Table of Contents

		Page	Number
Abstract	t		ii
Acknowle	edgements		iv
List of	Figures		viii
List of	Tables		х
Chapter	I	Introduction and Literature Review	1
		 Field and laboratory investigations 	1
		of sulfentrazone in potato	
		 Laboratory, greenhouse, and field 	3
		investigations of the experimental	
		herbicide AE F130060 03 for Italian	
		ryegrass (Lolium multiflorum)	
		management in winter wheat	
		 Field, greenhouse, and growth chamber 	6
		Investigations of growth and	
		Reproductive ability of imidazolinone-	
		susceptible and -resistant smooth	
		<pre>pigweed (Amaranthus hybridus L.)</pre>	
Chapter	II	Response of potato (Solanum tuberosum) and	
		selected weeds to sulfentrazone	14
		• Abstract	14
		• Introduction	15
		Materials and Methods	17
		Results and Discussion	20
		Acknowledgements	25
		• Literature Cited	26
Chapter	TTT	Absorption, translocation, and metabolism	
01101-001		of sulfentrazone in potato (Solanum tuberosum)	
		and selected weeds	39
		• Abstract	39
		• Introduction	40
		• Materials and Methods	<i>1</i> 1

	 Results and Discussion 	44
	 Sources of Materials 	47
	• Acknowledgements	48
	• Literature Cited	49
	• Captions for Figures	54
Chapter IV	Responses of winter wheat (Triticum aestivum))
	and diclofop-methyl-sensitive and -resistant	
	Italian ryegrass	56
	• Abstract	56
	• Introduction	57
	 Materials and Methods 	60
	 Results and Discussion 	65
	 Sources of Materials 	70
	• Acknowledgements	72
	• Literature Cited	73
	• Captions for Figures	82
Chapter V	Control of Italian ryegrass (Lolium	
	multiflorum) in wheat (Triticum aestivum)	
	with several postemergence herbicides	84
	• Abstract	84
	• Introduction	85
	 Materials and Methods 	89
	 Results and Discussion 	93
	• Acknowledgements	100
	• Literature Cited	101
Chapter VI	Influence of AE F130060 03 application	
	timing and rate on wheat (Triticum aestivum)	
	response and Italian ryegrass (Lolium	
	multiflorum) control	113
	• Abstract	113
	• Introduction	114
	 Materials and Methods 	118
	 Results and Discussion 	122

		•	Acknowledgements	133
		•	Literature Cited	134
		•	Captions for Figures	137
Chapter	VII	Wheat	(Triticum aestivum) cultivar tolerance	
		To AE	F130060 03	151
		•	Abstract	151
		•	Introduction	152
		•	Materials and Methods	154
		•	Results and Discussion	157
		•	Acknowledgements	161
		•	Literature Cited	162
Chapter VIII	VIII	Charac	cterization of growth and reproductive	
		Abilit	cy of imidazolinone-sensitive and	
		-resis	stant smooth pigweed (Amaranthus	
		hybrid	dus L.)	170
		•	Abstract	170
		•	Introduction	171
		•	Materials and Methods	173
		•	Results and Discussion	178
		•	Sources of Materials	184
		•	Acknowledgements	184
		•	Literature Cited	185
Chapter	IX	Summa	су	199
Vitae				203

List of Figures

Chapter	Figure	Title Page	Number
III	3.1	Absorption of [14C] sulfentrazone	
		per g fresh weight of common	
		lambsquarters (Chenopodium album L.),	
		jimsonweed (Datura stramonium L.),	
		and potato (Solanum tuberosum L.)	
		after 6, 12, 24, and 48 h root exposure	55
IV	4.1	Absorption of [14C] AE F130060 03 by	
		winter wheat and Italian ryegrass	83
VI	6.1	Growth responses of diclofop-methyl-	
		sensitive and -resistant Italian ryegrass	
		to incremental rates of AE F130060 03	
		(6.1A) and diclofop-methyl (6.1B) as a	
		percent of nontreated biomass	138
VIII	8.1	Noncompetitive growth of smooth pigweed	
		biotypes in the greenhouse	190
	8.2	Vegetative, reproductive, and total	
		shoot biomass production for imidazolinon	е
		-susceptible (S) and -resistant (R1, R2,	
		R3, R4, and R5) smooth pigweed biotypes	
		in the greenhouse	191
	8.3	Seed production per plant for	
		imidazolinone-susceptible (S) and	
		-resistant (R1, R2, R3, R4, and R5) smoot	h
		pigweed biotypes in the greenhouse	192
	8.4	Smooth pigweed germination over a	
		12 d imbibition period	193
	8.5	Effect of plant density on smooth	
		pigweed shoot growth in the field	194
	8.6A	Noncompetitive growth of smooth pigweed	
		biotypes at one plant $\ensuremath{\text{m}}^{-2}$	195

8.6B	Competitive growth of smooth pigweed	
	biotypes at 16 plants \mbox{m}^{-2}	196
8.6C	Competitive growth of smooth pigweed	
	biotypes at 36 plants m^{-2}	197
8.7	Smooth pigweed vegetative, reproductive,	
	and total biomass as influenced by	
	plant density in the field	198

List of Tables

Chapter	Table	Title	Page	Number
II	2.1	Environmental conditions at and		
		following preemergence and at-emerge	ence	
		applications in 2000 and 2001		30
II	2.2	Potato injury from sulfentrazone and	i	
		other herbicides in 2000 and 2001		31
II	2.3	Average potato height in 2001 and		
		average potato flowering in 2000 and	i	
		2001 from sulfentrazone and other		
		herbicides		33
II	2.4	Control of common lambsquarters, con	nmon	
		ragweed, and annual grasses from		
		sulfentrazone and other herbicides		35
II	2.5	Potato grade and yield as influenced	i	
		by sulfentrazone and other herbicide	25	
		in 2000		37
III	3.1	Translocation of [14C] sulfentrazone	from	
		roots to shoots in common lambsquart		
		jimsonweed, and potato after 6, 12,		
		and 48 h root exposure		52
III	3.2	Sulfentrazone metabolism by common		
		lambsquarters, jimsonweed, and potat	20	
		seedling as influenced by time and		
		plant portion		53
		-		
IV	4.1	Interaction of herbicide treatment a	and	
		Italian ryegrass population on bioma	ass	
		production of diclofop-methyl-sensit	cive	
		and -resistant Italian ryegrass		79
IV	4.2	Translocation of [14C] AE F130060 03		
		in winter wheat and Italian ryegras:	3	80

IV	4.3	Metabolism of AE F130060 00 in winter	
		Wheat and Italian ryegrass as influenced	
		by time, herbicide safener, and Italian	
		ryegrass population	81
v	5.1	Levels of diclofop-methyl resistance	
		and densities of Italian ryegrass	
		populations, and rainfall before and	
		after herbicide applications in Accomack	
		and Northampton Co., VA in 2000 and 2001	105
V	5.2	Late-season control and inflorescence	
		emergence of diclofop-methyl-sensitive	
		Italian ryegrass following postemergence	
		herbicide applications in 2000 and 2001	
		at Painter, VA	106
V	5.3	Early-season wheat injury, wheat grain	
		yield, and percent Italian ryegrass seed	
		in harvested grain samples following	
		herbicide applications to diclofop-	
		methyl-sensitive Italian ryegrass	
		at Painter, VA	108
V	5.4	Early-season wheat injury following	
		herbicide applications for control of	
		diclofop-methyl-resistant Italian ryegrass	3
		near Cape Charles, VA and at two sites	
		near Pungoteague, VA	110
V	5.5	Late-season inflorescence emergence and	
		control of diclofop-methyl-resistant	
		Italian ryegrass following postemergence	
		herbicide applications near Cape Charles,	
		VA in 2000 and Pungoteague, VA in 2001	111
VI	6.1	Levels of diclofop-methyl-resistance and	
		densities of Italian ryegrass populations	,
		and rainfall before and after herbicide	
		applications in Accomack and Northampton	
		Co., VA in 2000 and 2001.	139

VI	6.2	Influence of herbicide rate and	
		application timing on wheat injury 2 wk	
		following herbicide applications for	
		control of diclofop-methyl-sensitive	
		Italian ryegrass near Painter, VA in	
		2000 and 2001	141
VI	6.3	Influence of herbicide rate and	
		application timing on diclofop-methyl-	
		sensitive Italian ryegrass control	
		near Painter, VA	142
VI	6.4	Influence of herbicide rate and	
		application timing on diclofop-methyl-	
		sensitive Italian ryegrass inflorescence	
		emergence near Painter, VA	144
VI	6.5	Wheat yield following herbicide	
		Applications for control of diclofop-	
		methyl-sensitive Italian ryegrass near	
		Painter, VA in 2000	146
VI	6.6	Wheat injury following herbicide	
		applications for diclofop-methyl-resistant	;
		Italian ryegrass control near Cape Charles	3
		and Pungoteague, VA	147
VI	6.7	Influence of herbicide application timing	
		on diclofop-methyl-resistant Italian	
		ryegrass control near Cape Charles and	
		Pungoteague, VA	149
VI	6.8	Diclofop-methyl-resistant Italian ryegrass	3
		inflorescence emergence following	
		herbicide applications near Pungoteague,	
		VA in 2002	150
VII	7.1	Influence of AE F130060 03 application	
		on biomass production of winter wheat	
		cultivars in the greenhouse	165
VII	7.2	Influence of AE F130060 03 treatment and	
		winter wheat cultivar on wheat injury,	
		tillering, and plant height in field	
		experiments	166

VII	7.3	Influence of AE F130060 03 treatment	
		and winter wheat cultivar on wheat grain	
		yield in 2000	168
VII	7.4	Influence of AE F130060 03 treatment and	
		winter wheat cultivar on wheat grain	
		yield, moisture, and kernel weight	
		in 2001	169
VIII	8.1	Nonlinear regression coefficients for	
		growth curves in Figure 8.1 (smooth	
		pigweed growth in the greenhouse) and	
		Figure 8.4 (smooth pigweed germination)	
		for one imidazolinone-susceptible and fiv	·e
		-resistant smooth pigweed biotypes	188
VIII	8.2	Nonlinear regression coefficients for	
		growth curves in Figure 8.5 (effect of	
		plant density on smooth pigweed growth)	
		and Figure 8.6 (8.6A, smooth pigweed	
		growth at one plant m^{-2} ; 8.6B, 16 plants	
		m^{-2} ; and 8.6C, 32 plants m^{-2})	189