

Simultaneous Generalized Hill Climbing Algorithms

for Addressing Sets of

Discrete Optimization Problems

Diane E. Vaughan

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Industrial and Systems Engineering

Sheldon H. Jacobson, Co-Chair

C. Patrick Koelling, Co-Chair

Robert Rogers

Joel A. Nachlas

Ebru Bish

July 31, 2000

Blacksburg, Virginia

Keywords: Local Search, Generalized Hill Climbing Algorithms, Simulated Annealing,

Markov Chains, Ergodicity, Traveling Salesman Problem, Manufacturing Applications

Copyright 2000, Diane E. Vaughan

Simultaneous Generalized Hill Climbing Algorithms

for Addressing Sets of

Discrete Optimization Problems

Diane E. Vaughan

(ABSTRACT)

Generalized hill climbing (GHC) algorithms provide a framework for using

local search algorithms to address intractable discrete optimization problems.

Many well-known local search algorithms can be formulated as GHC

algorithms, including simulated annealing, threshold accepting, Monte Carlo

search, and pure local search (among others).

This dissertation develops a mathematical framework for simultaneously

addressing a set of related discrete optimization problems using GHC

algorithms. The resulting algorithms, termed simultaneous generalized hill

climbing (SGHC) algorithms, can be applied to a wide variety of sets of

related discrete optimization problems. The SGHC algorithm

probabilistically moves between these discrete optimization problems

according to a problem generation probability function. This dissertation

establishes that the problem generation probability function is a stochastic

process that satisfies the Markov property. Therefore, given a SGHC

algorithm, movement between these discrete optimization problems can be

modeled as a Markov chain. Sufficient conditions that guarantee that this

Markov chain has a uniform stationary probability distribution are presented.

Moreover, sufficient conditions are obtained that guarantee that a SGHC

algorithm will visit the globally optimal solution over all the problems in a

set of related discrete optimization problems.

iii

Computational results are presented with SGHC algorithms for a set of

traveling salesman problems. For comparison purposes, GHC algorithms are

also applied individually to each traveling salesman problem. These

computational results suggest that optimal/near optimal solutions can often

be reached more quickly using a SGHC algorithm.

iv

Acknowledgements

I wish to first acknowledge my advisors Dr. Sheldon H. Jacobson and Dr. C.

Patrick Koelling, their expertise, guidance, time and support made this

dissertation possible. I especially wish to thank Dr. Sheldon H. Jacobson

who has patiently assisted in my development as a researcher. I also wish to

acknowledge and thank my other committee members Dr. Robert Rogers, Dr.

Joel A. Nachlas and Dr. Ebru Bish for their time and support.

I would like to thank the Mathematics Department and the Industrial and

Systems Engineering Department for their support of and dedication to

graduate students. In particular, I thank Ms. Eileen Shugart and Ms. Lovedia

Cole for their patience, kindness and commitment to their jobs.

I would like to thank Dr. Neal D. Glassman of the Air Force Office of

Scientific Research for supporting the research contained in this dissertation

(through AFSOR grants F49620-98-1-0111 and F49620-98-1-0432). I also

would like to thank Dr. W. Garth Frazier of the Materials Process Design

Branch of the Air Force Research Laboratory, Wright Patterson Air Force

Base, and Mr. Enrique Medina of Austral Engineering and Software, Inc., of

Athens, Ohio, for providing the initial motivation and an interesting military

manufacturing problem application of the results developed in this

dissertation. I also would like to thank Dr. Richard Nance, Director of the

Systems Research Laboratory for his support of the work in this dissertation.

v

I would like to acknowledge my fellow students who have influenced my

research directions, helped me develop my presentation skills and facilitated

in developing and maintaining my interest in operations research and

mathematics. In particular, I would like to thank Dr. Jeanne Atwell, Chris

Orum, Lieutenant Colonel Darrall Henderson, Amy Anderson, Wendy

Hageman Smith, Becker Sidney Smith, Derek E. Armstrong, and Elise

Caruso.

I also would like to thank Dr. John E. Kobza, an excellent teacher and

researcher, and Derek E. Armstrong and Dr. Sheldon Jacobson, my co-

authors on the paper that inspired the SGHC algorithm. Lastly, I wish to

thank the “GHC” team: Dr. Sheldon H. Jacobson, Lieutenant Colonel Darrall

Henderson, Tevfik Aytemiz, Lieutenant Colonel (Dr.) Alan Johnson, Dr.

Kelly Sullivan and Derek E. Armstrong, for making work a fun and

intellectual experience.

vi

Dedication

This dissertation is dedicated to several important people in my life who have

made this effort possible. First and most importantly, this dissertation is

dedicated to my husband Mark and our son Andrew, who cooked, cleaned

and smiled to help with its completion and who fill our home with happiness.

In addition, this dissertation is dedicated to Denise and Patricia, for their love

and support.

This dissertation is also dedicated to Jim and Jeanne Atwell who were always

there when we needed them. I would also like to dedicate this dissertation to

Richard Hardy, whose advice about life and career decisions I took seriously.

Finally, I wish to dedicate this dissertation to my parents. I would like to

thank the Makelas for lovingly accepting me, my dreams and my ambitions.

I am forever indebted to the Vaughans, who have so many attributes that I

admire and respect. I strive to be a reflection of them.

vii

Contents

Chapter 1: Introduction and Motivation.. 1

1.1 Simultaneous Generalized Hill Climbing Algorithms... 1

1.2 Research Goals ... 3

1.3 Research Questions... 4

Chapter 2: Literature Review.. 5

2.1 Discrete Optimization Problems ... 5

2.2 Local Search Algorithms... 6

Neighborhood Functions .. 6

2.3 Simulated Annealing... 8

2.4 The Generalized Hill Climbing Algorithm.. 8

Local Search Algorithms Modeled by Generalized Hill Climbing Algorithms 9

Chapter 3: Motivational Example... 12

3.1 Manufacturing Process Design Application .. 14

3.2 Movement between Valid Manufacturing Process Design Sequences 20

3.3 Computational Results .. 24

Chapter 4: Simultaneous Generalized Hill Climbing Algorithms 31

4.1 Characterizing Sets of Discrete Optimization Problems.. 32

4.2 Neighborhood Function .. 33

4.3 The Simultaneous Generalized Hill Climbing Algorithm Pseudo-Code................ 34

Chapter 5: Simultaneous Generalized Hill Climbing Markov Chain Theory 36

5.1 Generalized Hill Climbing Markov Chain Theory .. 36

5.2 Simultaneous Generalized Hill Climbing Markov Chain Theory.......................... 38

viii

Chapter 6: Simultaneous Generalized Hill Climbing Algorithm Analysis................. 40

6.1 Stationary Markov Chain Sufficient Conditions ... 41

6.2 Nonstationary Markov Chain Sufficient Conditions ... 43

6.3 Conditions for Weak Ergodicity.. 47

Chapter 7: Performance of Simultaneous Generalized Hill Climbing Algorithms ... 57

7.1 The Simultaneous Generalized Hill Climbing Algorithm Visits Each Discrete

Optimization Problem Infinitely Often.. 58

7.2 The Expected Number of Iterations the Simultaneous Generalized Hill Climbing

Algorithm Spends in Each Discrete Optimization Problem... 62

7.3 Convergence of Simultaneous Generalized Hill Climbing Algorithms 65

Chapter 8: Illustrative Example.. 73

8.1 The Traveling Salesman Problem ... 73

8.2 The Multiple Traveling Salesman Problem... 76

Illustrative Example of the Multiple Traveling Salesman Problem 76

Chapter 9: Computational Results.. 79

9.1 Stationary Markov Chain Computational Results ... 80

9.2 Nonstationary Markov Chain Computational Results ... 89

Chapter 10: Conclusion and Future Directions of Research... 99

ix

List of Figures

Figure 2.1: Locals, Hills and Globals... 7

Figure 2.2: The GHC Pseudo-Code ... 9

Figure 3.1: Manufacturing Process Design Sequences... 14

Figure 3.2: The Five Valid Manufacturing Process Design Sequences................................ 23

Figure 4.1: SGHC Algorithm Pseudo-Code... 35

Figure 6.1: Ergodic Coefficients.. 51

Figure 8.1: The 2-Opt Neighborhood Function.. 75

Figure 8.2: The City Exchange Neighborhood Function.. 75

Figure 8.3: Distance Matrix and Distance Diagram... 78

Figure 9.1: Distance Matrix and Distance Diagram... 80

Figure 9.2: Pure Local Search.. 85

Figure 9.3: Simulated Annealing ... 85

Figure 9.4: Monte Carlo Search... 86

Figure 9.5: Pure Local Search.. 87

Figure 9.6: Simulated Annealing ... 88

Figure 9.7: Monte Carlo Search... 88

Figure 9.8: Pure Local Search.. 94

Figure 9.9: Simulated Annealing ... 95

Figure 9.10: Monte Carlo Search... 95

Figure 9.11: Pure Local Search.. 97

Figure 9.12: Simulated Annealing ... 97

Figure 9.13: Monte Carlo Search... 98

x

List of Tables

Table 3-1: Binary Vectors.. 18

Table 3-2: Distances Between Valid Manufacturing Process Design Sequences 21

Table 3-3: Distance Probabilities ... 22

Table 3-4: Traveling Between Sequences .. 24

Table 3-5: GHC Algorithm Results ... 27

Table 3-6: GHC Algorithm Results ... 27

Table 3-7: GHC Algorithm Results ... 28

Table 3-8: GHC Algorithm Results ... 29

Table 6-1: Weakly Ergodic Example One ... 48

Table 6-2: Weakly Ergodic Example Two... 49

Table 6-3: Weakly Ergodic Example Three... 49

Table 6-4: Not Weakly Ergodic Example Four.. 50

Table 6-5: Not Weakly Ergodic Example Five .. 51

Table 8-1: The Set of Objects, Ob ... 77

Table 8-2: Fundamental Relation Set... 77

Table 8-3: Binary Activity Vectors.. 77

Table 9-1: GHC Algorithm Results: Pure Local Search.. 81

Table 9-2: SGHC Algorithm Results: Pure Local Search ... 82

Table 9-3: GHC Algorithm Results: Simulated Annealing ... 82

Table 9-4: SGHC Algorithm Results: Simulated Annealing... 83

Table 9-5: GHC Algorithm Results: Monte Carlo Search... 83

Table 9-6: SGHC Algorithm Results: Monte Carlo Search... 83

xi

Table 9-7: GHC Algorithm Results: Pure Local Search.. 90

Table 9-8: SGHC Algorithm Results: Pure Local Search ... 91

Table 9-9: GHC Algorithm Results: Simulated Annealing ... 91

Table 9-10: SGHC Algorithm Results: Simulated Annealing... 92

Table 9-11: GHC Algorithm Results: Monte Carlo Search... 92

Table 9-12: SGHC Algorithm Results: Monte Carlo Search... 93

Chapter 1:

Introduction and Motivation

1.1 Simultaneous Generalized Hill Climbing Algorithms

Generalized hill climbing (GHC) algorithms (Jacobson et al. 1998) provide a framework for

using local search algorithms to address discrete optimization problems. GHC algorithms

include many local search algorithms, including simulated annealing (Fleischer 1995),

threshold accepting (Dueck and Scheuer 1990), Monte Carlo search, and pure local search

(Tovey 1983). The GHC algorithm framework allows for the development of convergence

and performance properties that apply to families of GHC algorithms. Therefore, the GHC

algorithm framework eliminates the need to investigate local search algorithms individually.

For example, sufficient convergence conditions for a particular family of GHC algorithms

that includes simulated annealing are presented in Johnson and Jacobson (2000a). This

dissertation develops and studies a mathematical framework for computationally approaching

several discrete optimization problems simultaneously using GHC algorithms. The resulting

algorithms are termed simultaneous generalized hill climbing (SGHC) algorithms.

It is common to encounter several discrete optimization problems where a relationship

between the solution spaces of the individual problems exists. In general, these problems are

Diane E. Vaughan Chapter 1. Introduction and Motivation 2

approached individually. However, because of their similarities, the same computational

tools can be effectively used to address them. For example, the Material Process Design

Branch of the Air Force Research Laboratory, Wright Patterson Air Force Base (Dayton,

Ohio, USA) is studying several similar discrete manufacturing process design optimization

problems.

Discrete manufacturing process design optimization can be difficult due to the large number

of design sequences and associated input parameter setting combinations that exist. GHC

algorithms have been introduced to address such manufacturing design problems (Jacobson

et al. 1998). Initial results with GHC algorithms required the manufacturing process design

sequence to be fixed with the GHC algorithm used to identify optimal input parameter

settings (Jacobson et al. 1998).

To motivate the development of SGHC algorithms, this dissertation introduces a new

neighborhood function that allows GHC algorithms to be used to also identify the optimal

discrete manufacturing process design sequence among a set of valid design sequences

(Vaughan et al. 2000). Hence, this neighborhood function allows the GHC algorithm to

simultaneously optimize over both the design sequences and the input parameters.

Computational results are reported with an integrated blade rotor discrete manufacturing

process design problem under study at the Materials Process Design Branch of the Air Force

Research Laboratory.

This dissertation formally defines a class of sets of discrete optimization problems where a

relationship similar to the one described for the manufacturing problem exists. A set of

discrete optimization problems that is contained in this class is a set of fundamentally related

discrete optimization problems. SGHC algorithms are designed to address sets of

fundamentally related discrete optimization problems using GHC algorithms.

Diane E. Vaughan Chapter 1. Introduction and Motivation 3

1.2 Research Goals

The objective of this dissertation is to introduce and study a general mathematical framework

for simultaneously addressing a set of fundamentally related discrete optimization problems.

A wide variety of manufacturing and service industry problems can be modeled as several

discrete optimization problems that are typically addressed individually using local search

algorithms. SGHC algorithms are a new approach that allows practitioners to make a single

algorithm run over a set of fundamentally related discrete optimization problems.

This dissertation formally defines the class of fundamentally related sets of discrete

optimization problems and develops a metric between elements in a set of fundamentally

related discrete optimization problems (Vaughan et al. 2000). This metric is a tool for

evaluating if it is advantageous to address a particular set of discrete optimization problems

with a SGHC algorithm. Computational results for a set of manufacturing problems and a set

of traveling salesman problems are presented that validate the usefulness of simultaneously

addressing a set of discrete optimization problems using GHC.

The SGHC algorithm probabilistically moves between discrete optimization problems

according to a problem generation probability function. The problem generation probability

function is shown to be a stochastic process that satisfies the Markov property. Therefore,

for a SGHC algorithm, movement between discrete optimization problems can be modeled as

a Markov chain. Sufficient conditions that guarantee that this Markov chain has a uniform

stationary probability distribution are provided. Additionally, sufficient conditions are

presented that guarantee that a SGHC algorithm will visit the globally optimal solution over

all the problems in a set of discrete optimization problems.

Diane E. Vaughan Chapter 1. Introduction and Motivation 4

1.3 Research Questions

This dissertation investigates the following research questions

1. Can a mathematical framework be developed for simultaneously approaching

several related discrete optimization problems?

2. Is there a metric that can be used to develop neighborhood functions for

simultaneously approaching a set of discrete optimization problems? If so, can

this metric be used to assess when it is possible to address several related

discrete optimization problems simultaneously using GHC algorithms?

3. Given a set of related discrete optimization problems and a GHC algorithm for

which convergence properties are known, can these properties be extended to

guarantee convergence of a SGHC algorithm?

Chapter 2:

Literature Review

2.1 Discrete Optimization Problems

The study of discrete optimization problems is of growing interest and importance to industry

since many real-world problems can be modeled as discrete optimization problems and due

to advances in computational power (Hillier and Lieberman 1995). Discrete optimization

problems are defined by a finite set of solutions, (i.e., the solution space), Ω={ω1, ω2, …,

ω|Ω|}, together with an objective function f:Ω → R (Garey and Johnson 1979). The objective

function is a quantitative measure of the quality of each solution that assigns a real value to

each element in the solution space (i.e., f(ω)∈ R, for all ω∈Ω) (Aarts and Lenstra 1997). The

goal when addressing a discrete optimization problem is to find solutions that

minimize/maximize the objective function. Without loss of generality, assume that all

discrete optimization problems are minimization problems. A solution, ω*∈Ω , that

minimizes the objective function (i.e., f(ω*)≤f(ω), for all ω∈Ω) is a globally optimal

solution.

Discrete optimization problems can be defined by two complexity classes, easy (i.e., a

globally optimal solution can be found in polynomial time in the size of the problem

instance) and hard (i.e., in the class NP-hard). Garey and Johnson (1979) present a

Diane E. Vaughan Chapter 2. Literature Review 6

discussion on the complexity of discrete optimization problems that can be classified as easy

or hard. To address hard discrete optimization problems, local search algorithms are

formulated with the goal of identifying good or near-optimal solutions (see Garey and

Johnson 1979).

2.2 Local Search Algorithms

The use of local search algorithms can be traced back to the late 1950’s and early 1960’s

(Aarts and Lenstra 1997). For example, (Bock 1958a,b, Croes 1958, Lin 1965, Reiter and

Sherman 1965) introduced the first edge neighborhood structures for the traveling salesman

problem (TSP). Today, there are many well-known local search algorithms for approaching

discrete optimization problems including simulated annealing (Eglese 1990, Fleischer 1995),

genetic algorithms (Liepins and Hilliard 1989), pure local search, threshold accepting (Dueck

and Scheuer 1990), and tabu search strategies (Glover and Laguna 1997). All of these local

search algorithms are designed with the goal of traversing the solution space in search of

optimal/near optimal solutions.

2.2.1 Neighborhood Functions

To apply a local search algorithm to a discrete optimization problem a neighborhood

function, η:Ω → 2Ω, where η(ω)⊂Ω for all ω∈Ω , is required. Neighborhood functions allow

the solution space to be traversed or searched by moving between solutions, hence they

provide connections between solutions in the solution space. Generally, the choice of a

neighborhood function is considered independent of the local search algorithm. However, a

neighborhood function must be chosen such that all the solutions in the solution space (with

neighborhood function η) are reachable; that is, for all ω',ω"∈Ω , there exists a set of

solutions ω1, ω2, …, ωm∈Ω such that ωr∈η (ωr-1), r=1, 2, ..., m+1, where ω'≡ω0 and ω"≡ωm+1,

ensuring that the solution space is not fragmented.

Diane E. Vaughan Chapter 2. Literature Review 7

For a neighborhood function, η, a locally optimal solution, ωL∈Ω , minimizes the objective

function in its neighborhood (i.e., f(ωL)≤ f(ω), for all ω, ω∈η (ωL)). Note that all globally

optimal solutions are locally optimal solutions, however the converse is not necessary true.

Jacobson and Yucesan (2000) use the objective function, f, and the neighborhood function,

η, to decomposed solution space, Ω, into three mutually exclusive and exhaustive sets:

- a set of G-local optima, G (i.e., global optima),

- a set of L-local optima, L ≡ L(η) (i.e., local optima that are not G-local optima),

- a set of hill solutions, H

Therefore, G∪ L is the set of locally optimal solutions in Ω (associated with neighborhood

structure η). By definition, Ω=G ∪ L ∪ H, G ∩ L=∅ , G ∩ H=∅ , and L ∩ H=∅ . Note that,

also by definition, for all ω∈ G, η(ω) ∩ L=∅ , and for all ω ∈ L, η(ω) ∩ G=∅ . Therefore, a

G-local optimum and a L-local optimum cannot be neighbors of each other (Jacobson and

Yucesan 2000). Figure 2.1 depicts a solution space, where solutions that are neighbors are

connected with lines.

 Figure 2.1: Locals, Hills and Globals

Many local search algorithms attempt to overcome the trappings of local optima. Simulated

annealing is one such local search algorithm.

Hill

Local

Hill

Hill

Hill

Global

O
bj

ec
ti

ve
 f

un
ct

io
n

va
lu

e

Hill

Local

Hill

Hill

Hill

Global

O
bj

ec
ti

ve
 f

un
ct

io
n

va
lu

e

Diane E. Vaughan Chapter 2. Literature Review 8

2.3 Simulated Annealing

Simulated annealing was introduced in the 1980’s, independently by Kirkpatrick et al. (1982,

1983) and by Cerny (1985) (Aarts and Korst 1989). Simulated annealing mimics the

annealing process for crystalline solids, where a solid is slowly cooled from an elevated

temperature, with the objective of relaxing towards a low-energy state.

The literature contains several results on the asymptotic performance of simulated annealing

algorithms. For simulated annealing algorithms with an exponential acceptance probability

function, Mitra et al. (1986) and Hajek (1988) present conditions for three convergence

properties: asymptotic independence of the starting conditions, convergence in distribution of

the solutions generated, and convergence to a global optimum (Johnson and Jacobson

2000b). Anily and Federgruen (1987) extend these results to simulated annealing algorithms

with general acceptance probabilities. Anily and Federgruen (1987) develop necessary and

sufficient conditions for convergence and provide conditions for the reachability of the set of

global optima. Schuur (1997) provides a description of acceptance functions that ensure the

convergence of the associated simulated annealing algorithm to a globally optimal solution.

Sufficient convergence conditions for a large family of GHC algorithms that includes

simulated annealing are presented in Johnson and Jacobson (2000a, 2000b).

2.4 The Generalized Hill Climbing Algorithm

The GHC algorithm framework provides a structure for using local search algorithms to

address intractable discrete optimization problems. The GHC algorithm framework contains

many local search algorithms that seek to find optimal solutions for discrete optimization

problems by allowing the algorithm to visit inferior solutions enroute to an optimal/near

optimal solution. Figure 2.2 depicts the GHC pseudo-code.

Diane E. Vaughan Chapter 2. Literature Review 9

Figure 2.2: The GHC Pseudo-Code

 Set the outer loop counter bound K and the inner loop counter bounds N(k), k=1, 2, …, K
 Define a set of hill climbing (random) variables Rk: Ω × Ω → ℜ ∪ {−∞,+∞}, k=1, 2, …, K
 Set the iteration indices i=0, k=n=1
 Select an initial solution ω(0)∈Ω
 Repeat while k ≤ K

Repeat while n ≤ N(k)
Generate a solution ω∈η(ω(i))
Calculate δ(ω(i),ω) = f(ω)-f(ω(i))
If δ(ω(i),ω) ≤ 0, then ω(i+1)←ω
If δ(ω(i),ω) > 0, Rk(ω(i),ω) ≥ δ(ω(i),ω), then ω(i+1)←ω
If δ(ω(i),ω) > 0, Rk(ω(i),ω) < δ(ω(i),ω), then ω(i+1)←ω(i)
n ← n+1, i ← i+1
Until n = N(k)
n ← 1, k ← k+1

Until k = K

All GHC algorithms are formulated using two components, a set of hill climbing random

variables, {Rk}, and a neighborhood function, η. This structure permits exploration into the

behavior of families of GHC algorithms. GHC algorithms have two iteration counters, an

outer loop counter, k, and an inner loop counter, n. The upper bounds, K and N(k), define

the algorithm’s stopping criteria. The number of iterations for each inner loop is N(k), where

K is the number of outer loops. When the stopping criterion of an inner loop is met (i.e.,

n=N(k)), all inner loop parameters can change (i.e., Rk and N(k)). When the stopping criteria

of an outer loop is met (i.e., k=K) the algorithm terminates.

2.4.1 Local Search Algorithms Modeled by Generalized Hill Climbing

Algorithms

Numerous local search algorithms can be formulated as particular GHC algorithms by

defining different hill climbing random variables. This section defines how to formulate

several commonly used local search algorithms for addressing intractable discrete

optimization problems as a GHC algorithm.

Diane E. Vaughan Chapter 2. Literature Review 10

Several well-known local search algorithms can be defined using the GHC algorithm

framework. Monte Carlo search (Johnson and Jacobson 2000b) accepts every neighbor with

probability one. Monte Carlo search can be formulated as a GHC algorithm by setting

Rk(ω(i), ω)=+∞, for all ω(i)∈Ω , ω∈η (ω(i))=Ω, and k=1, 2, …, K. Pure local search accepts

only neighbors of improving (lower) objective function value. Pure local search can be

formulated as a GHC algorithm by setting Rk(ω(i), ω)=0, for all ω(i)∈Ω , ω∈η (ω(i)), and

k=1, 2, …, K.

Threshold accepting (Dueck and Scheuer 1990) accepts neighbors with higher costs

according to a sequence of constants thresholds, Qk, k=1, 2, …, K. Threshold accepting can

be formulated as a GHC algorithm by setting Rk(ω(i), ω)=Qk for all ω(i)∈Ω , ω∈η (ω(i)), and

k=1, 2, …, K, where Qk is a constant. Simulated annealing (Eglese 1990, Fleischer 1995)

accepts neighbors of higher costs with a decreasing probability, where P{Rk(ω(i), ω)≥δ(ω(i),

ω)}=



 −
kt

i

e
)),((ωωδ

 for all ω(i)∈Ω , ω∈η (ω(i)), and k=1, 2, …, K, for some simulated

annealing temperature parameter tk>0, where
∞→k

lim tk=0. Simulated annealing can be

formulated as a GHC algorithm by defining a simulated annealing temperature parameter, tk,

such that tk>0 and
∞→k

lim tk=0, and setting Rk(ω(i), ω)=-tkln(U), for all ω(i)∈Ω , ω∈η (ω(i)), and

k=1, 2, …, K, where U =U(0,1).

Several new local search algorithms can be defined using the GHC algorithm framework.

For example, geometric accepting can be formulated as a GHC algorithm by setting Rk(ω(i),

ω)= ln(1-U)/ln(1-Pk), for all ω(i)∈Ω , ω∈η (ω(i)), and k=1, 2, …, K, where U=U(0,1) and

0<Pk<1. Weibull accepting is formulated as a GHC algorithm by setting Rk(ω(i), ω)=tk(-

ln(U))1/α for all ω(i)∈Ω , ω∈η (ω(i)), and k=1, 2, …, K, U=U(0,1), the shape parameter α>0

and the scale parameter tk>0. Erlang accepting can be formulated as a GHC algorithm by

setting Rk(ω(i), ω)=-tk(ln(U1)+ln(U2)), for all ω(i)∈Ω , ω∈η (ω(i)), and k=1, 2, …, K, where

U1 and U2 are independently and identically distributed U(0, 1), and scale parameter tk>0.

Normal accepting can be formulated as a GHC algorithm by setting Rk(ω(i), ω)=ek+(-

Diane E. Vaughan Chapter 2. Literature Review 11

2ln(U1))
1/2 sin(2πU2)vk, for all ω(i)∈Ω , ω∈η (ω(i)), and k=1, 2, …, K, where U1 and U2 are

independently and identically distributed U(0, 1), ek is the mean, and vk is the standard

deviation.

Chapter 3:

Motivational Example

The Materials Process Design Branch of the Air Force Research Laboratory, Wright

Patterson Air Force Base (Dayton, Ohio, USA), is faced with the challenge of identifying

optimal manufacturing process designs, so that the finished unit meets certain geometric and

micro structural specifications, and is produced at minimum cost. To date, the expensive and

time intensive approach of trial and error (on the shop floor) has been used to identify

feasible manufacturing process designs. The Materials Process Design Branch of the Air

Force Research Laboratory, in conjunction with researchers at Ohio University (Athens,

Ohio, USA), has developed computer simulation models of manufacturing processes, such as

forging and machining. Each such process affects the geometry and/or microstructure of the

manufactured unit. Associated with each process are input (controllable and uncontrollable)

and output parameters. An exhaustive search through all possible process sequences and

controllable input parameters would take a prohibitive amount of time, hence is infeasible.

Therefore, it is necessary to construct efficient and effective optimization algorithms to

identify optimal/near-optimal designs for manufacturers using manufacturing process design

computer simulation models in their manufacturing process design planning operations.

Jacobson et al. (1998) describes how to use GHC algorithms in conjunction with computer

simulation models of manufacturing processes, to address discrete manufacturing process

design optimization problems. The purpose of this chapter is to illustrate how GHC

Diane E. Vaughan Chapter 3. Motivational Example 13

algorithms can be adapted to identify both optimal controllable input parameters and the

optimal valid manufacturing process design sequence (among several possible feasible

design sequences). A new neighborhood function is introduced that allows a GHC algorithm

to simultaneously optimize over both the controllable input parameters and the design

sequences. Computational results are reported with this new neighborhood function.

To describe the discrete manufacturing process design optimization problem and how GHC

algorithms can be used to address the problem, Jacobson et al. (1998) present an extensive

problem description and GHC algorithm discussion. For completeness, the problem

description is presented here (see Section 2.4 for a complete discussion of GHC). First,

several definitions are needed.

Let the manufacturing processes be denoted by P1, P2, …, Pn. Associated with each process

are (continuous or discrete) controllable input parameters, uncontrollable input parameters,

and output parameters. The output parameters for a particular process may serve as the

uncontrollable input parameters for a subsequent process. A sequence of processes, together

with a particular set of input parameters, constitutes a manufacturing process design; label

such designs D1, D2, …, DN. Note that if one (or more) controllable input parameter is

continuous, then N=+∞. Otherwise, N<+∞. Without loss of generality, assume that all the

controllable input parameters are discrete, since any continuous controllable input parameter

can be discretized over an arbitrarily fine grid. Under this assumption, the number of

manufacturing process designs is finite, though potentially very large.

The solution space can be defined as the design space, Ω, the set of all manufacturing

process designs (i.e., Ω={D1, D2, …, DN}), where a subset of the designs in Ω are feasible.

Infeasible designs violate pre-specified constraints on the manufacturing processes and the

unit being manufactured, including geometric and micro structural properties, and constraint

violations on the output parameters (e.g., the required forging press pressure may not exceed

its upper bound limitations). The objective function can now be defined by a cost function f:

Ω → [0, +∞) that assigns a non-negative value to each element of the design space, where

cost includes monetary costs and costs associated with how well the finished unit meets pre-

Diane E. Vaughan Chapter 3. Motivational Example 14

specified geometric and micro structural properties. Penalties for constraint violations on the

output parameters and measures that ensure a robust manufacturing design (i.e., the

manufacturing process design is stable) are included in the cost function. Define a

neighborhood function η: Ω → 2Ω, where η(D)⊂Ω for all D∈Ω . The neighborhood function

establishes connections between the designs in the design space (either through the

controllable input parameters or through the design sequences), hence allowing the design

space to be traversed or searched by moving between designs. For all solutions in the

solution space, an individual neighbor can be generated using generation probabilities (i.e., a

probability mass function) among all possible neighbors, as defined by the neighborhood

function η (Johnson and Jacobson 2000). The goal is to identify the globally optimal

manufacturing process design D* (i.e., f(D*)≤f(D) for all D∈Ω), or more realistically, near-

optimal designs.

3.1 Manufacturing Process Design Application

A manufacturing process design is needed to transform a billet into an integrated blade rotor

(IBR) geometric shape (Gunasekera et al. 1996). The possible manufacturing process design

sequences are depicted in Figure 3.1.

Figure 3.1: Manufacturing Process Design Sequences

A

E

F

B

Up s el

Pr e f o r m
Ma c hinin g

In it i a l
Shap e

D

C

G

R R
Ext r u s io n

Close d
Die For g e

Blo c k e r
Forg e

Ro ug h
Mac hinin g

Fin i s h
Ma c hinin g

Diane E. Vaughan Chapter 3. Motivational Example 15

Five manufacturing process design sequences have been identified that can achieve this

transformation. Define the following notation for the seven processes that make up these

five designs:

P0 is the cast ingot process
P1 is the extrusion process
P2 is the upset process
P3 is the machine preform process
P4 is the blocker forge process
P5 is the rough machining process
P6 is the finished shape process

The five possible manufacturing process design sequences, provided by researchers at the

Materials Process Design Branch of the Air Force Research Laboratory and Ohio University,

are

P0P2P4P6 P0P2P5P6 P0P2P3P4P6 P0P1P2P4P6 P0P1P3P4P6

Associated with each of the seven processes are uncontrollable and controllable input

parameters, and output parameters. For example, for process P0, there are two controllable

input parameters (the radius of the billet and the height of the billet), zero uncontrollable

input parameters, and two output parameters, which are just the controllable input parameter

values. Fischer et al. (1997) and Gunasekera et al. (1996) present complete details on all

seven processes and their parameters.

Associated with each controllable input parameter is a discrete (naturally, or discretized from

a continuous domain) set of feasible values. The cost function quantifies the cost associated

with not meeting certain geometric and micro structural properties of the finished product,

the monetary cost in producing the finished product, and cost penalties for constraint

violations (Jacobson et al. 1998). The goal is to identify a valid manufacturing process

design sequence, together with values for all the controllable input parameters for the

Diane E. Vaughan Chapter 3. Motivational Example 16

processes, that result in a feasible manufacturing process design that produces the IBR unit at

total minimum cost.

Computer simulation models of the manufacturing processes described above have been

developed (Fischer et al. 1997, Gunasekera et al. 1996). This moves the search for an

optimal manufacturing process design from the shop floor (where trial and error has typically

been applied, using actual materials) to a computer platform. However, even using high

speed computing resources, the search for an optimal manufacturing process design may take

a prohibitive amount of time. To circumvent this problem, GHC algorithms have been

introduced as a tool to be used with the computer simulation models to identify optimal/near-

optimal manufacturing process designs.

Jacobson et al. (1998) use three different neighborhood functions for GHC algorithms to

identify optimal controllable input parameter values for a set of fixed valid manufacturing

process design sequences. By considering each design sequence individually, Jacobson et al.

(1998) solves for the controllable input parameter values that minimize the cost. Jacobson et

al. (1998) then chooses the overall minimum cost design sequence (and associate optimal

controllable input parameter values) as the optimal design. For the five design sequence

problem described previously, this is a reasonable approach. However, for extremely

complex parts, where the number of design sequences may be very large, performing such

optimization (one design sequence at a time) does not lend itself to efficient, automated

optimization procedures. Moreover, such an approach does not exploit any common

subsequence components within two or more design sequences, which can lead to added

efficiencies in identifying optimal controllable input parameter values.

To address these problems, applying GHC algorithms to optimize between (or across) design

sequences requires a new neighborhood function that captures the cost differences among the

different process design sequences, but also allows for transitions (using a well-defined

neighborhood function) between such sequences. To define such a neighborhood function

requires several new definitions and notations.

Diane E. Vaughan Chapter 3. Motivational Example 17

Define S to be the set of possible manufacturing process design sequences and W to be the

set of possible values for the controllable input parameters for the seven processes.

Therefore, each design D can be represented as a two-tuple (w, s) where w∈ W and s∈ S. The

neighborhood function is denoted by η(D) = η(w, s) = (η1(w), η2(s)), where η1: W Æ 2W and

η2: S Æ 2S. The neighborhood function η allows the GHC algorithm to simultaneously

change both the input parameters and the manufacturing process design sequence.

There are numerous ways to define the neighborhood functions η1 and η2. For the

experiments reported, for each w ∈ W

η1(w) = {w�� ∈ W | w�� and w have at most one controllable input parameter

 different for each process}.

To define the neighborhood function η2 on the set S, the process design sequences can be

represented using binary activity vectors. Given a process design sequence s∈ S, let

Vi =




otherwise0,

sin contained is P if1, i .

The process design sequence s can be represented by the binary activity vector s∈ R5 where

s = (V1 ,V2 , V3, V4 ,V5).

Note that every manufacturing process design sequence begins with P0 (cast ingot) and ends

with P6 (finish machining), hence a binary activity vector of length five can represent each

such sequence. To define such vectors, a strict precedence relation must be imposed on the

order in which the processes can occur. For the seven processes, the precedence relation is

given as P0 <. P1 <. P2 <. P3 <. P4 <. P5 <. P6, where P' <. P" means process P' must occur

before process P" when both P' and P" occur in the same manufacturing process design

sequence. Therefore, the set of possible manufacturing process design sequences can be

formally defined using the binary activity vectors,

S = {s ∈ R5 | s is a binary activity vector of length five}.

Diane E. Vaughan Chapter 3. Motivational Example 18

For the computational results section, S contains thirty-two possible manufacturing process

design sequences. Of these, only the five manufacturing process design sequences depicted

in the backgrounds section are considered valid. These five manufacturing process design

sequences, denoted as Sv⊆ S, are referred to as valid manufacturing process design

sequences. Table 3-1 depicts these five valid manufacturing process design sequences and

their corresponding binary activity vectors.

 Table 3-1: Binary Vectors

Binary Activity Vectors for

Valid Manufacturing Process Design Sequences

Process Sequence Binary Activity Vector

P0P2P4P6 (0,1,0,1,0)

P0P2P5P6 (0,1,0,0,1)

P0P2P3P4P6 (0,1,1,1,0)

P0P1P2P4P6 (1,1,0,1,0)

P0P1P3P4P6 (1,0,1,1,0)

Using the binary activity vector representation for elements of S, the neighborhood function

η2 can be implemented in a GHC algorithm with a random variable that maps elements of S

to elements of S. The neighborhood function η2 depends on a probability switch vector. The

components of a probability switch vector q=(q1, q2, q3, q4, q5) are the probabilities that a

particular process is switched from active (one) to inactive (zero) or from inactive (zero) to

active (one). In order to generate a neighbor from η2(s), s∈ Sv, the components of the

probability switch vector q are permuted to the vector q', with the neighbor generated by

switching each component of s, namely si, i=1, 2, 3, 4, 5, with the probability q'i. Note that if

one or more of the qi, i=1, 2, 3, 4, 5, are zero, the neighborhood function may not contain the

entire set of thirty-two possible design sequences. Therefore, for each s∈ Sv, setting one or

more of the qi, i=1, 2, 3, 4, 5, to zero can reduce the number of possible manufacturing

process design sequences in η2(s).

Diane E. Vaughan Chapter 3. Motivational Example 19

To switch a process from active to inactive or vice versa, define a set of random variables

δp:{0,1} Æ {0,1} where p∈ [0,1] and

δp(x) =




 py probabilitx with -1

p-1y probabilith x wit
. (1)

Define the permutation random variable, Π j: [0,1]5
Æ [0,1]5, which permutes the

components of a vector in [0,1]5. The permutation random variable will be used to permute

the components of a probability switch vector. The permutation random variable is defined

so that every permutation p' of p = (p1, p2, p3, p4, p5) occurs with equal probability.

Therefore, at iteration j,

Pr{Π j(p) = p'} = 1 / 5!

for all permutations p' of p, hence a potential neighboring solution of s can be obtained using

(1) as

s' = ()(),(),(),(),(5'4'3'2'1' 54321
sssss ppppp δδδδδ),

where Π j(q) = q' = (q'1, q'2, q'3, q'4, q'5) and q is the probability switch vector. Note that if

s'∉ Sv, then the neighboring solution of s is generated to be s.

Given the probability switch vector q, let h be the number of non-zero elements of q. Then

neighborhood function, η2, is defined as

η2(s) = {s' ∈ S | s' has at most h binary components different from s}.

Note that for this neighborhood function, the generation probabilities are typically not

uniform, since they depend on the probability switch vector.

The choice of probability switch vector q depends on  S  (the cardinality of the possible

process design sequences) compared to  Sv  (the cardinality of the valid process design

sequences). For the manufacturing problem, the number of possible design sequences is

25=32, which is large compared to the number of valid process design sequences. There is a

trade-off between quickly moving between different manufacturing process design sequences

and allowing the GHC algorithm to spend a large number of iterations exploring the various

input parameter values in one particular design sequence. A neighborhood function that

generates a limited number of design sequence changes may be too restrictive (myopic),

Diane E. Vaughan Chapter 3. Motivational Example 20

hence prevent the GHC algorithm execution from visiting the (globally) optimal

manufacturing process design sequence. This is the same problem that arises with many local

search algorithms, namely how to choose the neighborhood function (i.e., should it be

myopic, with small neighborhoods, or aggressive, with large neighborhoods.)

3.2 Movement between Valid Manufacturing Process Design Sequences

This section develops a mathematical structure to compute the probability of moving

between the five valid manufacturing process design sequences, using the neighborhood

function, η2, introduced in the previous section. To define this structure, let Ψ: [0, 1] × S →

S determine a neighbor of s (i.e., s′) by first permuting p (i.e., by applying Π j(p)) and then

generating s′ = ()(),(),(),(),(5'4'3'2'1' 54321
sssss ppppp δδδδδ). Note that references to an iteration

implies an application of Ψ(p, s) = s′. Moreover, recall that the possible design sequences

are the 32 =  {0 , 1}  5 = 25 elements in the range of Ψ(p, s), and that of these 32 possible

design sequences, only 5 represent valid manufacturing process design sequences.

To formally define the distance between manufacturing process design sequences, consider

the metric space <Σn, ρ>, with Σ = {0 , 1}, where the metric ρ is defined on Σn × Σn such that

the distance between two possible manufacturing process design sequences s = (s1, s2, …, sn)

∈ Σn
 and t = (t1, t2, …, tn) ∈ Σn is

 ρ(s, t) =  s1 - t1 + … +  sn - tn (2)

(Royden, 1988, p.140). To illustrate this metric, the distance between P0P1P2P4P6 (with

activity vector s = (1, 1, 0, 1, 0)) and P0P1P3P4P6 (with activity vector t = (1, 0, 1, 1, 0)) is

ρ(s, t) = 2. Define

Ε = {s ∈ Σn ρ (s, 0) = 1},

 where εh∈Ε such that εh = (0, …, 0, 1, 0, …, 0) with the one appearing in the hth position.

Diane E. Vaughan Chapter 3. Motivational Example 21

Define a binary switch on the jth element of an activity vector s to be the modulus two

addition of εj ∈ Ε with s. For example, consider the activity vector s = (1, 1, 0, 1, 0)

corresponding to P0P1P2P4P6. By performing a binary switch on the second element of s (i.e.,

by adding ε2
 = (0, 1, 0, 0, 0)), the resulting activity vector is s′ = s + ε2

 = (1, 0, 0, 1, 0),

corresponding to P0P1P4P6. By performing a second binary switch (i.e., by adding ε3
 = (0, 0,

1, 0, 0) to s′), the resulting activity vector is t = s′ + ε3 = (1, 0, 1, 1, 0), corresponding to

P0P1P3P4P6. Therefore, the metric ρ(s, t) represents the minimum number of binary switches

required to move from s to t. For example, the distance between P0P1P2P4P6 and P0P1P3P4P6,

represented as activity vectors s = (1, 1, 0, 1, 0) and t = (1, 0, 1, 1, 0), respectively, is ρ(s, t) =

2. This distance can also be obtained by observing the minimal number of binary switches

required to move from s to t. The distances between all five valid manufacturing process

design sequences are given in Table 3-2.

Table 3-2: Distances Between Valid Manufacturing Process Design Sequences

 P0P2P4P6

(0,1,0,1,0)

P0P2P5P6

(0,1,0,0,1)

P0P2P3P4P6

(0,1,1,1,0)

P0P1P2P4P6

(1,1,0,1,0)

P0P1P3P4P6

(1,0,1,1,0)
P0P2P4P6
(0,1,0,1,0)

0

2

1

1

3

P0P2P5P6
(0,1,0,0,1)

2

0

3

3

5

P0P2P3P4P6
(0,1,1,1,0)

1

3

0

2

2

P0P1P2P4P6
(1,1,0,1,0)

1

3

2

0

2

P0P1P3P4P6
(1,0,1,1,0)

3

5

2

2

0

The domain of the neighborhood function η2 is S = {s∈Σ n  s is an activity vector of a valid

manufacturing process design sequence}, where η2 (s′) (for a fixed s′ ∈ S) is denoted by Σi ⊆

Σn
 . For all s∈Σ i, the probability that ψ(p, s′)=s given that ρ(s′, s)=k (see (2)) is

Pr{ψ(p, s') = s} = Pr{ρ(s′, s) = k} / 




 5

k

 for s such that ρ(s′, s) = k.

Diane E. Vaughan Chapter 3. Motivational Example 22

To determine Pr{ρ(s′, s)=k}, recall that ψ(p, s′)=s is a sequence of binary switches on s′,

where the cardinality of binary switches (the previously defined distance) is dependent on p

= (p1, p2, p3, p4, p5). Table 3-3 provides the probabilities that ρ(s′, s)=k for k=1, 2, 3, 4, 5.

To illustrate the computation of these probabilities, if η2 is defined with p=(.5, 0, 0, 0, 0),

then ψ(p, s′) results in no binary switches with probability .5, and one binary switch with

probability .5. If η2 is defined with p=(.5, .5, 0, 0, 0), then ψ(p, s′) results in no binary

switches with probability .25, one binary switch with probability .5, and two binary switches

with probability .25. The five valid manufacturing process design sequences can be

traversed using p=(p1, p2, 0, 0, 0). For neighborhood function η2, with p=(p1, p2, 0, 0, 0), it is

possible to move between valid design sequences (in a single iteration) with activity vectors

that are at most two binary switches apart. Figure 3.2 depicts movement between sequences

in a single iteration, where the nodes represent the five valid manufacturing process design

sequences, and the values on the edges represent the distance between the sequences at the

corresponding nodes.

 Table 3-3: Distance Probabilities

k Pr{ρ(s′, s) = k}
1 ()∑ ∏

=
≠
=

−
5

1

5

1

1
j

ji
i

ij pp

2 ()∑ ∏∑
=

≠
≠
=

≠
=

−5

1

5

1

5

1 2

1

i

ik
jk

k

k

ij
j

jj

p
pp

3 () ()∑ ∏∑
=

≠
≠
=

≠
=

−−
5

1

5

1

5

1 2
11

i

ik
jk

k

k

ij
j

jj

p
pp

4 ()∑ ∏
=

≠
=

−
5

1

5

1

1
j

ji
i

ij pp

5
54321 ppppp

Diane E. Vaughan Chapter 3. Motivational Example 23

Figure 3.2: The Five Valid Manufacturing Process Design Sequences

For the probability switch vector p = (p1, p2, 0, 0, 0), where 0 < p1, p2 < 1, the probability of

moving between sequences at any given iteration is a function of the number of binary

switches required to move between these sequences. In particular, define the two travel

probabilities

Pr{1-binary switch} = (
()







1

5
 -1 21 pp
+

()







1

5
 -1 12 pp
) =

() ()()
5

11 1221 pppp −+−

and

Pr{2-binary switches} =







2

5
21 pp

 =
10

21 pp
.

These expressions are validated empirically using Monte Carlo search, by recording the

number of times the algorithm iterated from a source design sequence (say A) to a

neighboring design sequence (say B) and then dividing by the number of times the algorithm

visited the source design sequence (A). Table 3-4 provides the Monte Carlo search

computational results for p=(p1, p2, 0, 0, 0, 0)=(.9, .9, 0, 0, 0), with 100,000 iterations. Note

that for Monte Carlo search, all iterations are outer loop iterations with one inner loop

iteration per outer loop iteration (i.e., K=100,000 and N(k)=1, k=1, 2, …, 100,000). Ninety

P0P1P3P4P6

(1, 0, 1, 1, 0)

P0P2 P3P4P6

(0, 1, 1, 1, 0)

P0P1P2P4P6

(1, 1, 0, 1, 0)

P0P2P4P6

(0, 1, 0, 1, 0)

P0P2P5P6

(0, 1, 0, 0, 1)

2

2

2

1

1

2

Diane E. Vaughan Chapter 3. Motivational Example 24

percent confidence intervals (CI) are reported for the travel probabilities, where the

confidence intervals marked with an asterisk are those that cover the true travel probability

values (of these twelve confidence intervals, nine cover the true travel probability value).

 Table 3-4: Traveling Between Sequences

P = (.9, .9, 0, 0, 0)

Sequence A

Sequence B

Number of
Binary
Switches

True Travel
Probability

Estimated
Travel
Probability

True Travel
Probability CI

P0P1P3P4P6

(1, 0, 1, 1, 0)
P0P1P2P4P6

(1, 1, 0, 1, 0)
2 .081

.079 (.0769, .0811)*

P0P1P3P4P6

(1, 0, 1, 1, 0)
P0P2 P3P4P6

(0, 1, 1, 1, 0)
2 .081 .083 (.0809, .0851)*

P0P1P2P4P6
(1, 1, 0, 1, 0)

P0P1P3P4P6

(1, 0, 1, 1, 0)
2 .081 .076 (.0728, .0792)

P0P1P2P4P6
(1, 1, 0, 1, 0)

P0P2 P3P4P6
(0, 1, 1, 1, 0)

2 .081 .078 (.0748, .0812)*

P0P1P2P4P6
(1, 1, 0, 1, 0)

P0P2P4P6

(0, 1, 0, 1, 0)
1 .036 .038 (.0358, .0402)*

P0P2 P3P4P6

(0, 1, 1, 1, 0)
P0P1P3P4P6

(1, 0, 1, 1, 0)
2 .081 .078 (.0748, .0812)*

P0P2 P3P4P6
(0, 1, 1, 1, 0)

P0P1P2P4P6
(1, 1, 0, 1, 0)

2 .081 .082 (.0788, .0852)*

P0P2 P3P4P6
(0, 1, 1, 1, 0)

P0P2P4P6

(0, 1, 0, 1, 0)
1 .036 .034 (.0318, .0362)*

P0P2P4P6

(0, 1, 0, 1, 0)
P0P1P2P4P6

(1, 1, 0, 1, 0)
1 .036 .033 (.0309, .0351)

P0P2P4P6

(0, 1, 0, 1, 0)
P0P2P5P6

(0, 1, 0, 0, 1)
2 .081 .082 (.0789, .0851)*

P0P2P4P6

(0, 1, 0, 1, 0)
P0P2 P3P4P6

(0, 1, 1, 1, 0)
1 .036 .034 (.0319, .0361)*

P0P2P5P6
(0, 1, 0, 0, 1)

P0P2P4P6

(0, 1, 0, 1, 0)
2 .081 .089 (.0858, .0922)

3.3 Computational Results

Computational results are reported with the neighborhood function that allows for

optimization between the manufacturing process design sequences. The computational

results in Jacobson et al. (1998) suggest that the Weibull accepting hill climbing random

Diane E. Vaughan Chapter 3. Motivational Example 25

variable was the most effective (among five different GHC algorithm formulations tested) for

optimizing over the controllable input parameters for a particular design sequence, hence it

was used to define η1. The objective in running these experiments is to assess the

performance of the GHC algorithm formulations using the neighborhood functions (η1, η2),

as well as to identify optimal/near optimal manufacturing process design sequences and input

parameters using computer simulation models.

For Weibull accepting, tk is updated by multiplying the previous temperature parameter by

the increment multiplier β1, where 0 ≤ β1 ≤ 1 (i.e., tk = β1tk-1). The initial temperature

parameter is t0 = 10,000, with β1 = .96 and shape parameter α = 2.0. The acceptance

probability for the Weibull accepting GHC algorithm is

 Pr{Rk(D, D')≥δ} = ()αδ kte /− , D∈Ω , D'∈η (D) for all k=1, 2, …, K. (3)

Note that if α=1, then Weibull accepting reduces to simulated annealing (Jacobson et al.

1998).

The cost function evaluates the total cost associated with the simulated manufacturing

process design, in US dollars. The initial cost is the cost of the initial billet, which depends

on the dimensions of the billet and the specific metal being processed. The costs for the

forging processes include:

 i) set up costs,

 ii) post-inspection costs,

 iii) die wear costs,

 iv) press run costs,

 v) the cost of possible strain-induced-porosity damage in the work piece.

Penalties are incurred with the forging processes when

 i) the press capacity is exceeded,

 ii) the aspect ratio of the work piece is too large,

 iii) the geometry of the work piece conflicts with the die geometry.

Diane E. Vaughan Chapter 3. Motivational Example 26

The cost to machine the work piece is the cost of the material removed from the work piece,

where a penalty cost is incurred when the geometry of the work piece conflicts with the

desired final geometry of the work piece after machining. After the work piece is processed,

a mandatory ultrasonic non-destructive evaluation cost and, if necessary, a cost of heat

treatment is accrued. In addition, the final microstructure of the work piece is evaluated; if

the microstructure violates predetermined specifications, a penalty cost is incurred. All

penalties are translated into US dollars in the cost function.

Computational results with the Weibull accepting GHC algorithm incorporating the new

neighborhood function (η2) are reported. The Weibull accepting GHC algorithms were

executed with different values of K and N=N(k), k=1, 2, …, K, as well as with varying

values for the components of the probability switch vector p. Thirty (independently seeded)

replications of each GHC formulation were made, each initialized with a different initial

manufacturing process design sequence. The same thirty initial design sequences (for the

thirty replications) were used across the different neighborhood functions (i.e., the different

probability switch vectors). The initial controllable input parameter values for replications

two through thirty were obtained by randomly selecting a neighbor (η1) of the first

replication's feasible controllable input parameters values. The mean (µ) and standard

deviations (σ), as well as the minimum and maximum cost function values, were computed

from the optimal values across these thirty replications. All computational experiments were

executed on a SUN ULTRA-1 workstation (128 Mb RAM). Each set of thirty replications

took approximately 30 CPU minutes.

In Tables 3-5 through 3-7, the variable γ represents the percentage of the replications that the

GHC algorithm finds the optimal valid manufacturing process design sequence. The variable

κ represents the average number of times, over the thirty replications, neighborhood function

η2 generates a manufacturing process design sequence that is different from the incumbent

design sequence.

Diane E. Vaughan Chapter 3. Motivational Example 27

Table 3-5: GHC Algorithm Results

K = 50 and N = 200
Probability Switch Vector γ µ σ Minimum Maximum κ
(0.1, 0.1, 0, 0, 0) 9/30 2177.57 199.00 1935.71 2928.17 357.7
(0.2, 0.2, 0, 0, 0) 22/30 2047.62 209.89 1927.01 2928.72 538.6
(0.3, 0.3, 0, 0, 0) 20/30 2041.25 145.93 1919.28 2250.15 793.1
(0.4, 0.4, 0, 0, 0) 27/30 1973.88 92.00 1930.43 2245.28 1001.5
(0.5, 0.5, 0, 0, 0) 21/30 2033.21 140.17 1919.28 2248.08 1110.7
(0.6, 0.6, 0, 0, 0) 21/30 2033.88 142.08 1919.28 2254.63 1268.8
(0.7, 0.7, 0, 0, 0) 24/30 2009.45 118.78 1921.21 2250.15 1418.1
(0.75, 0.75,0, 0, 0) 25/30 1998.00 111.67 1927.01 2250.15 1408.2
(0.8, 0.8, 0, 0, 0) 25/30 1993.57 113.97 1921.21 2245.28 1438.4
(0.833, 0.833, 0, 0, 0) 27/30 1976.08 92.32 1927.01 2245.28 1402.4
(0.9, 0.9, 0, 0, 0) 27/30 1977.57 91.74 1921.21 2250.15 1443.1

Table 3-6: GHC Algorithm Results

K = 100 and N = 100
Probability Switch Vector γ µ σ Minimum Maximum κ
(0.1, 0.1, 0, 0, 0) 15/30 2089.41 156.13 1921.21 2245.28 389.3
(0.2, 0.2, 0, 0, 0) 15/30 2115.83 213.35 1921.21 2898.11 653.9
(0.3, 0.3, 0, 0, 0) 24/30 2000.99 125.00 1921.21 2248.08 800.9
(0.4, 0.4, 0, 0, 0) 25/30 1996.43 112.76 1919.28 2249.97 1133.6
(0.5, 0.5, 0, 0, 0) 25/30 1993.50 113.54 1921.21 2245.28 1285.8
(0.6, 0.6, 0, 0, 0) 22/30 2025.29 132.74 1923.70 2245.28 1389.0
(0.7, 0.7, 0, 0, 0) 24/30 2005.69 120.13 1932.86 2248.08 1498.0
(0.75, 0.75,0, 0, 0) 22/30 2024.25 135.71 1921.21 2250.15 1419.7
(0.8, 0.8, 0, 0, 0) 24/30 2004.95 121.77 1919.28 2244.25 1425.1
(0.833, 0.833, 0, 0, 0) 24/30 2008.17 120.15 1921.21 2245.28 1451.0
(0.9, 0.9, 0, 0, 0)* 27/30 1974.30 93.37 1921.21 2248.08 1397.9

Diane E. Vaughan Chapter 3. Motivational Example 28

Table 3-7: GHC Algorithm Results

K = 200 and N = 50
Probability Switch Vector γ µ σ Minimum Maximum κ
(0.1, 0.1, 0, 0, 0) 9/30 2196.01 249.69 1919.28 2959.29 344.7
(0.2, 0.2, 0, 0, 0) 11/30 2131.19 154.88 1923.15 2293.87 714.1
(0.3, 0.3, 0, 0, 0) 20/30 2037.88 149.32 1919.28 2257.53 799.7
(0.4, 0.4, 0, 0, 0) 22/30 2012.43 141.59 1919.28 2257.53 934.5
(0.5, 0.5, 0, 0, 0) 22/30 2016.57 138.44 1921.21 2245.28 1294.2
(0.6, 0.6, 0, 0, 0) 21/30 2027.38 143.96 1919.28 2248.08 1368.6
(0.7, 0.7, 0, 0, 0) 23/30 2009.21 132.73 1919.28 2248.08 1531.3
(0.75, 0.75, 0, 0, 0) 21/30 2025.96 143.54 1919.28 2245.28 1439.1
(0.8, 0.8, 0, 0, 0) 20/30 2038.75 147.56 1919.28 2248.08 1424.8
(0.833, 0.833, 0, 0, 0) 17/30 2067.71 154.65 1919.28 2248.08 1435.3
(0.9, 0.9, 0, 0, 0) 19/30 2049.26 152.23 1919.28 2260.63 1403.8

The results in Tables 3-5 through 3-7 illustrate the performance of the Weibull accepting

GHC algorithm with the new neighborhood function. In particular, the results demonstrate

differences when the values of K, N, and components of the probability switch vector are

changed. The Weibull accepting GHC algorithm using the probability switch vectors (.1, .1,

0, 0, 0), (.2, .2, 0, 0, 0), (.3, .3, 0, 0, 0) with η2(s) resulted in a low probability of generating a

manufacturing process design sequence other than s (thereby providing a myopic

neighborhood structures), hence yielded inferior results than those obtained with the

probability switch vectors containing higher probability components. This observation leads

to the initial conclusion that as the number of manufacturing process design sequence

changes increased, the mean value of the optimal solution found by the Weibull accepting

algorithm improved.

The results in Tables 3-5 through 3-7 also suggest that choosing probability switch vectors

that maximize process design sequence changes can also yield poor solutions, as measured

by µ. This results from the algorithm moving too quickly out of optimal manufacturing

process design sequences to non-optimal manufacturing process design sequences.

Furthermore, the performance of a GHC algorithm depends on the values of K and N.

Comparing the values for γ, µ, and σ in Tables 3-5 and 3-6, across the same probability

switch vectors values in Tables 3-7, the Weibull accepting GHC algorithm with K=50,

N=200 or K=100, N=100 yielded results that are significantly better than for the case with

Diane E. Vaughan Chapter 3. Motivational Example 29

K=200, N=50 in Table 3-7. Moreover, the Weibull accepting GHC algorithm with K = 50,

N=200 or K=100, N=100 also increased the number of hill climbing solutions accepted

during the execution of the algorithm. Examining equation (3), at each iteration of the

Weibull accepting GHC algorithm, the probability that a hill climbing solution is accepted is

large when the value of tk is large. Therefore, using K=50, N=200, the temperature

parameter, tk, for the Weibull accepting GHC algorithm converges to zero at a sufficiently

slow rate such that the probability of accepting a hill climbing solution also decreases very

slowly at each outer loop iteration. This results in an increased frequency that the algorithm

execution visits the optimal sequence at the beginning of the execution. Visiting the optimal

sequence early in the execution of the algorithm also decreases the probability of becoming

locked in a non-optimal process design sequence at the end of the algorithm execution.

Note that as a base case, to compare the effectiveness and value of the Weibull accepting

algorithm with the probability switch vector neighborhood function, experiments were run

with a Weibull accepting algorithm using a neighborhood function (termed the base case

neighborhood function) that assigns an integer value (i.e., 1, 2, 3, 4, 5) to each of the five

possible manufacturing process design sequences, where the probability of moving from a

design sequence to any other design sequence was .25. This algorithm was also executed

using the same three combinations of values for K and N=N(k), k=1, 2, …, K. Thirty

(independently seeded) replications of each GHC formulation were made. The mean (µ) and

standard deviations (σ), as well as the minimum and maximum cost function values, were

computed from the optimal values across these thirty replications. These results are given in

Table 3-8.

Table 3-8: GHC Algorithm Results

GHC Algorithm Results, Base Case
Inner and Outer Loop Bounds γ µ σ Minimum Maximum

K=50, N=200 24/30 2048.95 193.01 1919.28 2723.33

K=100, N=100 25/30 2147.12 623.76 1927.01 5200.51

K=200, N=50 19/30 2201.76 599.32 1924.94 5095.13

Diane E. Vaughan Chapter 3. Motivational Example 30

The results in Table 3-8, when compared to the results in Tables 3-5 through 3-7, suggest that

using the Weibull accepting algorithm with probability switch vector neighborhood function

can be more effective in identifying both the optimal design sequence and the optimal

controllable input parameter values compared to the Weibull accepting algorithm using base

case neighborhood function. Moreover, the variance of the optimal design sequences

obtained using the probability switch vector neighborhood function is significantly lower

than for the base case neighborhood function. These results can be explained by noting that

the base case neighborhood function selects neighboring design sequences uniformly, while

the probability switch vector neighborhood function weights this selection based on common

manufacturing processes between the design sequences. This overlap provides a more

effective strategy in moving between different design sequences, in search of the optimal

design sequence.

Overall, the computational results are consistent with what would have been obtained using

trial and error on the shop floor. In particular, the optimal design (P0P2P5P6) required smaller

initial billets (hence there was less material wasted) and used machining processes (rather

than forging and extrusion processes) to achieve the desired shape and size. These results are

also consistent with those reported in Jacobson et al. (1998), in terms of the minimum cost

solutions obtained. The advantage of using GHC algorithms and computer simulation

manufacturing processes is the speed and efficiency at which these results can be obtained, at

a fraction of the cost that would be spent if trial and error on the shop floor would be

required. Moreover, allowing a GHC algorithm to optimize over both the design sequences

and the controllable input parameters provides an important first step to developing

automated procedures for such optimization problems.

Chapter 4:

Simultaneous Generalized Hill

Climbing Algorithms

Chapter 3 introduced a new neighborhood function for simultaneously addressing a set of

related manufacturing process design optimization problems simultaneously using GHC

algorithms. This neighborhood function allowed for simultaneous optimization across the

design sequences and the controllable input parameters. The application of such

optimization algorithms (that simultaneously explore multiple manufacturing process

designs) using computer simulation is a new advance in how optimal manufacturing process

designs can be efficiently identified (Vaughan et al. 2000).

It is common to encounter several discrete optimization problems where a relationship

between the solution spaces of the individual problems exists. This chapter relaxes the

methodology used to address the integrated blade rotor discrete manufacturing process

design problem to develop a general mathematical framework for simultaneously

approaching a set of related discrete optimization problems. The resulting framework is

termed simultaneous generalized hill climbing (SGHC) algorithms.

Diane E. Vaughan Chapter 4. SGHC Algorithms 32

4.1 Characterizing Sets of Discrete Optimization Problems

This section formally defines a class of sets of discrete optimization problems where a

relationship exists that is similar to the one described for the manufacturing problem

described in Chapter 3. A set of discrete optimization problems that is contained in this class

is referred to as a set of fundamentally related discrete optimization problems. Additionally,

this section develops a metric (termed the detachment metric) between elements in a set of

fundamentally related discrete optimization problems (Vaughan et al. 2000). The

detachment metric is a tool for determining if it is advantageous to address a particular set of

discrete optimization problems with a SGHC algorithm.

To discuss the class of sets of discrete optimization problems for which SGHC algorithms are

applicable, the following definitions are needed. Consider a set of discrete optimization

problems S={D1, D2, …, Dm}, where each discrete optimization problem Dy=(Ωy, fy) is fully

defined by a finite set of solutions Ωy and a real-valued objective function fy: Ωy→R. A set

of discrete optimization problems S is fundamentally related by a set Ob={c1, c2, …, cn} of

objects if the solution space Ωy of each discrete optimization problem Dy=(Ωy, fy)∈ S can be

fully defined by exactly one subset of Ob. Then for every discrete optimization problem

Dy=(Ωy, fy)∈ S, there is exactly one set Cy⊆ Ob such that Cy completely defines Ωy. The set

Cy is defined to be the fundamental relation set of Dy.

Let S be a set of fundamentally related discrete optimization problems related by Ob.

Consider Dy∈ S where Cy⊆ Ob is the fundamental relation set of Dy. Then Cy can be

represented by the binary activity vector cy∈ {0, 1}n, cy=(B1, B2, …, Bn), where

Bi =




otherwise ,0

Cin contained is c if ,1 yi .

SGHC algorithms are developed for sets of fundamentally related discrete optimization

problems. When two discrete optimization problems, Dy and Dq, are contained in a set of

fundamentally related discrete optimization problems with respective fundamental relation

Diane E. Vaughan Chapter 4. SGHC Algorithms 33

sets, Cy and Cq, where |Cy∩Cq|/|Ob| is close to one, it is reasonable to conjecture that the

optimal/near optimal solutions of Dy and Dq are similar. The following detachment metric is

designed to determine if two discrete optimization problems, in a set of fundamentally related

discrete optimization, are close together, hence have similar solution spaces.

Let S be a set of fundamentally related discrete optimization problems related by Ob. To

formally define the detachment metric ρ between discrete optimization problems Dy, Dq∈ S,

consider the metric space <Σn, ρ>, with Σ = {0, 1}, where the detachment metric ρ is defined

on Σn × Σn such that the distance between two discrete optimization problems can be

determined by considering their binary activity vectors cy=(y
n

yy ccc ...,,, 21)∈Σ n
 and

cj=(q
n

qq ccc ...,,, 21)∈Σ n. Define the detachment metric as

ρ(Dy, Dq) = q
n

y
n

qyqy cccccc −++−+− ...2211

(Royden, 1988, p.140). This metric is illustrated in Section 3.2. The detachment metric

provides a way to measure the overlap (or lack of overlap) between the members in a set of

fundamentally related discrete optimization problems.

4.2 Neighborhood Function

This section develops the neighborhood function with an associated problem generation

probability function for moving between discrete optimization problems during an execution

of a SGHC algorithm. The neighborhood function is defined such that each discrete

optimization problem has the entire set of discrete optimization problems as neighbors.

Therefore, whenever this neighborhood function is applied, every discrete optimization

problem is a candidate problem (i.e., has a positive probability of being selected). The

problem generation probability function determines the probability of selecting a candidate

problem.

Diane E. Vaughan Chapter 4. SGHC Algorithms 34

More formally, define the neighborhood function, ηset:S→2S, such that ηset(Dy)=S, for all

Dy∈ S. Define the problem generation probability function
qy DDh (k, ρ(Dy, Dq)), such that

0 <
qy DDh (k, ρ(Dy, Dq)) < 1, for every Dy∈ S, Dq∈η set(Dy),

where,

∑
∈)(ysetq DD η

qy DDh (k, ρ(Dy, Dq)) = 1, for every Dy∈ S, Dq∈η set(Dy),

for every k=1, 2, …, K.

Note that the problem generation probability function (the probability of selecting a

candidate problem, Dq∈η set(Dy), Dy∈ S) can be a function of both the outer loop iteration

k=1, 2, …, K and the detachment metric ρ(Dy, Dq).

4.3 The Simultaneous Generalized Hill Climbing Algorithm Pseudo-Code

SGHC algorithms provide a mathematical framework for addressing several fundamentally

related discrete optimization problems simultaneously using GHC algorithms. SGHC

algorithms seek to find optimal solutions for sets of fundamentally related discrete

optimization problems by allowing the algorithm to probabilistically move between discrete

optimization problems. When a new discrete optimization problem is generated, an initial

solution for this new problem is then generated using information from the previous discrete

optimization problem’s final solution. The inner and outer loop structure defined for GHC

algorithms can be used in SGHC algorithms, where SGHC algorithms restrict possible

movement between discrete optimization problems to the first iteration of the outer loop

iterations. This constraint ensures that a GHC algorithm is applied to each discrete

optimization problem at least N(k) iterations each time it is generated (i.e., initially visited).

Note that this was not the case for the manufacturing problem presented in Chapter 3, where

movement between discrete optimization problems was possible during all inner loop

iterations.

Diane E. Vaughan Chapter 4. SGHC Algorithms 35

The SGHC algorithm pseudo-code is now presented.

Figure 4.1: SGHC Algorithm Pseudo-Code

 Set the outer loop counter bound K and the inner loop counter bounds N(k), k=0,1,2,…,K
 Define a set of hill climbing (random) variables Rk: Ω × Ω → ℜ ∪ {−∞,+∞}, k=1,2,…,K
 Set the iteration indices N(0)=i=0, k=n=1
 Select an initial discrete optimization problem D(0)∈ S
 Select an initial solution ω(0,0)∈Ω (0)
 Repeat while k ≤ K

 Generate a discrete optimization problem D(k)∈η set(D(k-1))
 If D(k) ≠ D(k-1),

 Generate a solution ω∈ Ω(k) and ω(k, 1)←ω (new discrete optimization problem)
 else ω(k, 1)←ω(k-1, N(k-1)) (same discrete optimization problem)

Repeat while n ≤ N(k)
Generate a solution ω∈η(ω(k, i))
Calculate δ(ω(k, i),ω) = f(ω)-f(ω(k, i))
If δ(ω(k, i),ω) ≤ 0, then ω(k, i+1)←ω
If δ(ω(k, i),ω) > 0 and Rk(ω(k, i),ω) ≥ δ(ω(k, i),ω), then ω(k, i+1)←ω
If δ(ω(k, i),ω) > 0 and Rk(ω(k, i),ω) < δ(ω(k, i),ω), then ω(k, i+1)←ω(k, i)
n ← n+1, i ← i+1

 Until n = N(k)
 n ← 1, k ← k+1

 Until k = K

All SGHC algorithms are formulated using three components, a set of hill climbing random

variables {Rk}, a neighborhood function η between solutions and a neighborhood function

ηset between discrete optimization problems. The two-tuple (k, i) represents the inner loop

iteration i=1, 2, …, N(k), during outer loop iteration k=1, 2, …, K. D(k) is the discrete

optimization problem the algorithm is executing over during the kth outer loop iteration, k=1,

2, …, K, where the solution space of D(k) is depicted by Ω(k).

Chapter 5:

Simultaneous Generalized Hill

Climbing Markov Chain Theory

Markov chain theory is an effective tool for studying the performance of local search

algorithms. This chapter shows that an application of the SGHC algorithm can be modeled

using Markov chains. In particular, Section 5.1 demonstrates that an application of the GHC

algorithm can be modeled with a Markov chain. Section 5.2 shows that an application of the

SGHC algorithm can be modeled by a set of Markov Chains.

5.1 Generalized Hill Climbing Markov Chain Theory

To show that an application of the GHC algorithm can be modeled with a Markov chain, the

following definitions are needed. A stochastic process is a family of random variables

defined on some state space. If there are countable many members of the family, the process

(termed a discrete-time process) is denoted by Q1, Q2, … where the set of distinct values

assumed by a stochastic process is the state space. If the state space is countable or finite,

the process is a chain. A stochastic process {Qk}, k=1, 2, … with state space Ω={ω1, ω2, …}

satisfies the Markov property if for every n and for all states ω1, ω2, …, ωn

Diane E. Vaughan Chapter 5. SGHC Markov Chain Theory 37

Pr{Qn=ωn | Qn-1=ωn-1, Qn-2=ωn-2, …, Q1=ω1} = Pr{Qn=ωn | Qn-1=ωn-1} = Pn(n-1).

A discrete-time stochastic process that satisfies the Markov property is a Markov chain.

Let {Qk} denote a discrete-time Markov chain with finite solution space Ω={ω1, ω2, …,

ω|Ω|}. For this chain there are |Ω|2 transition probabilities, {Pij}, i,j=1, 2, …, |Ω|. The

transition matrix associated with the Markov chain {Qk} is P, where Pij is the probability of

moving from state ωi to state ωj.

An application of a GHC algorithm can be modeled by a stochastic process { k
nQ }, k=1, 2,

…, K, n=1, 2, …, N(k), k
nQ ∈Ω with solution space Ω={ω1, ω2, …, ω|Ω|} that satisfies the

Markov property for every n and all states ω1, ω2, …, ωn (i.e., { k
nQ } is a Markov chain). To

see this, consider an application of a GHC algorithm to a discrete optimization problem with

solution space Ω={ω1, ω2, …, ω|Ω|}. Define gij(k) to be the generation probability function

for the neighborhood function η, where the probability that ωj∈η (ωi) is generated during

outer loop iteration k, is gij(k). Consider the inner loop iterations for fixed outer loop

iteration k=1, 2, …, K. Let { k
nQ }, k=1, 2, …, K, n=1, 2, …, N(k), k

nQ ∈Ω be the stochastic

process where if k
nQ =ωi, then the GHC algorithm is at solution ωi during inner loop iteration

n and outer loop iteration k (Johnson and Jacobson 2000b). If the GHC algorithm is at

solution ωi at inner loop iteration n-1, the probability that the algorithm is at solution ωj at

inner loop iteration n is













=−

≠∈Ω∈≥

= ∑
≠

∈

otherwise

ijkP

ijallforRkg

kP

iz
z

iz

ijiijjikij

ij

i

0

)(1

),(,)),(Pr()(

)(
)(ωη

ωηωωδωω

,

independent of the solutions the algorithm visited at inner loop iterations 1, 2, …, n-2.

Therefore, the Markov property holds,

Pr{ k
nQ =ωj |

k
nQ 1− =ωi,

k
nQ 2− =ωi (n-2), ...,

kQ1 =ωi (1)} = Pr{ k
nQ =ωj |

k
nQ 1− =ωi} = Pij(k).

Diane E. Vaughan Chapter 5. SGHC Markov Chain Theory 38

Moreover, for every outer loop iteration k, the Markov chain { k
nQ } has a transition matrix

P(k), where Pij(k) is defined as above .

5.2 Simultaneous Generalized Hill Climbing Markov Chain Theory

Recall, that a SGHC algorithm is applied to a set of fundamentally related discrete

optimization problems. Movement between discrete optimization problems is only possible

at outer loop iterations k=1, 2, …, K. During the inner loop iterations, the SGHC algorithm

is executing over the solution space of the current discrete optimization problem using a

GHC algorithm. Section 5.1 shows that an application of a GHC algorithm can be modeled

by a Markov chain.

This section shows that for fixed outer loop iteration k=1, 2, …, K, the stochastic process

corresponding to the solution that the SGHC algorithm is at during inner loop iterations n=1,

2, …, N(k) can be modeled by a Markov chain that corresponds to an application of a GHC

algorithm. Moreover, it is shown that for outer loop iterations k=1, 2, …, K, the possible

movement between discrete optimization problems is a stochastic process that satisfies the

Markov property.

Consider an application of a SGHC algorithm to a set of fundamentally related discrete

optimization problems S={D1, D2, …, Dm}, where each discrete optimization problem Dy,

y=1, 2, …, m is fully defined by a solution space Ωy and an objective function fy (i.e.,

Dy=(Ωy, fy)). Consider the inner loop iterations n=1, 2, …, N(k), for fixed outer loop

iteration k, k=1, 2, …, K. Let { k
nQ (Dy)}, k=1, 2, …, K, n=1, 2, …, N(k) be the stochastic

process where if k
nQ (Dy)=ωi, then the SGHC algorithm is at solution ωi∈Ω y at inner loop

iteration n of outer loop iteration k.

Note that, for all inner loop iterations n=1, 2, …, N(k) of an outer loop iteration k=1, 2, …, K

the SGHC algorithm is executing over a particular discrete optimization problem from the set

Diane E. Vaughan Chapter 5. SGHC Markov Chain Theory 39

of fundamentally related discrete optimization problems S={D1, D2, ..., Dm} using a GHC

algorithm. Section 5.1 showed that any application of a GHC algorithm to a discrete

optimization problem can be modeled as a Markov chain. Therefore, for fixed outer loop

iteration k, the stochastic processes { k
nQ (Dy)}, y=1, 2, …, m, with transition matrices Py, are

the Markov chains that correspond to an application of the GHC algorithm to the discrete

optimization problems Dy, y=1, 2, …, m for every n=1, 2, …, N(k) and for all states ω1, ω2,

…, ω|Ωy| as defined in Section 5.1.

Movement between discrete optimization problems is a stochastic process that satisfies the

Markov property. To see this, define {Ψ(k)}, Ψ(k)∈ S, k=1, 2, … to be the stochastic process

where if Ψ(k)=y, then during outer loop iteration k, for all inner loop iterations n=1, 2, …,

N(k) the SGHC algorithm is executing over solutions contained in the solution space of the

discrete optimization problem Dy=(Ωy, fy). If the SGHC algorithm is executing over Ωy at

outer loop iteration k-1, then the probability that the SGHC algorithm is executing over Ωq

during outer loop iteration k is

Tyq(k) =
qy DDh (k, ρ(Dy, Dq))

independent of the discrete optimization problems the SGHC algorithm visited at outer loop

iterations 1, 2, …, k-2 and independent of all preceding inner loop iterations. Therefore, the

Markov property holds,

Pr{Ψ(k)=q | Ψ(k-1)=y, Ψ(k-2)=yk-2, …,Ψ(1)=y1} = Pr{Ψ(k)=q | Ψ(k-1)=y}= Tyq(k).

Moreover, the Markov chain {Ψ(k)} has transition matrix T(k), where Tyq(k) is as defined

above.

Chapter 6:

Simultaneous Generalized Hill

Climbing Algorithm Analysis

Consider an application of the SGHC algorithm to a set of fundamentally related discrete

optimization problems, S. This section presents sufficient conditions that guarantee that a

SGHC algorithm will (as k approaches +∞) be executing over the solution space of each

discrete optimization problem Dy∈ S with probability 1/|S|, where |S| is the cardinality of S.

This result implies that, as k approaches +∞, each discrete optimization problem in S={D1,

D2, …, Dm} is being explored with equal probability.

This section develops sufficient conditions that place restrictions on the selection of the

problem generation probability function
qy DDh (k, ρ(Dy, Dq)). Two sets of sufficient

conditions are provided. The first set of sufficient conditions (Theorem 1) require selecting

qy DDh (k, ρ(Dy, Dq)) such that the associated Markov chain is stationary. A discrete time

Markov chain is a stationary Markov chain if the probability of going from one state to

another state is independent of the iteration at which the transition is being made (Isaacson

and Madsen 1985). That is, let {Xn} be a stationary Markov chain with state space S={D1,

D2, …, Dm}, then for all states Dy and Dq,

Pr{Xn=Dy | Xn-1=Dq} = Pr{Xn+k=Dy | X n+k-1=Dq},

Diane E. Vaughan Chapter 6. SGHC Algorithm Analysis 41

for all k=-(n-1),-(n-2), …,-1, 0, 1, 2, … .

The long run distribution (stationary probability distribution) of a stationary Markov chain

with corresponding transition matrix T is defined by π = []mπππ "21 , πi≥0, for all i,

i=1, 2, …, m, where π=πT and ∑
=

m

i
i

1

π =1. Equivalently, the long run distribution of a

stationary Markov chain is defined by π = []mπππ "21 , where

πj=
+∞→n

lim
Tij

(n).

The second set of sufficient conditions are presented in Theorem 2. Theorem 2 requires

selecting
qy DDh (k, ρ(Dy, Dq)) such that the associated Markov chain is nonstationary. A

discrete time Markov chain is a nonstationary Markov chain if the condition for stationary

fails.

6.1 Stationary Markov Chain Sufficient Conditions

If the stationary Markov chain {Ψ(k)} has a uniform long run distribution, then as k

approaches infinity the SGHC algorithm is executing over the solution space of each discrete

optimization problem in S ={D1, D2, …, Dm} with probability 1/m=1/|S|. Theorem 1

provides sufficient conditions for the selection of the problem generation probability function

qy DDh (k, ρ(Dy, Dq)) that guarantee that the Markov chain {Ψ(k)} has a uniform long run

distribution. Therefore, when the sufficient conditions of Theorem 1 hold, the SGHC

algorithm will (as k approaches +∞) be in discrete optimization problem Dy∈ S, y=1, 2, …, m

with probability 1/|S|.

To prove Theorem 1, the following definitions are needed. A subset, C, of the state space, S,

is closed if Pij=0, for all i∈ C and j∉ C. A Markov chain is irreducible if there exists no

nonempty closed set other than S itself. If S has a proper closed subset, it is reducible. State

Diane E. Vaughan Chapter 6. SGHC Algorithm Analysis 42

ωi is said to have period d if P n
ii =0 whenever n is not divisible by d and d is the greatest

integer with this property. A state with period 1 is said to be aperiodic (Isaacson and Madsen

1985).

Theorem 1

Consider an application of the SGHC algorithm. Define
qy DDh (k, ρ(Dy,

Dq))=
qy DDh (ρ(Dy, Dq))=

yqDDh (ρ(Dy, Dq)), for every k=1, 2, … . Consider the transition

matrix T defined by

Tyq =
qy DDh (ρ(Dy, Dq)).

If the transition matrix T is irreducible and aperiodic, then the Markov chain {Ψ(k)} has

a uniform long run distribution. Moreover, the long run distribution of {Ψ(k)} is

π = [1/|S| 1/|S| … 1/|S|].

Proof:

Note that the problem generation probability function
qy DDh (k, ρ(Dy, Dq)) is independent

of k. Therefore, the Markov chain {Ψ(k)} is stationary. Recall, that the long run

distribution of a stationary Markov chain is defined by []mπππ "21 , πi ≥0, for all

i=1, 2, …, m which satisfies

 π = πT, (1)

 and

 ∑
=

m

i
i

1

π = 1. (2)

Since ∑
=

m

i
ijT

1

=∑
=

m

j
ijT

1

=1, then (1) and (2) have the solution mπππ === "21 =1/m=1/|S|.

Moreover, this solution is unique since T is aperiodic and irreducible (Issacson and

Madsen 1985). Therefore, the Markov chain {Ψ(k)} has a uniform long run

distribution.

Diane E. Vaughan Chapter 6. SGHC Algorithm Analysis 43

Theorem 1 shows that if the problem generation probability function is chosen such that the

Markov chain {Ψ(k)} is stationary and the associated transition matrix is symmetric, then the

Markov chain {Ψ(k)} has a uniform stationary distribution. The second set of sufficient

conditions allow for the development of a nonstationary Markov chain.

6.2 Nonstationary Markov Chain Sufficient Conditions

For finite nonstationary Markov chains, the transition matrices T(k) that contain the

probabilities of moving from state Dy to state Dq at outer loop iteration k, are functions of k.

To define weak and strong ergodicity of nonstationary Markov chains, several definitions are

needed. Define the one norm of a vector f=(f1, f2, …, fm) by

|| f || =∑
=

m

i
if

1

|| .

Define the infinity norm of matrix T(k) by

||T(k)|| =

i

max ∑
=

m

j
ijT

1

||

(Atkinson 1989). Let T(1), T(2), ... be the transition matrices for a nonstationary Markov

chain with starting vector f(0). Define f(j,k)=f(0)T(j+1)T(j+2) … T(k).

A nonstationary Markov chain is weakly ergodic if, for all j,

+∞→n

lim
)0()0(

sup

gf
||f(j,n)-g(j,n)|| = 0,

where f(0) and g(0) are starting vectors. A nonstationary Markov chain is strongly ergodic if

there exists a vector q = (q1, q2, …, qm), with || q ||=1 and qi≥0, for i=1, 2, …, m such that, for

all j,

+∞→n

lim
)0(

sup

f
||f(j,n)-q|| = 0,

Diane E. Vaughan Chapter 6. SGHC Algorithm Analysis 44

where f(0) is a starting vector (Isaacson and Madsen 1985). The following result from

Isaacson and Madsen (1985) is needed in the proof of Lemma 2.

Lemma 1

Let {T(k)} be a sequence of transition matrices corresponding to a nonstationary

weakly ergodic Markov chain. If there exists a corresponding sequence of left

eigenvectors {π (k)}, for {T(k)}, satisfying

∑
+∞

=

+∞<+−
1

||)1()(||
k

kk ππ ,

then the chain is strongly ergodic and for every j,

+∞→n

lim
)0(

sup

f
||f(j,n)- π|| = 0,

where

+∞→k

lim
π (k) = π.

Proof:

See Isaacson and Madsen (1985).

Lemma 2 states that if the problem generation probability function is selected such that the

corresponding nonstationary Markov chain {Ψ(k)}, Ψ(k)∈ S, k=1, 2, … is weakly ergodic

and the transition matrices T(k) are symmetric for every k, then the nonstationary Markov

chain is strongly ergodic.

Lemma 2

Consider an application of the SGHC algorithm. Assume that the nonstationary

Markov chain {Ψ(k)}, Ψ(k)∈ S, k=1, 2, … is weakly ergodic and that
qy DDh (k, ρ(Dy,

Diane E. Vaughan Chapter 6. SGHC Algorithm Analysis 45

Dq))=
yqDDh (k, ρ(Dq, Dy)), for every k. Then the nonstationary Markov chain {Ψ(k)}

is strongly ergodic and for every j,

+∞→n

lim
)0(

sup

f
||f(j,n)- π|| = 0,

where π = [1/|S| 1/|S| ... 1/|S|].

Proof:

Let {T(k)} be the sequence of transition matrices corresponding to the nonstationary

weakly ergodic Markov chain {Ψ(k)}, Ψ(k)∈ S, k=1, 2, … . Let {π(k)} be the

corresponding sequence of left eigenvectors. From Lemma 1, it is sufficient to show

∑
+∞

=

+∞<+−
1

||)1()(||
k

kk ππ ,

where

+∞→k

lim
π (k) = [1/|S| 1/|S| ... 1/|S|].

From Theorem 1, for every k, the Markov chains corresponding to the transition

matrices T(k) have uniform long run distributions. Therefore,

π(k) = π(k+1) = [1/|S| 1/|S| … 1/|S|],

for all k, k=1, 2, …, K, hence

∑
+∞

=

+∞<+−
1

||)1()(||
k

kk ππ

and

+∞→k

lim
π (k) = [1/|S| 1/|S| ... 1/|S|].

Lemma 2 shows that if the Markov chain {Ψ(k)}, Ψ(k)∈ S, k=1, 2, … is weakly ergodic and

the associated transition matrices {T(k)} are symmetric, then the Markov chain {Ψ(k)} is

strongly ergodic and the SGHC algorithm will (as k approaches +∞) be executing over the

solution space of each discrete optimization problem contained in the set of fundamentally

Diane E. Vaughan Chapter 6. SGHC Algorithm Analysis 46

related discrete optimization problems with equal probability. Theorem 2 shows that this

result implies that for every ε>0, there exists an outer loop iteration such that for all future

outer loop iterations, the SGHC algorithm is executing over the solution space of each

discrete optimization problem in the set S with probability 1/|S| ± ε.

Theorem 2

Consider an application of the SGHC algorithm. Assume that the Markov chain

{Ψ(k)}, Ψ(k)∈ S, k=1, 2, … is weakly ergodic and that
qy DDh (k, ρ(Dy, Dq))=

yqDDh (k,

ρ(Dq, Dy)), for every k=1, 2, … and for every q, y=1, 2, …, m (i.e., the corresponding

transition matrix is symmetric). Then for every ε>0, there exists a k(ε)∈ Z+, such that

1/|S| - ε ≤ Pr{Ψ(k)=y} ≤ 1/|S| + ε,

for all outer loop iterations k≥k(ε) and for every Dy∈ S, y=1, 2, …, m.

Proof:

From Lemma 2,

+∞→n

lim
)0(

sup

f
||f(1,n)- π|| = 0,

where π = [1/|S| 1/|S| ... 1/|S|]. Therefore, for every ε>0, there exists a k(ε)∈ Z+, such

that for all outer loop iterations k≥k(ε),

)0(

sup

f
||f(1,k)- π|| < ε.

This means that for every initial solution vector f (0) and for all outer loop iterations

k≥k(ε),

||f(1,k)- π|| < ε.

Therefore, independent of the initial discrete optimization problem, for every ε>0 and

for every discrete optimization Dy∈ S, y=1, 2, …, m, there exists an k(ε)∈ Z+ such

that, for all outer loop iterations k≥k(ε),

Diane E. Vaughan Chapter 6. SGHC Algorithm Analysis 47

1/|S| - ε ≤ Pr{Ψ(k)=y} ≤ 1/|S| + ε.

6.3 Conditions for Weak Ergodicity

Consider an application of the SGHC algorithm. It is beneficial to select the problem

generation probability function
qy DDh (k, ρ(Dy, Dq)) such that the corresponding Markov

chain {Ψ(k)} is weakly ergodic. For example, Theorem 2 of Section 6.2 provides sufficient

conditions that guarantee (as k approaches +∞) the SGHC algorithm will be executing over

the solution space of each discrete optimization problem in the set S with equal probability.

These sufficient conditions require that
qy DDh (k, ρ(Dy, Dq)) be defined such that the

associated Markov chain {Ψ(k)}, Ψ(k)∈ S, k=1, 2, … is weakly ergodic. Moreover, for an

application of a SGHC algorithm, if the Markov chain {Ψ(k)}, Ψ(k)∈ S, k=1, 2, … is weakly

ergodic, then for sufficiently large k, the probability that the SGHC algorithm is executing

over the solution space of a particular discrete optimization problem during outer loop

iteration k is independent of the initial discrete optimization problem. This guarantees that

the long-term performance of a SGHC algorithm is independent of the initial discrete

optimization problem. This section provides sufficient conditions for the selection of the

problem generation probability function
qy DDh (k, ρ(Dy, Dq)) that guarantee that the

corresponding Markov chain {Ψ(k)} is weakly ergodic.

Examples 6-1, 6-2 and 6-3 illustrate nonstationary Markov chains that are weakly ergodic.

Diane E. Vaughan Chapter 6. SGHC Algorithm Analysis 48

Example 6-1

Consider the nonstationary Markov chain with transition matrices,

T(k) =

















+−++
++−+
+++−

))1/(1(1)1(2/1)1(2/1

)1(2/1))1/(1(1)1(2/1

)1(2/1)1(2/1))1/(1(1

kkk

kkk

kkk

, k=1, 2, … .

Table 6-1 provides f (1,k)= f (0) T(1)T(2) … T(k) for the initial vectors f (0)= [1 0 0], [0 1 0] and

[0 0 1] and for k=10,000 and k=20,000.

Table 6-1: Weakly Ergodic Example One

Initial Vector f (0) f (1, 10,000) f (1, 20,000)

[1 0 0] [.3333 .3333 .3333] [.3333 .3333 .3333]

[0 1 0] [.3333 .3333 .3333] [.3333 .3333 .3333]

[0 0 1] [.3333 .3333 .3333] [.3333 .3333 .3333]

Example 6-2

Consider the nonstationary Markov chain with transition matrices,

T(k) =

















+−+
++−
+++−

)1/(110)1/(1

)1/(1)1/(110

)1(2/1)1(2/1))1/(1(1

kk

kk

kkk

, k=1, 2, … .

Table 6-2 provides f (1,k)= f (0) T(1)T(2) … T(k) for the initial vectors f (0)= [1 0 0], [0 1 0] and

[0 0 1] and for k=10,000 and k=20,000.

Diane E. Vaughan Chapter 6. SGHC Algorithm Analysis 49

Table 6-2: Weakly Ergodic Example Two

Initial Vector f (0) f (1, 10,000) f (1, 20,000)

[1 0 0] [.4 .2 .4] [.4 .2 .4]

[0 1 0] [.4 .2 .4] [.4 .2 .4]

[0 0 1] [.4 .2 .4] [.4 .2 .4]

Example 6-3

Consider the nonstationary Markov chain with transition matrices,

T(k) =
















+−++
++−+

+++−

))1/(1(1)1(2/1)1(2/1

)1(2/1))1/(1(1)1(2/1

))1(2/(1))1(2/(1)))1/((1(1 222

kkk

kkk

kkk

, k=1, 2, … .

Table 6-3 provides f (1,k)= f (0) T(1)T(2) … T(k) for the initial vectors f (0) = [1 0 0], [0 1 0]

and [0 0 1] and for k=10,000, k=20,000 and k=100,000.

Table 6-3: Weakly Ergodic Example Three

Initial Vector f (0) f (1, 10,000) f (1, 20,000) f (1, 100,000)

[1 0 0] [.9918 .0041 .0041] [.9904 .0048 .0048] [.9957 .0022 .0022]

[0 1 0] [.9817 .0092 .0092] [.9870 .0065 .0065] [.9942 .0029 .0029]

[0 0 1] [.9817 .0092 .0092] [.9870 .0065 .0065] [.9942 .0029 .0029]

Examples 6-4 and 6-5 illustrate nonstationary Markov chains that are not weakly ergodic.

Diane E. Vaughan Chapter 6. SGHC Algorithm Analysis 50

Example 6-4

Consider the nonstationary Markov chain with transition matrices,

T(k) =
















+−++
++−+
+++−

))1/(1(1)1(2/1)1(2/1

)1(2/1))1/(1(1)1(2/1

)1(2/1)1(2/1))1/(1(1

222

222

222

kkk

kkk

kkk

, k=1, 2, … .

Table 6-4 provides f (1,k)= f (0) T(1)T(2) … T(k) for the initial vectors f (0)= [1 0 0], [0 1 0] and

[0 0 1] and for k=10,000, k=20,000 and k=100,000.

Table 6-4: Not Weakly Ergodic Example Four

Initial Vector f (0) f (1, 10,000) f (1, 20,000) f (1, 100,000)

[1 0 0] [.5567 .4429 .0004] [.5582 .2209 .2209] [.5582 .2209 .2209]

[0 1 0] [.4429 .5567 .0004] [.2209 .5582 .2209] [.2209 .5582 .2209]

[0 0 1] [.4998 .4998 .0004] [.2209 .2209 .5582] [.2209 .2209 .5582]

Example 6-5

Consider the nonstationary Markov chain with transition matrices,

T(k) =
















+−++
++−+
+++−

))1/(1(1)1(2/1)1(2/1

)1(2/1))1/(1(1)1(2/1

)1(2/1)1(2/1))1/(1(1
222

222

kkk

kkk

kkk

, k=1, 2, … .

Table 6-5 provides f (1,k)= f (0) T(1)T(2) … T(k) for the initial vectors f (0)= [1 0 0], [0 1 0] and

[0 0 1] and for k=10,000 and k=20,000.

Diane E. Vaughan Chapter 6. SGHC Algorithm Analysis 51

Table 6-5: Not Weakly Ergodic Example Five

Initial Vector f (0) f (1, 10,000) f (1, 20,000)

[1 0 0] [1 0 0] [1 0 0]

[0 1 0] [0 1 0] [0 1 0]

[0 0 1] [0 0 1] [0 0 1]

Examples 6-1 through 6-5 illustrate how transition matrices that correspond to weakly

ergodic nonstationary Markov chains can look similar to transition matrices that correspond

to non-weakly ergodic nonstationary Markov chains. To determine how to differentiate

between transition matrices that correspond to weakly ergodic nonstationary Markov chains

and transition matrices that correspond to non-weakly ergodic nonstationary Markov chains

the following definitions are needed.

The ergodic coefficient of T(k), denoted by α(T(k)), is defined by

α(T(k)) = 1- []
+

=
∑ −

m

j
ljij kTkT

li 1

)()(
,

sup
,

where []+− ljij kTkT)()(= max(0, T(k)ij – T(k)lj). The delta coefficient of T(k) is δ(T(k))=1-

α(T(k)) (Isaacson and Madsen 1985). Figure 6.1 contains the ergodic and delta coefficients

of the transition matrices T(k) in Examples 6-1 through 6-5.

Example α δ

6-1 3/(2(k+1)) 1-3/(2(k+1))

6-2 1/(k+1) 1-1/(k+1)

6-3 3/(2(k+1)) 1-3/(2(k+1))

6-4 3/(2(k+1)2) 1-3/(2(k+1)2)

6-5 3/(2(k+1)2) 1-3/(2(k+1)2)

Figure 6.1: Ergodic Coefficients

Diane E. Vaughan Chapter 6. SGHC Algorithm Analysis 52

Theorem 3 and Theorem 4 (Isaacson and Madsen 1985) present necessary and sufficient

conditions that relate weak ergodicity to the ergodic coefficient.

Theorem 3

Let {Xn} be a nonstationary Markov chain with transition matrices T(k), k=1, 2, … .

The chain is weakly ergodic if and only if there exists a subdivision of T(1)T(2)T(3)

… into blocks of matrices [T(1)T(2)T(3) … T(n1)] … [T(n1+1)T(n1+2) … T(n2)] …

such that

∑
+∞

=0j

α(T(nj+1)T(nj+2)…T(nj+1)) = +∞,

where n0=0.

Proof:

See Isaacson and Madsen (1985).

Theorem 4

A nonstationary Markov chain is weakly ergodic if and only if, for all j∈ Z+,

+∞→k

lim
δ(T(j)T(j+1) … T(k)) = 0.

Proof:

See Isaacson and Madsen (1985).

Diane E. Vaughan Chapter 6. SGHC Algorithm Analysis 53

Theorem 5 states sufficient conditions based on the selection of the problem generation

probability function
qy DDh (k, ρ(Dy, Dq)) that guarantee that the Markov chain {Ψ(k)} is

weakly ergodic.

Theorem 5

Consider an application of the SGHC algorithm. Suppose that
qy DDh (k, ρ(Dy,

Dq))=
yqDDh (k, ρ(Dq, Dy)), for every k=1, 2, …, K and for every y, q=1,2, …, m (i.e.,

the corresponding transition matrix T(k) is symmetric). Consider the transition

matrices T(k) defined by

 Tyq(k) =
qy DDh (k, ρ(Dy, Dq)),

corresponding to stochastic process {Ψ(k)}, Ψ(k)∈ S, k=1, 2, … . If δ(T(k))≤1-

1/(k+1), for every k, then the Markov chain {Ψ(k)} is weakly ergodic.

Proof:

From Theorem 3, it is sufficient to show that

 ∑
+∞

=

+∞=
1

))((
k

kTα ,

which follows from

∑
+∞

=1

))((
k

kTα =∑
+∞

=

−
1

)))((1(
k

kTδ

 ≥ ∑
+∞

=1k

1/(k+1)

 = +∞.

Theorem 6 provides an exact problem generation probability function
qy DDh (k, ρ(Dy, Dq))

that guarantees that the Markov chain {Ψ(k)} is weakly ergodic. Note that the problem

generation probability function given in Theorem 6 does not satisfy the sufficient conditions

of Theorem 5.

Diane E. Vaughan Chapter 6. SGHC Algorithm Analysis 54

Theorem 6

Consider an application of the SGHC algorithm to a set of discrete optimization

problems S, where |S|>2. If
yy DDh (k, ρ(Dy, Dy))=1-1/(k+1) for every k=1, 2, …, K and

for every y=1, 2, …, m and
qy DDh (k, ρ(Dy, Dq))=1/((|S|-1)(k+1)), for every k=1, 2, …, K

and for every q, y=1, 2, …, m, where q≠y, then the Markov chain {Ψ(k)} is weakly

ergodic.

Proof:

Note that δ(T(k))=1-[(|S|-2)/((|S|-1)(k+1))]. From Theorem 3, it is sufficient to show

that

 ∑
+∞

=

+∞=
1

))((
k

kTα ,

which follows from

∑
+∞

=1

))((
k

kTα =∑
+∞

=

−
1

)))((1(
k

kTδ

 =(|S|-2)/(|S|-1)∑
+∞

=1k

1/(k+1)

 = +∞.

Theorem 6 provides an exact problem generation probability function
qy DDh (k, ρ(Dy, Dq))

that guarantees that the Markov chain {Ψ(k)} is weakly ergodic, where the problem

generation probability function is only a function of the outer loop iteration k=1, 2, …, K.

Theorem 7 provides an exact problem generation probability function
qy DDh (k, ρ(Dy, Dq))

that guarantees that the Markov chain {Ψ(k)} is weakly ergodic, where the problem

generation probability function is a function of both the outer loop iteration k=1, 2, …, K and

the detachment metric ρ(Dy, Dq).

Diane E. Vaughan Chapter 6. SGHC Algorithm Analysis 55

Theorem 7

Consider an application of the SGHC algorithm to a set of discrete optimization

problems S where ρ(Dy, Dq)≠0, for all y≠q. If
yy DDh (k, ρ(Dy, Dy))=1-1/(k+1) for

every k=1, 2, …, K and for every y=1, 2, …, m and

qy DDh (k, ρ(Dy, Dq)) = [1/(ρ(Dy, Dq)(k+1))] / [∑
≠
=

m

yi
i 1

(1/ρ(Dy, Di))],

for every k=1, 2, …, K and for every q,y=1, 2, …, m, y≠q, then the Markov chain

{Ψ(k)} is weakly ergodic.

Proof:

Let

ε=min{[1/(ρ(Dy, Dq)(k+1))] / [∑
≠
=

m

yi
i 1

(1/ρ(Dy, Di))], y≠q, y,q=1, 2, …, m}.

Note that 0<ε<+∞, since ρ(Dy, Dq)≠0, for all y≠q. Then,

δ(T(k)) ≤ 1-1/(k+1)+(1/(k+1))∑
∑≠

=

≠
= 




















−
m

yq
q

m

yi
i

iy

qy

DD

DD

1

1

),(/1

),(/1
ε

ρ

ρ
,

for some y=1, 2, …, m.

 = 1-ε(|S|-1)/(k+1),

where ε>0.

From Theorem 3, it is sufficient to show that

 ∑
+∞

=

+∞=
1

))((
k

kTα ,

which follows from

Diane E. Vaughan Chapter 6. SGHC Algorithm Analysis 56

 ∑
+∞

=1

))((
k

kTα =∑
+∞

=

−
1

)))((1(
k

kTδ

 ≥ ε(|S|-1)∑
+∞

=1k

1/(k+1)

 = +∞.

Chapter 7:

Performance of Simultaneous

Generalized Hill Climbing Algorithms

This chapter studies the performance of applications of the SGHC algorithm where the

problem generation probability function meets the following conditions (referred to as

Criteria A).

Criteria A:

(i)
qy DDh (k, ρ(Dy, Dq)) =

yqDDh (k, ρ(Dq, Dy)),

(ii)
+∞→k

lim
yy DDh (k, ρ(Dy, Dy)) = 1,

 (iii)
yy DDh (k, ρ(Dy, Dy)) is monotonically increasing

 (iv) the Markov chain {Ψ(k)} is weakly ergodic,

for every q, y=1, 2, …, m and for every k=1, 2, …, K.

Note that, by Lemma 2, if a SGHC algorithm satisfies Criteria A, then the Markov chain

{Ψ(k)} is strongly ergodic.

Diane E. Vaughan Chapter 7. Performance of SGHC Algorithms 58

Condition (i) in Criteria A requires that the transition matrices {T(k)} corresponding to the

Markov chain {Ψ(k)} are symmetric. Since, the detachment metric is symmetric (i.e., ρ(Dy,

Dq) =ρ(Dq, Dy)) this condition can be easily satisfied. Condition (ii) in Criteria A requires

that, as the outer loop iterations k=1, 2, … approach +∞, the probability that the SGHC

algorithm will stay in the current discrete optimization problem is approaching one.

Therefore, the transition matrices {T(k)} corresponding to the Markov chain {Ψ(k)} must be

such that the diagonal elements approach one as k approaches +∞. Condition (iii) in Criteria

A requires that these diagonal elements are monotonically increasing. This condition implies

that as k increases so does the probability that the SGHC algorithm will stay in a given

discrete optimization problem.

Condition (iv) in Criteria A requires that the Markov chain {Ψ(k)} is weakly ergodic. This is

the most difficult condition to verify when specifying the problem generation probability

function for a SGHC algorithm. Section 6.3 focused on this difficulty. Recall, the Markov

chain {Ψ(k)} is weakly ergodic if the problem generation probability function satisfies the

sufficient conditions of Theorem 5, Theorem 6 or Theorem 7. Moreover, if the problem

generation probability function for a SGHC algorithm satisfies the sufficient conditions of

Theorem 6 or Theorem 7, then the SGHC algorithm satisfies Criteria A.

7.1 The Simultaneous Generalized Hill Climbing Algorithm Visits Each

Discrete Optimization Problem Infinitely Often

This section shows that a SGHC algorithm that satisfies Criteria A visits each discrete

optimization problem in the set of fundamentally related discrete optimization problems

infinitely often.

Theorem 2 shows that for all ε>0, there exists an outer loop iteration k(ε) such that the SGHC

algorithm is executing over the solution space of each discrete optimization problem in the

set S with probability 1/|S| ± ε, for all outer loop iterations k≥k(ε). Lemma 3 is an extension

Diane E. Vaughan Chapter 7. Performance of SGHC Algorithms 59

of Theorem 2. Lemma 3 shows that for all ε>0 and for every positive integer k there exists

an outer loop iteration k(ε)≥ k , such that for all outer loop iterations k≥k(ε), the SGHC

algorithm will be in each discrete optimization problem in the set S with probability 1/|S| ± ε.

Lemma 3

Consider an application of the SGHC algorithm where the problem generation

probability function satisfies Criteria A. Then for all ε>0, where 1/|S|>ε, and for

every k ∈ Z+, there exists an outer loop iteration k(ε)≥ k , such that for every outer

loop iteration k≥k(ε),

1/|S| - ε ≤ Pr{Ψ(k)=y} ≤ 1/|S| + ε

for every Dy∈ S, y = 1, 2, …, m.

Proof:

Since the Markov chain {Ψ(k)} is strongly ergodic, by Lemma 2 for every j,

+∞→n

lim
)0(

sup

f
||f(j,n)- π|| = 0,

where,

π = [1/|S| 1/|S| … 1/|S|].

In particular,

+∞→n

lim
)0(

sup

f
||f (k ,n)- π|| = 0.

Therefore, for all ε>0, there exists k(ε)≥ k such that for every outer loop iteration

k≥k(ε),

)0(

sup

f
||f(k ,k)- π|| < ε.

Hence,

1/|S| - ε ≤ Pr{Ψ(k)=y} ≤ 1/|S| + ε

Diane E. Vaughan Chapter 7. Performance of SGHC Algorithms 60

for every Dy∈ S, y=1, 2, …, m and for every k≥k(ε)≥ k .

Lemma 4 is needed in the proof of Theorem 8. Lemma 4 shows that for every Dy∈ S, for all

ε>0 and for every positive integer k , there exist an infinite sequence of outer loop iterations

k1(ε), k2(ε), k3(ε) …, where k <k1(ε)<k2(ε)<k3(ε) … such that the SGHC algorithm is

executing over the solution space of Dy during outer loop iterations k1(ε), k2(ε), k3(ε), … with

probability 1/|S| ± ε.

Lemma 4

Consider an application of the SGHC algorithm where the problem generation

probability function satisfies Criteria A. Then for all ε>0, for every k ∈ Z+, and for

every discrete optimization problem Dy∈ S, y=1, 2, …, m, there exists a sequence of

outer loop iterations k1(ε), k2(ε), k3(ε), … such that

k < k1(ε) < k2(ε) < k3(ε) …

and

1/|S| - ε ≤ Pr{Ψ(ki(ε))=y} ≤ 1/|S| + ε

for every i=1, 2, … .

Proof:

The proof is by induction.

Base case:

From Lemma 3, there exists k(ε)≥ k such that

1/|S| - ε ≤ Pr{Ψ(k)=y} ≤ 1/|S| + ε

for every k≥k(ε). Therefore, there exists an outer loop iteration k1(ε)> k

1/|S| - ε ≤ Pr{Ψ(k1(ε))=y} ≤ 1/|S| + ε.

Diane E. Vaughan Chapter 7. Performance of SGHC Algorithms 61

Induction Step:

Assume there exists outer loop iterations k1(ε), k2(ε), …, kj(ε) such that

k < k1(ε) < k2(ε) < …< kj(ε)

and

1/|S| - ε ≤ Pr{Ψ(ki(ε))=y} ≤ 1/|S| + ε

for all i=1, 2, …, j.

From Lemma 3, there exists k(ε)≥kj(ε) such that

1/|S| - ε ≤ Pr{Ψ(k)=y} ≤ 1/|S| + ε

for every k≥k(ε). Therefore, there exists an outer loop iteration kj+1(ε)>ki(ε)

k < k1(ε) < k2(ε) < …< kj+1(ε)

and

1/|S| - ε ≤ Pr{Ψ(ki(ε))=y} ≤ 1/|S| + ε

for all i=1, 2, …, j+1.

Theorem 8 guarantees that, for every k ∈ Z+ and for every discrete optimization problem Dy,

y=1, 2, …, m, there exists an outer loop iteration k, where k> k and the SGHC will be

executing over the solution space of discrete optimization problem Dy during outer loop

iteration k.

Theorem 8

Consider an application of the SGHC algorithm where the problem generation

probability function satisfies Criteria A. Then for every k ∈ Z+, and for every discrete

optimization problem Dy∈ S, y=1, 2, …, m, there exists an outer loop iteration k> k

such that Ψ(k)=y.

Diane E. Vaughan Chapter 7. Performance of SGHC Algorithms 62

Proof:

From Lemma 4, there exists a sequence of outer loop iterations k1(ε), k2(ε), k3(ε), …

such that

k < k1(ε) < k2(ε) < k3(ε) …

and

1/|S| - ε ≤ Pr{Ψ(ki(ε))=y} ≤ 1/|S| + ε

for every i=1, 2, … .

Therefore,

Pr{Ψ(k)≠y, for all k> k } ≤ Pr{Ψ(ki(ε))≠y, for all i=2, …}

 =
+∞→n

lim
 (1-1/|S| ± ε)n = 0.

7.2 The Expected Number of Iterations the Simultaneous Generalized Hill

Climbing Algorithm Spends in Each Discrete Optimization Problem

This section investigates the expected number of outer loop iterations that a SGHC algorithm

that satisfies Criteria A will execute over the solution space of a particular discrete

optimization problem from the set of fundamentally related discrete optimization problems S.

Moreover, this section develops a lower bound for the probability that a SGHC algorithm

that satisfies Criteria A will, for a given number of outer loop iterations, continue to execute

over the solution space of a particular discrete optimization problem.

Lemma 5 shows that the expected number of outer loop iterations that the SGHC algorithm is

executing over the solution space of a particular discrete optimization problem has a lower

bound that is a function of the problem generation probability function.

Diane E. Vaughan Chapter 7. Performance of SGHC Algorithms 63

Lemma 5

Consider an application of the SGHC algorithm where the problem generation

probability function satisfies Criteria A. Let Xk(Dy) be the number of consecutive

outer loop iterations, starting at k, such that the SGHC algorithm is in Dy. Then

E[Xk(Dy)| Ψ(k-1)=y] ≥
))),(,(1(

)),(,(

yyDD

yyDD

DDkh

DDkh

yy

yy

ρ
ρ

−
.

Proof:

E[Xk(Dy)| Ψ(k-1)=y] = ∑
+∞

=1n

nPr{Xk= n}

 = ∑
+∞

=1n

n(1-
yy DDh ((k+n), ρ(Dy, Dy)))∏

−

=

1

0

n

i
yy DDh (k+i, ρ(Dy, Dy))

 = ∑
+∞

=1n

 ∏
−

=

1

0

n

i
yy DDh (k+i, ρ(Dy, Dy))

Since
yy DDh (k, ρ(Dy, Dy)) is monotonically increasing and 0<

yy DDh (k, ρ(Dy, Dy))<1,

 E[Xk(Dy)| Ψ(k-1)=y] ≥ ∑
+∞

=1n

(
yy DDh (k, ρ(Dy, Dy)))

n

 =
))),(,(1(

)),(,(

yyDD

yyDD

DDkh

DDkh

yy

yy

ρ

ρ

−
.

Consider a particular discrete optimization problem, Dy∈ S. Theorem 9 shows that for every

positive integer M, there exists k∈ Z+, such that if the SGHC algorithm is executing over the

solution space of Dy during outer loop iteration k-1, then the expected number of outer loop

iterations that the SGHC algorithm will continue to execute over the solution space of Dy is

at least M.

Diane E. Vaughan Chapter 7. Performance of SGHC Algorithms 64

Theorem 9

Consider an application of the SGHC algorithm where the problem generation

probability function satisfies Criteria A. Then for every discrete optimization problem

Dy∈ S and for every M∈ Z+, there exists a outer loop iteration k(M) such that for all

outer loop iterations k≥k(M)

E[Xk(Dy) | Ψ(k-1)=y] ≥ M.

Proof:

Let Dy∈ S and M∈ Z+ be given. Since
∞→k

lim
yy DDh (k, ρ(Dy, Dy))=1, for every

1

1

+M
>0, then there exists a outer loop iteration k(M) such that for every k≥k(M)

|| 1-
yy DDh (k, ρ(Dy, Dy)) || ≤

1

1

+M
.

 Therefore, from Lemma 5, for every k≥k(M),

 E[Xk(Dy) | Ψ(k-1)=y] = ∑
+∞

=1n

nPr{Xk= n}

 ≥
))),(,(1(

)),(,(

yyDD

yyDD

DDkh

DDkh

yy

yy

ρ

ρ

−

 ≥
||)),(,(1||

1

yyDD DDkh
yy

ρ−
-1

 ≥ M.

Theorem 10 shows that there is a lower bound for the probability that a SGHC algorithm that

satisfies Criteria A will continue to execute over the solution space of a particular discrete

optimization problem from the set of fundamentally related discrete optimization problems.

Diane E. Vaughan Chapter 7. Performance of SGHC Algorithms 65

Theorem 10

Consider an application of the SGHC algorithm where the problem probability

function satisfies Criteria A, then for every outer loop iteration k

P{Xk(Dy)>M | Ψ(k-1)=y} ≥
yy DDh (k, ρ(Dy, Dy))

M.

Proof:

P{Xk(Dy)>M | Ψ(k-1)=y}=1- P{Xk(Dy)≤M | Ψ(k-1)=y}

 =1-∑
=

M

n 0

P{Xk(Dy)=n | Ψ(k-1)=y}

 =
yy DDh (k, ρ(Dy, Dy)))- ∑

=

M

n 1

(1-
yy DDh (k+n, ρ(Dy, Dy))) ∏

−

=

1

0

n

i
yy DDh (k+i, ρ(Dy, Dy))

 =∏
=

M

i 0
yy DDh (k+i, ρ(Dy, Dy)).

 Since
yy DDh (k, ρ(Dy, Dy)) is monotonically increasing in k,

 ≥ (
yy DDh (k, ρ(Dy, Dy)))

M.

7.3 Convergence of Simultaneous Generalized Hill Climbing Algorithms

This section develops sufficient conditions that guarantee that a SGHC algorithm that

satisfies Criteria A will visit the globally optimal solution over the set of fundamentally

related discrete optimization problems. Recall, for all inner loop iterations the SGHC

algorithm is executing a GHC algorithm over the solution space of a particular discrete

optimization problem from the set of fundamentally related discrete optimization problems.

This GHC algorithm will be referred to as the underlying GHC algorithm with hill climbing

random variable R k. Define { k

n
Q (Dy)}, k =1, 2, …, n =1, 2, …, N (k), y=1, 2, …, m to be

the Markov chain corresponding to the underlying GHC algorithm executing over the

solution space of Dy, y=1, 2, …, m (see Sections 5.1 and 5.2).

Diane E. Vaughan Chapter 7. Performance of SGHC Algorithms 66

Lemma 6 is needed for the proof of Theorem 11. Lemma 6 shows that for every discrete

optimization problem Dy in the set of fundamentally related discrete optimization problems

there exists an infinite sequence of outer loop iterations such that the SGHC algorithm is

executing over the solution space of Dy during these outer loop iterations.

Lemma 6

Consider an application of the SGHC algorithm where the problem generation

probability function satisfies Criteria A. For every k ∈ Z+ there exists, k1, k2, … such

that

k < k1 < k2 < k3 …

and

Ψ(ki) = Dy,

for all y=1, 2, …, m and for all outer loop iterations ki, for all i=1, 2, … .

Proof:

The proof is by induction.

Base Case: From Theorem 8, there exists k1> k such that

Ψ(k1) = Dy.

Induction Step: Assume there exist k1, k2, …, kj, such that

k < k1 < k2 < … < kj,

and

Ψ(ki) = Dy,

for all i=1, 2, …, j.

From Theorem 8, there exists kj+1>kj such that

k < k1 < k2 < … < kj+1,

and

Diane E. Vaughan Chapter 7. Performance of SGHC Algorithms 67

Ψ(ki) = Dy,

for all i=1, 2, …, j+1.

Theorem 11 is needed in the proof of Theorem 12. Theorem 11 shows that for every discrete

optimization problem Dy∈ S, there is an outer loop iteration k such that the SGHC algorithm

is executing over the solution space of Dy during outer loop iteration k and continues

executing over the solution space of Dy for more than M outer loop iterations.

Theorem 11

Consider an application of the SGHC algorithm where the problem generation

probability function satisfies Criteria A. For every discrete optimization problem Dy,

y=1, 2, …, m and for every M∈ Z+, there exists an outer loop iteration k=k(Dy, M),

such that for outer loop iterations k´=k, k+1, …, k+M,

Ψ(k´) = y.

Proof:

The proof is by contradiction. Assume that there does not exist a k such that

Ψ(k´) = y,

k´=k, k+1, …, k+M. From Lemma 6, there exists k1, k2, … such that

k1-1 < k2-1 < k3-1 …

and

Ψ(ki-1) = Dy,

for all i=1, 2, … .

From Theorem 10,

Pr{X
ik (Dy)>M}=Pr{X

ik (Dy)>M | Ψ(ki-1)=y} ≥
yy DDh (ki, ρ(Dy, Dy))

M.

Therefore,

 Pr{X
ik (Dy)≤M} ≤ 1-(

yy DDh (ki, ρ(Dy, Dy)))
M.

Note that,

Diane E. Vaughan Chapter 7. Performance of SGHC Algorithms 68

Pr{X
ik (Dy)>M, for some ki, i=1, 2, … .}

≤ Pr{Xk(Dy)>M, for some k=1, 2, … .}.

Therefore,

 1 - Pr{X
ik (Dy)>M, for some ki, i=1, 2, … .}

≥ 1 - Pr{Xk(Dy)>M, for some k=1, 2, … .}.

Hence,

Pr{Xk(Dy)≤M , for all k=1, 2, … .}

≤ Pr{X
ik (Dy)≤M, for all i=1, 2, … .}

≤ ∏
+∞

=1i

(1-(
yy DDh (ki, ρ(Dy, Dy)))

M) = 0

since,

+∞→k

lim
yy DDh (k, ρ(Dy, Dq)) = 1.

This is a contradiction.

Lemma 7, Lemma 8 and Theorem 12 consider an application of the SGHC algorithm that

satisfies Criteria A where for all outer loop iterations k, if a new discrete optimization

problem is generated, the hill climbing random variable, the generation probability function

and the inner loop bounds are reset (i.e., Rk= R 1, gij(k)=gij(1), N(k)= N (1)).

Lemma 7 and Lemma 8 are needed for the proof of Theorem 12. Lemma 7 shows that if a

new discrete optimization problem Dy is generated at outer loop iteration k and the SGHC

algorithm executes over the solution space of Dy for outer loop iterations k, k+1, …, k+M,

then during outer loop iterations k, k+1, …, k+M the SGHC algorithm can be modeled by the

Markov Chain { k

n
Q (Dy)}, k =1, 2, …, M+1, n =1, 2, …, N (k). Lemma 8 shows that the

vector that contains the probabilities that the SGHC algorithm is at solution ωi∈Ω y, i=1, 2,

…, |Ωy| during the last inner loop iteration N(k+M) of outer loop iteration k+M is

f
))(,1(

1

1
∑

+

=

M

k

kN

= f (0) Py(1))1(N Py(2))2(N … Py(M+1))1(+MN , for some f (0).

Diane E. Vaughan Chapter 7. Performance of SGHC Algorithms 69

Lemma 7

Consider an application of the SGHC algorithm where the problem generation

probability function satisfies Criteria A and the SGHC algorithm is defined such that

for all outer loop iterations k, if Ψ(k)≠Ψ(k-1), then the hill climbing random variable,

the generation probability function and the inner loop bounds are reset (i.e., Rk= R 1,

gij(k)=gij(1), N(k)= N (1)).

If y=Ψ(k)≠Ψ(k-1) and Ψ(k´)=y, for k´=k, k+1, …, k+M and for some M∈ Z+, then

the SGHC algorithm can be modeled by the Markov Chain { k

n
Q (Dy)}, k =1, 2, …,

M+1, n =1, 2, …, N (k), during outer loop iterations k, k+1, …, k+M.

Proof:

Consider the Markov chain { k

n
Q (Dy)}, k =1, 2, …, and n =1, 2, …, N (k)

corresponding to the underlying GHC algorithm executing over the solution space of

Dy, y=1, 2, …, m. Recall, from Sections 5.1 and 5.2 that k corresponds to the GHC

algorithm’s hill climbing random variable kR and the generation probability function

gij(k). Since Ψ(k´)=y, for k´=k, k+1, …, k+M, for some y=1, 2, …, m, then during

outer loop iterations k, k+1, …, k+M the SGHC algorithm can be modeled by the

Markov Chain k

n
Q (Dy)}, where (since the hill climbing random variable, the

generation probability function and the inner loop bounds are reset (i.e., Rk= R 1,

gij(k)=gij(1), N(k)= N (1)), k =1, 2, …, M+1 and n =1, 2, …, N (k).

Lemma 8

Consider an application of the SGHC algorithm where the problem generation

probability function satisfies Criteria A and the SGHC algorithm is defined such that

for all outer loop iterations k, if Ψ(k)≠Ψ(k-1), then the hill climbing random variable,

Diane E. Vaughan Chapter 7. Performance of SGHC Algorithms 70

the generation probability function and the inner loop bounds are reset (i.e., Rk= R 1,

gij(k)=gij(1), N(k)= N (1)).

If y=Ψ(k)≠Ψ(k-1) and Ψ(k´)=y, for k´=k, k+1, …, k+M, for some M∈ Z+, then the

vector that defines the probability that the SGHC is in solution ωi∈Ω y, i=1, 2, …, |Ωy|

at the last inner loop iteration N(k+M) of outer loop iteration k+M is

f
))(,1(

1

1
∑

+

=

M

k

kN

= f (0) Py(1))1(N Py(2))2(N … Py(M+1))1(+MN , for some f (0).

Proof:

From Lemma 7, during outer loop iterations k, k+1, …, k+M, the SGHC algorithm

can be modeled by the Markov Chain { k

n
Q (Dy)}, k =1, 2, …, M+1, n =1, 2, …,

N (k). Therefore, the corresponding transition matrices are

Py(1) for k =1, n =1, 2, …, N (1),

Py(2) for k =2, n =1, 2, …, N (2),

Py(M+1) for k =M+1, n =1, 2, …, N (M+1).

Therefore, the vector that defines the probability that the SGHC algorithm is in

solution ωi∈Ω y, i=1, 2, …, |Ωy| at the last inner loop iteration N(k+M) of outer loop

iteration k+M is

f
))(,1(

1

1
∑

+

=

M

k

kN

 = f (0) Py(1))1(N Py(2))2(N … Py(M+1))1(+MN , for some f (0).

Theorem 12 presents sufficient conditions that guarantee that a SGHC will visit every

globally optimal solution in every discrete optimization problem in S.

Theorem 12

Consider an application of the SGHC algorithm where the problem generation

probability function satisfies Criteria A and the SGHC algorithm is defined such that

Diane E. Vaughan Chapter 7. Performance of SGHC Algorithms 71

for all outer loop iterations k, if Ψ(k)≠Ψ(k-1), then the hill climbing random variable,

the generation probability function and the inner loop bounds are reset (i.e., Rk= R 1,

gij(k)=gij(1), N(k)= N (1)). If the underlying GHC algorithm converges to the set of

globally optimal solutions, Gy⊆Ω y, for every Dy=(Ωy, fy)∈ S, then for all ε>0, there

exists a finite iteration such that the SGHC algorithm visits Gy with probability

greater than 1-ε.

Proof:

Since the GHC algorithm converges for every Dy=(Ωy, fy)∈ S, then the Markov chain

{ k

n
Q (Dy)} is strongly ergodic for every Dy, y=1, 2, …, m (Isaacson and Madsen

1985). Therefore,

+∞→n

lim
)0(

sup

f
|| f

))(,1(
1

1
∑

+

=

M

k

kN

 -q|| = 0,

where qi=0, for all i =1, 2, …, |Ωy| that do not correspond to the globally optimal

solution and ∑
∈ yGg

qg=1.

Therefore, for all ε>0, there exists a M(ε)∈ Z+ such that for all outer loop iterations

M≥M(ε),

)0(

sup

f
|| f

))(,1(
1

1
∑

+

=

M

k

kN

 -q|| < ε.

From Theorem 11, there exists an outer loop iteration j such that the SGHC algorithm

is in discrete optimization problem Dy at outer loop iterations j, j+1, …, j+M(ε). Let

k=max {k´: k´≤ j and Ψ(k´-1)≠y},

then for outer loop iterations k, k+1, …, j, j+1, …, j+M(ε), the SGHC algorithm can

be modeled by the Markov chain { k

n
Q (Dy)}, k =1, 2, …, M+1, n =1, 2, …, N (k),

where M≥M(ε). Since M≥M(ε), then

)0(

sup

f
|| f

))(,1(
1

1
∑

+

=

M

k

kN

 -q|| < ε.

Diane E. Vaughan Chapter 7. Performance of SGHC Algorithms 72

Hence, for inner loop iteration N(j+M(ε)) during outer loop iteration j+M(ε), the

SGHC algorithm visits an element of Gy with probability greater than 1-ε.

Corollary 1 presents sufficient conditions that guarantee that a SGHC algorithm that satisfies

Criteria A will visit every globally optimal solution over the set of discrete optimization

problem in S.

Corollary 1

Consider an application of the SGHC algorithm where the problem generation

probability function satisfies Criteria A and the SGHC algorithm is defined such that

for every outer loop iteration k, if Ψ(k)≠Ψ(k-1), then the hill climbing random

variable, the generation probability function and the inner loop bounds are reset (i.e.,

Rk= R 1, gij(k)=gij(1), N(k)= N (1)). Let Gy be the set of globally optimal solutions

over the set of discrete optimization problems in S (i.e., for all ω∈ Gy,

fy(ω)=min{fi(ωi): for all i=1, 2,…, m, for all ωi∈ Gi}. If the underlying GHC

algorithm converges to the set of globally optimal solution Gj for every Dj=(Ωj, fj)∈ S,

then for all ε>0, there exists an iteration such that the SGHC algorithm visits an

element of Gy with probability greater than 1-ε.

Proof:

Immediately follows from Theorem 12.

Chapter 8:

Illustrative Example

This chapter contains an illustrative example of a set of fundamentally related discrete

optimization problems. The chapter is organized as follows. Section 8.1 presents the

Traveling Salesman Problem and formulates it as a discrete optimization problem. Section

8.2 presents the Multiple Traveling Salesman Problem and formulates it as a set of

fundamentally related discrete optimization problems

8.1 The Traveling Salesman Problem

The traveling salesman problem (TSP) is a well-known NP-hard discrete optimization

problem (Lawler 1985). The TSP is used to illustrate various local search algorithms

because it is useful for modeling a variety of real world problems. For instance, traditional

applications of the TSP include a variety of vehicle routing and scheduling problems. More

recently, applications of the TSP have been expanded to include modern applications like the

printing of circuit boards, x-ray crystallography, overhauling of gas turbine engines, and the

controlling of industrial robots (Johnson and Jacobson 2000b).

To formally define the TSP the following definitions are needed (Lawler 1985). Define a

graph to be a finite set of vertices, some pairs of which are joined by edges. A cycle in a

Diane E. Vaughan Chapter 8. Illustrative Example 74

graph is a set of vertices of the graph, which is such that it is possible to move from vertex to

vertex, along edges of the graph, so that all vertices are encountered exactly once, finishing at

the start. If a cycle contains all the vertices of the graph, it is called a Hamiltonian cycle (or

tour). The TSP is defined as follows (Garey and Johnson 1979).

Instance: Given a set of n cities C={c1, c2, …, cn} and a distance matrix D that represents

the cost of traveling between the cities in the set C.

Question: Find a Hamiltonian cycle H=(c1, c2, …, cn) such that

f(H)=∑
−

=

1

1

n

j

D(cj, cj+1) + D(cn, c1)

is minimized.

An instance of a TSP is a discrete optimization problem, where the solution space is the set

of possible all Hamiltonian cycles (with each tour consisting of n cities), Ω={ω1, ω2, …,

ω
2

)!1(−n
}. The objective function value for each solution ωi=(c1, c2, …, cn)∈Ω is the sum of

the distances the tour depicts, f(ωi)=∑
−

=

1

1

n

j

D(cj, cj+1) + D(cn, c1). The optimal objective

function value represents the least distance traveled. A common neighborhood function used

for the TSP is the 2-Opt neighborhood function.

The 2-Opt neighborhood function for the TSP can be described as moving from one solution

ωp to another solution ωq by the exchange of two edges. For example, consider the finite set

of seven cities C={c1, c2, c3, c4, c5, c6, c7}, and the corresponding solution space Ω={ω1, ω2,

…, ω60}. Figure 8.1 illustrates the 2-Opt neighborhood moving from solution ω1=(c1, c2, c3,

c4, c5, c6, c7) to solution ω2= (c1, c5, c4, c3, c2, c6, c7).

Diane E. Vaughan Chapter 8. Illustrative Example 75

Figure 8.1: The 2-Opt Neighborhood Function

For a complete discussion of the 2-Opt neighborhood function, see Aarts and Lenstra (1997).

The city exchange neighborhood function for the TSP can be described as moving from one

solution ωp to another solution ωq by the exchange of two cities. For example, consider the

finite set of seven cities C={c1, c2, c3, c4, c5, c6, c7}, and the corresponding solution space

Ω={ω1, ω2, …, ω60}. Figure 8.2 illustrates the city exchange neighborhood function moving

from solution ω1=(c1, c2, c3, c4, c5, c6, c7) to solution ω2= (c1, c5, c3, c4, c2, c6, c7).

Figure 8.2: The City Exchange Neighborhood Function

c6

c7 c4

c5

c3

c2

c1

c6

c7 c4

c5

c3

c2

c1

c6

c7 c4

c5

c3

c2

c1

c6

c7 c4

c5

c3

c2

c1

c6

c7 c4

c5

c3

c2

c1

c6

c7 c4

c5

c3

c2

c1

c6

c7 c4

c5

c3

c2

c1

c6

c7 c4

c5

c3

c2

c1

Diane E. Vaughan Chapter 8. Illustrative Example 76

8.2 The Multiple Traveling Salesman Problem

This section considers simultaneously approaching several traveling salesman problems

using SGHC algorithms. Specifically, the Multiple Traveling Salesman Problem (MTSP) is

considered. The MTSP is defined as follows.

Instance: Given a set of n cities Ob={c1, c2, …, cn}, a set of m subsets of Ob, O={C1, C2, ...,

Cm}, and a distance matrix D that represents the cost of traveling between the cities in the set

Ob.

Question: Find a Hamiltonian cycle H=(c1, c2, …, c || yΩ) where there exists a Cy, y=1, 2, …,

m such that cj∈ Cy, for every j=1, 2, …, n, and

f(H)=∑
−

=

1

1

n

j

D(cj, cj+1) + D(cn, c1)

is minimized.

Note that each of the sets Cy∈ O represents an instance of the TSP, Dy. Section 8.1

formulated the TSP as a discrete optimization problem. Therefore, the MTSP problem can

be represented by set of discrete optimization problems S={D1, D2, ..., Dm}. The set S={D1,

D2, ..., Dm} is a set of fundamentally related discrete optimization problems. To see this,

note that each discrete optimization problem Dy∈ S, y=1, 2, …, m is fully defined by

Cy⊆ Ob={c1, c2, …, cn}. Therefore, Cy is the fundamental relation set of discrete

optimization problem Dy.

8.2.1 Illustrative Example of the Multiple Traveling Salesman Problem

Consider the instance of the MTSP problem defined in the following tables. Table 9-1

contains the set Ob of cities and Table 8-2 contains the set of fundamental relation

Diane E. Vaughan Chapter 8. Illustrative Example 77

sets, O={C1, C2, ..., Cm}, Cy⊆ Ob. Then the TSP’s, Dy, y=1, 2, 3, 4, can be represented by the

binary activity vectors cy∈ {0, 1}n in Table 8-3.

 Table 8-1: The Set of Objects, Ob

Ob={Minneapolis, Washington D.C., Chicago, Los Angeles, Seattle,

San Francisco, New York, Pittsburgh, Detroit, Dallas, Boulder}

 Table 8-2: Fundamental Relation Set

TSP

Instance

Fundamental

Relation Set

D1 C1={Washington D.C., Chicago, Los Angeles, Seattle, San

Francisco, New York, Boulder}

D2 C2={Minneapolis, Washington D.C., Chicago, Los Angeles,

Seattle, New York, Pittsburgh, Dallas, Boulder}

D3 C4={Minneapolis, Washington D.C., Chicago, Los Angeles,

Seattle, New York, Detroit, Boulder}

D4 C4={Minneapolis, Washington D.C., Chicago, Los Angeles,

Seattle, San Francisco, New York, Pittsburgh, Boulder}

 Table 8-3: Binary Activity Vectors

Option cy = (B1, B2, …, B11)

c1 (0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1)

c2 (1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1)

c3 (1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1)

c4 (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1)

Diane E. Vaughan Chapter 8. Illustrative Example 78

The detachment metric ρ(Dy, Dq), for every y,q=1, 2, 3, 4 can be depicted by the distance

matrix and distance diagram in Figure 8.3.

Figure 8.3: Distance Matrix and Distance Diagram

0322D4

3033D3

2304D2

2340D1

D4D3D2D1

0322D4

3033D3

2304D2

2340D1

D4D3D2D1
D1

D3

D2

D4

2

4

3

32 3

D1D1

D3D3

D2D2

D4D4

2

4

3

32 3

Chapter 9:

Computational Results

This chapter provides computational results for addressing a MTSP with SGHC algorithms.

For comparison purposes, GHC algorithms are also applied to the individual members in the

set of fundamentally related discrete optimization problems. These computational results

suggest that optimal/near optimal solutions can be reached in less total iterations using a

SGHC algorithm.

To develop a MTSP, a set consisting of 20 cities was generated by randomly locating each

city on a 1000 by 1000 unit grid. Four TSPs of size 18 were generated by randomly selecting

18 of the 20 cities for each traveling salesman problem. In the case where an identical set of

cities was generated for two or more of the problems, a completely new set of discrete

optimization problems was generated, ensuring four distinct randomly generated TSPs.

The four randomly generated TSPs are arbitrarily labeled D1, D2, D3, and D4. The detachment

metric ρ(Dy, Dq), between the TSPs, was calculated for all y,q=1, 2, 3, 4. The distance

matrix and distance diagram are depicted in Figure 9.1.

Diane E. Vaughan Chapter 9. Computational Results 80

Figure 9.1: Distance Matrix and Distance Diagram

9.1 Stationary Markov Chain Computational Results

Computational results with Monte Carlo search, pure local search, and simulated annealing

using SGHC algorithms are reported. For comparison purposes, computational results with

Monte Carlo search, pure local search, and simulated annealing using GHC algorithms are

also reported. The 2-Opt neighborhood function was used for all executions of the SGHC and

GHC algorithms. For the SGHC algorithms, the problem generation probability function was

defined as

qy DDh (k, ρ(Dy, Dq)) = [1/ρ(Dy, Dq)] / [∑

≠
=

4

1
yi

i

(1/ρ(Dy, Di))], y≠q

and

yy DDh (k, ρ(Dy, Dy)) = 1- ∑
≠
=

4

1
yq

q

 [1/(ρ(Dy, Dq)] / [∑
≠
=

4

1
yi

i

 (1/ρ(Dy, Di))] = 0,

for every y,q= 1, 2, 3, 4, y≠q for every k=1, 2, …, K.

This problem generation probability function is such that the associated transition matrix is

symmetric and the Markov chain {Ψ(k)} is stationary. Therefore, by Theorem 1, the Markov

chain {Ψ(k)} has a uniform stationary distribution, hence as k approaches infinity, the SGHC

algorithm is executing over the solution space of each discrete optimization problem in S

0244D4

2044D3

4404D2

4440D1

D4D3D2D1

0244D4

2044D3

4404D2

4440D1

D4D3D2D1
D1

D3

D2

D4

4

4

2

44 4

D1D1

D3D3

D2D2

D4D4

4

4

2

44 4

Diane E. Vaughan Chapter 9. Computational Results 81

={D1, D2, …, Dm} with probability 1/m=1/|S|=1/4. Moreover, this problem generation

function guarantees the discrete optimization problem over which the SGHC algorithm is

executing changes at every outer loop iteration k (i.e., Ψ(k)≠Ψ(k-1), for all k=1, 2, …).

Executions with different values of K and N=N(k), k = 1, 2, …, K are reported. To compare

the performance of applying a SGHC algorithm versus applying a GHC algorithm, the inner

and outer loop bounds of the SGHC algorithm were doubled. Therefore, the total number of

iterations that the SGHC algorithm executes is equal to the total number of iterations

executed using the GHC algorithm for the four individual problems. Let R∈ Z+ represent the

total number of replications executed for each SGHC and GHC algorithm formulation. For

each replication, a different randomly generated initial tour was used. The means, µ,

standard deviations, σ, and the minimum and maximum distances, were computed from the

optimal tour distances across these R replications. The value γ in Tables 9-1 through 9-6

represents the number of replications for which the algorithms find the minimum distance

tour. For simulated annealing, tk is updated by multiplying the previous temperature

parameter by the increment multiplier β=.90 (i.e., tk=βtk-1). The initial temperature parameter

is t0.

Table 9-1: GHC Algorithm Results: Pure Local Search

Inner and Outer Loop Bounds γ/R µ σ Minimum Maximum

K=100, M=100 4/30 3864.3 36.9726 3805.4 3916.0

K=200, M=100 3/30 3863.4 32.7691 3805.4 3907.3

 K=300, M=75 1/30 3876.6 36.9549 3805.4 3953.7

 K=400, M=75 1/30 3885.3 42.1893 3805.4 3973.4

 K=400, M=50 2/30 3867.9 37.7520 3805.4 3916.0

 K=800, M=50 1/15 3872.8 35.2469 3805.4 3916.0

Diane E. Vaughan Chapter 9. Computational Results 82

Table 9-2: SGHC Algorithm Results: Pure Local Search

Inner and Outer Loop Bounds γ/R µ σ Minimum Maximum

K=100, M=100 10/30 3819.4 13.2943 3805.4 3831.8

K=200, M=100 23/30 3808.9 9.0535 3805.4 3831.6

 K=300, M=75 23/30 3808.9 9.0535 3805.4 3831.6

 K=400, M=75 24/30 3807.2 6.6434 3805.4 3831.6

 K=400, M=50 9/30 3818.5 13.3165 3805.4 3831.6

 K=800, M=50 12/15 3810.7 10.8417 3805.4 3831.6

Table 9-1 suggests that when the number of outer loop iterations for a pure local search GHC

algorithm is increased from 100 to 200, performance of the algorithm shows no

improvement. However, Table 9-2 suggests that the performance of a pure local search

SGHC algorithm improves significantly when the number of outer loop iterations is

increased from 100 to 200, as measured by µ.

Table 9-3: GHC Algorithm Results: Simulated Annealing

Inner and Outer

Loop Bounds

t0 γ/R µ σ Minimum Maximum

K=100, M=100 3000 1/30 3854.1 41.4192 3805.4 3953.7

K=200, M=100 3000 1/30 3861.2 35.7662 3805.4 3916.0

 K=300, M=75 2000 2/30 3861.5 39.7074 3805.4 3973.4

 K=400, M=75 2000 5/30 3855.9 35.3872 3805.4 3907.5

 K=400, M=50 2000 3/30 3868.8 39.4863 3805.4 3916.0

 K=800, M=50 2000 1/15 3885.9 29.7020 3805.4 3916.0

Diane E. Vaughan Chapter 9. Computational Results 83

Table 9-4: SGHC Algorithm Results: Simulated Annealing

Inner and Outer

Loop Bounds

t0 γ/R µ σ Minimum Maximum

K=100, M=100 3000 16/30 3814.1 12.5549 3805.4 3831.6

K=200, M=100 3000 19/30 3808.0 7.9899 3805.4 3831.6

 K=300, M=75 2000 20/30 3808.9 9.0535 3805.4 3831.6

 K=400, M=75 2000 23/30 3808.9 9.0535 3805.4 3831.6

 K=400, M=50 2000 7/30 3831.6 13.1248 3805.4 3831.6

 K=800, M=50 2000 1/15 3813.6 12.5352 3805.4 3831.6

Table 9-5: GHC Algorithm Results: Monte Carlo Search

Inner and Outer Loop Bounds γ/R µ σ Minimum Maximum

K=100, M=100 1/30 6390.0 294.6998 5634.9 6805.9

K=200, M=100 1/30 6195.6 239.7325 5575.7 6656.3

 K=300, M=75 1/30 6111.7 293.6761 5293.0 6613.9

 K=400, M=75 1/30 6099.6 292.5790 5310.2 6488.3

 K=400, M=50 1/30 6122.6 287.3693 5291.7 6575.7

 K=800, M=50 1/15 6007.1 231.746 5479.1 6328.1

Table 9-6: SGHC Algorithm Results: Monte Carlo Search

Inner and Outer Loop Bounds γ/R µ σ Minimum Maximum

K=100, M=100 1/30 6758.2 202.9184 5793.3 6758.2

K=200, M=100 1/30 6109.3 301.5243 5243.7 6611.5

 K=300, M=75 1/30 6214.6 204.3092 5727.6 6575.3

 K=400, M=75 1/30 6054.3 232.6718 5614.9 6462.8

 K=400, M=50 1/30 6265.8 197.6956 5877.3 6659.3

 K=800, M=50 1/15 5954.7 301.7151 5299.6 6382.3

Diane E. Vaughan Chapter 9. Computational Results 84

Tables 9-5 and 9-6 suggest that there is little difference in performance between Monte Carlo

search GHC algorithms and Monte Carlo search SGHC algorithms. Overall, Tables 9-1

through 9-4 suggest that the SGHC algorithms outperform the GHC algorithms. The

minimum distance found over the R replications using SGHC algorithms is significantly

smaller than the minimum distance found over the R replications using GHC algorithms for

both the simulated annealing and pure local search algorithms. Additionally, the standard

deviation of the optimal values over the R replications is much smaller using the SGHC

algorithms.

Figures 9.2 through 9.4 depict plots comparing the performance of the SGHC algorithms and

the GHC algorithms. To obtain this data, fifteen replications of each SGHC algorithm and

GHC algorithm formulation were executed. For each replication, a different randomly

generated initial solution was used. The mean of the optimal distances across the fifteen

replications for the GHC algorithm are plotted with a solid blue line. The standard deviations

of the optimal distances for the GHC algorithm across the fifteen replications are plotted with

a dashed blue line. The means of the optimal distances across the fifteen replications for the

SGHC algorithm are plotted with a solid red line. The standard deviations of the optimal

distances for the SGHC algorithm across the fifteen replications are plotted with a dashed red

line. The number of outer loop iterations executed was 800 and the number of inner loop

iterations executed was 50 for every formulation.

For simulated annealing, tk is updated by multiplying the previous temperature parameter by

the increment multiplier β=.90 with initial temperature parameter t0=2,000.

Diane E. Vaughan Chapter 9. Computational Results 85

 Figure 9.2: Pure Local Search

 Figure 9.3: Simulated Annealing

GHC
GHC stdev
SGHC
SGHC stdev

Sim ulated A nnealing

0 0.5 1 1 .5 2 2 .5 3 3 .5

x 10
4

3800

3820

3840

3860

3880

3900

3920

3940

3960

3980

GHC
GHC stdev
SGHC
SGHC stdev

Sim ulated A nnealing

0 0.5 1 1 .5 2 2 .5 3 3 .5

x 10
4

3800

3820

3840

3860

3880

3900

3920

3940

3960

3980

GHC
GHC stdev
SGHC
SGHC stdev

Pure Local Search

0 0.5 1 1 .5 2 2 .5 3 3 .5

x 10
4

3780

3800

3820

3840

3860

3880

3900

3920

3940

3960

GHC
GHC stdev
SGHC
SGHC stdev

GHC
GHC stdev
SGHC
SGHC stdev

Pure Local Search

0 0.5 1 1 .5 2 2 .5 3 3 .5

x 10
4

3780

3800

3820

3840

3860

3880

3900

3920

3940

3960

Diane E. Vaughan Chapter 9. Computational Results 86

 Figure 9.4: Monte Carlo Search

Figures 9.2 and 9.3 suggest that the SGHC algorithms outperform the GHC algorithms, as

measured by µ. The minimum distance found over the fifteen replications using SGHC

algorithms is significantly smaller after 2500 iterations than the minimum distance found

over the fifteen replications using GHC algorithms for both the simulated annealing and pure

local search algorithms. Moreover, the standard deviation band of the optimal values over

the fifteen replications is much smaller using SGHC algorithms. Figure 9.4 suggests that

there is no significant difference in the performance of Monte Carlo Search SGHC and GHC

algorithms.

Figures 9.5 through 9.7 depict plots comparing the performance of the SGHC algorithms and

the GHC algorithms. To obtain this data, thirty replications of each SGHC algorithm and

GHC algorithm formulation were executed. For each replication, a different randomly

G HC
G HC stdev
SGH C
SGH C stdev

M onte Carlo Search

0 0.5 1 1 .5 2 2 .5 3 3 .5

x 10
4

5400

5600

5800

6000

6200

6400

6600

6800

7000

7200

G HC
G HC stdev
SGH C
SGH C stdev

G HC
G HC stdev
SGH C
SGH C stdev

M onte Carlo Search

0 0.5 1 1 .5 2 2 .5 3 3 .5

x 10
4

5400

5600

5800

6000

6200

6400

6600

6800

7000

7200

Diane E. Vaughan Chapter 9. Computational Results 87

generated initial solution was used. The mean of the optimal distances across the thirty

replications for the GHC algorithm are plotted with a solid blue line. The standard deviations

of the optimal distances for the GHC algorithm across the thirty replications are plotted with

a dashed blue line. The means of the optimal distances across the thirty replications for the

SGHC algorithm are plotted with a solid red line. The standard deviations of the optimal

distances for the SGHC algorithm across the thirty replications are plotted with a dashed red

line. The number of outer loop iterations executed was 400 and the number of inner loop

iterations executed was 75 for every formulation.

For simulated annealing, tk is updated by multiplying the previous temperature parameter by

the increment multiplier β=.90 with initial temperature parameter t0=2,000.

 Figure 9.5: Pure Local Search

G H C
G H C stdev
SG H C
SG H C stdev

Pure Local Search

0 0.5 1 1 .5 2 2 .5

x 10
4

3800

3850

3900

3950

4000

G H C
G H C stdev
SG H C
SG H C stdev

G H C
G H C stdev
SG H C
SG H C stdev

Pure Local Search

0 0.5 1 1 .5 2 2 .5

x 10
4

3800

3850

3900

3950

4000

Diane E. Vaughan Chapter 9. Computational Results 88

 Figure 9.6: Simulated Annealing

 Figure 9.7: Monte Carlo Search

GHC
GHC stdev
SGHC
SGHC stdev

Sim ulated A nnealing

0 0.5 1 1 .5 2 2 .5

x 10
4

3800

3850

3900

3950

GHC
GHC stdev
SGHC
SGHC stdev

GHC
GHC stdev
SGHC
SGHC stdev

Sim ulated A nnealing

0 0.5 1 1 .5 2 2 .5

x 10
4

3800

3850

3900

3950

G HC
G HC stdev
SGH C
SGH C stdev

M onte Carlo Search

0 0.5 1 1 .5 2 2 .5

x 10
4

5500

6000

6500

7000

7500

G HC
G HC stdev
SGH C
SGH C stdev

G HC
G HC stdev
SGH C
SGH C stdev

M onte Carlo Search

0 0.5 1 1 .5 2 2 .5

x 10
4

5500

6000

6500

7000

7500

Diane E. Vaughan Chapter 9. Computational Results 89

Figures 9.5 and 9.6 suggest that the SGHC algorithms outperform the GHC algorithms, as

measured by µ. The minimum distance found over the thirty replications using SGHC

algorithms is significantly smaller after 2500 iterations than the minimum distance found

over the thirty replications using GHC algorithms for both the simulated annealing and pure

local search algorithms. Moreover, the standard deviation band of the optimal values over

the thirty replications is much smaller using SGHC algorithms. Figure 9.7 suggests that there

is no significant difference in the performance of Monte Carlo Search SGHC and GHC

algorithms.

9.2 Nonstationary Markov Chain Computational Results

Computational results with Monte Carlo search, pure local search, and simulated annealing

using SGHC algorithms are reported. For comparison purposes, computational results with

Monte Carlo search, pure local search, and simulated annealing using GHC algorithms are

also reported. The 2-Opt neighborhood function was used for all executions of the SGHC and

GHC algorithms. For the SGHC algorithms, the problem generation probability function was

defined as follows.

yy DDh (k, ρ(Dy, Dy)) = 1-1/(k+1) for every k=1, 2, …, K and for every y=1, 2, …, m

and

qy DDh (k, ρ(Dy, Dq)) = [1/(ρ(Dy, Dq)(k+1))] / [∑

≠
=

4

1
yi

i

(1/ρ(Dy, Di))],

for every y,q= 1, 2, 3, 4 y≠q.

This problem generation probability function ensures that the Markov chain {Ψ(k)} is

weakly ergodic (see Theorem 7). Additionally, this problem generation probability function

satisfies Criteria A. Therefore, for this SGHC algorithm, the results in Section 7.1 and

Section 7.2 hold.

Diane E. Vaughan Chapter 9. Computational Results 90

The SGHC algorithm is defined such that for every outer loop iteration k, if Ψ(k)≠Ψ(k-1),

then the hill climbing random variable, the generation probability function and the inner loop

bounds are reset. Therefore, for this SGHC algorithm, if the underlying GHC algorithm

converges, then the convergence conditions in Corollary 1 (of Theorem 12) are satisfied.

Executions with different values of K and N=N(k), k = 1, 2, …, K are reported. To compare

the performance of applying a SGHC algorithm versus applying a GHC algorithm, the inner

and outer loop bounds of the SGHC algorithm were doubled. Therefore, the total number of

iterations that the SGHC algorithm executes is equal to the total number of iterations

executed using the GHC algorithm for the four individual problems. Let R∈ Z+ represent the

total number of replications executed for each SGHC and GHC algorithm formulation. For

each replication, a different randomly generated initial tour was used. The means, µ,

standard deviations, σ, and the minimum and maximum distances, were computed from the

optimal tour distances across these R replications. The value γ in Tables 9-7 through 9-11

represents the number of replications for which the algorithms find the minimum distance

tour. For simulated annealing, tk is updated by multiplying the previous temperature

parameter by the increment multiplier β=.90 (i.e., tk=βtk-1). The initial temperature parameter

is t0.

Table 9-7: GHC Algorithm Results: Pure Local Search

Inner and Outer Loop Bounds γ/R µ σ Minimum Maximum

K=100, M=100 4/30 3864.3 36.9726 3805.4 3916.0

K=200, M=100 3/30 3863.7 32.7691 3805.4 3907.3

 K=300, M=75 1/30 3876.6 36.9549 3805.4 3953.7

 K=400, M=75 1/30 3885.3 42.1893 3805.4 3973.4

 K=400, M=50 2/30 3867.9 37.7520 3805.4 3916.0

 K=800, M=50 1/15 3872.8 35.2469 3831.8 3916.0

Diane E. Vaughan Chapter 9. Computational Results 91

Table 9-8: SGHC Algorithm Results: Pure Local Search

Inner and Outer Loop Bounds γ/R µ σ Minimum Maximum

K=100, M=100 9/30 3826.1 18.0558 3805.4 3896.3

K=200, M=100 15/30 3818.6 32.7691 3805.4 3907.3

 K=300, M=75 12/30 3821.2 13.1080 3805.4 3832.5

 K=400, M=75 16/30 3815.9 13.0973 3805.4 3832.5

 K=400, M=50 16/30 3817.7 13.3917 3805.4 3832.5

 K=800, M=50 10/15 3814.2 12.8001 3805.4 3831.8

Table 9-7 suggests that when the number of outer loop iterations for a pure local search GHC

algorithm is increased from 100 to 200, performance of the algorithm shows no

improvement. However, Table 9-8 suggests that the performance of a pure local search

SGHC algorithm improves significantly when the number of outer loop iterations is

increased from 100 to 200, as measured by µ.

Table 9-9: GHC Algorithm Results: Simulated Annealing

Inner and Outer Loop

Bounds

t0 γ/R µ σ Minimum Maximum

 K=100, M=100 3000 1/30 3878.8 37.5969 3805.4 3953.7

 K=200, M=100 3000 5/30 3861.8 38.6953 3805.4 3911.0

K=300, M=75 2000 3/30 3889.0 65.0397 3805.4 4095.9

K=400, M=75 2000 5/30 3860.9 41.0873 3805.4 3865.7

K=400, M=50 2000 3/30 3869.2 59.0710 3805.4 4076.2

K=800, M=50 2000 2/15 3846.4 31.2371 3805.4 3907.3

Diane E. Vaughan Chapter 9. Computational Results 92

Table 9-10: SGHC Algorithm Results: Simulated Annealing

Inner and Outer Loop

Bounds

t0 γ/R µ σ Minimum Maximum

 K=100, M=100 3000 7/30 3912.9 116.9697 3805.4 4250.2

 K=200, M=100 3000 4/30 3843.6 34.2857 3805.4 3907.3

K=300, M=75 2000 8/30 3833.4 36.2928 3805.4 3973.7

K=400, M=75 2000 15/30 3815.3 15.4484 3805.4 3865.7

K=400, M=50 2000 11/30 3829.5 29.9040 3805.4 3907.3

K=800, M=50 2000 13/15 3807.2 6.7610 3805.4 3816.0

Table 9-11: GHC Algorithm Results: Monte Carlo Search

Inner and Outer Loop Bounds γ/R µ σ Minimum Maximum

K=100, M=100 1/30 6390.0 294.6998 5634.9 6805.9

K=200, M=100 1/30 6148.6 286.7861 5389.0 6555.7

 K=300, M=75 1/30 6145.0 275.4739 5594.7 6568.4

 K=400, M=75 1/30 6099.6 248.263 5479.1 6517.4

 K=400, M=50 1/30 6200.6 252.3233 5382.8 6609.0

 K=800, M=50 1/15 6041.9 227.0252 5479.1 6517.4

Diane E. Vaughan Chapter 9. Computational Results 93

Table 9-12: SGHC Algorithm Results: Monte Carlo Search

Inner and Outer Loop Bounds γ/R µ σ Minimum Maximum

K=100, M=100 1/30 6394.6 266.2426 5662.5 6969.3

K=200, M=100 1/30 6157.4 385.8702 5018.2 6600.6

 K=300, M=75 1/30 6162.7 207.2497 5635.8 6431.9

 K=400, M=75 1/30 6155.1 248.2631 5550.5 6517.4

 K=400, M=50 1/30 6163.3 256.5609 5525.1 6599.9

 K=800, M=50 1/15 5953.3 205.7178 5434.1 6204.5

Tables 9-11 and 9-12 suggest that there is little difference in performance between Monte

Carlo search GHC algorithms and Monte Carlo search SGHC algorithms. Overall, Tables 9-

7 through 9-10 suggest that the SGHC algorithms outperform the GHC algorithms. The

minimum distance found over the R replications using SGHC algorithms is significantly

smaller than the minimum distance found over the R replications using GHC algorithms for

both the simulated annealing and pure local search algorithms. Additionally, the standard

deviation of the optimal values over the R replications is much smaller using the SGHC

algorithms.

Figures 9.8 through 9.10 depict plots comparing the performance of the SGHC algorithms

and the GHC algorithms. To obtain this data, fifteen replications of each SGHC algorithm

and GHC algorithm formulation were executed. For each replication, a different randomly

generated initial solution was used. The mean of the optimal distances across the fifteen

replications for the GHC algorithm are plotted with a solid blue line. The standard deviations

of the optimal distances for the GHC algorithm across the fifteen replications are plotted with

a dashed blue line. The means of the optimal distances across the fifteen replications for the

SGHC algorithm are plotted with a solid red line. The standard deviations of the optimal

distances for the SGHC algorithm across the fifteen replications are plotted with a dashed red

Diane E. Vaughan Chapter 9. Computational Results 94

line. The number of outer loop iterations executed was 800 and the number of inner loop

iterations executed was 50 for every formulation.

For simulated annealing, tk is updated by multiplying the previous temperature parameter by

the increment multiplier β=.90 with the initial temperature parameter t0=2,000.

 Figure 9.8: Pure Local Search

GHC
GHC stdev
SGHC
SGHC stdev

Pure Local Search

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

3780

3800

3820

3840

3860

3880

3900

3920

3940

3960

GHC
GHC stdev
SGHC
SGHC stdev

GHC
GHC stdev
SGHC
SGHC stdev

Pure Local Search

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

3780

3800

3820

3840

3860

3880

3900

3920

3940

3960

Diane E. Vaughan Chapter 9. Computational Results 95

 Figure 9.9: Simulated Annealing

 Figure 9.10: Monte Carlo Search

0 0.5 1 1 .5 2 2 .5 3 3 .5

x 10
4

3760

3780

3800

3820

3840

3860

3880

3900

3920

3940

G HC
G HC stdev
SGH C
SGH C stdev

Simulated A nnealing

0 0.5 1 1 .5 2 2 .5 3 3 .5

x 10
4

3760

3780

3800

3820

3840

3860

3880

3900

3920

3940

G HC
G HC stdev
SGH C
SGH C stdev

G HC
G HC stdev
SGH C
SGH C stdev

Simulated A nnealing

GHC
GHC stdev
SGHC
SGHC stdev

Monte Carlo Search

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

5600

5800

6000

6200

6400

6600

GHC
GHC stdev
SGHC
SGHC stdev

GHC
GHC stdev
SGHC
SGHC stdev

Monte Carlo Search

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

5600

5800

6000

6200

6400

6600

Diane E. Vaughan Chapter 9. Computational Results 96

Figures 9.8 and 9.9 suggest that the SGHC algorithms outperform the GHC algorithms, as

measured by µ. The minimum distance found over the fifteen replications using SGHC

algorithms is significantly smaller after 15000 iterations than the minimum distance found

over the fifteen replications using GHC algorithms for both the simulated annealing and pure

local search algorithms. Moreover, the standard deviation band of the optimal values over

the fifteen replications is much smaller using SGHC algorithms. Figure 9.10 suggests that

there is no significant difference in the performance of Monte Carlo Search SGHC and GHC

algorithms.

Figures 9.11 through 9.13 depict plots comparing the performance of the SGHC algorithms

and the GHC algorithms. To obtain this data, thirty replications of each SGHC algorithm and

GHC algorithm formulation were executed. For each replication, a different randomly

generated initial solution was used. The mean of the optimal distances across the thirty

replications for the GHC algorithm are plotted with a solid blue line. The standard deviations

of the optimal distances for the GHC algorithm across the thirty replications are plotted with

a dashed blue line. The means of the optimal distances across the thirty replications for the

SGHC algorithm are plotted with a solid red line. The standard deviations of the optimal

distances for the SGHC algorithm across the thirty replications are plotted with a dashed red

line. The number of outer loop iterations executed was 400 and the number of inner loop

iterations executed was 75 for every formulation.

For simulated annealing, tk is updated by multiplying the previous temperature parameter by

the increment multiplier β=.90 with initial temperature parameter is t0=2,000.

Diane E. Vaughan Chapter 9. Computational Results 97

 Figure 9.11: Pure Local Search

 Figure 9.12: Simulated Annealing

GHC
GHC stdev
SGHC
SGHC stdev

Simulated Annealing

0 0.5 1 1.5 2 2.5

x 10
4

3800

3850

3900

3950

4000

GHC
GHC stdev
SGHC
SGHC stdev

GHC
GHC stdev
SGHC
SGHC stdev

Simulated Annealing

0 0.5 1 1.5 2 2.5

x 10
4

3800

3850

3900

3950

4000

G H C
G H C stdev
SGH C
SGH C stdev

Pure Local Search

0 0.5 1 1 .5 2 2 .5

x 10
4

3800

3850

3900

3950

4000

G H C
G H C stdev
SGH C
SGH C stdev

G H C
G H C stdev
SGH C
SGH C stdev

Pure Local Search

0 0.5 1 1 .5 2 2 .5

x 10
4

3800

3850

3900

3950

4000

Diane E. Vaughan Chapter 9. Computational Results 98

 Figure 9.13: Monte Carlo Search

Figures 9.11 and 9.12 suggest that the SGHC algorithms outperform the GHC algorithms, as

measured by µ. The minimum distance found over the thirty replications using SGHC

algorithms is significantly smaller after 13000 iterations than the minimum distance found

over the thirty replications using GHC algorithms for both the simulated annealing and pure

local search algorithms. Additionally, the standard deviation band of the optimal values over

the thirty replications is much smaller using SGHC algorithms. Figure 9.13 suggests that

there is no significant difference in the performance of Monte Carlo Search SGHC and GHC

algorithms.

GHC
GHC stdev
SGHC
SGHC stdev

M onte Carlo Search

0 0.5 1 1.5 2 2.5

x 10
4

5500

6000

6500

7000

7500

GHC
GHC stdev
SGHC
SGHC stdev

GHC
GHC stdev
SGHC
SGHC stdev

M onte Carlo Search

0 0.5 1 1.5 2 2.5

x 10
4

5500

6000

6500

7000

7500

Chapter 10:

Conclusion and Future Directions of

Research

A mathematical framework for computationally simultaneously approaching several discrete

optimization problems using GHC algorithms is developed and studied in this dissertation.

The resulting algorithms, termed simultaneous generalized hill climbing (SGHC) algorithms,

offer a new approach that allows practitioners to make a single algorithm run over a set of

fundamentally related discrete optimization problems.

This dissertation develops a metric between elements in a set of fundamentally related

discrete optimization problems (Vaughan et al. 2000). This metric is a tool for evaluating if

it is advantageous to address a fundamentally related set of discrete optimization problems

with a SGHC algorithm, or apply GHC algorithms to each problem in the set individually.

The SGHC algorithm probabilistically moves between discrete optimization problems

according to a problem generation probability function. This dissertation shows that the

problem generation probability function is a stochastic process that satisfies the Markov

property. Therefore, for a SGHC algorithm, movement between discrete optimization

problems can be modeled as a Markov chain. Sufficient conditions are obtained that

guarantee that this Markov chain has a uniform stationary probability distribution.

Diane E. Vaughan Chapter 10. Conclusion 100

This dissertation presents several results regarding the performance of a SGHC algorithm

where the problem generation probability function satisfies Criteria A (see Chapter 7). In

particular, a lower bound for the expected number of outer loop iterations that a SGHC

algorithm that satisfies Criteria A remains in a particular discrete optimization problem is

presented. Additionally, a lower bound is obtained for the probability that a SGHC

algorithm that satisfies Criteria A will continue to execute over the solution space of a

particular discrete optimization problem. Both lower bounds are shown to be functions of

the problem generation probability function. Additionally, sufficient conditions are

presented that guarantee that a SGHC algorithm will visit the globally optimal solution over

all the discrete optimization problems in a set of fundamentally related discrete optimization

problems.

This dissertation contains computational results for an Air Force manufacturing problem and

an instance of the multiple traveling salesman problem (MTSP) that validate the usefulness

of simultaneously addressing a set of discrete optimization problems using GHC. The

computational results for the MTSP suggest that the SGHC algorithm outperforms the GHC

algorithm, as measured by the means of the optimal tour distances across multiple

replications.

The research presented in this dissertation suggests several new directions of study. For

example, addressing the MTSP using a SGHC algorithm with a variety of neighborhood

functions will be studied (i.e., the city exchange neighborhood function). Moreover, the

efficiency of approaching a set of discrete optimization problems where the individual

discrete optimization problems are variants of the TSP will be explored (i.e., Geometric,

Bottleneck, Rural Postman).

The SGHC algorithm can also be used as a tool for evaluating the efficiency of neighborhood

functions for local search algorithms used to approach a set of fundamentally related discrete

optimization problems. To evaluate the efficiency of a set of N∈ Z+ possible neighborhood

functions for a particular discrete optimization problem, each neighborhood function coupled

with the discrete optimization problem can be considered as a separate discrete optimization

Diane E. Vaughan Chapter 10. Conclusion 101

problem, forming a set of N fundamentally related discrete optimization problems. This set

of fundamentally related discrete optimization problems will be addressed with a SGHC

algorithm, in the hopes of identifying the optimal neighborhood function.

The SGHC algorithm is a new approach for addressing a set of fundamentally related discrete

optimization problems that can be more efficient than the traditional approach of addressing

each discrete optimization problem in the set S individually with a local search algorithm.

For example, SGHC algorithms allow practitioners to make a single algorithm run over a set

of fundamentally related discrete optimization problems. Moreover, the convergence results

presented in this dissertation imply that whenever the underlying GHC algorithm converges

to a globally optimal solution for each discrete optimization problem in S, a SGHC algorithm

can be developed to address S that is guaranteed to visit the globally optimal solution over

the set of fundamentally related discrete optimization problems. Therefore, a SGHC

algorithm can be implemented instead of addressing each discrete optimization problem in S

individually with a local search algorithm without losing any convergence properties.

Moreover, the computational results presented suggest that a SGHC algorithm can

outperform the GHC algorithm. The development of the SGHC algorithm and the

mathematical results in this dissertation make it possible for the SGHC algorithm to be

adapted and used to approach a variety of real world problems.

Diane E. Vaughan Bibliography 102

Bibliography

Aarts, E., Lenstra, J.K., 1997, Local Search in Combinatorial Optimization, Wiley and Sons,

New York, New York.

Aarts, E., Korst, J., 1989, Simulated Annealing and Boltzmann Machines A Stochastic

Approach to Combinatorial Optimization and Neural Computing, John Wiley and Sons,

Chichester.

Anily, S., and Federgruen, A., 1987, “Simulated Annealing Methods with General

Acceptance Probabilities”, Journal of Applied Probability, 24, 657-667

Atkinson, K.E., 1989, An Introduction to Numerical Analysis, John Wiley and Sons, New

York, New York.

Bock, F., 1958a., “An Algorithm for Solving ‘Traveling-Salesman’ and related network

optimization problems”: Abstract. Bulletin Fourteenth National Meeting of the Operations

Research Society of America, 897.

Bock, F., 1958b, “An Algorithm for Solving ‘Traveling-Salesman’ and related network

optimization problems”, Manuscript associated with talk presented at the Fourteenth National

Meeting of the Operations Research Society of America.

Cerny, V., 1985, “Thermodynamical Approach to the Traveling Salesman Problem: an

Efficient Simulation Algorithm”, Journal of Optimization Theory and Applications, 45, 41-

51.

Diane E. Vaughan Bibliography 103

Croes, G.A., 1958, “A Method for Solving Traveling Salesman Problems”, Operations

Research, 791-812.

Dueck, G. and T. Scheuer, 1990, “Threshold Accepting: A General Purpose Optimization

Algorithm Appearing Superior to Simulated Annealing”, Journal of Computational Physics,

90, 1616-175.

Eglese, R.W., 1990, "Simulated Annealing: A Tool for Operational Research", European

Journal of Operational Research, 46, 271-281.

Fischer, C.E., Gunasekera, J.S., Malas, J.C., 1997, “Process Model Development for

Optimization of Forged Disk Manufacturing Processes”, Steel Forgings, Second Volume,

ASTM STP 1257, E.G. Nisbett and A.S. Melilli, Editors, American Society for Testing and

Materials.

Fleischer, M.A., 1995, “Simulated Annealing: Past, Present, and Future”, Proceedings of the

1995 Winter Simulation Conference, 155-161.

Garey, M.R., Johnson, D.S., 1979, Computers and Intractability: A Guide to the Theory of

NP-Completeness, W.H. Freeman and Company, New York, New York.

Glover, F., and Laguna, M., 1997, Tabu Search, Kluwer Academic Publishing, Norwell,

Massachusetts.

Gunasekera, J.S., Fischer, C.E., Malas, J.C., Mullins, W.M., Yang, M.S., 1996,

“Development of Process Models for Use with Global Optimization of a Manufacturing

System”, Proceedings of the ASME Symposium on Modeling, Simulation and Control of

Metal Processing, ASME-international Mechanical Engineering Congress, Atlanta, GA,

November, 1996.

Diane E. Vaughan Bibliography 104

Hajek, B., 1988, “Cooling Schedules for Optimal Annealing”, Mathematics of Operations

Research, 13, 311-329.

Hillier, F. and Lieberman, G., 1995, Introduction to Operations Research, McGraw-Hill,

New York, New York.

Isaacson, D. and Madsen, R., 1976, Markov Chains Theory and Applications, Robert E.

Krieger Publishing Company, Inc., Malabar, Florida.

Jacobson, S.H., Sullivan, K.A., Johnson, A.W., 1998, “Discrete Manufacturing Process

Design Optimization Using Computer Simulation and Generalized Hill Climbing

Algorithms”, Engineering Optimization, 31, 247-260.

Jacobson, S.H., Yucesan, E., 2000, “A Generalized Hill Climbing Algorithm Framework for

Studying the Performance and Convergence of Simulated Annealing and Local Search

Algorithms”, Technical Report, University of Illinois at Urbana-Champaign, Urbana, Il.,

(submitted for publication).

Johnson, A.W., Jacobson, S.H., 2000a, “A Class of Convergent Generalized Hill Climbing

Algorithms”, To Appear in Applied Mathematics and Computation.

Johnson, A.W., Jacobson, S.H., 2000b, “On the Convergence of Generalized Hill Climbing

Algorithms”, To Appear in Discrete Applied Mathematics.

Kirkpatrick, S., Gelatt, Jr., C.D. and Vecchi, M.P., 1982, “Optimization by Simulated

Annealing”, IBM Research Report RC 9355.

Kirkpatrick, S., Gelatt, Jr., C.D. and Vecchi, M.P., 1983, “Optimization by Simulated

Annealing”, Science 220, 671-680.

Diane E. Vaughan Bibliography 105

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B., 1985, The Traveling

Salesman Problem, John Wiley and Sons, Chichester.

Liepins, G.E., Hilliard, M.R., 1989, “Genetic Algorithms: Foundations and Applications”,

Annals of Operations Research, 21, 31-58.

Lin, S., 1965, “Computer Solutions of the Traveling Salesman Problem”, Bell Technical

Journal, 44, 2245-2269.

Mitra, K., F. Romeo, and A. L. Sangiovanni-Vincentelli (1986) “Convergence and Finite-

time Behavior of Simulated Annealing”, Advances in Applied Probability, 18, 747-771.

Reiter, S, Sherman, G., “Discrete optimizing”, Journal of the Society for Industrial and

Applied Mathematics 13, 864-899.

Schuur, P.C., 1997, “Classification of Acceptance Criteria for the Simulated Annealing

Algorithm”, Mathematics of Operations Research, 22(2): 266-275.

Tovey, C.A., 1983, “On the Number of Iterations of Local Improvement Algorithms”,

Operations Research Letters, 2, 231-238.

Vaughan, D., Jacobson, S.H., Armstrong, D., 2000, “A New Neighborhood Function for

Discrete Manufacturing Process Design Optimization using Generalized Hill Climbing

Algorithms”, ASME Journal of Mechanical Design, 122 (2), 164-171.

