A Bayesian Network Approach to the Self-organization

and Learning in Intelligent Agents

Ferat Sahin

Dissertation submitted to the Faculty of Virginia Polytechnic and State
University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Hugh F. VanLandingham, Chair
John S. Bay
Pushkin Kachroo
A. Lynn Abbott
Charles J. Parry

August 25, 2000
Blacksburg, Virginia

Keywords: Bayesian networks, learning, intelligent agent, self-organization

Copyright 2000, Ferat Sahin

A Bayesian Network Approach to the Self-organization and Learning
in Intelligent Agents

Ferat Sahin

(ABSTRACT)

A Bayesian network approach to self-organization and learning is introduced for use
with intelligent agents. Bayesian networks, with the help of influence diagrams, are
employed to create a decision-theoretic intelligent agent. Influence diagrams combine
both Bayesian networks and utility theory. In this research, an intelligent agent is
modeled by its belief, preference, and capabilities attributes. Each agent is assumed to
have its own belief about its environment. The belief aspect of the intelligent agent is
accomplished by a Bayesian network. The goal of an intelligent agent is said to be the
preference of the agent and is represented with a utility function in the decision theoretic
intelligent agent. Capabilities are represented with a set of possible actions of the
decision-theoretic intelligent agent. Influence diagrams have utility nodes and decision
nodes to handle the preference and capabilities of the decision-theoretic intelligent agent,
respectively.

Learning is accomplished by Bayesian networks in the decision-theoretic intelligent
agent. Bayesian network learning methods are discussed intensively in this paper.
Because intelligent agents will explore and learn the environment, the learning algorithm
should be implemented online. None of the existent Bayesian network learning
algorithms has online learning. Thus, an online Bayesian network learning method is

proposed to alow the intelligent agent learn during its exploration.

Self-organization of the intelligent agents is accomplished because each agent models
other agents by observing their behavior. Agents have belief, not only about
environment, but also about other agents. Therefore, an agent takes its decisions
according to the model of the environment and the model of the other agents. Even
though each agent acts independently, they take the other agents behaviors into account
to make adecision. This permits the agents to organize themselves for acommon task.

To test the proposed intelligent agent's learning and self-organizing abilities,
Windows application software is written to simulate multi-agent systems. The software,
IntelliAgent, lets the user design decision-theoretic intelligent agents both manually and
automatically. The software can also be used for knowledge discovery by employing
Bayesian network learning a database.

Additionally, we have explored a well-known herding problem to obtain sound results
for our intelligent agent design. In the problem, a dog tries to herd a sheep to a certain
location, i.e. a pen. The sheep tries to avoid the dog by retreating from the dog. The
herding problem is simulated using the IntelliAgent software. Simulations provided good
results in terms of the dog's learning ability and its ability to organize its actions
according to the sheep's (other agent) behavior.

In summary, a decision-theoretic approach is applied to the self-organization and
learning problems in intelligent agents. Software was written to simulate the learning and
self-organization abilities of the proposed agent design. A user manual for the software
and the simulation results are presented.

This research is supported by the Office of Naval Research with the grant number

N00014-98-1-0779. Their financial support is greatly appreciated.

Acknowledgment

First of al, I would like to take this opportunity to express my gratitude to my advisor
Professor F. Hugh VanLandingham for his invaluable guidance and encouragement
throughout this work. | am so grateful that he introduced me to the world of Artificia
Intelligence. He has been very helpful and supportive both intellectually and personaly.
Without his help on typing my dissertation, this work would not be complete in time.

Second, | would like to express my deep appreciation to my co-advisor Dr. John Bay
for his invaluable supervision and fortitude throughout the course of my M.Sc. and Ph.D.
studies. He is my mentor and inspiration to be an academician. His supervision affected
my research tremendously. Every time | visited him in his office, | was filled with hope
and encouragement on my research. At the end of every meeting, he replaced my
frustration with full of inspiration.

| am also thankful to my Ph.D. committee members Dr. Pushkin Kachroo, Dr. A.
Lynn Abbott, and Dr. Charles Parry. Their expertise and assistance played an important
rolein the progress of my research.

Next, | would like to thank my parents, Aslan and Zehra, my brothers and sisters for
their continuous love, understanding and encouragement during my study at Virginia
Tech. | would aso like to thank my friend Selhan and my brother Murat for their support
and help throughout this work.

| would like to thank the Office of Naval Research. Their financial support is greatly
appreciated. At last, but not least, to my machine intelligence laboratory (MIL) buddies
and members of Multi-agent Bio-robotic Learning (MABL) group, thanks for the many

memorabl e experiences.

Table of Contents

IR L Te T T —— 1]
[[L.1 Learning SYStEMS N Alcoueueeeeeeeeeeeeeeeeeeeeeeereessesesensesesterensnseseeasnssseseesencas 2|

[1.2 SElf-0rgani Zation SYSEEMScvcuevereeeeveeeeietieeteee ettt eee e enereseereneane 4|

[[1.3 Why Bayesian NEtWOIKS?..........cooiiceiceciiscssiccessesscisscees e snssssssnssssnnsenaes 8|
[..3.1 The relationship between Bayesian networks and neural networks............. 11|

1.4 Self-organizing system as a generalized graph of behaviors..................c............. 12|
(1.5 OULHINE OF thE QISSEITAIONceeeeeeeeeeeeeeeseeesereeeeseeeseeeeseseeesnceesesecncas 15|

2. [Causal Networks, Bayesian Networks and Influence Diagrames.................cc.u.e... 16|
P.1 Basic principles for reasoning under UnCertaintyc.coeeveeveveeveevereverreeennanen. 16|
R e o — 17]

P.1.2 EXDIGINING BWAY ...t eesesseenensesesesneneesesesesenacas 17|

P.1.3 DEPENAENCE Of BVENLS........ccoveeeeeeieeeeeeiseeeeeietseeeesersseesensesseeeesesseeseseesesaeenes 18|

R.1.4 Prior CEMAINLIES.........coeveveeeieriieteieieteeieteeeieteeteteessteseeseseeseseseseseesesessseseans 18|

P.2 CAUSA NEBIWOTKS ...t eeveeeeseeeeeeseeesnseeseseeesnceeseseesssncnsseeneneas 19|
2.3 Probalility CalCUIUS...........c.ecveeereeseeeeseeteeseeeseeteseeeeseersss s eensesessesesnseenssns 23|

P.3.1 Basic probability CACUIUS.............cccveueeeeerieieeeeeeeieteeeeecteeteeeeesteeeeeeererenenns 23|

.3.2 Subjective probabilities.cooeieuiiceeriecesecie s 25|

P.3.3 Conditional INAEPENOENCE.cveeereeeeeeeeeeieeeeeeeseeeeeeeeseeesesesseserenseean s 26|
N I AR 27|
R.4.1 The ChaiN MUIE.....c.cvececeeicesiecsecesiceesessesess st snesssssss s snsnes 29|

P.4.2 Evidential REASONING...............oveueeeeeeeeeeeeeeeereeeeeeerserseeeesersereeeersnseeeesesseseeenes 30|

P.4.3 Bayesian networks and the functionality of ahuman brain......................... 31|

R.5 INfIUENCE DIAGIaMS......c.eveveeieeeieteet ettt ten et ensnereenereneas 32|

3. [Learning Bayesian NetWOTKScccecoeuesssussesssnssssnssesssnsssssssssssassassssssssnssssssassssssssssss 37|
B.1 Known network structure and observable variables (complete data) 37|
B.2 Unknown network structure and observable variables.............c.ccoceveuveveevennnne. 42|
B.3 Known structure and unobservable variables (incomplete data) 48|

B.4 Unknown structure and unobservable variables................c.ooeeovvoeeeeveovevenrnrenn 55|

4. Online Bayesian Network Learning and Multi-agent Organization................... 58|
1.1 Outline of the problem statement and the proposed solution................................ 58|
#.2 Online Bayesian NEtWOrK [€aININGc.cououeeeeeeeereeeeveeeeseeeesesereessensesensesenaas 59|

(1.2.1 The parameter [€arNING..............coveueuveveueerieeererieeeriecieeseerseeeesesesenseeesseeseenans 60|
(.2.2 The Structural 1€arMINGvoceeveeceeececeeeecisieccesesssssssessessessscsssesessssssansaas 64|
1.2.2.1 SEACH 8l QOTTHNMIS.coeeeeeeeeeeseeeereeereeeeereeeseeeeseeeeeeseenesnae 65|
HEUNISHC SBAICN ..ottt ten e enstensrenesnerennans 66|
D R = 10 A T 63|
[Complexity analysis for search algorithms..............ocoooeeveveveeveeeneene. 70|
1.2.2.2 NetWOrk SCOIMNG FUNCHONS ...ttt eeseeesesensesssesesansnas 74
LOg-LiKElTNOO SCOMNG......cccvveeieeriieieeteeeeeeeee et 74|
Minimum description [ength SCOMNGcccoceveriiceiieiciseceessssesee s 76

BaYESi QN SCOMNGc.oeeeeeeereeeeeeeeeereeeeeeseeeeeesreesesenseseneeseseeseesseseseesneneses 78|

5. Multi-agent self-0rganization SYSEEINccerereereereereseeeencssesecsessoseesesessssesconsane 82|
5.1 A decision-theoretic intelligent agent deSIgNcvvcecieeceeeieceseceee s eesecesnaees 82|
B.2 Multi-agent self-0rgani ZiNng SYSEEM.cwoeeeeeeeeeeeeeeeereeeeeersreeserseseeeesensenaea 85|
B.3 Bi-aireCtional 1€arNiNG.............cccoveeeeeeeeieeeieieeeeeseeseeeseessseseesensesseseeseessesessseeseas 83|
b.4. System representation of the decision-theoretic intelligent agent system............ 90|

B.4.1 FEEUDACK CONLIOlc.eeeseeeeeeeeeeeseeeesereeeeseeeeseseeeesnceeseeeeeesncnesee o1

B.4.2 AAADUVE CONIOLcoveeeeeeeieeeeeeieeieeeeeeseeeeeseeseseeserseseeseesessreseseesreseeeesnssens 94|

6. [IntelliAgent Software 100
[6.1 The user manual for INtelliAQENt SOFWEICeeveeeveeeeeeeeesseeeeeeesrrerreaenen 100|

[0. 1L IVIEIUS ...ttt ses s ses e e sesansesenensecassesnssesesassens 101

[I 102|

[=T —— 105|

[YT — 105

[e 106|

[T 116

[R L = 119|

[INGEWOIK CONEEXE MENU c.eeeeeeeeeeerreeeeseserereneneeaesesececaencs 119|

[INOOE CONEXE MENUL......eeeeee ettt e s nsesenenseas 120|

[AL 122|

[= 122
e 123|

[ST Y 123

[2 123

[T 123

[l 124

[JAGENE .ottt nne 124

[ST = ——— 124

A ED L 125|

[Parameter PreSEntation..............cveveuveeeueerieeereeeteensiereeeteenseeeeereeensseeesseneseesens 125|

L ICPT UPdating. oo 127

[Bayesian network generationoc.oeeeeeeeeeeeeeeeeeeeeeeeeeeeeserseeerenseraens 127|

[JAgent creation and traiNiNg.............c..oeveevvveeeereereeeesiseeeseeseeeeeeseseeeesnseneas 129|

[6.2 Tutorials on Bayesian network creation and knowledge discovery.................... 130

[6.2.1 Inferencein aBayeSian NEWOTKc.ooweeeeeeeeeeeeeeeseeeesereveeseeenseseeensecens 131|

[6.2.1 Knowledge discovery with INtelliAQENtcccoveeeevveveeesersieserrensenn 139

A et e Lk o — 147|
| 7.1 The Dog & Sheep Problem ..o 147|

[7.2 The 4-by-4 Grid Dog & Sheep SImUIationcceeeeveevveeeeeeveereeseerserera 155|

[[7.2.1 Simulation results for known system dynamics...............ccocveeuveveveennen.. 155|

| [7.2.2 System dynamics are Not KNOWN.ccccueriiecesiecesiiscisiessessscessesecessacenes 166

[[7.3 The effectiveness of the online Bayesian network learning............................... 183|
O Tt r T ——— 188|
A L T o L —— 193]

[[A. Classes of the INtElliAZGENt SOFEWATEucueeueeueeueeeeerrereeereeseseoseeseessessesensssessens 196

[e S s 196
[]A.1.1 Bayesian netWork related ClaSSeS........e.weeeeeeeeeeeeeeeeeseveeeeeeverererreesenees 196|
[JAL LT CONOGC......eeeteeeeeeeeeet ettt et sesnees e e ses s sesenanseas 196/
R e e K 197|
TS0 0 WO — 197|

[BACKWAIAINFEIONCEN) c.eeeeeeeeeeereeeeeeeeseeeeseneeaesncneseneeaesnces 197|

[l e I e = O N 197|

[N E e s s = O I 197|

[OnCalculateL iKeliNOOA(INE 1)veeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeernaens 198|

[IONCAINOGELENGEN() ...ttt ensesesseseeanseas 198|

[ICreateNOTECPT().....cuvveveeeeeeeeveeeeeetee ettt enerenna 198|

[l SV ek N 198

[l T I ————— 198

[S T 199|

| [Serialize(CAIChiVe & ar) .. 199

[ICNOde Class VariableSc.oouoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenreraeenns 199

[JA.L.1.2 CAITOW ...ttt st se et seneeeeesensneaesensreseenesnssnas 199|
[l T (e o To Ty T 200|
I 200|

[ICAITOW Class VarabIEs..............ooeeeeeveeeeeeieeeeeteeeeesetseesenseeesensenanees 200|

[TA L3 CMAINX oo 200
[l) 201

[R I —— 201/

[IGEEIeMENt(INt i, INE]) ..ovcveceiececieeeeceee et 201

Y = n s L0 T —— 201
S 201|
[T I T) 202|

[operator * (const CMatrixX & rNS).........coeeeveveeeeveererereieeeeeereeeeeenserenenns 202|

[operator =(const CMatrixX &TNS)........oooeeeveeeeeeeeeeeeeeeeeeeeerreeeeerreraeenns 202|

[ISetElement(int row, int COl, fIOAE X)covucveeeeeeeieeereerreesseeseenseseraneas 202|

[ISUPEMUItIPIY(CMBETTIX &) ..ottt n e eesensenanens 202|

I e s = VT —— 203|
e R e 203|

[ICalculateIP(CmatrixX &teSt, iNt M)ccveeveereeeeereeereeeeeeseersesseeseeneas 203|

[ICMatrix class VariableS.............coeuvueveuiueeeieereeeeieeseereeeeiesensensieeenana 203

[l R T T 203
A 204

[ST T 204]

[ICCptDialog class Variables..............cveeeeeuveueeeeeeteeeeeeeieeeeeseeeienseeenenns 204|
N L 204
[S ETe T Y 204|

[IOnCheckProbSum(double initial)ccovevevevereereeieeieeeeeeveees 205|

[T T oo T —— 205|
= 205|

[1ONSAChaNGEPIODLIS) ..vc.vveeveveeeeeeeeeeee et reena 205|

| ONListUpdateSalitem()vveceieceeeieeceieecscessecesssessssesessesssssnsssssssesesnsseanas 205|

[l S HiT= e o e O N 206|
SetParameters(int states, CMatrix prob, CString name, int nodeNumber, |
CUIntArray & parent, CUIntArray & child, CMatrix cpt) 206

[IONDDIClICKMSHEXTTACDE) .eseeeeereeeseeeseeeeeereeeseceeseseceana 206

[UpdateDial OGCPT() ..ottt seseeseeseseeseseeseeesesseeesensnas 206

[ICParamDialog class Variables............cveeeveuveeeeeeeieeecieeeeeeeeenserennns 207|

[JA.1.1.6 CNEtGENEIEtiONDI.......vooeeeeeeseeeeeeeeeesrereereeseseseeeeeeaeseres 207|
[JONRA0IOHEUITSEIC) ...t eeses e sesesseseeansna 207|
R = i 208|

[ST e I 1T Y — 208

[IONRADIOBAYESIAN) ..veeeeeeeeeeereeeseesereeeeseeeesneneaesecnesncecs 208|

[O e e T T 208|

[IONRaiOEUCHIAEAN()eveeeeeieeeeceeeeeee et eees 208|

[IONRadioLogliKElINOOA()ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesereeeeeerreraeeans 209|
I 209

[CNetGenerationDIg class variablesccceueveeeeevvveeerereseerrannns 209|

[JA.1.2 Agent related CIasSES...........occeveueeeeeceieteeeieeeeeeeeee e saeeeeaeas 209|
L A.1.2.1 CAQENL. ... 209

[JA1.2.1 CAQENIDIG. ...ttt e et sesn s e e see e sesessnseas 210

[e I 210|

[l e 210|
R et o 210|

[IONRAIOCONESIM() ...ttt eeeeteeeeteeeeeereenerenane 210|

[R = LN T T T 211|

[ICAQentDIQ class Variables............cooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereraens 211|

[JA.2 Visual CH+ PrOjECt CIASSES........ccoueeeeeeieeeeeeesereeseeese et eesseeseersesseeserensesenseseas 211|
[JA.2.1 DOCUMENE CIASS........ccveuieereeieeetieieteeieteeieieteeeeteeeteteeeeteeetereeeereneseseenesenana 212|
| }A.2.1.1 Document class member funCtions..........coocceivcireceescsieceesenenes 212

[BOOL OnISNEWOIKCYCIC)vveeeeeeereeeeeeeeeseeeeeeereseneesesenseeens 212

[Void ONCreateDatabaSe()cvevvevevereeeerereeeereeeeeerseeerseeeeeeseenerereeesresesna 212|

| Void OnCreateDatabase(CStdioFile *f, CMatrix dataMatrix) 212|

[Moid OnRenewOrUpdateNEtWOrK()o.veeveeeeeeeeeeeeeeeeeeeeeeveeerrraenn 213|

[CMatrix CreateNodeProbability(int i)cccoveveeereevreeeserrrerenreranane 213|

[Jong double Gamma(uUNSIgNEd INt 1)........cveveveevererererieeereeieeeeeveeeevenae 213]

[VOIid REMOVEAIATTOWS)) c.eeeeeeeeeeeeeseeeeeeeeseeeesneneseseeesneecs 213|

[VOid ONNEIWOIKGENEIBLE)c.eeveeieeeeteeeesreeeesereeseeseeseeeesrseesesnsnas 213|

[Float OnCalculateActLikelinood(int i)cceveverveeerereeeererieeereereernee 214|

[Float ONCANEIWOIKSCOTE)) .eeveeeeeeeeesreeeeseserrveeesererevereneesesesececs 214]

[Moid OnPositionAGeNtSRANAOMIYV()c.eeeeeceeeeereeereeeeeeerseseeseneas 214]

[Int createRandomMNUMDEr(INt i)c.ccveveuveveeeereeeeieiiecereeseieeesscnennas 214

| ICAgent* GEtAGENE(INE i)cvereceeecceciececeeeceeecces e 214

[ICAgent * ADAAGENEINE X, INEY) oieeoeeeeeeeeeeeeeeeeeeeeeveeeseeserenaenna 215|

[Moid UpdateDogShEEPPOS()c.v.vveereeeereeeereeeeeereteereeeeeeeereensreneseereenanes 215|

[Moid ONCreateNextPOSTabIE()ccoveuveeeeeeereeieeeeietieeeereteeeeeeeeeeeennas 215|

[BOOL OnLegaMove(int X, int V, iNt M)cooeereveeeeersereeerserrernne 215|

[Float ONDOGSEERULHTIEY(INE 1)......c.eeeteeeeeeeeeee s 215|

[Moid OnSetEvidence(int node, int State)............ccoeeevevveeerrevrrerenrernae 216|

[Void ONRECOIANEWENLIY() ..ottt eeens 216|
[Moid OnCal culateNewSheepPos(int ChOICE)eeeeveeeeeeveveveveeserererenees 216|
[nt ONDeCiSION(CMatriX &VAIUES)c.cueeeeereeeereeseeeeereesreesrensesranea 216|
[ICMatrix OnValues(int dnode, int UNOdE).............ccveveeeeveveerericreecreenanas 216
[T VL 217|
[ICMatrix CreateIPT(CUINAITAY &1ISE) ...oveeeeeeeeeeeeeeeeeeeeveeeseerserraenen 217|
[ICMatrix CreateCPT (int node, CUINtArray &list)........ccoevervevereevenennnn. 217|
Y E e e T) 217|
[CMatrix CreateCPMatrixX(CUINtATTaY &liSt) ..o 218|
[MOid CalFirStLEVEIPIODS)c.ceeveeveesereeeteeseeeseeerseseeesesenseeensesesansna 218|
[ICNode * AddNode(CRect NodeLocation)c.cveveveverereevereeirerenanes 218|
Moid SetNode(int nodePos, CString name, int states, CStringArray & prob, |
SV E e 218|
[ICNode * GetNode(int NINAEX)cceveueereeereeeeeereeeereeeeeeereeeereeeeereennas 219|
[Nt GENOJECOUNL()vuveieeieceisecesscesresesessesssssnesesssnesessesssssnsssssnssssssneas 219|
[BOOL AdAAITOW(INE i, INE]) vvoveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeersenaeenns 219|
[Moid REMOVEATTOW(INE i, INEJ)...ceeeeieieeeeeieeeeeeeieeeeeeseseeeeeeeseseeeesenseeas 219|
[ICArrow * GEtArrToW(int NINAEX).........c.cveveveevererierereeeereeeereeeeeeeieveeana 219|
[NNt GEATTOWCOUNE() c.eeeeeeeeeeeeeeseeeseseeeseeeeeneneseseenesncecs 220|
[ICArrow * AddArrow(CPoint tail, CPoint head)...............c..cooueueun...... 220|
I e 220|
e N e 220|
[ICMatrix CreateNOAEPIOD(INE 1)cveieeeiecereeeeeeeeseeeeeseesseesssseseenseas 220|
[Moid GENerateNEIWOIK()........ccoveeveeeeeeriecereececereecereeteereeeseesensecnseersenanas 221|
| void CreateTestTable()....covveeeiecieiececieecieiececisecie st 221|
S R e T 221|
[VOid UPatENOUECPT ().t eeeeeeteenseeeeenereenseennanas 221|
[oid ModifiedFTagCRTA0NE X) cooooom oo 207
[|A.2.1.2 Document class member variables.............ooooueeeeeeeeeeeeeeseveen. 222|
[JAL2.2 VIBW ClBSS.....eeeieet ettt eese et sesenseseseeses s sesansesesassesnssnsesnssnns 222|

Xi

[1A.2.2.1 View class member fUNCLIONS.............c.covoveeeevvveeeeesieeeesenseeernsenaeas 222|

[Void ONDrawAgeENtREGION()cveeveereeeeeeieeeeeeieteeteeeeteeeeeeeseeeeeeeeeeeeenns 223|
[BOOL OnNoRelation(unsigned int nodel, unsigned int node?)............. 223|
[Int ONINANOAE(CPOINE POINE) ...t eeereeseeeseereess s eeseenseseas 223|
[Moid ONShOWParam(int X)..........coveueureriueeriecererieeerierreeseeensesnseeseensresnanas 223
| Bfx msg void ONNEWOIKAIC() ...cvvcecerceeiicecessesicisscieseseesssses s 223|
[Bfx msq VOid ONNEWOIKINOGE))veeeveeeeeeeeeeeeeeeeseeeseveeereeenserenaenen 224
[Bfx msg void OnL ButtonDown(UINT nFlags, CPoint point)................ 224
[|Bfx _msg void OnL ButtonUp(UINT nFlags, CPoint point)..................... 224
[|Bfx msg void OnMouseMove(UINT nFlags, CPoint point)................... 224
gfx msg void OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* |
PSCIOHBA) ...ttt en et enenene e 225|
Bfx_msg void OnVScroll(UINT nSBCode, UINT nPos, CScrollBar* |
eI EE 225|
[lafx msg void OnContextM enu(CWnd* pwnd, CPoint point)............... 225|
| Bfx_msg void OnL ButtonDbI CIK(UINT nFlags, CPoint point).............. 225|
[Bfx msg void ONNetworkParameters().........o..eeeeweeeeeeweveeeerveveeerrernn. 225|
[|Bfx msg void OnRButtonDown(UINT nFlags, CPoint point)................ 226|
[lafx _msg void OnSetevidenceStatel()ovevevereeverererereerereierereeeerenanas 226
[lfx msq void ONNEWOrKAGENTLOC)) ..eveeeeeeeeeeeeeeeeereeesereraenen 226|
[Bfx msg void ONNEIWOrKCIEAE()c.couveeeeeeveeeeeereeeeesreeeeesrseeeeseneas 226|
[1A.2.2.2 View class member varibles............ccc.ooveveeeviuveeeniieeercieeeieneeenna 227|
R e - 227|
[S T T ——— 228|
[N — 235|

Xii

List of Figures

Figure 1.1. (a) Supervised learning model. (b) Unsupervised learning moddl. 3|
Figure 1.2. Bi-directional Learning System Model.c.ccocoveuveveveuseererereserrerennnn 3|
Figure 2.1. A graphical model for the wet grassexample[7]..........cccoveeveverevererennnnen... 19|
Figure 2.2. Serial, diverging, and converging connections respectively..........oococucuueee..s 20|
Figure 2.3. A directed acyclic graph. The probabilities to specify are shown.................. 28|
Figure 2.4. AN influence diagraM.............cveveueeveueeeeeereereeereeeteereeeeeeeeeetereeseensresseeseenns 34|
Figure 2.5. An influence diagram With an aCtion SBL.c.oeeeeeweeeeeeeeeeeeeeerserveererensenes 35|
Figure5.1. The structure of an intelligent ageNt.oe.eeeeeeeeeeeeeeeeeeeeeeeeeeereeeraernn 84|
Figure 5.2. Multi —agent behavior without coordination (a) and with coordination (b). .. 86|
Figure 5.3. Multi-agent self-organizing scheme with two agents.c.ccceeeeeeceeccesnenes 87
Figure 5.4. The learning model of the propoSad SYStEM.cevveeeeeeeeeeereeeevrvvereeren 89|
Figure 5.5. System Block representation of the intelligent agent system. 90|
Figure 5.6. Output feedback CONLIOL..............c.ccueueueerireiererieieteieeeeeeeeeeeee e 91
Figure5.7. A control system with the state feedback.ooeeeeeeeeeeeeeeeerveervvenrecnrn. 03|
Figure 5.8. A basic adaptive CONtIol SYSEEM.ccevvueveeieeeeieereeseeeeeesssreeseeesesernses 05|
Figure5.9. Indirect adaptive control SYSteM...........cceeveueeeeevevieeieiceeieeeeereeeeeeeevenes 97|
Figure 5.10. Indirect adaptive control representation of the DTAS........ccccccveecreriveceieenaes 99|
Figure 6.1. The IntelliAgent software (screen shot of the program)............................... 101
FIQUIE 6.2. TRE @ MENU. ...ttt enseeneetereenerenesneneans 102
Figure 6.3. Dialog box for the "Open" submenu in File MenU.cc.ccooceeecesceeecesnenee, 103
Figure 6.4. Dialog box for "Save" and "Save As' submenusin Filemenu. 104]
Figure 6.5. Message box to choose saving the new cases into the database. 104
FIQUrE 6.6. TNE VIBW MENU.....c.ovcveeeeeeeieeeeeteeeeteeetee ettt eveneteseenereneseneane 105|
Figure 6.7. THE NEIWOTK MENU. ..c.oeeeeeeseeeeeeeeeeeeeeeeeeeeeeenneeeseeesneneaesnenesnceeee 106|
Figure 6.8. Creation of network nodes by mouse operations................coceveveeveuenrnnnee. 107|
Figure 6.9. Creation of an arc between the nodes by mouse operations. 108|
Figure 6.10. Dialog boxes for presenting and changing node attributes......................... 109)|
Figure 6.11. Changing the CPT Of NOUE2............ccc.cveueueeeieereeseeeseeerseseseeseensesreeseensesens 110|
Figure 6.12. Parameters of Node2 after the Update command.ccccccveuvnnnnn..... 111]
Figure 6.13. Loading a database to automatically construct a Bayesian network. 112

Xiii

Figure 6.14. Bayesian network nodes created by a databasefile. ... 113
Figure 6.15. Dialog box for specifying the type of network search................................ 114
Figure 6.16. A Bayesian network created by a heuristic search with Bayesian scoring. 115|
Figure 6.17. The Agent menu in the IntelliAgent SOftWare.c.ocveevevevvevveevevennnnne. 116]
Figure 6.18. Dialog box for agent creation and simulation attributes............................. 117|
Figure 6.19. Dialog box for agent creation and simulation with training steps.............. 118|
Figure 6.20. About project dialog box and HEIp MeNU.c..oeeeeeeeweeeeeeeverveeerseren. 119
Figure 6.21. Context menu for the network SUbMenUs.cccveveveeveveveeveeerenereennnene 120|
Figure 6.22. Context menu for the node OPErations...............ccveeeeeveveeveeeeersrerenenen 120|
Figure 6.23. Instantiation of a node by node context menu.coceeeeveveveneenne.... 121|
Figure 6.24. Node context menu for anode with three States.couucveevecervecuvennee 121|
FFigure 6.25. The toolbar of the IntelliAgent SOftWare.............ccvoveveeveveveeereenieiererennee 122|
Figure 6.26. Dialog box for parameter presentation.ccocecerieecriresersscssessesssseenes 126|
Figure 6.27. Dialog box for the CPT UPdaing..............coueeeoveeveeeeeeeeeeeeeeseersrereereenrerens 127|
Figure 6.28. Dialog box for setting submenu for Bayesian network generation. 128|
Figure 6.29. Dialog box for agent creation and training.ocoeececvercessecessesseessessanees 129
Figure 6.30. Training abilities of the agent creation dialog boX.cccoeveveenn...... 130|
Figure 6.31. Example Bayesian network for manual network creation.......................... 131|
Figure 6.32. Creation on the NEtWOrK NOAES.ceoveveeveeereeiereieeeeeeeeeeeeeeveee e 132
FFigure 6.33. Changing node names and editing the independent probabilities............... 133]
Figure 6.34. Arc creation before the left mouse button isreleased................................. 134
Figure 6.35. Message box stating the arc Creation.c.cveeeveveeeeeveeeeensrerenenen 134
Figure 6.36. Creating an arC in @NEWOTK.o.ooveveeeeeeeeeeeeeeseveveveesesererevereeeesereseceeas 135|
Figure 6.37. Updating the CPT table with CPT updating dialog box.............................. 136
Figure 6.38. Setting Node X, t0 State0.oireereseiseiseisisseessesesssseseessesssnenesnsessssaes 137
Figure 6.39. Parameters of the node X, before inferenceis applied.cooccovcevrcenncee. 138|
Figure 6.40. Parameters of the node X, after inferenceisapplied.c..ccooevvecrcreneee, 138
Figure 3.41. Nodes of the Bayesian network after loading "college.db”.ccoe.ee.. 140|
Figure 6.42. Bayesian network created by the search algorithm.cccocvveveueun...... 141|
Figure 6.43. Decreasing the complexity of the network with diding bar. 142|
Figure 6.44. Bayesian network after decreasing the complexity.ccccveveveuennene.... 143

Xiv

Figure 6.45. Setting the evidence for the "intelligence”’ node.............ccccooveuvevvvenenn... 144|

Figure 6.46. The parameters of the "plan”.c.cveevveeeviieeeeeeeeeeeeeeeee e 145|
Figure 6.47. Message box informing the end of the network generation........................ 146)|
FFigure 6.48. Message box for initializing the dog and the sheep agents........................ 146
Figure 7.1. The 4-by-4 Grid Dog & Sheep Problem.cccceeveuevevreereerenseensenaes 147|
Figure 7.2. Possible moves (states) for the sheep and the dog.ccooevciveceescieneneen, 148|

Figure 7.3. The node types in the intelligent agent for the Dog & Sheep problem. 149

Figure 7.4. The structure of the intelligent agent with the known system dynamics...... 150|

Figure 7.5. The structure of the agent with BN created by the search algorithm. 152|
Figure 7.6. Loading the initial dataDase.ooooveeeeeoeeeeeeeeeeeeeeeeeeeeeeerseeeeensnann 157|
Figure 7.7. Bayesian network with Known dependencies.ccveevveevvevevveerenenne 158|
Figure 7.8. Bayesian network and the Ssmulation grid...............cccvevevevereevereverereenernnne. 159
Figure 7.9. The paths taken by the dog and the Sheep.ccococeiveceeceiicceeccseans 160|
Figure 7.10. Learning from the @XPEIENCE.ooueeoreeeeeeeeeeeeeeeeereeesereeseenserenennes 161

Figure 7.11. Bayesian network generated by heuristic search with Bayesian score........ 169

Figure 7.12. Bayesian network generated by exhaustive search with MDL score. 170|

Figure 7.13. Paths of the agents for the first Ssimulation.cocoeceeveeeeceeveveen.. 171|
Figure 7.14. Changing belief of anintelligent agent.c...oooovevevevvveeenveveeeesraeenn. 173
Figure 7.15. The expected utilities of the actions d, and dg.....cccccceeveviiisisicrerenn, 180
Figure 7.16. Network generated after the agent explored the environment..................... 181
Figure 7.17. (a) isthe first run, (b) is the second run, and (c) isthe 10" run................... 184

Figure 7.18. Simulations for unknown network structure and no online BN learning. .. 185|

Figure 7.19. Looping in the simulations when the online BN learning is not applied.... 186

XV

List of Tables

Thble 4.1. The database to compute the parameters of the BN...........coccoovveveeervereenn.. 62|
[Table 7.1. Initial database for the Dog& Sheep problem.............ccovevvvveeevvevevenrrereerane. 156
[Table 7.2. Possible search algorithms in the Intelli Agent software................................ 168|

XVi

CHAPTER 1

Introduction

How can independent agents cooperate to solve a problem collectively in aredl life
environment? How do the agents explore the environment while organizing a common
task? This research will attempt to answer these commonly asked questions from the
machine learning literature. The heart of the problem is how the agents will learn the
environment independently and then how they will cooperate to establish the common
task. In the literature, these types of problems are referred to as self-organizing
problems.

An agent is an entity that can be viewed as perceiving its environment through
sensors and acting upon that environment through effectors [54]. The
Effector/MediunvSensor (EMS) paradigm explains this definition. Gerber stated that this
paradigm provides an appropriate abstraction of a (human) agent acting and interacting
with its environment and other (human) agents [54]. This idea comes from Malsch's
work on Generalized Media of Interaction in sociology [55], where action and interaction
are transmitted via appropriate media [51]. According to EMS, verbal communications
are interpreted in the following manner: Each agent (human) has a speech effector (voice,
speech apparatus) and an audio receptor (ear). The spoken language, i.e. the sound, is
transmitted through the air [51].

In a multi-agent system, agents are independent in that they have independent access
to the environment. Therefore, each agent should incorporate a learning algorithm to
learn and/or explore the environment. Then, the agents should have some sort of

communication between them to behave as a group. In other words, they must organize

1

themselves to act together. A sheepdog is a widely used example of self-organizing
systems in the literature. Multiple dogs cooperate to put all the sheep into a pen together.
Dogs have independent beliefs about the sheep and the environment, but they learn to
cooperate with other dogs at the same time. Even though the dogs will have independent
ideas about how to solve the problem, they also have to know how to solve the problem
cooperatively. Since the multi-agent self-organization problem is alearning problem, the
following paragraphs will explore how researchers in the artificial intelligence (Al)

literature approach a learning system.

1.1 Learning systems in Al

There are two approaches to model a learning system in the Al literature. A learning
system is modeled as either supervised or unsupervised. The first approach is called
supervised learning in which the learning system has a world model. The learning
system makes its decisions according to the world model. Some type of feedback from
the environment is required to change the world model. Thisis also caled a goal-driven
learning system or a deliberative learning system. Figure 1.1 (a) illustrates a goal driven
learning system.

The second approach is described as supervised learning in which the learning system
explores the environment and takes actions to change it. This type of learning is also
called a data-driven or areactive learning system because the learning system depends on
only data, and it does not have a model of the world. Figure 1.1 (b) illustrates an
unsupervised/data-driven learning system model. There has been some research on a

method that tries to combine the two learning models. The methods were combined often

in ad-hoc ways and usually with limited success. This work will propose an approach
that combines both types of learning models. We will call the proposed |earning model
the bi-directional learning model. These two approaches are used consecutively in some
learning systems, but they are not usually used simultaneously. Figure 1.2 illustrates the
bi-directiona learning model. After specifying what type of learning algorithm is needed

for the self-organization problem, we need to explain the idea behind the self-organizing

mechanism.

Supervised Unsupervised Learning
WORLD System
MODEL

Goa driven Data driven
Learning ENVIRONMENT
System . . .

O Deliberative Reactive =
@ (b)

Figure 1.1. () Supervised learning model. (b) Unsupervised learning model.

Supervised
WORLD Goal Driven
MODEL Deliberative
Nature
Expectation
Learning
System
l T Unsupervised
Data Driven
Reactive
ENVIRONMENT Nurture
Evidence

Figure 1.2. Bi-directional Learning System Model.

1.2 Self-organization systems

The main idea of a self-organizing mechanism is to control a society of autonomous
agents through structurization and organization [51]. The task of adapting the structure
of a group or a society of artificial agents to the environment is considered an
optimization problem by characterizing a search space and an objective function to be
optimized. The objective function denotes the current system's performance while a
multi-dimensional search space describes the system's set of possible configurations [51].
The search space dimensions can be derived from principles of a multi-agent system
application: structural principles, communication principles, and agent architecture
principles[51].

Structural principles are, for example, the number of agents in the group, the number
of specialists for a certain task, the organizational form of the group, migration (i.e.
distribution of agents over the net), and so on. Communication principles can be
expressed through the introduction of communication channels between subunits or even
between agents belonging to a common subunit. Agent architecture principles are
explicit resource distributions among the various agent modules [51]. A unified approach
is provided by the paper [43].

Self-organization of multi-agent systems is commonly achieved by using some
combination of rule-based systems, Q-learning, Temporal Difference TD(A), and
evolution-based algorithms. Traditional Genetic algorithms (GAs) are well suited for
off-line search, where search time is not important. Unfortunately, the domains where

multi-agent systems are in use are generaly highly dynamic since the environment may

change anytime. In addition, a traditional GA needs to process many individuals. This
might require storing the configuration of tens of complete agent societies, which is
intractable. That is why the evolution-based algorithms have to be modified greatly for
on-line use. Thus, the performance of a GA isinefficient in multi-agent systems [51].

Temporal difference and Q-learning methods are also commonly employed to solve
multi-agent learning and organization problems [50, 52]. Temporal difference methods
require learning the value function for a fixed policy. Thus, they must be combined with
other reinforcement learning methods that can use the value function to make policy
improvements [53].

Temporal difference methods work in the following way. Let V,(s) denote the
current estimated value of state s under a fixed policy M. When asample (s,a,t,r) is

received by performing action a in state < at timet with the reward r, the smplest TD-
method (known as TD(0)) will update the estimated value to be

(L= aV, (9) +a(r + By (1) (L.1)
Here a isthelearning rate (0< a <1), governing to what extent the new sample replaces
the current estimate. The symbol [is the discount factor. Thisis the basis of TD(A),

where a parameter A captures the degree to which past states are influenced by the
current sample [40].
Q-learning is a straightforward and elegant method for combining value function

learning (as in TD-methods) with policy learning. A Q-value, Q(s,a), is assumed for

each state-action pair {s,a}. The Q-value provides an estimate of the value of

performing action a at state s. An agent updates its estimate Q(s,a) based on sample

(s;at,r) using theformula:
1-a)Q(s.a) +a(r + S(max{Q(t,a)})) (1.2

Temporal difference and Q-learning methods are successful in multi-agent learning
under the assumption of full observability. Full observability means that al states of the
environment can be observed completely. If the environment is not fully observable or
we have incomplete data, these methods easily fail to converge. Since an agent can adopt
the best policy given its current knowledge, Q-learning is only guaranteed to converge to
the optimal Q-function (and implicitly an optimal policy) if each state in the environment
is sampled sufficiently [53].

Learning classifier systems [Holland, 1986] also have been employed to solve multi-
agent learning and self-organization problems. The learning classifier system (LCS) isa
rule-based, message-passing, machine learning paradigm designed to process
environmental stimuli, much like the input-to-output mapping provided by a neura
network. The LCS provides learning through genetic and evolutionary adaptation to
changing task environments. The operation of the LCS is centered around a list of rules
or classifiers. Theserules are essentially a set of “if-then” statements, where the “if” part
of aruleiscalled condition, and the “then” part is called an action.

Learning classifier systems are genetic-agorithm-based machine learning
mechanisms for developing action policies to optimize environmental feedback. Sen and
Sekaran insist that learning classifier systems perform very competitively with the Q-
learning algorithm, and are able to generate good solutions to both a resource sharing and

arobot navigation problem [52]. They also claim that learning classifier systems can be

6

used effectively to achieve near-optimal solutions more quickly than the Q-learning
algorithm does. Even though some [52] claim that learning classifier systems perform
better than the Q-learning algorithm, these systems tend to have some deficiencies in
decision-making because they are rule-based systems. Partial observability (incomplete
data) is hard to handle for learning classifier systemstoo. Main problem with the LCSis
the "bucket-brigade”, which cannot converge.

Evolution-based agorithms are not efficient enough because they are not able to
perform well on-line. Q-learning algorithms perform well online, but they are not able to
handle the partial observability of the environment. Even though some clam that
learning classifier systems perform better than Q-learning algorithms, they are not able to
perform well with incomplete data. They also have some conceptual and computational
difficulties to overcome.

Last, but not least, the methods described above are not completely bi-directional
learning models although there is some bi-directionality in them. The importance of bi-
directional learning comes from its potential to combine the supervised learning and
unsupervised learning and facilitates them at the same time. The present research
attempts to provide a new approach that overcomes the difficulties described above
paragraphs. The new approach is based on Bayesian networks, directed acyclic graphs
(DAG) that are constructed by a set of variables coupled with a set of directed edges

between variables.

1.3 Why Bayesian Networks?

The main driving force to choose Bayesian networks is that Bayesian networks have a bi-
directional message passing architecture. Learning from the evidence can be interpreted
as unsupervised learning. Similarly, expectation of an action can be interpreted as
supervised learning. Since Bayesian networks pass evidence (data) between nodes and
use the expectations from the world model, they can be considered as bi-directional
learning systems. In addition to bi-directional message passing, Bayesian networks have
several important features such as alowing subjective a priori judgements, direct
representation of causal dependence, nonmonotonic reasoning, distillation of sensory
experience and the ability to imitate human thinking process.

A Bayesian network is a graphical model that finds probabilistic relationships among
variables of the system. There are a number of models available for data analysis,
including rule bases, decision trees and artificial neural networks. There are also several
techniques for data analysis such as classification, density estimation, regression and
clustering. One may wonder what Bayesian networks and Bayesian methods have to
offer to solve such problems. The following paragraphs provide four answers to the
guestion.

First, Bayesian networks handle incomplete data sets without difficulty because they
discover dependencies among all variables. When one of the inputs is not observed, most
models will end up with an inaccurate prediction. That is because they do not calculate
the correlation between the input variables. Bayesian networks suggest a natural way to

encode these dependencies.

Second, one can learn about causal relationships by using Bayesian networks. There
are two important reasons to learn about causal relationships. The process is worthwhile
when we would like to understand the problem domain, for instance, during exploratory
data analysis or when an agent is exploring the environment. Additionally, in the
presence of intervention, one can make predictions with the knowledge of causal
relationships.

Third, considering the Bayesian statistical techniques, Bayesian networks facilitate
the combination of domain knowledge and data. Prior or domain knowledge is crucially
important if one performs a real-world analysis; in particular, when data is inadequate or
expensive. The encoding of causal prior knowledge is straightforward because Bayesian
networks have causal semantics. Additionally, Bayesian networks encode the strength of
causal relationships with probabilities. Therefore, prior knowledge and data can be put
together with well-studied techniques from Bayesian statistics.

Finally, in conjunction with Bayesian networks and other kinds of models, Bayesian
methods give an efficient approach to avoid the over-fitting of data. Models can be
“smoothed” in such a way that all available data can be used for training by using
Bayesian approach [3].

Rule based systems are also commonly used for data analysis. After their first
successes, it became clear that rule-based systems have their shortcomings. One of the
major problems of rule-based systems is that they are not able to treat uncertainty
coherently. The reason why rule based systems cannot capture reasoning under

uncertainty is that dependence between events changes with knowledge of other events.

Another deficiency of the rule-based system is that the transition between the rules might
result in incorrect decisions. For example, assume the system has the following rules:

"If the bottle is broken, then the grassis wet" and "if it rains, the grassis wet"
The rule-based system might make an incorrect conclusion considering these two rules.
The system might decide that "if the bottle is broken, then it rained". This statement is
not a logical statement, and it is not possible to make this kind of decision with the
Bayesian networks. Thisiscalled a"dead end" in the machine learning literature [6].

Bayesian networks ease many of the theoretical and computational difficulties of
rule-based systems by utilizing graphical structures for representing and managing
probabilistic knowledge [1]. Their basic properties and abilities can be combined as
described below.

Independencies can be dealt with explicitly. They can be articulated by an expert,
encoded graphically, read off the network, and reasoned about, yet they forever remain
robust to numerical impression.

Graphical representations uncover opportunities for efficient computation.
Distributed updating is feasible in knowledge structures that are rich enough to exhibit
intercausal interactions (e.g., “explaining away”). The explaining away property
illustrates human-like behavior of the Bayesian Networks. No other expert systems or
rule-based systems have this property. Additionaly, when extended by clustering or
conditioning, tree-propagation algorithms are capable of updating networks of arbitrary
topology [1, 47].

The combination of predictive and abductive inference resolves many problems

encountered by the expert systems and renders belief networks a viable model for

10

cognitive functions requiring both top-down and bottom-up inferences [6]. As stated

above, Bayesian networks allow bi-directional learning and/or massage passing.

1.3.1 The relationship between Bayesian networks and neural networks

Even though Bayesian networks can model a broad spectrum of cognitive activity, their
original strength is in causal reasoning, which performs reasoning about actions,
explanations and preferences. Such abilities are not easily established in neural networks,
whose strengths lie in quick adaptation of simple motor-visual functions [6]. Pearl states
that neural networks cannot do reasoning between events [6]. A Bayesian network gives
a model of the environment rather than, as in many other knowledge representation
methods (e.g., rule-based systems and neural networks), a model of the reasoning
process. In fact, it simulates the mechanisms that operate in the environment, and makes
easier diverse models of reasoning, including prediction, abduction and control [6].

The relationship between Bayesian networks and neural networks is rather flimsy
except for the usua ability to carry out distributed inferencing. For instance, there are a
limited number of neural featuresin Bayesian networks: weights, sums and sigmoids play
no momentous role; familiar linguistic notions are employed for al computationa units;
and placement of bi-directional messages in acyclic structures has no well-defined
biological bias[5]. In these senses, Bayesian networks are not considered to be a kind of

neural network in the machine learning literature.

11

1.4 Self-organizing system as a generalized graph of behaviors

This section explains how a self-organization problem can be considered as a
generalized graph of behaviors and how they are related to cognitive learning and human
thinking. Then, the reasons why Bayesian networks are employed to solve the self-
organization problem of multi-agents will be provided.

A self-organizing system can be presented as a generalized graph of behaviors. Many
viable cognitive learning models and brain function are spatially or temporarily localized,
so that it is assumed that some ordered topology of behavior exists. A graph of behaviors
actually does little to constrain the topology, but it offers a fixed model and analysis
paradigm. The interconnections are somewhat better understood as a function of the
behavior operations. The interconnections can be categorized in two ways. quantitative
and symbolic. Symbolic messages might consist of command, queries or state
information formatted in a textua form. Networks having these kinds of
interconnections generally contain relatively high-level behaviors because they are
assumed to beindividually capable of generating, parsing, and interpreting the messages.

Quantitative interconnections may take various forms, such as in spreading activation
networks [49], Bayesian networks [1, 2], neural modular networks (NMN), and mixtures
of experts models (ME) [48]. Networks with quantitative interconnection exchange such
information in a fixed format, which is not necessarily parsed at the receiving end. It is
much more difficult to organize and adapt systems that require symbolic exchange of
information than for a system that exchanges quantitative information because symbolic
information has an essentially limitless dimension and the problem space for self-

organization of such systems is extremely large. Thus, networks with quantitative

12

information exchange are more tractable, and analytical learning methods exist for many
of them.

In recent years, Bayesian networks are commonly used networks with quantitative
interconnections [1, 2]. Bayesian networks were developed in the 1970s to model
distributed processing in reading comprehension, where both semantic expectations and
perceptual evidence must be combined to form a cooperative interpretation. The
coordination of bi-directional inferences is discovered in expert systems technology of
the early 1980s. Lately, Bayesian networks have become known as a genera
representation scheme for uncertain knowledge [1, 2, 3]. The recent research is mainly
focused on learning with Bayesian network [3, 15, 16, 17, 19, 24, 28, 29]. Learning with
Bayesian networks will be discussed in Chapter 3.

Bayesian networks maintain prior and posterior probability estimates of optimal
parameter sets describing a behavior [1]. Bayesian networks contain a number of nodes
whose parameters specify a transformation on the incoming information assuming that a
behavior is continuously parameterized. This is analogous to the view that a behavior is
considered a mapping that depends on some numerical parameters.

In our research, Bayesian networks are employed to design independent agents
because they support a human-like learning strategy. They have formal probabilistic
semantics and yet can serve as a natural mirror of knowledge structures in the human
mind [12]. Further information about the relationship between human reasoning and
Bayesian networks will be discussed in the next section.

The last question that may arise is how Bayesian networks will be employed to solve

our problem of the self-organization of independent agents. This brings up the following

13

related questions. What kind of methods will be employed in estimating parameters of
the networks? How will the optimal structure of the network be estimated by using
complete or incomplete data? How will the network adjust itself to environmental
changes, etc.? These questions are answered in Chapter 3, broadly explaining the various
methods discovered in the literature.

In our problem, each agent (the dog) will have its own Bayesian network whose
nodes are obtained from the sensory data. Bayesian networks will be incorporated with
influence diagrams, which alow agents to create actions according to the agent’s
objective and the state of the environment. Influence diagrams will be explained in
Chapter 2. The detailed explanation of the structure of an agent will be provided in
Chapter 5.

The agents have either no prior data, or limited data given by some sort of expert,
when the agents start to explore the environment. Since data are not reliable at the
beginning, the estimated Bayesian network is not going to model the real world properly.
Therefore, the Bayesian network has to be updated while the agent explores the
environment. In other words, the Bayesian networks should change its world modal by
updating itself with the new data. An online Bayesian network learning is proposed to
establish continuous learning in Bayesian networks. Chapter 4 explores the proposed
online Bayesian network learning.

Online Bayesian network learning is one of the main contributions of this research.
Online learning helps agents perform self-organizationa behaviors. Since the agents
learn during their exploration of the environment and observation of other agents, each

agent takes its action according to the current state of the environment and its belief about

14

the other agents and environment. In Chapter 7, the simulations are performed without
applying online Bayesian network learning in the agent design. Simulation results show
that the agents cannot make cooperative actions since they do not learn/adapt their
knowledge about the environment and the other agents by learning. Details of the
simulations and the effectiveness of the online Bayesian network learning are explored in

Chapter 7.

1.5 Outline of the dissertation

Chapter 2 will provide detailed descriptions of causal networks, Bayesain networks,
and influence diagrams. Learning in Bayesian networks will be explored intensively in
Chapter 3. Chapter 4 explores the proposed online Bayesian network learning. Chapter 5
will talk about how we will combine Bayesian networks and influence diagrams to create
an intelligent agent model, namely the decision-theoretic intelligent agent. Then, the
software, the IntelliAgent, is developed for creating and simulating intelligent agent
design in Chapter 6. A herding problem is simulated by the IntelliAgent software. The
problem definition and the simulation results are presented in Chapter 7. Chapter 8
concludes the research by presenting the main contributions of the research. Finally,

Chapter 9 presents possible future work on the research.

15

CHAPTER 2

Causal Networks, Bayesian Networks and Influence Diagrams

This chapter provides a detailed explanation of causal networks and Bayesian networks
along with the necessary probabilistic calculus. Subjects will be explained using an
example: wet grass. First, causal networks will be explained along with basic principles
of reasoning under uncertainty. Next, we will define the Bayesian networks. Finaly,
influence diagrams will be explored.

The causal information encoded in Bayesian networks facilitates the analysis of
action sequences, their consequences, their interaction with observations, and their
expected utilities, and hence the synthesis of plans and strategies under uncertainty [44,
46]. That is, Bayesian networks handle reasoning under uncertainty very well.

The isomorphism between the topology of Bayesian networks and the stable
mechanisms that operate in the environment facilitates modular reconfiguration of the
network in response to changing conditions, and permits deliberative reasoning about
novel situations [6].

Since the reasoning under uncertainty is one of the advantages of causal and Bayesian
networks it is necessary to provide some details on the principles of reasoning under

uncertainty. The next section provides basic principles for reasoning under uncertainty.

2.1 Basic principles for reasoning under uncertainty
The basic problem when reasoning under uncertainty is whether information on some

event influences our belief in other events. Rule-based systems cannot capture reasoning

16

under uncertainty because the dependence between events changes with the knowledge of
other events. The problem will be explored with the following example.

2.1.1 Wet Grass

The rest of the chapter will be explained with the wet grass example to show the
reasoning process. Mr. Holmes leaves his house in the morning and notices that his grass
iswet. He reasons it had been raining last night. Then he thinks that his neighbor, Mr.
Watson’'s grass is most probably wet also. That is, the information that Mr. Holmes
grass is wet has an influence on his belief of the status of Mr. Watson’s grass. Now,
suppose that Mr. Holmes checks his rain meter, and it isdry. Then he will not reason as
above, and information on Mr. Holmes' grass has no influence on his belief about Mr.
Watson's grass.

Next, let us consider two possible causes for wet grass. Besides rain, Mr. Holmes
may have forgotten to turn his sprinkler off. The next morning, suppose that Mr. Holmes
again notices that his grass is wet. Mr. Holmes belief of both rain and sprinkler
increases. Then he observes that Mr. Watson's grass is wet, and he concludes that it had
rained last night. The last step is virtually impossible through rules, but natural for human

beings, called explaining away.

2.1.2 Explaining away

Explaining away is the process of decreasing one's belief in a causal event as aresult in
an increase in the belief of an alternative causal event. Let us explain this with our
example. After seeing Mr. Watson's grass is wet in the next morning, Mr. Holmes

concluded that it had rained. Consequently, Mr. Holmes' wet grass has been explained

17

by the rain, and thus there is no longer any reason to believe that the sprinkler has been
on. Explaining away is another example of dependence changing with the information
available [7]. The following section provides some details of dependence between the

events.

2.1.3 Dependence of events
Dependence between two events is when the probability of an event depends on the
knowledge of the other event. For example, when nothing is known in the initial state,
the variables Rain and Sprinkler are independent. On the other hand, when the
information on Mr. Holmes grass is present, then Rain and Sprinklers become
dependent. That is, change in the belief in whether it rained or not will change the belief
in the sprinkler being on or off. If it rained, then the sprinklers were not on. Otherwise,
the sprinklers were on. Of course, thisistrue only if there is no other variable that causes
Mr. Holmes grass being wet. On the other hand, if the information on Mr. Holmes
grassis not present, then we cannot relate the variables Rain and Sprinkler. Dependence
between events will be clearer when we introduce the concept of causal networks.

The prior certainties are also an important concept in reasoning under uncertainty.

The next paragraph will introduce the importance of the prior certainties for reasoning.

2.1.4 Prior Certainties
In the above example, it is obvious that if an event is known, the certainty on the other
events must be changed. In a certainty calculus, if the actual certainty of a specific event

has to be calculated, then the knowledge of certainties prior to any information is also

18

required. For instance, the certainty of Rain is still dependent on whether rain at night is
rare (as in Los Angeles) or very common (as in London) given that Mr. Holmes grassis
wet [2].

Since basic principles of reasoning under certainty are provided above, now causal
networks can be introduced. The following section introduces causal networks and

provides related definitions such as connection types and d-separation.

2.2 Causal Networks
The reasoning above can be described by a graph. The events are nodes, and two nodes
A and B are connected by a directed link from A to B if A has a causal impact on B.

Figure 2.1 is graphical model for Mr. Holmes' small world of wet grass.

< N

Watson? Holmes?
Figure 2.1. A graphical model for the wet grass example [7].

Figure 2.1 is an example of a causal network. A causal network is composed a set of
variables and a set of directed links between variables. In mathematics literature, this
composition is called a directed graph. In a directed graph, the terminology of family
relations is adopted to explain the relations between the variables. If there exists a link
from variable A to variable B, then Ais called a parent of B and B is called a child of A.
The variables symbolize events. Every variable in a causal network has two (yes and no)

or more states (i.e. color of acar: blue, green, red, and black). In general, variables can

19

have continuous and discrete states. Reasoning about uncertainty also has a quantitative
part such as the calculation and combination of certainty numbers [2]. The certainty
numbers are the probabilities of the event (variables) given the data.

From the graph in Figure 2.1, one can read off the dependencies and independencies
in the small world of wet grass. For example, one can see that if he knows that it has not
rained tonight, then information on Mr. Watson’s grass has no influence on Mr. Holmes
grass. The ways in which influence may run between variables in a causal network have
been analyzed by Pearl [33] and Verna[20]. Two variables are said to be separated if
new evidence on one of them has no impact on our belief of the other. If the state of a
variable is known, then we say it isinstantiated.

There are three types of connections in a causa network: serial, diverging, and

converging connections. Figure 2.2 shows all type of connections in a causal network.

B—®
(a) (b) (©)

Figure 2.2. Serial, diverging, and converging connections respectively.

In Figure 2.2 (a), the variable A has a control on the variable B that then has control
on the variable C. Apparently, the evidence on the variable A will affect the certainty of
the variable B that in turn affects the certainty of the variable C. Analogously, the
evidence on the variable C will affect the certainty of the variable A through the variable

B. On the contrary, if the state of the variable B is given, then the link is blocked, and the

20

variable A and the variable C become independent. In other words, influence may run
from Ato C and vice versa unless B is instantiated.

As shown in Figure 2.2 (b), in a diverging connection the influence can pass between
al the children of the variable A unless the state of the variable A is given. If the state of
the variable A is known, then the variables B, C,..., E become independent from each
other. Therefore, influence may run between A’s children unless A is instantiated.

In a converging connection shown in Figure 2.2 (c), if there is nothing known about
the variable A other than what may be deduced from the knowledge of its parents B,
C,..., E, then the parents are said to be independent. The independence means that
evidence on one of the parents has no effect on the certainty of the others. If thereis any
other kind of evidence influencing the variable A, then the parents become dependent
because of the principle of explaining away. Therefore, evidence may only be transmitted
through a converging connection if either the variable in the connection or one of its
descendants has received evidence. The evidence can be direct evidence on the variable
A, or it can be evidence from one of its children. In causa networks, this fact is called
conditional dependence.

Jensen stated that evidence on a variable is a statement of the probabilities of its
states. If the statement supports the exact state of the variable it is called hard evidence.
Otherwise, it is voiced soft evidence. For example, soft evidence can be evidence stating
the probabilities of the states of a variable. Hard evidence is also referred as
instantiation. In the case of serial and diverging connections, blocking a link requires

hard evidence, while opening alink is possible for al types of evidence[2].

21

The three cases explained above wrap al the forms in which evidence may be
transmitted through avariable. If the rules below are followed, it is conceivable to decide
for any pair of variables in a causal network whether or not they are dependent knowing
the evidence entered into the network. Two variables A and B are said to be d-separated
if for al paths between variables A and B thereis an intermediate variable V so that either

- the connection is seria or diverging and the state of V is known
or

- the connection is converging and neither V nor any of V's descendants have

received evidence [2].

If variables A and B are not d-separated they are said to be d-connected. For example, if
the state of the variable B is given in Figure 2.2 (@), then the link is blocked, and the
variable A and the variable C become independent. Therefore, it is said that the variable
A and the variable C are d-separated given the variable B. Similarly, in Figure 2.1,
Sorinkler? and Watson? are d-separated because the connecting trail is converging
around the variable Holmes?

One should note that d-separation is a property of human reasoning [7], and therefore
any calculus for uncertainty in causal structures must obey the principle that whenever A
and B are d-separated then new information on one of them does not change the certainty
of the other. To understand causal networks better, we need to establish the quantitative
part of the certainty assessment. The next section will provide necessary probability

calculus for certainty assessment.

22

2.3 Probability calculus

Even though various certainty calculi exist in the literature, this section provides the
Bayesian calculus, which is classical probability calculus. The section starts with basic
probability calculus. Then, the concept of subjective probability and conditional

probability will be introduced.

2.3.1 Basic probability calculus
The basic concept in the Bayesian treatment of certainties in causa networks is
conditional probability. When the probability of an event A, P(A), is known, then it is
given conditioned by other known factors. A conditional probability statement has the
following form:
Given the event B, the probability of the event Aisx.
The mathematical representation of this statement isP(A|B) = x. This does not mean
whenever B is true, then the probability for A is x. It means that if B is true, and
everything else known isinapplicable to A, then P(A|B) = x.
The fundamental rule for probability calculusis given in the following way in [2];
P(A|B)P(B) = P(A,B) (2.1
where P(A, B)is the probability of the joint event ACIB. Because probabilities ought to
always be conditioned by a context C, the formula should be written as;
P(A|B,C)P(B|C)=P(AB|C) (2.2
From (2.1), we can write that P(A|B)P(B) = P(B| A)P(A) and this gives the famous

Bayes rule:

23

P(A|B)P(B)

P(B|A) = 2.3
(BIA) P(A) (2.3)
If we condition the Bayes rule, we will get the following;
P(A|B,C)P(B|C
P(B|AC) = (Al)P(B]). (2.9

P(A[C)
If Aisavariablein acausa network with the set of states a;, ay,..., an, then the P(A)

isaprobability distribution over this set of states:
P(A) = (X, %y %) %20 > x =1
i=1

where X; is the probability of A being in the state a;. One should note that the probability
of A being in the state g; is expressed as P(A = &) and expressed as P(g) if the variableis
obvious from the context. Let B be another variable with the states by,b,,...,bm, then
P(A | B) is an n-by-m table consisting numbers P(a; | byj). Thistableis called conditional
probability table (CPT) for P(A|B).

The joint probability for the variables A and B, P(A, B), is aso an n-by-m table
containing the probabilities P(a;, byj). Thejoint probabilities, P(A, B), can be computed by
utilizing the fundamental rule (2.1):

P(a,b;) = P(a |b;)P(b;)
or equivalently,
P(A,B) = P(A| B)P(B) (2.5)
The joint probability, P(A, B), has nith entries. The probability P(A), can be computed
from the table P(A,B). Let a denote a state of the variable A. In the table P(A, B),
there are m different events for which the variable A is in state a, namely the mutually
exclusive events (a;, by), ..., (&, by). Therefore, P(a;) can be calculated as;

24

Pa)=3 P(a.b) 26)

This operation is called marginalization and it is said that the variable B is marginalized

out of P(A, B) (producing P(A)). Thus, the notation can be written as follows:

P(A) =) P(AB) (2.7)

The definitions above work for only classical (objective) probabilities. Causal
networks have another type of probability, called subjective probability. The subjective
probability is one of the important features of causal networks because of their ability to

explain one’s belief on an event.

2.3.2 Subjective probabilities

Probability calculus does not require that the probabilities be based on theoretical results
or frequencies of repeated experiments. Probabilities may also be completely subjective
estimates of the certainty of an event. For example, a subjective probability may be my
personal assessment of the chances of finishing my dissertation at the end of next Fall
semester. Jensen provides a way of assessing this probability by comparing to gambling
[2].

Subjective probability is also called as Bayesian probability or personal probability in
the literature [3]. The Bayesian probability of an event x is a person’s degree of belief in
that event. A Bayesian probability is a property of the person who assigns the probability
(e.g., your degree of belief that a coin will land heads), whereas a classical probability is
aphysical property of the world (e.g., the probability that a coin will land heads). In light

of these statements, a degree of belief in an event is referred to as a Bayesian or personal

25

probability, and the classical probability is referred as the true or physical probability of
that event [3].

An important difference between physical probability and personal probability is that
there is no need for repeated trials to measure the persona probability. For example,
consider the question: what is the probability that the Chicago Bulls will win the
championship in 2001? The Bayesian method can assign a probability for this event. One
common criticism of the Bayesian approach of probability is that probabilities seem
arbitrary. This can be mainly observed as a probability assessment problem. Much
research has been done to overcome this problem. A detailed construction of this
criticism can be found in [3].

Another important concept in causal networks is the conditiona independence
between variables. The following subsection describes its importance in Bayesian

caculus.

2.3.3 Conditional Independence
In the Bayesian calculus, the blocking of influence between variables is reflected in the
concept of conditional independence. The variables A and C are independent given the
variable B if

P(A|B) =P(A|B,C) (2.8)
This expresses that if the state of the variable B is given then no information of the
variable C will change the probability of the variable A. Conditional independence
comes into view in the cases of serial and diverging connections. If (2.8) holds, then by

the conditioned Bayes rule (2.4) the following will be obtained

26

pc|B,a) = PAICB)PCIB) _ PAIB)PCIB) _ b gy 29
’ P(A|B) P(A|B) '

So, Equations (2.8) and (2.9) hold simultaneously.
With this explanation of causal networks and Bayesian calculus, we can now explore
Bayesian networks. The next section will describe the Bayesian network structure and

provide its propertiesin detail.

2.4 Bayesian networks

As stated earlier, causal networks are introduced to define and understand Bayesian
networks. The following paragraphs provide a detailed definition of Bayesian networks
and related theorems. The chain rule theorem is introduced to do the necessary
calculations in Bayesian networks.

Causa relations also have a quantitative side, namely their strength. This is
expressed by attaching numbers to the links. Let the variable A be a parent of the variable
B in a causal network. Using probability calculus, it will be normal to let the conditional
probability, P(B| A), be the strength of the link between these variables. On the other
hand, if the variable C is also a parent of the variable B, then conditional probabilities
P(B|A) andP(B|C) do not provide any information on how impacts from the variable
A and the variable B interact. They may cooperate or counteract in various ways.
Therefore, the specification of P(B | A,C) isrequired.

It may happen that the domain to be modeled contains feedback cycles. Feedback

cycles are difficult to model quantitatively. For causal networks no calculus coping with

27

feedback cycles has been developed. Therefore, it is necessary for the network not to

contain cycles. Thus, A Bayesian network consists of the following elements:

A set of variables and a set of directed edges between variables,

Each set contains afinite set of mutually exclusive states,

The variables coupled with the directed edges construct a directed acyclic
graph (DAG),

Each variable A with parents B;, B, ..., By has a conditional probability table

P(A| By, By, ..., By) associated with it [2].

If the variable A does not have any parent, then the table can be replaced by the

unconditional probabilities P(A). A graph is acyclic if there is no directed path

A -

- A, suchthat A = A,. For the directed acyclic graph in Figure 2.3, the prior

probabilities P(A) and P(B) have to be specified.

Figure 2.3. A directed acyclic graph. The probabilities to specify are shown.

It has been insisted that prior probabilities introduce an undesired bias to the model

[1]. The necessary calculi have been developed in order to avoid this problem [1]. On

the other hand, as explained before, prior probabilities are essential. They are important

28

not because of mathematical reasons but because prior certainty assessments are an
integral part of human reasoning about certainty.

One of the benefits of Bayesian networks is that they admit d-separation. If the
variables A and B are d-separated in a Bayesian network with evidence e inserted, then

P(A|B,e) =P(A|e). Therefore, d-separation can be used to read-off conditional

independencies. Next, we will talk about one of the most crucial elements of Bayesian

network calculations, namely the chain rule.

2.4.1 The chain rule

In aBayesian Network, let U = (A, A,,..., A,) beauniverse of variables. The chain rule
provides a more compact representation of the joint probability P(U) = P(A, A,,..., A,))

to make the probability calculations easier. If the joint probability table P(U) is obtained,
then the probabilities P(A;) can be calculated as well as the probabilities P(A; | €), where e
is evidence. On the other hand, if the number of variables in the network increases, P(U)
expands exponentially. Therefore, a more compact representation of P(U) is necessary: a
manner of reserving information from which P(U) can be computed if it is necessary [2].
Such a representation resides in a Bayesian network over U. P(U) can be computed
from the conditional probabilities defined in a Bayesian network if the conditional

independencies hold for U. The following theorem explains this representation.

Theorem 2.1 (The Chainrule.)

Let BN be a Bayesian network over

U=(A A A)

29

Then the joint probability distribution P(U) is the product of all conditional probabilities

specified in BN:

PU) =[] P(A | pa(A)) (2.10)

where pa(A;) isthe parent set of A,.
Jensen proved this theorem by applying induction on the number of variables in the
universe U [2]. The next section will provide theoretical and historical details on

evidentia reasoning using the chain rule.

2.4.2 Evidential Reasoning

As stated above, Bayesian networks accomplish such economy by pointing out, for each
variable X;, the conditiona probabilities P(X; | pa;) where pa are the set of parents (of X)
which render X; independent of all its other parents. After giving this specification, the

joint probability distribution can be calculated by the product

P0G, %) =[] POx | Py (2.11)

Using this product, all probabilistic queries can be found coherently using probability
calculus. There are a number of algorithms for probabilistic calculations in Bayesian
networks. Early agorithms employed message-passing architecture and they were
limited to trees [18, 14]. In these algorithms, each variable was assigned a simple
processor and alowed to pass messages asynchronously with its neighbors until
equilibrium is accomplished. Some techniques have been developed to extend this tree
propagation to general networks starting around the 1990s. Two of the most popular
methods are Lauritzen and Spielgelhater’s method of join-tree propagation [22] and the

method of loop-cut conditioning, which is explained in [1, 2]. Learning methods have

30

also been proposed for systematic updating of the conditional probabilities P(X; | pa), as
well as the structure of the network in order to match empirical data[21]. The details of
learning techniques are discussed in Chapter 3. We will explore some questions about
the relationship between Bayesian Networks and the functionality of a human brain as

our last topic in Bayesian networks.

2.4.3 Bayesian networks and the functionality of a human brain

Does an architecture like the Bayesian network exist anywhere in the human brain? If
not, how does the human brain achieve those cognitive functions in which Bayesian
networks excel? Pearl answers these questions in the following sentences: “Nothing
resembling Bayesian networks actually resides permanently in the brain. Instead,
fragmented structures of causal organizations are constantly being assembled on the fly,
as needed, from a stock of functional building blocks’ [6].

Every building block is concentrated on to accomplish a narrow context of experience
and is presumably materialized in a structure of a neural network. For example, a
network as in Figure 2.1 can be assembled from several neural networks each
specializing in one variable. Such specialized networks will need to be stored in a
permanent mental library, from which they are selected and assembled into a network
structure. This is possible only when a specific problem displays itself, for instance, to
resolve whether a working sprinkler could rationalize why Mr. Holmes' grass was wet in
the middle of a dry season. Therefore, Bayesian networks are particularly beneficial in
studying higher cognitive functions, where the organizing and supervising large

assemblies of specialized neural networks is an important problem. As stated earlier,

31

Bayesian networks do human-like reasoning well not because the structure of the
networks resembles the biological structure of a human brain but because the way
Bayesian networks do reasoning resembles with the way humans do reasoning. The

resemblance is more psychological than biological.

We have explained Bayesian networks and causal networks. Bayesian networks will
be employed in our intelligent agent design because of their ability of reasoning the
events and modeling the environment accurately. Modeling the environment is not
enough for an intelligent agent to act rationally in the environment. The beliefs about the
environment have to be converted into actions. The next section will introduce a method
to convert beliefs of an agent into actions. In the literature, they are also called influence

diagrams[2], or sometimes decision networks [54].

2.5 Influence Diagrams

A Bayesian network serves as a model for a part of the world, and the relations in the
model reflect causal impacts between events. The reason for building these computer
models is to use them when making decisions. That is, probabilities provided by the
network are used to support some kind of decision-making [1]. In principle, there are
two types of decisions, test-decisions and action-decisions. A test-decision is a decision
to look for more evidence to be entered into the model. An action-decision is a decision
to change the state of the world [1]. In this research, the action-decisions will be the

focus.

32

Decision problems can be treated in the framework of utility theory. The utility of an
action may depend on the state of some variables caled determining variables. For
example, the utility of atreatment with penicillin is dependent on the type of the infection
and whether the patient is allergic to penicillin. The type of the infection and the
patient’s reaction to the penicillin are the determining variables of the utility of the
treatment [2]. The utility theory and Bayesian network theory can be combined in a
graphical representation, influence diagrams. An influence diagram (ID) is a compact
representation emphasizing features of decision problems. The inference diagram
formalism integrates the two components of knowledge, about beliefs and about actions.

Influence diagrams are directed acyclic graphs with tree types of nodes—decision
nodes, chance nodes, and a value node. Decision nodes, shown as squares, represent
choices available to the decison-maker. Chance nodes, shown as circles, represent
random variables (or uncertain quantities) the same as for Bayesian networks. Finaly,
the value node, shown as a diamond, represents the objective (or utility) to be maximized.

The edges in an ID have different meanings, based on their destinations. An edge
pointing to utility and chance nodes represent probabilistic or functional dependence, like
the edges in Bayesian networks. They do not necessarily imply causality or time
precedence although in practice they often do. Edges into decision nodes mean time
precedence and are informational, i.e., they show which variables will be known to the
decision-maker before the decision is made [2].

An influence diagram can be seen as a special type of Bayesian network, where the
value of each decision variable is not determined probabilistically by its predecessors, but

rather is imposed from the outside to meet some optimization objective. The domain of

33

each decision variable in an influence diagram varies according to previous decisions
although the domains of the variablesin a Bayesian network are fixed.
Figure 2.4 represents an influence diagram about weather and decision to carry an

umbrella. FORECAST and WEATHER are chance nodes, just asin Bayesian networks.

WEATHER

UMBRELLA

Figure 2.4. An influence diagram.

They have the probabilistic values about the weather and the forecast. SATISFACTION is
a utility or value node, i.e. a node that measures our scoring of the system. UMBRELLA
is a decision node, i.e. a node that we have to provide a value for. The objective is to
maximize expected SATISFACTION by appropriately selecting values of UMBRELLA for
each possible FORECAST. In addition to probabilities, the values of SATISFACTION for
each combination of UMBRELLA and WEATHER are also given. The objective in an
influence diagram is to select values at the decision nodes in order to maximize the
values at the utility nodes.

Now, let us define how the optimal actions are calculated by employing the influence

diagram theory. Let A={a,,...,a,} be set of mutually exclusive actions, and let H be

the determining variable. A utility table U (A, H) is necessary to yield the utility for each

configuration of action and determining variable in order to decide between the actionsin

A. The problem is solved by calculating the action that maximizes the expected utility:

EU(a) =) U(a,H)P(H |a) (2.12)

where U (a,H) are the members of the utility table in the value node U. The conditional
probability P(H |a) isan entry in the CPT of the variable H, given the action aisfired.
Figure 2.5 illustrates a simple influence diagram with one determining variable and
one set of actions. An action set is the set of actions in a decision node in an influence
diagram. The probability P(H |a) isthe probability of H given that the action a is fired.
The probability P(H |a) can be calculated by facilitating a standard probabilistic

inference as in Bayesian network.

Network

A Influence
Diagram

Figure 2.5. An influence diagram with an action set.

Actions are selected by evaluating the decision network for each possible setting of
the decision node. Once the decision node is set, it behaves exactly like a chance node
that has been set as an evidence variable. The following algorithm illustrates the
evaluation of an influence diagram [54].

1. Set the evidence variables for the current state

2. For each possible value of the decision node:

35

() Set the decision node to that value.

(b) Calculate the posterior probabilities for the parent nodes of the utility node,
using a standard probabilistic inference algorithm.

(c) Calculate resulting utility function for the action

3. Return the action with the highest utility.

This is a straightforward extension of the Bayesian Network algorithm and will be
incorporated into the agent design in the next chapter. An agent that selects rational
actions will be designed using the influence diagram theory.

We have explained the causal networks, Bayesian networks, and influence diagrams
in detail in this chapter. We have aso given theoretical background in Bayesian calculus
and reasoning under uncertainty. Since our problem is a learning problem, we need to
explain how Bayesian networks learns. The next chapter is devoted for that purpose.
Chapter 3 will provide different type of learning situations and different approaches to

solve those learning problems.

36

CHAPTER 3

Learning Bayesian Networks

This chapter is devoted to answering the question: how can Bayesian networks be learned
from data? The process of learning Bayesian networks takes different forms in terms of
whether the structure of the network is known and whether the variables are al
observable. The structure of the network can be known or unknown, and the variables
can be observable or hidden in al or some of the data points. The latter distinction can
also be expressed as complete and incomplete data. Consequently, there are four cases of
learning Bayesian networks from data; known structure and observable variables,
unknown structure and observable variables, known structure and unobservable variables,
and unknown structure and unobservable variables.

Learning Bayesian networks can also be examined as the combination of parameter
learning and structure learning. Parameter learning is estimation of the conditional
probabilities (dependencies) in the network. Structural learning is the estimation of the
topology (links) of the network. The four types of learning Bayesian networks cases are

discussed in the following paragraphs.

3.1 Known network structure and observable variables (complete data)

This is the easiest and the most studied case of learning Bayesian networks in the
literature [31, 32]. The network structure is specified, and the inducer only needs to
estimate the parameters. The problem is well understood and the algorithms are

computationaly efficient. Despite its simplicity, this problem is still extremely useful,

37

because numbers are very hard to elicit from people. Additionally, it forms the basis for
everything else in Bayesian learning.

Because every variable is observable, each data case can be pigeonholed into the CPT
entries corresponding to the values of the parent variables at each node. The pigeonhole
principle essentially states that if a set consisting of more than k [h objects is partitioned
into n classes, then some classes receive more than k objects [30]. Therefore, estimations
will be highly accurate since every variable is observable.

Learning is achieved simply by calculating conditional probability table (CPT) entries
using estimation techniques such as Maximum Likelihood Estimation (MLE) and
Bayesian Estimation. For simplicity, MLE and Bayesian estimators will be explained by
employing parameter learning for a single parameter.

Assume that an experiment was conducted by flipping a thumbtack in the air. The
thumbtack comes to land as either heads or tails. As usua, the different tosses are
assumed to be independent, and the probability of the thumbtack landing heads is some
real number 8. Therefore, the goal is to estimate . Assume that we have a set of
instancesd[1],..., d[M] such that each instance is sampled from the same distribution and
independently from the rest. The goal is to find a good value for the parameter 6. A
parameter is good if it predicts the data well. In other words, if data are very likely given

the parameter, the parameter is a good predictor. The likelihood function is defined as

L(D|6)=P(D|6)=[]1P(dm]|6). (3.1)

m=

Thus, the likelihood for asequenceH, T, T, H, H is

L(D |8) = 8(1-8)(1-8)60 (3.2)

38

or 8°(L-6)*. To caculate the likelihood we need to know number of heads N, and the
number of tails N,. These are the sufficient statistics for this learning problem. A

sufficient statistic is a function of the data that summarize the relevant information for
computing the likelihood.

The Maximum Likelihood Estimation (MLE) principle tells us to choose & that
maximizes the likelihood function. The MLE is one of the most commonly used
estimatorsin statistics. For the above problem, the estimation of the parameter is

Nh
N, + N,

9=

(3.3)

as expected.

The MLE estimate seems plausible, but is overly simplistic in many cases. Assume
that the experiment with the thumbtack is done and 3 heads out of 10 are recorded. It
may be quite reasonable to conclude that the parameter 6 is0.3. On the other hand, what
if the same experiment is done with a dime and also 3 heads are recorded. We would be
much less likely to jump the conclusion that the parameter of the dime is 0.3 because we
have a lot more experience with tossing dimes. Thus, we have a lot more prior
knowledge about their behavior.

Using MLE, we cannot make the following distinctions: between a thumbtack and a
dime, and between 10 tosses and 1,000,000 tosses of a dime. On the other hand, there is
another method recommended by Bayesian statistics. The MLE is a frequentist approach
since it relies on the frequency in the data. Another approach is the Bayesian approach

that assumes that there is unknown but fixed parameter 8. It estimates the parameter

39

with some confidence, i.e., it calculates a range such that, if the parameter is out of this
range, the probability of the datais very low.

The Bayesian approach deals with uncertainty over anything that is unknown by
putting a distribution over it. In other words, the parameter & is treated as a random
variable and a distribution P(6) is defined over it. Therefore, we can tell how likely the
parameter is to take on one value versus another. In other words, we now have a joint
probability space that contains both the tosses and the parameter. Thisjoint probability is
easy to find given our prior distribution over 8. Let X[1],..., X[M] be our coin tosses.
The conditiona probabilities P(X[m] |8) are accordingto 8, i.e., P(X[m]=H |8) =6.

Now, the value of the next toss X[M + 1]can be predicted by

P(X[M +1| X[1],..., X[M]) = _[P(X[M +1]|8)P(€| D)do (3.4
where
P(@|D) :w. (3.5)

The first term in the numerator is the likelihood, the second is the prior over
parameters, and the third is a normalizing factor, which is the marginal probability of the
data.

If we reconsider the thumbtack problem again with a uniform prior over 8 in the
interval [0, 1], then P(@|D) is proportiona to the likelihood P(D |8) =8 (1-8)": .
After plugging this into the integral and doing all the math and normalizing, it can be
shown that the following equation holds [13].

N, +1

P(X[M +1]|D)=————
(XM +31D) =

(3.6)

Clearly, as the number of samples grows, the Bayesian estimator and the MLE
estimator converge to each other. This result depends on the use of uniform prior. Inthe
Bayesian networks literature, the most commonly used class of priors are the Dirichlet
priors [26, 28, 29] because it turns out that most of the interesting calculations can be
done in closed form. The conjugacy of the Dirichlet priors allows us to have the
posterior probabilities in the same form as prior probabilities. Therefore, we can do
sequential updating within the same representations and the closed form solution can be
found both for the update and the prediction problem in many cases.

Recall that a multinomial is parameterized via a set of parameters @,,...,8, such that
zi 6 =1, 6, correspondsto the probability of ith outcome. A Dirichlet distribution over

this set of parameters is defined via a set of hyperparameters a,...,a,. Then, the

generalization can be written as

. M (a)
Dir(@|a,,...,a,) = r| @)H (3.7)

All of the results regarding prediction and computing the posterior extend in the
obviousway. That is, if 8 isdistributed asin (3.7), then

a

Zjaj

and if thereis adata set D whose sufficient statisticsare N,,..., N, , then

P(x) =

P@|D)=Dir(@|a, + N,,...,a, +N,). (3.8)
To generalize these results for a Bayesian network, we need to define the sufficient
statistic as N(x, u) for the event X = x and the parents U = u. In the MLE case, the

estimation of the parameters can be calculated as

41

0" _ N(x,u)

= : 39
X|u N(U) ()

Similarly, in the Bayesian case, the parameter estimation is calculated as
6,, = Dir(a, + N(x,u),...,a, +N(X,u)). (3.10)

If the data were actually generated from the given network structure, then both
methods converge asymptotically to the correct parameter setting. If not, then they
converge to the distribution with the given structure that is closest to the distribution from
which the data were generated. Both estimations can be implemented online by
accumulating sufficient statistics.

The process above is the method by which Bayesian network parameters are learned
when the network topology is known and al variables are fully observable. The next
section provides an overview of some proposed methods in the literature if the structure

of the network is not known in advance.

3.2 Unknown network structure and observable variables

In this case, the inducer is given the set of variables in the model, and needs to select the
arcs between them and estimate the parameters. This problem is very useful for a variety
of applications; in general, when we are given a new domain with no available domain
expert, and want to get all of the benefits of a BN model. It isalso useful for data-mining
style applications, where there are masses of data available and we would like to interpret
them. In addition to providing amodel that will allow us to predict behavior of cases that

we have not seen, the structure also gives the expert some indication of what attributes

42

are correlated. The agorithms for this problem are combinatorially expensive. They
basically reduce to a heuristic search over the space of BN structures.

There has been some attention given to the problem of unknown network structure in
the literature. The key aspect of the problem is to reconstruct the topology of the network
from fully observable variables. In the literature, this is considered as a discrete
optimization problem solved by a greedy search algorithm in the space of structures.
Some examples of the greedy search algorithm can be found in [34, 35].

A MAP (Maximum a Posterior) analysis of the most likely network structure has
been studied in [34] and [35] when the data are fully observable. The resulting
algorithms are capable of recovering fairly large networks from large data sets with a
high degree of accuracy [16]. On the other hand, they usually adopt a greedy approach to
choosing the set of parents for a given node because the problem of finding the best
topology isintractable.

There are two main approaches to structure learning in BNs:

» Constraint based: Perform tests of conditional independence on the data, and search
for anetwork that is consistent with the observed dependencies and independencies.

* Score based: Define a score that evaluates how well the (in)dependencies in a
structure match the data, and search for a structure that maximizes the score.

Constraint-based methods are more intuitive. They follow the definition of a BN more

closely. They also separate the notion of the independence from the structure

construction. The advantage of score-based methods is that they are less sensitive to

errors in individual tests. Compromises can be made between the extent to which

variables are dependent in the data and the cost of adding the edge [13].

The score-based methods operate on the same principle: a scoring function is defined
for each network structure, representing how well it fits the data. The goal is to find the
highest-scoring network structure. The space of Bayesian networks is a combinatorial
space, consisting of a superexponential number of structures. Thus, it is not clear how
one can find the highest-scoring network even with a scoring function. In general, the
problem of finding the highest-scoring network structure is NP-hard [13]. On the other
hand, the problem of searching a combinatorial space with the goal of optimizing a
function is very well studied in Al literature. Consequently, the answer is to define a
search space, and then do heuristic search.

In light of the above statements, a BN structure learning algorithm requires the
following components be determined:

)] Scoring function for different candidate network structures.

i) The definition of the search space: operators that take one structure and

modify it to produce another.

11)] A search algorithm that does the optimization search.
Each component will be discussed separately. The three main scoring functions
commonly used to learn Bayesian networks are the log-likelihood [13], the one based on
the principle of minimal description length (MDL) [11] which is equivaent to Schwarz’
Bayesian information criterion (BIC) [10], and Bayesian score [3,13].

The log-likelihood function is simply the log of the likelihood function. That is,
I(D]B,6g) =logL(D |B,&g) (3.12)

The log-likelihood is easier to analyze than the likelihood, because the logarithm turns all

the productsinto sums. Therefore,

L(D |B,6,) =[] P(dmi | B,6,) (3.12)

m

and, the following equation can be written:

I(D|B,6,) =Y logP(d[m] | B,6,) (3.13)

There are a couple of important things to note about the log-likelihood. The log-
likelihood increases linearly with the length of data, M. The higher scoring networks are
those where the node and the parents are highly correlated. Adding a node to the
networks always increases the log-likelihood. As a result, the network structure that
maximizes the likelihood is often the fully connected network. This is the deficiency of
the log-likelihood score and is not desired. Thus, a score that makes it harder to add
edges is necessary. In other words, we would like to penalize structures with too many
edges.
One possible formulation of thisideais called the MDL score. It is defined as.

logM

Score,, (B: D) =1(D|B,6,) - Dim(B) - DL(B) (3.14)

where Dim(B)is the number of independent parametersin B and DL(B) is the number
of bits (the description length) required to represent the structure of B. The abbreviation
MDL stands for minimum description length. The MDL score is a compromise between
fit to data and model complexity. Adding a variable as a parent causes the log-likelihood
term to increase, but so does the penalty term. There will be an edge addition if its
increase to the likelihood is worth it.

Another commonly used score is called Bayesian score. In this case, the network
score is evaluated as the probability of the structure given the data. The Bayesian score

has the following form:

P(D |B)P(B)

Score,,(B:D)=P(B|D) = P(D)

(3.15)

Asusual P(D) isconstant, so it can be ignored when different structures are compared.
Therefore, the model maximizes P(D |S)P(S), where S represents a structure. The

ability to ascribe a prior over structures gives us a way of preferring some structures to

others. Here, the probability P(D | B) can be calculated as
P(D|B) = j P(D|6,,B)P(6, | B)db, . (3.16)

From Equation (3.16), one can see that the more parameters we have the more variables
we are integrating over. As aresult, each dimension causes the value of the integral go
down because the “hill” of the likelihood function is a smaller fraction of the space.
Therefore, this idea gives preference to networks with fewer parameters. It can be shown
that the Bayesian score is a general form of MDL score. The MDL score can be viewed
as an approximation of the Bayesian score. Therefore, the Bayesian score is also a
compromise between the model complexity and fit to the data.

Severa ways of scoring different Bayesian network structures have been explained.
Different scores have been explored in terms of the network complexity and how the
network fits to the correlation in the data. Now, the godl is to find the network that has
the highest score. In other words, training data D, the scoring function, and a set of
possible structures are the inputs of the search algorithm while the desired output is a
network that maximizes the score. It can be shown that finding maximal scoring network
structures where nodes are restricted to having at most k parents is NP-hard for any k> 1.
Therefore, a heuristic search is resorted to for this optimization problem. A search space

is defined, where the states in the space are possible structures and the operators denote

46

the adjacency of structures. This space is traversed looking for high-scoring functions to
complete the optimization. The obvious operators in the search spaces are add an edge,
delete an edge, and reverse an edge. The search starts with some candidate network,
which may be the empty one, or one that some expert has provided as a starting point.
Then, applying the operators, the high-scoring network is searched in the space. The
parameters of the network are calculated by using training data D.
The most commonly used agorithm for optimization search is simple greedy hill
climbing, which has the following form:
Greedy BN search
Pick arandom network structure B as starting point
Calculate parameters for each B
Compute score for B
Repeat
Let B,..., B bethe successor networks of B (i.e., operationson B)
Calculate parametersfor each B
Compute score for each B j
Let B be the highest scoring B
If score (B) > score (B))
Thenlet B .= B
Elsereturn(B)
Even though the hill-climbing method is commonly used, it has severa key problems
such as local maxima where al one-edge changes reduce the score and plateaux where a
large set of neighboring networks that have the same score. There are some clever tricks
that avoid some of these problems such as TABU-search, random restart, and ssmulated
annealing. In general, greedy hill climbing with random start works quite well in
practice.

We examined methods for learning a Bayesian network from fully observable data.

The next sections provide the Bayesian network learning with partially observable data.

a7

Sections 3.3 and 3.4 explore the Bayesian network learning with known network

structure and unknown network structure, respectively.

3.3 Known structure and unobservable variables (incomplete data)

The learning of Bayesian networks with known structure and unobservable variables has
been studied by Golmard and Mallet [36], Lauritzen [37, 38], Olesen et al. [31], and
Spiegelhalter and Cowel [39]. The agorithm that these papers describe is the expectation
maximization (EM) algorithm [23]. The EM algorithm is an iterative method to calculate
maximum likelihood estimates (MLES) and MAP estimates of the network parameters.
The EM algorithm alternates an expectation step with a maximization step. In the
expectation step, unknown quantities depending on the missing entries are replaced by
their expectations in the likelihood. In the maximization step, the likelihood completed in
the expectation step is maximized with respect to the unknown parameters, and the
resulting estimates are employed to replace unknown quantities in the next expectation
step. The algorithm continues until the difference between successive estimates is
smaller than afixed threshold. [38]. Lauritzen states some difficulties with the use of EM
algorithm such as slow convergence rate and local maxima. He then suggests that the
gradient descent algorithm can be used as a possible alternative [38].

The third possible approach, introduced by Heckerman [3], is to use Gibbs sampling
(GS). Gibbs Sampling is one of the most popular Markov Chain Monte Carlo methods
for Bayesian inference. The GS algorithm generates a value for the missing data from
some conditional distributions and provides stochastic estimations of the posterior

probabilities [45]. To illustrate Gibbs sampling, let us approximate the probability

density p(d, | D,S") for the configuration of parameters 8, of a particular network S",
given an incomplete data set D ={y,,...,y,} and a Bayesian network for discrete

variables with independent Dirichlet priors. To approximate p(é, | D,S"), we first

initialize the states of the unobserved variables in each case somehow (e.g., a random).

Therefore, we have a complete random sample D_. Then, we choose some variable X,
(variable X; incasel) that is not observed in the original random sample D, and reassign

its states according to the probability distribution

p(Xn'a D\ X | S")
> (%, 2D, VX, [S")

p(x, |D,\x,,S" = (3.17)

where D, \ x, denotes the data set D, with observations x, removed, and the sum in the
denominator runs over al states of variable X, . Then, this reassignment for all
unobservable variables in D is repeated producing a new complete random sample D_.
Using this data set, the posterior density p(d, | D.,S") is computed. Finally, the three

steps are iterated and the average of p(d, | D.,S") isused as our approximation [3].

Both the GS and EM algorithms use a basic strategy called the missing information
principle [41]: fill in the missing observations on the basis of the available information.
Unfortunately, these approximate methods are prone to errors when little and/or biased
information is available about the pattern of the missing data[26].

In recent years, an exciting solution to this problem was proposed by Sabestiani and
Ramoni [27]. The agorithm is called Bound and Collapse (BC), which is a deterministic
method to estimate conditional probabilities from incomplete data. The method bounds

49

the set of possible estimates consistent with the available information by computing the
minimum and the maximum estimates that would be gathered from all possible
completions of the database. These bounds then collapse into a unique value via a
convex combination of the extreme points with weights depending on the assumed
pattern of missing data [28].

The basic intuition behind BC is that an incomplete database is still able to constrain
the possible estimates within a set and that, when exogenous information is available on
the pattern of missing data, this can be used to select a point estimate within the set of

possible ones. Let X, beavariablein the set X =[x1,...,xn] with parent variable 1, .

Sebastiani and Ramoni [25] show that the maximum Bayesian estimate of p(xik |77ij) is

2D + (X, |7Tij) +N° (X |7Tij)

p" (% | 77, D) = : (3.18)
< a; +n(rm) +n° (%, | 77;)
and the minimum Bayesian estimate is
a.. +n(x, |
D. (Xik |n_IJ , D) - ijk (ik | I]) (319)

a; +n(rg;) +n, (%, | 77;)
where a;, are the Dirichlet hyperparameters, n"(x, |77;) and n, (X, | 7z;)are maximum
and minimum achievable virtual frequencies of (x, |77;) in the incomplete data,

respectively. The frequency n(x, | 75;) isthe number of occurrences of (x, |7z;) in the

data. The maximum and minimum values of the virtual frequency are calculated by
filling the missing entries in order to have maximum and minimum number of

occurrences of (X, |7z;) and counting the number of occurrences of the entry (X, |7z;),

respectively. The probability interval defined by [p. (X, | 7z;, D), p" (% | 77;, D)] contains

50

all possible estimates consistent with D, therefore it is sound and it is the tightest
estimable interval.

The main feature of the BC method is its independence of the distribution of missing
data because it does not attempt to infer them: with no information on the missing data
mechanism, an incomplete database can only provide bounds on the possible estimates
that could be learned [9]. A complete database isjust a specia case, within available data
are enough to constrain the set of possible estimates to a single point. Another advantage
of this method is that the width of each interval accounts for the amount of information
available in D about the parameter to be estimated. Each interval represents a measure of
quality of probabilistic information conveyed by the database about a parameter: the
wider the interval, the greater the uncertainty due to the incompleteness of the database.
In this way, intervals provide an explicit representation of the reliability of the estimates,
which can be taken into account when the extracted BN is employed to perform a
particular task.

The second step of the BC method collapses the intervals estimated in the bound step
into point estimates employing a convex combination of the extreme estimates. This
convex combination can be determined either by using externa information about the
pattern of missing data or by a dynamic estimation of this pattern from the available data.

Assume that some external information is available on the pattern of missing data.
One can encode this information as a probability distribution defining, for each datum in
the database, the probability of the datum being missing as

P [715, X =7?) = @

51

where k =1,...,c;, the number of state in X, is denoted by c,, and zk(p,jk =1. The
notation X; =? denotes that the state of X; is missing. The probabilities ¢, can be
employed to determine accurate estimates of g, , which is the probability of X; beingin
the kth state given the parent states 7z, . A single probability for each state of the variable
X; given the parent states 7z; as

a; +n(XiI |nij)

(% | ,D) = - 3.20
e AELACALD 520
for | # k. Therefore, theloca minimum of E(;, | D) can be calculated as
a. +n(x, |7
I0.| (Xik |n_IJ , D) — ijk (ik | I]) (321)

a; +n(77ij)+rpg(xn. (X |7Tij) ,
which shows that the difference between p. (x, |7z;,D) and pl (X, | 77;, D) depends

only on the cases in which the state of the child variable is known and the parent
configuration is not.

The distribution of missing entries in terms of ¢, can be employed to identify a
point estimate within the interva [p!(x, | 77;,D), p (% | 77;,D)] via convex
combination of extreme probabilities:

P(X | 75,,D, @y) = z¢ljk p. (X | 77,,D) + @, p" (% | 77;, D) . (3.22)

£k

Finally, if data are missing only on the child variable (n* (x | 7z;) = n;), then we get

i + N | 775) + 5@y (3.23)

p(x, |77, D, 1) =
p(ik | ij ¢]k) aij +n(77ij)+ni'j

52

so that the incomplete cases are distributed across the states of X, according to the prior

knowledge on the pattern of missing data. Note that Equation (3.23) is the expected
Bayesian estimate given the assumed pattern of missing data[9].

If there is no external information about the pattern of missing data, the BC method
works similar to EM and GS methods due to the use of the pattern of the available data.

Inthiscase, @, = p(x, | 77;) and it can be estimated from the available data as

~ Oy +n(xik |nij)
By = .

P (3.24)

This estimate can then be employed to compute the convex combination of the extreme

probabilities. The estimate of p(x;, | 77;,D) can be computed as

a. +n(x, |m.)+n: ” a. +n(x, |7t
ﬁ(xik |77;] ’ D) — ijk (ik I u) .ijljk — ijk (ik I IJ) (325)
a; +n(7g;) +n; a; +n(r;)

which is a consistent estimate of 8, since P(X, | 77;,D) is ageneralized version of the
Maximum Likelihood Estimate of 6, . If a;, =0, then the BC estimate becomes the
classical MLE of g, . Clearly, the estimates of the conditional probabilities computed by

Equation (3.25) are the expected estimates and, as the database increases, they will be the
same estimates computed by GS[9].

Sebastiani and Romani compared the accuracy and the efficiency of EM, GS, and BC
methods. They found that both EM and GS provide reliable estimates of the parameters
and they are currently regarded as the most viable solutions to the missing data [28]. On
the other hand, both these iterative methods can be trapped into local minima and the
convergence detection can be difficult. Furthermore, they assume that the missing data

mechanism is ignorable; i.e., within each observed parent configuration, the available

53

data is a representative sample of the complete database and the distribution of missing
data can therefore be inferred from the available entries [41]. When this assumption fails,
and the missing data mechanism is not ignorable (NI), the accuracy of these methods can
drastically decrease. Additionally, Sabestiani and Romani state that the computational
cost of these methods depends mainly on the absolute number of missing data, and this
dependency can prevent their scalability to large databases [28].

The most important characteristic of BC is its ability to represent the pattern of
available data and the assumed pattern of missing data explicitly and separately. The BC
algorithm provides probability intervals that can make the analyst aware of the range of
possible estimates, and hence of the quality of information on which inference is based.
The probability intervals used by BC provide a specific measure of the quality of
information conveyed by the database and explicit representation of the impact of the
assumption made on the pattern of missing data [9]. Therefore, BC does not depend on
the ignorability assumption [28]. Furthermore, BC reduces the cost of estimating each
conditional distribution of each variable X; to the cost of one exact Bayesian updating
and one convex combination for each state of X in each parent configuration. This
deterministic process does not decrease the convergence rate and the convergence
detection relative to stochastic processes. Additionally, the BC method’'s computational
complexity isindependent of the number of missing data [28].

Consequently, the BC algorithm gives amost the same results as EM and GS when
the missing data is ignorable but it gives better results when the missing data mechanism
is not ignorable. The convergence rate of BC is aso better than EM and GS. Thus, BC

learns the network faster than EM and GS methods [28]. The experimental comparison

with EM and GS proves that a substantial equivalence of the estimates provided by these
three methods and a dramatic gain in efficiency using BC.

Ramoni and Sebastiani claimed the estimates provided by BC are more robust to
departure of the data from the true pattern of missing data. The computational cost of BC
is equal to the cost of two exact Bayesian updates—one for each extreme distribution—plus
the cost of a convex combination for each parameter in the BN [45].

One may ask what happens if the network structure is unknown in addition to
partially observable data. There is no easy answer to this question given in the literature.

Some possibilities are explored in the next section.

3.4 Unknown structure and unobservable variables

Thisis the most difficult case to resolve because the structure of the networks is unknown
and the variables are not fully observable. Thereis no significant amount of research for
this case. When some variables are sometimes or always unobserved, the techniques
stated in Section 3.2 for recovering the network structure become difficult to apply since
they essentially require averaging over al possible combinations of values of the
unknown variables [16]. There are two recently developed methods that recover the
Bayesian network structure with unobserved variables.

The first algorithm was proposed by Russell [29] and is called structural EM (SEM)
algorithm. The algorithm combines the standard EM agorithm, which optimizes the
network parameters, with structure search for model selection. The main idea of this
method is that it attempts to maximize the expected score of models instead of their

actual scores at each iteration. Russell proves a theorem that the SEM a gorithm makes

55

progress in each iteration on finding the better scoring network. Then, he states that if
one chooses a model that maximizes the expected score at each iteration, then a better
choice is provably made in terms of the marginal score of the network [29]. The SEM
algorithm is exciting since it attempts to directly optimize the true Bayesian score within
EM iteration rather than an asymptotic approximation.

The most problematic aspect of SEM is that it might converge to a sub-optimal
model. This could happen if the model generates a distribution that causes other models
to appear worse when the expected score is examined [29]. This difficulty becomes more
obvious when the ratio of missing information is higher. Russell suggests that, in
practice, the algorithm needs to be run from several starting points to get a better estimate
of the MAP model [29]. Another restriction of the SEM is that it focuses on learning a
single model. In practice, several high scoring models is necessary for better prediction.
Additional to this deficiency, the algorithm requires large number of computations during
learning. This is the main problem in applying this technique to large-scale domains.
The following paragraphs provide a computationally cheaper method.

The second algorithm was proposed by Sebastiani and Marino [27]. They were able
to show that BC algorithm could also learn the structure of the network with small
changesin the algorithm. The algorithm has the following form:

Pick arandom network structure B as starting point

Pick parameters for the network structure B

Compute score for B

Repesat

Add an edge to the network, the network B’ is created

Estimate the posterior expectations of parameters of B' using BC method
Estimate the posterior values of the network parameters

Compute score for the network with B’

If score (B') > score (B)
Thenlet B .= B

56

Elsereturn (B)

This method is very similar to the search method described in Section 3.2 where we
had fully observed data. The only difference is that, in this case, we have partially
observed data or incomplete data. Therefore, the estimation of the parameters of the
network is aso necessary. The BC method is employed to estimate the parameters of the
network. The estimation process is performed in each step, i.e., after adding each edge to
the network. Consequently, the method involves both parameter learning and structure
learning. However, the main attention was given to the parameter estimation part since it
is newly discovered method. The structure learning part can be modified as a greedy
search algorithm. In that case, “delete an edge” operator and “reverse an edge” operator
have to be incorporated to the algorithm.

There is a dight difference between SEM and BC methods and the problem of self-
organizing agents in terms of required data structure. The SEM and BC algorithms
require a certain minimum length database. Unfortunately, there will not be a prior
database to work with at the beginning of the agents' exploration of the environment.
Thus our learning method has to be online: estimation of the network structure and
parameters will be performed simultaneously with the gathering of new entries in the
database. So, our method has to learn the network while the agents are exploring the
environment and organizing themselves to manage a common task. Using the current
methods this problem cannot be solved because they do not contain an online learning
algorithm. In the next chapter we propose a method that allows the agents learn the

environment while they are exploring the environment and organizing a common task.

57

CHAPTER 4

Online Bayesian Network Learning and Multi-agent Organization

This chapter introduces online Bayesian network learning in detail. The structural and
parametric learning abilities of the online Bayesian network learning are explored. The
chapter starts with revisiting the multi-agent self-organization problem and the proposed

solution. Section 4.2 explains the proposed Bayesian network learning.

4.1 Outline of the problem statement and the proposed solution

As stated in the introduction, we attempt to find how a common task can be performed by
amulti-agent self-organizing system. The agents are independent in terms of their model
of environment and their actions. Each agent explores the environment and decides its
actions by itself. Agents will have no information about the environment at the
beginning of their exploration of the environment. They will explore the environment,
model the environment and take actions to change the environment according to the
common task. We attempt to solve these problems by utilizing Bayesian networks and
influence diagrams.

Bayesian networks are employed to model the environment. Because the agents have
no or limited information about the environment at the beginning of their exploration, an
online Bayesian network learning method will be used. Influence diagrams will be
employed to obtain the agents actions. Bayesian networks and influence diagrams are

combined to produce a decision-theoretic agent [54] in a multi-agent system. Detailed

58

discussion on the decision-theoretic agent design is presented in Chapter 5. The Bayesian
network learning is explored in the next section.

4.2 Online Bayesian network learning

Bayesian network learning is examined broadly in Chapter 3. There are four cases of
Bayesian network learning depending on the availability of the network and the data.
The unknown structure and incomplete data case is the nearest case to our problem. Our
network structure is not defined in advance and the sensor data may not be complete. On
the other hand, for ssmplicity we will assume the data is complete during the simulations.
The agents do not have significant amounts of prior knowledge about the environment.
Therefore, the BN will be formed during the agents' exploration of the environment.
Each new data case will affect the structure of the network.

Online Bayesian network learning consist of two parts, namely parameter learning
and structural learning. Parameter learning is the calculation of the conditional
probability table elements of each node in a given Bayesian network. In thisresearch, we
use a modified version of Maximum Likelihood Expectation method to calculate the
network parameters. Maximum likelihood estimation method is modified so that it has a
closed form when the probabilities need to be updated. The details of the parameter
learning are provided in Section 4.2.1.

Structural learning is the problem of finding the network that represents the data the
best. Thisinvolvestwo parameters, complexity of the network and fitness of the network
to the data. The structural learning process tries to find the optimal network that provides
optima complexity and fitness. The main building block in structural learning is the

search algorithm that generates the network with the highest score. The structural

59

learning is presented in Section 4.2.2. The following section provides detailed
description of the parameter learning in the online Bayesian learning.

4.2.1 The parameter learning

In Chapter 3, we introduced two types of parameter learning techniques used in the
literature, MLE and Bayesian estimation. It is stated that with a database having a large
number of data cases, these two methods converge to each other. The latter can take
prior knowledge if it is available. Also, it is shown that the latter has a closed form. In
this section we have redefined the Maximum Likelihood calculation to have a closed
form calculation. Because MLE is computationally simpler than Bayesian estimation, it
is employed in our parameter learning. The following paragraphs explain how the
parameter learning is performed by modified MLE method.

Let X={X,,X,,...X,} be the discrete variables (nodes) in a Bayesian network, B.
Assume that we know that the node X, is the child of the node X;, which means

X; - X;. In this case, the parameter learning has to calculate the vaues in the

conditional probability table in the node X;. The conditional probability can be

calculated by utilizing using the fundamental formula for probability calculus as in
Equation (4.1)

P(X;, X})

PO 1) =005
i

(4.1)

Since MLE is employed in parameter learning, the probabilities can be calculated by
utilizing the natural frequencies of the data cases. A natural frequency of a data case is
calculated by counting the number of occurrences of the data case in the database. For

individual probabilities, we count the number of occurrences of a state of avariablein the

60

database. Let nj; be the number of occurrences of the state j of the ith variable in the
database and n is the total number of data cases in the database. Using these frequency
values, we can calculate the probabilities in the following way:

PX, =x) =") T (42)

Thus, the conditiona probabilities can be calculated by using the individua probabilities

in Equation (4.1). The conditional probability P(X; - X;) can be obtained as in the

following equations.

P(X, X)) (%, %) (4.3)
o P(X,)

mxuxn—(:x” (4.4)
n(Xx.

P(xj)=¥ (4.5)

As can be seen in Equations (4.4) and (4.5), the denominators are the same in the both
terms. When we put these two terms into Equation (4.3), the denominators cancel each

other as shown in the following equation.

n(Xian% _ n(xi’xj)

n(ij n(x;)
n

In the resulting equation, there are only two natural frequencies. There is no need to

P(X, | X)) = (4.6)

involve the number of elements in the database for conditional probability calculations.
This technique simplifies the computations in the parameter learning. Equation (4.6) has
a closed form because if a new data case is encountered, we can easily update the

corresponding natural frequencies accordingly to update the conditional probabilities.

61

The following example provides practical results to the conditional probability
calculation technique. For the cases that have not seen yet, the uniform probability
distribution is used to fill the conditional probability tables in the nodes.

Let X;, Xy, and X3z be the system variables with two possible states, 0 and 1, in a
Bayesian network, B. Assume that we know the system dynamics (dependencies),

X, - X, and X, - X,. Therefore, we need to calculate the conditional probabilities,

P(X, | X,) and P(X;|X,). Let D be the database of cases to calculate the conditional

probabilities, shown in Table 4.1.

Table 4.1. The database to compute the parameters of the BN.

—
N
(%]

OOFOF R ORF[OX

NN EEEEEEES

RO |O|O[O[FR|O[FR[O[X

For example, we can calculate the probabilities of the variable X; as in the following

equation.

n(X,; =0) :E

P(X,=0)= T P(X, =0)=0.5 (4.7)

Now, let us calculate the conditional probability of P(X, =0]| X, =0) by counting

corresponding frequency values, n(X, =0, X; =0)and n(X, =0).

62

n(X,=0,X,=0) 1

P(X, =0| X, =0) = =2=02 4.8)
? ! n(X, =0) 5
P(X, =1| X, =0)=0.8 4.9)
Similarly,
P(X, =0| X, =1) = n(XZ&O’ x11)=1) =g= 0.6 (4.10)
n(xX; =
P(X, =1| X, =1) = 0.4 (4.12)

The conditional probability P(X,| X,) can be easily caculated by counting the

corresponding natural frequencies.

The above technique is also useful to update the probabilities when a new case is
introduced to the network. When a new case is encountered, the related frequency counts
can be updated to calculate the new probabilities. Jensen introduces a similar updating
schemein [1] as fractional updating.

The above technique works if the state of X, as well as the states of its parents are

known. This could be a problem if the states of the parents are not known when the
probability update is being done. In our problem, the network update is done after new
data are gather for all the variables in the network. Therefore, the above restriction does
not apply to our problem.

For online Bayesian network learning, the parameter learning is not enough because
the agents do not know the system dynamics in advance. Thus, the structural learning
part is aso necessary to discover the system dynamics. The following section presents

the details of the structural learning techniques explored in this research.

63

4.2.2 The structural learning

Structural learning is finding the best network that fits the available data and is optimally
complex. This can be accomplished by utilizing a search algorithm over the possible
network structures. In this research, a greater importance is given to the search algorithm
because we have assumed that the data will be complete. That is, each element of the
database is avalid state of a variable. If there are non-applicable entries in the database,
then the database is said to be incompl ete.

The greedy search algorithm, explained in Chapter 3, is employed to accomplish the
structural learning in the online Bayesian network learning. The search algorithm is a
score based searching algorithm. The search algorithm is evaluated in terms of the score
function used and the technique used to create the candidate networks, such as adding an
edge and removing an edge.

The greedy search algorithm is also upgraded to have some online properties such as
updating the network parameters and its structure adaptively. The outline of the search
algorithm can be given as follows:

1. Collect data

2. Define the variables from the available data

3. Start with anetwork with no arcs

4. Estimate the parameters (only independent probabilities) of the BN using the

MLE method using initial data.
5. Generate candidate networks by adding arcs in a defined fashion (heuristic or

exhaustive)

6. Calculate the scores of the candidate networks and choose the network with the
highest score.

7. Do step 5 until no arc addition increases the likelihood of the network.

8. Update the network parameters along with new data

9. Update the network structure:
e If enough new data obtained, go to step 1 and generate a new network

structure.

e If no structural update is necessary go to step 7.

The agorithm above is a generic greedy search algorithm. How the arc addition is
done and which scoring method is used are not specified in the above algorithm. In the
following section we explore the search algorithms used in this research. In the

agorithms, the arcs are added heuristically and exhaustively.

4.2.2.1 Search algorithms
A Bayesian network is not alowed to have a cycle because of the computational
difficulties. A cycle in a Bayesian network lead to a "circular reasoning” between the

variables. For example, if the dependencies in above network are: X, - X,, X, - X,
and X, - X,, acyclewill be formed. If evidence is entered into the variable X,, the
Bayesian network will run the evidence to X,, then to X,. Then, The evidence will
travel to X; because X, dependson X,. The evidence may run in the network forever

because all the variables depend on each other in acircular way.

65

A heuristic arc addition is employed not to have a cycle in the Bayesian network
while generating the Bayesian structure. An exhaustive arc addition is aso employed to
explore more network possibilities without limitation. In the exhaustive arc addition
algorithm, a cycle check is employed before and arc is added. The following section

presents the details of heuristic and exhaustive search algorithms.

Heuristic search

In the heuristic search agorithm, the variables of the system have to be ordered in a
certain way to prevent cycles from being created. The decision variables should be in the
last columns in the database; and, the first columns of the database should be filled with
the variables without parents, independent variables. After placing the independent
variables in the first columns, the children of the independent variables should be placed
in the following columns. The rest of the columns are filled with the children of the
previously placed variables. Ordering of the variables is necessary because the heuristic
arc addition adds the arcs from the first variables to the last variables. Because of the
ordering, we need to have some knowledge about the variables. This does not mean that
we need to know the dependencies between the variables. For example, let B be a

Bayesian network with three variables, {Xl,XZ,X3} . If we know the variable X, isthe
first variable and the variable X, is the decision node. Then the column order will be
{X, X4, X} .

The heuristic search starts with adding and removing arcs from the each variable to

the last variable. Let the network have n variables. After adding an arc, the algorithm

calculates the network score, records the score in a list, and removes the arc. The

66

algorithm finds the arc that gives the highest increase in the network score. Let us
assume that the arc from the kth variable to the last variable, n, gives the highest increase
in network score. Then, the agorithm adds the arc from the kth variable to the last
variable. After the arc is added, the algorithm adds and removes arcs from the remaining
variables to the last variable. Then, the algorithm chooses the arc with the highest score
increase and adds the arc to the network. This continues until no increase in the network
score can be obtained by adding an arc to the last variable. Then, the agorithm starts

adding arcs from the variables {1,2,...,n—2} to the (n-1)th node. The agorithm adds

arcs to (n-1)th node until there is no increase in the network score. The algorithm stops
when it adds an arc from the first variable to the second variable. The following is the
heuristic search algorithm used in this research.
1. Collect data
2. Definethe variables from the available data
3. Start with anetwork with no arc.
4. Estimate the parameters (only independent probabilities) of the BN using the
MLE method using initial data
5. Add a new arc from the ith variable to the jth variable to generate a network
candidate and remove the arc. Repeat the process with i ={L2,...,j -1} and
generate networks (B 1,..., Bj.1). Startj from n and decreasej by 1.
6. Calculate the scores of the candidate networks and record them in alist.
7. Find the network (B) with the maximum score and keep it for the next step.
8. Repeat the steps 5, 6, and 7 until thereis no increase in the network score.

9. If j>1,thengotostepb.

67

10. Update the network parameters along with new data

11. Update the network structure:

e If enough new data obtained, go to step 1 and generate a new network
structure.
* If no structural update is necessary go to step 10.

Consequently, the heuristic search algorithm adds arcs only in the forward direction
because this protects the network from having cycles and complex network structure. On
the other hand, there is a price of arranging the variables at the creation of the database in
the heuristic algorithm. Since the agents will not have much knowledge about the
environmental variables, it is hard to arrange the variables at the beginning. Thereis a
need for a better search agorithm that explores more possibilities in the network. The
following paragraph introduces another searching algorithm that eliminates the arranging

the variables, namely exhaustive search.

Exhaustive search
The exhaustive search algorithm explores al the possible arcs in the network during its
execution. The agorithm starts adding arcs from the ith variable to the jth variable where
i ={.2,...,n}, j={L2,...,n}, i £ j. Thiscovers n[{n-1) arcsthroughout the network.
The algorithm calcul ates the network score for each arc addition. Then, it chooses the arc
with the highest increase in the network score. The algorithm repeats the above steps
until there is no increase in the network score.

There are two major drawbacks in the exhaustive search algorithm. First, the number

of arcs to be tried might become intractable when the number of variables is large.

68

Second, during the search, the algorithm might introduce cycles to the network because it

can add an arc in any direction. An additional algorithm is incorporated to the search

algorithm to keep track of cycles. Using the additional algorithm, the search algorithm

checks whether the new arc introduces a cycle or not. If the arc introduces a cycle, the

algorithm does not add the arc to the network. The following is the exhaustive search

agorithm used in this research.

1

2

8

9

Collect data

Define the variables from the available data

Start with an empty network

Estimate the parameters (only independent probabilities) of the BN using the
MLE method using initial data

Add a new arc from the ith variable to the jth variable to create a candidate
network and remove the arc. Repeat the process for every value of i and j where
i={L2,...,n}, j={L2,...,n} and i # j. This step creates m possible networks
(B4y,..., Bm). Algorithm creates m=nx(n—-1) networksin first visit to step 5.
Remove the network with cycles from the candidate list.

Calculate the scores of the candidate networks and record it in alist.

Find the network (B) with the maximum score and keep it for the next step.

Do step 5 through 8 until thereis no increase in the network score.

10 Update the network parameters along with new data

11 Update the network structure:

e If enough new data obtained, go to step 1 and generate a new network

structure.

69

* If no structural update is necessary go to step 10.

The search agorithms are explained in detail. There is a need to anayze the
complexity of the search algorithm before there are implemented. The following section

gives the complexity analysis of both search algorithms.

Complexity analysis for search algorithms

As stated earlier, the heuristic search agorithm needs prior knowledge about the
variables in terms of their order in the database. On the other hand, the number of
iterations in the heuristic search agorithm may be tractable. In the heuristic search, the
algorithm tries(n—1) arcs in the first trip from step 5 to step 7. The algorithm repeats
steps 5 through 7 until there is no increase in the network score. Assuming the algorithm
adds an arc in every trip, the number of arcs tried will be one less then the previous trip.
Algorithm can repeat step 5 through 7 a most (n—-1) times. In (n-1) trips, the
agorithm generates (n—-1)+(n—-2)+---+1 networks candidates. When the algorithm
reaches step 8, the algorithm loops back to step 5 and repeats the same process for the

variables {X,_, X, _,,--, X,}. Therefore, after the first loop, the algorithm generates
(n-1)+(n-2)+---+1 network candidates. The complexity of the heuristic search

agorithm is denoted as C,.

In the following complexity analysis, each loop shows the number of network
candidates tried until the algorithm reaches to the step 8. Since the agorithm will repeat
itself for (n—1) variables, the analysis has (n—1) loops as the following.

Loop1l n=-H+(-2)+---+1=n(n-H-Q+2+---+(n-1)

70

= n(n_l)_ n(n_l) = n(n—l)
2 2
Loop 2 (n-2)+(1-9+--+1= DD
Loop (n-1). (n_(n_l))én_(”— 2) _4

If we add the number of candidate networks from each loop, the following can be
obtained:

— nn-H+(n-H(n-2)+------ +(N=(=-D)(n—(n-2))
2
— 2(n—1)2 + 2(n _3)2 Fonnnn + 2(n—(n—2))2
2

Ch

Cy

Then, we can further modify the equation as follows:
C,=(n-D)*+(N-3)* +----o +(n=(n-2))? (4.12)
Since each element in Cy, is less than n®, we can state that
C,<n’(n-3)<n’ (4.13)
Equation (4.13) illustrates the complexity of the heuristic search. The following
paragraphs will explore the complexity of the exhaustive search agorithm.

The exhaustive search algorithm tries every possible arc in the network during itsfirst

vigit to step 5. In a graph with n nodes, there can be n(n—-1) possible directed edgesin
the graph [30]. Therefore, the algorithm generates n(n—1) network candidates and the
complexity of the first visit is n(n—1). Then the agorithm continues until it reaches to

step 9 and loops back to step 5 until thereis no increase in the network score.

71

After the first loop, the complexity decreases by 1 in each step because the algorithm
will not try the arc added in the previous step. The following presents the complexity
analysis of the exhaustive search algorithm. First, the complexity is calculated for each

loop. Then, they are added to obtain the complexity of the agorithm.

Loop 1 n(n-1)
Loop 2 n(n-1)-1
Loop N n(n-1)-N+1

The exhaustive search algorithm does not perform a certain number of loops. The
algorithm will continue until there is no increase in the network score. Therefore, we will
assume that the algorithm end after N loops for the complexity calculations. If we add
the complexities of al the loops together, the complexity of the exhaustive search, Ce,
becomes the following.

C, =n(n=DN —(L+2+---+(N -1)) (4.14)

N(N -1)

C.=n(n-1)N -
e =nN(n-1 >

(4.15)

If the network has great number of arcs, then the complexity of the algorithm becomes

large. For example, if the algorithm endsin step N = n, the complexity becomes

n(n-1) _ 2n’(n-1)—-n(n-1)

C.=n*(n-1-
e (n-1 > >

(4.16)

_ (n=-Hn(2n-1)

Ce
2

for n=N. (4.17)

In general, the number of nodes in a Bayesian network, n, is much larger than 1.

Therefore, we can reevaluate the complexity by assuming n>>1. The following

72

equation represents the computational complexity of the exhaustive search algorithm

when the number of stepsis equal to the number of variables.

3
C. O ”mzm” = 22 —C, On’ (4.18)

As can be seen above, the complexity of the exhaustive agorithm is larger than the
complexity of the heuristic algorithm when N =n.

For the networks with large number of variables (nodes), the algorithm does not stop
when N =n. Let us calculate the worst case scenario for the exhaustive algorithm. The
agorithm might explore al possible arcs in the network, which isequal to n(n-1). This
IS true because a complete graph with n nodes has n(n—1) possible directed edges [30].
Therefore, we will replace N with n(n-1) in the complexity anaysis. Then, the

complexity of the exhaustive search algorithm becomes the following.

C.=n(n-pN-SN=D oy pnn-1y- ”(”_1)[”2(”_1) 4l (4.19)
C, = 2n°(n-1)° —-n (2n—1) -n(n-1) _n (n-1) 2— nn-1) (4.20)

We can simplify the equation above by assuming n>>1. In this case, the complexity of

the algorithm becomes the following.

n’h*-n® _n*(n®*-1) 4

C.O —cC, D% (4.21)

¢ 2

Two search algorithms are introduced to learn the structure of a Bayesian network in
the previous sections. The heuristic search algorithm is simple and explores a limited
number of network structures. On the other hand, the exhaustive search algorithm is

complex and explores many possible network structures. The complexity of the

73

exhaustive algorithm is approximately n-fold larger than the complexity of the heuristic
search algorithm. Since we calculate the quality (score) of the networks to find the best
network, the search algorithm is a score based algorithm. The following section presents

the scoring functions explored in this research.

4.2.2.2 Network scoring functions

Three scoring functions are employed in this research, namely Log-Likelihood, Minimum
description length (MDL), and Bayesian (BDE) scores. The Log-Likelihood method
measures the likelihood of the network given the available data. The MDL also uses
likelihood of the network but it includes the measure of the network's complexity. The
Bayesian score involves the calculation of the probability of a network given the data.
Bayesian scoring method also penalizes complex networks as the MDL scoring. If the
length of the database is large enough these two methods converge to each other [54].

The following sections provide the details of the scoring methods used in the research.

Log-Likelihood scoring

The Log-Likelihood score of a network, B, is obtained by calculating the likelihood of

the data, D, given the network, B, and the network parameters, &, . After calculating the

likelihood of the data, a natural logarithm is applied to get the Log-Likelihood of the

data. The following formulas explain the details of the Log-Likelihood calculation.
Score (B: D) = L(D|B,6,) (4.22)

L(D|B,6) = |_| P(d[m]| B,&;) (4.23

m

74

In the above formula, d[m] represents the mth data case in the database. Let us take the
logarithm of the likelihood. The logarithm converts the multiplication in to a summation.
(D |B,8;) =logL(D|B,6;) (4.24)

I(D|B,6,) = Y log P(d[mi | B,6,) (4.25)

This is basically equal to calculating the probability of each data case in the database,
taking their logarithms and adding them together. For example, assume that the network

given in the previous section has the relations X, - X; and X; - X,. Then, we can
calculate the log-likelihood of the data with the following equation.
I(D|B,6;) =D _log P(X,Im] | 6,,)

+ ZIOg P(X,[m]| Xlo’gxz) + ZIOg P(X5[m]| X11,9x3)

+ ZIOg P(X[M] Xy, Ox 1,) + leg P(X,IMI Xa15 6y 1,) (4.26)

In the log-likelihood approach, the score of the network increases as long as the length of
the database and the number of arc in the network increase. Therefore, the search
algorithm tries to add as many arcs as possible to the network to get the highest scoring
network. At the end of the search, the algorithm ends up with amost a complete
network. For the networks with a large number of nodes, this might cause a great
increase in complexity of the network. To overcome the complexity problem, we need to
find out a way to include the complexity of the network to the scoring function. If the
network gets complex, the scoring function should decrease accordingly. The following
scoring method handles the complexity problem by introducing the complexity parameter

in the scoring function.

75

Minimum description length scoring
The MDL method combines the likelihood of the data and the complexity of the network
to find optimally complex and accurate networks. The MDL method penalizes networks
with complex structures. The MDL has two parts, the complexity of the network,
Lnerwork, and the likelihood of the data, Lpata. Then, the MDL score can be calculated
by the following.

Core€yp. = Loara ~ Lnemworc (4.27)
The complexity part involves the dimension of the network, Dim(B), and structural
complexity of the network, DL(B). The dimension of the network can be calculated

using the number of states in each node, S. The following equation illustrates the

dimension of the network.

Dim(B) = i(sl = IE (4.28)

jOpa(x)
where N is the number of nodes in the network. Let M be the number of data casesin the
database. Using the central limit theorem, each parameter has a variance of JM . Thus,
for each parameter in the network, the number of bits required is given by the following.

d=logx/ﬁ:>d=10glvI

(4.29)

The structural complexity of the network depends on the number of parents of the nodes.

The following formula cal cul ates the structural complexity.

DL(B) = i k log,(N) (4.30)

76

where k; is the number of parents the node X, has. Finadly, the following formula

presents the complexity part of the MDL score by combining the dimension of the

network and the structural complexity.

Lcvon =M bimeB) + DL(B) (4.31)
logM [& N

Lnerwore = Z(SI -1 S, |+ zki log,(N) (4.32)
2 i=1 jdpa(x;) i=1

The likelihood of the data needs to be defined after presenting the network complexity
part of the MDL score. The likelihood of the data given a network can be calculated by
using cross-entropy. The difference between the distribution of the data (P) and the
estimated distribution (Q) from the network. Kullback-Leiber and Euclidean distance are
the commonly used cross-entropy methods. Therefore, the likelihood of a data can be
calculated by measuring the distance between two distributions. If we use the Kullback-

Leiber cross-entropy, the likelihood of the data can be calculated by the following.

M
I(D|B,6,)=Y p 1og%, (4.33)
i=1 i
M p-
Loara = z P logq—' (4.34)
= i

where p; isthe probability of datacase i using the database and q; is the estimate of the

probability of data case i from the network parameters. If Euclidean distance measureis
employed to calculate the distance between the distributions, the likelihood of the datais

calculated by the following.

R M
I(D|B,6,) =Z(pi ~q) (4.35)

7

Loara = Z(pi — 0)2 (4.36)

After defining the likelihood and complexity parts, the MDL score can be given as

logM

Score,, (B: D) =I(D|B,8,) - Dim(B) - DL(B) (4.37)

Another commonly used scoring method is Bayesian score as explained in Chapter 3.
Now, we will provide the details of the Bayesian scoring technique. Bayesian scoring is

calculated by utilizing the Dirichlet parameters of the network.

Bayesian scoring

Bayesian statistics tells us that we should rank a prior probability over anything we are
uncertain about. In this case, we put a prior probability both over our parameters and
over our structure. The Bayesian score can be evaluated as the probability of the
structure given the data:

P(D|B)P(B)

Score,,. (B: D)= P(B| D) = 50)

(4.38)

The probability P(D) is constant. Therefore, it can be ignored when comparing different
structures. Thus, we can choose the model that maximizes P(D |B)P(B). Let us
assume that we do not have prior over the network structures. Assume that we have
uniform prior over the structures. One might ask whether we get back to the maximum
likelihood score. The answer is 'no’ because the maximum likelihood score for B was
P(D|B,6,), i.e. the probability of the data in the most likely parameter instantiation. In
Bayesian scoring, we have not given the parameters. Therefore, we have to integrate

over al possible parameter vectors:

78

P(D|B)= IP(D | 6;,B)P(6; | B)dG, (4.39)

Thisis, of course, different from the maximum likelihood score.
To understand the Bayesian scoring better, consider two possible structures for a two-
node network, where B, =[A B] and B, =[A - B]. Then, the probability of the data

given the network structures can be calculated by the following equations.

1
P(D|B,)= J-P(BA,HB)P(D |[6,,6:1)d[8,,6;] (4.40)

1
P(D|B,) = IP(BA,%% 3050,)P(D |160,,855, 50510, DO, 515 5 1, | (4.41)
0

The latter is a higher dimensional integral, and its value is therefore likely to be
somewhat lower. This is because there are more numbers less than 1 in the
multiplication. Multiplying the numbers less than 1 results in a number smaller than any
of the number in the multiplication. For example, multiplying three small numbers (less
than 1) is likely to be smaller than the number obtained by multiplying two small
numbers (less than 1). Since the probabilities in the integrals are less than 1, the above
argument applies to the integrals. Therefore, it can be said that the higher dimensional
integral is likely to have lower value that the lower dimensiona integral. This idea
presents preference to the networks with fewer parameters. This is an automatic control
in the complexity of the network.

Let us analyze P(D|B) a little more closely to understand the Bayesian score

calculations. It is helpful to first consider the single parameter case even though there is
no structure learning to learn there. In that case, there is a simple closed form solution

for the probability of the data given by the following.

79

M@ J@+n)T(a+n)

"0 =@ ray r@a+n)

(4.42)

where I'[m] is equal to (m-1)! for an integer m, n is the number of data cases in the
database, n, and n, are the number of zeros and ones, respectively, and a =a, +a,.

Let us assume we have 40 zeros and 60 ones in the database. Assuming that we have

uniform priors,a, = a, = 3, the probability of datais

P(D) = (6) d’(3+40)r(3+60)
rQAreE (6+100)

(4.43)
The probability for a structure with several parameters is smply the product of the
probabilities for the individual parameters. For example, in our two-node network, if the

same priors are used for all three parameters, and we have 45 zeros and 55 ones for the

variable B, then, the probability of the data for the network B, can be calculated as

P(D B,y =6 _TAIE3 T(6) 1N (e
YOTErQ r@aos rEr reaos)

(4.44)

For the second network, let us assume that a,, =23, a, =22, a,, =29, and a,, = 26,
where a; =n(a,b;) is the number of cases with A=a and B=b;. Then, we can
compute the probability of the data for the network B, using the following equation.

P(D|B,)=_® I3 1(6) (23+3r@2+3
2"Tr@r@E raoe rErE rEs+3)

o T(6) T(29+3(26+3) (4.45)

rAr@3 rGs5+3

The intuition is clearer. The analysis shows that we get a higher score by multiplying a

smaller number of bigger factorials rather than alarger number of small ones.

80

It turns out that if we approximate the log posterior probability, and ignore al terms
that do not grow with M, we can obtain

log M

logP(D|B)=I(D|6,,B)- Dim(B) (4.46)

i.e, as M grows large, the Bayesian score and the MDL score converge to each other
using Dirichlet priors. In fact, if we use a good approximation to the Bayesian score, and
eliminate all terms that do not grow with M, then we are left exactly with MDL score
[54]. Therefore, it can be concluded that the Bayesian score gives us, automatically, a
tradeoff between network complexity and fit to the data.

The Bayesian score is also decomposable like the MDL score since it can be
expressed as a summation of terms that corresponds to individual nodes. In this research,
we have decomposed the Bayesian score to make efficient calculations and a uniform
distribution is employed for Dirichlet priors. The simulation results will show that the
Bayesian score provides optimally complex and accurate network structures.

The online Bayesian network learning is proposed to model the environment for an
agent. Online Bayesian network learning has both structural and parametric learning
because it can discover the structure of the network and the conditional probabilities in
the network. After explaining the proposed Bayesian network learning, there is a need to
explain how the proposed Bayesian network learning and influence diagrams can be
combined to for an intelligent agent structure. The next chapter describes the design
process of the decision-theoretic intelligent agent and how a multi-agent self-organization

system can be designed by employing these agents.

81

CHAPTER 5

Multi-agent self-organization system

As discussed in Chapter 1, in the literature, several methods are employed in multi-agent
learning and organization problem such as temporal difference (TD(A)), genetic
agorithms, and learning classifier systems. The advantages and disadvantages of these
methods are a'so examined in Chapter 1. The main disadvantage of these methods is that
they perform badly when the data is not fully observable. Additionally, they do not have
the desired bi-directional learning property. We proposed Bayesian networks to ease
these problems because they can perform well with the partially observable data and,
more importantly, Bayesian networks have the bi-directional learning ability. The
following paragraphs will illustrate how Bayesian networks can solve the multi-agent
self-organization problem with the help of influence diagrams. The next section will
explain the structure of an agent, which is designed by a Bayesian network and an
influence diagram. Section 5.2 and Section 5.3 will examine a multi-agent organization
system and the bi-directional learning feature of the proposed multi-agent self-organizing
system. Finaly, Section 5.4 presents the system representation of the decision-theoretic

intelligent agent design.

5.1 A decision-theoretic intelligent agent design
In Chapter 1, an agent was defined as an entity that can be viewed as perceiving its
environment through sensors and acting upon that environment through effectors [54].

Therefore, an agent should have sensors and actuators to interact with the environment.

82

On the other hand, an intelligent agent is an agent that reasons with the sensory
information and creates optimal actions to satisfy a goal. Therefore, a reasoning system
and a decision support system are necessary elements of an intelligent agent. Bayesian
networks and influence diagrams can be considered as reasoning systems and decision
support systems respectively.

Communication between the agents is aso necessary to establish organizational
behaviors in a multi-agent self-organizing system. Therefore, an intelligent agent should
have sensors, actuators for actions, a Bayesian network, an influence diagram and a
communication system.

An intelligent agent has five levels: sensors, belief, preferences, capabilities and
actions. In this design, Shohams agent oriented programming paradigm is followed.
According to this paradigm, the mental state of agents can be represented in terms of their
belief, capabilities, and preferences [4]. The belief level consists of a Bayesian network
(Va or Vg) and its nodes represent agent’ s possibly uncertain beliefs about the world. The
nodes in Va represent variables related to the other agents in the system. The nodesin Vg
represent the variables related to the agent itself. The preference level is represented as a
utility node (Ua and Ug) that expresses the desirability of a world state. The capability
level is represented by decision nodes (Vpa and Vpg) that contain alternative courses of
action, which the agent can execute to interact with the world [42]. Thisis also caled
belief, desire, and intention (BDI) architecture in the literature [42].

Each agent models other agents as an influence diagram by modeling other agents
variables (Va), utility function (Ua), and decision nodes (Vpa). Duryadi and

Gmytrasiewicz stated that other agents models could be learned using influence

83

diagrams [42]. As a modeling representation tool, the influence diagram is able to
express an agent’s belief, capabilities and preferences, which are required if we want to
predict the agent’s behavior [42]. Duryadi and Gmytrasiewicz established the learning of
other agents' behaviors in the following way: Given an initial model of an agent and a
history of its observed behavior, new models can be constructed by refining the
parameters of the influence diagram in the initial model. The details of the learning
method can be seenin [42].

Agents aso need a model of the environment. Bayesian networks can model the
environment efficiently, as stated in Chapter 2. The nodes in Ve model the environment
and provide beliefs about the environment. Then, these beliefs are dragged into the utility
node Ue. The utility node Ug represents the agent’s own preference that is defined by
the goal of the multi-agent organization system. The utility Ug is a function of the belief
about the environment (VE), the expected actions of the other agents (A»), its possibly

course of actions (A;). Figure 5.1 presents the proposed intelligent agent model.

Sensor Sensors
<
s
=
Preferences : © @
[
(=]
)
g
= Y g
Capabilities Voa (Ar) > Vop (A) ¥ £
Action <

Figure 5.1. The structure of an intelligent agent.

After establishing the world model and the utility function, the agent needs to take an
optimal action according to the principle of maximum expected utility (PMEU) [54]. The
PMEU lets the agents choose the best action from its set of action (A1), given the belief
about the environment (Vg), and other agents' expected behavior (Ay). Formally, it can

be expressed as

maxU, =max f(Ve,A,A) (5.1)

where V¢ = {X,, X,,..., X,), thevariables X; are the nodes of the Bayesian network Vg,
A ={a,,a,,...,a,) istheaction set of the agent, A, ={a,,,a,,,...,8,) iSthe expected

action set of the other agents. Therefore, an agent takes its actions after evaluating the
environment and the other agents. This property will help to obtain self-organization
ability of the system. Each agent first check to see if other agents are performing task

before it takes its actions to perform the task.

5.2 Multi-agent self-organizing system.

In the previous section, the structure of an agent is presented. This section will examine
the learning problem when we have more than one agent. The agent described in the
previous section is specificaly designed for multi-agent systems. In a multi-agent
environment, coordination requires an agent to recognize the current status and to model
the actions of the other agents to decide on its own next behavior [8]. That’'s why agents
model other agents as well as the environment. A computational difficulty may arise if
the number of agentsis large in the system because agents model the internal structure of
other agents in their network. The Bayesian network in the agent may become so large

that the calculation of the conditional probabilities might become difficult. The agents

85

are independent but they take their actions by considering the other agents. Thus, agents
take their actions together in coordination. Formally speaking, the agent’s utility function
Ue depends on the expected actions of other agents (A1), see Equation (5.1).

We can explain this ability with an example. Suppose we have two dogs and a sheep,
as in the sheepdog problem. Dogs are our agents and their goal is to put the sheep into a
barn. Dogs will explore the environment and they will model the environment. In this
case, the environment contains another dog, a sheep, and a barn. First, the dogs will
probably locate the sheep. Then, they will make movements to direct the sheep into the
barn. If the dogs do not consider (model) each other, they might not be able to put the
sheep into the barn since one' s action might hinder the other’s action. Thus, they need to
cooperate and make movements together. If each dog learns the model of the other dog,
then they can make movements together to put the sheep into the barn. If there is no
coordination, both dogs will probably go behind the sheep and direct it into the barn. 1If
there is coordination between the dogs, while one of them goes behind the sheep, the

other may move back and forth so that the sheep will not escape as shown in Figure 5.2.

®
5
‘—Lf@’

@ (b)
Figure 5.2. Multi —agent behavior without coordination (a) and with coordination (b).

Ban

A multi-agent self-organization system with two agents can be seen in Figure 5.3. The

multi-agent system is designed by using the agents, shown in Figure 5.1.
86

e o)

NATURE & AGENTS

v A 4
Sensors Sensors

Cv D) v v) Oon

) <b]

=Y} on

< <

[St

[-P] %]

= @ = @

e ~e)

(=) (=)

o Qo

=) (=]

2 <

= \ 4 S \ 4

= 2 & =

Vpa (A1) » Voe (Ay)——» -% Vpa (An2) » Voe (An)

[P R
< <

Figure 5.3. Multi-agent self-organizing scheme with two agents.

In summary, agents will fire actions to change the environment as well as to organize
themselves. Self-organization will happen eventually because each agent takes its actions
considering other agents' behaviors in the environment. The simulation of the dog and
sheep problem presented the results supporting that the self-organization and the learning
ability of the proposed intelligent agent design. This property will make our system a
multi-agent self-organizing system. In the proposed learning system, an agent learns the
environment using the sensory data, and modifying its world model (Bayesian Network)
accordingly. Then, an agent calculates the expected state of the environment using the
world model and creates actions to change the environment. Thus, the learning structure
is bi-directional because the agent interacts with nature and the world model in both

directions.

5.3 Bi-directional learning
As stated earlier, bi-directionality is the most important feature of an intelligent learning
system because it combines the supervised learning method and unsupervised learning
method and facilitates them at the same time. That is why a Bayesian network is chosen
to construct the learning system. Figure 5.4 shows the learning model of the proposed
system. The proposed system has four directed edges among nature, the learning system,
and the world model: evidence, action, adaptation, and expectation.

The learning system collects evidence through sensors. Then, it creates optimal
actions to change the environment according to the objective (utility). These two steps
are represented by Evidence and Action edges in Figure 5.4. On the other hand, the

learning system adapts the world model (Bayesian network) using the evidence from the

88

environment. In other words, adaptation is the parameterization of the BN utilizing the
evidence. Then, the learning system calculates the expected state of the environment
using the world model. Last two steps are represented by Adaptation and Expectation
edgesin the Figure 5.4. Evidence and action edges represent unsupervised learning while
adaptation and expectation edges represent supervised learning. This justifies that the
proposed learning system is bi-directional since supervised and unsupervised learning

schemes are employed simultaneously.

NATURE

Evidence Action

LEARNING SYSTEM

Adaptation Expectation

WORLD MODEL

Figure 5.4. The learning model of the proposed system.

The learning system collects evidence through sensors. Then, it creates optimal
actions to change the environment according to the objective (utility). On the other hand,
the learning system adapts the world model (Bayesian network) using the evidence. Then,
it calculates the expected state of the environment using the world model. Adaptation is
the parameterization of the BN utilizing the evidence. Evidence and action edges
represent unsupervised learning while adaptation and expectation edges represent
supervised learning. This justifies that the proposed learning system is bi-directional

since it combines supervised and unsupervised learning schemes.

89

5.4. System representation of the decision-theoretic intelligent agent system

The decision-theoretic intelligent agent system has adaptive learning ability with
feedback from the environment. The agent starts with a limited knowledge of the plant
(environment), then it explores (samples) the plant to learn the plant's parameters. After it
learns about the plant, it takes its actions accordingly. The agent first estimates the
plant’s behavior using the previous observation, then takes its action according to the
estimation. The plant, then, responds to the agent's action with an output. The output of
the plant in this stage is used as feedback to update the plant parameters in the predictor

(BN). Figure 5.5 shows the decision theoretic-intelligent agent learning system in a

block diagram.
y Controller y
= € 5| (ID:Decision node) SN Plant >
_ h(e)
§ L
¢ Ix)y o+ d l
\ World Model (BN) I
Observer y(t—1)
A - E A
Y= EO| 1b:utility Node) ¢ EX) |

Figure 5.5. System Block representation of the intelligent agent system.

In Figure 5.5, 1(X) represents the initial state of the plant, E(X) is the expected

value of the state, E(y) isthe expected value of the plant output, and Y., iSthedesired

plant (system) output. The symbol g™ represents one unit delay. The controller (ID)

applies controls to the plant to provide a certain plant output because the controller

creates the control according to the error between the expected value of the plant output

90

and the reference. The reference is the desired output to be provided by the plant. The
observer (BN) models the plant by using the plant's input/outputs. After a control is
applied to the plant, the plant output is used in the next step to update the plant model.
Thus, there is atime delay between the control and the output of the plant. The controller
creates the control using a priori knowledge about the plant (environment).

The decision theoretic intelligent agent system (DTAYS) has potentia use in feedback
control and adaptive control because it uses the plant's output as a feedback and modifies
the controller and the observer accordingly. The first part of a DTAS establishes the
feedback control; the second part establishes the adaptive control part. The following
section presents an analysis to show the feedback and adaptive control ability of the

DTAS.

5.4.1 Feedback Control
In the literature, there are two main types of feedback control, namely output feedback
and state feedback [56]. Output feedback is performed by a path (loop) from the output

back to the controller as shown in Figure 5.6.

Desired plant

: e

ior u
behavio —+r—» Controllr —» Plant >
yGOAL A

<>

Measurements |

Figure 5.6. Output feedback control

91

The equations for the system in Figure 5.6 can be given as:

€= 9 ~ YooaL (5-2)
u=f(e (5.3)
y=9(u) (5.4)

Now, let us compare the system equations in the feedback control system and the
decision-theoretic intelligent agent system. In the DTAS, the output of the plant, y, also
depends on the control input, u. Let us compare the control signal u in both systems.
Upras = N(€) = Upgeppack = T(€) (5.9)
If we choose the functions h and f to be equal, then the controllers will give the same
control u with the same error e. Let us compare the errorsin both systems. Inthe DTAS,
the error is the difference between the desired output and the expected value of the plant
output provided by the predictor. Thisis very similar to the feedback control system but
the expected value of the plant output replaces the measured plant output. These two
values are equivaent only if the predictor estimates the output of the plant well enough.
In the DTAS, it is shown that the predictor estimates the plant output well enough when
there is sufficient data from the plant's input/output. Therefore, the expected value in the
DTAS is equivalent to the measured value of the plant output in a feedback control

system. The following equations summarize the discussion.

€= Yeon ~ E(Y) (5.6)
E(y) 0¥ (5.7)
€= Yoon ~ Y (5.8)

From Equations (5.6), (5.7), and (5.8), we may conclude that the DTAS exhibits feedback

control properties.

92

Another type of feedback control is state feedback control. In state feedback control,
the state variables are sensed and fed back to the input through appropriate gains [56]. If
there is direct access to the state variables, the state variables can be easily measured and
fed back to the input. If there is no direct access to the state variables, then an observer
may be employed to perform the estimation of the state variables. Figure 5.7 illustrates a

state feedback control system with an observer.

Referencs@ u > PIFagt y >

EE— Estimator [€&——

X

Figure 5.7. A control system with the state feedback.

In Figure 5.7, the block denoted by FE is the plant. The estimator predicts the state
variables of the plant. The estimated state variables are fed to the input with a gain K.
Then, the control signal becomes the following:

u=r+KX (5.9
Thus, the control is afunction of estimated state variables and the reference input. Let us
compare the controlsin both systems. Inthe DTAS, the control is defined as

u=f(e (5.10)

93

where e= vy, — Y. Theterm § represents the estimated output of the plant. The term
¥ is a function of the estimated state variables because it is calculated by the utility

function of the system. Therefore, we can represent § with the following equation.

A A

=CX (5.11)

<>

where the vector X is the estimated state vector and the matrix C is the transformation

matrix between the states and the output. Thus, the control can be rewritten as follows:
u=f(Yeon = ¥) (5.12)
U(X) = f (Yoo —CX) (5.13)
Let us assume that the function f is alinear function with the following form.
f(x) = AKX (5.14)
U= Allyoon ~CX) = Al — ALEX (5.15)
Let K =-ALC, and r = Al¥/,, , then the control becomes

u=r+KIX (5.16)
As seen in Equation (5.16), the control signal in the DTAS can be interpreted as the
control signal in the state feedback control. This concludes the analysis of how the
DTAS corresponds to a feedback control system. It can be concluded that the DTAS will
have the inherent advantages of feedback control. The following section investigates the

adaptive control capabilities of the DTAS.

5.4.2 Adaptive Control
The term Adaptive Control covers a set of methods that provide a systematic approach for

automatic adjustment of the controllers in real time, in order to achieve or to maintain a

94

desired level of performance of the control system when the parameters of the plant
dynamic model are unknown and/or change in time [57]. A block diagram presenting a

basic configuration of an adaptive control system is shown in Figure 5.8.

! Disturbance i

Ref i i + U i
erence ! > Adjustable N > Plant y | >

! Controller A !

S . I

Adjustable System
Desired
Performance

Comparison- Adaptation Performance i
! Decision > Mechanism | Measurement[€ i
| A | §
77 Adeptation Scheme

Figure 5.8. A basic adaptive control system.

The following definition provides an adaptive control system given in Figure 5.8.
Definition 5.4.1: An adaptive control system calculates a certain performance index (1P)
of the control system using the measured inputs, the states, the outputs, and the known
disturbances. From the comparison of the performance index and a set of given ones, the
adaptation mechanism modifies the parameters of the adjustable controller and/or
generates an auxiliary control signal in order to maintain the performance index of the
control system close to the set of given ones (i.e., within the set of acceptable ones) [57]

An adaptive control system will monitor the performance of the system in the

presence of parameter disturbances in addition to a feedback controller with adjustable

95

parameters acting as a supplementary loop upon the adjustable parameters of the
controller.

There are three types of adaptive control schemesin the literature: open loop adaptive
control, direct adaptive control, and indirect adaptive control [57]. In open loop adaptive
control, the adaptation mechanism is a simple look-up table stored in the computer that
gives the controller parameters for a given set of environment measurements. In the
literature, thisis also called gain-scheduling.

Direct adaptive control is based on the observation that the difference between the
output of the plant and the output of the reference model (called plant-model error) is a
measure of the difference between the real and the desired performance. The reference
model is a realization of the system with desired performance. This information is used
by the adaptation mechanism (called parameter adaptation) to directly adjust the
parameters of the controller in real-time in order to force (asymptotically) the plant
model-error to zero. This scheme corresponds to the use of a general concept called
Model Reference Adaptive Systems (MRAS) for the purpose of control [58]. The indirect
adaptive control was originally introduced by Kalman [59].

In an indirect adaptive control system, shown in Figure 5.9, the basic idea is that a
suitable controller can be designed on line if a model of the plant is estimated on line
from the available input-output measurements. The scheme is called indirect because the
adaptation of the controller parametersis performed in two stages:

1. On-line estimation of the plant parameters (e.g. Bayesian network construction)

2. On-line computation of the controller parameters based on the current estimated

plant model (e.g. Influence Diagrams-making decisions)

96

L
Adjustable u

A | > Plant
RETEG ontroller | 7 | |
Adaptation | :
i Mechanism1| .
Adaptation a .
M echanism2 L Adjustable y
(design) | Predictor :
T ! (Parameter estimates
~ Adaptivepredicor

Figure 5.9. Indirect adaptive control system

The main goal is to create an adjustable predictor for the plant output and compare

the predicted output with the measured output. The error between the plant output and

the predicted output (called prediction error or plant-model error) is used by a parameter

adaptation algorithm which at each sampling instant will adjust the parameters of the

adjustable predictor in order to minimize the prediction error in the sense of a certain

criterion.

In [57], there are two options given to effectively implement an indirect adaptive

control strategy. The choice is related to a certain extent to the ratio between the

computation time and the sampling period.

Srategy 1

o oA

1. Sample the plant output.
2.
3. Compute the controller parameters based on the new plant model parameter

Update the plant model parameters.

estimates.

Compute the control signal.
Apply the control signal.
Wait for the next sample.

97

In this strategy, there is a delay between u(t)and y(t) that will depend on the time

required to achieve (2) and (3). Thisdelay should be smaller than the sampling period.
Strategy 2
1. Sample the plant output.
2. Compute the control signal based on the controller parameters computed during
the previous sampling periods.
3. Apply the control signal.
4. Update the plant model parameters.
5. Compute the controller parameters based on the new plant model parameter

estimates.
6. Wait for the next sample.

In the second strategy, the delay between u(t) and y(t) is smaller than in the previous

case. In this strategy, a priori parameter estimation is performed since we apply the
control without updating the plant parameters [57].

In the above paragraphs, a general definition of an adaptive control system is
provided. A greater importance is given to indirect adaptive control systems because the
decision-theoretic agent system (DTAS) has the properties of an indirect adaptive control
system. The DTAS has the same steps as the indirect adaptive control system.
Additionally, the learning strategy in DTAS is very similar to the second strategy of the
indirect adaptive control system.

The first step, the on-line estimation of the plant model parameters, is performed by
structuring a Bayesian network and calculating its parameters in the DTAS. As stated in
Chapter 4, the online Bayesian network learning is performed to model the plant. The
second step, the online computation of the controller parameters, is performed by a

decision system (influence diagrams).

98

As shown in Figure 5.9, there are two adaptation mechanisms in the indirect adaptive
control. The first adaptation mechanism corresponds to the online Bayesian network
learning in the DTAS. The second adaptation mechanism corresponds to the utility node
in the influence diagram part of the decision-theoretic intelligent agent because it
determines which action will be fired in the decison node. The adjustable predictor
corresponds to the Bayesian network in the DTAS. Findly, the adjustable controller
corresponds to the decision nodes in the influence diagram in the DTAS.

Now, the indirect adaptive control system can be redrawn by using the decision-

theoretic intelligent agent components, shown in Figure 5.10.

L 5
(ID) . y

Decision > Plant
Reference | Node

(ID) £)
Utility Ly Bayesian y
Node | Network !

T (Parameter estimates

Adaptive predictor

Figure 5.10. Indirect adaptive control representation of the DTAS.

Conseguently, the online Bayesian learning determines the plant model structure and
parameter estimation; and, the influence diagram determines the controller parameters.
Therefore, it can be concluded that the decision-theoretic intelligent agent system

implements an indirect adaptive control system.

99

CHAPTER 6

IntelliAgent Software

This section explores the software created to perform experimental smulation for the
decision-theoretic intelligent agent. The IntelliAgent software is created under Visual
C++ with for Microsoft Windows NT®. The software is capable of creating intelligent
agents by employing Bayesian network and influence diagram structures. As explained
in previous chapters, the Bayesian network learning is an online learning since agents
continue to learn during their operations.

The IntelliAgent software is presented in three main parts, the user manual, tutorials
on Bayesian network creation and knowledge discovery, and the class definitions. The

class definitions are presented in Appendix A. The Visual C++ code and the application

software is available for the readers on: http://armyant.ee.vt.edu/IntelliAgentf One can

contact the author by email, for further information about the software.

6.1 The user manual for IntelliAgent software

The IntelliAgent software is a single document interface (SDI) visual C++ program. The
Microsoft Foundation classes are intensively used to create the software. The softwareis
a Windows application with a menu, a toolbar, and status bar, shown in Figure 6.1. The
user manual starts by explaining the menus available. Section 6.1.2 explains the toolbar
and the status bar operations. After exploring the menus and the toolbar, the dialog boxes

used throughout the program are explored in Section 6.1.3.

100

http://armyant.ee.vt.edu/IntelliAgent
mailto:sferat@vt.edu

,&} Project - Project =]
File Edit “iew MNetwork Agent Help

D& | % =082 eN 5 oA

| _*ILI

Ready | [MUM | OvR = |y 2

Figure 6.1. The IntelliAgent software (screen shot of the program)

6.1.1 Menus

In the IntelliAgent program, there are five menu items, File, Edit, View, Network, Agent,
and Help. The menu items File, Edit, View, and Help are standard Windows application
menus. Functions for these menu items are modified for the use of IntelliAgent software.
For example, the File menu functions are modified to open and save the files that are
specifically defined for the IntelliAgent software. The Network menu item is created for
the Bayesian network operations such as network creation, network update and network
edit. The Agent menu performs the creation of intelligent agents and the intelligent agent

simulation. The following paragraphs explore the menu items with their functionalities.

101

File
In File menu, there are eight submenus, New, Open, Save, Save As, Print, Print View,

Print Setup, and Exit. Figure 6.2 shows the submenus in the File menu.

&1+ Project - Project M=l E3
Edit “iew Metwork Agent Help

MNew Clrl+M \ % A
Open... Chrl+0 -
Save Clrl+5 ﬂ

Save ba..

Erirt. .. Clrl+F
Prift Preyigw
Prirt Setup...

1 CWIANMTS. . SDoghSheep.obn

2 CAFERAT.. AProject.obn

3 CAMWARMM TS AProject.abn

4 CAFERAT...ADogSheepdd. obn
A CANFERAT.. ADogSheep34a.obn

E xit

KN _*Ij

o [HUM | OVR [« v 2

Figure 6.2. The File menu.

The New submenu creates a new online Bayesian network file in "obn" format. The
"obn" is online Bayesian network format created for the intelligent agent software. In the
format, there are nodes, arcs, and the dependencies in the network. The user chooses this
submenu whenever he/she needs to create a new network.

The Open submenu opens a "obn" network that is saved/created previously. The user
needs this submenu when there is a need to update or change the previously created
network. When the user chooses this submenu, a dialog box appears on the screen,

shown in Figure 6.3. This dialog box is a standard dialog box used in Windows

102

programming. Functions for the dialog box are built-in functions in Microsoft visual

C++ but they are edited to be able to open a"obn" file.

Open HH]
Look it Ia Lastversion j ﬁl
DoghSheep.obn

File name: || Open I
Filez of twpe: IP'ru:uieu:t Filez [*.0bn] j Caricel |

Figure 6.3. Dialog box for the "Open" submenu in File menu.

The Save submenu is to save the "obn" files for future uses. This submenu also
creates a standard dialog box, shown in Figure 6.4, if a network is not saved before. If a
network is saved before, choosing Save submenu saves the file again without showing
any dialog box. The functions in the dialog box are edited to be able to save the online
Bayesian networks as an "obn" file. Nodes, arcs, dependencies in the network, and the
database are saved to the file. The program asks the user if it should save the newly
explored cases, shown in Figure 6.5. The Save As submenu is almost the same as the
Save submenu. The only difference is that the user can choose the file type before
saving. In Save submenu, the file format is set to "obn" whereas it can be different in

Save As.

103

Sovens U EE|
Save jn: Ia Laztverzion j ﬁl

DoghSheep.obn

Froject.obn

File name: | Save I
Save as hype: IF'n:-ieu:t Files [*.obn) j Cancel |

Figure 6.4. Dialog box for "Save" and "Save As' submenusin File menu.

Project |

& Do you want to zave the new cases into the database

Figure 6.5. Message box to choose saving the new cases into the database.

Print, Print Preview, and Print Setup are printing related submenus. In the
IntlliAgent, the users are able to print the networks they create. Print Preview and Print
Setup work as in any standard Windows application program. Finally, the Exit submenu

is to quit the software. The software asks the user whether to save the network before it

quits.

104

Edit

This menu is kept for cutting, copying and pasting the network components. There are
four submenus in the Edit menu; Undo, Cut, Copy, and Paste. None of the submenus are
fully functional even though the software has adding and removing functions internally.
In the future, these submenus can be made operational by connecting them to the

functions in the software.

View

In View menu, there are two submenus; Toolbar and Status Bar. The user can check
these submenus by mouse operations. Depending on they are checked or not, the toolbar
and the status bar appear on the program window or not. Figure 6.6 show the submenus

of View menu in the software.

,.’-T_,'- Project - Project =] E3
File Ecit [N Network Agent Help

[) & | v Ioohar E|§|f@| N P A|

v Statuz Bar | il

01 wi

[ONUM [[OVR sy o

Figure 6.6. The View menu

105

Network
The Network menu contains core operations in creating online Bayesian network. There
are six submenus in Network menu: Node, Arc, Update, Parameters, Load, and Create.

Figure 6.7 illustrates the Network menu on the IntelliAgent software.

&1+ Project - Project M=l
File Edit “iew BIEGEIM Agent Help

O | @] Mok 2 eN kA
Arc -
Update ﬂ
Parameters

Load
Create

KN _*Ij

o [HUM | OVR [« v 2

Figure 6.7. The Network menu.

There are three groups of submenus under this menu: manual network creation
submenus, presentation submenus, and automatic network creation submenus. The
submenus Node and Arc are used to create the Bayesian network manually. The user can
create nodes and arcs between the nodes by simple mouse drag and drop operations.
After creating the network the user can apply inference by using Update submenu.

Parameter submenu is in the presentation group. It displays the parameters of anodein a

106

network. The submenus Load and Create let the user load a database and construct the
Bayesian network using the database.

Node submenu lets the user create nodes of a Bayesian network. To create a node,
the user chooses node submenu in the Network menu. Then, the user moves the mouse to
a location where the node is going to be created. While the left mouse button is kept
pressed, the user draws an elipsoid on the specified display area by moving the mouse.
When the dlipsoid is established, the user releases the left mouse button. With the
release of the left mouse button, the software creates a node with the default parameters.
There are two states with the values 0.5 by default. Node nameis set to NodeX, where X
shows the order of the node. A conditional probability table with two rows and one

columnisfilled with 0.5. Figure 6.8 illustrates two nodes created by the user manualy.

,}} Project - Project =]
File Edt “iew MHetwork Agent Help
DS M| b= S 2] e\ 5 oA

2

g o

Ready [NUM | OVR [« [y 2

Figure 6.8. Creation of network nodes by mouse operations.

107

After creating the nodes, the user can create arcs between the nodes by mouse
operations. The user, first, chooses Arc submenu in the Network menu. Second, the user
moves the mouse over a node that the arc is going to start from. Then, while the left
mouse button is pressed, the user draws an arc between the nodes by moving the mouse
on the node that the arc is going to point. When the user releases the left mouse button,
the software draws an arrow between the two nodes. The user can start drawing in any
part of the node because the software adjusts the starting and ending points of the arc
according to the nodes' relative positions. Figure 6.9 illustrates a network with two nodes

and an arc.

#1+ Project - Project [_ O]
File Edit “iew Mebwork Agent Help

e EH =22 &8 % &\ B A

g o

Ready | [NUM | OvR s v

Figure 6.9. Creation of an arc between the nodes by mouse operations.

The parameters submenu takes care of presenting and changing the nodes' parameters.

When the user wants to see the parameters of a node, first, the node has to be selected by

108

clicking the left mouse button on the node. Then, the user can choose the Parameter
submenu in the Network menu. After the submenu is chosen, a dialog box appear on the
screen as shown in Figure 6.10.

i Parameters

M ame MHodel
States 2

Probahilities l Enterl
| Cancel I I M

Statel 0.500000
Statel

1 CPT Updating

E

0k, I Cancel

Figure 6.10. Dialog boxes for presenting and changing node attributes.

On the dialog box shown above, the user can change the name, the number of state,
the state values (probabilities), and the conditional probability table of the node. The
detailed description of the dialog boxes is provided in Section 6.1.3. To change the
conditional probability table of a node, the user needs to move the mouse on to a desired
element of the table and double clicks the left mouse button. Then, a dialog box, shown

in Figure 6.10, appears on the parameter dialog box. The user needs to enter the new

109

probability value into the CPT updating dialog box. Finaly, the user clicks "OK" button

on the CPT updating dialog box to put the new vaue into the CPT.

After creating nodes and arcs in a Bayesian network, the user can change the node

parameters by dialog boxes shown in Figure 6.10. Then, the user can perform inference

in the network by activating Update submenu.

This button updates the network

parameters if evidence is entered to a node or a change has been made on a node. The

software performs the inference by employing the technique defined in [1,2].

Let us take the network given in Figure 6.9 and change the CPT of Node2 as in

Figure 6.11.
: Parameters
Mame Mode2
States 2
Probahilities I Enter |

| Cancel I I deatel

M odel

Statel | State

Statell

0.800000 0.300000

Statel

0.200000 0.700000

Figure 6.11. Changing the CPT of Node2.

110

After changing the CPT values in Node2, the user can choose the Update submenu in
the Network menu. Choosing the Update submenu let the software calculate the other
parameters of the nodes accordingly. After choosing the Update submenu, the user can

choose the Parameters submenu to see the new values of Node2, shown in Figure 6.112.

i Parameters

I ame M ode?
States 2

Probabilitie=s l Enterl
| Cancel I I M

Nodel Statell | Stated
Statell 0.800000 0.300000
Statel 0.200000 0.700000

Figure 6.12. Parameters of Node2 after the Update command.

As can be seen above, the probabilities of the node have changed according to the
new CPT vaues. The software checks every node in the network whether they need
updating or not. If the user makes changes on a node, the software sets a flag for the
node.. The user can change parameters in many nodes. Then, the Update submenu will

update all flagged nodes and related nodes. For example, if a parent node is modified,

111

the Update submenu needs to update the child nodes of the node as well because child
nodes are dependent on the parent nodes.

As stated earlier, the user can create the Bayesian network using a database. Load
and Create submenus let the user create a Bayesian network from a database. When the
user chooses Load, a dialog box appears for loading afile as shown in Figure 6.13.

[1]

Look in: Ia Laztversion j ﬁl
college

dogzheepdb
dogzhespdbdid

* db; ¥ bt Open I
Filez aof type: I j Cancel |

Figure 6.13. Loading a database to automatically construct a Bayesian network.

By double clicking the left mouse button on a database file, the dialog box loads a
database into the program. The database file is atext file with a specific format. It could
be a plain text file or ".db" file. The extension "db" stands for database and its is a
standard Bayesian network database used in the literature [28]. The first line of the
database file contains the name of the variables. The rest of the rows in the database are
the data cases recorded over time. Entries in arow are delimited by a space. Thereisa
"end of line" character after the last entry in each row. After loading the database file, the
software creates nodes by reading the first line. Then, it calculates independent

probabilities for the states of each node. Assume that the user has chosen the database

112

file "college.db”. Then, the software creates the nodes and calculates their parameters as
shown in Figure 6.14. The software draws the nodes on the screen in aline. The user

can move the nodes to the desired places by mouse drag and drop operations.

M= E3

&+ Project - Project
File Edit “iew MNetwork Agent Help

D |d| R[S |0\ v EIP: 2 al

=

KN _'IL|

Ready [|NUM | [ovR [z |y 2

Figure 6.14. Bayesian network nodes created by a database file.

After the software has created the nodes of the network, the user can choose submenu
Create in Network menu to construct the Bayesian network automatically. When the user
chooses the Create submenu, a dialog box appears on the screen to specify how the

network search is going to be performed. Figure 6.15 shows the search dialog box.

113

Scoring and Distance Measures I

Search Type Score——— 7 Distance Measures—|
% Hewristic & MDL Score i+ Kulback-Liebler
[F EHhau@ti\v‘E—‘ |7f" Bapesian Score || © Euclidean

" LogLikelihood

Liccuracy versus Complesity

L_

Cancel |

Figure 6.15. Dialog box for specifying the type of network search.

There are two search methods available in IntelliAgent software, heuristic and
exhaustive, as stated in Section 4. There are three scoring types, MDL, Bayesian scoring,
and Log-Likelihood. In the dialog box, Log-Likelihood is placed in the distance
measures group because Log-Likelihood score involves only the distance between the
distributions from the database and the network. Bayesian scoring and MDL use both
distance measure and complexity of the network. If the user chooses the MDL scoring, a
distance measure has to be chosen aso. There are two distance measures for MDL
scoring, Kullback-Leiber and Euclidean. If Bayesian scoring is chosen, there is no need
to specify the distance measure because Bayesian scoring combines distance measure and
complexity as stated in Section 4.

Search types, score types and distance measure types are grouped in three sections.
The user can click on radio buttons besides the items to specify the search algorithm.
For example, for a heuristic search with MDL score and Euclidean distance, the user can

click the radio buttons in front of heuristic, Bayesian score and Euclidean. The default

114

search type is a heuristic search with MDL score and Kullback-Leiber distance measure.
Let us assume that the user has chosen the heuristic search with Bayesian scoring. Figure
6.16 shows the resulting Bayesian network.

We have covered the submenus in Network menu. The user can create a Bayesian
network either manually or using a database. This part of the IntelliAgent software can
be used as knowledge discovery tool. For example, the network shown in Figure 6.16 is
created by employing a database. The database includes information about college plans
for number of students. The aim isto find out the relationship between the variables and
how they affect the decision to go to college. After loading the database, we have
searched a network that fits the database. The network shown in Figure 6.16 is a

resulting Bayesian network after the search.

I [=] E3

&1+ Project - Project
File Edit “iew Hetwork Agent Help

D d| +t5B2R & 2 6N v EIP: A A

| _*ILI

Feady | [MUM | OvR = |y 2

Figure 6.16. A Bayesian network created by a heuristic search with Bayesian scoring.

115

At this stage, the user can find out the probabilities for the nodes and their
relationships. Additionally, by specifying certain variables, the user can find out the
probability of making a college plan for a given student. To do that, the user will need to
set the variables with specific parameters, then choose Update submenu in Network menu
to run the inference to other nodes. Tutorias on inference in Bayesian network and

knowledge discovery with Bayesian networks are presented in Section 6.2.

Agent
The Agent menu contains submenus for intelligent agent simulations. There are two

submenusin Network menu, Create Agent and Simulate, shown in Figure 6.17.

=] E3

&1+ Project - Project

File Edit “iew Hetwork EEERE Help

0S| % B2 6 Ceslergent N 6 1 P 4 A

Simnulate

KN _>ILI

| INUM | [OVR [« ly 2

Figure 6.17. The Agent menu in the IntelliAgent software.

116

Create Agent submenu is designed for creating agents. When the user chooses Create
Agent, the software shows a dialog box shown in figure 6.18 to specify agent's
parameters. The Create Agent submenu and the Simulate submenu is designed for a
specific problem, the Dog & Sheep problem. In the diadog box, the user can enter the
name of the agent and its X and Y coordinates. The dialog box has aso designed to
specify what type of simulation will be run. The user can choose step by step or

continuous simulation by pressing Step or Continuous button, respectively.

Dialog EH |
Pleaze Enter the Initial Agent Locations |
Agent Properties——————— Simulation——
Mame = b She

ID IF ID Continuous Il
Training Il

et | Cancel |

Figure 6.18. Dialog box for agent creation and simulation attributes.

There is one more push button on the dialog box, Training. When the user presses
Training button, an edit box appears on the dialog box to enter the number of training
steps. Figure 6.19 illustrates the dialog box after the training button is pushed. The
software simulates the system with random starting locations for the agents until the
number of training step is reached. The agent may not get enough information about the
environment by only using the initial database. With the training, the agents can modify

their conditional probability tables according to other agent's behavior.

117

T |

Fleaze Enter the Initial Agent Locations |

Agent Properties—————————— Simulation——
M ame * s Ghe

ID_ IE ID Continuous

Training

g |
[ETE)
T

Training Stepz: |ﬂ
k. I MHest | Cancel

i

Figure 6.19. Dialog box for agent creation and simulation with training steps.

At this stage of the IntelliAgent software, Simulate submenu works for only our
Dogé& Sheep problem. The reason is that the utility node has huge number of elementsin
it because of the problem dimensionality. Therefore, in the software, the utility of an
agent is a function rather than atable. If the utility node is made visual, the user has to
enter too many elements in the utility table. In the future, a function editor can be placed
into the software so that the user can edit the utility function by typing the function in a

text box.

Help

There is no help for the IntelliAgent at this stage. This manual will be put into the
software in the future. In Help menu, there is only one submenu, About Project. The
About Project submenu presents the version and the icon of the software. Figure 6.20

shows the Help menu and About Project dialog box.

118

,&} Project - Project _ O] =|
Eile Edit Wiew Metwork Agent [

L} Ii-q'|n| o E|§ About Project... I) A|

Project Werzion 1.2

Copyright [C] 2000

| NUM | OvR [x |y 2

Figure 6.20. About project dialog box and Help menu.

6.1.2 Context menus

There are two types of context menus. The first one appears when the user presses the
right mouse button on an empty space in the device context. The first context menu is
caled network context menu. The second context menu is called node context and

appears when the user presses the right mouse button on a node.

Network context menu

Network context menu appears on the screen when the user clicks the right mouse button
when the mouse is on an empty space on the device context, as shown in Figure 6.21.
The network context menu contains the same submenus as the Network menu. The user
can choose the network submenus without moving the mouse to Network menu. Context

menus speed up the menu process in Windows applications.

119

#1+ Project - Project =]
Eile Edit “iew Hetwork Agent Help

D | d| @ E=RE] % e\ A

Node
Arc
Update
Load
Create

o | s
Peody M

Figure 6.21. Context menu for the network submenus.

Node context menu

The IntelliAgent software has another context menu for node operation. The Node

context menu appears when the user clicks the right mouse button on anode. There are

two submenus in this menu, Set Evidence and Parameters, as shown in Figure 6.22.

#1+ Project - Project M=l E3
Eile Edit ‘“iew Hetwork Agent Help
D |E| s B2 &% e\ E A

Nodel

Set Evidence F
Barameters

KT o

Ready | [MUM | VR =y 2

Figure 6.22. Context menu for the node operations.

120

Set Evidence submenu is used for instantiating the node. When the user chooses Set
Evidence, another menu opens from the Set Evidence submenu to determine which state
will be instantiated. Figure 6.23 illustrates how a node can be instantiated by the node

context menu.

SetEvidence #| Statel

Statel

Parameters

Figure 6.23. Instantiation of a node by node context menu.

In Figure 6.23, there are two possible selections in the Set Evidence submenu because
the node has two states. When the number of states is more than two, the second menu
shows more selections. For different number of states, the software has a node context
menu assigned for them. For example, if the node has three states, the software shows

another node context menu with three states as shown in Figure 6.24.

SetEvidence | Statell
Statel
States

Farameters

Figure 6.24. Node context menu for a node with three states.

The user can use the node context menus until the node has eight states. The program
can handle nodes with more than eight states but the node context menu cannot. Instead

of using context menu, the user can set evidence on a node by choosing Parameters

121

submenus and setting the state probabilities in the dialog box. The Parameters submenu
in the node context menu actives the same function as Parameters submenu in the
Network menu actives. Therefore, a dialog box appears to change the attributes of the
node as shown in Figure 6.10. If the user sets the desired state to 1 and other states to
zero, then the node becomes instantiated. We have not added context menu for handling

nodes with more than eight states because the context menu gets too long and hard to use.

6.1.2 Toolbar
The program toolbar consists of the buttons that performs the same operations with the
menu items. In the toolbar, there are 16 buttons. Figure 6.25 illustrates the toolbar of the

IntelliAgent software.

D + 2R SR &\ B A

Figure 6.25. The toolbar of the IntelliAgent software.

First eight buttons are standard Windows toolbar buttons. They will not be explained
here. There are eight more buttons on the toolbar. They are used for Bayesian network

operations and intelligent agent simulations.

Node

This button has the same functionality as the Node submenu in the Network menu. The

user pushes this button if anode is going to be created as shown in Figure 6.8.

122

Arc

\

The arc button is the short cut for the Arc submenu in Network menu. The user can
create arcs after pushing this button as shown in Figure 6.9.

Update

This button works as a short cut for the Update submenu in the Network menu. The user
can update the network or apply inference by pushing this toolbar button instead of using

menu.

Parameters

The parameters toolbar button is the short cut for the Parameters submenu in the Network
menu. The user first moves the mouse on a node and clicks the left mouse button to
choose the node. Then, the user moves the button to the toolbar and presses the
Parameters button. Then, the software displays the dialog box shown in Figure 6.10.

Changing node parameters is explained in the previous section.

Load

The load button works as the same as the Load submenu in the Network menu. The user

can load a database by simply pushing the Load button on the toolbar. After the user

123

pushes the Load button, the program displays the dialog box shown in Figure 6.13. After
the user chooses a database on the dialog box, the software creates the nodes and their

parameters as shown in Figure 6.14.

Calculate

The calculate button is used for setting the structure of the search algorithm that creates
the Bayesian network. After pushing this button, a dialog box appears on the screen as
shown in Figure 6.15. Then, the user chooses the structure of the search algorithm by
clicking corresponding radio buttons on the dialog box. After the user sets the search

algorithm, the software creates the Bayesian network as shown in Figure 6.16.

Agent
A

The agent button is the short cut for the Create Agent submenu in the Agent menu. When
the user pushes this button, the software displays the dialog box shown in Figure 6.18.
The user can create by specifying agent's parameters such as name and location. In the
dialog box, there are additional parameters for the ssimulation. The user can set the type

of simulation and whether the agent will be trained in advance or not.

Smulate

124

This button is the short cut for the Simulation submenu in the Agent menu. The software
simulates the Dog& Sheep problem, after the user clicks on this button. The program

displays the ssimulation on the device context in action.

6.1.3 Dialog boxes

Excluding the MFC's built-in dialog boxes such as printing and saving dialog boxes,
there are four dialog boxes for presenting the parameters of the nodes, updating
conditional probability table (CPT) in the nodes, generating Bayesian network, and agent
creating and training dialog boxes. In this section, the dialog boxes are introduced in
terms of their functionality and their operation. Detalled class definitions is given in

Appendix A.

Parameter Presentation

The Parameters dialog box is created for presenting and editing the parameters of a node.
Figure 6.26 illustrates the Parameters dialog box. The name of the node can be edited on
the dialog box by moving the mouse on the edit box in front of name. Similarly, the
number of states in the node can be entered from the second edit box. As soon as the
values are entered from the edit boxes, the dialog box actives corresponding functions to
update the values. If a user increases the number of states, the new probabilities for the
new states have to be entered. The user can enter the new probabilities by typing the
values in the edit box in front of Probabilities static text. Then, the user has to push the
enter push button to enter the new probabilities to the scroll box. The scroll box shows

the probabilities of the states of a node. The user can update the state probabilities by

125

clicking the left mouse button on the probability that needs to be changed. Then, the
dialog box activates an edit box and a push button under the scroll box. The user can

enter the new value into the edit box and push the Update push button to enter the value

into the scroll box.

: Parameters
M amme MHodel
States a2

Probahilities I Enter |

| Cancel I I deatel

Statell
Statel

Figure 6.26. Dialog box for parameter presentation.

We have mentioned that the CPT of a node can also be edited by the user. To edit the
CPT values, the user double clicks the left mouse button on the value that needs to be

changed. Then, the software displays adialog box for updating the CPT value.

126

CPT Updating

As stated above, the user can change the values in the CPT with the help of a dialog box.
Figure 6.27 shows the dialog box for CPT updating. As soon as the user double clicks
the left mouse button on a CPT value, the CPT updating dialog box appears on the
Parameters dialog box. The user enters the new value into the edit box in the dialog box.

Then, the value is entered to the CPT as soon as the user pushes the "OK" button.

i CPT Updating

E

k. I Cancel

Figure 6.27. Dialog box for the CPT updating.

Bayesian network generation

The third dialog box used in the software is designed for Bayesian network generation.
After the user creates the nodes and the independent probabilities by evaluating a
database, a Bayesian network can be constructed by the help of a search agorithm. As
stated in Section 3, there are several search algorithms in the literature. The search
algorithms used in this research are introduced in Section 4. The Dialog box shown in

Figure 6.28 is designed for specifying the properties of the search algorithm to be used.

127

Scoring and Distance Measures |

Search Type Score——— - Digtance Measures—|
% Heuristic & MDL Score & Eullback-Lishler
" Exhaustive " Bapesian Score || ¢ Euclidean

" LogLikelihood

Accuracy wersuz Complexity

|
I

Cancel |

Figure 6.28. Dialog box for setting submenu for Bayesian network generation.

The dialog box consists of three groups of radio buttons for the search type, the score
type, and the distance measure type, respectively. There are two radio buttons for the
type of search agorithm, Heuristic and Exhaustive. There are three types of score type,
MDL, Bayasian, and Log-Likelihood. Log-Likelihood is grouped in the distance
measure group because it is also a distance measure type. Log-Likelihood scoring is
modified to have complexity parameter in the score equation. Because of this
modification, it works as MDL scoring with the Log-Likelihood distance measure. The
user can choose the search type, the score type, and the distance measure type by clicking
the left mouse button on the desired radio buttons.

In the dialog box, there is a diding bar to adjust complexity and the accuracy of the
search algorithm. The dliding bar is not functional in Bayesian scoring since Bayesian
scoring handles the complexity and the accuracy internally as explained in Section 4.

The dliding bar defines the weights for the accuracy and the complexity parts of the score.

128

If the user dlides the bar towards the complexity, the software decreases the penalty for
the complexity of the network. Therefore, the software ends up with a network with
more arcs. If the dliding bar is moved towards the accuracy, the software penalizes the
complexity completely. In this case, the software may end up with a network with no arcs
because having an arc may be more costly than not having an arc. The software starts
with the default complexity and the accuracy values. The default values weigh the

complexity and the accuracy equally.

Agent creation and training
The last dialog box designed for the software appears when the user would like to create

an intelligent agent for the ssimulation. Figure 6.29 shows the agent creation dialog box.

Dialog |

Pleaze Enter the Initial Agent Locations |

Agent Properties———————— Simulation——

Mame = Y Step ||
ID IF ID Continuous ||
Training ||

et | Cancel |

Figure 6.29. Dialog box for agent creation and training.

In the dialog box, the user can set the name and the location of the agent. In the
dialog box, the user can also set the properties of the ssimulation. The user can determine
whether the simulation will be performed step by step or continuous. If the user pushes
the Step button, the simulation runs step by step. The user has to click the Simulate

button on the toolbar for each step. If the Continuous button is pushed, the simulation

129

runs continuously until either the number of maximum steps is reached or the goal of the
agent is established.

In most cases, the agents may not have enough information about the environment by
only evaluating the initial database. The user may choose to train the agents before the
actual simulation starts. The user can push the Training button to train the agents. As
shown in Figure 6.30, an edit box appears on the dialog box after the Training button is
pushed. The user can enter the number of training steps into the edit box. Then, the
software starts the simulation with random initial locations for the agents until the
number of training steps is reached. if the agents establish their goal and stop, then the

software starts the simulation again with random agent locations.

Dialog |

Pleaze Enter the Initial Agent Locations |

Agent Fropertiezs—————— Simulation ——
M ame 4 b Ste

ID IF ID Continuous ||

Training Steps: ||:|

ak. | Mest | Cancel |

Figure 6.30. Training abilities of the agent creation dialog box.

6.2 Tutorials on Bayesian network creation and knowledge discovery

This section presents tutorials on how to create a Bayesian network learning system.
Bayesian networks can be created in two ways in the IntelliAgent software. First, they
can be created manually by mouse operations. This is the case where the user knows the

dependencies in the Bayesian network. It can be used for inference only. Second, a

130

database can be utilized to create a Bayesian network. This is the case where a

knowledge discovery performed on a database.

6.2.1 Inference in a Bayesian network
This is the case where the user creates the Bayesian network by using the knowledge of

dependenciesin the network. Let us use the same example defined in Section 4.

Figure 6.31. Example Bayesian network for manual network creation.

In the network, there are three variables, X, X,, X;. In the network, dependencies
aregivenas X; - X, and X, - X,. Figure 6.31 illustrates the Bayesian network to be
created. The independent probability for the first variable is P(X,) =[0.5 0.5] as stated
in Equation 4.7. Similarly, the conditional probabilities P(X, | X;) and P(X, | X,)are

given as:

Xl
f_/%

P(X, | X,) = {0'2 0'6} (6.1)

08 04

X3

f_/ﬁ
0.75 0.5}

P(X, | Xz){o x5 05 (6.2)

Now, the above Bayesian network can be created by the IntelliAgent software. First, the

user needs to create the nodes of the network. There will be three nodes with two states

131

each. The user moves the mouse on the Node button on the toolbar and clicks the left
mouse button for node creation. Then, the user can create the nodes by keeping the left

mouse button pressed and moving the mouse in a circular motion, shown in Figure 6. 32.

#1+ Project - Project M=l E3
Eile Edit ‘“iew Hetwork Agent Help
D |E| s B2 &% e\ £A
|
Ready MU | OvR |_|_ i

Figure 6.32. Creation on the network nodes.

In above figure, the nodes have the default parameters, two states with the
probabilities 0.5 and 0.5, 2x1 conditional probability table filled with 0.5, and a default
name. The user can change these values by double clicking the left mouse button on the
nodes or clicking the right mouse button and choosing the Parameters submenu in the
node context menu. Let us change the node names and put independent probabilities into

thefirst variable. Figure 6.33 shows the Bayesian network with the new node names.

132

&+ Project - Project =]
File Edit “iew Mebwork Agent Help

Ddl =32 eN 5 A

| o

Rieady | [MUM | OVR (& ly 2

Figure 6.33. Changing node names and editing the independent probabilities.

After changing the names and placing the independent probabilities, the user can add
the dependencies by drawing an arc between the variables. To draw an arc, the user
clicks the left mouse button on the Arc button on the toolbar. Then, the user presses and
holds the left mouse button on the node where the arc starts. While keeping the left
mouse button pressed, the user moves the mouse to the node where the arc ends and
releases the left mouse button. Then, the software draws an arc between the nodes. The
user can start and end the arc anywhere on the nodes because the software calculates the
best place to start and end the arc according to the relative positions of the nodes. Figure

6.34 shows the creation of an arc between X, and X, before the mouseis released.

133

#1+ Project - Project
File Edit “iew Hebwork Agent Help

Dr|d| s B2RS 7| 6N vEIP A

KN LIj

Ready [NUM | OVR & [y

Figure 6.34. Arc creation before the left mouse button is released.

As soon as the left mouse button is released, the software displays a message box

stating the creation of the arc as shown in Figure 6.35.

Project

link: from 1 to 2

Figure 6.35. Message box stating the arc creation.

When the user clicks on OK button on the dialog box, the software draws an arc

between X, and X,. The second arc can be created by following the same procedure.

Figure 6.36 illustrates the network with two arcs.

134

,&} Project - Project Hi=]
File Edit “iew MNetwork Agent Help

D& | % =082 eN 5 A

ol | o

Ready [[NUM | OvR [« [y 2

Figure 6.36. Creating an arc in a network.

When the user adds arcs from one to another node, the software automatically adjusts
the dimension of the CPT of the child node. A child node is the node to which an arc
points. In the network, X, isthe child node of X,. After the arc creation, the software
expands the CPT of node X, to 2x2. The software puts the same values into the new
column as in the first column. If the user increases the number of state in a node, the
software also expands the CPT by adding arow with zero probabilities.

The structural creation of the network is completed by adding the arcs. Now, the
CPTs can be edited according to Equations (6.1) and (6.2). As stated in the previous
section, the user can edit the CPTs by double clicking the left mouse button on the CPT
values. Then, the software displays a dialog box for CPT updating. Let us update the

CPT values of node X, .

135

First, the user double clicks on the node X, to get the Parameters dialog box, shown
in Figure 6.37. Then, the user can double click the left mouse button on the value
corresponding to X, =state0 and X, = state0. After the double clicking, the CPT

updating dialog box appears on the screen as shown in Figure 6.37.

M ame e
States 2

Probahilities I Enterl
Cancel | I _Igpdate

Nodell Statell | Statel
Statel 0500000 0.500000
Statel 0500000 0.500000

1 CPT Updating E3

|n.21

Qk. I Cancel |

Figure 6.37. Updating the CPT table with CPT updating dialog box.

After the CPT updating dialog box appears, the user can enter the new value into the
text box in the dialog box as shown in Figure 6.37. Then, the software puts the new

value into the corresponding location in the CPT. The same procedure can be followed to
put al values of the CPT in X, and X, using the values in Equation (6.1) and (6.2).

After the CPTs are updated, the user is ready to update the network. The user can

move the mouse on Update button on the toolbar and click the left mouse button to

activate the network update. The network update will produce probability values for X,

136

and X,. Aninference technique defined in [1] is used to calculate the probabilities. For
example, to calculate P(X,), the software uses the probabilities P(X;) and P(X, | X,)
and computes the following equation:

P(X,) = P(X, | X)) P(X,) (6.3)
The probability P(X,) iscaculated by the similar equation.

After the network update, the manual creation of a Bayesian network is completed.
Now, the user can perform inference calculations by entering evidence to the network and
updating network. For example, the user can set the node X, to stateO and click Update
button on the toolbar to forward the evidence to the network. Figure 6.38 illustrates how

to set evidence on the node X; .

,&} Project - Project M= E
File Edit “iew MNetwork Agent Help
DEd fBERae ? | e\ b A

SetEvidence k| Statel

Parameters

| NOM [OVR sy o

Figure 6.38. Setting node X, to state0.

After clicking the Update button, the user can double click the left mouse button on
the other nodes to see the new probabilities. Figure 6.39 shows the parameters of the

node X, beforetheinference. Figure 6.40 shows the network after the inference.

137

: Parameters

Hae] 0.200000
0.200000

States 2

Probabilities | Enter |

I | Cancel I

ID. 5 deatel

Nodel

State0 | Stated

Statel

0.200000

Statel

0.200000

Figure 6.39. Parameters of the node X, before inferenceis applied.

i Parameters E3

I ame

] 0400000
0. 00000

States

Frobabilities

2
I E niter |

IEI. 5 deatel

[cancel |

Model Statel [Statet

Statel 0200000 0.600000

Statel 0.300000 0. 400000

Figure 6.40. Parameters of the node X, after inferenceis applied.

138

As can be seen the probabilities of the node X, have changed with the inference.
The software aso updates the probabilities of X, according to the probabilities of the

node X, . In short, the inference travels through the network until it reaches an end node.

An end node is the node that has no child. As can be seen in Figure 6.40, the CPT values
are the same as the CPT values given in Equation (6.1).
The IntelliAgent software can also be used as a knowledge discovery tool because of

its ability to create a Bayesian network from a database.

6.2.1 Knowledge discovery with IntelliAgent
This is the case where the user exploits a database to generate the Bayesian network that
fits the data best. The user can employ severa Bayesian structural learning algorithmsin
the IntelliAgent such as heuristic search and exhaustive search as defined in Section 4. To
explain the knowledge discovery with IntelliAgent software, we will present an example
in this section.

Let us take the example about the college student as defined in the previous section.
The database for the problem is gathered by surveying number of college students about
their college plan, sex, intelligence, family support, and social class. The IntelliAgent

software will be used to create a Bayesian network that fits the database the best.

139

First, the user needs to load the database into the software by clicking the Load button
on the toolbar. After clicking this button, the software displays a dialog box as shown in
Figure 6.13. Let the user choose the database "college.db”. Then, the software

automatically generates the nodes and the independent probabilities for these nodes as

shown in Figure 6.41.

,&} Project - Project
File Edit “iew MNetwork Agent Help

WIEIEEDETRI Y2 DY,

IS [=] E3

| o

Ready | |NUM | [OvR [2

Figure 3.41. Nodes of the Bayesian network after loading "college.db”.

140

After the software creates the nodes from the database, the user can click on Calculate
button on the toolbar or choose Create submenu in the Network menu to start the search
for the best Bayesian network that fits to the database. After clicking the Calculate
button, the software displays the dialog box shown in Figure 6.15. This is a dialog box
for setting the properties of the search algorithm as explained in the previous section.
Using this dialog box, the user can choose the type of search algorithm, the score type,
and the distance measure type. Let us assume that the user clicked the Heuristic radio
button for the search type, the MDL score for the score type and the Kullback-Lieber
distance measure for the distance measure type. Therefore, the software will search for a
Bayesian network using a heuristic MDL score based algorithm with Kullback-Lieber
distance measure. As soon as the user clicks OK button on the dialog box, the software

starts constructing the Bayesian network. Figure 6.42 shows the final Bayesian network.

#= Project - Project [_ [Of =]
File Edit “iew Metwork Agent Help
DM e &2 eN 5 oA

Ready [[NUM | [OVR [x

Figure 6.42. Bayesian network created by the search agorithm.

141

As can be seen above, the algorithm put all the possible arcs into the network. Thisis
computationally okay for this network because the number of nodes in the network is
only six. In any case, the user can decrease the complexity by sliding the complexity bar
in the dialog box. Let us assume that the user would like to have smpler network. First
user clicks the Calculate button on the toolbar again to get the dialog box. Then, the user

needs to dlide the complexity bar towards the accuracy as shown in Figure 6.43. Finaly,

Scoring and Distance Measures |

Score——— 1 Distance Measures
¥ DL Score " Kullback-Liebler

™ Bapesian Score || ¢ Euclidean
* Loglikelibood

Search Type
i Heuriztic

" Exhaustive

Accuracy versus Complesity

Cancel |

Figure 6.43. Decreasing the complexity of the network with sliding bar.

Finally, the user can click the OK button on the dialog box to start the search. Figure

6.44 shows the resulting Bayesian network.

142

=] E3

,}} Project - Project
File Edt “iew Hetwork Agent Help

D d + 2R & 7 6N v EIP & A

| o

Ready [NUM | OWR [«

Figure 6.44. Bayesian network after decreasing the complexity.

As seen in Figure 6.44, the complexity of the network decreased noticeably. Let us
assume that the user thinks that the resulting network is reasonable. Then, the user can
do the knowledge discovery by observing the parameters of the network such as
independent probabilities and conditional probability tables. Conditional probability
tables help us to discover the dependencies between the variables. For example, we can
find out how a variable effects another variable. More generally, we can find out the
college plan for a given college student. This is exactly the inference explained in

Section 6.2.1.

143

Let us assume that we have a student who is male (state0), with average intelligence
(statel), in a high class (stateQ), and with family support (state0). To find out the
probability of him making a college plan, the user needs to enter above evidence to the
network and apply inference by clicking on the Update button on the toolbar. The
evidence can be entered by clicking the right mouse button on the nodes and choosing

desired state in the Evidence submenu as shown in Figure 6.45

States
Stated

Figure 6.45. Setting the evidence for the "intelligence”" node.

After updating the network, the user now can double click the left mouse button on
the node for college plan to see its probabilities. Figure 6.46 illustrates the parameters of

the "plan” node.

144

: Parameters

M ame plan
States 2

Probahilities l Erter |

| Caticel I I deatel

MHoded Statel Statel Statel Statel St
Mode2 Statel Statel State2 Stated St
Statel 0026793 0047423 0087350 01578595
Statel 0973802 0952577 0912150 0842105

Figure 6.46. The parameters of the "plan”.

In above Figure, the user can find out the probabilities of the college plan of the
student. State 1 of the plan means no college plan. Therefore, the probability that student
will go to college is 0.937642. This result is meaningful because the student has family
support and high intelligence. Additionally, he is from a high class so he can afford the
college easily.

The user can also find out how the variables effect each other. For example, how
much does being a male influence the parents’ support? Do families support their son
more that they support their daughter? These questions can be answered by setting the

"sex" node to stateQ and statel and observe the probabilities of the "support” node. In

145

short, knowledge discovery can be performed on a database using the IntelliAgent
software.
In IntelliAgent software, when the network creation is completed, a message box

appears on the screen as shown in Figure 6.47.

Project Ed |

& Gereration i donel!

Figure 6.47. Message box informing the end of the network generation.

After the user clicks OK button on the message box, the software displays another
message box that says the user should set the initial values of the dog and the sheep as

shown in Figure 6.48. This part of the software is dedicated for the Dog& Sheep problem.

Project Ed |

& Please set the initial values for the Dog and the Sheep

Figure 6.48. Message box for initializing the dog and the sheep agents.

At this stage of the IntelliAgent software, only Dog& Sheep problem can be simulated
because the utility function is a function in the software rather than an editable table or
function. In the future, this function can be made an editable function by the user.

Details of the Dog & Sheep problem and its simulation results are presented in Section 6.

146

CHAPTER 7

Experimental Results

In this section, the decision-theoretic intelligent agent model is employed to solve a
herding problem. Intelligent agent software is written to realize the proposed intelligent
agent model. The same software is then used to simulate the herding problem with one
sheep and one dog. Simulation results show that the proposed intelligent agent is
successful in establishing agoal (herding) and learning other agents behaviors.

In the herding problem, a dog (our intelligent agent) has to herd a sheep to a desired
location (i.e., apen). The details of the herding problem are provided in Section 7.1. The
simulation results are presented in Section 7.2. Finaly, Section 7.3 explores the

effectiveness of the online Bayesian network learning in intelligent agent system.

7.1 The Dog & Sheep Problem
The Dog & Sheep problem is considered in a rectangular nxm grid as shown in Figure
7.1. The goa of the dog is to herd the sheep into the pen. In other words, the dog is

trying to minimize the distance between the sheep and the pen. The penisat (0,0).

Y

et |
o ()—
NG i

= i
Y ;

_______ LX
(0’0) 1 2 n

Figure 7.1. The 4-by-4 Grid Dog & Sheep problem.

147

There are six system variables in the problem; the X and Y coordinates of the dog, the

X and Y coordinates of the sheep, the next action of the dog, and the next action of the
sheep. Thefollowing illustrates the system variables and their possible values.

Dy: X coordinate of the dog; takes valuesform 0 to n.

Dy: Y coordinate of the dog, takes values from O to m.

S X coordinate of the sheep; takes valuesform O to n.

S Y coordinate of the sheep; takes values form O to m.

Dn:Next action of the dog, takes values from 0 to 4.

S\: Next action of the sheep, takes values from 0 to 4.

The coordinates of the dog can take values between 0 and n. The coordinates of the
sheep can take values between 0 and m. Therefore, the number of states in the variables

D,and S, isn. Similarly, the number of states in the variables D and S, ism. The

number of states in the coordinate variables changes depending on the dimension of the

problem. Agents have five possible actions; “don’t move”,

move right”, “move left”,
“move down”, and “move up”’. The states of the variables Dy and S are "don't move”,
move right (x direction), left (-x direction), down (-y direction), and up (y direction) with
the state identifiers from O to 4 respectively, shown in Figure 7.2. Thus, the variables Dy

and Sy have 5 states.
YA

1
1
Lo
1
1
1
1
1
1
[
[

Figure 7.2. Possible moves (states) for the sheep and the dog.

148

After defining the system variables, we need to define the node types in the influence
diagram. For the specific problem, the coordinate variables are chance nodes since they
show the environmental state. Therefore, they constitute the Bayesian network (world
model) of the agent. The variables Dy and Sy are decision nodes since their values can
change the environmental state. The variable Dy is the decision node for the decision-
theoretic intelligent agent (the dog). The variable Sy is the decision node for the other
agent. The dog observes the other agent's actions (Sy) to make its decisions accordingly.

Figure 7.3 illustrates the nodes type in the intelligent agent (the dog).

———

Chance
' Nodes
| . (BN)

Utility
Node
R RREEE i (ID)
» Decision
| S, Dn i Nodes
i i (ID& BN)

Figure 7.3. The node typesin the intelligent agent for the Dog & Sheep problem.

Finally, we need to define the utility node in the influence diagram. The goal of the
dog is to make the sheep go to the pen and/or to stay close to the sheep. Therefore, the
utility function for the dog includes the distance between the dog and the sheep and the
distance between the sheep and the dog. The utility function can be defined as:

UD = fu = 1 (71)

Jsi+s?+(s,-D,F +(s,-D,)

149

The Euclidean distance is employed to calculate the distances. Since the maximum
utility is established when the distances zero, the utility function is set to be the inverse of
the sum of the distances.

After defining the Bayesian network part and the influence diagram part, the
dependencies between the variables (the system dynamics) have to be established. If the
system dynamics are known, the dependencies are entered to the system by inserting arcs
between the variables using the agent software. If the system dynamics are not known,
the agent software uses network structuring algorithms defined in Section 4 to establish
the best network. The software needs a small database to generate the Bayesian network
of the agent. The details of the network search algorithms are explained in Section 4.
Section 6 explained how these algorithms are employed and how they can be modified.

Let us analyze the problem when the system dynamics are known. That is, we know
the conditional dependencies between variables in the Bayesian network. From the
nature of the Dog & Sheep problem, it is obvious that the sheep's next action is dependent

on the position variables (D,,S,,D,,S,) and the dog's next action (D). Figure 7.4

illustrates the structure of the agent with the system dynamics.

-

o S
// \\ // N
/ » / *
Il S - H Dn |l
\ / \ /
\ \

~ ,/ ~ //

Figure 7.4. The structure of the intelligent agent with the known system dynamics.

150

In the Bayesian network shown in Figure 7.4, the following represents the conditional

probabilities to be calcul ated.

P(D,),P(D,), P(S,), P(S,) (7.2)
P(D,) (7.3)
P(Sy | D,,D,,S,,S,,Dy) (7.4)

Equations (7.2), (7.3), and (7.4) define the dynamics of the system. The positions and the
sheep's next action are independent but the dog's next action is dependent on the other

five variables. The decision variables D, and S, are analyzed as chance nodes because

a decision node becomes a chance node once it is instantiated. The dog takes its action
before the sheep takes an action. The dog takes actions on the fly and estimates the next
sheep action by updating the network. Then, the program calculates the utility function
using estimated sheep position and the dog position. Finally, it fires the action that
creates the maximum utility. Note that the positions of the dog and the sheep do not
directly affect the dog's action. They affect the sheep's action directly. Since the dog
decides its actions according to the sheep's expected action, the positions affect the dog's
action.

As stated earlier, if the system dynamics are not known, the agent software generates
anetwork from the available data. The search algorithms defined in Section 4 are used to
find the network that fits to the available data. As stated in Section 4, the properties of
the algorithm used can be adjusted by the user.

Let us consider the network created by using the heuristic search with Bayesian
scoring. A small database is provided for the search algorithm. The resulting Bayesian

network is shown in Figure 7.5. In the generated Bayesian network, additional arcs

151

between the variables are added by the algorithm. The algorithm showed that the
positions of the sheep and the dog affects not only the dog's next action but also the
sheep's next action. The dog models the sheep's dynamics with the arcs between the
sheep's next action and the position variables. The additional arcs complicate the

network but it also makes more sense to model the sheep's behavior.

- ~~
- -~o
~

4
SS ,”\)_,’— l| ~~~~~~~ ~ \\
- ~ N
\ ’ -7 _ 1 , S==3Iso
\ . - '~ ~ =3
A ~ A 1 ’
Ch ke SS ’
= ~ s v,
- ~ N
7 \\ \\\l/
/
1 \
s Dy
/

Figure 7.5. The structure of the agent with BN created by the search algorithm.

The structure in Figure 7.5 adds one more conditional probability to the calculations
because the sheep's next action depends on the positions of the dog and the sheep.

Therefore, the equations necessary for the inference cal cul ations become the following.

P(D,),P(D,), P(S,), P(S,) (7.5)
P(Sy) (7.6)

P(S\ |D,,D,,S,,S,,Dy) (7.7)
P(D, | D,,D,,S,,S,) (7.8)

The equation (7.8) is added to the calculations. Section 7.3 provides more detailed

simulation results for the Dog & Sheep problem in a specific domain.

152

The creation of the decision theoretic intelligent agent is completed after generating
the structure of the Bayesian network. Now, the agent can start exploring the
environment to establish its goa. The agent exploits the environment during its
exploration by updating itself with the new information about the environment. The
following summarizes the exploration and exploitation processes of an agent.

The agent (the dog) takes its actions in order to maximize the utility function in
equation (7.1). First, the agent fires the actions on the fly and cal culates the probabilities
of the states in the sheep's next action node. Second, the value of the utility function is
calculated for each possible action (state) of the variable Sy. Then, using Equation (2.12),

the expected utility of the dog's (agent's) action, d,. The following formula presents how
the expected utility is calculated for the action d..

U(DN :di):zU(SN :Sj’DN =d,)[P(S, =S; |Dy =d;) (7.9)

The same formula is applied to calculate the expected utility of each action in the
agent's action set. The utility functions in the summation are calculated by the using
Equation (7.1). In the formulation, the positions of the dog and the sheep are not shown

because they are updated by the action d, and s;. Let us denote the updated positions

with a bar in the formulation. The following equation presents the utility function for the

action pair, d; and s; .

U(S, =s,,D, =d,) = (7.10)

J52+87 +{(5.-D,) +(5,-D,f
where S,,S,,D,, and D, are the updated (expected) positions of the dog and the sheep.

The utilities for all possible action pairs are calculated by Equation (7.10). The

153

conditional probability, P(Sy =s; | Dy =d,), is caculated by the inference agorithm
defined in [1].
Finally, the agent chooses the action with the highest expected utility by using the

PMEU asin equation (5.1).
d :glz_lg(LT(DN :di):max%ZU(SN =s;,Dy =d)P(S, =5, | Dy :di)} (7.1

where d represents the action with the highest expected utility.

To sum up, first the agent fires it actions on the fly. Second, the inference is run
through the BN to calculate the corresponding probabilities of the sheep's possible next
actions. Third, the utilities are calculated for each possible action of the sheep and the
dog's action using Equation (7.10). Then, the probabilities and the utilities are placed
into Equation (7.9) to calculate the expected utility of the dog's action. The process is
repeated for each possible action of the dog. Finally, the agent (the dog) chooses the
action with the maximum expected utility by employing the formulain (7.11).

After deciding which action will be fired, the dog takes the action and observes the
sheep's next action. The dog records the current states of the system variable after the
sheep moves. The agent updates its BN (the world model) using the current states of the
system variables according to the algorithm defined in Section 4. The dog (the agent)
continues to take actions in the same way until the sheep is in the pen. The following

section explains the Dog & Sheep simulation performed by the IntelliAgent software.

154

7.2 The 4-by-4 Grid Dog & Sheep Simulation

In Figure 7.1, the Dog& Sheep problem is presented on a n-by-m grid. This section
presents the simulation results for a 4x4 grid, n=m=3. The section explores both
known dynamics case and unknown dynamics case. We have run the simulations by
placing the dog and the sheep in several different locations. For all the locations, the dog
herded the sheep to the pen successfully. The simulation results were satisfactory for
both known and unknown dynamics cases. Let us start with the simulations performed

with known system dynamics.

7.2.1 Simulation results for known system dynamics

Let us use the same system dynamics shown in Figure 7.4. The nodes in the Bayesian
networks can be created manually with mouse moves or with a database file. A database
is used to generate the initial network parameters. The database is created with 19 data
cases. Each data cases consist of the dog and the sheep locations and the corresponding
actions of the sheep and the dog.

The IntelliAgent software is used to create the Bayesian network for the intelligent
agent. The utility function is placed in the software as a function with the form of
Equation (7.1). Thus, the user does not have access to the utility function of the
intelligent agent in the software. The IntelliAgent software can only ssmulate the Dog &
Sheep problem. To simulate other intelligent agent problem, the utility function for the

agent has to be edited accordingly in the source code.

155

Let us create the intelligent agent's Bayesian network by using IntelliAgent software.
First we need to create the network nodes. To create the network nodes, the database in

Table 7.1 isloaded to the software.

Table 7.1. Initial database for the Dog& Sheep problem

x
o
[

<

WWINOIRPFRPIOCIOINIEPINWIFRIOINFPINWIW[O

NININWRFRONRFIOINEFIOININIFLPINFPIFRIOIO
NINIWF OO FPFPP P ORFFIFPWW((N
WWWWER R OOOFRIOORRFOFPOF((n
AR ORFPFPIFPIOCOCIWININFPINW[AROO[O
WRPWRFRWOOININWININWIWIWINWIN[AIO

The data cases are created manually. We put the dog and the sheep into random
locations and we have chosen the actions of the dog and the sheep. Then, we have put
those six values into arow in the database. The number of data cases in the database is
long enough to calculate the initia parameters of the Bayesian network. The agents

update their network parameters while they are exploring the environment.

156

The above database is edited into a text file, called dogsheepdb.txt for the

IntelliAgent software. Then, we have loaded the database into the software as shown in

Figure 7.6.
open |

Look jn: Ia ProjectDocurnentation j gl
Debug E databasze dogzheepdbnew
Inteliggent databazeddful dogzheepy
Release databaseful cldtest
res dogzhesp E Readie

college dogzheepdb test

databaze dogsheepdbdz4 trial

File namme: Idngsheepdb | Open I
Filez aof type: I j Cancel |

Figure 7.6. Loading the initial database.

After loading the database, the IntelliAgent software creates the network nodes and
calculates the independent probabilities for each variable. Now, we have the network
nodes with their parameters. The software determines the number of states in the nodes,
their probabilities, and their names by evaluating the database.

After the software creates the network nodes, we need to define the dependencies. As
stated in Section 6, the dependencies (the arcs) between the nodes can be established by
mouse operations. A tutorial on how to create a Bayesian network is also presented in
Section 6.2. We have created a Bayesian network with same dependencies as the
network shown in Figure 7.1. Figure 7.7 presents the Bayesian network created in the

IntelliAgent software.

157

IS I=] E3

&1+ Project - Project
File Edit “iew Hetwork Agent Help

IR Y2 P Y,

s

Ready [NUM | [OWF

Figure 7.7. Bayesian network with known dependencies.

After the arcs are drawn in the network, the software adjusts the CPTs and the
probabilities of the nodes by running inference in the network. Now, we can start
running the simulation.

To simulate the problem, we need to create the intelligent agent. As described in
Section 7, agents are created by using a dialog box. The user can give the name and the
location of the agents using this dialog box. In the IntelliAgent simulation the dog agent
and the sheep agent are named 1 and 2, respectively. Thus, the user should enter either 1
or 2 as the name of the agent during the creation of the agents. The software knows

which agent is the dog or the sheep by checking the name of the agent. Let us create the

158

dog and the sheep at (0,0) and (3,3), respectively. Thisis the hardest case for the dog to
herd the sheep into the pen. As soon as an agent is created, the software draws a grid on
the screen to display the simulation. Figure 7.8 shows the simulation grid created by the

IntelliAgent software.

Figure 7.8. Bayesian network and the simulation grid.

Let us assume that we have chosen continuous simulation on the agent creation dialog
box. The ssimulation results were successful for different placements of the agents. We
will only present simulation results for the hardest case in this section. Figure 7.9 shows
the paths that the sheep and the dog have taken during the ssmulation. The dog was able
to establish its goal by herding the sheep to the pen. The simulation ended when the

sheep was at (0,0) and thedog was at (1,1).

159

o T (s)
! — Dog's path
1

o~ : Sheep's path
W | ——— e -
:
1
1 v

H I
1
*\

(o

1 2 3
Figure 7.9. The paths taken by the dog and the sheep.

In Figure 7.9, the sheep does not move away from the corner until the dog is near the
sheep. When the dog comes closer to the sheep, the sheep moves away from the corner
and the dog. Then, the dog follows the sheep trying to herd it to the pen. The dog chases
the sheep until the sheep isin the pen.

We have also run three consecutive simulations without changing their positions,
shown in Figure 7.10. The goal of these consecutive simulations is to see whether the
dog learns from its experience. In the first run, the sheep has escaped from the pen by
moving to the right. The dog then followed the sheep and put the sheep into the pen. In
the second run, the sheep managed to escaped from the pen by moving up because the
dog moved down to stop the sheep moving to the right. The dog learned from its
previous experience that the sheep will move to theright. In the third simulation, the dog
first moved to the left to stop the sheep moving up and the sheep moved to the right.
Then, the dog moved to the right to stop the sheep moving to theright. Finally, the sheep
moved back into the pen in response to the dog's movement. The sheep could not escape
in the third run because the dog learned the sheep's behavior by experiencing previous

escapes. The dog takes its actions according to the knowledge it gets from its experience.

160

B 12N —)

NG * _/ L

s Pecdecced)-oo. 10; 0=t
@ (b) (©

Figure 7.10. Learning from the experience.

As stated earlier, the dog agent updates the parameter of the Bayesian network while
it explores the environment. The simulation starts with the initialization of the positions
of the agent. Using Equations (7.9), (7.10), and (7.11), the dog calculates the expected
utility for its actions and finds the action with the highest expected utility.

The dog fires the action with the maximum expected utility. Then, it waits for the
sheep's next action. The sheep has its own dynamics and tries to avoid the dog. The
sheep's dynamics are bunch of rules that determine the next action of the sheep. The
rules are defined so that the sheep is moving away from the dog.

After the sheep takes its action, the dog records the current positions and actions of
the sheep and the dog into the database as a data case. Since the database is modified, the
software modifies the parameters of the Bayesian network according to the new data
case. The modification of the parameters does in fact establish the learning. The next
time the same setting is faced, the agent will take its actions according to the modified
parameters of the network. The following paragraph presents how learning occurs in the

decision-theoretic intelligent agent.

161

In Figure 7.10, the ssimulation starts with specified agent locations; the dog is at (1,1)
and the sheep is at (0,0). Let us go through the learning process for the dog by analyzing
it possible actions and their expected utilities. The sheep has three possible actionsin this
setting; "don't move", "move left", and "move up’. The sheep cannot move down or
move left because it is at (0,0). To calculate the expected utilities for the dog's actions,
we need to calculate the probabilities of each state action and corresponding utility value.
Since the agent has limited information about the environment, the probabilities of the
sheep's actions will be uniformly distributed. The software places uniform priors if a
case has never seen before. The software can show the probabilities of the sheep's
decision node Sy by simply double clicking on the node. The following is the
probabilities of the sheep's next action states.

P(S, | D, =d,)={0.2,0.2,0.2,0.2,0.3 (7.12)

As can be seen above, probabilities are uniformly distributed for all the action of the

dog. Now, let us calculate the expected utilities for each the dog's action d, and the
possible actions of the sheep (s,,S,,S;). The software only calculates the utility for the

sheep's possible actions. The utilities for the sheep's impossible actions are equal to zero.

The following equations present the calculation of the utilities for the sheep's possible

actions.
U(S, =s,,Dy =dy) = 1 :i (7.13)
Jo+0+41+1 2
U(S, =s,D, =d,) = ! -1 (7.14)
N N 1o +40+1 2
U(S, =5s,,D, =d,)=0 (7.16)

162

1 1
U(Sy =s;,Dy =do)=\/m+\/m ZE (7.15)
Uues, =s,,b, =d;)=0 (7.17)

Using Equations from (7.12) to (7.17), we can calculate the expected utility of the

dog's action d,.

. 4
U (Dy :dO):ZU(SN =s,Dy =dy)IP(S, =s | Dy =d,)
=0 (7.18)

-1 [o.2+%[o.2+%[o.2 10.3404

V2
The expected utilities for the other actions of the dog are calculated in the same way. The

following equation presents the expected utilities for the dog's all actions.

0.3404 |

0.2385
U(D,)=|0.4788 (7.19)
0.4788
0.2385 |

After the expected utility for each action is calculated, the agent (the dog) fires the action
that generates the maximum expected utility. Therefore, the dog fires the action d,,

which is "move left". Thus, the dog moves to (0,1) on the grid. The dog waits for the
sheep's next action after it firesits best action.

The sheep has move to the right because it is trying to get away from the dog.
Therefore, the new positions are (0,1) and (1,0) for the dog and the sheep, respectively.
The simulation is run until the sheep isin the pen again. When the ssimulation is ended,
the sheep was in the pen and the dog was at (1,1) as shown in Figure 7.10 (b).

Let us check the state probabilities of the sheep's action (decision) node Sy and the

expected utilities for the dog's actions.

163

P(S, | D, =d,) ={0.2,0.2,0.2,0.2,0.3 (7.20)

P(S, | D, =d,)={0.2,0.2,0.2,0.2,0.3 (7.21)
P(S, | Dy =d,) ={0,0,0,4 (7.22)
P(S, | D, =d,)={0.2,0.2,0.2,0.2,0.3 (7.23)
P(S, | D, =d,)={0.2,0.2,0.2,0.2,0.3 (7.24)
[0.3404 |
0.2385
U(D,)=|0.4141 (7.25)
0.4788
0.2385|

As can be seen in Equation (7.22), the conditional probability of Sy given the action
d, ischanged after the first run. Thisis because the sheep moved to theright in the first
simulation. The agent then updated this particular conditional probability accordingly.
This shows that the decision-theoretic agent can learn from its experience. The changein
the conditional probability is also changed the expected utility of the action d,. The
expected utility of the action d, is reduced because the sheep went away from the penin
the previous run. Now, the dog knows that if it fires the action d, again, the sheep will
move to the right.

Since the expected utilities are changed, the expected utility of the action d, became
the maximum. Therefore, the dog moves down to stop the sheep going to theright. After
the dog moved down, the sheep went up (s,) to avoid the dog. We have run the

simulation until the sheep is in the pen. One should keep in mind that the agent updates

164

its model of the environment in every step. The simulation is ended when the sheep isin
the pen and thedog is at (1,1) as shown in Figure 7.10 (c).

One might guess that the conditiona probabilities and the expected utilities will be
different than that of the previous run. The following equations present the conditional

probabilities and the expected utilities.

P(S, | D, =d,) ={0.2,0.2,0.2,0.2,0.3 (7.26)
P(S, | D, =d,)={0.2,0.2,0.2,0.2,0.3 (7.27)
P(S, | Dy =d,) ={0,0,0,4 (7.28)
P(S, | D, =d,)={0,0,0,03 (7.29)
P(S, | D, =d,)={0.2,0.2,0.2,0.2,0.3 (7.30)

[0.3404]

0.2385
U(D,)=|0.4141 (7.31)

0.4141

0.2385|

The agent continues to learn from its experience because the conditional probabilities

of S, given the action d,. Therefore, the expected utility for the action d, is aso
changed. The utilities of the action d, and d, are equal. The agent chooses the action
with the lower indices if thereis equality. Therefore, the dog firesthe action d, .

After the dog moved to the left by firing the action d,, the sheep moved to the right

to avoid the dog. Then, the dog moved to the right by firing the action 1 because it
knows that in the first run the sheep moved to the right and escaped. To keep the sheep

around the pen, the dog moved to the right instead of going down and following the

165

sheep. This shows that the dog learns the sheep's behavior in time and acts accordingly.
In fact, after the dog moved to the right, the sheep moved to the left and went into the pen
as shown in Figure 10 (c).

We have covered the case where the dynamics of the system is known. The
simulation results were satisfactory. This part of the research will be presented in IEEE
SMC2000 conference. In above ssimulations, the next action of the dog is not directly
dependent on the positions of the dog and the sheep. In redlity, the dog's next action is
also dependent on the positions of the dog. The simulations worked well because the dog
had the exact knowledge of the relationship between the positions and the sheep's next
action. If the dog does not have that information, it cannot make its decisions only
depending on the sheep's next action. In that case, the agent has to create its Bayesian
network and find out the dependencies in the network. The next section explores the case

when the system dynamics are not known.

7.2.2 System dynamics are not known.

In rea life, an intelligent agent may not have the knowledge of the system dynamics. For
example, if amobile robot is placed in aroom to do certain tasks, the robot will not have
the exact knowledge of the room at the beginning. Furthermore, if there are more than
one robot, the robots will not know the dynamics of other robots. In this kind of problem
settings, the robots have to explore the environment and exploit (learn) the data that they
have gathered. In our agent design, we have placed an online Bayesian network learning

ability to our decision-theoretic intelligent agents. In previous sections, the online

166

Bayesian network learning and software are explained in detail. In this section, we will
simulate the Dog & Sheep problem with unknown system dynamics.

In the previous case, the agent learned the parameters of the network using a database
because the system dynamics were known. Now, the agent has to learn both structure
and parameters of the Bayesian network using the database. In Section 4, structural
learning and parameter learning in the online Bayesian network |earning are presented.

Let us start the simulation by loading a database to the software. Loading a database
and creating the nodes are explained above. Since the agent will also learn the structure
of the network a longer database might be needed. A database of cases is created
simulating the problem for each position set and for each action in the dog's action set.
We have entered those five values into the sheep's dynamics and recorded the sheep's
action with other five values. For the following simulation, this database is used.

After the nodes are created, we can generate the Bayesian network from the database.
To generate the Bayesian network, we can either click on the Create button on the toolbar
or choose the submenu Create in the Network menu. Then, the software displays adialog
box to specify the search algorithm. In the dialog box, the user can choose the search
type, the score type and the distance measure type. The details of the dialog box and how
to specify the search agorithm are given in knowledge discovery tutorial in Section 6.2.

In this section, we will give some simulation results obtained by applying different
search algorithms. There are eight possible search algorithms in the software as shown in

Table7.2.

167

Table 7.2. Possible search algorithmsin the IntelliAgent software

Algorithm Search Type Score Type Distance Measure
1 Heuristic MDL Kullback-L eiber
2 Heuristic MDL Euclidean
3 Heuristic MDL LogLikelihood
4 Heuristic Bayesian -
5 Exhaustive MDL Kullback-L eiber
6 Exhaustive MDL Euclidean
7 Exhaustive MDL LogLikelihood
8 Exhaustive Bayesian -

Analyses of the search algorithms are presented in Section 4. In this section, we will

not repeat the analysis of the search algorithms. We will present two simulations. The

first one is a heuristic search with Bayesian scoring since it creates the network shown in

Figure 7.5. The second search algorithm will be an exhaustive search with MDL score

using Kullback-Lieber distance measure.

To create the first search algorithm, we have clicked heuristic and Bayesian score

radio buttons on the dialog box.

Then, the software started to generate a Bayesian

network. We have run the search agorithm with the default complexity and accuracy but

the resulting network had only three arcs. Then, we have increased the complexity by

moving the dliding bar to the complexity. Finally, we have established a network with

reasonable amount of arcs. Figure 7.11 shows the resulting Bayesian network.

168

e Piogiel - Progect

Fie Edt Mew Masteork Agent Help
D ¥R & T e v H IP & a

-

nE o

Feady | [kies | s

Figure 7.11. Bayesian network generated by heuristic search with Bayesian score.

As can be seen above, the number of arcs in the network is higher than the network
created with known dynamics. The search algorithm discovered additional dependencies
in the network along with the known ones. For example, in the previous case, there was
no arc from the positions to the dog's next action. We have pointed out that there should
be some relationship between the positions and the dog's action. Since the previous
simulations were successful one might ask what benefit we will get by having more arcs
in the network. We can answer the question by running the simulation with the network
structure givenin Figure 7.11.

We have started the simulation with same positions, (0,0) and (1,1) for the dog and
the sheep, respectively. After the first run, the dog managed to herd the sheep to the pen
by following the same paths shown in Figure 7.9. In the second run, we discovered that

the sheep could not move out of the pen because the dog was not letting it go. In the first

169

case, the dog learned the same thing after three runs but with the network it learned the
sheep's behavior from the database by putting additional dependencies in the network. In
fact, the network shown in Figure 7.11 should be closer to the ideal system dynamics
because it has connection between the dog's action and the positions. In short, the
additional dependencies enabled faster learning for the dog.

As stated in Section 4, the heuristic search algorithm requires the ordering of the
network nodes in the database. The exhaustive agorithm lifts this requirement by
visiting more network structures during the search. In fact, it tries every possible arc in
the network to improve the network score. Let us perform an exhaustive search with
MDL score using Kullback-Lieber distance measure. Figure 7.12 illustrates the resulting

Bayesian network.

oy o

Binndy [V.2

Figure 7.12. Bayesian network generated by exhaustive search with MDL score.

As can be seen above, the exhaustive search generated quite different network from
the network created by heuristic search. Even though the network is quite different, it has

170

necessary dependencies representing the system dynamics in the known system dynamics
case. The directions of some arcs are in opposite direction in the network. This does not
cause any problem because inference can aso travel in a backward direction. There are
arcs between the sheep's position and the dog's position. The arcs from the sheep's
positions to the dog's positions are logical because the sheep moves before the dog. The
arc from DogX to DogY is in the opposite direction and may not be necessary. Since
they will not increase the computational complexity too much, we can keep these arcsin
the network.

We have run several simulations starting with the same positions. After the first
simulation, the dog herded the sheep to the pen successfully. The simulation ended when

the sheep is in the pen and the dog is a (1,1). The paths for the agents are shown in

" Dog's path
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 7.13.

Figure 7.13. Paths of the agents for the first ssmulation.

As can be seen above, the sheep is going forward and backward until the dog is close
enough to force the sheep out of the corner. The sheep tries to escape, but the dog moves
diagonally to the sheep to keep the sheep at the corner while the dog gets closer to the

sheep. When the dog is close enough to the sheep, the sheep has no choice but to move

171

out of the corner. The dog follows the sheep until the sheep is at (0,3) and the dog is at
(1,3). Then, the sheep moves towards the pen. The dog does not go down to be just
behind the sheep because the sheep may then go up and get away from the pen. Thus, the
dog moves parallel to the sheep to keep the sheep down and move it to the pen. The
sheep moves towards the pen until it is in the pen. When the sheep is in the pen, the
simulation stops.

There are two important behaviors in the simulations. First, the sheep does not move
away from the corner until the dog gets close. Second, the dog does not try to go behind
the sheep when the sheep is at bottom of the area. The dog does not go behind the sheep
any more because it estimates that the sheep may go up and get away from the pen.
These two behaviors make it clear that the dog can estimate the sheep's behavior and act
accordingly.

We have run couple of simulations to get a feeling about the dog's behavior. In one
of the smulations, the dog and the sheep were caught in a loop where they repeat the
same action for certain number of times. Then, the dog was able to break the loop and
herd the sheep successfully. During the loop, the dog updates its network parameters
with each action. After a certain amount of time, it reaches the knowledge of the loop
and takes action to break it. This can be explained as forgetting or changing the agent
beliefs. The dog had a certain knowledge about the sheep before the looping. When they
start looping, the dog sees that the sheep is not doing what the dog expects. Therefore,
after each step in the loop, the dog updates its belief about the sheep's behavior. When
the number of steps in the loop reaches a certain value, the dog's belief about the sheep

completely changes and the dog takes a different action to force the sheep out of the loop.

172

That is, the conditiona probability of the sheep's action (S\) and the expected utilities of
the dog's actions are changed by experiencing the loop. When the expected utilities of
the dog's actions are changed, the dog takes a different action and breaks the loop. Figure
7.14 illustrates how the agents changes its belief about the environment and takes actions

accordingly.

Figure 7.14. Changing belief of an intelligent agent.

In Figure 7.14, the follows the sheep to the corner. Then, they go back and forward
between (3,0) and (2,0) for awhile. Finally, the dog stops and waits for sheep to move to
the pen. The dog learns the behavior of the sheep in time and fires a different action after
certain amount of experience.

Let us explain the loop in terms of the dog's belief about the sheep and the expected
utilities of the dog's actions. When the simulation is started, the dog moved towards the

sheep by firing the action d,. Then, the sheep moved away from the dog by taking the
action s;. Now, the dog is at (0,0) and the sheep is at (1,0). In the next step, the dog
moves to the right by firing the action d,. Then, the sheep also moves to the right to get

away from the dog. Now, the dog is at (1,0) and the sheep is at (2,0). The following

173

eguations present the conditional probability of the states of the sheep's decision node Sy

given the dog's actions d, and the expected utilities for the dog's actions.

P(S, | D, =d,)={0,01,0,¢ (7.32)
P(S, | D, =d,) ={0,0.25,0.72,0,¢ (7.33)
P(S, | D, =d,) ={01,0,0,4 (7.34)
P(S, | D, =d,)={0,01,0,0 (7.35)

[0.1999

0.4374
U (D,)=|0.1666 (7.36)

0.0
0.1909|

In above equations, we did not show the conditional probabilities for the action d,
because it is physically impossible for the dog to move down. Thus, the action d, is not
apossible action for the dog and the utility for this action is set to zero. Ascan be seenin
Equation (7.36), the maximum expected utility is provided by the action d,. Therefore,
the dog fires the action d; and moves to the right. Then, the sheep also moves to the
right to get away from the dog by taking the action s, .

Now, the dog is at (2,0) and the sheep is at (3,0). The following equations present the

conditional probabilities and the expected utilities for this setting.

P(S, | D, =d,) ={0,0,0,03 (7.37)
P(S, | D, =d,)={0,01,0,4 (7.38)
P(S, | D, =d,)={0,0,0,03 (7.38)
P(S, | D, =d,) ={0,0,0,03 (7.40)

174

[0.2185
0.3333
U (D,)=|0.1852 (7.41)

0.0
| 0.2402

Using the equation (7.41), the dog fires the action d, and moves to the right because
it provides the highest expected utility. Then, the sheep moves to the left by firing the
action s, becauseit is physically impossible for the sheep to move to the right.

Now, the sheep is at (2,0) and the dog is at (3,0). Let us calculate the conditional

probabilities and the expected utilities for this setting.

P(S, | D, =d,)={0,01,0,¢ (7.42)
P(S, | D, =d,)={0,0.2,0.8,0,3 (7.43)
P(S, | D, =d,)={0,01,0,d (7.44)

[0.3333]
0.0
U (D,) =|0.4499 (7.45)
0.0
| 0.3090

As shown in Equation (7.45), the expected utilities for the actions d, and d, are zero
because they are not physically possible dog actions. Therefore, only the conditional
probabilities corresponding to the possible actions are shown above. After the expected
utilities are calculated, the dog fires the action d, since it provides the maximum
expected utility. Then, the sheep moves to the right again by firing the action s,. Thisis

basically where the loop starts in the smulation. The sheep and the dog moved back to

the same |ocations after two actions.

175

The current locations for the dog and the sheep are (2,0) and (3,0), respectively. Let

us present the conditiona probabilities and the expected utilities for this setting one more

time.

P(S, | Dy =dy) ={0,0,003 (7.46)
P(S, | D, =d,)={0,01,0,d (7.47)
P(S, | Dy =d,) ={0,0,003 (7.48)
P(Sy Dy =d,) :{0,0,0,0,]} (7.49)

[0.2185

0.3333
U(D,)=|0.1852 (7.50)

0.0
0.2402 |

These values are the same as the values shown two actions ago. Therefore, the dog takes
the action d, and moves to the right. Then, the sheep fires the action s, and moves to
the | eft.

Now, the dog is at (3,0) and the sheep is a (2,0). Thus, the dog and the sheep went
back to the same location after two firing two actions. Let us examine the conditional

probabilities and the expected utilities for this setting one more time.

P(S, | Dy =dy) ={0,0104 (7.51)
P(S, | D, =d,)={0,0.36,0.64,0,3 (7.52)
P(S, | Dy =d,)={0,0104 (7.53)

176

[0.3333]
0.0

U (D,) =|0.4099 (7.54)

0.0

| 0.3090

In Equation (7.52), the conditional probabilities are different than that of Equation
(7.43). This shows that after firing two actions, the dog updated its belief about the
sheep. The change in the conditional probability is reflected on the expected utility of the
action d,. The expected utility of the action d, is decreased from 0.4499 to 0.4099.
Although the expected utility of the action d, is decreased, it is still the maximum.
Therefore, the dog fires the action d,. Then, the sheep firesthe action s, .

Now, the dog is at (2,0) and the sheep is at (3,0). The conditional probabilities and
the expected utilities of this setting are the same as the values obtained two actions ago.
Therefore, the dog fires the action d,. Then, the sheep fires the action s,. Now, the dog
is at (3,0) and the sheep is at (2,0). During the simulation, the dog and the sheep comes
to this setting three more times. The dog has to fire different action from the action d, to
break the loop. Thus, we will examine only the conditional probability for the action d,
and the expected utilities. The following equations show the conditional probabilities
and the expected utilities for these three visits.

P(S, | D, =d,)={0,0.488,0.512,0,¢ (7.55)

0.3333]
0.0

U(D,)=|0.3779 (7.56)

0.0

| 0.3090

177

P(S, | D, =d,)={0,0.5634,0.4366,0,3 (7.57)

[0.3333]
0.0

U(D,)=|0.3523 (7.58)
0.0

0.3090|

P(S, | D, =d,) ={0,0.67232,0.32768,0,¢ (7.59)

[0.3333]
0.0

U(D,)=|0.3319 (7.60)
0.0

| 0.3090

As can be seen in Equations (7.56), (7.58), and (7.60), the expected utility for the action

d, decreases after every visit. This is because the conditional probability for the action
d, (the dog's belief about the sheep) changes after every visit. Finaly, the expected
utility of the action d, becomes lower that the expected utility of the action d,. Thisis
the point where the dog breaks the loop by firing the action d, and staying at the same
location. Then, the sheep fires the action s, and gets away from the dog. The sheep gets

closer to the pen. In the next step, the dog moves to the left by firing the action d, .

Then, the sheep movesto the left and gets into the pen as shown in Figure 7.14.
Let us examine how the conditional probability and the expected utility for the action

d, change over time by summarizing the results shown above. The following equations
summarize the conditional probability P(S, | D, =d,) for each visit to the locations

(3,0) and (2,0) for the dog and the sheep, respectively.

178

P(S, | D, =d,) ={0,0.2,0.8,0,3 (7.61)
P(S, | D, =d,)={0,0.36,0.64,0,3 (7.62)
P(S, | D, =d,) ={0,0.488,0.512,0,¢ (7.63)
P(S, | D, =d,)={0,0.5634,0.4366,0,3 (7.64)
P(S, | D, =d,) ={0,0.67232,0.32768,0,3 (7.65)

The conditional probability P(S, =s,|D, =d,) changes from 0.2 to 0.67232.
Similarly, the conditional probability P(S, =s, | D, =d,) changesfrom 0.8 to 0.32768.

This can be interpreted as the dog changes its belief about the next action of the sheep.
At the beginning, it believes that sheep is most likely to fire the action s, because
P(S, =s,| Dy =d,) ishigher than P(S, =s, | D, =d,). After five visits to the same
positions, the conditional probabilities are changed drastically. Then, the probability
P(S, =s,| D, =d,) becamelarger than P(S, =s, | D, =d,).

The change in the conditional probability has an affect on the expected utility for the

dog's actions. The expected utility for the action d, was 0.4499 at the beginning of the
loop. The expected utility of the action d, was 0.3333. After five visits to the same
location, the expected utility of the action d, became 0.3319 while the expected utility of
the action d, stayed the same. After the fifth visit, the utility of the action d, became
smaller than the expected utility of the action d,. Asaresult, the dog has fired the action
d, and broken the loop after the fifth visit. The following graph shows how the expected

utility of the actions d, and d, change over time.

179

0.5 -
0.45 -
0.4 -
0.35 -
0.3 -
0.25 -
0.2 -
0.15 -
0.1 -
= 0.05 -

ected utility

he exp

3 4 5
U (D =dy) B 0D, =d,)

Figure 7.15. The expected utilities of the actions d, and d,.

Breaking aloop is another example of the learning capability of the decision-theoretic
intelligent agent design. The intelligent agent updates its world model according to its
experience over time. After certain amount of time, the intelligent agent changes its
behavior according to its experience. Thisis seen as similar to human belief. People do
not change their beliefs suddenly. They tend to wait a certain amount of time before they
change their mind. Thisis normal because if the agent changes its belief quickly, then, it
will not have any memory or belief about the environment. It will take its actions
according to the very latest experience, which could be arandom one. The agents exhibit
a humanoid belief process in the smulation. The details of the biological aspects of the
agents are explained in Section 1.

In the simulations, the agents became stuck in a loop partly because their network
structure is not good enough to take better actions and partly because the length of the

database is not enough to provide accurate network parameters. After looping for a

180

while, the agent updates the network parameters and takes actions to move the sheep out
of the loop. The agent records its experience into the database during its exploration.
The agent updates the network parameters with its experience, but it cannot change the
network structure automatically. The user can run the network creation algorithm to
regenerate the network with the modified database. We have run the network search
algorithm with the modified database and the new network structure has been generated.

Figure 7.16 shows the resulting network.

#1+ Project - Project =]
Eile Edit “iew Hetwork Agent Help

D ||t 2R &% 6N vEIP: 2 A

=

o o

Ready | MUM -

Figure 7.16. Network generated after the agent explored the environment.

In Figure 7.16, there are new arcs and some of the arcs have opposite directions if we

compare the network with the network shown in Figure 7.12. Additionally, the network

181

has more arcs than the previous one. Since the network creation is not done by the agent
there is no way of knowing the score of the network. Therefore, we do not know that this
IS a better network than the previous one. Simulations are performed with the new
network to find out its behavior. There was no looping after running 10 simulations. The
new network, in fact, is a better network than the previous one. Generating the network
with the modified database has improved the performance of the network and the agent.
In the future, the agent can automaticaly regenerate the network to see whether it can
create better networks using its experience.

We have shown that the learning from experience causes intelligent agents to take
better actions in time. After the learning, the intelligent agent establishes the task in a
shorter time or in fewer steps. The next section will present the effectiveness of the
proposed online Bayesian network learning by simulating the problem without learning.

In this section, we have performed simulations with different search algorithms and
databases. In al simulations, the dog herded the sheep successfully. In some
simulations, the agent had to explore the environment and learn more about the
environment to correct its behavior. In short, we can conclude that if the Bayesian
network structure is accurate enough, the agent can be successful with a limited initial
knowledge. On the other hand, if the network structure is not accurate enough, then, the
agent has to explore and learn the environment. In some cases, the agent may even need
to regenerate the network structure using its experience.

Simulation results show that the online Bayesian network learning provides the
learning from the experience and the self-organization in the intelligent agent model. The

next section presents the effectiveness of the online Bayesian network learning by

182

simulating the problem without using the online Bayesian network learning in the

proposed intelligent agent model.

7.3 The effectiveness of the online Bayesian network learning.

The online Bayesian network learning is the most important feature of the proposed
intelligent agent model because the intelligent agents change their behavior after they
learn from their experience. The more they learn about the environment and the other
agents, the better they perform their task. For example, as shown in Figure 7.10, the
intelligent agent (the dog) learns to keep the sheep in the pen by only taking two actions
after two simulations. Before the learning, the dog put the sheep into the pen after
several steps.

The proposed intelligent agent model learns its environment continuously. The
learning causes the intelligent agents to change their belief about the environment and the
other agents. The change in the belief causes a change in the agent's behavior because
the agent takes different actions after the learning. Because the agents change their
behavior according to the other agent's behavior and the environmental changes, we can
claim that the agents take actions in coordination. The coordination between the agents
provides the self-organization of the agents in a multi-agent system.

The following simulation results show that if the online Bayesian Learning is
removed from the proposed agent design, the learning and self-organization capabilities
of the agents diminish. The agent act according to its knowledge from the initial data. If

initial data are not available, then the agent acts by assuming the uniform probability in

183

the Bayesian network. We will repeat the three simulations in the previous section
without the online learning in the Bayesian network.

Let us simulate the dog & sheep problem by using the network in Figure 7.7 without
the online learning. In this case, the system dynamics are known. As stated in the
previous section, the intelligent agent learned to keep the sheep in the pen after two

simulations. Figure 7.17 shows the simulation results without the online learning.

Figure 7.17. (a) isthe first run, (b) is the second run, and (c) is the 10" run.

As can be seen in Figure 7.17, the agents do not change their behavior over time. The
dog always takes the same route to put the sheep in to the pen. It does not try other
actions to do put the sheep into the pen in fewer steps. This is because the dog
(intelligent agent) does not adapt its belief about the sheep. In other words, the dog does
not learn from its experience over time. Therefore, we can conclude that the intelligent
agent performs poorly when it does not learn from its experience.

Although the dog performs poorly, it still puts the sheep into the pen successfully.
This is mostly because the expected utilities of the actions are determined by the utility

function, which involves the distance between the sheep and the pen and the distance

184

between the dog and the sheep. Additionally, the structure of the network is good enough
that the agents do not get in aloop during the simulations. When the network structure is
not good enough, the agents will probably get in aloop and stay there forever.

Let us smuate the system by constructing the network from the data as in Figure
7.11. Inthiscase, the heuristic search and the Bayesian score is employed to generate the

network. Figure 7.18 shows the results for the first, the second, and the 10" runs.

Figure 7.18. Simulations for unknown network structure and no online BN learning.

Figure 7.18 supports our claim that if the structure is good enough the dog can still
put the sheep into the pen but the dog has to take several actions. The behavior of the
dog is the same in each run since it does not learn during the simulation.

Finally, we will ssmulate the case where the network is not good enough as shown in
Figure 7.12. In this case, the exhaustive search and the MDL score with Kullback-Leiber
is employed to generate the Bayesian network. As shown in Figure 7.14, the agents get
into a loop during the simulation. In Figure 7.14, the dog breaks the loop after certain
number of steps because it continues to learn during the ssimulation. Figure 7.19 presents

the simulation results obtained by canceling the online BN learning in the agent model.

185

™ ™

(qV (qV
- OO D |
00) PLA) 00 S 2
1 2 3 1 2 3

Figure 7.19. Looping in the simul ations when the online BN learning is not applied

In Figure 7.19, only two steps are shown because the agents loop between (2,0) and
(3,0). The simulation ends when the maximum number of stepsis reached. If we do not
limit the number of steps in the ssmulation, the simulation continues forever. The agents
stay in the loop until the maximum number of step is reached. This is because the dog
takes its actions according to itsinitial belief about the sheep and the environment. Since
it does not learn the sheep's behavior and change its behavior accordingly, the dog takes
the same action for the same setting. The sheep also moves to avoid the dog and tries to
get away from the dog. In red life, the sheep will not take the same action forever
because it will definitely be tired after certain amount of time. When the sheep istired, it
will behave differently and may break the loop. This is also valid for the dog. Even
though the loop can be broken after certain amount of time, it will take more steps than
that of the case where the intelligent agent learns from its experience.

In summary, the online BN learning provides the learning from the experience and

the self-organization of the multi-agent system. If the online BN learning is not applied,

186

the intelligent agent cannot improve its behavior according to the other agent's behavior
and the environmental changes. Since they cannot change their belief about the other
agents, the self-organization of the agents cannot be accomplished without applying the
online Bayesian network learning.

Simulation results show that if the online Bayesian network learning is not applied in
the intelligent agent design, the self-organization ability of the intelligent agents cannot
be accomplished. Additionaly, the intelligent agents cannot adapt their behavior if the
environment changes over time. In the next section, we will conclude this research and

present possible future work.

187

CHAPTER 8

Conclusions

A decision-theoretic intelligent agent model has been proposed and applied to a real
world problem. Bayesian networks and influence diagrams are combined with the help
of utility theory to define the decision-theoretic intelligent agent. Learning in the agent is
accomplished by introducing an online Bayesian network learning. An intelligent agent
software, IntelliAgent, is written using Visua C++ and a C++ class library for the
decision-theoretic intelligent agent design. Finaly, The herding problem was
successfully ssmulated by the help of the intelligent agent software.

Bayesian network learning is explored in Section 3. Design of the proposed online
Bayesian network learning is explored in Section 4. The online Bayesian network
learning has the following properties:

» Bi-directional learning (Bottom-up, Top-down)

» Combines supervised and unsupervised learning

* Online; learning is continuous

» Adaptive; network structure and parameters are updated by the new information

» Biologically inspired by the usage of Bayesian networks.

The online Bayesian network is combined with influence diagrams to create an
intelligent agent as described in Section 4. Shoham's agent design is employed to design
the decision-theoretic intelligent agent. An agent consists of belief (BN), preference

(Utility - ID) and capabilities (action set - ID). In the decision-theoretic intelligent agent

188

design, two more levels, sensors and actions, are added to the agent design for practical
purposes. The "sensors' level is responsible for gathering sensory information and
passing it to the BN. The "actions" level is responsible for carrying the actions fired by
the agent.

After designing the decision-theoretic intelligent agent, the IntelliAgent software is
utilized to perform simulations of a real life problem. The IntelliAgent software user
manual and tutorials are presented in Section 6. The software is Windows application
software created by C++ class libraries written for the decision-theoretic intelligent agent
design. Manual and automatic agent creation is possible in the IntelliAgent software.

As stated earlier, the decision-theoretic intelligent agent model is applied to a redl
time problem, a herding problem. The herding problem, also caled Dogé& Sheep
problem, is analyzed for one sheep and one dog. The goal of the dog isto herd the sheep
to the pen. The goal of the sheep isto avoid the dog. The simulations are performed on a
nxn grid. The user can set the dimensions of the grid in the IntelliAgent software.
Simulation results for 4x4 grid is presented in Section 7. The following is concluded
after analyzing the simulation results:

* The dog (intelligent agent) herds the sheep to the pen successfully in every

simulation. Simulations are run with different positions of the dog and the sheep.

» The intelligent agent shows learning capability by presenting behavioral change

by observing the sheep (other agent and the environment). Thisis aso defined as
'learning from experience’. The dog takes its actions according to sheep's

behavior. Thisis the self-organization property of the proposed decision-theoretic

189

intelligent agent model. Each agent is independent but takes its actions according
to other agents' behaviors.

The dog has human-like belief about its environment. The dog changes its belief
about the environment including other agents in a humanoid way. For example, if
the sheep and the dog are stuck in a behavioral loop, the dog does not change its
behavior immediately. As shown in Section 7, the dog does not change it's
believe about the sheep immediately. It waits for a couple of steps, then it
changes its behavior by taking a different action for the same situation. This type
of behavior is a standard human behavior. People do not change their belief
abruptly after they have encountered an unusual event on a specific subject. They
would like to experience the event severa times. Then, they modify their believe
on the subject. The decision-theoretic agent also modifies its belief by a certain

amount of experience on an unusual environmental state.

After concluding the simulation results, the general properties of the decision-

theoretic intelligent agent model are presented. The system analysis of the model is

presented in Section 5. The following are the properties of the decision-theoretic

intelligent agent system:

The agent has bi-directional learning capability. It starts with an initia world
model. It takes its actions according to the initial world model and its utility
function (goal). The agent explores the environment and gathers information after

taking actions. Then, it uses the information to modify its world model. As

190

explained in Section 5, it has bottom-up and top-down learning. In the literature,
there are only afew learning methods that can claim to be bi-directional learning.
The decision-theoretic intelligent agent also combines supervised and
unsupervised learning. It takes its actions according to the initial world model
and the utility function - unsupervised learning. Then, it modifies its world model
by responses it gets from the world. While it explores the environment, it also
exploits the environment by generating aworld model - supervised learning.

As stated in the context of system analysis, the decision-theoretic intelligent agent
system can be seen as adaptive and as a feedback control system. The agent
system combines feedback and adaptive control properties. There is a feedback
loop because the agent observes the current environmental state, compares it with
its goa state, and takes actions according to the difference between the current
state and the goal state. The agent system is an indirect adaptive control system
because the agent modifies the plant (world) model and the controller with the
actual responses from the environment. Section 5.2 presents the details of the
system analysis of the decision-theoretic intelligent agent system.

Aslearning is biologically inspired, the decision-theoretic intelligent agent system
is aso biologically inspired. Each agent has sensors, belief, preference (goal),
and capabilities, actuators as people do. People have sensors such as eyes, ears,
and skin. They also have belief about environment, i.e., thereis a college in town.
They have a goal/goals, i.e., a college degree. They have capabilities such as
walking, studying, and reading. Finally, they have actuators such as arms, legs,

and brain. Therefore, a student is going to "wak" to the college, "get" an

191

application, "fill" the application, and "hand in" the application, "get in" to the
college, "study” four years, and finally "get" a college degree. While the student
is taking hig/her actions, he/she is updating his’her world model. For example,
when he/she applies to the college he/she sees the requirements and updates
his/her knowledge about the college. Then, the student plans his college career
and takes actions accordingly. The decision-theoretic intelligent agent takes its
decision using the same decision structure as humans. That is why the decision-

theoretic intelligent agent is said to be a biologically inspired agent model.

Hardware implementation of the problem is studied by using a mobile robot. An
advanced mobile robot is purchased from Real World Interface, Inc. for the research.
The robot has its own PC and a CORBA based software package, Mobility™. A C++
program is written using the CORBA based Mobility software to let the robot take
actions. The program takes a text file that contains dog's action commands. Then, the
commands are used to control the robots “rotate” and “translate” movements. The closed
loop control algorithm is obtained by using the odometer of the robot. The control
system steers the robot to a target x-y coordinate. The target coordinate is calculated by
using the current position of the robot and the next command (next action) in the text file.
The IntelliAgent software is modified to record the dog’' s actions into atext file.

In summary, the decision-theoretic intelligent agent model is successfully applied to a
rea life problem. The herding problem is ssmulated by the IntelliAgent software.
Simulation results clearly reflect the behavior of the decision-theoretic intelligent agent.

The next section presents possible future work.

192

CHAPTER 9

Future Work

Even though the results of the simulations are successful, additional work can be donein

the IntelliAgent software and practical implementation of the proposed agent design. This

section presents the future work in two parts; software and hardware.

The following isthelist of possible improvement in the IntelliAgent software:

The online Bayesian network learning in the IntelliAgent software can only
handle complete databases. The proposed Bayesian network learning method can
handle the cases where the network structure is known and the system variables
are observable and where the network structure is unknown and the system
variables are observable. The learning algorithm in the IntelliAgent software can
be modified to handle the unobservable system variables. In other words, the
software should handle databases with unknown values. Methods for learning
from incomplete databases are explored in Section 3. For example, expectation
maximization (EM) algorithm can be added to the software.

The IntelliAgent software can be designed as Multiple Document Interface
programs so that the user can run different ssmulations at the same time. That is,
a problem can be run with different Bayesian network structures and a choice
made for the best one.

Bayesian network creation can be done by mouse operations or by using a
database. As stated earlier, the user cannot edit the utility function in the agent

since the utility nodes cannot be created visually. The reason is that the utility

193

node has many elements because it is dependent on four variables, X and Y
coordinates of the sheep and the dog. On the other hand, a visual function editor
can be placed into the program so that the user can edit the utility function of the
agents.

Similarly, the decision nodes are not also created as a rectangle in the software.
They are shown as ellipsoidal because they can be treated as chance nodes after
they are instantiated. A radio button can be placed into the parameters dialog box
to specify the decision nodes after they are created as a chance node. This may
help the user to understand the network better for complex network structures.
Finally, the Edit menu can be activated by creating functions for copying, cutting,
and pasting nodes and arcs. Adding anode and an arc is aready in the C++ class

library. One can easily incorporate those functions to the Edit menu elements.

After visiting the future work for software development, the following is the future

work for the hardware aspect of the research.

As explained in the conclusions, an offline hardware implementation is performed
where the robot gets all the actions necessary during the simulation. There is no
real time interaction between the robot and the sheep in this hardware
implementation since the robot moving according to the simulations results. To
make the system real-time. The IntelliAgent software can be recompiled with a
CORBA interface to communicate with the robot. Then, the IntelliAgent
software can tell the robot what to do. Similarly, the robot can send sensory

information to the IntelliAgent software. Another mobile robot can be designed

194

to be a sheep with limited capabilities. Findly, the herding problem can be
performed with these two robots.

Since the second robot is not ready at the moment, an alternative can be to use the
IntelliAgent for the sheep's behavior. The IntelliAgent knows the dynamics of the
sheep and easily determined its actions after the dog's actions. In this case, the
IntelliAgent software simulates the problem and sends “"tranglate” and "rotate”
commands to the mobile robot through Internet.

Experimental CORBA interface is written for communication of two Windows
programs over the net. Satisfactory results are obtained for the CORBA interface.
The next step will be to establish an interface between a Linux program to a
Windows program using CORBA. Since the robot's program is a CORBA based
program, connecting that program to IntelliAgent software should not be difficult.
A program is written for the robot to move to a certain location. The program
takes three inputs, speed of trandation, speed of rotation and the length of
operation. By choosing the right values for these parameters, the program can
move the robot to a certain location. The results obtained from this program are
not accurate because the distance is calculated by the speed and the time. The
robot may not obtain the same speed all the time because the surface friction may
not be constant. Therefore, there is a need to find out whether the program can
read tranglation values for the wheels. A study is being performed to find out how

the robot can be moved accurately.

195

APPENDIX

A. Classes of the IntelliAgent Software

Four types of classes are used to create the IntelliAgent software, namely MFC classes,
helper classes, visual C++ project classes, and ActiveX classes. The MFC classes will

not be discussed here since there are standard classes in Microsoft Visual C++.

A.1 Helper classes
Helper classes can be presented in two categories, Bayesian network related classes and

intelligent agent related.

A.1.1 Bayesian network related classes
There are six classes related to the Bayesian network creation; CNode, CArrow, CMatrix,

CCptDiaog, CParamDialog, and CNetGenerationDlIg.

A.1.1.1 CNode

This class consists of the definition of a node and its functionality. The application
programmer creates nodes in a network by creating an object of this class. The class has
two constructors, CNode() and CNode(CRect nodelocation). The second constructor
creates a node in a desired location whereas the first one creates a default node with

default parameters. Let us explore the functions in CNode class briefly.

196

AddParentOnCPT()

As stated earlier, the software has the ability of expanding the CPT of a node when a new
arc is added or removed from the node. The AddParentOnCPT() function automatically
expands the CPT matrix of a node, whenever the number of child or parent is changed by

adding or removing an arc to the node.

Inference()

This function performs forward and backward inference after the network update is done.

Backwar dinference()
Backwardinference() function performs backward inference by transmitting the evidence
to its parents. This function also calls Inference() function on its parents. Thus, the

inference travels through the network until afirst level node or an end node is reached.

Forwardlnference()
BackwardInference() works very similar to the Backwardinference() function. It
performs forward inference by changing its children's probabilities and caling

Inference() function on them.

OnCalcul ateBayesScor &)
This function calculates the Bayesian score for the node. It uses the technique defined in
Section 4. To calculate the score, the function either uses the node's probabilities or

conditional probability table depending on the parents of the node.

197

OnCalculateLikelihood(int r)
This function works similar to OnCalculateBayesScore() except it calculates the
likelihood score of the node given a data case. The resulting score value is used in MDL

and LogLikelihood score calculations.

OnCalNodeLength()
This function calculates the length of the node. The length of the node is the number of

element in the CPT. Thisvalueisthen used to calculate the complexity of the network.

CreateNodeCPT()
This function creates the initial CPTs in the nodes when the software first creates the

node. It can be considered asinitia creation of the CPTs in the nodes.

OnUpdateCPT()
This function updates the CPT similar to AddParentOnCPT () function. This function is

called when the user would like to update the network.

OnVisit()
OnVisit() functionrecords whether the node is visited on a path. This function is used to
determine whether there is a cycle in the network or not. If the node is visited twice on a

path, then the program decides thereisacycle.

198

OnDraw()
This function draws the nodes on the device context whenever the creation of the nodeis

completed. The function draws an ellipsoid and fills the ellipsoid with green.

Serialize(CArchive &ar)

This is a seriaization function for the node objects in the program. Whenever the user

chooses to save the work, this function determines what needs to be saved in the node.

CNode class variables

int m_InstantiatedState
int m_EvidenceFlag
int m_NumOfStates
int m_NodeNumber
CMatrix m_NodeCPTnum
CMatrix m_NodeCPTdenum
CMatrix m_Prob
CMatrix m_NodeCPT
CUIntArray m_Child
CUIntArray m_Parent
CRect m_Nodel ocation
CsString m_NodeName
BOOL m_VisitPass
BOOL m_IsNodeVisited
BOOL m_Modified
A.1.1.2 CArrow

CArrow class is designed to create arrow (arc) objects in the network. It has two
constructor, CArrow() and CArrow(CPoint tail, CPoint head). Thefirst one isthe default
constructor. The second constructor is designed to create the arrows mouse operations.

The constructor takes two points as input and creates an arrow between the corresponding

199

nodes. It first finds in which nodes the points are. Then, it draws an arrow between those

nodes. Let us explore the functionsin the class.

Draw(CDC *pDC)
This is the function for drawing the arrow on the device context of the software. The

function gets the pointer (pDC) to the device context (CDC).

Serialize(Archive &ar)

This function performs the serialization of the arrows in the network when the user saves

the network.

CArrow class varables

CPoint m_Head
CPoint m_Tail

int m_HeadNode
int m_TailNode
CPoint m_Arrow[3]

A.1.1.3 CMatrix
CMaitrix classis designed to perform matrix operations in the inference calculations. The
are also used as a value type. For example, the variable m_Prob in a node is a one-
column matrix. Similarly, a CPT of a node can also be represented as a matrix, i.e.
m_NodeCPT. There are four constructors for the class;

CMaitrix(): Default constructor.

CMatrix(int row, int row): Createsamatrix "row" rows and "col" columns.

CMatrix(int row, int col, char Iden): Creates identity matrix.

200

There are 14 functions in the CMatrix class. The functions is presented with their

brief functionalities.

AddColumn(int i)
This function adds "i" number of columns to a matrix. The function fills the new column

with 0.5 because 0.5 istheinitial probability for every variable.

AddRow(int 1)

This function adds "i" number of row to amatrix. It also fills the new row with 0.5.

GetElement(int i, int j)
An element of a matrix can be obtained by this function. The function returns the

element in ith row and jth column.

MaxElement()

This function finds the maximum eement in the matrix. It returns the row of the

maximum element as an integer.

OnZero()

All elements of the matrix becomes zero after this function is applied to a matrix.

201

operator()(int i, int j)
This function works as the same as GetElement(int i, int j) function. It returns the valuein

the ith row and jth column.

operator *(const CMatrix & rhs)
This is an override function of "*" operator for matrix multiplication. It multiples two

matrix and returns the resulting maxtrix.

operator =(const CMatrix &rhs)
This is an override function of "=" operator. It replaces the matrix on the left with the

matrix on the right.

SetElement(int row, int col, float x)
An element of a matrix can be replace with a new value. The value in row "row" and

column "col" isreplaced by x.

Supermultiply(Cmatrix &)

This is a specia multiplication designed for handling multiplication in inference
calculations. In inference calculations, multiplying two CPT is not equal to multiplying
two matrices. Supermultiply function multiplies two CPT according to the inference

calculation techniques.

202

Transpose()

This function takes the transpose of a matrix. It returns a matrix.

NumOfSates()
This is not a standard matrix operation. It is designed for determining the number of
states in the nodes by going through a database. It looks for the maximum value in each

column and put in arow matrix with the same number of columns.

CalculateJP(Cmatrix &test, int m)

Thisisaso aspecia function for calculation joint probability of a data case in a database.
It takes a database matrix and a row number (m), then, returns the joint probability of the
data case in the mth row of the database. This function is used in probability calculations

of the network variables.

CMatrix class variables

CArray <float, float> m_CPT
int m_col
int m_row

A.1.1.4 CCptDialog
Thisisadiaog box class. It handles the CPT updating dialog box. The user enters the
new values into this dialog. When the user clicks the OK button on the dialog the new

valueis placed into the CPT. There are two main functions in the class:

203

OnlnitDialog()
This function handles the initialization of the dialog box. It displays the default

parameters of the dialog box.

OnOK()
Thisisthe main function in the dialog box. Whenever the OK button is clicked by a user,
this function is called. The function puts the new value entered from the edit box into the

CPT.

CCptDialog class variables

CString m_dEditCPT: Handlesthe edit box in the dialog box.

A.1.1.5 CParamDialog
Thisis the class that handles the Parameters dialog box. The user edits and updates node
parameters using the functions in this class. The following paragraphs present the main

functions in the CparamDialog class.

OnOK()

Thisisthe function for OK button. This function wraps up all the changes the user made

on the parameters dialog box. This function finalize the changes on the node parameters.

204

OnCheckProbSum(double initial)
This function checks whether the new probabilities have legal values or not. It checks
whether the summation of the probabilitiesis 1 or not. It returns a Boolean value after

the check.

OnlnitDialog()
This is the initiaization function. It determines the values in the dialog box when the

dialog box appears.

OnListEnter()
This is the function for enter button on the dialog box. It takes the value in the
Probabilities edit box and puts the value into the state probability list. It is used for

entering the value of a state after increasing the number of states in the node.

OnSelchangeProblList()
This function is activated if the user clicks the left mouse button on one of the state
probabilities. The function enables an edit text box and a push button (Update) under the

probability list box. Then user can change the value in the state probability list.

OnListUpdateselitem()
This function is called whenever the user clicks the left mouse button on the Update push
button. The function takes the value in the edit box and places it in the selected line in

the probability list.

205

SetModifiedFlag()
This fucntion sets a flag after the parameters of the node are updated. Then, the software
knows which nodes are updated. Finally, when the user clicks the network update button,

the software update the network according to these flag values.

SetParameters(int states, CMatrix prob, CSring name, int nodeNumber, CUIntArray
&parent, CUIntArray &child, CMatrix cpt)
This function is designed to update the node parameters with the new values before the

dialog box is closed.

OnDDbI ClickMsflexgridCpt()

This is the function for editing the CPTs in the nodes. When the user double clicks the
left button on a CPT value, this function is called. The function first gets the row and the
column of the CPT value. Then, it activates the CPT updating dialog box. Finally, the
value in the CPT updating dialog box is entered to the CPT table on the parameter dialog

box.

UpdateDialogCPT()
This function puts the CPT table on the parameter dialog box into the node's CPT table.
It dso updates the CPT if the user has changed the number of states in the node.

Increasing the state number increases the number of row in the CPT.

206

CParamDialog class variables

int m_States

int m_NodeNumber
CString m_Probabilities
CsString m_Name

CString m_dChangelL istltem

CStringArray m_ProbabilityList

CMatrix m_dCPT

CUIntArray m_ChildList

CUIntArray m_ParentList

CListBox m_ListControl

CMSFlexGrid m_dM SFlexGridCPT

CCptDidog m_EditCPTDiaog
A.1.1.6 CNetGenerationDlg
This is also a dialog box class. It handles the network generation dialog box. The user
can specify the properties of the network search algorithm using the function of this class.

As stated earlier, there are seven radio buttons concerning the choices the user can make

in the dialog box. Each radio button has a function attached to it.

OnRadioHeuristic()

This function is called when the user chooses the Heuristic radio button. The function
sets the type of search algorithm by setting SEARCH_ALGORITHM to HEURISTIC
constant integer. The variable SEARCH_ALGORITHM is a globa variable in the
document class. When the search algorithm starts, the software checks this value and

decides which search algorithm needs to be used.

207

OnRadioExhaustive()
This function works as the same as OnRadioHeuristic() except it sets the variable

SEARCH_ALGORITHM to EXHAUSTIVE constant integer.

OnRadioMdl()

This function is called when the MDL radio button is clicked. The fucntion sets the
document global variable SCORE TYPE to 0. The software checks the variable
SCORE_TY PE to decide the score type. Score type can take three values O, and 1 for

MDL and Bayesian scores respectively.

OnRadioBayesian()

This function sets the variable SCORE_TY PE to 1 to choose the Bayesian scoring.

OnRadioKI ()
This function sets the document global variable DISTANCE_TYPE to O to choose

Kullback-Lieber distance measure for the score cal cul ations.

OnRadioEuclidean()

Similarly, this function sets the document global variable DISTANCE_TYPE to 1 to

choose Euclidean distance measure for the score calculations.

208

OnRadioLoglikelihood()
This function sets the distance measure type to Log-Likelihood by setting the variable

DISTANCE_TYPEto 2.

OnlnitDialog()
This is the initidization function for the network generation dialog box. It sets the

default values on the dialog box.

CNetGenerationDIg class variables

CSliderCtrl m_SliderCitrl
int m_SliderVaue

A.1.2 Agent related classes
There are two agent-related classes; CAgent and CAgentDIg. First one handles the agent

object creation. The second handles the agent creation dialog box.

A.1.2.1 CAgent
This class has only one constructor, CAgent(). It creates an agent at (0,0) location with a
NULL name. There is only one function in the class, Draw (CDC *pDC). It draws an

agent on the screen at a specified location.

209

A.1.2.1 CAgentDlIg

The locations and names of the agents can be entered form the agent creation dialog box.
Additionally, simulation properties can be set with this dialog box. There are five main
functions in the class. Names and the locations of the agents can be entered into the
corresponding edit boxes on the dialog box. The dialog box automatically sets the

variables of the class using those values.

OnlnitDialog()

This function handles the initialization of the dialog box.

OnOK()

This function finalizes the parameters edited in the dialog box. It closes the dialog box.
OnRadioStepsim()

This function is called when the user clicks on the Step push button on the dialog box.

The function sets avariable in the document class to run the simulation step by step.

OnRadioContsim()
Similar to the previous function, it is called by pushing the Continuous button on the
dialog box. The function sets a variable in the document class to run the simulation

continuously.

210

OnButtonTraining()
This is the function for Training push button. The function enables an edit box and a

static text on the dialog box to let the user enter the number of training steps.

CAgentDlg class variables

int m_dAgentLocX
int m_dAgentLocY
int m_dAgent

int m_dTrainingStep

We have completed the helper classes used in the IntelliAgent software creation. The
following section explores the visua C++ project classes, CProjectDoc and
CProjectView. These two classes are responsible for network calculations, simulation

and visual parts of the software.

A.2 Visual C++ project classes

When an application program is written in visual C++, the program creates four classes
automatically, mainframe class (CMainFrame), application class (CprojectApp),
document class (CProjectDoc), and view class (CProjectView). Usually, the programmer
does not edit the mainframe and the application classes. Thus, they are not discussed
here. The document class contains al the data handling and the calculations of the
program. Finaly, the view class handles the visualization of the program. In this
section, the focus will be on the functions added into the document class and the view

class.

211

A.2.1 Document class

The document class has member functions and member variables to perform necessary
calculations in the decision-theoretic intelligent agent systems. The functions and
variables will be discussed in terms of their functionality in the program. Programming

details will not be presented here.

A.2.1.1 Document class member functions
The following list is the functions in the document class with their brief definitions.
Since the actual source code can be obtained from the author, the details of the functions

are not presented here.

BOOL OnlsNetworkCyclic()

The function returns TRUE if the Bayesian network has cycles.

void OnCreateDatabase()

The function reads a database into the program and puts the database in a matrix form.
The program uses this matrix for the network calculations.

void OnCreateDatabase(CSdioFile *f, CMatrix dataMatrix)

The function prepares the database for saving. Thisisimportant especialy if new datais
collected from the environment. The function saves the database along with the Bayesian
network. The matrix dataMatrix represents the database for the system. It is a global

matrix called testTable throughout the program.

212

void OnRenewOr U pdateNetwor k()

After a change is made on the network, this function updates or renews the network
according to the changes.

CMatrix CreateNodeProbability(int i)

This function calculates the probabilities of the node i. It returns a matrix containing the

probabilities of the node.

long double Gamma(unsigned int i)
Gamma functions are necessary to calculate the Bayesian score of a network. This
function calculates the gamma function for a given integer and returns the results as long

double.

void RemoveAll Arrows()
This function removes all the arcs (arrows) in a Bayesian network. It also updates the

network after the arcs are removed.

void OnNetwor kGenerate()
This is the main function for the network generation. It generates a Bayesian network
according to the network creation parameters such as the search type, the score type and

the distance measure type.

213

float OnCalculateActLikelihood(int i)
This function calculates the likelihood of the conditional probabilities in a node. The
function returns a float. The results produced by this function is then added together to

calculate the over all likelihood of the network.

float OnCal Networ kScore()
This function calculates the score of a Bayesian network depending on the distance

measure type such as Kullback-Lieber and Euclidean.

void OnPositionAgentsRandomly()
This function is used in the simulation of the intelligent agent system, namely
Dog& Sheep. 1t is used to train the agent by locating agents randomly and running the

simulations. This function places the agents on the environment randomly.

int createRandomNumber (int i)
This function generates a random integer between O and i. It isused in above function to

place the agent randomly.

CAgent* GetAgent(int i)

The function returns a pointer to the agent object at the specified location (i) in the agent

object array (m_oaAgents).

214

CAgent * AddAgent(int X, int Y)
This function creates and agent located at X, Y. Then, it adds the agent to agent object

array and returns a pointer to the agent.

void UpdateDogSheepPos()

This function updates the locations of the dog and the sheep after they make a move.

void OnCreateNextPosTable()

This function creates a table for the next position for the sheep and the dog. The table
consist of the changes in the x and y direction for all possible actions of the dog and the
sheep. UpdateDogSheepPos() function uses this table to determine the new coordinates

of the dog and the sheep.

BOOL OnLegalMove(int x, int y, int m)
The function checks whether the actions of the agents are legal by comparing their
coordinates with the problem dimension (the dimension of the grid). It returns TRUE if

the action is legal and returns FALSE otherwise.

float OnDogSheepUtility(int i)
This function calculates the expected utility of a specified action. The function takes an
integer denoting the sheep's next move after the dog's next move. Then, the function

calculates the new position of the sheep and cal cul ates the corresponding utility.

215

void OnSetEvidence(int node, int state)
This function set evidence on a node. It takes the node number and the state to be
instantiated. Then, it sets the specified state value to 1 and the rest of the state values to

Z€x0.

void OnRecordNewEnNtry()
This function records a new entry into the database after the sheep and the dog completed

one action. The function also updates the network parameters with the new data.

void OnCal culateNewSheepPos(int choice)
This function calculates the sheep's next coordinates after the sheep moves. The integer
choice presents the sheep's next action. The function uses the next position table created

by the OnCreateNextPosTable() function.

int OnDecision(CMatrix &values)

This function determines which action the dog will take after the expected utilities are
calculated for each action. The matrix values consists of the expected utilities of the
dog's actions. The function finds the maximum expected utility in the matrix and returns

itsindex. Theindex illustrates the action with the highest expected utility.

CMatrix OnValues(int dnode, int unode)
This function calculates the expected utilities for the actions in the node dnode. The

function fires each action in dnode and calculates the state probabilities of the node

216

unode. Then, it calculates the expected utility of the system using these probabilities and
the action fired. The process is repeated for each action and the expected utilities are

placed into amatrix. Finally, the function returns the expected utility matrix.

void CreateJPT()

This function calculates the joint probability distribution from the database.

CMatrix CreateJPT(CUIntArray &list)
This function calculates the joint probability for a given data case. For example, it can

calculate p(A=0,B =0,C =1) for adatabase with three variables.

CMatrix CreateCPT(int node, CUIntArray &list)
This function creates a conditional probability table for a node with a specified parents.
The function takes an integer for the node number and an integer array for the numbers of

the parent nodes.

CMatrix CreateCPT(int i, int j)
This function calculates a conditional probability table for given variables. It takes two

integers for node numbers for the variables. For example, in P(A| B), the integersi and

] represent the variable A and B, respectively.

217

CMatrix CreateCPMatrix(CUIntArray &list)

This function is similar to the previous function. It can calculate the CPT for more than
two variables. It takes an array of integers for the node numbers. In the array, the first
element represents the first variable in a conditional probability equation. For

P(A| B,C), the first element of the integer array is filled with the node number of the

variable A. Then, the node numbers of the variables B and C are placed into the array.

void CalFirstLevel Probs()
This function calculates independent probabilities for the first level nodes. A first level
node is a node without any parents. These nodes do not have a conditional probability

table.

CNode * AddNode(CRect nodelLocation)
This function adds a node to the network at the location determined by the nodelLocation
variable. The function creates a node, adds it to the node object array (m_oaNodes), and

returns its pointer.

void SetNode(int nodePos, CString name, int states, CStringArray &prob, CMatrix cpt)

This function sets the name, the position, number of states, the state probabilities, and the
conditional probability table of a node. The nodePos represents the position of the node
in the node object array. The function sets the parameters of the node using the variables

name, states, prob, and cpt.

218

CNode * GetNode(int nindex)
This function returns a pointer to a specified node. The function takes an integer as an

index to get the corresponding pointer value from the node object array.

int GetNodeCount()
This function calculates the number of nodes in the network and returns the results as an

integer.

BOOL AddArrow(int i, int j)

This function adds and arrow (arc) to a Bayesian network. It takes the node numbers of
the parent node (i) and the child node (j). If the function is successfully adds the arc to
the network it returns TRUE. Otherwisg, it returns FALSE and does not modify the arc

object array (m_oaArrows).

void RemoveArrow(int i, int)

This function removes the arc from the node i to the nodej. It also removes the arc from
the arc object array.

CArrow * GetArrow(int nindex)

This function returns a pointer to a specified arc (arrow). The function takes an integer

nindex as the index of the specified arrow in the arrow object array.

219

int GetArrowCount()
This function calculates the number of arrow in the network and returns the results as an

integer.

CArrow * AddArrow(CPoint tail, CPoint head)

This function creates an arrow by using two points; tail and head. The program first
finds the nodes by comparing whether the points on a node or not. After determining the
corresponding nodes for the points, the function calls AddArrow(int i, int j) function to

create the corresponding arrow (arc).

void UpdateView()
This function updates the device context of the program after a modification is made in

the network.

void CreateNodes()
This function creates nodes after a database is read into the program. It generates the
names of the nodes from the first line of the database. The function also creates the

independent probabilities for the nodes.

CMatrix CreateNodeProb(int i)

This function calculates the probabilities of a specified node. It takes an integer for asthe

node number and returns a matrix with the node probabilities.

220

void Gener ateNetwork()
This function is called when the user clicks the Create button on the toolbar. It calls the

OnNetworkGenerate() to generate the network.

void CreateTestTable()
This function creates a table from the database. It finds the number of states of each
node. Then, it creates a table that contains all the possible combinations of the states.

Thistable isthen used in the network calculations as a reference.

CMatrix Parents(int x)
This function finds the parents of the node x. Then, it creates a vector using the

probabilities of the parent nodes. The function returns this vector as a matrix.

void UpdateNodeCPT()
This function updates the CPTs tables of the nodes in the network. If a change is made to

the network, thisfunction is called and the CPTs are updated accordingly.

void ModifiedFlagChild(int x)
This is a function for specifying the nodes that need update after a change is made on a
node. The function sets aflag in its child nodes. When the update network command is

called, the program checks the flags in each node before it updates the node parameters.

221

A.2.1.2 Document class member variables
The following list illustrates the member variables of the document class. These are also

called global variables since they can be reached from any function in the document

class.
int SEARCH_METHOD;
int DISTANCE _TYPE;
int TRAINING_STEP;
int COMPLEXITY;
int ACCURACY;
int SCORE_TYPE;
int caseCounter;
BOOL IsCyclic;
BOOL m_Continue;
CMatrix NextPosTable;
CMatrix g_JPT,;
CMatrix testTable;
CMatrix cumsStates;
CMatrix States,
CMatrix caseTable;
CObArray m_oaNodes;
CObArray mM_0aAIrows,
CObArray m_oaAgents;
CUIntArray lastCase;

CStringArray NodeNames;

A.2.2 View class
The view class handles the visualization of the software such as updating the workspace,
mouse operations, drawings, painting, and brushing. The following sections explore the

member functions and the member variables of the class.

A.2.2.1 View class member functions

The following isthelist of view class member functions and their brief definitions.

222

void OnDrawAgentRegion()

This function draws the problem domain for the Dog & Sheep simulation. It draws an
nxm grid depending on the number of states in the variables DogX, Dog Y, SheepX,
and SheepY. If the user increases the number of states in the variable, the software

updates the problem domain accordingly.

BOOL OnNoRelation(unsigned int nodel, unsigned int node2)
This function returns TRUE if thereis an arc between the nodes; nodel and node2.
The function is used during the arc additions to the network. The purpose of the function

isto avoid the creation of the same arc twice.

int OninANode(CPoint point)
This function takes a point and finds whether the point on anode or not. If the point ison

node, the function returns the number of the node. Otherwise, it returns -1.

void OnShowParam(int x)
This function is called by the Parameters toolbar button. It displays the parameters of a

certain node. The node number is entered to the function as an integer.

afx_msg void OnNetworkArc()

This function is called when the user clicks on the Arc toolbar button. The function sets

the drawingElement member variable to ARC. The ARC is a constant integer set to 2.

223

afx_msg void OnNetwor kNode()

This is similar to the OnNetworkArc() functions. The function sets the drawingElement
variable to NODE. The NODE is defined as a constant integer set to 1. When the user
creates a network with mouse drag and drop operations, the program checks the value of

the drawingElement variable to determine what to draw.

afx_msg void OnLButtonDown(UINT nFlags, CPoint point)
This function is called when the user clicks the left mouse button. Many visual
operations is done by this function such as drawing and object, moving a node, choosing

anode or an arc, choosing atoolbar button operation.

afx_msg void OnLButtonUp(UINT nFlags, CPoint point)
This function is called when the user releases the left mouse button. This function isalso

used in many operations, i.e., dropping a selected node to a desired location.

afx_msg void OnMouseMove(UINT nFlags, CPoint point)

This function is called when the mouse is moved around. Most of the time, this function
and the previous mouse operation functions work together. For example, To move a
node to a certain location, the OnLButtonDown(UINT nFlags, CPoint point) function
selects the node, this function moves the node, and finaly the OnLButtonUp(UINT

nFlags, CPoint point) function releases the node on a desired location.

224

afx_msg void OnHScrol [(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)
This is the horizontal scrolling function. It updates the coordinates of the screen when

the user scrolls horizontaly.

afx_msg void OnV<crol | (UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)
This is the vertical scrolling function. It updates the coordinates of the screen when the

user scrollsverticaly.

afx_msg void OnContextMenu(CWhd* p\Whd, CPoint point)
This function is called when the right mouse button is clicked. It displays the context
menu on the screen. It lets the user choose the submenu items Set Evidence and

Parameters.

afx_msg void OnLButtonDbICIk(UINT nFlags, CPoint point)
This function is caled when the left mouse button is clicked twice. If the left mouse

button is double clicked on a node, the function displays the parameters of the node.

afx_msg void OnNetwor kParameters()

This function is called when the user clicks on the Parameter toolbar button. It aso

displays the parameters of a specified node.

225

afx_msg void OnRButtonDown(UINT nFlags, CPoint point)
This function is called when the right mouse button is clicked. It displays the context

menu by calling the OnContextMenu(CWnd* pWhd, CPoint point).

afx_msg void OnSetevidenceState0()
To invoke this function, the user first chooses the Set Evidence menu item in the context
menu. Then, the user chooses the StateO submenu item. The function sets the probability

of the state0 to 1. It also sets the probability of the other states to zero.

The software has seven more functions similar to the above function to handle the
instantiation of a node with at most eight states. For the nodes with more states, the user
can display the parameters of the node and change the probabilities from the parameters

dialog box.

afx_msg void OnNetwor kAgentLoc()

This function is called when the user clicks the Create Agent toolbar button. The function
displays a diadlog box for agent creation. The user sets the parameters of the agent
creation dialog box. As soon as the user clicks OK button on the dialog box, the function

creates an agent at a specified location.

afx_msg void OnNetworkCreate()
This function is called when the Create toolbar button is clicked. The function displays

the network creation dialog box as presented in Chapter 6. The user can the parameters

226

of the dialog box. As soon as the user clicks OK button on the dialog box, the function
transfers the parameters to the document class and call the OnNetworkGenerate()

function from the document class.

A.2.2.2 View class member varibles

HCURSOR Cross,

HCURSOR arrow;
CPoint start, old;
BOOL started;
int moveNode;
int drawingElement;
CRect movingNodeL oc;
CNetGenerationDIg m_dNetGenerationDIg;
CPoint prevPoint;
CParamDialog m_dParamDialog;
CAgentDlg m_dAgents,
int hScrollPos,
int vScrollPos,
int lineSize,
int vPageSize,
int hPageSi ze,
int maxPos,

A.3 ActiveX classes

ActiveX classes are helper classes created by various programmers under Microsoft
visual C++. In IntelliAgent software, the ActiveX control "M SFlexGrid" is employed to
present the conditional probability tables in the nodes. A genera definition of the
ActiveX is presented here. The MSFlexGrid ActiveX has four classes for row and
column operations (CRowCursor), picture operations (CPicture), fonts (COleFont), and

the main class (CM SFlexGrid).

227

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

F. V. Jensen, An Introduction to Bayesian Networks. London, UK: University
College London Press, 1996.

J. Pearl, Probabilistic Reasoning in Intelligent Systems:. Networks of Plausible
Inference. San Mateo, CA: Morgan Kaufmann, 1988.

D. Heckerman, “A tutorial on learning Bayesian networks,” Technical Report
MSR-TR-95-06, Microsoft Research, 1995.

Y. Shoham, Agent-oriented programming,” Artificial intelligence, vol. 60(1),
pp. 51-92, 1993.

J. Pearl, “Bayesian networks’, in M. Arbib (Ed.), Handbook of Brain Theory and
Neural Networks, MIT Press, pp. 149-153, 1995

J. Pearl, “Bayesian networks,” Technical Report R-246, MIT Encyclapedia of the
Cognitive Science, October 1997.

F.V. Jensen, “Bayesian network basics,” AISB Quarterly, vol. 94, pp. 9-22, 1996.
S. Noh and P. J. Gmytrasiewic, “Coordination and belief update in a distributed
anti-air environment,” in Proceedings of the 31% Hawaii International Conference
on System Sciences, vol. V, pp. 142-145, Los Alamitos, CA: IEEE Computer
Society, January 1998.

M. Ramoni and P. Sebastiani, “Parameter estimation in Bayesian networks from
incomplete databases,” Technical Report KMi-TR-57, Knowledge Median
Institute, The Open University, November 1997.

G. Schwarz, “Estimation the dimension of a model,” Annals of Statistics, vol. 6,

pp. 462-464, 1978.

228

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

W. Lam and F. Bacchus, “Learning Bayesian belief networks: an approach based
on the MDL principle,” Computational Intelligence, vol. 10, pp. 269-293, 1994.
N. Friedman, M. Goldszmidt, D. Heckerman, and S. Russell, “Challenge: Where
is the impact of the Bayesian networks in learning?’ In Proceedings of the 15th
International Joint Conference on Artificial Intelligence (1JCAl), pp.10-15, 1997.
D. Koller, Artificial intelligence: Knowledge representation and reasoning under
uncertainty, Course materia (CS 288), winter 1999, available at
http://www.stanford.edu/class/cs228/index.html.

J. H. Kim and J. Pearl, “A computational model for combined causal and
diagnostic reasoning in inference systems,” in Proceedings |JCAI-83, Karlsruhe,
Germany, pp. 190-193, 1983.

S. Russell, “Learning agents for uncertain environments (Extended abstract),” in
Proceedings of the COLT-98, Wisconsin: ACM Press, pp. 101-103, 1998.

S. Russdll, J. Binder, and D. Koller, “ Adaptive probabilistic networks,” Technical
Report UCB//CSD-94-824, July 1994.

D. Nilsson and F. V. Jensen, “Probabilities of future decisions’ Research Report
R-97-2007, Dept. of Mathematics, Aalborg University, Denmark, June 1997.

J. Pearl, “Reverend bayes on inference engines: A distributed hierarchical
approach,” in Proceedings AAAI National Conference on Al, Pittsburgh, PA, pp.
133-136, 1982.

N. Friedman, K. Murphy, and S. Russell, “Learning the structure of dynamic

probabilistic networks,” in G.F. Cooper and S. Mora (Eds.), Proceedings of

229

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI '98), San
Francisco, CA: Morgan Kaufmann, 1998.

T. S. Verna, “Causal networks: Semantics and expressiveness, Proceedings of the
Third Workshop on Uncertainty in Artificial Intelligence, pp. 352-359, 1987.

G. F. Cooper and E. Herskovits, “A Bayesian method for constructing Bayesian
belief networks from databases,” in Proceedings of the Conference on
Uncertainty in Al, pp. 86-94, 1990.

S. L. Lauritzen and D. J. Spiegelhalter, “Local computations with probabilities on
graphical structures and their application to expert systems,” Journal of the Royal
Satistical Society, Series B, vol. 50(2), pp. 157-224, 1988.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” Journal of the Royal Satistical Society,
Series B, vol. 39, pp. 1-38, 1977.

B. Theisson, C. Meek, and D. M. Chickering, and D. Heckerman, “Learning
mixtures of Bayesian networks,” in G.F. Cooper and S. Mora (Eds.), Proceedings
of Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI ’'98), San
Francisco, CA: Morgan Kaufmann, 1998.

M. Ramoni and P. Sebastiani, “Efficient parameter learning in Bayesian networks
from incomplete databases,” Technical Report KMi-TR-41, Knowledge Median
Institute, The Open University, January 1997.

M. Ramoni and P. Sebastiani, “Discovering Bayesian networks in incomplete
databases,” Technica Report KMi-TR-46, Knowledge Median Institute, The

Open University, March 1997.

230

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

P. Sebastiani and M. Ramoni, “Bayesian inference with missing data using bound
and collapse,” Technica Report KMi-TR-58, Knowledge Median Institute, The
Open University, November 1997.

M. Ramoni and P. Sebastiani, “Learning conditional probabilities from
incomplete data: An experimental comparison,” Technical Report KMi-TR-64,
Knowledge Median Institute, The Open University, July 1998.

N. Friedman, “The Bayesian structura EM algorithm,” in G.F. Cooper and S.
Moral (Eds.), Proceedings of Fourteenth Conference on Uncertainty in Artificial
Intelligence (UAI ' 98), San Francisco, CA: Morgan Kaufmann, 1998.

D. B. West, Graph Theory. New Jersey: Prentice Hall, 1996.

K. G. Olesen, S. L. Lauritzen and F. V. Jensen, “aHUGIN: A system for creating
adaptive causa probabilistic networks,” in Proceedings of the Eighth Conference
on Uncertainty in Al (UAI '92), Stanford, CA: Morgan Kaufmann, 1992,

D. Spiegelhalter, P. Dawid, S. L. Lauritzen, and R. Cowell, “Bayesian analysisin
expert systems,” Satistical Science, vol. 8, pp. 219-282, 1993.

J. Pearl, “Constraint-propagation approach to probabilistic reasoning,” in L. M.
Kana and J. Lemmer (Eds), Uncertainty in Artificial Intelligence, North-
Holland, Amsterdam, pp. 357-288, 1986.

G. Cooper and E. Herskovits, “A Bayesian method for induction of probabilistic
networks from data,” Machine Learning, vol. 9, pp. 309-347, 1992.

D. Heckerman, D. Gieger, and M. Chickering, “Learning Bayesian networks. The
combination of knowledge and statistical data,” Technical Report MSR-TR-94-

09, Microsoft Research, Redmond, WA, 1994.

231

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

J. L. Golmard and A. Mallet, “ Learning probabilities in causal trees from
incomplete databases,” Revue d'Intelligence Artificielle, vol. 5, pp. 93-106, 1991.
S. L. Lauritzen, “The EM algorithm for graphical association models with missing
data,” Technical Report TR-91-05, Department of Statistics, Aalborg University,
1991.

S. L. Lauritzen, “The EM algorithm for graphical association models with missing
data,” Computational Statistics and Data Analysis, vol. 19, pp. 191-201, 1995.

D. J. Spiegelhalter and R.G. Cowell, “Learning in probabilistic expert systems,”
in JM. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (Eds.), Bayesian
Satistics 4, 1992.

P. Dayan, “The convergence of TD(A) for genera A,” Machine Learning, vol. 8,
pp. 341-362, 1992.

R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data, Wiley,
New York, 1987.

D. Suryadi and P. J. Gmytrasiewicz, “Learning models of other agents using
influence diagrams,” in Proceedings of User Modeling: The Seventh International
Conference, Springer Wien, New Y ork, 1999, to apper.

C. Gerber and C. Jung, “Resource management for boundedly optimal agent
societies,” in Proceedings of the ECAI'98 Workshop on Monitoring and Control
of Real-Time Intelligent Systems, Brighton, 1998.

T. L. Dean and M. P. Wellman, Planning and Control. San Mateo, CA: Morgan

Kaufmann, 1991.

232

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

M. Ramoni and P. Sebastiani, “Learning Bayesian networks from incomplete
data,” Technical Report KMi-TR-43, Knowledge Median Institute, The Open
University, February 1997.

J. Pearl, “A probabilistic calculus of actions,” in Proceedings of the Tenth
Conference on Uncertainty in Al (UAI-94), San Mateo, CA: Morgan Kaufmann,
1994.

G. Shafer and J. Pearl, Readings in Uncertain Reasoning. San Mateo, CA:
Morgan Kaufmann, 1990.

M. |. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the EM
algorithm,” Neural Computation, vol. 6, pp. 181-214, 1994.

P. Maes, “How to do the right thing,” Connection Science, vol. 1, no.3, 1989.

C. Claus, “Dynamics of multi-agent reinforcement learning in Cooperative multi-
agent systems,” Ph.D. Dissertation, Univ. of British Colombia, Canada, 1997.

C. Gerber, “Evolution-based self-adaption as an expression for the autonomy
degree in multi-agent societies,” in Proceedings of the IEEE Joint Conference on
the Science and Technology of Intelligent Systems, Gaithersburg, MD, pp. 741-
746, September 1998.

S. Sen and M. Sekaran, “Multi-agent coordination with learning classifier
systems,” in Proceedings of the IJCAlI Workshop on Adaptation and Learning in
Multi-agent Systems, Montreal, pp. 84-89, 1995.

C. Boutilier, “Planning, learning and coordination in multi-agent decision
processes,” in Sxth conference on Theoretical Aspects of Rationality and

Knowledge (TARK ‘96), The Netherlands, 1996.

233

[54]

[55]

[56]

[57]

[58]

[59]

S. Russell and P. Norvig, Artificial Intelligence: A modern Approach, New
Jersey: Prentice Hall, 1995.

T. Malsch and I. Schulz-Schafer, “ Generalized media of interaction and interagent
coordination,” in Socially Intelligent Agents — Papers from the 1997 AAAI Fall
Symposium, Technical Report FS-97-02, AAALI, 1997.

G.H. Hostetter, C.J. Savant, and R.T. Stefani, Design of Feedback Control
Systems, New Y ork: CBS College Publishing, 1982.

[.D. Landau, R. Lozano, and M. M'Saad, Adaptive Control, London: Springer,
1998.

|. Landau, Adaptive Control: The Modal Reference Approach, New Y ork: Marcel
Dekker, 1979.

R. Kaman, “Design of self-optimizing control systems,” Transactions of ASVIE,

J. Basic Eng., val. 80, pp. 468-478, 1958.

234

VITA

Ferat Sahin was born in Istanbul, the most beautiful city in Turkey, on October 12, 1971.
He expressed a very specia interest in Electronics at very young age, and decided to
become an Electrical Engineer after an experiment about the electricity in Physics class
in the last year of secondary school. He continued his education in a technical high
school majoring in electronics. He blew hisfirst capacitor when he was trying to repair a
hand radio in his senior year in high school. He received his Bachelor of Science degree
in Electronics and Telecommunications Engineering in October 1992, at Istanbul
Technical University and went on to pursue a Master of Science degree in the same field.
After one year, he decided to continue his study in the U.S. and came to Virginia Tech.
He received his Master of Science degree in Electrical Engineering in May 1997, at
Virginia Tech. His thesis topic was a Radia Basis Function Network solution to an
image classification problem is a real-time industrial setting. He is pursuing his Ph.D. in
Electrical Engineering at Virginia Tech. His dissertation topic is a Bayesian Network
approach to the self-organization and learning in intelligent agents. He will be a faculty
member at Rochester Institute of Technology starting September 2000. His
extracurricular interests include soccer, basketball, photography, saz (a Turkish musical
instrument), and social organizations. He was the president of Turkish Student
Association at Virginia Tech during 1996-1997 academic year. He also served in
Council of International Student Organizations (CISO) at Virginia Tech as Member at

Large.

235

	1.1 Learning systems in AI
	1.2 Self-organization systems
	1.3 Why Bayesian Networks?
	1.3.1 The relationship between Bayesian networks and neural networks

	1.4 Self-organizing system as a generalized graph of behaviors
	1.5 Outline of the dissertation
	2.1 Basic principles for reasoning under uncertainty
	2.1.1 Wet Grass
	2.1.2 Explaining away
	2.1.3 Dependence of events
	2.1.4 Prior Certainties

	2.2 Causal Networks
	2.3 Probability calculus
	2.3.1 Basic probability calculus
	2.3.2 Subjective probabilities
	2.3.3 Conditional Independence

	2.4 Bayesian networks
	2.4.1 The chain rule
	2.4.2 Evidential Reasoning
	2.4.3 Bayesian networks and the functionality of a human brain

	2.5 Influence Diagrams
	3.1 Known network structure and observable variables (complete data)
	3.2 Unknown network structure and observable variables
	3.3 Known structure and unobservable variables (incomplete data)
	3.4 Unknown structure and unobservable variables
	4.1 Outline of the problem statement and the proposed solution
	4.2 Online Bayesian network learning
	4.2.1 The parameter learning
	4.2.2 The structural learning
	4.2.2.1 Search algorithms
	Heuristic search
	Exhaustive search
	Complexity analysis for search algorithms

	4.2.2.2 Network scoring functions
	Log-Likelihood scoring
	Minimum description length scoring
	Bayesian scoring

	5.1 A decision-theoretic intelligent agent design
	5.2 Multi-agent self-organizing system.
	5.3 Bi-directional learning
	5.4. System representation of the decision-theoretic intelligent agent system
	5.4.1 Feedback Control
	5.4.2 Adaptive Control

	6.1 The user manual for IntelliAgent software
	6.1.1 Menus
	File
	Edit
	View
	Network
	Agent
	Help

	6.1.2 Context menus
	Network context menu
	Node context menu

	6.1.2 Toolbar
	Node
	Arc
	Update
	Parameters
	Load
	Calculate
	Agent
	Simulate

	6.1.3 Dialog boxes
	Parameter Presentation
	CPT Updating
	Bayesian network generation
	Agent creation and training

	6.2 Tutorials on Bayesian network creation and knowledge discovery
	6.2.1 Inference in a Bayesian network
	6.2.1 Knowledge discovery with IntelliAgent

	7.1 The Dog & Sheep Problem
	7.2 The 4-by-4 Grid Dog & Sheep Simulation
	7.2.1 Simulation results for known system dynamics
	7.2.2 System dynamics are not known.

	7.3 The effectiveness of the online Bayesian network learning.
	A.1 Helper classes
	A.1.1 Bayesian network related classes
	A.1.1.1 CNode
	AddParentOnCPT()
	Inference()
	BackwardInference()
	ForwardInference()
	OnCalculateBayesScore()
	OnCalculateLikelihood(int r)
	OnCalNodeLength()
	CreateNodeCPT()
	OnUpdateCPT()
	OnVisit()
	OnDraw()
	Serialize(CArchive &ar)
	CNode class variables

	A.1.1.2 CArrow
	Draw(CDC *pDC)
	Serialize(Archive &ar)
	CArrow class varables

	A.1.1.3 CMatrix
	AddColumn(int i)
	AddRow(int i)
	GetElement(int i, int j)
	MaxElement()
	OnZero()
	operator()(int i, int j)
	operator *(const CMatrix & rhs)
	operator =(const CMatrix &rhs)
	SetElement(int row, int col, float x)
	Supermultiply(Cmatrix &)
	Transpose()
	NumOfStates()
	CalculateJP(Cmatrix &test, int m)
	CMatrix class variables

	A.1.1.4 CCptDialog
	OnInitDialog()
	OnOK()
	CCptDialog class variables

	A.1.1.5 CParamDialog
	OnOK()
	OnCheckProbSum(double initial)
	OnInitDialog()
	OnListEnter()
	OnSelchangeProbList()
	OnListUpdateselitem()
	SetModifiedFlag()
	SetParameters(int states, CMatrix prob, CString name, int nodeNumber, CUIntArray &parent, CUIntArray &child, CMatrix cpt)
	OnDblClickMsflexgridCpt()
	UpdateDialogCPT()
	CParamDialog class variables

	A.1.1.6 CNetGenerationDlg
	OnRadioHeuristic()
	OnRadioExhaustive()
	OnRadioMdl()
	OnRadioBayesian()
	OnRadioKl()
	OnRadioEuclidean()
	OnRadioLoglikelihood()
	OnInitDialog()
	CNetGenerationDlg class variables

	A.1.2 Agent related classes
	A.1.2.1 CAgent
	A.1.2.1 CAgentDlg
	OnInitDialog()
	OnOK()
	OnRadioStepsim()
	OnRadioContsim()
	OnButtonTraining()
	CAgentDlg class variables

	A.2 Visual C++ project classes
	A.2.1 Document class
	A.2.1.1 Document class member functions
	BOOL OnIsNetworkCyclic()
	void OnCreateDatabase()
	void OnCreateDatabase(CStdioFile *f, CMatrix dataMatrix)
	void OnRenewOrUpdateNetwork()
	CMatrix CreateNodeProbability(int i)
	long double Gamma(unsigned int i)
	void RemoveAllArrows()
	void OnNetworkGenerate()
	float OnCalculateActLikelihood(int i)
	float OnCalNetworkScore()
	void OnPositionAgentsRandomly()
	int createRandomNumber(int i)
	CAgent* GetAgent(int i)
	CAgent * AddAgent(int X, int Y)
	void UpdateDogSheepPos()
	void OnCreateNextPosTable()
	BOOL OnLegalMove(int x, int y, int m)
	float OnDogSheepUtility(int i)
	void OnSetEvidence(int node, int state)
	void OnRecordNewEntry()
	void OnCalculateNewSheepPos(int choice)
	int OnDecision(CMatrix &values)
	CMatrix OnValues(int dnode, int unode)
	void CreateJPT()
	CMatrix CreateJPT(CUIntArray &list)
	CMatrix CreateCPT(int node, CUIntArray &list)
	CMatrix CreateCPT(int i, int j)
	CMatrix CreateCPMatrix(CUIntArray &list)
	void CalFirstLevelProbs()
	CNode * AddNode(CRect nodeLocation)
	void SetNode(int nodePos, CString name, int states, CStringArray &prob, CMatrix cpt)
	CNode * GetNode(int nIndex)
	int GetNodeCount()
	BOOL AddArrow(int i, int j)
	void RemoveArrow(int i, int j)
	CArrow * GetArrow(int nIndex)
	int GetArrowCount()
	CArrow * AddArrow(CPoint tail, CPoint head)
	void UpdateView()
	void CreateNodes()
	CMatrix CreateNodeProb(int i)
	void GenerateNetwork()
	void CreateTestTable()
	CMatrix Parents(int x)
	void UpdateNodeCPT()
	void ModifiedFlagChild(int x)

	A.2.1.2 Document class member variables

	A.2.2 View class
	A.2.2.1 View class member functions
	void OnDrawAgentRegion()
	BOOL OnNoRelation(unsigned int node1, unsigned int node2)
	int OnInANode(CPoint point)
	void OnShowParam(int x)
	afx_msg void OnNetworkArc()
	afx_msg void OnNetworkNode()
	afx_msg void OnLButtonDown(UINT nFlags, CPoint point)
	afx_msg void OnLButtonUp(UINT nFlags, CPoint point)
	afx_msg void OnMouseMove(UINT nFlags, CPoint point)
	afx_msg void OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)
	afx_msg void OnVScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)
	afx_msg void OnContextMenu(CWnd* pWnd, CPoint point)
	afx_msg void OnLButtonDblClk(UINT nFlags, CPoint point)
	afx_msg void OnNetworkParameters()
	afx_msg void OnRButtonDown(UINT nFlags, CPoint point)
	afx_msg void OnSetevidenceState0()
	afx_msg void OnNetworkAgentLoc()
	afx_msg void OnNetworkCreate()

	A.2.2.2 View class member varibles

	A.3 ActiveX classes

