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Simultaneous Generalized Hill Climbing Algorithms 

for Addressing Sets of 

Discrete Optimization Problems 

 

Diane E. Vaughan 

(ABSTRACT) 

 

 

Generalized hill climbing (GHC) algorithms provide a framework for using 

local search algorithms to address intractable discrete optimization problems.  

Many well-known local search algorithms can be formulated as GHC 

algorithms, including simulated annealing, threshold accepting, Monte Carlo 

search, and pure local search (among others).   

 

This dissertation develops a mathematical framework for simultaneously 

addressing a set of related discrete optimization problems using GHC 

algorithms.  The resulting algorithms, termed simultaneous generalized hill 

climbing (SGHC) algorithms, can be applied to a wide variety of sets of 

related discrete optimization problems. The SGHC algorithm 

probabilistically moves between these discrete optimization problems 

according to a problem generation probability function.  This dissertation 

establishes that the problem generation probability function is a stochastic 

process that satisfies the Markov property.  Therefore, given a SGHC 

algorithm, movement between these discrete optimization problems can be 

modeled as a Markov chain. Sufficient conditions that guarantee that this 

Markov chain has a uniform stationary probability distribution are presented. 

Moreover, sufficient conditions are obtained that guarantee that a SGHC 

algorithm will visit the globally optimal solution over all the problems in a 

set of related discrete optimization problems.  



iii 

 

Computational results are presented with SGHC algorithms for a set of 

traveling salesman problems.  For comparison purposes, GHC algorithms are 

also applied individually to each traveling salesman problem.  These 

computational results suggest that optimal/near optimal solutions can often 

be reached more quickly using a SGHC algorithm. 
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Chapter 1:                               

Introduction and Motivation 
 

 

1.1 Simultaneous Generalized Hill Climbing Algorithms  

 

Generalized hill climbing (GHC) algorithms (Jacobson et al. 1998) provide a framework for 

using local search algorithms to address discrete optimization problems.     GHC algorithms 

include many local search algorithms, including simulated annealing (Fleischer 1995), 

threshold accepting (Dueck and Scheuer 1990), Monte Carlo search, and pure local search 

(Tovey 1983).  The GHC algorithm framework allows for the development of convergence 

and performance properties that apply to families of GHC algorithms.  Therefore, the GHC 

algorithm framework eliminates the need to investigate local search algorithms individually.  

For example, sufficient convergence conditions for a particular family of GHC algorithms 

that includes simulated annealing are presented in Johnson and Jacobson (2000a).   This 

dissertation develops and studies a mathematical framework for computationally approaching 

several discrete optimization problems simultaneously using GHC algorithms.  The resulting 

algorithms are termed simultaneous generalized hill climbing (SGHC) algorithms.   

 

It is common to encounter several discrete optimization problems where a relationship 

between the solution spaces of the individual problems exists.  In general, these problems are 
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approached individually.  However, because of their similarities, the same computational 

tools can be effectively used to address them.  For example, the Material Process Design 

Branch of the Air Force Research Laboratory, Wright Patterson Air Force Base (Dayton, 

Ohio, USA) is studying several similar discrete manufacturing process design optimization 

problems. 

 

Discrete manufacturing process design optimization can be difficult due to the large number 

of design sequences and associated input parameter setting combinations that exist.  GHC 

algorithms have been introduced to address such manufacturing design problems (Jacobson 

et al. 1998).  Initial results with GHC algorithms required the manufacturing process design 

sequence to be fixed with the GHC algorithm used to identify optimal input parameter 

settings (Jacobson et al. 1998).    

 

To motivate the development of SGHC algorithms, this dissertation introduces a new 

neighborhood function that allows GHC algorithms to be used to also identify the optimal 

discrete manufacturing process design sequence among a set of valid design sequences 

(Vaughan et al. 2000).  Hence, this neighborhood function allows the GHC algorithm to 

simultaneously optimize over both the design sequences and the input parameters.  

Computational results are reported with an integrated blade rotor discrete manufacturing 

process design problem under study at the Materials Process Design Branch of the Air Force 

Research Laboratory. 

 

This dissertation formally defines a class of sets of discrete optimization problems where a 

relationship similar to the one described for the manufacturing problem exists.  A set of 

discrete optimization problems that is contained in this class is a set of fundamentally related 

discrete optimization problems.  SGHC algorithms are designed to address sets of 

fundamentally related discrete optimization problems using GHC algorithms.   
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1.2 Research Goals 

 

The objective of this dissertation is to introduce and study a general mathematical framework 

for simultaneously addressing a set of fundamentally related discrete optimization problems.  

A wide variety of manufacturing and service industry problems can be modeled as several 

discrete optimization problems that are typically addressed individually using local search 

algorithms.  SGHC algorithms are a new approach that allows practitioners to make a single 

algorithm run over a set of fundamentally related discrete optimization problems.   

 

This dissertation formally defines the class of fundamentally related sets of discrete 

optimization problems and develops a metric between elements in a set of fundamentally 

related discrete optimization problems (Vaughan et al. 2000).  This metric is a tool for 

evaluating if it is advantageous to address a particular set of discrete optimization problems 

with a SGHC algorithm.  Computational results for a set of manufacturing problems and a set 

of traveling salesman problems are presented that validate the usefulness of simultaneously 

addressing a set of discrete optimization problems using GHC.  

 

The SGHC algorithm probabilistically moves between discrete optimization problems 

according to a problem generation probability function.  The problem generation probability 

function is shown to be a stochastic process that satisfies the Markov property.  Therefore, 

for a SGHC algorithm, movement between discrete optimization problems can be modeled as 

a Markov chain.  Sufficient conditions that guarantee that this Markov chain has a uniform 

stationary probability distribution are provided.  Additionally, sufficient conditions are 

presented that guarantee that a SGHC algorithm will visit the globally optimal solution over 

all the problems in a set of discrete optimization problems. 
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1.3 Research Questions 

 

This dissertation investigates the following research questions 

 

1. Can a mathematical framework be developed for simultaneously approaching 

several related discrete optimization problems?   

 

2. Is there a metric that can be used to develop neighborhood functions for 

simultaneously approaching a set of discrete optimization problems?  If so, can 

this metric be used to assess when it is possible to address several related 

discrete optimization problems simultaneously using GHC algorithms? 

 

3. Given a set of related discrete optimization problems and a GHC algorithm for 

which convergence properties are known, can these properties be extended to 

guarantee convergence of a SGHC algorithm? 



 

 

 

 

 

 

 

 

Chapter 2:                                     

Literature Review 
 

 

2.1 Discrete Optimization Problems 

 

The study of discrete optimization problems is of growing interest and importance to industry 

since many real-world problems can be modeled as discrete optimization problems and due 

to advances in computational power (Hillier and Lieberman 1995).  Discrete optimization 

problems are defined by a finite set of solutions, (i.e., the solution space), Ω={ω1, ω2, …, 

ω|Ω|}, together with an objective function f:Ω → R (Garey and Johnson 1979).  The objective 

function is a quantitative measure of the quality of each solution that assigns a real value to 

each element in the solution space (i.e., f(ω)∈ R, for all ω∈Ω ) (Aarts and Lenstra 1997).  The 

goal when addressing a discrete optimization problem is to find solutions that 

minimize/maximize the objective function.  Without loss of generality, assume that all 

discrete optimization problems are minimization problems.  A solution, ω*∈Ω , that 

minimizes the objective function (i.e., f(ω*)≤f(ω), for all ω∈Ω ) is a globally optimal 

solution. 

 

Discrete optimization problems can be defined by two complexity classes, easy (i.e., a 

globally optimal solution can be found in polynomial time in the size of the problem 

instance) and hard (i.e., in the class NP-hard).  Garey and Johnson (1979) present a 



Diane E. Vaughan                                 Chapter 2.  Literature Review                                   6 

  

discussion on the complexity of discrete optimization problems that can be classified as easy 

or hard.  To address hard discrete optimization problems, local search algorithms are 

formulated with the goal of identifying good or near-optimal solutions (see Garey and 

Johnson 1979).  

 

 

2.2 Local Search Algorithms 

 

The use of local search algorithms can be traced back to the late 1950’s and early 1960’s 

(Aarts and Lenstra 1997).  For example, (Bock 1958a,b, Croes 1958, Lin 1965, Reiter and 

Sherman 1965) introduced the first edge neighborhood structures for the traveling salesman 

problem (TSP).  Today, there are many well-known local search algorithms for approaching 

discrete optimization problems including simulated annealing (Eglese 1990, Fleischer 1995), 

genetic algorithms (Liepins and Hilliard 1989), pure local search, threshold accepting (Dueck 

and Scheuer 1990), and tabu search strategies (Glover and Laguna 1997).  All of these local 

search algorithms are designed with the goal of traversing the solution space in search of 

optimal/near optimal solutions.  

 

 

2.2.1 Neighborhood Functions 

 

To apply a local search algorithm to a discrete optimization problem a neighborhood 

function, η:Ω → 2Ω, where η(ω)⊂Ω  for all ω∈Ω , is required.  Neighborhood functions allow 

the solution space to be traversed or searched by moving between solutions, hence they 

provide connections between solutions in the solution space.  Generally, the choice of a 

neighborhood function is considered independent of the local search algorithm.  However, a 

neighborhood function must be chosen such that all the solutions in the solution space (with 

neighborhood function η) are reachable; that is, for all ω',ω"∈Ω , there exists a set of 

solutions ω1, ω2, …, ωm∈Ω  such that ωr∈η (ωr-1), r=1, 2, ..., m+1, where ω'≡ω0 and ω"≡ωm+1, 

ensuring that the solution space is not fragmented. 
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For a neighborhood function, η, a locally optimal solution, ωL∈Ω , minimizes the objective 

function in its neighborhood  (i.e., f(ωL)≤ f(ω), for all ω, ω∈η (ωL)).  Note that all globally 

optimal solutions are locally optimal solutions, however the converse is not necessary true.  

Jacobson and Yucesan (2000) use the objective function, f, and the neighborhood function, 

η, to decomposed solution space, Ω, into three mutually exclusive and exhaustive sets:  

- a set of G-local optima, G   (i.e., global optima),  

- a set of L-local optima, L ≡ L(η)    (i.e., local optima that are not G-local optima),  

- a set of hill solutions, H 

Therefore, G∪ L is the set of locally optimal solutions in Ω (associated with neighborhood 

structure η).  By definition, Ω=G ∪  L ∪  H, G ∩ L=∅ , G ∩ H=∅ , and L ∩ H=∅ .  Note that, 

also by definition, for all ω∈ G, η(ω) ∩ L=∅ , and for all ω ∈  L, η(ω) ∩ G=∅ .  Therefore, a 

G-local optimum and a L-local optimum cannot be neighbors of each other (Jacobson and 

Yucesan 2000).  Figure 2.1 depicts a solution space, where solutions that are neighbors are 

connected with lines. 

 

                                                        Figure 2.1:  Locals, Hills and Globals 

 

Many local search algorithms attempt to overcome the trappings of local optima.  Simulated 

annealing is one such local search algorithm.   
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2.3 Simulated Annealing 

 

Simulated annealing was introduced in the 1980’s, independently by Kirkpatrick et al. (1982, 

1983) and by Cerny (1985) (Aarts and Korst 1989).   Simulated annealing mimics the 

annealing process for crystalline solids, where a solid is slowly cooled from an elevated 

temperature, with the objective of relaxing towards a low-energy state.  

 

The literature contains several results on the asymptotic performance of simulated annealing 

algorithms.  For simulated annealing algorithms with an exponential acceptance probability 

function, Mitra et al. (1986) and Hajek (1988) present conditions for three convergence 

properties: asymptotic independence of the starting conditions, convergence in distribution of 

the solutions generated, and convergence to a global optimum (Johnson and Jacobson 

2000b).  Anily and Federgruen (1987) extend these results to simulated annealing algorithms 

with general acceptance probabilities.   Anily and Federgruen (1987) develop necessary and 

sufficient conditions for convergence and provide conditions for the reachability of the set of 

global optima.  Schuur (1997) provides a description of acceptance functions that ensure the 

convergence of the associated simulated annealing algorithm to a globally optimal solution.  

Sufficient convergence conditions for a large family of GHC algorithms that includes 

simulated annealing are presented in Johnson and Jacobson (2000a, 2000b).    

 

 

2.4 The Generalized Hill Climbing Algorithm 

 

The GHC algorithm framework provides a structure for using local search algorithms to 

address intractable discrete optimization problems.  The GHC algorithm framework contains 

many local search algorithms that seek to find optimal solutions for discrete optimization 

problems by allowing the algorithm to visit inferior solutions enroute to an optimal/near 

optimal solution.  Figure 2.2 depicts the GHC pseudo-code. 
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Figure 2.2:  The GHC Pseudo-Code  

 
         Set the outer loop counter bound K and the inner loop counter bounds N(k), k=1, 2, …, K 
 Define a set of hill climbing (random) variables Rk: Ω × Ω → ℜ  ∪  {−∞,+∞}, k=1, 2, …, K 
 Set the iteration indices i=0, k=n=1 
 Select an initial solution ω(0)∈Ω  
 Repeat while k ≤ K 

Repeat while n ≤ N(k) 
Generate a solution ω∈η(ω( i)) 
Calculate δ(ω(i),ω) = f(ω)-f(ω(i)) 
If δ(ω(i),ω) ≤ 0, then ω(i+1)←ω     
If δ(ω(i),ω) > 0, Rk(ω(i),ω) ≥ δ(ω(i),ω), then ω(i+1)←ω  
If δ(ω(i),ω) > 0, Rk(ω(i),ω) < δ(ω(i),ω), then ω(i+1)←ω(i)      
n ← n+1, i ← i+1  
Until n = N(k) 
n ← 1, k ← k+1 

Until k = K 

 

 

All GHC algorithms are formulated using two components, a set of hill climbing random 

variables, {Rk}, and a neighborhood function, η.  This structure permits exploration into the 

behavior of families of GHC algorithms.   GHC algorithms have two iteration counters, an 

outer loop counter, k, and an inner loop counter, n.  The upper bounds, K and N(k), define 

the algorithm’s stopping criteria.  The number of iterations for each inner loop is N(k), where 

K is the number of outer loops.  When the stopping criterion of an inner loop is met (i.e., 

n=N(k)), all inner loop parameters can change (i.e., Rk and N(k)).  When the stopping criteria 

of an outer loop is met (i.e., k=K) the algorithm terminates.   

 

 

2.4.1 Local Search Algorithms Modeled by Generalized Hill Climbing 

Algorithms 

 

Numerous local search algorithms can be formulated as particular GHC algorithms by 

defining different hill climbing random variables.  This section defines how to formulate 

several commonly used local search algorithms for addressing intractable discrete 

optimization problems as a GHC algorithm.   
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Several well-known local search algorithms can be defined using the GHC algorithm 

framework.  Monte Carlo search (Johnson and Jacobson 2000b) accepts every neighbor with 

probability one.  Monte Carlo search can be formulated as a GHC algorithm by setting 

Rk(ω(i), ω)=+∞, for all ω(i)∈Ω , ω∈η (ω(i))=Ω, and k=1, 2, …, K.  Pure local search accepts 

only neighbors of improving (lower) objective function value.  Pure local search can be 

formulated as a GHC algorithm by setting Rk(ω(i), ω)=0, for all ω(i)∈Ω , ω∈η (ω(i)), and 

k=1, 2, …, K. 

 

Threshold accepting (Dueck and Scheuer 1990) accepts neighbors with higher costs 

according to a sequence of constants thresholds, Qk, k=1, 2, …, K.  Threshold accepting can 

be formulated as a GHC algorithm by setting Rk(ω(i), ω)=Qk for all ω(i)∈Ω , ω∈η (ω(i)), and 

k=1, 2, …, K, where Qk is a constant.  Simulated annealing (Eglese 1990, Fleischer 1995) 

accepts neighbors of higher costs with a decreasing probability, where P{Rk(ω(i), ω)≥δ(ω(i), 

ω)}=



 −
kt

i

e
)),(( ωωδ

 for all ω(i)∈Ω , ω∈η (ω(i)), and k=1, 2, …, K, for some simulated 

annealing temperature parameter tk>0, where 
∞→k

lim tk=0.  Simulated annealing can be 

formulated as a GHC algorithm by defining a simulated annealing temperature parameter, tk, 

such that tk>0 and 
∞→k

lim tk=0, and setting Rk(ω(i), ω)=-tkln(U), for all ω(i)∈Ω , ω∈η (ω(i)), and 

k=1, 2, …, K, where U =U(0,1). 

 

Several new local search algorithms can be defined using the GHC algorithm framework.  

For example, geometric accepting can be formulated as a GHC algorithm by setting Rk(ω(i), 

ω)= ln(1-U)/ln(1-Pk), for all ω(i)∈Ω , ω∈η (ω(i)), and k=1, 2, …, K, where U=U(0,1) and 

0<Pk<1.  Weibull accepting is formulated as a GHC algorithm by setting Rk(ω(i), ω)=tk(-

ln(U))1/α for all ω(i)∈Ω , ω∈η (ω(i)), and k=1, 2, …, K, U=U(0,1), the shape parameter α>0 

and the scale parameter tk>0.  Erlang accepting can be formulated as a GHC algorithm by 

setting Rk(ω(i), ω)=-tk(ln(U1)+ln(U2)), for all ω(i)∈Ω , ω∈η (ω(i)), and k=1, 2, …, K, where 

U1 and U2 are independently and identically distributed U(0, 1), and scale parameter tk>0.   

Normal accepting can be formulated as a GHC algorithm by setting Rk(ω(i), ω)=ek+(-
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2ln(U1))
1/2 sin(2πU2)vk, for all ω(i)∈Ω , ω∈η (ω(i)), and k=1, 2, …, K, where U1 and U2 are 

independently and identically distributed U(0, 1), ek is the mean, and vk is the standard 

deviation.   

 

 



 

 

 

 

 

 

 

 

Chapter 3:                                

Motivational Example 
 

 

The Materials Process Design Branch of the Air Force Research Laboratory, Wright 

Patterson Air Force Base (Dayton, Ohio, USA), is faced with the challenge of identifying 

optimal manufacturing process designs, so that the finished unit meets certain geometric and 

micro structural specifications, and is produced at minimum cost.  To date, the expensive and 

time intensive approach of trial and error (on the shop floor) has been used to identify 

feasible manufacturing process designs.  The Materials Process Design Branch of the Air 

Force Research Laboratory, in conjunction with researchers at Ohio University (Athens, 

Ohio, USA), has developed computer simulation models of manufacturing processes, such as 

forging and machining.  Each such process affects the geometry and/or microstructure of the 

manufactured unit.  Associated with each process are input (controllable and uncontrollable) 

and output parameters.  An exhaustive search through all possible process sequences and 

controllable input parameters would take a prohibitive amount of time, hence is infeasible.  

Therefore, it is necessary to construct efficient and effective optimization algorithms to 

identify optimal/near-optimal designs for manufacturers using manufacturing process design 

computer simulation models in their manufacturing process design planning operations. 

 

Jacobson et al. (1998) describes how to use GHC algorithms in conjunction with computer 

simulation models of manufacturing processes, to address discrete manufacturing process 

design optimization problems.  The purpose of this chapter is to illustrate how GHC 
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algorithms can be adapted to identify both optimal controllable input parameters and the 

optimal valid manufacturing process design sequence (among several possible feasible 

design sequences).  A new neighborhood function is introduced that allows a GHC algorithm 

to simultaneously optimize over both the controllable input parameters and the design 

sequences.  Computational results are reported with this new neighborhood function.  

 

To describe the discrete manufacturing process design optimization problem and how GHC 

algorithms can be used to address the problem, Jacobson et al. (1998) present an extensive 

problem description and GHC algorithm discussion.  For completeness, the problem 

description is presented here (see Section 2.4 for a complete discussion of GHC).  First, 

several definitions are needed.   

 

Let the manufacturing processes be denoted by P1, P2, …, Pn.  Associated with each process 

are (continuous or discrete) controllable input parameters, uncontrollable input parameters, 

and output parameters.  The output parameters for a particular process may serve as the 

uncontrollable input parameters for a subsequent process.  A sequence of processes, together 

with a particular set of input parameters, constitutes a manufacturing process design; label 

such designs D1, D2, …, DN.  Note that if one (or more) controllable input parameter is 

continuous, then N=+∞.  Otherwise, N<+∞.    Without loss of generality, assume that all the 

controllable input parameters are discrete, since any continuous controllable input parameter 

can be discretized over an arbitrarily fine grid.  Under this assumption, the number of 

manufacturing process designs is finite, though potentially very large. 

 

The solution space can be defined as the design space, Ω, the set of all manufacturing 

process designs (i.e., Ω={D1, D2, …, DN}), where a subset of the designs in Ω are feasible.  

Infeasible designs violate pre-specified constraints on the manufacturing processes and the 

unit being manufactured, including geometric and micro structural properties, and constraint 

violations on the output parameters (e.g., the required forging press pressure may not exceed 

its upper bound limitations).  The objective function can now be defined by a cost function f: 

Ω → [0, +∞) that assigns a non-negative value to each element of the design space, where 

cost includes monetary costs and costs associated with how well the finished unit meets pre-
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specified geometric and micro structural properties.  Penalties for constraint violations on the 

output parameters and measures that ensure a robust manufacturing design (i.e., the 

manufacturing process design is stable) are included in the cost function.  Define a 

neighborhood function η: Ω → 2Ω, where η(D)⊂Ω  for all D∈Ω .  The neighborhood function 

establishes connections between the designs in the design space (either through the 

controllable input parameters or through the design sequences), hence allowing the design 

space to be traversed or searched by moving between designs.  For all solutions in the 

solution space, an individual neighbor can be generated using generation probabilities (i.e., a 

probability mass function) among all possible neighbors, as defined by the neighborhood 

function η (Johnson and Jacobson 2000).  The goal is to identify the globally optimal 

manufacturing process design D* (i.e., f(D*)≤f(D) for all D∈Ω ), or more realistically, near-

optimal designs. 

 

 

3.1 Manufacturing Process Design Application 

 

A manufacturing process design is needed to transform a billet into an integrated blade rotor 

(IBR) geometric shape (Gunasekera et al. 1996).  The possible manufacturing process design 

sequences are depicted in Figure 3.1. 

Figure 3.1:  Manufacturing Process Design Sequences 
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Five manufacturing process design sequences have been identified that can achieve this 

transformation.  Define the following notation for the seven processes that make up these 

five designs: 

 

P0 is the cast ingot process 
P1 is the extrusion process 
P2 is the upset process 
P3 is the machine preform process 
P4 is the blocker forge process 
P5 is the rough machining process 
P6 is the finished shape process 

 

 

The five possible manufacturing process design sequences, provided by researchers at the 

Materials Process Design Branch of the Air Force Research Laboratory and Ohio University, 

are 

P0P2P4P6 P0P2P5P6 P0P2P3P4P6 P0P1P2P4P6 P0P1P3P4P6  

 

Associated with each of the seven processes are uncontrollable and controllable input 

parameters, and output parameters.  For example, for process P0, there are two controllable 

input parameters (the radius of the billet and the height of the billet), zero uncontrollable 

input parameters, and two output parameters, which are just the controllable input parameter 

values.  Fischer et al. (1997) and Gunasekera et al. (1996) present complete details on all 

seven processes and their parameters. 

 

Associated with each controllable input parameter is a discrete (naturally, or discretized from 

a continuous domain) set of feasible values. The cost function quantifies the cost associated 

with not meeting certain geometric and micro structural properties of the finished product, 

the monetary cost in producing the finished product, and cost penalties for constraint 

violations (Jacobson et al. 1998).  The goal is to identify a valid manufacturing process 

design sequence, together with values for all the controllable input parameters for the 
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processes, that result in a feasible manufacturing process design that produces the IBR unit at 

total minimum cost. 

 

Computer simulation models of the manufacturing processes described above have been 

developed (Fischer et al. 1997, Gunasekera et al. 1996).  This moves the search for an 

optimal manufacturing process design from the shop floor (where trial and error has typically 

been applied, using actual materials) to a computer platform.  However, even using high 

speed computing resources, the search for an optimal manufacturing process design may take 

a prohibitive amount of time.  To circumvent this problem, GHC algorithms have been 

introduced as a tool to be used with the computer simulation models to identify optimal/near-

optimal manufacturing process designs. 

 

Jacobson et al. (1998) use three different neighborhood functions for GHC algorithms to 

identify optimal controllable input parameter values for a set of fixed valid manufacturing 

process design sequences.  By considering each design sequence individually, Jacobson et al. 

(1998) solves for the controllable input parameter values that minimize the cost.  Jacobson et 

al. (1998) then chooses the overall minimum cost design sequence (and associate optimal 

controllable input parameter values) as the optimal design.  For the five design sequence 

problem described previously, this is a reasonable approach.  However, for extremely 

complex parts, where the number of design sequences may be very large, performing such 

optimization (one design sequence at a time) does not lend itself to efficient, automated 

optimization procedures.  Moreover, such an approach does not exploit any common 

subsequence components within two or more design sequences, which can lead to added 

efficiencies in identifying optimal controllable input parameter values.    

 

To address these problems, applying GHC algorithms to optimize between (or across) design 

sequences requires a new neighborhood function that captures the cost differences among the 

different process design sequences, but also allows for transitions (using a well-defined 

neighborhood function) between such sequences.  To define such a neighborhood function 

requires several new definitions and notations.   
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Define S to be the set of possible manufacturing process design sequences and W to be the 

set of possible values for the controllable input parameters for the seven processes.  

Therefore, each design D can be represented as a two-tuple (w, s) where w∈ W and s∈ S.  The 

neighborhood function is denoted by η(D) = η(w, s) = (η1(w), η2(s)), where η1: W Æ 2W and 

η2: S Æ 2S.  The neighborhood function η allows the GHC algorithm to simultaneously 

change both the input parameters and the manufacturing process design sequence.  

  

There are numerous ways to define the neighborhood functions η1 and η2.  For the 

experiments reported, for each w ∈  W  

η1(w) = {w�� ∈  W | w�� and w have at most one controllable input parameter  

                           different for each process}. 

 

To define the neighborhood function η2 on the set S, the process design sequences can be 

represented using binary activity vectors.  Given a process design sequence s∈ S, let 

Vi =




otherwise0,

sin  contained is P if1, i . 

The process design sequence s can be represented by the binary activity vector s∈ R5 where 

s = (V1 ,V2 , V3, V4 ,V5). 

Note that every manufacturing process design sequence begins with P0 (cast ingot) and ends 

with P6  (finish machining), hence a binary activity vector of length five can represent each 

such sequence.  To define such vectors, a strict precedence relation must be imposed on the 

order in which the processes can occur.  For the seven processes, the precedence relation is 

given as P0 <.  P1 <. P2 <. P3 <. P4 <. P5 <. P6, where P' <. P" means process P' must occur 

before process P" when both P' and P" occur in the same manufacturing process design 

sequence. Therefore, the set of possible manufacturing process design sequences can be 

formally defined using the binary activity vectors, 

S = {s ∈  R5 | s is a binary activity vector of length five}. 
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For the computational results section, S contains thirty-two possible manufacturing process 

design sequences.  Of these, only the five manufacturing process design sequences depicted 

in the backgrounds section are considered valid.  These five manufacturing process design 

sequences, denoted as Sv⊆ S, are referred to as valid manufacturing process design 

sequences.  Table 3-1 depicts these five valid manufacturing process design sequences and 

their corresponding binary activity vectors. 

                Table 3-1:  Binary Vectors 

Binary Activity Vectors for 

Valid Manufacturing Process Design Sequences 

Process Sequence Binary Activity Vector 

P0P2P4P6 (0,1,0,1,0) 

P0P2P5P6 (0,1,0,0,1) 

P0P2P3P4P6 (0,1,1,1,0) 

P0P1P2P4P6 (1,1,0,1,0) 

P0P1P3P4P6 (1,0,1,1,0) 

   

 

Using the binary activity vector representation for elements of S, the neighborhood function 

η2 can be implemented in a GHC algorithm with a random variable that maps elements of S 

to elements of S.  The neighborhood function η2 depends on a probability switch vector.  The 

components of a probability switch vector q=(q1, q2, q3, q4, q5) are the probabilities that a 

particular process is switched from active (one) to inactive (zero) or from inactive (zero) to 

active (one).  In order to generate a neighbor from η2(s), s∈ Sv, the components of the 

probability switch vector q are permuted to the vector q', with the neighbor generated by 

switching each component of s, namely si, i=1, 2, 3, 4, 5, with the probability q'i.  Note that if 

one or more of the qi, i=1, 2, 3, 4, 5, are zero, the neighborhood function may not contain the 

entire set of thirty-two possible design sequences.  Therefore, for each s∈ Sv, setting one or 

more of the qi, i=1, 2, 3, 4, 5, to zero can reduce the number of possible manufacturing 

process design sequences in η2(s).   
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To switch a process from active to inactive or vice versa, define a set of random variables 

δp:{0,1} Æ {0,1} where p∈ [0,1] and 

δp(x) =




 py probabilitx  with -1

p-1y probabilith x      wit
.   (1) 

Define the permutation random variable, Π j: [0,1]5 
Æ [0,1]5, which permutes the 

components of a vector in [0,1]5.  The permutation random variable will be used to permute 

the components of a probability switch vector.  The permutation random variable is defined 

so that every permutation p' of p = (p1, p2, p3, p4, p5) occurs with equal probability.  

Therefore, at iteration j,   

Pr{Π j(p) = p'} = 1 / 5! 

for all permutations p' of p, hence a potential neighboring solution of s can be obtained using 

(1) as  

s' = ( )(),(),(),(),( 5'4'3'2'1' 54321
sssss ppppp δδδδδ ), 

where Π j(q) = q' = (q'1, q'2, q'3, q'4, q'5) and q is the probability switch vector.  Note that if 

s'∉ Sv, then the neighboring solution of s is generated to be s.   

 

Given the probability switch vector q, let h be the number of non-zero elements of q.  Then 

neighborhood function, η2, is defined as  

η2(s) = {s' ∈  S | s' has at most h binary components different from s}. 

Note that for this neighborhood function, the generation probabilities are typically not 

uniform, since they depend on the probability switch vector. 

 

The choice of probability switch vector q depends on  S   (the cardinality of the possible 

process design sequences) compared to  Sv   (the cardinality of the valid process design 

sequences).  For the manufacturing problem, the number of possible design sequences is 

25=32, which is large compared to the number of valid process design sequences.  There is a 

trade-off between quickly moving between different manufacturing process design sequences 

and allowing the GHC algorithm to spend a large number of iterations exploring the various 

input parameter values in one particular design sequence.  A neighborhood function that 

generates a limited number of design sequence changes may be too restrictive (myopic), 
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hence prevent the GHC algorithm execution from visiting the (globally) optimal 

manufacturing process design sequence. This is the same problem that arises with many local 

search algorithms, namely how to choose the neighborhood function (i.e., should it be 

myopic, with small neighborhoods, or aggressive, with large neighborhoods.) 

 

 

3.2 Movement between Valid Manufacturing Process Design Sequences 

 

This section develops a mathematical structure to compute the probability of moving 

between the five valid manufacturing process design sequences, using the neighborhood 

function, η2, introduced in the previous section.  To define this structure, let Ψ: [0, 1] × S → 

S determine a neighbor of s (i.e., s′) by first permuting p (i.e., by applying Π j(p)) and then 

generating s′ = ( )(),(),(),(),( 5'4'3'2'1' 54321
sssss ppppp δδδδδ ).  Note that references to an iteration 

implies an application of Ψ(p, s) = s′.  Moreover, recall that the possible design sequences 

are the 32 =  {0 , 1}  5 = 25 elements in the range of Ψ(p, s), and that of these 32 possible 

design sequences, only 5 represent valid manufacturing process design sequences.   

 

To formally define the distance between manufacturing process design sequences, consider 

the metric space <Σn, ρ>, with Σ = {0 , 1}, where the metric ρ is defined on Σn  ×  Σn such that 

the distance between two possible manufacturing process design sequences s = (s1, s2, …, sn) 

∈  Σn
  and t = (t1, t2, …, tn) ∈  Σn is 

                                        ρ(s, t) =  s1 - t1  + … +  sn - tn               (2) 

(Royden, 1988, p.140).   To illustrate this metric, the distance between P0P1P2P4P6   (with 

activity vector s = (1, 1, 0, 1, 0)) and  P0P1P3P4P6  (with activity vector t = (1, 0, 1, 1, 0)) is 

ρ(s, t) = 2.  Define  

Ε = {s ∈  Σn  ρ (s, 0) = 1}, 

 where εh∈Ε  such that εh = ( 0, …, 0, 1, 0, …, 0 ) with the one appearing in the hth  position.   
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Define a binary switch on the jth element of an activity vector s to be the modulus two 

addition of  εj ∈  Ε with s.  For example, consider the activity vector s = (1, 1, 0, 1, 0) 

corresponding to P0P1P2P4P6.  By performing a binary switch on the second element of s (i.e., 

by adding ε2
 = (0, 1, 0, 0, 0)), the resulting activity vector is s′ = s + ε2 

 = (1, 0, 0, 1, 0), 

corresponding to P0P1P4P6.  By performing a second binary switch (i.e., by adding ε3
 = (0, 0, 

1, 0, 0) to s′), the resulting activity vector is t = s′ +  ε3 = (1, 0, 1, 1, 0), corresponding  to 

P0P1P3P4P6.  Therefore, the metric ρ(s, t) represents the minimum number of binary switches 

required to move from s to t.   For example, the distance between P0P1P2P4P6 and P0P1P3P4P6, 

represented as activity vectors s = (1, 1, 0, 1, 0) and t = (1, 0, 1, 1, 0), respectively, is ρ(s, t) = 

2.  This distance can also be obtained by observing the minimal number of binary switches 

required to move from s to t.   The distances between all five valid manufacturing process 

design sequences are given in Table 3-2. 

Table 3-2:  Distances Between Valid Manufacturing Process Design Sequences 

 P0P2P4P6 

(0,1,0,1,0) 

P0P2P5P6 

(0,1,0,0,1) 

P0P2P3P4P6 

(0,1,1,1,0) 

P0P1P2P4P6 

(1,1,0,1,0) 

P0P1P3P4P6 

(1,0,1,1,0) 
P0P2P4P6 
(0,1,0,1,0) 

 
0 

 
2 

 
1 

 
1 

 
3 

P0P2P5P6 
(0,1,0,0,1) 

 
2 

 
0 

 
3 

 
3 

 
5 

P0P2P3P4P6 
(0,1,1,1,0) 

 
1 

 
3 

 
0 

 
2 

 
2 

P0P1P2P4P6 
(1,1,0,1,0) 

 
1 

 
3 

 
2 

 
0 

 
2 

P0P1P3P4P6 
(1,0,1,1,0) 

 
3 

 
5 

 
2 

 
2 

 
0 

 

 

The domain of the neighborhood function η2 is S = {s∈Σ n  s is an activity vector of a valid 

manufacturing process design sequence}, where η2 (s′) (for a fixed s′ ∈ S) is denoted by Σi ⊆  

Σn
 .   For all s∈Σ i, the probability that ψ(p, s′)=s given that ρ(s′, s)=k (see (2)) is

Pr{ψ(p, s') = s} = Pr{ρ(s′, s) = k} / 




 5

k

 for s such that ρ(s′, s) = k. 
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To determine Pr{ρ(s′, s)=k}, recall that ψ(p, s′)=s is a sequence of binary switches on s′, 

where the cardinality of binary switches (the previously defined distance) is dependent on p 

= (p1, p2, p3, p4, p5).   Table 3-3 provides the probabilities that ρ(s′, s)=k for k=1, 2, 3, 4, 5. 

 

To illustrate the computation of these probabilities, if η2 is defined with p=(.5, 0, 0, 0, 0), 

then ψ(p, s′) results in no binary switches with probability .5, and one binary switch with 

probability .5.  If η2 is defined with p=(.5, .5, 0, 0, 0), then ψ(p, s′) results in no binary 

switches with probability .25, one binary switch with probability .5, and two binary switches 

with probability .25.  The five valid manufacturing process design sequences can be 

traversed using p=(p1, p2, 0, 0, 0).  For neighborhood function η2, with p=(p1, p2, 0, 0, 0), it is 

possible to move between valid design sequences (in a single iteration) with activity vectors 

that are at most two binary switches apart.  Figure 3.2 depicts movement between sequences 

in a single iteration, where the nodes represent the five valid manufacturing process design 

sequences, and the values on the edges represent the distance between the sequences at the 

corresponding nodes. 

 

                Table 3-3:  Distance Probabilities 
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Figure 3.2:  The Five Valid Manufacturing Process Design Sequences 

 

For the probability switch vector p = (p1, p2, 0, 0, 0), where 0 < p1, p2 < 1, the probability of 

moving between sequences at any given iteration is a function of the number of binary 

switches required to move between these sequences.  In particular, define the two travel 

probabilities 

Pr{1-binary switch} = (
( )







1

5
 -1 21 pp
+

( )







1

5
 -1 12 pp
) = 

( ) ( )( )
5

11 1221 pppp −+−
   

and           

Pr{2-binary switches} = 







2

5
21 pp

 = 
10

21 pp
. 

These expressions are validated empirically using Monte Carlo search, by recording the 

number of times the algorithm iterated from a source design sequence (say A) to a 

neighboring design sequence (say B) and then dividing by the number of times the algorithm 

visited the source design sequence (A).  Table 3-4 provides the Monte Carlo search 

computational results for p=(p1, p2, 0, 0, 0, 0)=(.9, .9, 0, 0, 0), with 100,000 iterations.  Note 

that for Monte Carlo search, all iterations are outer loop iterations with one inner loop 

iteration per outer loop iteration (i.e., K=100,000 and N(k)=1, k=1, 2, …, 100,000).   Ninety 

P0P1P3P4P6 

( 1, 0, 1, 1, 0 )  

P0P2 P3P4P6 

( 0, 1, 1, 1, 0 ) 

P0P1P2P4P6 

( 1, 1, 0, 1, 0 ) 

P0P2P4P6 

( 0, 1, 0, 1, 0 ) 

P0P2P5P6 

( 0, 1, 0, 0, 1) 

2

2

2

1

1

2
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percent confidence intervals (CI) are reported for the travel probabilities, where the 

confidence intervals marked with an asterisk are those that cover the true travel probability 

values (of these twelve confidence intervals, nine cover the true travel probability value). 

 

              Table 3-4:  Traveling Between Sequences 

P = (.9, .9, 0, 0, 0) 

Sequence A 
 

Sequence B 
 

Number of 
Binary 
Switches  

True Travel 
Probability 

Estimated 
Travel 
Probability   

True Travel 
Probability CI 

P0P1P3P4P6 

(1, 0, 1, 1, 0 ) 
P0P1P2P4P6 

(1, 1, 0, 1, 0) 
2 .081 

 
.079 (.0769, .0811)* 

P0P1P3P4P6 

(1, 0, 1, 1, 0) 
P0P2 P3P4P6 

(0, 1, 1, 1, 0) 
2 .081 .083 (.0809, .0851)* 

P0P1P2P4P6 
(1, 1, 0, 1, 0 ) 

P0P1P3P4P6 

(1, 0, 1, 1, 0) 
2 .081 .076 (.0728, .0792) 

P0P1P2P4P6 
(1, 1, 0, 1, 0 ) 

P0P2 P3P4P6 
(0, 1, 1, 1, 0) 

2 .081 .078 (.0748, .0812)* 

P0P1P2P4P6 
(1, 1, 0, 1, 0 ) 

P0P2P4P6 

(0, 1, 0, 1, 0) 
1 .036 .038 (.0358, .0402)* 

P0P2 P3P4P6 

(0, 1, 1, 1, 0) 
P0P1P3P4P6 

(1, 0, 1, 1, 0) 
2 .081 .078 (.0748, .0812)* 

P0P2 P3P4P6 
(0, 1, 1, 1, 0 ) 

P0P1P2P4P6 
(1, 1, 0, 1, 0) 

2 .081 .082 (.0788, .0852)* 

P0P2 P3P4P6 
(0, 1, 1, 1, 0 ) 

P0P2P4P6 

(0, 1, 0, 1, 0) 
1 .036 .034 (.0318, .0362)* 

P0P2P4P6 

(0, 1, 0, 1, 0 ) 
P0P1P2P4P6 

(1, 1, 0, 1, 0) 
1 .036 .033 (.0309, .0351) 

P0P2P4P6 

(0, 1, 0, 1, 0 ) 
P0P2P5P6 

(0, 1, 0, 0, 1) 
2 .081 .082 (.0789, .0851)* 

P0P2P4P6 

(0, 1, 0, 1, 0 ) 
P0P2 P3P4P6 

(0, 1, 1, 1, 0) 
1 .036 .034 (.0319, .0361)* 

P0P2P5P6 
(0, 1, 0, 0, 1 ) 

P0P2P4P6 

(0, 1, 0, 1, 0) 
2 .081 .089 (.0858, .0922) 

 

 

3.3 Computational Results 

 

Computational results are reported with the neighborhood function that allows for 

optimization between the manufacturing process design sequences.  The computational 

results in Jacobson et al. (1998) suggest that the Weibull accepting hill climbing random 
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variable was the most effective (among five different GHC algorithm formulations tested) for 

optimizing over the controllable input parameters for a particular design sequence, hence it 

was used to define η1.  The objective in running these experiments is to assess the 

performance of the GHC algorithm formulations using the neighborhood functions (η1, η2), 

as well as to identify optimal/near optimal manufacturing process design sequences and input 

parameters using computer simulation models. 

 

For Weibull accepting, tk is updated by multiplying the previous temperature parameter by 

the increment multiplier β1, where 0 ≤ β1 ≤ 1 (i.e., tk = β1tk-1).  The initial temperature 

parameter is t0 = 10,000, with β1 = .96 and shape parameter α = 2.0.  The acceptance 

probability for the Weibull accepting GHC algorithm is 

          Pr{Rk(D, D')≥δ} = ( )αδ kte /− , D∈Ω , D'∈η (D) for all k=1, 2, …, K.               (3) 

Note that if α=1, then Weibull accepting reduces to simulated annealing (Jacobson et al. 

1998). 

 

The cost function evaluates the total cost associated with the simulated manufacturing 

process design, in US dollars.  The initial cost is the cost of the initial billet, which depends 

on the dimensions of the billet and the specific metal being processed.  The costs for the 

forging processes include: 

 i) set up costs, 

 ii) post-inspection costs, 

 iii) die wear costs, 

 iv) press run costs,  

 v) the cost of possible strain-induced-porosity damage in the work piece. 

Penalties are incurred with the forging processes when 

 i) the press capacity is exceeded, 

 ii) the aspect ratio of the work piece is too large,  

 iii) the geometry of the work piece conflicts with the die geometry. 
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The cost to machine the work piece is the cost of the material removed from the work piece, 

where a penalty cost is incurred when the geometry of the work piece conflicts with the 

desired final geometry of the work piece after machining.  After the work piece is processed, 

a mandatory ultrasonic non-destructive evaluation cost and, if necessary, a cost of heat 

treatment is accrued.  In addition, the final microstructure of the work piece is evaluated; if 

the microstructure violates predetermined specifications, a penalty cost is incurred.  All 

penalties are translated into US dollars in the cost function. 

 

Computational results with the Weibull accepting GHC algorithm incorporating the new 

neighborhood function (η2) are reported.  The Weibull accepting GHC algorithms were 

executed with different values of K and N=N(k), k=1, 2, …, K, as well as with varying 

values for the components of the probability switch vector p.  Thirty (independently seeded) 

replications of each GHC formulation were made, each initialized with a different initial 

manufacturing process design sequence.  The same thirty initial design sequences (for the 

thirty replications) were used across the different neighborhood functions (i.e., the different 

probability switch vectors).  The initial controllable input parameter values for replications 

two through thirty were obtained by randomly selecting a neighbor (η1) of the first 

replication's feasible controllable input parameters values.  The mean (µ) and standard 

deviations (σ), as well as the minimum and maximum cost function values, were computed 

from the optimal values across these thirty replications.  All computational experiments were 

executed on a SUN ULTRA-1 workstation (128 Mb RAM).  Each set of thirty replications 

took approximately 30 CPU minutes. 

 

In Tables 3-5 through 3-7, the variable γ represents the percentage of the replications that the 

GHC algorithm finds the optimal valid manufacturing process design sequence.  The variable 

κ represents the average number of times, over the thirty replications, neighborhood function 

η2 generates a manufacturing process design sequence that is different from the incumbent 

design sequence. 
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Table 3-5:  GHC Algorithm Results 

K = 50 and N = 200 
Probability Switch Vector γ µ σ Minimum Maximum κ 
(0.1, 0.1, 0, 0, 0) 9/30 2177.57 199.00 1935.71 2928.17 357.7 
(0.2, 0.2, 0, 0, 0) 22/30 2047.62 209.89 1927.01 2928.72 538.6 
(0.3, 0.3, 0, 0, 0) 20/30 2041.25 145.93 1919.28 2250.15 793.1 
(0.4, 0.4, 0, 0, 0) 27/30 1973.88 92.00 1930.43 2245.28 1001.5 
(0.5, 0.5, 0, 0, 0) 21/30 2033.21 140.17 1919.28 2248.08 1110.7 
(0.6, 0.6, 0, 0, 0) 21/30 2033.88 142.08 1919.28 2254.63 1268.8 
(0.7, 0.7, 0, 0, 0) 24/30 2009.45 118.78 1921.21 2250.15 1418.1 
(0.75, 0.75,0, 0, 0) 25/30 1998.00 111.67 1927.01 2250.15 1408.2 
(0.8, 0.8, 0, 0, 0) 25/30 1993.57 113.97 1921.21 2245.28 1438.4 
(0.833, 0.833, 0, 0, 0) 27/30 1976.08 92.32 1927.01 2245.28 1402.4 
(0.9, 0.9, 0, 0, 0) 27/30 1977.57 91.74 1921.21 2250.15 1443.1 

 

 

Table 3-6:  GHC Algorithm Results 

K = 100 and N = 100 
Probability Switch Vector γ µ σ Minimum Maximum κ 
(0.1, 0.1, 0, 0, 0) 15/30 2089.41 156.13 1921.21 2245.28 389.3 
(0.2, 0.2, 0, 0, 0) 15/30 2115.83 213.35 1921.21 2898.11 653.9 
(0.3, 0.3, 0, 0, 0) 24/30 2000.99 125.00 1921.21 2248.08 800.9 
(0.4, 0.4, 0, 0, 0) 25/30 1996.43 112.76 1919.28 2249.97 1133.6 
(0.5, 0.5, 0, 0, 0) 25/30 1993.50 113.54 1921.21 2245.28 1285.8 
(0.6, 0.6, 0, 0, 0) 22/30 2025.29 132.74 1923.70 2245.28 1389.0 
(0.7, 0.7, 0, 0, 0) 24/30 2005.69 120.13 1932.86 2248.08 1498.0 
(0.75, 0.75,0, 0, 0) 22/30 2024.25 135.71 1921.21 2250.15 1419.7 
(0.8, 0.8, 0, 0, 0) 24/30 2004.95 121.77 1919.28 2244.25 1425.1 
(0.833, 0.833, 0, 0, 0) 24/30 2008.17 120.15 1921.21 2245.28 1451.0 
(0.9, 0.9, 0, 0, 0)* 27/30 1974.30 93.37 1921.21 2248.08 1397.9 
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Table 3-7:  GHC Algorithm Results 

K = 200 and N = 50 
Probability Switch Vector γ µ σ Minimum Maximum κ 
(0.1, 0.1, 0, 0, 0) 9/30 2196.01 249.69 1919.28 2959.29 344.7 
(0.2, 0.2, 0, 0, 0) 11/30 2131.19 154.88 1923.15 2293.87 714.1 
(0.3, 0.3, 0, 0, 0) 20/30 2037.88 149.32 1919.28 2257.53 799.7 
(0.4, 0.4, 0, 0, 0) 22/30 2012.43 141.59 1919.28 2257.53 934.5 
(0.5, 0.5, 0, 0, 0) 22/30 2016.57 138.44 1921.21 2245.28 1294.2 
(0.6, 0.6, 0, 0, 0) 21/30 2027.38 143.96 1919.28 2248.08 1368.6 
(0.7, 0.7, 0, 0, 0) 23/30 2009.21 132.73 1919.28 2248.08 1531.3 
(0.75, 0.75, 0, 0, 0) 21/30 2025.96 143.54 1919.28 2245.28 1439.1 
(0.8, 0.8, 0, 0, 0) 20/30 2038.75 147.56 1919.28 2248.08 1424.8 
(0.833, 0.833, 0, 0, 0) 17/30 2067.71 154.65 1919.28 2248.08 1435.3 
(0.9, 0.9, 0, 0, 0) 19/30 2049.26 152.23 1919.28 2260.63 1403.8 

 

 

The results in Tables 3-5 through 3-7 illustrate the performance of the Weibull accepting 

GHC algorithm with the new neighborhood function.  In particular, the results demonstrate 

differences when the values of K, N, and components of the probability switch vector are 

changed.  The Weibull accepting GHC algorithm using the probability switch vectors (.1, .1, 

0, 0, 0), (.2, .2, 0, 0, 0), (.3, .3, 0, 0, 0) with η2(s) resulted in a low probability of generating a 

manufacturing process design sequence other than s (thereby providing a myopic 

neighborhood structures), hence yielded inferior results than those obtained with the 

probability switch vectors containing higher probability components.  This observation leads 

to the initial conclusion that as the number of manufacturing process design sequence 

changes increased, the mean value of the optimal solution found by the Weibull accepting 

algorithm improved.   

 

The results in Tables 3-5 through 3-7 also suggest that choosing probability switch vectors 

that maximize process design sequence changes can also yield poor solutions, as measured 

by µ.  This results from the algorithm moving too quickly out of optimal manufacturing 

process design sequences to non-optimal manufacturing process design sequences.  

Furthermore, the performance of a GHC algorithm depends on the values of K and N.  

Comparing the values for γ, µ, and σ in Tables 3-5 and 3-6, across the same probability 

switch vectors values in Tables 3-7, the Weibull accepting GHC algorithm with K=50, 

N=200 or K=100, N=100 yielded results that are significantly better than for the case with 
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K=200, N=50 in Table 3-7.   Moreover, the Weibull accepting GHC algorithm with K = 50, 

N=200 or K=100, N=100 also increased the number of hill climbing solutions accepted 

during the execution of the algorithm.  Examining equation (3), at each iteration of the 

Weibull accepting GHC algorithm, the probability that a hill climbing solution is accepted is 

large when the value of tk is large.  Therefore, using K=50, N=200, the temperature 

parameter, tk, for the Weibull accepting GHC algorithm converges to zero at a sufficiently 

slow rate such that the probability of accepting a hill climbing solution also decreases very 

slowly at each outer loop iteration.  This results in an increased frequency that the algorithm 

execution visits the optimal sequence at the beginning of the execution.  Visiting the optimal 

sequence early in the execution of the algorithm also decreases the probability of becoming 

locked in a non-optimal process design sequence at the end of the algorithm execution.    

 

Note that as a base case, to compare the effectiveness and value of the Weibull accepting 

algorithm with the probability switch vector neighborhood function, experiments were run 

with a Weibull accepting algorithm using a neighborhood function (termed the base case 

neighborhood function) that assigns an integer value (i.e., 1, 2, 3, 4, 5) to each of the five 

possible manufacturing process design sequences, where the probability of moving from a 

design sequence to any other design sequence was .25.  This algorithm was also executed 

using the same three combinations of values for K and N=N(k), k=1, 2, …, K.  Thirty 

(independently seeded) replications of each GHC formulation were made.  The mean (µ) and 

standard deviations (σ), as well as the minimum and maximum cost function values, were 

computed from the optimal values across these thirty replications.  These results are given in 

Table 3-8. 

 

Table 3-8:  GHC Algorithm Results 

GHC Algorithm Results, Base Case 
Inner and Outer Loop Bounds γ µ σ Minimum Maximum 

K=50, N=200 24/30 2048.95 193.01 1919.28 2723.33 

K=100, N=100 25/30 2147.12 623.76 1927.01 5200.51 

K=200, N=50 19/30 2201.76 599.32 1924.94 5095.13 
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The results in Table 3-8, when compared to the results in Tables 3-5 through 3-7, suggest that 

using the Weibull accepting algorithm with probability switch vector neighborhood function 

can be more effective in identifying both the optimal design sequence and the optimal 

controllable input parameter values compared to the Weibull accepting algorithm using base 

case neighborhood function.  Moreover, the variance of the optimal design sequences 

obtained using the probability switch vector neighborhood function is significantly lower 

than for the base case neighborhood function.  These results can be explained by noting that 

the base case neighborhood function selects neighboring design sequences uniformly, while 

the probability switch vector neighborhood function weights this selection based on common 

manufacturing processes between the design sequences.  This overlap provides a more 

effective strategy in moving between different design sequences, in search of the optimal 

design sequence. 

 

Overall, the computational results are consistent with what would have been obtained using 

trial and error on the shop floor.  In particular, the optimal design (P0P2P5P6) required smaller 

initial billets (hence there was less material wasted) and used machining processes (rather 

than forging and extrusion processes) to achieve the desired shape and size.  These results are 

also consistent with those reported in Jacobson et al. (1998), in terms of the minimum cost 

solutions obtained.  The advantage of using GHC algorithms and computer simulation 

manufacturing processes is the speed and efficiency at which these results can be obtained, at 

a fraction of the cost that would be spent if trial and error on the shop floor would be 

required.  Moreover, allowing a GHC algorithm to optimize over both the design sequences 

and the controllable input parameters provides an important first step to developing 

automated procedures for such optimization problems. 

 



 

 

 

 

 

 

 

 

Chapter 4:                                

Simultaneous Generalized Hill 

Climbing Algorithms 
 

 

Chapter 3 introduced a new neighborhood function for simultaneously addressing a set of 

related manufacturing process design optimization problems simultaneously using GHC 

algorithms.  This neighborhood function allowed for simultaneous optimization across the 

design sequences and the controllable input parameters.  The application of such 

optimization algorithms (that simultaneously explore multiple manufacturing process 

designs) using computer simulation is a new advance in how optimal manufacturing process 

designs can be efficiently identified (Vaughan et al. 2000).   

 

It is common to encounter several discrete optimization problems where a relationship 

between the solution spaces of the individual problems exists.    This chapter relaxes the 

methodology used to address the integrated blade rotor discrete manufacturing process 

design problem to develop a general mathematical framework for simultaneously 

approaching a set of related discrete optimization problems.  The resulting framework is 

termed simultaneous generalized hill climbing (SGHC) algorithms.   
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4.1 Characterizing Sets of Discrete Optimization Problems 

 

This section formally defines a class of sets of discrete optimization problems where a 

relationship exists that is similar to the one described for the manufacturing problem 

described in Chapter 3.  A set of discrete optimization problems that is contained in this class 

is referred to as a set of fundamentally related discrete optimization problems.  Additionally, 

this section develops a metric (termed the detachment metric) between elements in a set of 

fundamentally related discrete optimization problems (Vaughan et al. 2000).  The 

detachment metric is a tool for determining if it is advantageous to address a particular set of 

discrete optimization problems with a SGHC algorithm.   

 

To discuss the class of sets of discrete optimization problems for which SGHC algorithms are 

applicable, the following definitions are needed.  Consider a set of discrete optimization 

problems S={D1, D2, …, Dm}, where each discrete optimization problem Dy=(Ωy, fy) is fully 

defined by a finite set of solutions Ωy and a real-valued objective function fy: Ωy→R.  A set 

of discrete optimization problems S is fundamentally related by a set Ob={c1, c2, …, cn} of 

objects if the solution space Ωy of each discrete optimization problem Dy=(Ωy, fy)∈ S can be 

fully defined by exactly one subset of Ob.  Then for every discrete optimization problem 

Dy=(Ωy, fy)∈ S, there is exactly one set Cy⊆ Ob such that Cy completely defines Ωy.  The set 

Cy is defined to be the fundamental relation set of Dy.   

 

Let S be a set of fundamentally related discrete optimization problems related by Ob.  

Consider Dy∈ S where Cy⊆ Ob is the fundamental relation set of Dy.  Then Cy can be 

represented by the binary activity vector cy∈ {0, 1}n, cy=(B1, B2, …, Bn), where   

Bi =




otherwise    ,0

Cin   contained is c if    ,1 yi . 

 

SGHC algorithms are developed for sets of fundamentally related discrete optimization 

problems.  When two discrete optimization problems, Dy and Dq, are contained in a set of 

fundamentally related discrete optimization problems with respective fundamental relation 
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sets, Cy and Cq, where |Cy∩Cq|/|Ob| is close to one, it is reasonable to conjecture that the 

optimal/near optimal solutions of Dy and Dq are similar.  The following detachment metric is 

designed to determine if two discrete optimization problems, in a set of fundamentally related 

discrete optimization, are close together, hence have similar solution spaces.   

 

Let S be a set of fundamentally related discrete optimization problems related by Ob. To 

formally define the detachment metric ρ between discrete optimization problems Dy, Dq∈ S, 

consider the metric space <Σn, ρ>, with Σ = {0, 1}, where the detachment metric ρ is defined 

on Σn × Σn such that the distance between two discrete optimization problems can be 

determined by considering their binary activity vectors cy=( y
n

yy ccc ...,,, 21 )∈Σ n
 and 

cj=( q
n

qq ccc ...,,, 21 )∈Σ n.  Define the detachment metric as 

ρ(Dy, Dq) = q
n

y
n

qyqy cccccc −++−+− ...2211   

(Royden, 1988, p.140).  This metric is illustrated in Section 3.2.  The detachment metric 

provides a way to measure the overlap (or lack of overlap) between the members in a set of 

fundamentally related discrete optimization problems. 

 

 

4.2 Neighborhood Function  

 

This section develops the neighborhood function with an associated problem generation 

probability function for moving between discrete optimization problems during an execution 

of a SGHC algorithm.  The neighborhood function is defined such that each discrete 

optimization problem has the entire set of discrete optimization problems as neighbors.  

Therefore, whenever this neighborhood function is applied, every discrete optimization 

problem is a candidate problem (i.e., has a positive probability of being selected).  The 

problem generation probability function determines the probability of selecting a candidate 

problem.    
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More formally, define the neighborhood function, ηset:S→2S, such that ηset(Dy)=S, for all 

Dy∈ S.  Define the problem generation probability function 
qy DDh (k, ρ(Dy, Dq)), such that  

0 < 
qy DDh  (k, ρ(Dy, Dq)) < 1, for every Dy∈ S, Dq∈η set(Dy), 

where, 

∑
∈ )( ysetq DD η

qy DDh  (k, ρ(Dy, Dq)) = 1, for every Dy∈ S, Dq∈η set(Dy), 

for every k=1, 2, …, K. 

 

Note that the problem generation probability function (the probability of selecting a 

candidate problem, Dq∈η set(Dy), Dy∈ S) can be a function of both the outer loop iteration 

k=1, 2, …, K and the detachment metric ρ(Dy, Dq). 

 

 

4.3 The Simultaneous Generalized Hill Climbing Algorithm Pseudo-Code 

 

SGHC algorithms provide a mathematical framework for addressing several fundamentally 

related discrete optimization problems simultaneously using GHC algorithms.  SGHC 

algorithms seek to find optimal solutions for sets of fundamentally related discrete 

optimization problems by allowing the algorithm to probabilistically move between discrete 

optimization problems.  When a new discrete optimization problem is generated, an initial 

solution for this new problem is then generated using information from the previous discrete 

optimization problem’s final solution.  The inner and outer loop structure defined for GHC 

algorithms can be used in SGHC algorithms, where SGHC algorithms restrict possible 

movement between discrete optimization problems to the first iteration of the outer loop 

iterations.  This constraint ensures that a GHC algorithm is applied to each discrete 

optimization problem at least N(k) iterations each time it is generated (i.e., initially visited).  

Note that this was not the case for the manufacturing problem presented in Chapter 3, where 

movement between discrete optimization problems was possible during all inner loop 

iterations.   
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The SGHC algorithm pseudo-code is now presented. 

Figure 4.1:  SGHC Algorithm Pseudo-Code 

         Set the outer loop counter bound K and the inner loop counter bounds N(k), k=0,1,2,…,K 
 Define a set of hill climbing (random) variables Rk: Ω × Ω → ℜ  ∪  {−∞,+∞}, k=1,2,…,K 
 Set the iteration indices N(0)=i=0, k=n=1 
      Select an initial discrete optimization problem D(0)∈ S 
 Select an initial solution ω(0,0)∈Ω (0) 
 Repeat while k ≤ K 

                Generate a discrete optimization problem D(k)∈η set(D(k-1))                                                 
                  If D(k) ≠ D(k-1),  

                Generate a solution ω∈  Ω(k) and ω(k, 1)←ω                            (new discrete optimization problem)          
          else  ω(k, 1)←ω(k-1, N(k-1))                                                   (same discrete optimization problem) 

Repeat while n ≤ N(k) 
Generate a solution ω∈η(ω( k, i)) 
Calculate δ(ω(k, i),ω) = f(ω)-f(ω(k, i)) 
If δ(ω(k, i),ω) ≤ 0, then ω(k, i+1)←ω                    
If δ(ω(k, i),ω) > 0 and Rk(ω(k, i),ω) ≥ δ(ω(k, i),ω), then ω(k, i+1)←ω    
If δ(ω(k, i),ω) > 0 and Rk(ω(k, i),ω) < δ(ω(k, i),ω), then ω(k, i+1)←ω(k, i)   
n ← n+1, i ← i+1  

           Until n = N(k) 
          n ← 1, k ← k+1 

         Until k = K 

 

All SGHC algorithms are formulated using three components, a set of hill climbing random 

variables {Rk}, a neighborhood function η between solutions and a neighborhood function 

ηset between discrete optimization problems.  The two-tuple (k, i) represents the inner loop 

iteration i=1, 2, …, N(k), during outer loop iteration k=1, 2, …, K.  D(k) is the discrete 

optimization problem the algorithm is executing over during the kth outer loop iteration, k=1, 

2, …, K, where the solution space of D(k) is depicted by Ω(k). 



 

 

 

 

 

 

 

 

Chapter 5:                                          

Simultaneous Generalized Hill 

Climbing Markov Chain Theory 
 

 

Markov chain theory is an effective tool for studying the performance of local search 

algorithms.  This chapter shows that an application of the SGHC algorithm can be modeled 

using Markov chains.  In particular, Section 5.1 demonstrates that an application of the GHC 

algorithm can be modeled with a Markov chain.  Section 5.2 shows that an application of the 

SGHC algorithm can be modeled by a set of Markov Chains. 

 

 

5.1 Generalized Hill Climbing Markov Chain Theory 

 

To show that an application of the GHC algorithm can be modeled with a Markov chain, the 

following definitions are needed.  A stochastic process is a family of random variables 

defined on some state space.  If there are countable many members of the family, the process 

(termed a discrete-time process) is denoted by Q1, Q2, … where the set of distinct values 

assumed by a stochastic process is the state space.  If the state space is countable or finite, 

the process is a chain.  A stochastic process {Qk}, k=1, 2, … with state space Ω={ω1, ω2, …} 

satisfies the Markov property if for every n and for all states ω1, ω2, …, ωn  
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Pr{Qn=ωn | Qn-1=ωn-1, Qn-2=ωn-2, …, Q1=ω1} = Pr{Qn=ωn | Qn-1=ωn-1} = Pn(n-1). 

A discrete-time stochastic process that satisfies the Markov property is a Markov chain. 

 

Let {Qk} denote a discrete-time Markov chain with finite solution space Ω={ω1, ω2, …, 

ω|Ω|}.  For this chain there are |Ω|2 transition probabilities, {Pij}, i,j=1, 2, …, |Ω|.  The 

transition matrix associated with the Markov chain {Qk} is P, where Pij is the probability of 

moving from state ωi to state ωj.   

 

An application of a GHC algorithm can be modeled by a stochastic process { k
nQ }, k=1, 2, 

…, K, n=1, 2, …, N(k), k
nQ ∈Ω  with solution space Ω={ω1, ω2, …, ω|Ω|} that satisfies the 

Markov property for every n and all states ω1, ω2, …, ωn  (i.e., { k
nQ } is a Markov chain).  To 

see this, consider an application of a GHC algorithm to a discrete optimization problem with 

solution space Ω={ω1, ω2, …, ω|Ω|}.  Define gij(k) to be the generation probability function 

for the neighborhood function η, where the probability that ωj∈η (ωi) is generated during 

outer loop iteration k, is gij(k).  Consider the inner loop iterations for fixed outer loop 

iteration k=1, 2, …, K.  Let { k
nQ }, k=1, 2, …, K, n=1, 2, …, N(k), k

nQ ∈Ω  be the stochastic 

process where if k
nQ =ωi, then the GHC algorithm is at solution ωi during inner loop iteration 

n and outer loop iteration k (Johnson and Jacobson 2000b).  If the GHC algorithm is at 

solution ωi at inner loop iteration n-1, the probability that the algorithm is at solution ωj at 

inner loop iteration n is   












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independent of the solutions the algorithm visited at inner loop iterations 1, 2, …, n-2.  

Therefore, the Markov property holds, 

Pr{ k
nQ =ωj | 

k
nQ 1− =ωi,  

k
nQ 2− =ωi (n-2), ..., 

kQ1 =ωi (1)} = Pr{ k
nQ =ωj |

k
nQ 1− =ωi} = Pij(k). 
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Moreover, for every outer loop iteration k, the Markov chain { k
nQ } has a transition matrix 

P(k), where Pij(k) is defined as above .   

 

 

5.2 Simultaneous Generalized Hill Climbing Markov Chain Theory 

 

Recall, that a SGHC algorithm is applied to a set of fundamentally related discrete 

optimization problems.  Movement between discrete optimization problems is only possible 

at outer loop iterations k=1, 2, …, K.  During the inner loop iterations, the SGHC algorithm 

is executing over the solution space of the current discrete optimization problem using a 

GHC algorithm.  Section 5.1 shows that an application of a GHC algorithm can be modeled 

by a Markov chain. 

 

This section shows that for fixed outer loop iteration k=1, 2, …, K, the stochastic process 

corresponding to the solution that the SGHC algorithm is at during inner loop iterations n=1, 

2, …, N(k) can be modeled by a Markov chain that corresponds to an application of a GHC 

algorithm.  Moreover, it is shown that for outer loop iterations k=1, 2, …, K, the possible 

movement between discrete optimization problems is a stochastic process that satisfies the 

Markov property.   

 

Consider an application of a SGHC algorithm to a set of fundamentally related discrete 

optimization problems S={D1, D2, …, Dm}, where each discrete optimization problem Dy, 

y=1, 2, …, m is fully defined by a solution space Ωy and an objective function fy (i.e., 

Dy=(Ωy, fy)).  Consider the inner loop iterations n=1, 2, …, N(k), for fixed outer loop 

iteration k, k=1, 2, …, K.  Let { k
nQ (Dy)}, k=1, 2, …, K, n=1, 2, …, N(k) be the stochastic 

process where if k
nQ (Dy)=ωi, then the SGHC algorithm is at solution ωi∈Ω y at inner loop 

iteration n of outer loop iteration k. 

 

Note that, for all inner loop iterations n=1, 2, …, N(k) of an outer loop iteration k=1, 2, …, K 

the SGHC algorithm is executing over a particular discrete optimization problem from the set 
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of fundamentally related discrete optimization problems S={D1, D2, ..., Dm} using a GHC 

algorithm.  Section 5.1 showed that any application of a GHC algorithm to a discrete 

optimization problem can be modeled as a Markov chain.  Therefore, for fixed outer loop 

iteration k, the stochastic processes { k
nQ (Dy)}, y=1, 2, …, m, with transition matrices Py, are 

the Markov chains that correspond to an application of the GHC algorithm to the discrete 

optimization problems Dy, y=1, 2, …, m for every n=1, 2, …, N(k) and for all states ω1, ω2, 

…, ω|Ωy| as defined in Section 5.1.   

 

Movement between discrete optimization problems is a stochastic process that satisfies the 

Markov property.  To see this, define {Ψ(k)}, Ψ(k)∈ S, k=1, 2, … to be the stochastic process 

where if Ψ(k)=y, then during outer loop iteration k, for all inner loop iterations n=1, 2, …, 

N(k) the SGHC algorithm is executing over solutions contained in the solution space of the 

discrete optimization problem Dy=(Ωy, fy).    If the SGHC algorithm is executing over Ωy at 

outer loop iteration k-1, then the probability that the SGHC algorithm is executing over Ωq 

during outer loop iteration k is 

Tyq(k) =
qy DDh (k, ρ(Dy, Dq)) 

independent of the discrete optimization problems the SGHC algorithm visited at outer loop 

iterations 1, 2, …, k-2 and independent of all preceding inner loop iterations.  Therefore, the 

Markov property holds, 

Pr{Ψ(k)=q | Ψ(k-1)=y,  Ψ(k-2)=yk-2, …,Ψ(1)=y1} = Pr{Ψ(k)=q | Ψ(k-1)=y}= Tyq(k). 

Moreover, the Markov chain {Ψ(k)} has transition matrix T(k), where Tyq(k) is as defined 

above.  



 

 

 

 

 

 

 

 

Chapter 6:                                     

Simultaneous Generalized Hill 

Climbing Algorithm Analysis  
 

 

Consider an application of the SGHC algorithm to a set of fundamentally related discrete 

optimization problems, S.  This section presents sufficient conditions that guarantee that a 

SGHC algorithm will (as k approaches +∞) be executing over the solution space of each 

discrete optimization problem Dy∈ S with probability 1/|S|, where |S| is the cardinality of S.  

This result implies that, as k approaches +∞, each discrete optimization problem in S={D1, 

D2, …, Dm} is being explored with equal probability.   

 

This section develops sufficient conditions that place restrictions on the selection of the 

problem generation probability function 
qy DDh (k, ρ(Dy, Dq)).   Two sets of sufficient 

conditions are provided.  The first set of sufficient conditions (Theorem 1) require selecting 

qy DDh (k, ρ(Dy, Dq)) such that the associated Markov chain is stationary.  A discrete time 

Markov chain is a stationary Markov chain if the probability of going from one state to 

another state is independent of the iteration at which the transition is being made (Isaacson 

and Madsen 1985).  That is, let {Xn} be a stationary Markov chain with state space S={D1, 

D2, …, Dm}, then for all states Dy  and Dq, 

Pr{Xn=Dy | Xn-1=Dq} = Pr{Xn+k=Dy | X n+k-1=Dq}, 
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for all k=-(n-1),-(n-2), …,-1, 0, 1, 2, … .   

 

The long run distribution (stationary probability distribution) of a stationary Markov chain 

with corresponding transition matrix T is defined by π = [ ]mπππ "21 , πi≥0, for all i, 

i=1, 2, …, m, where π=πT and ∑
=

m

i
i

1

π =1.     Equivalently, the long run distribution of a 

stationary Markov chain is defined by π = [ ]mπππ "21 , where   

πj=
+∞→n

lim
Tij

(n). 

 

The second set of sufficient conditions are presented in Theorem 2.  Theorem 2 requires 

selecting 
qy DDh (k, ρ(Dy, Dq)) such that the associated Markov chain is nonstationary.  A 

discrete time Markov chain is a nonstationary Markov chain if the condition for stationary 

fails. 

 

 

6.1 Stationary Markov Chain Sufficient Conditions 

 

If the stationary Markov chain {Ψ(k)} has a uniform long run distribution, then as k 

approaches infinity the SGHC algorithm is executing over the solution space of each discrete 

optimization problem in S ={D1, D2, …, Dm} with probability 1/m=1/|S|.  Theorem 1 

provides sufficient conditions for the selection of the problem generation probability function 

qy DDh (k, ρ(Dy, Dq)) that guarantee that the Markov chain {Ψ(k)} has a uniform long run 

distribution.  Therefore, when the sufficient conditions of Theorem 1 hold, the SGHC 

algorithm will (as k approaches +∞) be in discrete optimization problem Dy∈ S, y=1, 2, …, m 

with probability 1/|S|. 

 

To prove Theorem 1, the following definitions are needed.  A subset, C, of the state space, S, 

is closed if Pij=0, for all i∈ C and j∉ C.  A Markov chain is irreducible if there exists no 

nonempty closed set other than S itself.  If S has a proper closed subset, it is reducible.  State 
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ωi is said to have period d if P n
ii =0 whenever n is not divisible by d and d is the greatest 

integer with this property.  A state with period 1 is said to be aperiodic (Isaacson and Madsen 

1985). 

 

Theorem 1 

Consider an application of the SGHC algorithm.  Define 
qy DDh (k, ρ(Dy, 

Dq))=
qy DDh (ρ(Dy, Dq))=

yqDDh (ρ(Dy, Dq)), for every k=1, 2, … .  Consider the transition 

matrix T defined by  

Tyq =
qy DDh (ρ(Dy, Dq)). 

If the transition matrix T is irreducible and aperiodic, then the Markov chain {Ψ(k)} has 

a uniform long run distribution.  Moreover, the long run distribution of {Ψ(k)} is 

π = [1/|S| 1/|S| … 1/|S|]. 

 

Proof:   

Note that the problem generation probability function 
qy DDh (k, ρ(Dy, Dq)) is independent 

of k.  Therefore, the Markov chain {Ψ(k)} is stationary.  Recall, that the long run 

distribution of a stationary Markov chain is defined by [ ]mπππ "21 , πi ≥0, for all 

i=1, 2, …, m which satisfies  

                                                          π = πT,                                    (1) 

             and 

                                            ∑
=

m

i
i

1

π = 1.                                  (2) 

Since ∑
=

m

i
ijT

1

=∑
=

m

j
ijT

1

=1, then (1) and (2) have the solution mπππ === "21  =1/m=1/|S|.  

Moreover, this solution is unique since T is aperiodic and irreducible (Issacson and 

Madsen 1985).  Therefore, the Markov chain {Ψ(k)} has a uniform long run 

distribution.   
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Theorem 1 shows that if the problem generation probability function is chosen such that the 

Markov chain {Ψ(k)} is stationary and the associated transition matrix is symmetric, then the 

Markov chain {Ψ(k)} has a uniform stationary distribution.  The second set of sufficient 

conditions allow for the development of a nonstationary Markov chain.  

 

 

6.2 Nonstationary Markov Chain Sufficient Conditions 

 

For finite nonstationary Markov chains, the transition matrices T(k) that contain the 

probabilities of moving from state Dy to state Dq at outer loop iteration k, are functions of k.  

To define weak and strong ergodicity of nonstationary Markov chains, several definitions are 

needed.  Define the one norm of a vector f=(f1, f2, …, fm) by 

|| f || =∑
=

m

i
if

1

|| . 

Define the infinity norm of matrix T(k) by 

||T(k)|| =

i

max ∑
=

m

j
ijT

1

||  

(Atkinson 1989).  Let T(1), T(2), ... be the transition matrices for a nonstationary Markov 

chain with starting vector f(0).  Define f(j,k)=f(0)T(j+1)T(j+2) … T(k).   

 

A nonstationary Markov chain is weakly ergodic if, for all j, 

+∞→n

lim
)0()0(

sup

gf
||f(j,n)-g(j,n)|| = 0, 

where f(0) and g(0) are starting vectors.  A nonstationary Markov chain is strongly ergodic if 

there exists a vector q = (q1, q2, …, qm), with || q ||=1 and qi≥0, for i=1, 2, …, m such that, for 

all j, 

+∞→n

lim
)0(

sup

f
||f(j,n)-q|| = 0, 
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where f(0) is a starting vector (Isaacson and Madsen 1985).  The following result from 

Isaacson and Madsen (1985) is needed in the proof of Lemma 2. 

 

Lemma 1 

Let {T(k)} be a sequence of transition matrices corresponding to a nonstationary 

weakly ergodic Markov chain.  If there exists a corresponding sequence of left 

eigenvectors {π (k)}, for {T(k)}, satisfying  

∑
+∞

=

+∞<+−
1

||)1()(||
k

kk ππ , 

then the chain is strongly ergodic and for every j, 

+∞→n

lim
)0(

sup

f
||f(j,n)- π|| = 0, 

where 

+∞→k

lim
π (k) = π. 

 

Proof: 

See Isaacson and Madsen (1985). 

 

 

Lemma 2 states that if the problem generation probability function is selected such that the 

corresponding nonstationary Markov chain {Ψ(k)}, Ψ(k)∈ S, k=1, 2, … is weakly ergodic 

and the transition matrices T(k) are symmetric for every k, then the nonstationary Markov 

chain is strongly ergodic.   

 

 

Lemma 2 

Consider an application of the SGHC algorithm.  Assume that the nonstationary 

Markov chain {Ψ(k)}, Ψ(k)∈ S, k=1, 2, … is weakly ergodic and that 
qy DDh (k, ρ(Dy, 
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Dq))=
yqDDh (k, ρ(Dq, Dy)), for every k.  Then the nonstationary Markov chain {Ψ(k)} 

is strongly ergodic and for every j, 

+∞→n

lim
)0(

sup

f
||f(j,n)- π|| = 0, 

where π = [1/|S| 1/|S| ... 1/|S|]. 

 

Proof: 

Let {T(k)} be the sequence of transition matrices corresponding to the nonstationary 

weakly ergodic Markov chain {Ψ(k)}, Ψ(k)∈ S, k=1, 2, … .  Let {π(k)} be the 

corresponding sequence of left eigenvectors.  From Lemma 1, it is sufficient to show 

∑
+∞

=

+∞<+−
1

||)1()(||
k

kk ππ , 

where 

+∞→k

lim
π (k) = [1/|S| 1/|S| ... 1/|S|].  

From Theorem 1, for every k, the Markov chains corresponding to the transition 

matrices T(k) have uniform long run distributions.  Therefore,  

π(k) =  π(k+1) = [1/|S| 1/|S| … 1/|S|], 

for all k, k=1, 2, …, K, hence  

∑
+∞

=

+∞<+−
1

||)1()(||
k

kk ππ  

and 

+∞→k

lim
π (k) = [1/|S| 1/|S| ... 1/|S|]. 

 

 

Lemma 2 shows that if the Markov chain {Ψ(k)}, Ψ(k)∈ S, k=1, 2, … is weakly ergodic and 

the associated transition matrices {T(k)} are symmetric, then the Markov chain {Ψ(k)} is 

strongly ergodic and the SGHC algorithm will (as k approaches +∞) be executing over the 

solution space of each discrete optimization problem contained in the set of fundamentally 
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related discrete optimization problems with equal probability.   Theorem 2 shows that this 

result implies that for every ε>0, there exists an outer loop iteration such that for all future 

outer loop iterations, the SGHC algorithm is executing over the solution space of each 

discrete optimization problem in the set S with probability 1/|S| ± ε. 

 

Theorem 2 

Consider an application of the SGHC algorithm.  Assume that the Markov chain 

{Ψ(k)}, Ψ(k)∈ S, k=1, 2, … is weakly ergodic and that 
qy DDh (k, ρ(Dy, Dq))=

yqDDh (k, 

ρ(Dq, Dy)), for every k=1, 2, … and for every q, y=1, 2, …, m (i.e., the corresponding 

transition matrix is symmetric).   Then for every ε>0, there exists a k(ε)∈ Z+, such that  

1/|S| - ε ≤ Pr{Ψ( k)=y} ≤ 1/|S| + ε, 

for all outer loop iterations k≥k(ε) and for every Dy∈ S,  y=1, 2, …, m.    

 

Proof: 

From Lemma 2,  

+∞→n

lim
)0(

sup

f
||f(1,n)- π|| = 0, 

where π = [1/|S| 1/|S| ... 1/|S|].  Therefore, for every ε>0, there exists a k(ε)∈ Z+, such 

that for all outer loop iterations k≥k(ε),  

)0(

sup

f
||f(1,k)- π|| < ε. 

This means that for every initial solution vector f (0) and for all outer loop iterations 

k≥k(ε), 

||f(1,k)- π|| < ε.  

 

Therefore, independent of the initial discrete optimization problem, for every ε>0 and 

for every discrete optimization Dy∈ S, y=1, 2, …, m, there exists an k(ε)∈ Z+ such 

that, for all outer loop iterations k≥k(ε),  
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1/|S| - ε ≤ Pr{Ψ(k)=y} ≤ 1/|S| + ε. 

                                                                                 

 

 

6.3 Conditions for Weak Ergodicity 

 

Consider an application of the SGHC algorithm.  It is beneficial to select the problem 

generation probability function 
qy DDh (k, ρ(Dy, Dq)) such that the corresponding Markov 

chain {Ψ(k)} is weakly ergodic.  For example, Theorem 2 of Section 6.2 provides sufficient 

conditions that guarantee (as k approaches +∞) the SGHC algorithm will be executing over 

the solution space of each discrete optimization problem in the set S with equal probability.  

These sufficient conditions require that 
qy DDh (k, ρ(Dy, Dq)) be defined such that the 

associated Markov chain {Ψ(k)}, Ψ(k)∈ S, k=1, 2, … is weakly ergodic.  Moreover, for an 

application of a SGHC algorithm, if the Markov chain {Ψ(k)}, Ψ(k)∈ S, k=1, 2, … is weakly 

ergodic, then for sufficiently large k, the probability that the SGHC algorithm is executing 

over the solution space of a particular discrete optimization problem during outer loop 

iteration k is independent of the initial discrete optimization problem.  This guarantees that 

the long-term performance of a SGHC algorithm is independent of the initial discrete 

optimization problem.  This section provides sufficient conditions for the selection of the 

problem generation probability function 
qy DDh (k, ρ(Dy, Dq)) that guarantee that the 

corresponding Markov chain {Ψ(k)} is weakly ergodic.   

 

Examples 6-1, 6-2 and 6-3 illustrate nonstationary Markov chains that are weakly ergodic. 
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Example 6-1 

Consider the nonstationary Markov chain with transition matrices, 

 

T(k) = 

















+−++
++−+
+++−

))1/(1(1)1(2/1)1(2/1

)1(2/1))1/(1(1)1(2/1

)1(2/1)1(2/1))1/(1(1

kkk

kkk

kkk

, k=1, 2, … . 

 

Table 6-1 provides f (1,k)= f (0) T(1)T(2) … T(k) for the initial vectors f (0)= [1 0 0], [0 1 0] and 

[0 0 1] and for k=10,000 and k=20,000.  

   

Table 6-1:  Weakly Ergodic Example One 

Initial Vector f (0) f (1, 10,000) f (1, 20,000) 

[1 0 0] [.3333 .3333 .3333] [.3333 .3333 .3333] 

[0 1 0] [.3333 .3333 .3333] [.3333 .3333 .3333] 

[0 0 1] [.3333 .3333 .3333] [.3333 .3333 .3333] 

 

Example 6-2 

Consider the nonstationary Markov chain with transition matrices, 

 

T(k) = 

















+−+
++−
+++−

)1/(110)1/(1

)1/(1)1/(110

)1(2/1)1(2/1))1/(1(1

kk

kk

kkk

, k=1, 2, … . 

 

Table 6-2 provides f (1,k)= f (0) T(1)T(2) … T(k) for the initial vectors f (0)= [1 0 0], [0 1 0] and 

[0 0 1] and for k=10,000 and k=20,000.   
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Table 6-2:  Weakly Ergodic Example Two 

Initial Vector f (0) f (1, 10,000) f (1, 20,000) 

[1 0 0] [.4 .2 .4] [.4 .2 .4] 

[0 1 0] [.4 .2 .4] [.4 .2 .4] 

[0 0 1] [.4 .2 .4] [.4 .2 .4] 

 

Example 6-3 

Consider the nonstationary Markov chain with transition matrices, 

 

T(k) = 
















+−++
++−+

+++−

))1/(1(1)1(2/1)1(2/1

)1(2/1))1/(1(1)1(2/1

))1(2/(1))1(2/(1)))1/((1(1 222

kkk

kkk

kkk

, k=1, 2, … . 

 

Table 6-3 provides f (1,k)= f (0) T(1)T(2) … T(k) for the initial vectors f (0) = [1 0 0], [0 1 0] 

and [0 0 1] and for k=10,000, k=20,000 and k=100,000.   

 

Table 6-3:  Weakly Ergodic Example Three 

Initial Vector f (0) f (1, 10,000) f (1, 20,000) f (1, 100,000) 

[1 0 0] [.9918 .0041 .0041] [.9904 .0048 .0048] [.9957 .0022 .0022] 

[0 1 0] [.9817 .0092 .0092] [.9870 .0065 .0065] [.9942 .0029 .0029] 

[0 0 1] [.9817 .0092 .0092] [.9870 .0065 .0065] [.9942 .0029 .0029] 

 

 

Examples 6-4 and 6-5 illustrate nonstationary Markov chains that are not weakly ergodic. 
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Example 6-4 

Consider the nonstationary Markov chain with transition matrices, 

 

T(k) = 
















+−++
++−+
+++−

))1/(1(1)1(2/1)1(2/1

)1(2/1))1/(1(1)1(2/1

)1(2/1)1(2/1))1/(1(1

222

222

222

kkk

kkk

kkk

, k=1, 2, … . 

 

Table 6-4 provides f (1,k)= f (0) T(1)T(2) … T(k) for the initial vectors f (0)= [1 0 0], [0 1 0] and 

[0 0 1] and for k=10,000, k=20,000 and k=100,000.   

 

Table 6-4:  Not Weakly Ergodic Example Four 

Initial Vector f (0) f (1, 10,000) f (1, 20,000) f (1, 100,000) 

[1 0 0] [.5567 .4429 .0004] [.5582 .2209 .2209] [.5582 .2209 .2209] 

[0 1 0] [.4429 .5567 .0004] [.2209 .5582 .2209] [.2209 .5582 .2209] 

[0 0 1] [.4998 .4998 .0004] [.2209 .2209 .5582] [.2209 .2209 .5582] 

 

Example 6-5 

Consider the nonstationary Markov chain with transition matrices, 

 

T(k) = 
















+−++
++−+
+++−

))1/(1(1)1(2/1)1(2/1

)1(2/1))1/(1(1)1(2/1

)1(2/1)1(2/1))1/(1(1
222

222

kkk

kkk

kkk

, k=1, 2, … . 

 

Table 6-5 provides f (1,k)= f (0) T(1)T(2) … T(k) for the initial vectors f (0)= [1 0 0], [0 1 0] and 

[0 0 1] and for k=10,000 and k=20,000.  
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Table 6-5:  Not Weakly Ergodic Example Five 

Initial Vector f (0) f (1, 10,000) f (1, 20,000) 

[1 0 0] [1 0 0] [1 0 0] 

[0 1 0] [0 1 0] [0 1 0] 

[0 0 1] [0 0 1] [0 0 1] 

 

 

Examples 6-1 through 6-5 illustrate how transition matrices that correspond to weakly 

ergodic nonstationary Markov chains can look similar to transition matrices that correspond 

to non-weakly ergodic nonstationary Markov chains.  To determine how to differentiate 

between transition matrices that correspond to weakly ergodic nonstationary Markov chains 

and transition matrices that correspond to non-weakly ergodic nonstationary Markov chains 

the following definitions are needed. 

 

The ergodic coefficient of T(k), denoted by α(T(k)), is defined by 

α(T(k)) = 1- [ ]
+

=
∑ −

m

j
ljij kTkT

li 1

)()(
,

sup
, 

where [ ]+− ljij kTkT )()( = max(0, T(k)ij – T(k)lj).  The delta coefficient of T(k) is δ(T(k))=1-

α(T(k)) (Isaacson and Madsen 1985).  Figure 6.1 contains the ergodic and delta coefficients 

of the transition matrices T(k) in Examples 6-1 through 6-5. 

 

Example α δ 

6-1 3/(2(k+1)) 1-3/(2(k+1)) 

6-2 1/(k+1) 1-1/(k+1) 

6-3 3/(2(k+1)) 1-3/(2(k+1)) 

6-4 3/(2(k+1)2) 1-3/(2(k+1)2) 

6-5 3/(2(k+1)2) 1-3/(2(k+1)2) 

Figure 6.1:  Ergodic Coefficients 
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Theorem 3 and Theorem 4 (Isaacson and Madsen 1985) present necessary and sufficient 

conditions that relate weak ergodicity to the ergodic coefficient. 

 

Theorem 3 

Let {Xn} be a nonstationary Markov chain with transition matrices T(k), k=1, 2, … .  

The chain is weakly ergodic if and only if there exists a subdivision of T(1)T(2)T(3) 

… into blocks of matrices [T(1)T(2)T(3) … T(n1)] … [ T(n1+1)T(n1+2) … T(n2)] …   

such that 

∑
+∞

=0j

α(T(nj+1)T(nj+2)…T(nj+1)) = +∞, 

where n0=0. 

 

Proof: 

See Isaacson and Madsen (1985).   

 

 

Theorem 4 

A nonstationary Markov chain is weakly ergodic if and only if, for all j∈ Z+, 

 

+∞→k

lim
δ(T(j)T(j+1) … T(k)) = 0. 

 

Proof: 

See Isaacson and Madsen (1985).   
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Theorem 5 states sufficient conditions based on the selection of the problem generation 

probability function 
qy DDh (k, ρ(Dy, Dq)) that guarantee that the Markov chain {Ψ(k)} is 

weakly ergodic.  

 

Theorem 5 

Consider an application of the SGHC algorithm.  Suppose that 
qy DDh (k, ρ(Dy, 

Dq))=
yqDDh (k, ρ(Dq, Dy)), for every k=1, 2, …, K and for every y, q=1,2, …, m (i.e., 

the corresponding transition matrix T(k) is symmetric).  Consider the transition 

matrices T(k) defined by  

                          Tyq(k) =
qy DDh (k, ρ(Dy, Dq)), 

corresponding to stochastic process {Ψ(k)}, Ψ(k)∈ S, k=1, 2, … .  If δ(T(k))≤1-

1/(k+1), for every k, then the Markov chain {Ψ(k)} is weakly ergodic. 

 

Proof:   

From Theorem 3, it is sufficient to show that 

                                                            ∑
+∞

=

+∞=
1

))((
k

kTα , 

which follows from 

∑
+∞

=1

))((
k

kTα =∑
+∞

=

−
1

)))((1(
k

kTδ  

                                                                 ≥ ∑
+∞

=1k

1/(k+1) 

                                                                 = +∞.                                    

                       

 

Theorem 6 provides an exact problem generation probability function 
qy DDh (k, ρ(Dy, Dq)) 

that guarantees that the Markov chain {Ψ(k)} is weakly ergodic.  Note that the problem 

generation probability function given in Theorem 6 does not satisfy the sufficient conditions 

of Theorem 5. 
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Theorem 6 

Consider an application of the SGHC algorithm to a set of discrete optimization 

problems S, where |S|>2.  If 
yy DDh (k, ρ(Dy, Dy))=1-1/(k+1) for every k=1, 2, …, K and 

for every y=1, 2, …, m and 
qy DDh (k, ρ(Dy, Dq))=1/((|S|-1)(k+1)), for every k=1, 2, …, K 

and for every q, y=1, 2, …, m, where q≠y, then the Markov chain {Ψ(k)} is weakly 

ergodic.  

 

Proof: 

Note that δ(T(k))=1-[(|S|-2)/((|S|-1)(k+1))].  From Theorem 3, it is sufficient to show 

that 

                                                 ∑
+∞

=

+∞=
1

))((
k

kTα , 

which follows from 

∑
+∞

=1

))((
k

kTα =∑
+∞

=

−
1

)))((1(
k

kTδ  

                      =(|S|-2)/(|S|-1)∑
+∞

=1k

1/(k+1) 

                                                                       = +∞. 

 

 

Theorem 6 provides an exact problem generation probability function 
qy DDh (k, ρ(Dy, Dq)) 

that guarantees that the Markov chain {Ψ(k)} is weakly ergodic, where the problem 

generation probability function is only a function of the outer loop iteration k=1, 2, …, K.  

Theorem 7 provides an exact problem generation probability function 
qy DDh (k, ρ(Dy, Dq)) 

that guarantees that the Markov chain {Ψ(k)} is weakly ergodic, where the problem 

generation probability function is a function of both the outer loop iteration k=1, 2, …, K and 

the detachment metric ρ(Dy, Dq).   
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Theorem 7 

Consider an application of the SGHC algorithm to a set of discrete optimization 

problems S where ρ(Dy, Dq)≠0, for all y≠q.   If 
yy DDh (k, ρ(Dy, Dy))=1-1/(k+1) for 

every k=1, 2, …, K and for every y=1, 2, …, m and 

qy DDh (k, ρ(Dy, Dq)) = [1/(ρ(Dy, Dq)(k+1))] / [∑
≠
=

m

yi
i 1

(1/ρ(Dy, Di))], 

for every k=1, 2, …, K and for every q,y=1, 2, …, m, y≠q, then the Markov chain 

{Ψ(k)} is weakly ergodic. 

 

Proof: 

Let  

ε=min{[1/(ρ(Dy, Dq)(k+1))] / [∑
≠
=

m

yi
i 1

(1/ρ(Dy, Di))], y≠q, y,q=1, 2, …, m}. 

Note that 0<ε<+∞, since ρ(Dy, Dq)≠0, for all y≠q.  Then, 

δ(T(k)) ≤ 1-1/(k+1)+(1/(k+1))∑
∑≠

=

≠
= 




















−
m

yq
q

m

yi
i

iy

qy

DD

DD

1

1

),(/1

),(/1
ε

ρ

ρ
, 

for some y=1, 2, …, m. 

 

                                     = 1-ε(|S|-1)/(k+1), 

where ε>0.   

 

From Theorem 3, it is sufficient to show that  

                                      ∑
+∞

=

+∞=
1

))((
k

kTα , 

which follows from 
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                               ∑
+∞

=1

))((
k

kTα =∑
+∞

=

−
1

)))((1(
k

kTδ   

   ≥ ε(|S|-1)∑
+∞

=1k

1/(k+1) 

                                                               = +∞. 

 

 



 

 

 

 

 

 

 

 

Chapter 7:                                  

Performance of Simultaneous 

Generalized Hill Climbing Algorithms 
 

 

This chapter studies the performance of applications of the SGHC algorithm where the 

problem generation probability function meets the following conditions (referred to as 

Criteria A). 

 

Criteria A:   

(i)              
qy DDh (k, ρ(Dy, Dq) ) = 

yqDDh  (k, ρ(Dq, Dy)), 

(ii)            
+∞→k

lim
yy DDh (k, ρ(Dy, Dy)) = 1,                                  

         (iii)           
yy DDh (k, ρ(Dy, Dy)) is monotonically increasing 

                  (iv)            the Markov chain {Ψ( k)} is weakly ergodic,   

for every q, y=1, 2, …, m and for every k=1, 2,  …, K. 

 

Note that, by Lemma 2, if a SGHC algorithm satisfies Criteria A, then the Markov chain 

{Ψ(k)} is strongly ergodic.   
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Condition (i) in Criteria A requires that the transition matrices {T(k)} corresponding to the 

Markov chain {Ψ( k)} are symmetric.  Since, the detachment metric is symmetric (i.e., ρ(Dy, 

Dq) =ρ(Dq, Dy)) this condition can be easily satisfied.  Condition (ii) in Criteria A requires 

that, as the outer loop iterations k=1, 2, … approach +∞, the probability that the SGHC 

algorithm will stay in the current discrete optimization problem is approaching one.  

Therefore, the transition matrices {T(k)} corresponding to the Markov chain {Ψ(k)} must be 

such that the diagonal elements approach one as k  approaches +∞.  Condition (iii) in Criteria 

A requires that these diagonal elements are monotonically increasing.  This condition implies 

that as k increases so does the probability that the SGHC algorithm will stay in a given 

discrete optimization problem.   

 

Condition (iv) in Criteria A requires that the Markov chain {Ψ(k)} is weakly ergodic.  This is 

the most difficult condition to verify when specifying the problem generation probability 

function for a SGHC algorithm.  Section 6.3 focused on this difficulty.  Recall, the Markov 

chain {Ψ(k)} is weakly ergodic if the problem generation probability function satisfies the 

sufficient conditions of Theorem 5, Theorem 6 or Theorem 7.  Moreover, if the problem 

generation probability function for a SGHC algorithm satisfies the sufficient conditions of 

Theorem 6 or Theorem 7, then the SGHC algorithm satisfies Criteria A. 

 

 

7.1 The Simultaneous Generalized Hill Climbing Algorithm Visits Each 

Discrete Optimization Problem Infinitely Often 

 

This section shows that a SGHC algorithm that satisfies Criteria A visits each discrete 

optimization problem in the set of fundamentally related discrete optimization problems 

infinitely often. 

 

Theorem 2 shows that for all ε>0, there exists an outer loop iteration k(ε) such that the SGHC 

algorithm is executing over the solution space of each discrete optimization problem in the 

set S with probability 1/|S| ± ε, for all outer loop iterations k≥k(ε).  Lemma 3 is an extension 
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of Theorem 2.  Lemma 3 shows that for all ε>0 and for every positive integer k  there exists 

an outer loop iteration k(ε)≥ k , such that for all outer loop iterations k≥k(ε), the SGHC 

algorithm will be in each discrete optimization problem in the set S with probability 1/|S| ± ε.   

 

Lemma 3 

Consider an application of the SGHC algorithm where the problem generation 

probability function satisfies Criteria A.  Then for all ε>0, where 1/|S|>ε, and for 

every k ∈ Z+, there exists an outer loop iteration k(ε)≥ k , such that for every outer 

loop iteration k≥k(ε),   

1/|S| - ε ≤ Pr{Ψ(k)=y} ≤ 1/|S| + ε 

for every Dy∈ S, y = 1, 2, …, m.    

 

Proof: 

Since the Markov chain {Ψ(k)} is strongly ergodic, by Lemma 2 for every j, 

+∞→n

lim
)0(

sup

f
||f(j,n)- π|| = 0, 

where, 

π = [1/|S| 1/|S| … 1/|S|]. 

In particular, 

+∞→n

lim
)0(

sup

f
||f ( k ,n)- π|| = 0. 

Therefore, for all ε>0, there exists k(ε)≥ k  such that for every outer loop iteration 

k≥k(ε),  

)0(

sup

f
||f( k ,k)- π|| < ε. 

Hence, 

1/|S| - ε  ≤  Pr{Ψ(k)=y} ≤ 1/|S| + ε 
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for every Dy∈ S, y=1, 2, …, m and for every k≥k(ε)≥ k .                   

    

 

Lemma 4 is needed in the proof of Theorem 8.  Lemma 4 shows that for every Dy∈ S, for all 

ε>0 and for every positive integer k , there exist an infinite sequence of outer loop iterations 

k1(ε), k2(ε), k3(ε) …, where k <k1(ε)<k2(ε)<k3(ε) … such that the SGHC algorithm is 

executing over the solution space of Dy during outer loop iterations k1(ε), k2(ε), k3(ε), … with 

probability 1/|S| ± ε.   

                                                            

Lemma 4 

Consider an application of the SGHC algorithm where the problem generation 

probability function satisfies Criteria A.  Then for all ε>0, for every k ∈ Z+, and for 

every discrete optimization problem Dy∈ S, y=1, 2, …, m, there exists a sequence of 

outer loop iterations k1(ε), k2(ε), k3(ε), … such that  

k < k1(ε) < k2(ε) < k3(ε) … 

and 

1/|S| - ε ≤ Pr{Ψ(ki(ε))=y} ≤ 1/|S| + ε 

for every i=1, 2, … .   

 

Proof: 

The proof is by induction.   

 

Base case: 

From Lemma 3, there exists k(ε)≥ k such that  

1/|S| - ε ≤ Pr{Ψ(k)=y} ≤ 1/|S| + ε 

for every k≥k(ε).  Therefore, there exists an outer loop iteration k1(ε)> k   

1/|S| - ε ≤ Pr{Ψ(k1(ε))=y} ≤ 1/|S| + ε. 
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Induction Step:  

Assume there exists outer loop iterations k1(ε), k2(ε), …, kj(ε) such that  

k < k1(ε) < k2(ε) < …< kj(ε) 

and 

1/|S| - ε ≤ Pr{Ψ(ki(ε))=y} ≤ 1/|S| + ε 

for all i=1, 2, …, j. 

 

From Lemma 3, there exists k(ε)≥kj(ε) such that  

1/|S| - ε ≤ Pr{Ψ(k)=y} ≤ 1/|S| + ε 

for every k≥k(ε).  Therefore, there exists an outer loop iteration kj+1(ε)>ki(ε) 

k < k1(ε) < k2(ε) < …< kj+1(ε) 

and 

1/|S| - ε ≤ Pr{Ψ(ki(ε))=y} ≤ 1/|S| + ε 

for all i=1, 2, …, j+1. 

 

 

Theorem 8 guarantees that, for every k ∈ Z+ and for every discrete optimization problem Dy, 

y=1, 2, …, m, there exists an outer loop iteration k, where k> k  and the SGHC will be 

executing over the solution space of discrete optimization problem Dy during outer loop 

iteration k. 

 

Theorem 8 

Consider an application of the SGHC algorithm where the problem generation 

probability function satisfies Criteria A.  Then for every k ∈ Z+, and for every discrete 

optimization problem Dy∈ S, y=1, 2, …, m, there exists an outer loop iteration k> k  

such that  Ψ(k)=y. 
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Proof: 

From Lemma 4, there exists a sequence of outer loop iterations k1(ε), k2(ε), k3(ε), … 

such that  

k < k1(ε) < k2(ε) < k3(ε) … 

and 

1/|S| - ε ≤ Pr{Ψ( ki(ε))=y} ≤ 1/|S| + ε 

for every i=1, 2, … .   

 

Therefore, 

Pr{Ψ(k)≠y, for all k> k } ≤ Pr{Ψ(ki(ε))≠y, for all i=2, …} 

                             =
+∞→n

lim
 (1-1/|S| ± ε)n = 0. 

 

 

 

7.2 The Expected Number of Iterations the Simultaneous Generalized Hill 

Climbing Algorithm Spends in Each Discrete Optimization Problem  

 

This section investigates the expected number of outer loop iterations that a SGHC algorithm 

that satisfies Criteria A will execute over the solution space of a particular discrete 

optimization problem from the set of fundamentally related discrete optimization problems S.  

Moreover, this section develops a lower bound for the probability that a SGHC algorithm 

that satisfies Criteria A will, for a given number of outer loop iterations, continue to execute 

over the solution space of a particular discrete optimization problem. 

 

Lemma 5 shows that the expected number of outer loop iterations that the SGHC algorithm is 

executing over the solution space of a particular discrete optimization problem has a lower 

bound that is a function of the problem generation probability function. 
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Lemma 5 

Consider an application of the SGHC algorithm where the problem generation 

probability function satisfies Criteria A.  Let Xk(Dy) be the number of consecutive 

outer loop iterations, starting at k, such that the SGHC algorithm is in Dy.  Then 

 

E[Xk(Dy)| Ψ(k-1)=y] ≥ 
))),(,(1(

)),(,(

yyDD

yyDD

DDkh

DDkh

yy

yy

ρ
ρ

−
. 

 

Proof: 

E[Xk(Dy)| Ψ(k-1)=y] = ∑
+∞

=1n

nPr{Xk= n} 

                       = ∑
+∞

=1n

n(1-
yy DDh ((k+n), ρ( Dy, Dy)))∏

−

=

1

0

n

i
yy DDh (k+i, ρ( Dy, Dy)) 

                       = ∑
+∞

=1n

 ∏
−

=

1

0

n

i
yy DDh (k+i, ρ( Dy, Dy)) 

 

Since 
yy DDh (k, ρ( Dy, Dy)) is monotonically increasing and 0<

yy DDh (k, ρ( Dy, Dy))<1,  

             E[Xk(Dy)| Ψ(k-1)=y] ≥ ∑
+∞

=1n

(
yy DDh (k, ρ( Dy, Dy)))

n 

                       = 
))),(,(1(

)),(,(

yyDD

yyDD

DDkh

DDkh

yy

yy

ρ

ρ

−
. 

 

 

Consider a particular discrete optimization problem, Dy∈ S.  Theorem 9 shows that for every 

positive integer M, there exists k∈ Z+, such that if the SGHC algorithm is executing over the 

solution space of Dy during outer loop iteration k-1, then the expected number of outer loop 

iterations that the SGHC algorithm will continue to execute over the solution space of Dy is 

at least M. 
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Theorem 9 

Consider an application of the SGHC algorithm where the problem generation 

probability function satisfies Criteria A. Then for every discrete optimization problem 

Dy∈ S and for every M∈ Z+, there exists a outer loop iteration k(M) such that for all 

outer loop iterations k≥k(M)  

E[Xk(Dy) | Ψ(k-1)=y] ≥ M. 

 

Proof: 

Let Dy∈ S and M∈ Z+ be given.  Since
∞→k

lim
yy DDh  (k, ρ(Dy, Dy))=1, for every 

1

1

+M
>0, then there exists a outer loop iteration k(M) such that for every k≥k(M)  

|| 1- 
yy DDh  (k, ρ(Dy, Dy))  || ≤ 

1

1

+M
. 

 Therefore, from Lemma 5, for every k≥k(M), 

              E[Xk(Dy) | Ψ(k-1)=y] = ∑
+∞

=1n

nPr{Xk= n} 

                                      ≥   
))),(,(1(

)),(,(

yyDD

yyDD

DDkh

DDkh

yy

yy

ρ

ρ

−
 

                                      ≥ 
||)),(,(1||

1

yyDD DDkh
yy

ρ−
-1 

                                      ≥ M. 

 

 

Theorem 10 shows that there is a lower bound for the probability that a SGHC algorithm that 

satisfies Criteria A will continue to execute over the solution space of a particular discrete 

optimization problem from the set of fundamentally related discrete optimization problems. 
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Theorem 10 

Consider an application of the SGHC algorithm where the problem probability 

function satisfies Criteria A, then for every outer loop iteration k 

P{Xk(Dy)>M | Ψ(k-1)=y} ≥ 
yy DDh  (k, ρ(Dy, Dy))

M. 

 

Proof:  

P{Xk(Dy)>M | Ψ(k-1)=y}=1- P{Xk(Dy)≤M | Ψ(k-1)=y} 

       =1-∑
=

M

n 0

P{Xk(Dy)=n | Ψ(k-1)=y} 

      =
yy DDh (k, ρ(Dy, Dy)))- ∑

=

M

n 1

(1-
yy DDh (k+n, ρ(Dy, Dy))) ∏

−

=

1

0

n

i
yy DDh (k+i, ρ(Dy, Dy))  

      =∏
=

M

i 0
yy DDh (k+i, ρ(Dy, Dy)). 

 Since 
yy DDh (k, ρ(Dy, Dy)) is monotonically increasing in k, 

       ≥ (
yy DDh (k, ρ(Dy, Dy)))

M. 

 

 

 

7.3 Convergence of Simultaneous Generalized Hill Climbing Algorithms 

 

This section develops sufficient conditions that guarantee that a SGHC algorithm that 

satisfies Criteria A will visit the globally optimal solution over the set of fundamentally 

related discrete optimization problems.  Recall, for all inner loop iterations the SGHC 

algorithm is executing a GHC algorithm over the solution space of a particular discrete 

optimization problem from the set of fundamentally related discrete optimization problems.  

This GHC algorithm will be referred to as the underlying GHC algorithm with hill climbing 

random variable R k.  Define { k

n
Q (Dy)}, k =1, 2, …, n =1, 2, …, N ( k ), y=1, 2, …, m to be 

the Markov chain corresponding to the underlying GHC algorithm executing over the 

solution space of Dy, y=1, 2, …, m (see Sections 5.1 and 5.2).    
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Lemma 6 is needed for the proof of Theorem 11.  Lemma 6 shows that for every discrete 

optimization problem Dy in the set of fundamentally related discrete optimization problems 

there exists an infinite sequence of outer loop iterations such that the SGHC algorithm is 

executing over the solution space of Dy during these outer loop iterations. 

 

Lemma 6 

Consider an application of the SGHC algorithm where the problem generation 

probability function satisfies Criteria A.  For every k ∈ Z+ there exists, k1, k2, … such 

that 

k < k1 < k2 < k3 … 

and 

Ψ(ki) = Dy, 

for all y=1, 2, …, m and for all outer loop iterations ki, for all i=1, 2, … .   

 

Proof: 

The proof is by induction.   

 

Base Case:  From Theorem 8, there exists k1> k  such that  

Ψ(k1) = Dy. 

 

Induction Step:  Assume there exist k1, k2, …, kj, such that  

k < k1 < k2 < … < kj, 

and 

Ψ(ki) = Dy, 

for all i=1, 2, …, j. 

 

From Theorem 8, there exists kj+1>kj such that  

k < k1 < k2 < … < kj+1, 

and 
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Ψ(ki) = Dy, 

for all i=1, 2, …, j+1. 

 

 

Theorem 11 is needed in the proof of Theorem 12.  Theorem 11 shows that for every discrete 

optimization problem Dy∈ S, there is an outer loop iteration k such that the SGHC algorithm 

is executing over the solution space of Dy during outer loop iteration k and continues 

executing over the solution space of Dy for more than M outer loop iterations.  

 

Theorem 11 

Consider an application of the SGHC algorithm where the problem generation 

probability function satisfies Criteria A.  For every discrete optimization problem Dy, 

y=1, 2, …, m and for every M∈ Z+, there exists an outer loop iteration k=k(Dy, M), 

such that for outer loop iterations k´=k, k+1, …, k+M, 

Ψ(k´) = y. 

 

Proof: 

The proof is by contradiction.  Assume that there does not exist a k such that  

Ψ(k´) = y, 

k´=k, k+1, …, k+M.  From Lemma 6, there exists k1, k2, … such that 

k1-1 < k2-1 < k3-1 … 

and 

Ψ(ki-1) = Dy, 

for all i=1, 2, … .   

 

From Theorem 10,  

Pr{X
ik (Dy)>M}=Pr{X

ik (Dy)>M | Ψ(ki-1)=y} ≥ 
yy DDh (ki, ρ(Dy, Dy))

M. 

Therefore, 

      Pr{X
ik (Dy)≤M} ≤ 1-(

yy DDh (ki, ρ(Dy, Dy)))
M. 

Note that, 
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Pr{X
ik (Dy)>M, for some ki, i=1, 2, … .} 

≤ Pr{Xk(Dy)>M, for some k=1, 2, … .}. 

Therefore, 

            1 - Pr{X
ik (Dy)>M, for some ki, i=1, 2, … .} 

≥ 1 - Pr{Xk(Dy)>M, for some k=1, 2, … .}. 

Hence, 

Pr{Xk(Dy)≤M , for all k=1, 2, … .} 

≤ Pr{X
ik (Dy)≤M, for all i=1, 2, … .}  

≤ ∏
+∞

=1i

(1-(
yy DDh (ki, ρ( Dy, Dy)))

M) = 0 

since, 

+∞→k

lim
yy DDh (k, ρ(Dy, Dq)) = 1. 

This is a contradiction. 

 

 

Lemma 7, Lemma 8 and Theorem 12 consider an application of the SGHC algorithm that 

satisfies Criteria A where for all outer loop iterations k, if a new discrete optimization 

problem is generated, the hill climbing random variable, the generation probability function 

and the inner loop bounds are reset (i.e., Rk= R 1, gij(k)=gij(1), N(k)= N (1)).   

 

Lemma 7 and Lemma 8 are needed for the proof of Theorem 12.  Lemma 7 shows that if a 

new discrete optimization problem Dy is generated at outer loop iteration k and the SGHC 

algorithm executes over the solution space of Dy for outer loop iterations k, k+1, …, k+M, 

then during outer loop iterations k, k+1, …, k+M the SGHC algorithm can be modeled by the 

Markov Chain { k

n
Q (Dy)}, k =1, 2, …, M+1, n =1, 2, …, N ( k ).  Lemma 8 shows that the 

vector that contains the probabilities that the SGHC algorithm is at solution ωi∈Ω y, i=1, 2, 

…, |Ωy| during the last inner loop iteration N(k+M) of outer loop iteration k+M is 

f
))(,1(

1

1
∑

+

=

M

k

kN

=  f (0) Py(1) )1(N  Py(2) )2(N  … Py(M+1) )1( +MN , for some f (0). 
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Lemma 7 

Consider an application of the SGHC algorithm where the problem generation 

probability function satisfies Criteria A and the SGHC algorithm is defined such that 

for all outer loop iterations k, if Ψ(k)≠Ψ(k-1), then the hill climbing random variable, 

the generation probability function and the inner loop bounds are reset (i.e., Rk= R 1, 

gij(k)=gij(1), N(k)= N (1)).  

 

If y=Ψ(k)≠Ψ(k-1) and Ψ(k´)=y, for k´=k, k+1, …, k+M and for some M∈ Z+, then 

the SGHC algorithm can be modeled by the Markov Chain { k

n
Q (Dy)}, k =1, 2, …, 

M+1, n =1, 2, …, N ( k ), during outer loop iterations k, k+1, …, k+M. 

 

Proof: 

Consider the Markov chain { k

n
Q (Dy)}, k =1, 2, …, and n =1, 2, …, N ( k ) 

corresponding to the underlying GHC algorithm executing over the solution space of 

Dy, y=1, 2, …, m.  Recall, from Sections 5.1 and 5.2 that k  corresponds to the GHC 

algorithm’s hill climbing random variable kR  and the generation probability function 

gij(k).  Since Ψ(k´)=y, for k´=k, k+1, …, k+M, for some y=1, 2, …, m, then during 

outer loop iterations k, k+1, …, k+M the SGHC algorithm can be modeled by the 

Markov Chain k

n
Q (Dy)}, where (since the hill climbing random variable, the 

generation probability function and the inner loop bounds are reset (i.e., Rk= R 1, 

gij(k)=gij(1), N(k)= N (1)),  k =1, 2, …, M+1 and n =1, 2, …, N  ( k ).   

 

 

Lemma 8 

Consider an application of the SGHC algorithm where the problem generation 

probability function satisfies Criteria A and the SGHC algorithm is defined such that 

for all outer loop iterations k, if Ψ(k)≠Ψ(k-1), then the hill climbing random variable, 
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the generation probability function and the inner loop bounds are reset (i.e., Rk= R 1, 

gij(k)=gij(1), N(k)= N (1)).   

 

If y=Ψ(k)≠Ψ(k-1) and Ψ(k´)=y, for k´=k, k+1, …, k+M, for some M∈ Z+, then the 

vector that defines the probability that the SGHC is in solution ωi∈Ω y, i=1, 2, …, |Ωy| 

at the last inner loop iteration N(k+M) of outer loop iteration k+M is 

f
))(,1(

1

1
∑

+

=

M

k

kN

=  f (0) Py(1) )1(N  Py(2) )2(N  … Py(M+1) )1( +MN , for some f (0). 

 

Proof: 

From Lemma 7, during outer loop iterations k, k+1, …, k+M, the SGHC algorithm 

can be modeled by the Markov Chain { k

n
Q (Dy)}, k =1, 2, …, M+1, n =1, 2, …, 

N ( k ).  Therefore, the corresponding transition matrices are  

Py(1) for k =1, n =1, 2, …, N (1), 

Py(2) for k =2, n =1, 2, …, N (2), 

#  

Py(M+1) for k =M+1, n =1, 2, …, N (M+1). 

Therefore, the vector that defines the probability that the SGHC algorithm is in 

solution ωi∈Ω y, i=1, 2, …, |Ωy| at the last inner loop iteration N(k+M) of outer loop 

iteration k+M is 

f
))(,1(

1

1
∑

+

=

M

k

kN

 =  f (0) Py(1) )1(N  Py(2) )2(N  … Py(M+1) )1( +MN , for some f (0). 

 

 

Theorem 12 presents sufficient conditions that guarantee that a SGHC will visit every 

globally optimal solution in every discrete optimization problem in S.   

 

Theorem 12 

Consider an application of the SGHC algorithm where the problem generation 

probability function satisfies Criteria A and the SGHC algorithm is defined such that 
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for all outer loop iterations k, if Ψ(k)≠Ψ(k-1), then the hill climbing random variable, 

the generation probability function and the inner loop bounds are reset (i.e., Rk= R 1, 

gij(k)=gij(1), N(k)= N (1)).  If the underlying GHC algorithm converges to the set of 

globally optimal solutions, Gy⊆Ω y, for every Dy=(Ωy, fy)∈ S, then for all ε>0, there 

exists a finite iteration such that the SGHC algorithm visits Gy with probability 

greater than 1-ε. 

 

Proof: 

Since the GHC algorithm converges for every Dy=(Ωy, fy)∈ S, then the Markov chain 

{ k

n
Q (Dy)} is strongly ergodic for every Dy, y=1, 2, …, m (Isaacson and Madsen 

1985).  Therefore, 

+∞→n

lim
)0(

sup

f
|| f

))(,1(
1

1
∑

+

=

M

k

kN

 -q|| = 0, 

where qi=0, for all i =1, 2, …, |Ωy| that do not correspond to the globally optimal 

solution and ∑
∈ yGg

qg=1.  

Therefore, for all ε>0, there exists a M(ε)∈ Z+ such that for all outer loop iterations 

M≥M(ε), 

)0(

sup

f
|| f

))(,1(
1

1
∑

+

=

M

k

kN

 -q|| < ε. 

From Theorem 11, there exists an outer loop iteration j such that the SGHC algorithm 

is in discrete optimization problem Dy at outer loop iterations j, j+1, …, j+M(ε).   Let 

k=max {k´: k´≤ j and Ψ(k´-1)≠y}, 

then for outer loop iterations k, k+1, …, j, j+1, …, j+M(ε), the SGHC algorithm can 

be modeled by the Markov chain { k

n
Q (Dy)}, k =1, 2, …, M+1, n =1, 2, …, N ( k ), 

where M≥M(ε).  Since M≥M(ε), then 

)0(

sup

f
|| f

))(,1(
1

1
∑

+

=

M

k

kN

 -q|| < ε. 
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Hence, for inner loop iteration N(j+M(ε)) during outer loop iteration j+M(ε), the 

SGHC algorithm visits an element of Gy with probability greater than 1-ε. 

 

 

Corollary 1 presents sufficient conditions that guarantee that a SGHC algorithm that satisfies 

Criteria A will visit every globally optimal solution over the set of discrete optimization 

problem in S.  

 

Corollary 1 

Consider an application of the SGHC algorithm where the problem generation 

probability function satisfies Criteria A and the SGHC algorithm is defined such that 

for every outer loop iteration k, if Ψ(k)≠Ψ(k-1), then the hill climbing random 

variable, the generation probability function and the inner loop bounds are reset (i.e., 

Rk= R 1, gij(k)=gij(1), N(k)= N (1)).  Let Gy be the set of globally optimal solutions 

over the set of discrete optimization problems in S (i.e., for all ω∈ Gy, 

fy(ω)=min{fi(ωi): for all i=1, 2,…, m, for all ωi∈ Gi}.  If the underlying GHC 

algorithm converges to the set of globally optimal solution Gj for every Dj=(Ωj, fj)∈ S, 

then for all ε>0, there exists an iteration such that the SGHC algorithm visits an 

element of Gy with probability greater than 1-ε. 

 

Proof: 

Immediately follows from Theorem 12. 



 

 

 

 

 

 

 

 

Chapter 8:                                     

Illustrative Example 
 

 

This chapter contains an illustrative example of a set of fundamentally related discrete 

optimization problems.  The chapter is organized as follows.  Section 8.1 presents the 

Traveling Salesman Problem and formulates it as a discrete optimization problem.  Section 

8.2 presents the Multiple Traveling Salesman Problem and formulates it as a set of 

fundamentally related discrete optimization problems 

 

 

8.1 The Traveling Salesman Problem 

 

The traveling salesman problem (TSP) is a well-known NP-hard discrete optimization 

problem (Lawler 1985).  The TSP is used to illustrate various local search algorithms 

because it is useful for modeling a variety of real world problems.  For instance, traditional 

applications of the TSP include a variety of vehicle routing and scheduling problems.  More 

recently, applications of the TSP have been expanded to include modern applications like the 

printing of circuit boards, x-ray crystallography, overhauling of gas turbine engines, and the 

controlling of industrial robots (Johnson and Jacobson 2000b).  

 

To formally define the TSP the following definitions are needed (Lawler 1985).  Define a 

graph to be a finite set of vertices, some pairs of which are joined by edges.  A cycle in a 



Diane E. Vaughan                         Chapter 8.  Illustrative Example                                       74 

  

graph is a set of vertices of the graph, which is such that it is possible to move from vertex to 

vertex, along edges of the graph, so that all vertices are encountered exactly once, finishing at 

the start.  If a cycle contains all the vertices of the graph, it is called a Hamiltonian cycle (or 

tour).  The TSP is defined as follows (Garey and Johnson 1979). 

 

Instance:  Given a set of n cities C={c1, c2, …, cn} and a distance matrix D that represents 

the cost of traveling between the cities in the set C.   

 

Question:   Find a Hamiltonian cycle H=(c1, c2, …, cn) such that  

f(H)=∑
−

=

1

1

n

j

D(cj, cj+1) + D(cn, c1) 

is minimized. 

  

An instance of a TSP is a discrete optimization problem, where the solution space is the set 

of possible all Hamiltonian cycles (with each tour consisting of n cities), Ω={ω1, ω2, …, 

ω
2

)!1( −n
}.  The objective function value for each solution ωi=(c1, c2, …, cn)∈Ω  is the sum of 

the distances the tour depicts, f(ωi)=∑
−

=

1

1

n

j

D(cj, cj+1) + D(cn, c1).  The optimal objective 

function value represents the least distance traveled.  A common neighborhood function used 

for the TSP is the 2-Opt neighborhood function. 

 

The 2-Opt neighborhood function for the TSP can be described as moving from one solution 

ωp to another solution ωq by the exchange of two edges.  For example, consider the finite set 

of seven cities C={c1, c2, c3, c4, c5, c6, c7}, and the corresponding solution space Ω={ω1, ω2, 

…, ω60}.  Figure 8.1 illustrates the 2-Opt neighborhood moving from solution ω1=(c1, c2, c3, 

c4, c5, c6, c7) to solution ω2= (c1, c5, c4, c3, c2, c6, c7).                
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Figure 8.1:  The 2-Opt Neighborhood Function 

 

For a complete discussion of the 2-Opt neighborhood function, see Aarts and Lenstra (1997).   

 

The city exchange neighborhood function for the TSP can be described as moving from one 

solution ωp to another solution ωq by the exchange of two cities.  For example, consider the 

finite set of seven cities C={c1, c2, c3, c4, c5, c6, c7}, and the corresponding solution space 

Ω={ω1, ω2, …, ω60}.  Figure 8.2 illustrates the city exchange neighborhood function moving 

from solution ω1=(c1, c2, c3, c4, c5, c6, c7) to solution ω2= (c1, c5, c3, c4, c2, c6, c7).                                                          

 

 

 

Figure 8.2:  The City Exchange Neighborhood Function 
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8.2 The Multiple Traveling Salesman Problem 

 

This section considers simultaneously approaching several traveling salesman problems 

using SGHC algorithms.  Specifically, the Multiple Traveling Salesman Problem (MTSP) is 

considered.  The MTSP is defined as follows. 

 

Instance:  Given a set of n cities Ob={c1, c2, …, cn}, a set of m subsets of Ob, O={C1, C2, ..., 

Cm}, and a distance matrix D that represents the cost of traveling  between the cities in the set 

Ob.   

 

Question:   Find a Hamiltonian cycle H=(c1, c2, …, c || yΩ ) where there exists a Cy, y=1, 2, …, 

m such that  cj∈ Cy, for every j=1, 2, …, n, and 

f(H)=∑
−

=

1

1

n

j

D(cj, cj+1) + D(cn, c1) 

is minimized. 

 

Note that each of the sets Cy∈ O represents an instance of the TSP, Dy.  Section 8.1 

formulated the TSP as a discrete optimization problem.  Therefore, the MTSP problem can 

be represented by set of discrete optimization problems S={D1, D2, ..., Dm}.  The set S={D1, 

D2, ..., Dm} is a set of fundamentally related discrete optimization problems.  To see this, 

note that each discrete optimization problem Dy∈ S, y=1, 2, …, m is fully defined by 

Cy⊆ Ob={c1, c2, …, cn}.  Therefore, Cy is the fundamental relation set of discrete 

optimization problem Dy. 

 

 

8.2.1 Illustrative Example of the Multiple Traveling Salesman Problem 

 

Consider the instance of the MTSP problem defined in the following tables.  Table 9-1 

contains the set Ob of cities and               Table 8-2 contains the set of fundamental relation 
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sets, O={C1, C2, ..., Cm}, Cy⊆ Ob.  Then the TSP’s, Dy, y=1, 2, 3, 4, can be represented by the 

binary activity vectors cy∈ {0, 1}n in Table 8-3. 

 

 

 

      Table 8-1:  The Set of Objects, Ob 

Ob={Minneapolis, Washington D.C., Chicago, Los Angeles, Seattle, 

San Francisco, New York, Pittsburgh, Detroit, Dallas, Boulder} 

 

              Table 8-2:  Fundamental Relation Set 

TSP 

Instance 

Fundamental 

Relation Set 

D1 C1={Washington D.C., Chicago, Los Angeles, Seattle, San 

Francisco, New York, Boulder} 

D2 C2={Minneapolis, Washington D.C., Chicago, Los Angeles, 

Seattle, New York, Pittsburgh, Dallas, Boulder} 

D3 C4={Minneapolis, Washington D.C., Chicago, Los Angeles, 

Seattle, New York, Detroit, Boulder} 

D4 C4={Minneapolis, Washington D.C., Chicago, Los Angeles, 

Seattle, San Francisco, New York, Pittsburgh, Boulder} 

 

               Table 8-3:  Binary Activity Vectors 

Option cy = (B1, B2, …, B11)   

c1 (0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1) 

c2 (1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1) 

c3 (1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1) 

c4 (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1) 
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The detachment metric ρ(Dy, Dq), for every y,q=1, 2, 3, 4 can be depicted by the distance 

matrix and distance diagram in Figure 8.3. 

 

 

Figure 8.3:  Distance Matrix and Distance Diagram 
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Chapter 9:                             

Computational Results 
 

   

This chapter provides computational results for addressing a MTSP with SGHC algorithms.  

For comparison purposes, GHC algorithms are also applied to the individual members in the 

set of fundamentally related discrete optimization problems.  These computational results 

suggest that optimal/near optimal solutions can be reached in less total iterations using a 

SGHC algorithm.    

 

To develop a MTSP, a set consisting of 20 cities was generated by randomly locating each 

city on a 1000 by 1000 unit grid.  Four TSPs of size 18 were generated by randomly selecting 

18 of the 20 cities for each traveling salesman problem.  In the case where an identical set of 

cities was generated for two or more of the problems, a completely new set of discrete 

optimization problems was generated, ensuring four distinct randomly generated TSPs.   

 

The four randomly generated TSPs are arbitrarily labeled D1, D2, D3, and D4. The detachment 

metric ρ(Dy, Dq), between the TSPs, was calculated for all y,q=1, 2, 3, 4.   The distance 

matrix and distance diagram are depicted in Figure 9.1. 
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Figure 9.1:  Distance Matrix and Distance Diagram 

 

 

9.1 Stationary Markov Chain Computational Results 

 

Computational results with Monte Carlo search, pure local search, and simulated annealing 

using SGHC algorithms are reported.   For comparison purposes, computational results with 

Monte Carlo search, pure local search, and simulated annealing using GHC algorithms are 

also reported. The 2-Opt neighborhood function was used for all executions of the SGHC and 

GHC algorithms.  For the SGHC algorithms, the problem generation probability function was 

defined as  

                    
qy DDh (k, ρ(Dy, Dq)) = [1/ρ(Dy, Dq)] / [∑

≠
=

4

1
yi

i

(1/ρ(Dy, Di))], y≠q 

and   

yy DDh (k, ρ(Dy, Dy)) = 1- ∑
≠
=

4

1
yq

q

 [1/(ρ(Dy, Dq)] / [∑
≠
=

4

1
yi

i

 (1/ρ(Dy, Di))] = 0, 

for every y,q= 1, 2, 3, 4, y≠q for every k=1, 2, …, K. 

 

This problem generation probability function is such that the associated transition matrix is 

symmetric and the Markov chain {Ψ(k)} is stationary.  Therefore, by Theorem 1, the Markov 

chain {Ψ(k)} has a uniform stationary distribution, hence as k approaches infinity, the SGHC 

algorithm is executing over the solution space of each discrete optimization problem in S 
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={D1, D2, …, Dm} with probability 1/m=1/|S|=1/4.  Moreover, this problem generation 

function guarantees the discrete optimization problem over which the SGHC algorithm is 

executing changes at every outer loop iteration k (i.e., Ψ(k)≠Ψ(k-1), for all k=1, 2, … ). 

 

Executions with different values of K and N=N(k), k = 1, 2, …, K are reported.  To compare 

the performance of applying a SGHC algorithm versus applying a GHC algorithm, the inner 

and outer loop bounds of the SGHC algorithm were doubled.  Therefore, the total number of 

iterations that the SGHC algorithm executes is equal to the total number of iterations 

executed using the GHC algorithm for the four individual problems. Let R∈ Z+ represent the 

total number of replications executed for each SGHC and GHC algorithm formulation.  For 

each replication, a different randomly generated initial tour was used.  The means, µ, 

standard deviations, σ, and the minimum and maximum distances, were computed from the 

optimal tour distances across these R replications.   The value γ in Tables 9-1 through 9-6 

represents the number of replications for which the algorithms find the minimum distance 

tour.  For simulated annealing, tk is updated by multiplying the previous temperature 

parameter by the increment multiplier β=.90 (i.e., tk=βtk-1).  The initial temperature parameter 

is t0. 

 

Table 9-1:  GHC Algorithm Results:  Pure Local Search 

Inner and Outer Loop Bounds γ/R µ σ Minimum Maximum 

K=100, M=100 4/30 3864.3  36.9726 3805.4  3916.0  

K=200, M=100 3/30 3863.4  32.7691 3805.4 3907.3  

             K=300, M=75 1/30 3876.6  36.9549 3805.4 3953.7  

             K=400, M=75 1/30 3885.3 42.1893 3805.4 3973.4 

             K=400, M=50 2/30 3867.9  37.7520 3805.4 3916.0  

             K=800, M=50 1/15 3872.8 35.2469 3805.4 3916.0 
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Table 9-2:  SGHC Algorithm Results:  Pure Local Search 

Inner and Outer Loop Bounds γ/R µ σ Minimum Maximum 

K=100, M=100 10/30 3819.4  13.2943 3805.4  3831.8 

K=200, M=100 23/30 3808.9  9.0535 3805.4 3831.6 

             K=300, M=75 23/30 3808.9  9.0535 3805.4 3831.6 

             K=400, M=75 24/30 3807.2 6.6434 3805.4 3831.6 

             K=400, M=50 9/30 3818.5  13.3165 3805.4 3831.6  

             K=800, M=50 12/15 3810.7 10.8417 3805.4 3831.6 

 

 

Table 9-1 suggests that when the number of outer loop iterations for a pure local search GHC 

algorithm is increased from 100 to 200, performance of the algorithm shows no 

improvement.  However, Table 9-2 suggests that the performance of a pure local search 

SGHC algorithm improves significantly when the number of outer loop iterations is 

increased from 100 to 200, as measured by µ.   

 

 

Table 9-3:  GHC Algorithm Results:  Simulated Annealing 

Inner and Outer 

Loop Bounds 

 

t0 γ/R µ σ Minimum Maximum 

K=100, M=100 3000 1/30 3854.1  41.4192 3805.4  3953.7  

K=200, M=100 3000 1/30 3861.2  35.7662 3805.4 3916.0  

     K=300, M=75 2000 2/30 3861.5  39.7074 3805.4 3973.4  

     K=400, M=75 2000 5/30 3855.9 35.3872 3805.4 3907.5 

     K=400, M=50 2000 3/30 3868.8  39.4863 3805.4 3916.0  

     K=800, M=50 2000 1/15 3885.9 29.7020 3805.4 3916.0 
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Table 9-4:  SGHC Algorithm Results:  Simulated Annealing 

Inner and Outer 

Loop Bounds 

 

t0 γ/R µ σ Minimum Maximum 

K=100, M=100 3000 16/30 3814.1 12.5549 3805.4 3831.6  

K=200, M=100 3000 19/30 3808.0  7.9899 3805.4 3831.6 

    K=300, M=75 2000 20/30 3808.9  9.0535 3805.4 3831.6 

    K=400, M=75 2000 23/30 3808.9 9.0535 3805.4 3831.6 

    K=400, M=50 2000 7/30 3831.6 13.1248 3805.4 3831.6 

    K=800, M=50 2000 1/15 3813.6 12.5352 3805.4 3831.6 

 

Table 9-5:  GHC Algorithm Results:  Monte Carlo Search 

Inner and Outer Loop Bounds γ/R µ σ Minimum Maximum 

K=100, M=100 1/30 6390.0  294.6998 5634.9  6805.9  

K=200, M=100 1/30 6195.6  239.7325 5575.7  6656.3  

             K=300, M=75 1/30 6111.7  293.6761 5293.0  6613.9  

             K=400, M=75 1/30 6099.6 292.5790 5310.2 6488.3 

             K=400, M=50 1/30 6122.6  287.3693 5291.7  6575.7  

             K=800, M=50 1/15 6007.1 231.746 5479.1 6328.1 

 

Table 9-6:  SGHC Algorithm Results:  Monte Carlo Search 

Inner and Outer Loop Bounds γ/R µ σ Minimum Maximum 

K=100, M=100 1/30 6758.2  202.9184 5793.3  6758.2  

K=200, M=100 1/30 6109.3  301.5243 5243.7 6611.5  

             K=300, M=75 1/30 6214.6  204.3092 5727.6  6575.3 

             K=400, M=75 1/30 6054.3 232.6718 5614.9 6462.8 

             K=400, M=50 1/30 6265.8 197.6956 5877.3  6659.3  

             K=800, M=50 1/15 5954.7 301.7151 5299.6 6382.3 
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Tables 9-5 and 9-6 suggest that there is little difference in performance between Monte Carlo 

search GHC algorithms and Monte Carlo search SGHC algorithms.  Overall, Tables 9-1 

through 9-4 suggest that the SGHC algorithms outperform the GHC algorithms.  The 

minimum distance found over the R replications using SGHC algorithms is significantly 

smaller than the minimum distance found over the R replications using GHC algorithms for 

both the simulated annealing and pure local search algorithms.  Additionally, the standard 

deviation of the optimal values over the R replications is much smaller using the SGHC 

algorithms.   

 

Figures 9.2 through 9.4 depict plots comparing the performance of the SGHC algorithms and 

the GHC algorithms. To obtain this data, fifteen replications of each SGHC algorithm and 

GHC algorithm formulation were executed.  For each replication, a different randomly 

generated initial solution was used.  The mean of the optimal distances across the fifteen 

replications for the GHC algorithm are plotted with a solid blue line.  The standard deviations 

of the optimal distances for the GHC algorithm across the fifteen replications are plotted with 

a dashed blue line.  The means of the optimal distances across the fifteen replications for the 

SGHC algorithm are plotted with a solid red line.  The standard deviations of the optimal 

distances for the SGHC algorithm across the fifteen replications are plotted with a dashed red 

line. The number of outer loop iterations executed was 800 and the number of inner loop 

iterations executed was 50 for every formulation. 

 

For simulated annealing, tk is updated by multiplying the previous temperature parameter by 

the increment multiplier β=.90 with initial temperature parameter t0=2,000. 
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                           Figure 9.2:  Pure Local Search 

 

                        

                         Figure 9.3:  Simulated Annealing 
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                           Figure 9.4:  Monte Carlo Search 
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generated initial solution was used.  The mean of the optimal distances across the thirty 

replications for the GHC algorithm are plotted with a solid blue line.  The standard deviations 

of the optimal distances for the GHC algorithm across the thirty replications are plotted with 

a dashed blue line.  The means of the optimal distances across the thirty replications for the 

SGHC algorithm are plotted with a solid red line.  The standard deviations of the optimal 

distances for the SGHC algorithm across the thirty replications are plotted with a dashed red 

line. The number of outer loop iterations executed was 400 and the number of inner loop 

iterations executed was 75 for every formulation. 

 

For simulated annealing, tk is updated by multiplying the previous temperature parameter by 

the increment multiplier β=.90 with initial temperature parameter t0=2,000. 

 

 

                              Figure 9.5:  Pure Local Search 
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                         Figure 9.6:  Simulated Annealing 

 

                               

                           Figure 9.7:  Monte Carlo Search 
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Figures 9.5 and 9.6 suggest that the SGHC algorithms outperform the GHC algorithms, as 

measured by µ.  The minimum distance found over the thirty replications using SGHC 

algorithms is significantly smaller after 2500 iterations than the minimum distance found 

over the thirty replications using GHC algorithms for both the simulated annealing and pure 

local search algorithms.  Moreover, the standard deviation band of the optimal values over 

the thirty replications is much smaller using SGHC algorithms.  Figure 9.7 suggests that there 

is no significant difference in the performance of Monte Carlo Search SGHC and GHC 

algorithms.  

 

 

 

9.2 Nonstationary Markov Chain Computational Results 

 

Computational results with Monte Carlo search, pure local search, and simulated annealing 

using SGHC algorithms are reported.   For comparison purposes, computational results with 

Monte Carlo search, pure local search, and simulated annealing using GHC algorithms are 

also reported. The 2-Opt neighborhood function was used for all executions of the SGHC and 

GHC algorithms.  For the SGHC algorithms, the problem generation probability function was 

defined as follows. 

yy DDh (k, ρ(Dy, Dy)) = 1-1/(k+1) for every k=1, 2, …, K and for every y=1, 2, …, m 

and  

        
qy DDh (k, ρ(Dy, Dq)) = [1/(ρ(Dy, Dq)(k+1))] / [∑

≠
=

4

1
yi

i

(1/ρ(Dy, Di))], 

for every y,q= 1, 2, 3, 4 y≠q. 

 

This problem generation probability function ensures that the Markov chain {Ψ(k)} is 

weakly ergodic (see Theorem 7).  Additionally, this problem generation probability function 

satisfies Criteria A.  Therefore, for this SGHC algorithm, the results in Section 7.1 and 

Section 7.2 hold.   
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The SGHC algorithm is defined such that for every outer loop iteration k, if Ψ(k)≠Ψ(k-1), 

then the hill climbing random variable, the generation probability function and the inner loop 

bounds are reset.  Therefore, for this SGHC algorithm, if the underlying GHC algorithm 

converges, then the convergence conditions in Corollary 1 (of Theorem 12) are satisfied. 

 

Executions with different values of K and N=N(k), k = 1, 2, …, K are reported.  To compare 

the performance of applying a SGHC algorithm versus applying a GHC algorithm, the inner 

and outer loop bounds of the SGHC algorithm were doubled.  Therefore, the total number of 

iterations that the SGHC algorithm executes is equal to the total number of iterations 

executed using the GHC algorithm for the four individual problems. Let R∈ Z+ represent the 

total number of replications executed for each SGHC and GHC algorithm formulation.  For 

each replication, a different randomly generated initial tour was used.  The means, µ, 

standard deviations, σ, and the minimum and maximum distances, were computed from the 

optimal tour distances across these R replications.   The value γ in Tables 9-7 through 9-11 

represents the number of replications for which the algorithms find the minimum distance 

tour.  For simulated annealing, tk is updated by multiplying the previous temperature 

parameter by the increment multiplier β=.90 (i.e., tk=βtk-1).  The initial temperature parameter 

is t0. 

 

Table 9-7:  GHC Algorithm Results:  Pure Local Search 

Inner and Outer Loop Bounds γ/R µ σ Minimum Maximum 

K=100, M=100 4/30 3864.3  36.9726 3805.4  3916.0  

K=200, M=100 3/30 3863.7  32.7691 3805.4 3907.3  

             K=300, M=75 1/30 3876.6  36.9549 3805.4 3953.7 

             K=400, M=75 1/30 3885.3 42.1893 3805.4 3973.4 

             K=400, M=50 2/30 3867.9  37.7520 3805.4 3916.0  

             K=800, M=50 1/15 3872.8 35.2469 3831.8 3916.0 
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Table 9-8:  SGHC Algorithm Results:  Pure Local Search 

Inner and Outer Loop Bounds γ/R µ σ Minimum Maximum 

K=100, M=100 9/30 3826.1  18.0558 3805.4  3896.3  

K=200, M=100 15/30 3818.6  32.7691 3805.4 3907.3  

             K=300, M=75 12/30 3821.2 13.1080 3805.4 3832.5  

             K=400, M=75 16/30 3815.9 13.0973 3805.4 3832.5 

             K=400, M=50 16/30 3817.7  13.3917 3805.4 3832.5  

             K=800, M=50 10/15 3814.2 12.8001 3805.4 3831.8 

 

 

Table 9-7 suggests that when the number of outer loop iterations for a pure local search GHC 

algorithm is increased from 100 to 200, performance of the algorithm shows no 

improvement.  However, Table 9-8 suggests that the performance of a pure local search 

SGHC algorithm improves significantly when the number of outer loop iterations is 

increased from 100 to 200, as measured by µ.   

 

Table 9-9:  GHC Algorithm Results:  Simulated Annealing 

Inner and Outer Loop 

Bounds 

 

t0 γ/R µ σ Minimum Maximum 

 K=100, M=100 3000 1/30 3878.8  37.5969 3805.4 3953.7 

 K=200, M=100 3000 5/30 3861.8  38.6953 3805.4 3911.0  

K=300, M=75 2000 3/30 3889.0  65.0397 3805.4 4095.9  

K=400, M=75 2000 5/30 3860.9 41.0873 3805.4 3865.7 

K=400, M=50 2000 3/30 3869.2  59.0710 3805.4 4076.2  

K=800, M=50 2000 2/15 3846.4 31.2371 3805.4 3907.3 
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Table 9-10:  SGHC Algorithm Results:  Simulated Annealing 

Inner and Outer Loop 

Bounds 

 

t0 γ/R µ σ Minimum Maximum 

 K=100, M=100 3000 7/30 3912.9  116.9697 3805.4 4250.2 

 K=200, M=100 3000 4/30 3843.6 34.2857 3805.4 3907.3  

K=300, M=75 2000 8/30 3833.4  36.2928 3805.4 3973.7  

K=400, M=75 2000 15/30 3815.3 15.4484 3805.4 3865.7 

K=400, M=50 2000 11/30 3829.5  29.9040 3805.4 3907.3  

K=800, M=50 2000 13/15 3807.2 6.7610 3805.4 3816.0 

 

 

Table 9-11:  GHC Algorithm Results:  Monte Carlo Search 

Inner and Outer Loop Bounds γ/R µ σ Minimum Maximum 

K=100, M=100 1/30 6390.0  294.6998 5634.9  6805.9  

K=200, M=100 1/30 6148.6  286.7861 5389.0  6555.7  

             K=300, M=75 1/30 6145.0  275.4739 5594.7  6568.4  

             K=400, M=75 1/30 6099.6 248.263 5479.1 6517.4 

             K=400, M=50 1/30 6200.6  252.3233 5382.8 6609.0  

             K=800, M=50 1/15 6041.9 227.0252 5479.1 6517.4 
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Table 9-12:  SGHC Algorithm Results:  Monte Carlo Search 

Inner and Outer Loop Bounds γ/R µ σ Minimum Maximum 

K=100, M=100 1/30 6394.6  266.2426 5662.5 6969.3  

K=200, M=100 1/30 6157.4  385.8702 5018.2  6600.6  

             K=300, M=75 1/30 6162.7  207.2497 5635.8  6431.9  

             K=400, M=75 1/30 6155.1 248.2631 5550.5 6517.4 

             K=400, M=50 1/30 6163.3 256.5609 5525.1  6599.9  

             K=800, M=50  1/15 5953.3 205.7178 5434.1 6204.5 

 

 

Tables 9-11 and 9-12 suggest that there is little difference in performance between Monte 

Carlo search GHC algorithms and Monte Carlo search SGHC algorithms.  Overall, Tables 9-

7 through 9-10 suggest that the SGHC algorithms outperform the GHC algorithms.  The 

minimum distance found over the R replications using SGHC algorithms is significantly 

smaller than the minimum distance found over the R replications using GHC algorithms for 

both the simulated annealing and pure local search algorithms.  Additionally, the standard 

deviation of the optimal values over the R replications is much smaller using the SGHC 

algorithms.   

 

Figures 9.8 through 9.10 depict plots comparing the performance of the SGHC algorithms 

and the GHC algorithms. To obtain this data, fifteen replications of each SGHC algorithm 

and GHC algorithm formulation were executed.  For each replication, a different randomly 

generated initial solution was used.  The mean of the optimal distances across the fifteen 

replications for the GHC algorithm are plotted with a solid blue line.  The standard deviations 

of the optimal distances for the GHC algorithm across the fifteen replications are plotted with 

a dashed blue line.  The means of the optimal distances across the fifteen replications for the 

SGHC algorithm are plotted with a solid red line.  The standard deviations of the optimal 

distances for the SGHC algorithm across the fifteen replications are plotted with a dashed red 
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line. The number of outer loop iterations executed was 800 and the number of inner loop 

iterations executed was 50 for every formulation. 

 

For simulated annealing, tk is updated by multiplying the previous temperature parameter by 

the increment multiplier β=.90 with the initial temperature parameter t0=2,000. 

 

  

                   

                            Figure 9.8:  Pure Local Search 
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                         Figure 9.9:  Simulated Annealing 

 

                     

                        Figure 9.10:  Monte Carlo Search 
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Figures 9.8 and 9.9 suggest that the SGHC algorithms outperform the GHC algorithms, as 

measured by µ.  The minimum distance found over the fifteen replications using SGHC 

algorithms is significantly smaller after 15000 iterations than the minimum distance found 

over the fifteen replications using GHC algorithms for both the simulated annealing and pure 

local search algorithms.  Moreover, the standard deviation band of the optimal values over 

the fifteen replications is much smaller using SGHC algorithms.  Figure 9.10 suggests that 

there is no significant difference in the performance of Monte Carlo Search SGHC and GHC 

algorithms.  

 

Figures 9.11 through 9.13 depict plots comparing the performance of the SGHC algorithms 

and the GHC algorithms. To obtain this data, thirty replications of each SGHC algorithm and 

GHC algorithm formulation were executed.  For each replication, a different randomly 

generated initial solution was used.  The mean of the optimal distances across the thirty 

replications for the GHC algorithm are plotted with a solid blue line.  The standard deviations 

of the optimal distances for the GHC algorithm across the thirty replications are plotted with 

a dashed blue line.  The means of the optimal distances across the thirty replications for the 

SGHC algorithm are plotted with a solid red line.  The standard deviations of the optimal 

distances for the SGHC algorithm across the thirty replications are plotted with a dashed red 

line. The number of outer loop iterations executed was 400 and the number of inner loop 

iterations executed was 75 for every formulation. 

 

For simulated annealing, tk is updated by multiplying the previous temperature parameter by 

the increment multiplier β=.90 with initial temperature parameter is t0=2,000.  
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                           Figure 9.11:  Pure Local Search 

 

 

                           

                          Figure 9.12:  Simulated Annealing 
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                             Figure 9.13:  Monte Carlo Search 
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Chapter 10:                                  

Conclusion and Future Directions of 

Research  
 

 

A mathematical framework for computationally simultaneously approaching several discrete 

optimization problems using GHC algorithms is developed and studied in this dissertation.  

The resulting algorithms, termed simultaneous generalized hill climbing (SGHC) algorithms, 

offer a new approach that allows practitioners to make a single algorithm run over a set of 

fundamentally related discrete optimization problems.   

 

This dissertation develops a metric between elements in a set of fundamentally related 

discrete optimization problems (Vaughan et al. 2000).  This metric is a tool for evaluating if 

it is advantageous to address a fundamentally related set of discrete optimization problems 

with a SGHC algorithm, or apply GHC algorithms to each problem in the set individually.  

The SGHC algorithm probabilistically moves between discrete optimization problems 

according to a problem generation probability function.  This dissertation shows that the 

problem generation probability function is a stochastic process that satisfies the Markov 

property.  Therefore, for a SGHC algorithm, movement between discrete optimization 

problems can be modeled as a Markov chain.  Sufficient conditions are obtained that 

guarantee that this Markov chain has a uniform stationary probability distribution. 
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This dissertation presents several results regarding the performance of a SGHC algorithm 

where the problem generation probability function satisfies Criteria A (see Chapter 7).  In 

particular, a lower bound for the expected number of outer loop iterations that a SGHC 

algorithm that satisfies Criteria A remains in a particular discrete optimization problem is 

presented.   Additionally, a lower bound is obtained for the probability that a SGHC 

algorithm that satisfies Criteria A will continue to execute over the solution space of a 

particular discrete optimization problem.  Both lower bounds are shown to be functions of 

the problem generation probability function.  Additionally, sufficient conditions are 

presented that guarantee that a SGHC algorithm will visit the globally optimal solution over 

all the discrete optimization problems in a set of fundamentally related discrete optimization 

problems.  

 

This dissertation contains computational results for an Air Force manufacturing problem and 

an instance of the multiple traveling salesman problem (MTSP) that validate the usefulness 

of simultaneously addressing a set of discrete optimization problems using GHC.  The 

computational results for the MTSP suggest that the SGHC algorithm outperforms the GHC 

algorithm, as measured by the means of the optimal tour distances across multiple 

replications.   

 

The research presented in this dissertation suggests several new directions of study.  For 

example, addressing the MTSP using a SGHC algorithm with a variety of neighborhood 

functions will be studied (i.e., the city exchange neighborhood function).  Moreover, the 

efficiency of approaching a set of discrete optimization problems where the individual 

discrete optimization problems are variants of the TSP will be explored (i.e., Geometric, 

Bottleneck, Rural Postman).   

 

The SGHC algorithm can also be used as a tool for evaluating the efficiency of neighborhood 

functions for local search algorithms used to approach a set of fundamentally related discrete 

optimization problems.  To evaluate the efficiency of a set of N∈ Z+ possible neighborhood 

functions for a particular discrete optimization problem, each neighborhood function coupled 

with the discrete optimization problem can be considered as a separate discrete optimization 
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problem, forming a set of N fundamentally related discrete optimization problems.  This set 

of fundamentally related discrete optimization problems will be addressed with a SGHC 

algorithm, in the hopes of identifying the optimal neighborhood function.   

 

The SGHC algorithm is a new approach for addressing a set of fundamentally related discrete 

optimization problems that can be more efficient than the traditional approach of addressing 

each discrete optimization problem in the set S individually with a local search algorithm.  

For example, SGHC algorithms allow practitioners to make a single algorithm run over a set 

of fundamentally related discrete optimization problems.  Moreover, the convergence results 

presented in this dissertation imply that whenever the underlying GHC algorithm converges 

to a globally optimal solution for each discrete optimization problem in S, a SGHC algorithm 

can be developed to address S that is guaranteed to visit the globally optimal solution over 

the set of fundamentally related discrete optimization problems.  Therefore, a SGHC 

algorithm can be implemented instead of addressing each discrete optimization problem in S 

individually with a local search algorithm without losing any convergence properties.  

Moreover, the computational results presented suggest that a SGHC algorithm can 

outperform the GHC algorithm. The development of the SGHC algorithm and the 

mathematical results in this dissertation make it possible for the SGHC algorithm to be 

adapted and used to approach a variety of real world problems.  
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