity Tests	257
Table 9-42: System Acquisition costs (\$)	258
Table 9-43: Annual Operation and Maintenance Costs (\$)	259
Table 9-44: The Actual Cost Per Crash on Route 114 (\$)	260
Table 9-45: Adjusted Benefits Generated By The System (\$)	262
Table 9-46: Financial Analysis Of Cashflows (\$)	263