
A Bayesian Network Approach to the Self-organization

and Learning in Intelligent Agents

Ferat Sahin

Dissertation submitted to the Faculty of Virginia Polytechnic and State

University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Hugh F. VanLandingham, Chair

John S. Bay

Pushkin Kachroo

A. Lynn Abbott

Charles J. Parry

August 25, 2000

Blacksburg, Virginia

Keywords: Bayesian networks, learning, intelligent agent, self-organization

Copyright 2000, Ferat Sahin

A Bayesian Network Approach to the Self-organization and Learning

in Intelligent Agents

Ferat Sahin

(ABSTRACT)

A Bayesian network approach to self-organization and learning is introduced for use

with intelligent agents. Bayesian networks, with the help of influence diagrams, are

employed to create a decision-theoretic intelligent agent. Influence diagrams combine

both Bayesian networks and utility theory. In this research, an intelligent agent is

modeled by its belief, preference, and capabilities attributes. Each agent is assumed to

have its own belief about its environment. The belief aspect of the intelligent agent is

accomplished by a Bayesian network. The goal of an intelligent agent is said to be the

preference of the agent and is represented with a utility function in the decision theoretic

intelligent agent. Capabilities are represented with a set of possible actions of the

decision-theoretic intelligent agent. Influence diagrams have utility nodes and decision

nodes to handle the preference and capabilities of the decision-theoretic intelligent agent,

respectively.

Learning is accomplished by Bayesian networks in the decision-theoretic intelligent

agent. Bayesian network learning methods are discussed intensively in this paper.

Because intelligent agents will explore and learn the environment, the learning algorithm

should be implemented online. None of the existent Bayesian network learning

algorithms has online learning. Thus, an online Bayesian network learning method is

proposed to allow the intelligent agent learn during its exploration.

 iii

Self-organization of the intelligent agents is accomplished because each agent models

other agents by observing their behavior. Agents have belief, not only about

environment, but also about other agents. Therefore, an agent takes its decisions

according to the model of the environment and the model of the other agents. Even

though each agent acts independently, they take the other agents behaviors into account

to make a decision. This permits the agents to organize themselves for a common task.

To test the proposed intelligent agent's learning and self-organizing abilities,

Windows application software is written to simulate multi-agent systems. The software,

IntelliAgent, lets the user design decision-theoretic intelligent agents both manually and

automatically. The software can also be used for knowledge discovery by employing

Bayesian network learning a database.

Additionally, we have explored a well-known herding problem to obtain sound results

for our intelligent agent design. In the problem, a dog tries to herd a sheep to a certain

location, i.e. a pen. The sheep tries to avoid the dog by retreating from the dog. The

herding problem is simulated using the IntelliAgent software. Simulations provided good

results in terms of the dog's learning ability and its ability to organize its actions

according to the sheep's (other agent) behavior.

In summary, a decision-theoretic approach is applied to the self-organization and

learning problems in intelligent agents. Software was written to simulate the learning and

self-organization abilities of the proposed agent design. A user manual for the software

and the simulation results are presented.

This research is supported by the Office of Naval Research with the grant number

N00014-98-1-0779. Their financial support is greatly appreciated.

 iv

Acknowledgment

First of all, I would like to take this opportunity to express my gratitude to my advisor

Professor F. Hugh VanLandingham for his invaluable guidance and encouragement

throughout this work. I am so grateful that he introduced me to the world of Artificial

Intelligence. He has been very helpful and supportive both intellectually and personally.

Without his help on typing my dissertation, this work would not be complete in time.

Second, I would like to express my deep appreciation to my co-advisor Dr. John Bay

for his invaluable supervision and fortitude throughout the course of my M.Sc. and Ph.D.

studies. He is my mentor and inspiration to be an academician. His supervision affected

my research tremendously. Every time I visited him in his office, I was filled with hope

and encouragement on my research. At the end of every meeting, he replaced my

frustration with full of inspiration.

I am also thankful to my Ph.D. committee members Dr. Pushkin Kachroo, Dr. A.

Lynn Abbott, and Dr. Charles Parry. Their expertise and assistance played an important

role in the progress of my research.

Next, I would like to thank my parents, Aslan and Zehra, my brothers and sisters for

their continuous love, understanding and encouragement during my study at Virginia

Tech. I would also like to thank my friend Selhan and my brother Murat for their support

and help throughout this work.

I would like to thank the Office of Naval Research. Their financial support is greatly

appreciated. At last, but not least, to my machine intelligence laboratory (MIL) buddies

and members of Multi-agent Bio-robotic Learning (MABL) group, thanks for the many

memorable experiences.

 v

Table of Contents

1. Introduction ... 1

1.1 Learning systems in AI ... 2

1.2 Self-organization systems ... 4

1.3 Why Bayesian Networks? ... 8

1.3.1 The relationship between Bayesian networks and neural networks............. 11

1.4 Self-organizing system as a generalized graph of behaviors 12

1.5 Outline of the dissertation ... 15

2. Causal Networks, Bayesian Networks and Influence Diagrams........................... 16

2.1 Basic principles for reasoning under uncertainty.. 16

2.1.1 Wet Grass ... 17

2.1.2 Explaining away... 17

2.1.3 Dependence of events... 18

2.1.4 Prior Certainties.. 18

2.2 Causal Networks ... 19

2.3 Probability calculus ... 23

2.3.1 Basic probability calculus .. 23

2.3.2 Subjective probabilities .. 25

2.3.3 Conditional Independence.. 26

2.4 Bayesian networks... 27

2.4.1 The chain rule... 29

2.4.2 Evidential Reasoning.. 30

2.4.3 Bayesian networks and the functionality of a human brain 31

2.5 Influence Diagrams ... 32

3. Learning Bayesian Networks ... 37

3.1 Known network structure and observable variables (complete data) 37

3.2 Unknown network structure and observable variables ... 42

3.3 Known structure and unobservable variables (incomplete data) 48

 vi

3.4 Unknown structure and unobservable variables.. 55

4. Online Bayesian Network Learning and Multi-agent Organization.................... 58

4.1 Outline of the problem statement and the proposed solution................................ 58

4.2 Online Bayesian network learning .. 59

4.2.1 The parameter learning... 60

4.2.2 The structural learning ... 64

4.2.2.1 Search algorithms.. 65

Heuristic search ... 66

Exhaustive search.. 68

Complexity analysis for search algorithms ... 70

4.2.2.2 Network scoring functions .. 74

Log-Likelihood scoring... 74

Minimum description length scoring .. 76

Bayesian scoring ... 78

5. Multi-agent self-organization system .. 82

5.1 A decision-theoretic intelligent agent design .. 82

5.2 Multi-agent self-organizing system... 85

5.3 Bi-directional learning... 88

5.4. System representation of the decision-theoretic intelligent agent system............ 90

5.4.1 Feedback Control ... 91

5.4.2 Adaptive Control .. 94

6. IntelliAgent Software .. 100

6.1 The user manual for IntelliAgent software ... 100

6.1.1 Menus ... 101

File... 102

Edit .. 105

View .. 105

Network... 106

Agent ... 116

 vii

Help ... 118

6.1.2 Context menus.. 119

Network context menu .. 119

Node context menu.. 120

6.1.2 Toolbar ... 122

Node .. 122

Arc... 123

Update ... 123

Parameters ... 123

Load... 123

Calculate.. 124

Agent ... 124

Simulate... 124

6.1.3 Dialog boxes... 125

Parameter Presentation.. 125

CPT Updating.. 127

Bayesian network generation .. 127

Agent creation and training ... 129

6.2 Tutorials on Bayesian network creation and knowledge discovery.................... 130

6.2.1 Inference in a Bayesian network .. 131

6.2.1 Knowledge discovery with IntelliAgent .. 139

7. Experimental Results .. 147

7.1 The Dog & Sheep Problem ... 147

7.2 The 4-by-4 Grid Dog & Sheep Simulation ... 155

7.2.1 Simulation results for known system dynamics... 155

7.2.2 System dynamics are not known.. 166

7.3 The effectiveness of the online Bayesian network learning................................ 183

8. Conclusions .. 188

9. Future Work .. 193

 viii

A. Classes of the IntelliAgent Software ... 196

A.1 Helper classes ... 196

A.1.1 Bayesian network related classes .. 196

A.1.1.1 CNode... 196

AddParentOnCPT()... 197

Inference() ... 197

BackwardInference() ... 197

ForwardInference().. 197

OnCalculateBayesScore() ... 197

OnCalculateLikelihood(int r) .. 198

OnCalNodeLength().. 198

CreateNodeCPT().. 198

OnUpdateCPT() .. 198

OnVisit().. 198

OnDraw() .. 199

Serialize(CArchive &ar) ... 199

CNode class variables ... 199

A.1.1.2 CArrow... 199

Draw(CDC *pDC)... 200

Serialize(Archive &ar) .. 200

CArrow class varables... 200

A.1.1.3 CMatrix .. 200

AddColumn(int i) .. 201

AddRow(int i) ... 201

GetElement(int i, int j) .. 201

MaxElement().. 201

OnZero().. 201

operator()(int i, int j).. 202

operator *(const CMatrix & rhs) ... 202

operator =(const CMatrix &rhs).. 202

SetElement(int row, int col, float x).. 202

 ix

Supermultiply(Cmatrix &) .. 202

Transpose().. 203

NumOfStates() .. 203

CalculateJP(Cmatrix &test, int m) .. 203

CMatrix class variables ... 203

A.1.1.4 CCptDialog... 203

OnInitDialog()... 204

OnOK().. 204

CCptDialog class variables ... 204

A.1.1.5 CParamDialog .. 204

OnOK().. 204

OnCheckProbSum(double initial) ... 205

OnInitDialog()... 205

OnListEnter() .. 205

OnSelchangeProbList() ... 205

OnListUpdateselitem() .. 205

SetModifiedFlag() ... 206

SetParameters(int states, CMatrix prob, CString name, int nodeNumber,

CUIntArray &parent, CUIntArray &child, CMatrix cpt) 206

OnDblClickMsflexgridCpt() ... 206

UpdateDialogCPT() .. 206

CParamDialog class variables... 207

A.1.1.6 CNetGenerationDlg.. 207

OnRadioHeuristic() ... 207

OnRadioExhaustive() .. 208

OnRadioMdl() ... 208

OnRadioBayesian() ... 208

OnRadioKl().. 208

OnRadioEuclidean().. 208

OnRadioLoglikelihood() ... 209

OnInitDialog()... 209

 x

CNetGenerationDlg class variables .. 209

A.1.2 Agent related classes ... 209

A.1.2.1 CAgent.. 209

A.1.2.1 CAgentDlg.. 210

OnInitDialog()... 210

OnOK().. 210

OnRadioStepsim()... 210

OnRadioContsim() .. 210

OnButtonTraining()... 211

CAgentDlg class variables .. 211

A.2 Visual C++ project classes ... 211

A.2.1 Document class.. 212

A.2.1.1 Document class member functions... 212

BOOL OnIsNetworkCyclic() .. 212

void OnCreateDatabase() .. 212

void OnCreateDatabase(CStdioFile *f, CMatrix dataMatrix) 212

void OnRenewOrUpdateNetwork() .. 213

CMatrix CreateNodeProbability(int i) .. 213

long double Gamma(unsigned int i).. 213

void RemoveAllArrows().. 213

void OnNetworkGenerate()... 213

float OnCalculateActLikelihood(int i) .. 214

float OnCalNetworkScore() .. 214

void OnPositionAgentsRandomly() .. 214

int createRandomNumber(int i) .. 214

CAgent* GetAgent(int i) ... 214

CAgent * AddAgent(int X, int Y)... 215

void UpdateDogSheepPos() .. 215

void OnCreateNextPosTable() .. 215

BOOL OnLegalMove(int x, int y, int m) .. 215

float OnDogSheepUtility(int i).. 215

 xi

void OnSetEvidence(int node, int state).. 216

void OnRecordNewEntry() ... 216

void OnCalculateNewSheepPos(int choice) ... 216

int OnDecision(CMatrix &values) .. 216

CMatrix OnValues(int dnode, int unode).. 216

void CreateJPT() ... 217

CMatrix CreateJPT(CUIntArray &list)... 217

CMatrix CreateCPT(int node, CUIntArray &list)................................... 217

CMatrix CreateCPT(int i, int j) ... 217

CMatrix CreateCPMatrix(CUIntArray &list) ... 218

void CalFirstLevelProbs() ... 218

CNode * AddNode(CRect nodeLocation) .. 218

void SetNode(int nodePos, CString name, int states, CStringArray &prob,

CMatrix cpt) .. 218

CNode * GetNode(int nIndex) .. 219

int GetNodeCount()... 219

BOOL AddArrow(int i, int j) .. 219

void RemoveArrow(int i, int j).. 219

CArrow * GetArrow(int nIndex)... 219

int GetArrowCount() ... 220

CArrow * AddArrow(CPoint tail, CPoint head)..................................... 220

void UpdateView().. 220

void CreateNodes() ... 220

CMatrix CreateNodeProb(int i)... 220

void GenerateNetwork().. 221

void CreateTestTable().. 221

CMatrix Parents(int x)... 221

void UpdateNodeCPT()... 221

void ModifiedFlagChild(int x) .. 221

A.2.1.2 Document class member variables ... 222

A.2.2 View class.. 222

 xii

A.2.2.1 View class member functions... 222

void OnDrawAgentRegion() ... 223

BOOL OnNoRelation(unsigned int node1, unsigned int node2) 223

int OnInANode(CPoint point)... 223

void OnShowParam(int x)... 223

afx_msg void OnNetworkArc() .. 223

afx_msg void OnNetworkNode().. 224

afx_msg void OnLButtonDown(UINT nFlags, CPoint point)................ 224

afx_msg void OnLButtonUp(UINT nFlags, CPoint point)..................... 224

afx_msg void OnMouseMove(UINT nFlags, CPoint point)................... 224

afx_msg void OnHScroll(UINT nSBCode, UINT nPos, CScrollBar*

pScrollBar) .. 225

afx_msg void OnVScroll(UINT nSBCode, UINT nPos, CScrollBar*

pScrollBar) .. 225

afx_msg void OnContextMenu(CWnd* pWnd, CPoint point)............... 225

afx_msg void OnLButtonDblClk(UINT nFlags, CPoint point).............. 225

afx_msg void OnNetworkParameters()... 225

afx_msg void OnRButtonDown(UINT nFlags, CPoint point)................ 226

afx_msg void OnSetevidenceState0() ... 226

afx_msg void OnNetworkAgentLoc() .. 226

afx_msg void OnNetworkCreate() .. 226

A.2.2.2 View class member varibles... 227

A.3 ActiveX classes .. 227

References .. 228

VITA... 235

 xiii

List of Figures

Figure 1.1. (a) Supervised learning model. (b) Unsupervised learning model.3

Figure 1.2. Bi-directional Learning System Model. ...3

Figure 2.1. A graphical model for the wet grass example [7]...19

Figure 2.2. Serial, diverging, and converging connections respectively...........................20

Figure 2.3. A directed acyclic graph. The probabilities to specify are shown.28

Figure 2.4. An influence diagram..34

Figure 2.5. An influence diagram with an action set. ...35

Figure 5.1. The structure of an intelligent agent. ..84

Figure 5.2. Multi –agent behavior without coordination (a) and with coordination (b). ..86

Figure 5.3. Multi-agent self-organizing scheme with two agents.87

Figure 5.4. The learning model of the proposed system. ..89

Figure 5.5. System Block representation of the intelligent agent system.90

Figure 5.6. Output feedback control..91

Figure 5.7. A control system with the state feedback. ..93

Figure 5.8. A basic adaptive control system. ...95

Figure 5.9. Indirect adaptive control system...97

Figure 5.10. Indirect adaptive control representation of the DTAS..................................99

Figure 6.1. The IntelliAgent software (screen shot of the program)...............................101

Figure 6.2. The File menu. ..102

Figure 6.3. Dialog box for the "Open" submenu in File menu.103

Figure 6.4. Dialog box for "Save" and "Save As" submenus in File menu.104

Figure 6.5. Message box to choose saving the new cases into the database.104

Figure 6.6. The View menu...105

Figure 6.7. The Network menu. ..106

Figure 6.8. Creation of network nodes by mouse operations..107

Figure 6.9. Creation of an arc between the nodes by mouse operations.108

Figure 6.10. Dialog boxes for presenting and changing node attributes.........................109

Figure 6.11. Changing the CPT of Node2...110

Figure 6.12. Parameters of Node2 after the Update command.111

Figure 6.13. Loading a database to automatically construct a Bayesian network.112

 xiv

Figure 6.14. Bayesian network nodes created by a database file.113

Figure 6.15. Dialog box for specifying the type of network search................................114

Figure 6.16. A Bayesian network created by a heuristic search with Bayesian scoring. 115

Figure 6.17. The Agent menu in the IntelliAgent software. ...116

Figure 6.18. Dialog box for agent creation and simulation attributes.............................117

Figure 6.19. Dialog box for agent creation and simulation with training steps.118

Figure 6.20. About project dialog box and Help menu...119

Figure 6.21. Context menu for the network submenus. ..120

Figure 6.22. Context menu for the node operations..120

Figure 6.23. Instantiation of a node by node context menu. ...121

Figure 6.24. Node context menu for a node with three states. ..121

Figure 6.25. The toolbar of the IntelliAgent software...122

Figure 6.26. Dialog box for parameter presentation. ..126

Figure 6.27. Dialog box for the CPT updating..127

Figure 6.28. Dialog box for setting submenu for Bayesian network generation.128

Figure 6.29. Dialog box for agent creation and training. ..129

Figure 6.30. Training abilities of the agent creation dialog box.130

Figure 6.31. Example Bayesian network for manual network creation.131

Figure 6.32. Creation on the network nodes. ..132

Figure 6.33. Changing node names and editing the independent probabilities...............133

Figure 6.34. Arc creation before the left mouse button is released.................................134

Figure 6.35. Message box stating the arc creation. ...134

Figure 6.36. Creating an arc in a network. ..135

Figure 6.37. Updating the CPT table with CPT updating dialog box.136

Figure 6.38. Setting node 1X to state0. ..137

Figure 6.39. Parameters of the node 2X before inference is applied.138

Figure 6.40. Parameters of the node 2X after inference is applied.138

Figure 3.41. Nodes of the Bayesian network after loading "college.db".140

Figure 6.42. Bayesian network created by the search algorithm.141

Figure 6.43. Decreasing the complexity of the network with sliding bar.142

Figure 6.44. Bayesian network after decreasing the complexity.143

 xv

Figure 6.45. Setting the evidence for the "intelligence" node...144

Figure 6.46. The parameters of the "plan". ...145

Figure 6.47. Message box informing the end of the network generation........................146

Figure 6.48. Message box for initializing the dog and the sheep agents.........................146

Figure 7.1. The 4-by-4 Grid Dog & Sheep problem. ..147

Figure 7.2. Possible moves (states) for the sheep and the dog..148

Figure 7.3. The node types in the intelligent agent for the Dog & Sheep problem.149

Figure 7.4. The structure of the intelligent agent with the known system dynamics......150

Figure 7.5. The structure of the agent with BN created by the search algorithm.152

Figure 7.6. Loading the initial database. ...157

Figure 7.7. Bayesian network with known dependencies. ..158

Figure 7.8. Bayesian network and the simulation grid..159

Figure 7.9. The paths taken by the dog and the sheep. ...160

Figure 7.10. Learning from the experience. ..161

Figure 7.11. Bayesian network generated by heuristic search with Bayesian score.169

Figure 7.12. Bayesian network generated by exhaustive search with MDL score.170

Figure 7.13. Paths of the agents for the first simulation. ..171

Figure 7.14. Changing belief of an intelligent agent...173

Figure 7.15. The expected utilities of the actions 2d and 0d . ..180

Figure 7.16. Network generated after the agent explored the environment.181

Figure 7.17. (a) is the first run, (b) is the second run, and (c) is the 10th run..................184

Figure 7.18. Simulations for unknown network structure and no online BN learning. ..185

Figure 7.19. Looping in the simulations when the online BN learning is not applied....186

 xvi

List of Tables

Table 4.1. The database to compute the parameters of the BN...62

Table 7.1. Initial database for the Dog&Sheep problem...156

Table 7.2. Possible search algorithms in the IntelliAgent software168

 1

CHAPTER 1

Introduction

How can independent agents cooperate to solve a problem collectively in a real life

environment? How do the agents explore the environment while organizing a common

task? This research will attempt to answer these commonly asked questions from the

machine learning literature. The heart of the problem is how the agents will learn the

environment independently and then how they will cooperate to establish the common

task. In the literature, these types of problems are referred to as self-organizing

problems.

An agent is an entity that can be viewed as perceiving its environment through

sensors and acting upon that environment through effectors [54]. The

Effector/Medium/Sensor (EMS) paradigm explains this definition. Gerber stated that this

paradigm provides an appropriate abstraction of a (human) agent acting and interacting

with its environment and other (human) agents [54]. This idea comes from Malsch's

work on Generalized Media of Interaction in sociology [55], where action and interaction

are transmitted via appropriate media [51]. According to EMS, verbal communications

are interpreted in the following manner: Each agent (human) has a speech effector (voice,

speech apparatus) and an audio receptor (ear). The spoken language, i.e. the sound, is

transmitted through the air [51].

In a multi-agent system, agents are independent in that they have independent access

to the environment. Therefore, each agent should incorporate a learning algorithm to

learn and/or explore the environment. Then, the agents should have some sort of

communication between them to behave as a group. In other words, they must organize

 2

themselves to act together. A sheepdog is a widely used example of self-organizing

systems in the literature. Multiple dogs cooperate to put all the sheep into a pen together.

Dogs have independent beliefs about the sheep and the environment, but they learn to

cooperate with other dogs at the same time. Even though the dogs will have independent

ideas about how to solve the problem, they also have to know how to solve the problem

cooperatively. Since the multi-agent self-organization problem is a learning problem, the

following paragraphs will explore how researchers in the artificial intelligence (AI)

literature approach a learning system.

1.1 Learning systems in AI

There are two approaches to model a learning system in the AI literature. A learning

system is modeled as either supervised or unsupervised. The first approach is called

supervised learning in which the learning system has a world model. The learning

system makes its decisions according to the world model. Some type of feedback from

the environment is required to change the world model. This is also called a goal-driven

learning system or a deliberative learning system. Figure 1.1 (a) illustrates a goal driven

learning system.

The second approach is described as supervised learning in which the learning system

explores the environment and takes actions to change it. This type of learning is also

called a data-driven or a reactive learning system because the learning system depends on

only data, and it does not have a model of the world. Figure 1.1 (b) illustrates an

unsupervised/data-driven learning system model. There has been some research on a

method that tries to combine the two learning models. The methods were combined often

 3

in ad-hoc ways and usually with limited success. This work will propose an approach

that combines both types of learning models. We will call the proposed learning model

the bi-directional learning model. These two approaches are used consecutively in some

learning systems, but they are not usually used simultaneously. Figure 1.2 illustrates the

bi-directional learning model. After specifying what type of learning algorithm is needed

for the self-organization problem, we need to explain the idea behind the self-organizing

mechanism.

Figure 1.1. (a) Supervised learning model. (b) Unsupervised learning model.

Figure 1.2. Bi-directional Learning System Model.

WORLD
MODEL

Learning
System

Learning
System

ENVIRONMENT

Supervised Unsupervised

Goal driven Data driven

 ⇐ Deliberative Reactive �
(a) (b)

WORLD
MODEL

Learning
System

ENVIRONMENT

Supervised
Goal Driven
Deliberative
Nature
Expectation

Unsupervised
Data Driven
Reactive
Nurture
Evidence

 4

1.2 Self-organization systems

The main idea of a self-organizing mechanism is to control a society of autonomous

agents through structurization and organization [51]. The task of adapting the structure

of a group or a society of artificial agents to the environment is considered an

optimization problem by characterizing a search space and an objective function to be

optimized. The objective function denotes the current system's performance while a

multi-dimensional search space describes the system's set of possible configurations [51].

The search space dimensions can be derived from principles of a multi-agent system

application: structural principles, communication principles, and agent architecture

principles [51].

Structural principles are, for example, the number of agents in the group, the number

of specialists for a certain task, the organizational form of the group, migration (i.e.

distribution of agents over the net), and so on. Communication principles can be

expressed through the introduction of communication channels between subunits or even

between agents belonging to a common subunit. Agent architecture principles are

explicit resource distributions among the various agent modules [51]. A unified approach

is provided by the paper [43].

Self-organization of multi-agent systems is commonly achieved by using some

combination of rule-based systems, Q-learning, Temporal Difference)(λTD , and

evolution-based algorithms. Traditional Genetic algorithms (GAs) are well suited for

off-line search, where search time is not important. Unfortunately, the domains where

multi-agent systems are in use are generally highly dynamic since the environment may

 5

change anytime. In addition, a traditional GA needs to process many individuals. This

might require storing the configuration of tens of complete agent societies, which is

intractable. That is why the evolution-based algorithms have to be modified greatly for

on-line use. Thus, the performance of a GA is inefficient in multi-agent systems [51].

Temporal difference and Q-learning methods are also commonly employed to solve

multi-agent learning and organization problems [50, 52]. Temporal difference methods

require learning the value function for a fixed policy. Thus, they must be combined with

other reinforcement learning methods that can use the value function to make policy

improvements [53].

Temporal difference methods work in the following way. Let)(sVΠ denote the

current estimated value of state s under a fixed policy Π . When a sample rtas ,,, is

received by performing action a in state s at time t with the reward r, the simplest TD-

method (known as)(0TD) will update the estimated value to be

))(()()1(tVrsV ΠΠ ++− βαα (1.1)

Here α is the learning rate ()10 ≤≤ α , governing to what extent the new sample replaces

the current estimate. The symbol β is the discount factor. This is the basis of)(λTD ,

where a parameter λ captures the degree to which past states are influenced by the

current sample [40].

Q-learning is a straightforward and elegant method for combining value function

learning (as in TD-methods) with policy learning. A Q-value,),(asQ , is assumed for

each state-action pair as, . The Q-value provides an estimate of the value of

 6

performing action a at state s . An agent updates its estimate),(asQ based on sample

rtas ,,, using the formula:

)}))',({max((),()1(
'

atQrasQ
a

βαα ++− (1.2)

Temporal difference and Q-learning methods are successful in multi-agent learning

under the assumption of full observability. Full observability means that all states of the

environment can be observed completely. If the environment is not fully observable or

we have incomplete data, these methods easily fail to converge. Since an agent can adopt

the best policy given its current knowledge, Q-learning is only guaranteed to converge to

the optimal Q-function (and implicitly an optimal policy) if each state in the environment

is sampled sufficiently [53].

Learning classifier systems [Holland, 1986] also have been employed to solve multi-

agent learning and self-organization problems. The learning classifier system (LCS) is a

rule-based, message-passing, machine learning paradigm designed to process

environmental stimuli, much like the input-to-output mapping provided by a neural

network. The LCS provides learning through genetic and evolutionary adaptation to

changing task environments. The operation of the LCS is centered around a list of rules

or classifiers. These rules are essentially a set of “if-then” statements, where the “if” part

of a rule is called condition, and the “then” part is called an action.

Learning classifier systems are genetic-algorithm-based machine learning

mechanisms for developing action policies to optimize environmental feedback. Sen and

Sekaran insist that learning classifier systems perform very competitively with the Q-

learning algorithm, and are able to generate good solutions to both a resource sharing and

a robot navigation problem [52]. They also claim that learning classifier systems can be

 7

used effectively to achieve near-optimal solutions more quickly than the Q-learning

algorithm does. Even though some [52] claim that learning classifier systems perform

better than the Q-learning algorithm, these systems tend to have some deficiencies in

decision-making because they are rule-based systems. Partial observability (incomplete

data) is hard to handle for learning classifier systems too. Main problem with the LCS is

the "bucket-brigade", which cannot converge.

Evolution-based algorithms are not efficient enough because they are not able to

perform well on-line. Q-learning algorithms perform well online, but they are not able to

handle the partial observability of the environment. Even though some claim that

learning classifier systems perform better than Q-learning algorithms, they are not able to

perform well with incomplete data. They also have some conceptual and computational

difficulties to overcome.

Last, but not least, the methods described above are not completely bi-directional

learning models although there is some bi-directionality in them. The importance of bi-

directional learning comes from its potential to combine the supervised learning and

unsupervised learning and facilitates them at the same time. The present research

attempts to provide a new approach that overcomes the difficulties described above

paragraphs. The new approach is based on Bayesian networks, directed acyclic graphs

(DAG) that are constructed by a set of variables coupled with a set of directed edges

between variables.

 8

1.3 Why Bayesian Networks?

The main driving force to choose Bayesian networks is that Bayesian networks have a bi-

directional message passing architecture. Learning from the evidence can be interpreted

as unsupervised learning. Similarly, expectation of an action can be interpreted as

supervised learning. Since Bayesian networks pass evidence (data) between nodes and

use the expectations from the world model, they can be considered as bi-directional

learning systems. In addition to bi-directional message passing, Bayesian networks have

several important features such as allowing subjective a priori judgements, direct

representation of causal dependence, nonmonotonic reasoning, distillation of sensory

experience and the ability to imitate human thinking process.

A Bayesian network is a graphical model that finds probabilistic relationships among

variables of the system. There are a number of models available for data analysis,

including rule bases, decision trees and artificial neural networks. There are also several

techniques for data analysis such as classification, density estimation, regression and

clustering. One may wonder what Bayesian networks and Bayesian methods have to

offer to solve such problems. The following paragraphs provide four answers to the

question.

First, Bayesian networks handle incomplete data sets without difficulty because they

discover dependencies among all variables. When one of the inputs is not observed, most

models will end up with an inaccurate prediction. That is because they do not calculate

the correlation between the input variables. Bayesian networks suggest a natural way to

encode these dependencies.

 9

Second, one can learn about causal relationships by using Bayesian networks. There

are two important reasons to learn about causal relationships. The process is worthwhile

when we would like to understand the problem domain, for instance, during exploratory

data analysis or when an agent is exploring the environment. Additionally, in the

presence of intervention, one can make predictions with the knowledge of causal

relationships.

Third, considering the Bayesian statistical techniques, Bayesian networks facilitate

the combination of domain knowledge and data. Prior or domain knowledge is crucially

important if one performs a real-world analysis; in particular, when data is inadequate or

expensive. The encoding of causal prior knowledge is straightforward because Bayesian

networks have causal semantics. Additionally, Bayesian networks encode the strength of

causal relationships with probabilities. Therefore, prior knowledge and data can be put

together with well-studied techniques from Bayesian statistics.

Finally, in conjunction with Bayesian networks and other kinds of models, Bayesian

methods give an efficient approach to avoid the over-fitting of data. Models can be

“smoothed” in such a way that all available data can be used for training by using

Bayesian approach [3].

Rule based systems are also commonly used for data analysis. After their first

successes, it became clear that rule-based systems have their shortcomings. One of the

major problems of rule-based systems is that they are not able to treat uncertainty

coherently. The reason why rule based systems cannot capture reasoning under

uncertainty is that dependence between events changes with knowledge of other events.

 10

Another deficiency of the rule-based system is that the transition between the rules might

result in incorrect decisions. For example, assume the system has the following rules:

"If the bottle is broken, then the grass is wet" and "if it rains, the grass is wet"

The rule-based system might make an incorrect conclusion considering these two rules.

The system might decide that "if the bottle is broken, then it rained". This statement is

not a logical statement, and it is not possible to make this kind of decision with the

Bayesian networks. This is called a "dead end" in the machine learning literature [6].

Bayesian networks ease many of the theoretical and computational difficulties of

rule-based systems by utilizing graphical structures for representing and managing

probabilistic knowledge [1]. Their basic properties and abilities can be combined as

described below.

Independencies can be dealt with explicitly. They can be articulated by an expert,

encoded graphically, read off the network, and reasoned about, yet they forever remain

robust to numerical impression.

Graphical representations uncover opportunities for efficient computation.

Distributed updating is feasible in knowledge structures that are rich enough to exhibit

intercausal interactions (e.g., “explaining away”). The explaining away property

illustrates human-like behavior of the Bayesian Networks. No other expert systems or

rule-based systems have this property. Additionally, when extended by clustering or

conditioning, tree-propagation algorithms are capable of updating networks of arbitrary

topology [1, 47].

The combination of predictive and abductive inference resolves many problems

encountered by the expert systems and renders belief networks a viable model for

 11

cognitive functions requiring both top-down and bottom-up inferences [6]. As stated

above, Bayesian networks allow bi-directional learning and/or massage passing.

1.3.1 The relationship between Bayesian networks and neural networks

Even though Bayesian networks can model a broad spectrum of cognitive activity, their

original strength is in causal reasoning, which performs reasoning about actions,

explanations and preferences. Such abilities are not easily established in neural networks,

whose strengths lie in quick adaptation of simple motor-visual functions [6]. Pearl states

that neural networks cannot do reasoning between events [6]. A Bayesian network gives

a model of the environment rather than, as in many other knowledge representation

methods (e.g., rule-based systems and neural networks), a model of the reasoning

process. In fact, it simulates the mechanisms that operate in the environment, and makes

easier diverse models of reasoning, including prediction, abduction and control [6].

The relationship between Bayesian networks and neural networks is rather flimsy

except for the usual ability to carry out distributed inferencing. For instance, there are a

limited number of neural features in Bayesian networks: weights, sums and sigmoids play

no momentous role; familiar linguistic notions are employed for all computational units;

and placement of bi-directional messages in acyclic structures has no well-defined

biological bias [5]. In these senses, Bayesian networks are not considered to be a kind of

neural network in the machine learning literature.

 12

1.4 Self-organizing system as a generalized graph of behaviors

This section explains how a self-organization problem can be considered as a

generalized graph of behaviors and how they are related to cognitive learning and human

thinking. Then, the reasons why Bayesian networks are employed to solve the self-

organization problem of multi-agents will be provided.

A self-organizing system can be presented as a generalized graph of behaviors. Many

viable cognitive learning models and brain function are spatially or temporarily localized,

so that it is assumed that some ordered topology of behavior exists. A graph of behaviors

actually does little to constrain the topology, but it offers a fixed model and analysis

paradigm. The interconnections are somewhat better understood as a function of the

behavior operations. The interconnections can be categorized in two ways: quantitative

and symbolic. Symbolic messages might consist of command, queries or state

information formatted in a textual form. Networks having these kinds of

interconnections generally contain relatively high-level behaviors because they are

assumed to be individually capable of generating, parsing, and interpreting the messages.

Quantitative interconnections may take various forms, such as in spreading activation

networks [49], Bayesian networks [1, 2], neural modular networks (NMN), and mixtures

of experts models (ME) [48]. Networks with quantitative interconnection exchange such

information in a fixed format, which is not necessarily parsed at the receiving end. It is

much more difficult to organize and adapt systems that require symbolic exchange of

information than for a system that exchanges quantitative information because symbolic

information has an essentially limitless dimension and the problem space for self-

organization of such systems is extremely large. Thus, networks with quantitative

 13

information exchange are more tractable, and analytical learning methods exist for many

of them.

In recent years, Bayesian networks are commonly used networks with quantitative

interconnections [1, 2]. Bayesian networks were developed in the 1970s to model

distributed processing in reading comprehension, where both semantic expectations and

perceptual evidence must be combined to form a cooperative interpretation. The

coordination of bi-directional inferences is discovered in expert systems technology of

the early 1980s. Lately, Bayesian networks have become known as a general

representation scheme for uncertain knowledge [1, 2, 3]. The recent research is mainly

focused on learning with Bayesian network [3, 15, 16, 17, 19, 24, 28, 29]. Learning with

Bayesian networks will be discussed in Chapter 3.

Bayesian networks maintain prior and posterior probability estimates of optimal

parameter sets describing a behavior [1]. Bayesian networks contain a number of nodes

whose parameters specify a transformation on the incoming information assuming that a

behavior is continuously parameterized. This is analogous to the view that a behavior is

considered a mapping that depends on some numerical parameters.

In our research, Bayesian networks are employed to design independent agents

because they support a human-like learning strategy. They have formal probabilistic

semantics and yet can serve as a natural mirror of knowledge structures in the human

mind [12]. Further information about the relationship between human reasoning and

Bayesian networks will be discussed in the next section.

The last question that may arise is how Bayesian networks will be employed to solve

our problem of the self-organization of independent agents. This brings up the following

 14

related questions: What kind of methods will be employed in estimating parameters of

the networks? How will the optimal structure of the network be estimated by using

complete or incomplete data? How will the network adjust itself to environmental

changes, etc.? These questions are answered in Chapter 3, broadly explaining the various

methods discovered in the literature.

In our problem, each agent (the dog) will have its own Bayesian network whose

nodes are obtained from the sensory data. Bayesian networks will be incorporated with

influence diagrams, which allow agents to create actions according to the agent’s

objective and the state of the environment. Influence diagrams will be explained in

Chapter 2. The detailed explanation of the structure of an agent will be provided in

Chapter 5.

The agents have either no prior data, or limited data given by some sort of expert,

when the agents start to explore the environment. Since data are not reliable at the

beginning, the estimated Bayesian network is not going to model the real world properly.

Therefore, the Bayesian network has to be updated while the agent explores the

environment. In other words, the Bayesian networks should change its world modal by

updating itself with the new data. An online Bayesian network learning is proposed to

establish continuous learning in Bayesian networks. Chapter 4 explores the proposed

online Bayesian network learning.

Online Bayesian network learning is one of the main contributions of this research.

Online learning helps agents perform self-organizational behaviors. Since the agents

learn during their exploration of the environment and observation of other agents, each

agent takes its action according to the current state of the environment and its belief about

 15

the other agents and environment. In Chapter 7, the simulations are performed without

applying online Bayesian network learning in the agent design. Simulation results show

that the agents cannot make cooperative actions since they do not learn/adapt their

knowledge about the environment and the other agents by learning. Details of the

simulations and the effectiveness of the online Bayesian network learning are explored in

Chapter 7.

1.5 Outline of the dissertation

Chapter 2 will provide detailed descriptions of causal networks, Bayesain networks,

and influence diagrams. Learning in Bayesian networks will be explored intensively in

Chapter 3. Chapter 4 explores the proposed online Bayesian network learning. Chapter 5

will talk about how we will combine Bayesian networks and influence diagrams to create

an intelligent agent model, namely the decision-theoretic intelligent agent. Then, the

software, the IntelliAgent, is developed for creating and simulating intelligent agent

design in Chapter 6. A herding problem is simulated by the IntelliAgent software. The

problem definition and the simulation results are presented in Chapter 7. Chapter 8

concludes the research by presenting the main contributions of the research. Finally,

Chapter 9 presents possible future work on the research.

 16

CHAPTER 2

Causal Networks, Bayesian Networks and Influence Diagrams

This chapter provides a detailed explanation of causal networks and Bayesian networks

along with the necessary probabilistic calculus. Subjects will be explained using an

example: wet grass. First, causal networks will be explained along with basic principles

of reasoning under uncertainty. Next, we will define the Bayesian networks. Finally,

influence diagrams will be explored.

The causal information encoded in Bayesian networks facilitates the analysis of

action sequences, their consequences, their interaction with observations, and their

expected utilities, and hence the synthesis of plans and strategies under uncertainty [44,

46]. That is, Bayesian networks handle reasoning under uncertainty very well.

The isomorphism between the topology of Bayesian networks and the stable

mechanisms that operate in the environment facilitates modular reconfiguration of the

network in response to changing conditions, and permits deliberative reasoning about

novel situations [6].

Since the reasoning under uncertainty is one of the advantages of causal and Bayesian

networks it is necessary to provide some details on the principles of reasoning under

uncertainty. The next section provides basic principles for reasoning under uncertainty.

2.1 Basic principles for reasoning under uncertainty

The basic problem when reasoning under uncertainty is whether information on some

event influences our belief in other events. Rule-based systems cannot capture reasoning

 17

under uncertainty because the dependence between events changes with the knowledge of

other events. The problem will be explored with the following example.

2.1.1 Wet Grass

The rest of the chapter will be explained with the wet grass example to show the

reasoning process. Mr. Holmes leaves his house in the morning and notices that his grass

is wet. He reasons it had been raining last night. Then he thinks that his neighbor, Mr.

Watson’s grass is most probably wet also. That is, the information that Mr. Holmes’

grass is wet has an influence on his belief of the status of Mr. Watson’s grass. Now,

suppose that Mr. Holmes checks his rain meter, and it is dry. Then he will not reason as

above, and information on Mr. Holmes’ grass has no influence on his belief about Mr.

Watson’s grass.

Next, let us consider two possible causes for wet grass. Besides rain, Mr. Holmes

may have forgotten to turn his sprinkler off. The next morning, suppose that Mr. Holmes

again notices that his grass is wet. Mr. Holmes’ belief of both rain and sprinkler

increases. Then he observes that Mr. Watson’s grass is wet, and he concludes that it had

rained last night. The last step is virtually impossible through rules, but natural for human

beings, called explaining away.

2.1.2 Explaining away

Explaining away is the process of decreasing one’s belief in a causal event as a result in

an increase in the belief of an alternative causal event. Let us explain this with our

example. After seeing Mr. Watson’s grass is wet in the next morning, Mr. Holmes

concluded that it had rained. Consequently, Mr. Holmes’ wet grass has been explained

 18

by the rain, and thus there is no longer any reason to believe that the sprinkler has been

on. Explaining away is another example of dependence changing with the information

available [7]. The following section provides some details of dependence between the

events.

2.1.3 Dependence of events

Dependence between two events is when the probability of an event depends on the

knowledge of the other event. For example, when nothing is known in the initial state,

the variables Rain and Sprinkler are independent. On the other hand, when the

information on Mr. Holmes’ grass is present, then Rain and Sprinklers become

dependent. That is, change in the belief in whether it rained or not will change the belief

in the sprinkler being on or off. If it rained, then the sprinklers were not on. Otherwise,

the sprinklers were on. Of course, this is true only if there is no other variable that causes

Mr. Holmes’ grass being wet. On the other hand, if the information on Mr. Holmes’

grass is not present, then we cannot relate the variables Rain and Sprinkler. Dependence

between events will be clearer when we introduce the concept of causal networks.

The prior certainties are also an important concept in reasoning under uncertainty.

The next paragraph will introduce the importance of the prior certainties for reasoning.

2.1.4 Prior Certainties

In the above example, it is obvious that if an event is known, the certainty on the other

events must be changed. In a certainty calculus, if the actual certainty of a specific event

has to be calculated, then the knowledge of certainties prior to any information is also

 19

required. For instance, the certainty of Rain is still dependent on whether rain at night is

rare (as in Los Angeles) or very common (as in London) given that Mr. Holmes' grass is

wet [2].

Since basic principles of reasoning under certainty are provided above, now causal

networks can be introduced. The following section introduces causal networks and

provides related definitions such as connection types and d-separation.

2.2 Causal Networks

The reasoning above can be described by a graph. The events are nodes, and two nodes

A and B are connected by a directed link from A to B if A has a causal impact on B.

Figure 2.1 is graphical model for Mr. Holmes’ small world of wet grass.

Figure 2.1. A graphical model for the wet grass example [7].

Figure 2.1 is an example of a causal network. A causal network is composed a set of

variables and a set of directed links between variables. In mathematics literature, this

composition is called a directed graph. In a directed graph, the terminology of family

relations is adopted to explain the relations between the variables. If there exists a link

from variable A to variable B, then A is called a parent of B and B is called a child of A.

The variables symbolize events. Every variable in a causal network has two (yes and no)

or more states (i.e. color of a car: blue, green, red, and black). In general, variables can

Rain?

Watson? Holmes?

Sprinkle

 20

have continuous and discrete states. Reasoning about uncertainty also has a quantitative

part such as the calculation and combination of certainty numbers [2]. The certainty

numbers are the probabilities of the event (variables) given the data.

From the graph in Figure 2.1, one can read off the dependencies and independencies

in the small world of wet grass. For example, one can see that if he knows that it has not

rained tonight, then information on Mr. Watson’s grass has no influence on Mr. Holmes’

grass. The ways in which influence may run between variables in a causal network have

been analyzed by Pearl [33] and Verna [20]. Two variables are said to be separated if

new evidence on one of them has no impact on our belief of the other. If the state of a

variable is known, then we say it is instantiated.

There are three types of connections in a causal network: serial, diverging, and

converging connections. Figure 2.2 shows all type of connections in a causal network.

Figure 2.2. Serial, diverging, and converging connections respectively.

In Figure 2.2 (a), the variable A has a control on the variable B that then has control

on the variable C. Apparently, the evidence on the variable A will affect the certainty of

the variable B that in turn affects the certainty of the variable C. Analogously, the

evidence on the variable C will affect the certainty of the variable A through the variable

B. On the contrary, if the state of the variable B is given, then the link is blocked, and the

A CB

A

B C E

B C E

A

(a) (c) (b)

 21

variable A and the variable C become independent. In other words, influence may run

from A to C and vice versa unless B is instantiated.

As shown in Figure 2.2 (b), in a diverging connection the influence can pass between

all the children of the variable A unless the state of the variable A is given. If the state of

the variable A is known, then the variables B, C,…, E become independent from each

other. Therefore, influence may run between A’s children unless A is instantiated.

In a converging connection shown in Figure 2.2 (c), if there is nothing known about

the variable A other than what may be deduced from the knowledge of its parents B,

C,…, E, then the parents are said to be independent. The independence means that

evidence on one of the parents has no effect on the certainty of the others. If there is any

other kind of evidence influencing the variable A, then the parents become dependent

because of the principle of explaining away. Therefore, evidence may only be transmitted

through a converging connection if either the variable in the connection or one of its

descendants has received evidence. The evidence can be direct evidence on the variable

A, or it can be evidence from one of its children. In causal networks, this fact is called

conditional dependence.

Jensen stated that evidence on a variable is a statement of the probabilities of its

states. If the statement supports the exact state of the variable it is called hard evidence.

Otherwise, it is voiced soft evidence. For example, soft evidence can be evidence stating

the probabilities of the states of a variable. Hard evidence is also referred as

instantiation. In the case of serial and diverging connections, blocking a link requires

hard evidence, while opening a link is possible for all types of evidence [2].

 22

The three cases explained above wrap all the forms in which evidence may be

transmitted through a variable. If the rules below are followed, it is conceivable to decide

for any pair of variables in a causal network whether or not they are dependent knowing

the evidence entered into the network. Two variables A and B are said to be d-separated

if for all paths between variables A and B there is an intermediate variable V so that either

- the connection is serial or diverging and the state of V is known

or

- the connection is converging and neither V nor any of V's descendants have

received evidence [2].

If variables A and B are not d-separated they are said to be d-connected. For example, if

the state of the variable B is given in Figure 2.2 (a), then the link is blocked, and the

variable A and the variable C become independent. Therefore, it is said that the variable

A and the variable C are d-separated given the variable B. Similarly, in Figure 2.1,

Sprinkler? and Watson? are d-separated because the connecting trail is converging

around the variable Holmes?

One should note that d-separation is a property of human reasoning [7], and therefore

any calculus for uncertainty in causal structures must obey the principle that whenever A

and B are d-separated then new information on one of them does not change the certainty

of the other. To understand causal networks better, we need to establish the quantitative

part of the certainty assessment. The next section will provide necessary probability

calculus for certainty assessment.

 23

2.3 Probability calculus

Even though various certainty calculi exist in the literature, this section provides the

Bayesian calculus, which is classical probability calculus. The section starts with basic

probability calculus. Then, the concept of subjective probability and conditional

probability will be introduced.

2.3.1 Basic probability calculus

The basic concept in the Bayesian treatment of certainties in causal networks is

conditional probability. When the probability of an event A, P(A), is known, then it is

given conditioned by other known factors. A conditional probability statement has the

following form:

Given the event B, the probability of the event A is x.

The mathematical representation of this statement is xBAP =)|(. This does not mean

whenever B is true, then the probability for A is x. It means that if B is true, and

everything else known is inapplicable to A, then xBAP =)|(.

The fundamental rule for probability calculus is given in the following way in [2];

),()()|(BAPBPBAP = (2.1)

where),(BAP is the probability of the joint event A∧ B. Because probabilities ought to

always be conditioned by a context C, the formula should be written as;

)|,()|(),|(CBAPCBPCBAP = (2.2)

From (2.1), we can write that)()|()()|(APABPBPBAP = and this gives the famous

Bayes' rule:

 24

)(
)()|()|(

AP
BPBAPABP = . (2.3)

If we condition the Bayes' rule, we will get the following;

)|(
)|(),|(),|(

CAP
CBPCBAPCABP = . (2.4)

If A is a variable in a causal network with the set of states a1, a2,…, an, then the P(A)

is a probability distribution over this set of states:

1 0),,,()(
1i

21 =≥= �
=

n

iin xxxxxAP �

where xi is the probability of A being in the state ai. One should note that the probability

of A being in the state ai is expressed as P(A = ai) and expressed as P(ai) if the variable is

obvious from the context. Let B be another variable with the states b1,b2,…,bm, then

P(A | B) is an n-by-m table consisting numbers P(ai | bj). This table is called conditional

probability table (CPT) for)|(BAP .

The joint probability for the variables A and B, P(A, B), is also an n-by-m table

containing the probabilities P(ai, bj). The joint probabilities, P(A, B), can be computed by

utilizing the fundamental rule (2.1):

)()|(),(jjiji bPbaPbaP =

or equivalently,

)()|(),(BPBAPBAP = (2.5)

The joint probability,),(BAP , has n⋅m entries. The probability P(A), can be computed

from the table),(BAP . Let ai denote a state of the variable A. In the table),(BAP ,

there are m different events for which the variable A is in state ai, namely the mutually

exclusive events (ai, b1), …, (ai, bm). Therefore, P(ai) can be calculated as;

 25

�
=

=
m

j
jii baPaP

1

),()((2.6)

This operation is called marginalization and it is said that the variable B is marginalized

out of),(BAP (producing P(A)). Thus, the notation can be written as follows:

�=
B

BAPAP),()((2.7)

The definitions above work for only classical (objective) probabilities. Causal

networks have another type of probability, called subjective probability. The subjective

probability is one of the important features of causal networks because of their ability to

explain one’s belief on an event.

2.3.2 Subjective probabilities

Probability calculus does not require that the probabilities be based on theoretical results

or frequencies of repeated experiments. Probabilities may also be completely subjective

estimates of the certainty of an event. For example, a subjective probability may be my

personal assessment of the chances of finishing my dissertation at the end of next Fall

semester. Jensen provides a way of assessing this probability by comparing to gambling

[2].

Subjective probability is also called as Bayesian probability or personal probability in

the literature [3]. The Bayesian probability of an event x is a person’s degree of belief in

that event. A Bayesian probability is a property of the person who assigns the probability

(e.g., your degree of belief that a coin will land heads), whereas a classical probability is

a physical property of the world (e.g., the probability that a coin will land heads). In light

of these statements, a degree of belief in an event is referred to as a Bayesian or personal

 26

probability, and the classical probability is referred as the true or physical probability of

that event [3].

An important difference between physical probability and personal probability is that

there is no need for repeated trials to measure the personal probability. For example,

consider the question: what is the probability that the Chicago Bulls will win the

championship in 2001? The Bayesian method can assign a probability for this event. One

common criticism of the Bayesian approach of probability is that probabilities seem

arbitrary. This can be mainly observed as a probability assessment problem. Much

research has been done to overcome this problem. A detailed construction of this

criticism can be found in [3].

Another important concept in causal networks is the conditional independence

between variables. The following subsection describes its importance in Bayesian

calculus.

2.3.3 Conditional Independence

In the Bayesian calculus, the blocking of influence between variables is reflected in the

concept of conditional independence. The variables A and C are independent given the

variable B if

),|()|(CBAPBAP = (2.8)

This expresses that if the state of the variable B is given then no information of the

variable C will change the probability of the variable A. Conditional independence

comes into view in the cases of serial and diverging connections. If (2.8) holds, then by

the conditioned Bayes' rule (2.4) the following will be obtained

 27

)|(
)|(

)|()|(
)|(

)|(),|(),|(BCP
BAP

BCPBAP
BAP

BCPBCAPABCP =⋅=⋅= (2.9)

So, Equations (2.8) and (2.9) hold simultaneously.

With this explanation of causal networks and Bayesian calculus, we can now explore

Bayesian networks. The next section will describe the Bayesian network structure and

provide its properties in detail.

2.4 Bayesian networks

As stated earlier, causal networks are introduced to define and understand Bayesian

networks. The following paragraphs provide a detailed definition of Bayesian networks

and related theorems. The chain rule theorem is introduced to do the necessary

calculations in Bayesian networks.

Causal relations also have a quantitative side, namely their strength. This is

expressed by attaching numbers to the links. Let the variable A be a parent of the variable

B in a causal network. Using probability calculus, it will be normal to let the conditional

probability,),|(ABP be the strength of the link between these variables. On the other

hand, if the variable C is also a parent of the variable B, then conditional probabilities

)|(ABP and)|(CBP do not provide any information on how impacts from the variable

A and the variable B interact. They may cooperate or counteract in various ways.

Therefore, the specification of),|(CABP is required.

It may happen that the domain to be modeled contains feedback cycles. Feedback

cycles are difficult to model quantitatively. For causal networks no calculus coping with

 28

feedback cycles has been developed. Therefore, it is necessary for the network not to

contain cycles. Thus, A Bayesian network consists of the following elements:

- A set of variables and a set of directed edges between variables,

- Each set contains a finite set of mutually exclusive states,

- The variables coupled with the directed edges construct a directed acyclic

graph (DAG),

- Each variable A with parents B1, B2, …, Bn has a conditional probability table

P(A | B1, B2, …, Bn) associated with it [2].

If the variable A does not have any parent, then the table can be replaced by the

unconditional probabilities P(A). A graph is acyclic if there is no directed path

nAA →→�1 such that nAA =1 . For the directed acyclic graph in Figure 2.3, the prior

probabilities)(AP and)(BP have to be specified.

Figure 2.3. A directed acyclic graph. The probabilities to specify are shown.

It has been insisted that prior probabilities introduce an undesired bias to the model

[1]. The necessary calculi have been developed in order to avoid this problem [1]. On

the other hand, as explained before, prior probabilities are essential. They are important

)|(CEP

),,|(FDEGP)|(EFP

A B

C

E

GF

D

),|(BACP

)|(CDP

)(AP)(BP

 29

not because of mathematical reasons but because prior certainty assessments are an

integral part of human reasoning about certainty.

One of the benefits of Bayesian networks is that they admit d-separation. If the

variables A and B are d-separated in a Bayesian network with evidence e inserted, then

)|(),|(eAPeBAP = . Therefore, d-separation can be used to read-off conditional

independencies. Next, we will talk about one of the most crucial elements of Bayesian

network calculations, namely the chain rule.

2.4.1 The chain rule

In a Bayesian Network, let),,,(21 nAAAU �= be a universe of variables. The chain rule

provides a more compact representation of the joint probability),,,()(21 nAAAPUP �=

to make the probability calculations easier. If the joint probability table P(U) is obtained,

then the probabilities P(Ai) can be calculated as well as the probabilities P(Ai | e), where e

is evidence. On the other hand, if the number of variables in the network increases, P(U)

expands exponentially. Therefore, a more compact representation of P(U) is necessary: a

manner of reserving information from which P(U) can be computed if it is necessary [2].

Such a representation resides in a Bayesian network over U. P(U) can be computed

from the conditional probabilities defined in a Bayesian network if the conditional

independencies hold for U. The following theorem explains this representation.

Theorem 2.1 (The Chain rule.)

Let BN be a Bayesian network over

),,,(21 nAAAU �=

 30

Then the joint probability distribution P(U) is the product of all conditional probabilities

specified in BN:

∏=
i

ii ApaAPUP))(|()((2.10)

where pa(Ai) is the parent set of Ai.

Jensen proved this theorem by applying induction on the number of variables in the

universe U [2]. The next section will provide theoretical and historical details on

evidential reasoning using the chain rule.

2.4.2 Evidential Reasoning

As stated above, Bayesian networks accomplish such economy by pointing out, for each

variable Xi, the conditional probabilities P(Xi | pai) where pai are the set of parents (of Xi)

which render Xi independent of all its other parents. After giving this specification, the

joint probability distribution can be calculated by the product

∏=
i

iin paxxxP)|(),,(P1 � . (2.11)

Using this product, all probabilistic queries can be found coherently using probability

calculus. There are a number of algorithms for probabilistic calculations in Bayesian

networks. Early algorithms employed message-passing architecture and they were

limited to trees [18, 14]. In these algorithms, each variable was assigned a simple

processor and allowed to pass messages asynchronously with its neighbors until

equilibrium is accomplished. Some techniques have been developed to extend this tree

propagation to general networks starting around the 1990s. Two of the most popular

methods are Lauritzen and Spielgelhalter’s method of join-tree propagation [22] and the

method of loop-cut conditioning, which is explained in [1, 2]. Learning methods have

 31

also been proposed for systematic updating of the conditional probabilities P(Xi | pai), as

well as the structure of the network in order to match empirical data [21]. The details of

learning techniques are discussed in Chapter 3. We will explore some questions about

the relationship between Bayesian Networks and the functionality of a human brain as

our last topic in Bayesian networks.

2.4.3 Bayesian networks and the functionality of a human brain

Does an architecture like the Bayesian network exist anywhere in the human brain? If

not, how does the human brain achieve those cognitive functions in which Bayesian

networks excel? Pearl answers these questions in the following sentences: “Nothing

resembling Bayesian networks actually resides permanently in the brain. Instead,

fragmented structures of causal organizations are constantly being assembled on the fly,

as needed, from a stock of functional building blocks” [6].

Every building block is concentrated on to accomplish a narrow context of experience

and is presumably materialized in a structure of a neural network. For example, a

network as in Figure 2.1 can be assembled from several neural networks each

specializing in one variable. Such specialized networks will need to be stored in a

permanent mental library, from which they are selected and assembled into a network

structure. This is possible only when a specific problem displays itself, for instance, to

resolve whether a working sprinkler could rationalize why Mr. Holmes' grass was wet in

the middle of a dry season. Therefore, Bayesian networks are particularly beneficial in

studying higher cognitive functions, where the organizing and supervising large

assemblies of specialized neural networks is an important problem. As stated earlier,

 32

Bayesian networks do human-like reasoning well not because the structure of the

networks resembles the biological structure of a human brain but because the way

Bayesian networks do reasoning resembles with the way humans do reasoning. The

resemblance is more psychological than biological.

We have explained Bayesian networks and causal networks. Bayesian networks will

be employed in our intelligent agent design because of their ability of reasoning the

events and modeling the environment accurately. Modeling the environment is not

enough for an intelligent agent to act rationally in the environment. The beliefs about the

environment have to be converted into actions. The next section will introduce a method

to convert beliefs of an agent into actions. In the literature, they are also called influence

diagrams [2], or sometimes decision networks [54].

2.5 Influence Diagrams

A Bayesian network serves as a model for a part of the world, and the relations in the

model reflect causal impacts between events. The reason for building these computer

models is to use them when making decisions. That is, probabilities provided by the

network are used to support some kind of decision-making [1]. In principle, there are

two types of decisions, test-decisions and action-decisions. A test-decision is a decision

to look for more evidence to be entered into the model. An action-decision is a decision

to change the state of the world [1]. In this research, the action-decisions will be the

focus.

 33

Decision problems can be treated in the framework of utility theory. The utility of an

action may depend on the state of some variables called determining variables. For

example, the utility of a treatment with penicillin is dependent on the type of the infection

and whether the patient is allergic to penicillin. The type of the infection and the

patient’s reaction to the penicillin are the determining variables of the utility of the

treatment [2]. The utility theory and Bayesian network theory can be combined in a

graphical representation, influence diagrams. An influence diagram (ID) is a compact

representation emphasizing features of decision problems. The inference diagram

formalism integrates the two components of knowledge, about beliefs and about actions.

Influence diagrams are directed acyclic graphs with tree types of nodes−decision

nodes, chance nodes, and a value node. Decision nodes, shown as squares, represent

choices available to the decision-maker. Chance nodes, shown as circles, represent

random variables (or uncertain quantities) the same as for Bayesian networks. Finally,

the value node, shown as a diamond, represents the objective (or utility) to be maximized.

The edges in an ID have different meanings, based on their destinations. An edge

pointing to utility and chance nodes represent probabilistic or functional dependence, like

the edges in Bayesian networks. They do not necessarily imply causality or time

precedence although in practice they often do. Edges into decision nodes mean time

precedence and are informational, i.e., they show which variables will be known to the

decision-maker before the decision is made [2].

An influence diagram can be seen as a special type of Bayesian network, where the

value of each decision variable is not determined probabilistically by its predecessors, but

rather is imposed from the outside to meet some optimization objective. The domain of

 34

each decision variable in an influence diagram varies according to previous decisions

although the domains of the variables in a Bayesian network are fixed.

Figure 2.4 represents an influence diagram about weather and decision to carry an

umbrella. FORECAST and WEATHER are chance nodes, just as in Bayesian networks.

Figure 2.4. An influence diagram.

They have the probabilistic values about the weather and the forecast. SATISFACTION is

a utility or value node, i.e. a node that measures our scoring of the system. UMBRELLA

is a decision node, i.e. a node that we have to provide a value for. The objective is to

maximize expected SATISFACTION by appropriately selecting values of UMBRELLA for

each possible FORECAST. In addition to probabilities, the values of SATISFACTION for

each combination of UMBRELLA and WEATHER are also given. The objective in an

influence diagram is to select values at the decision nodes in order to maximize the

values at the utility nodes.

Now, let us define how the optimal actions are calculated by employing the influence

diagram theory. Let },,{ 1 naaA �= be set of mutually exclusive actions, and let H be

the determining variable. A utility table),(HAU is necessary to yield the utility for each

FORECAST WEATHER

UMBRELLA SATISFACTION

 35

configuration of action and determining variable in order to decide between the actions in

A. The problem is solved by calculating the action that maximizes the expected utility:

� ⋅=
H

aHPHaUaEU)|(),()((2.12)

where),(HaU are the members of the utility table in the value node U. The conditional

probability)|(aHP is an entry in the CPT of the variable H, given the action a is fired.

Figure 2.5 illustrates a simple influence diagram with one determining variable and

one set of actions. An action set is the set of actions in a decision node in an influence

diagram. The probability)|(aHP is the probability of H given that the action a is fired.

The probability)|(aHP can be calculated by facilitating a standard probabilistic

inference as in Bayesian network.

Figure 2.5. An influence diagram with an action set.

Actions are selected by evaluating the decision network for each possible setting of

the decision node. Once the decision node is set, it behaves exactly like a chance node

that has been set as an evidence variable. The following algorithm illustrates the

evaluation of an influence diagram [54].

1. Set the evidence variables for the current state

2. For each possible value of the decision node:

… … UH

A

Bayesian
Network

Influence
Diagram

 36

(a) Set the decision node to that value.

(b) Calculate the posterior probabilities for the parent nodes of the utility node,

using a standard probabilistic inference algorithm.

(c) Calculate resulting utility function for the action

3. Return the action with the highest utility.

This is a straightforward extension of the Bayesian Network algorithm and will be

incorporated into the agent design in the next chapter. An agent that selects rational

actions will be designed using the influence diagram theory.

We have explained the causal networks, Bayesian networks, and influence diagrams

in detail in this chapter. We have also given theoretical background in Bayesian calculus

and reasoning under uncertainty. Since our problem is a learning problem, we need to

explain how Bayesian networks learns. The next chapter is devoted for that purpose.

Chapter 3 will provide different type of learning situations and different approaches to

solve those learning problems.

 37

CHAPTER 3

Learning Bayesian Networks

This chapter is devoted to answering the question: how can Bayesian networks be learned

from data? The process of learning Bayesian networks takes different forms in terms of

whether the structure of the network is known and whether the variables are all

observable. The structure of the network can be known or unknown, and the variables

can be observable or hidden in all or some of the data points. The latter distinction can

also be expressed as complete and incomplete data. Consequently, there are four cases of

learning Bayesian networks from data; known structure and observable variables,

unknown structure and observable variables, known structure and unobservable variables,

and unknown structure and unobservable variables.

Learning Bayesian networks can also be examined as the combination of parameter

learning and structure learning. Parameter learning is estimation of the conditional

probabilities (dependencies) in the network. Structural learning is the estimation of the

topology (links) of the network. The four types of learning Bayesian networks cases are

discussed in the following paragraphs.

3.1 Known network structure and observable variables (complete data)

This is the easiest and the most studied case of learning Bayesian networks in the

literature [31, 32]. The network structure is specified, and the inducer only needs to

estimate the parameters. The problem is well understood and the algorithms are

computationally efficient. Despite its simplicity, this problem is still extremely useful,

 38

because numbers are very hard to elicit from people. Additionally, it forms the basis for

everything else in Bayesian learning.

Because every variable is observable, each data case can be pigeonholed into the CPT

entries corresponding to the values of the parent variables at each node. The pigeonhole

principle essentially states that if a set consisting of more than nk ⋅ objects is partitioned

into n classes, then some classes receive more than k objects [30]. Therefore, estimations

will be highly accurate since every variable is observable.

Learning is achieved simply by calculating conditional probability table (CPT) entries

using estimation techniques such as Maximum Likelihood Estimation (MLE) and

Bayesian Estimation. For simplicity, MLE and Bayesian estimators will be explained by

employing parameter learning for a single parameter.

Assume that an experiment was conducted by flipping a thumbtack in the air. The

thumbtack comes to land as either heads or tails. As usual, the different tosses are

assumed to be independent, and the probability of the thumbtack landing heads is some

real number θ . Therefore, the goal is to estimate θ . Assume that we have a set of

instances d[1],…, d[M] such that each instance is sampled from the same distribution and

independently from the rest. The goal is to find a good value for the parameter θ . A

parameter is good if it predicts the data well. In other words, if data are very likely given

the parameter, the parameter is a good predictor. The likelihood function is defined as

∏
=

==
M

m
mPDPDL

1

)|][d()|()|(θθθ . (3.1)

Thus, the likelihood for a sequence H, T, T, H, H is

θθθθθθ)1)(1()|(−−=DL (3.2)

 39

or 23)1(θθ − . To calculate the likelihood we need to know number of heads hN and the

number of tails tN . These are the sufficient statistics for this learning problem. A

sufficient statistic is a function of the data that summarize the relevant information for

computing the likelihood.

The Maximum Likelihood Estimation (MLE) principle tells us to choose θ that

maximizes the likelihood function. The MLE is one of the most commonly used

estimators in statistics. For the above problem, the estimation of the parameter is

th

h

NN
N
+

=θ̂ (3.3)

as expected.

The MLE estimate seems plausible, but is overly simplistic in many cases. Assume

that the experiment with the thumbtack is done and 3 heads out of 10 are recorded. It

may be quite reasonable to conclude that the parameter θ is 0.3. On the other hand, what

if the same experiment is done with a dime and also 3 heads are recorded. We would be

much less likely to jump the conclusion that the parameter of the dime is 0.3 because we

have a lot more experience with tossing dimes. Thus, we have a lot more prior

knowledge about their behavior.

Using MLE, we cannot make the following distinctions: between a thumbtack and a

dime, and between 10 tosses and 1,000,000 tosses of a dime. On the other hand, there is

another method recommended by Bayesian statistics. The MLE is a frequentist approach

since it relies on the frequency in the data. Another approach is the Bayesian approach

that assumes that there is unknown but fixed parameter θ . It estimates the parameter

 40

with some confidence, i.e., it calculates a range such that, if the parameter is out of this

range, the probability of the data is very low.

The Bayesian approach deals with uncertainty over anything that is unknown by

putting a distribution over it. In other words, the parameter θ is treated as a random

variable and a distribution)(θP is defined over it. Therefore, we can tell how likely the

parameter is to take on one value versus another. In other words, we now have a joint

probability space that contains both the tosses and the parameter. This joint probability is

easy to find given our prior distribution over θ . Let X[1],…, X[M] be our coin tosses.

The conditional probabilities)|][(θmXP are according to θ , i.e., θθ ==)|][(HmXP .

Now, the value of the next toss X[M + 1]can be predicted by

� +=+ θθθ dDPMXPMXXMXP)|()|]1[(])[,],1[|]1[(� (3.4)

where

)(
)()|()|(

DP
PDPDP θθθ = . (3.5)

The first term in the numerator is the likelihood, the second is the prior over

parameters, and the third is a normalizing factor, which is the marginal probability of the

data.

If we reconsider the thumbtack problem again with a uniform prior over θ in the

interval [0, 1], then)|(DP θ is proportional to the likelihood th NNDP)1()|(θθθ −= .

After plugging this into the integral and doing all the math and normalizing, it can be

shown that the following equation holds [13].

2
1

)|]1[(
++

+
=+

th

h

NN
N

DMXP (3.6)

 41

Clearly, as the number of samples grows, the Bayesian estimator and the MLE

estimator converge to each other. This result depends on the use of uniform prior. In the

Bayesian networks literature, the most commonly used class of priors are the Dirichlet

priors [26, 28, 29] because it turns out that most of the interesting calculations can be

done in closed form. The conjugacy of the Dirichlet priors allows us to have the

posterior probabilities in the same form as prior probabilities. Therefore, we can do

sequential updating within the same representations and the closed form solution can be

found both for the update and the prediction problem in many cases.

Recall that a multinomial is parameterized via a set of parameters kθθ ,,1 � such that

� =
i i 1θ ; iθ corresponds to the probability of ith outcome. A Dirichlet distribution over

this set of parameters is defined via a set of hyperparameters kαα ,,1 � . Then, the

generalization can be written as

∏∏
−

Γ
Γ=

i
i

i i
k

i 1
1)(

)(),,|(Dir αθ
α

αααθ � . (3.7)

All of the results regarding prediction and computing the posterior extend in the

obvious way. That is, if θ is distributed as in (3.7), then

�
=

j j

i
ixP

α
α

)(

and if there is a data set D whose sufficient statistics are kNN ,,1 � , then

),,|(Dir)|(kk NNDP ++= ααθθ �11 . (3.8)

To generalize these results for a Bayesian network, we need to define the sufficient

statistic as N(x, u) for the event X = x and the parents U = u. In the MLE case, the

estimation of the parameters can be calculated as

 42

)u(
)u,(ˆ

u| N
xN

x =θ . (3.9)

Similarly, in the Bayesian case, the parameter estimation is calculated as

))u,(,),u,((Dirˆ
11u| kxx xNxN

k
++= ααθ � . (3.10)

If the data were actually generated from the given network structure, then both

methods converge asymptotically to the correct parameter setting. If not, then they

converge to the distribution with the given structure that is closest to the distribution from

which the data were generated. Both estimations can be implemented online by

accumulating sufficient statistics.

The process above is the method by which Bayesian network parameters are learned

when the network topology is known and all variables are fully observable. The next

section provides an overview of some proposed methods in the literature if the structure

of the network is not known in advance.

3.2 Unknown network structure and observable variables

In this case, the inducer is given the set of variables in the model, and needs to select the

arcs between them and estimate the parameters. This problem is very useful for a variety

of applications; in general, when we are given a new domain with no available domain

expert, and want to get all of the benefits of a BN model. It is also useful for data-mining

style applications, where there are masses of data available and we would like to interpret

them. In addition to providing a model that will allow us to predict behavior of cases that

we have not seen, the structure also gives the expert some indication of what attributes

 43

are correlated. The algorithms for this problem are combinatorially expensive. They

basically reduce to a heuristic search over the space of BN structures.

There has been some attention given to the problem of unknown network structure in

the literature. The key aspect of the problem is to reconstruct the topology of the network

from fully observable variables. In the literature, this is considered as a discrete

optimization problem solved by a greedy search algorithm in the space of structures.

Some examples of the greedy search algorithm can be found in [34, 35].

A MAP (Maximum a Posterior) analysis of the most likely network structure has

been studied in [34] and [35] when the data are fully observable. The resulting

algorithms are capable of recovering fairly large networks from large data sets with a

high degree of accuracy [16]. On the other hand, they usually adopt a greedy approach to

choosing the set of parents for a given node because the problem of finding the best

topology is intractable.

There are two main approaches to structure learning in BNs:

• Constraint based: Perform tests of conditional independence on the data, and search

for a network that is consistent with the observed dependencies and independencies.

• Score based: Define a score that evaluates how well the (in)dependencies in a

structure match the data, and search for a structure that maximizes the score.

Constraint-based methods are more intuitive. They follow the definition of a BN more

closely. They also separate the notion of the independence from the structure

construction. The advantage of score-based methods is that they are less sensitive to

errors in individual tests. Compromises can be made between the extent to which

variables are dependent in the data and the cost of adding the edge [13].

 44

The score-based methods operate on the same principle: a scoring function is defined

for each network structure, representing how well it fits the data. The goal is to find the

highest-scoring network structure. The space of Bayesian networks is a combinatorial

space, consisting of a superexponential number of structures. Thus, it is not clear how

one can find the highest-scoring network even with a scoring function. In general, the

problem of finding the highest-scoring network structure is NP-hard [13]. On the other

hand, the problem of searching a combinatorial space with the goal of optimizing a

function is very well studied in AI literature. Consequently, the answer is to define a

search space, and then do heuristic search.

In light of the above statements, a BN structure learning algorithm requires the

following components be determined:

i) Scoring function for different candidate network structures.

ii) The definition of the search space: operators that take one structure and

modify it to produce another.

iii) A search algorithm that does the optimization search.

Each component will be discussed separately. The three main scoring functions

commonly used to learn Bayesian networks are the log-likelihood [13], the one based on

the principle of minimal description length (MDL) [11] which is equivalent to Schwarz’

Bayesian information criterion (BIC) [10], and Bayesian score [3,13].

The log-likelihood function is simply the log of the likelihood function. That is,

),|(log),|(ΒΒΒΒΒΒΒΒ ΒΒΒΒΒΒΒΒ θθ DLDl = (3.11)

The log-likelihood is easier to analyze than the likelihood, because the logarithm turns all

the products into sums. Therefore,

 45

∏=
m

mPDL),|][d(),|(ΒΒΒΒΒΒΒΒ ΒΒΒΒΒΒΒΒ θθ (3.12)

and, the following equation can be written:

),|][d(log),|(ΒΒΒΒΒΒΒΒ ΒΒΒΒΒΒΒΒ θθ mPDl
m
�= (3.13)

There are a couple of important things to note about the log-likelihood. The log-

likelihood increases linearly with the length of data, M. The higher scoring networks are

those where the node and the parents are highly correlated. Adding a node to the

networks always increases the log-likelihood. As a result, the network structure that

maximizes the likelihood is often the fully connected network. This is the deficiency of

the log-likelihood score and is not desired. Thus, a score that makes it harder to add

edges is necessary. In other words, we would like to penalize structures with too many

edges.

One possible formulation of this idea is called the MDL score. It is defined as:

)()(
2

log)ˆ,|():(ΒΒΒΒΒΒΒΒΒΒΒΒΒΒΒΒ ΒΒΒΒ DLDimMDlDScoreMDL −−= θ (3.14)

where)(ΒΒΒΒDim is the number of independent parameters in ΒΒΒΒ and)(ΒΒΒΒDL is the number

of bits (the description length) required to represent the structure of ΒΒΒΒ . The abbreviation

MDL stands for minimum description length. The MDL score is a compromise between

fit to data and model complexity. Adding a variable as a parent causes the log-likelihood

term to increase, but so does the penalty term. There will be an edge addition if its

increase to the likelihood is worth it.

Another commonly used score is called Bayesian score. In this case, the network

score is evaluated as the probability of the structure given the data. The Bayesian score

has the following form:

 46

)(
)()|()|():(

DP
PDPDPDScoreBDE

ΒΒΒΒΒΒΒΒΒΒΒΒΒΒΒΒ == (3.15)

As usual)(DP is constant, so it can be ignored when different structures are compared.

Therefore, the model maximizes)()|(SPSDP , where S represents a structure. The

ability to ascribe a prior over structures gives us a way of preferring some structures to

others. Here, the probability)|(ΒΒΒΒDP can be calculated as

�= ΒΒΒΒΒΒΒΒΒΒΒΒ ΒΒΒΒΒΒΒΒΒΒΒΒ θθθ dPDPDP)|(),|()|(. (3.16)

From Equation (3.16), one can see that the more parameters we have the more variables

we are integrating over. As a result, each dimension causes the value of the integral go

down because the “hill” of the likelihood function is a smaller fraction of the space.

Therefore, this idea gives preference to networks with fewer parameters. It can be shown

that the Bayesian score is a general form of MDL score. The MDL score can be viewed

as an approximation of the Bayesian score. Therefore, the Bayesian score is also a

compromise between the model complexity and fit to the data.

Several ways of scoring different Bayesian network structures have been explained.

Different scores have been explored in terms of the network complexity and how the

network fits to the correlation in the data. Now, the goal is to find the network that has

the highest score. In other words, training data D, the scoring function, and a set of

possible structures are the inputs of the search algorithm while the desired output is a

network that maximizes the score. It can be shown that finding maximal scoring network

structures where nodes are restricted to having at most k parents is NP-hard for any k > 1.

Therefore, a heuristic search is resorted to for this optimization problem. A search space

is defined, where the states in the space are possible structures and the operators denote

 47

the adjacency of structures. This space is traversed looking for high-scoring functions to

complete the optimization. The obvious operators in the search spaces are add an edge,

delete an edge, and reverse an edge. The search starts with some candidate network,

which may be the empty one, or one that some expert has provided as a starting point.

Then, applying the operators, the high-scoring network is searched in the space. The

parameters of the network are calculated by using training data D.

The most commonly used algorithm for optimization search is simple greedy hill

climbing, which has the following form:

Greedy BN search

Pick a random network structure ΒΒΒΒ as starting point
Calculate parameters for each ΒΒΒΒ i
Compute score for ΒΒΒΒ
Repeat
 Let ΒΒΒΒ 1,…, ΒΒΒΒ m be the successor networks of ΒΒΒΒ (i.e., operations on ΒΒΒΒ)
 Calculate parameters for each ΒΒΒΒ i
 Compute score for each ΒΒΒΒ i
 Let ΒΒΒΒ ’ be the highest scoring ΒΒΒΒ i
 If score (ΒΒΒΒ ’) > score (ΒΒΒΒ i)
 Then let ΒΒΒΒ := ΒΒΒΒ ’
 Else return(ΒΒΒΒ)

Even though the hill-climbing method is commonly used, it has several key problems

such as local maxima where all one-edge changes reduce the score and plateaux where a

large set of neighboring networks that have the same score. There are some clever tricks

that avoid some of these problems such as TABU-search, random restart, and simulated

annealing. In general, greedy hill climbing with random start works quite well in

practice.

We examined methods for learning a Bayesian network from fully observable data.

The next sections provide the Bayesian network learning with partially observable data.

 48

Sections 3.3 and 3.4 explore the Bayesian network learning with known network

structure and unknown network structure, respectively.

3.3 Known structure and unobservable variables (incomplete data)

The learning of Bayesian networks with known structure and unobservable variables has

been studied by Golmard and Mallet [36], Lauritzen [37, 38], Olesen et al. [31], and

Spiegelhalter and Cowel [39]. The algorithm that these papers describe is the expectation

maximization (EM) algorithm [23]. The EM algorithm is an iterative method to calculate

maximum likelihood estimates (MLEs) and MAP estimates of the network parameters.

The EM algorithm alternates an expectation step with a maximization step. In the

expectation step, unknown quantities depending on the missing entries are replaced by

their expectations in the likelihood. In the maximization step, the likelihood completed in

the expectation step is maximized with respect to the unknown parameters, and the

resulting estimates are employed to replace unknown quantities in the next expectation

step. The algorithm continues until the difference between successive estimates is

smaller than a fixed threshold. [38]. Lauritzen states some difficulties with the use of EM

algorithm such as slow convergence rate and local maxima. He then suggests that the

gradient descent algorithm can be used as a possible alternative [38].

The third possible approach, introduced by Heckerman [3], is to use Gibbs sampling

(GS). Gibbs Sampling is one of the most popular Markov Chain Monte Carlo methods

for Bayesian inference. The GS algorithm generates a value for the missing data from

some conditional distributions and provides stochastic estimations of the posterior

probabilities [45]. To illustrate Gibbs sampling, let us approximate the probability

 49

density),|(h
s SDp θ for the configuration of parameters sθ of a particular network hS ,

given an incomplete data set },,{ 1 ND yy �= and a Bayesian network for discrete

variables with independent Dirichlet priors. To approximate),|(h
s SDp θ , we first

initialize the states of the unobserved variables in each case somehow (e.g., at random).

Therefore, we have a complete random sample cD . Then, we choose some variable ilX

(variable iX in case l) that is not observed in the original random sample D, and reassign

its states according to the probability distribution

� ″
″

′
=′

ilx
h

ilcil

h
ilcilh

ilcil
SxDxp

SxDxpSxDxp
)|\,(

)|\,(,\|((3.17)

where ilc xD \ denotes the data set cD with observations ilx removed, and the sum in the

denominator runs over all states of variable ilX . Then, this reassignment for all

unobservable variables in D is repeated producing a new complete random sample cD′ .

Using this data set, the posterior density),|(h
cs SDp ′θ is computed. Finally, the three

steps are iterated and the average of),|(h
cs SDp ′θ is used as our approximation [3].

Both the GS and EM algorithms use a basic strategy called the missing information

principle [41]: fill in the missing observations on the basis of the available information.

Unfortunately, these approximate methods are prone to errors when little and/or biased

information is available about the pattern of the missing data [26].

In recent years, an exciting solution to this problem was proposed by Sabestiani and

Ramoni [27]. The algorithm is called Bound and Collapse (BC), which is a deterministic

method to estimate conditional probabilities from incomplete data. The method bounds

 50

the set of possible estimates consistent with the available information by computing the

minimum and the maximum estimates that would be gathered from all possible

completions of the database. These bounds then collapse into a unique value via a

convex combination of the extreme points with weights depending on the assumed

pattern of missing data [28].

The basic intuition behind BC is that an incomplete database is still able to constrain

the possible estimates within a set and that, when exogenous information is available on

the pattern of missing data, this can be used to select a point estimate within the set of

possible ones. Let iX be a variable in the set []nXXX ,,�1= with parent variable iΠΠΠΠ .

Sebastiani and Ramoni [25] show that the maximum Bayesian estimate of ()ijikxp π| is

)|()(
)|()|(

),|(
ijikijij

ijikijikijk
ijik xnn

xnxn
Dxp

ππα
ππα

π •

•
•

++
++

= (3.18)

and the minimum Bayesian estimate is

)|()(
)|(

),|(
ijikijij

ijikijk
ijik xnn

xn
Dxp

ππα
πα

π
•

• ++
+

= (3.19)

where ijkα are the Dirichlet hyperparameters,)|(ijikxn π• and)|(ijikxn π• are maximum

and minimum achievable virtual frequencies of)|(ijikx π in the incomplete data,

respectively. The frequency)|(ijikxn π is the number of occurrences of)|(ijikx π in the

data. The maximum and minimum values of the virtual frequency are calculated by

filling the missing entries in order to have maximum and minimum number of

occurrences of)|(ijikx π and counting the number of occurrences of the entry)|(ijikx π ,

respectively. The probability interval defined by)],|(),,|([DxpDxp ijikijik ππ •
• contains

 51

all possible estimates consistent with D, therefore it is sound and it is the tightest

estimable interval.

The main feature of the BC method is its independence of the distribution of missing

data because it does not attempt to infer them: with no information on the missing data

mechanism, an incomplete database can only provide bounds on the possible estimates

that could be learned [9]. A complete database is just a special case, within available data

are enough to constrain the set of possible estimates to a single point. Another advantage

of this method is that the width of each interval accounts for the amount of information

available in D about the parameter to be estimated. Each interval represents a measure of

quality of probabilistic information conveyed by the database about a parameter: the

wider the interval, the greater the uncertainty due to the incompleteness of the database.

In this way, intervals provide an explicit representation of the reliability of the estimates,

which can be taken into account when the extracted BN is employed to perform a

particular task.

The second step of the BC method collapses the intervals estimated in the bound step

into point estimates employing a convex combination of the extreme estimates. This

convex combination can be determined either by using external information about the

pattern of missing data or by a dynamic estimation of this pattern from the available data.

Assume that some external information is available on the pattern of missing data.

One can encode this information as a probability distribution defining, for each datum in

the database, the probability of the datum being missing as

ijkiijik XxP φπ == ?),|(

 52

where ick ,,1�= , the number of state in iX is denoted by ic , and 1=�k ijkφ . The

notation ?=iX denotes that the state of iX is missing. The probabilities ijkφ can be

employed to determine accurate estimates of ijkθ , which is the probability of iX being in

the kth state given the parent states ijπ . A single probability for each state of the variable

iX given the parent states ijπ as

)|()(
)|(

),|(
ijikijij

ijilil
ijilk xnn

xn
Dxp

ππα
πα

π •• ++
+

= (3.20)

for kl ≠ . Therefore, the local minimum of)|(DE ijkθ can be calculated as

)|(max)(
)|(

),|(
ijikkhijij

ijikijk
ijik

l

xnn
xn

Dxp
ππα

πα
π •

≠

• ++
+

= , (3.21)

which shows that the difference between),|(Dxp ijik π• and),|(Dxp ijik
l π• depends

only on the cases in which the state of the child variable is known and the parent

configuration is not.

The distribution of missing entries in terms of ijkφ can be employed to identify a

point estimate within the interval)],|(),,|([DxpDxp ijikijik
l ππ •
• via convex

combination of extreme probabilities:

),|(),|(),,|(ˆ DxpDxpDxp ijikijkijik
kl

l
ijkijkijik πφπφφπ •

≠
• +=� . (3.22)

Finally, if data are missing only on the child variable (•• = ijijik nxn)|(π), then we get

•

•

++
++

=
ijijij

ijkijijikijk
ijkijik nn

nxn
Dxp

)(
)|(

),,|(ˆ
πα

φπα
φπ (3.23)

 53

so that the incomplete cases are distributed across the states of iX according to the prior

knowledge on the pattern of missing data. Note that Equation (3.23) is the expected

Bayesian estimate given the assumed pattern of missing data [9].

If there is no external information about the pattern of missing data, the BC method

works similar to EM and GS methods due to the use of the pattern of the available data.

In this case,)|(ijikijk xp πφ = and it can be estimated from the available data as

)(
)|(ˆ

ijij

ijikijk
ijk n

xn
πα

πα
φ

+
+

= . (3.24)

This estimate can then be employed to compute the convex combination of the extreme

probabilities. The estimate of),|(Dxp ijik π can be computed as

)(
)|(

)(

ˆ)|(
),|(ˆ

ijij

ijikijk

ijijij

ijkijijikijk
ijik n

xn
nn
nxn

Dxp
πα

πα
πα

φπα
π

+
+

=
++
++

= •

•

 (3.25)

which is a consistent estimate of ijkθ since),|(ˆ Dxp ijik π is a generalized version of the

Maximum Likelihood Estimate of ijkθ . If 0=ijkα , then the BC estimate becomes the

classical MLE of ijkθ . Clearly, the estimates of the conditional probabilities computed by

Equation (3.25) are the expected estimates and, as the database increases, they will be the

same estimates computed by GS [9].

Sebastiani and Romani compared the accuracy and the efficiency of EM, GS, and BC

methods. They found that both EM and GS provide reliable estimates of the parameters

and they are currently regarded as the most viable solutions to the missing data [28]. On

the other hand, both these iterative methods can be trapped into local minima and the

convergence detection can be difficult. Furthermore, they assume that the missing data

mechanism is ignorable; i.e., within each observed parent configuration, the available

 54

data is a representative sample of the complete database and the distribution of missing

data can therefore be inferred from the available entries [41]. When this assumption fails,

and the missing data mechanism is not ignorable (NI), the accuracy of these methods can

drastically decrease. Additionally, Sabestiani and Romani state that the computational

cost of these methods depends mainly on the absolute number of missing data, and this

dependency can prevent their scalability to large databases [28].

The most important characteristic of BC is its ability to represent the pattern of

available data and the assumed pattern of missing data explicitly and separately. The BC

algorithm provides probability intervals that can make the analyst aware of the range of

possible estimates, and hence of the quality of information on which inference is based.

The probability intervals used by BC provide a specific measure of the quality of

information conveyed by the database and explicit representation of the impact of the

assumption made on the pattern of missing data [9]. Therefore, BC does not depend on

the ignorability assumption [28]. Furthermore, BC reduces the cost of estimating each

conditional distribution of each variable Xi to the cost of one exact Bayesian updating

and one convex combination for each state of Xi in each parent configuration. This

deterministic process does not decrease the convergence rate and the convergence

detection relative to stochastic processes. Additionally, the BC method’s computational

complexity is independent of the number of missing data [28].

Consequently, the BC algorithm gives almost the same results as EM and GS when

the missing data is ignorable but it gives better results when the missing data mechanism

is not ignorable. The convergence rate of BC is also better than EM and GS. Thus, BC

learns the network faster than EM and GS methods [28]. The experimental comparison

 55

with EM and GS proves that a substantial equivalence of the estimates provided by these

three methods and a dramatic gain in efficiency using BC.

Ramoni and Sebastiani claimed the estimates provided by BC are more robust to

departure of the data from the true pattern of missing data. The computational cost of BC

is equal to the cost of two exact Bayesian updates−one for each extreme distribution−plus

the cost of a convex combination for each parameter in the BN [45].

One may ask what happens if the network structure is unknown in addition to

partially observable data. There is no easy answer to this question given in the literature.

Some possibilities are explored in the next section.

3.4 Unknown structure and unobservable variables

This is the most difficult case to resolve because the structure of the networks is unknown

and the variables are not fully observable. There is no significant amount of research for

this case. When some variables are sometimes or always unobserved, the techniques

stated in Section 3.2 for recovering the network structure become difficult to apply since

they essentially require averaging over all possible combinations of values of the

unknown variables [16]. There are two recently developed methods that recover the

Bayesian network structure with unobserved variables.

The first algorithm was proposed by Russell [29] and is called structural EM (SEM)

algorithm. The algorithm combines the standard EM algorithm, which optimizes the

network parameters, with structure search for model selection. The main idea of this

method is that it attempts to maximize the expected score of models instead of their

actual scores at each iteration. Russell proves a theorem that the SEM algorithm makes

 56

progress in each iteration on finding the better scoring network. Then, he states that if

one chooses a model that maximizes the expected score at each iteration, then a better

choice is provably made in terms of the marginal score of the network [29]. The SEM

algorithm is exciting since it attempts to directly optimize the true Bayesian score within

EM iteration rather than an asymptotic approximation.

The most problematic aspect of SEM is that it might converge to a sub-optimal

model. This could happen if the model generates a distribution that causes other models

to appear worse when the expected score is examined [29]. This difficulty becomes more

obvious when the ratio of missing information is higher. Russell suggests that, in

practice, the algorithm needs to be run from several starting points to get a better estimate

of the MAP model [29]. Another restriction of the SEM is that it focuses on learning a

single model. In practice, several high scoring models is necessary for better prediction.

Additional to this deficiency, the algorithm requires large number of computations during

learning. This is the main problem in applying this technique to large-scale domains.

The following paragraphs provide a computationally cheaper method.

The second algorithm was proposed by Sebastiani and Marino [27]. They were able

to show that BC algorithm could also learn the structure of the network with small

changes in the algorithm. The algorithm has the following form:

Pick a random network structure ΒΒΒΒ as starting point
Pick parameters for the network structure ΒΒΒΒ
Compute score for ΒΒΒΒ
Repeat
 Add an edge to the network, the network ΒΒΒΒ′ is created
 Estimate the posterior expectations of parameters of ΒΒΒΒ′ using BC method
 Estimate the posterior values of the network parameters
 Compute score for the network with ΒΒΒΒ′
 If score (ΒΒΒΒ ’) > score (ΒΒΒΒ)
 Then let ΒΒΒΒ := ΒΒΒΒ ’

 57

 Else return (ΒΒΒΒ)

This method is very similar to the search method described in Section 3.2 where we

had fully observed data. The only difference is that, in this case, we have partially

observed data or incomplete data. Therefore, the estimation of the parameters of the

network is also necessary. The BC method is employed to estimate the parameters of the

network. The estimation process is performed in each step, i.e., after adding each edge to

the network. Consequently, the method involves both parameter learning and structure

learning. However, the main attention was given to the parameter estimation part since it

is newly discovered method. The structure learning part can be modified as a greedy

search algorithm. In that case, “delete an edge” operator and “reverse an edge” operator

have to be incorporated to the algorithm.

There is a slight difference between SEM and BC methods and the problem of self-

organizing agents in terms of required data structure. The SEM and BC algorithms

require a certain minimum length database. Unfortunately, there will not be a prior

database to work with at the beginning of the agents’ exploration of the environment.

Thus our learning method has to be online: estimation of the network structure and

parameters will be performed simultaneously with the gathering of new entries in the

database. So, our method has to learn the network while the agents are exploring the

environment and organizing themselves to manage a common task. Using the current

methods this problem cannot be solved because they do not contain an online learning

algorithm. In the next chapter we propose a method that allows the agents learn the

environment while they are exploring the environment and organizing a common task.

 58

CHAPTER 4

Online Bayesian Network Learning and Multi-agent Organization

This chapter introduces online Bayesian network learning in detail. The structural and

parametric learning abilities of the online Bayesian network learning are explored. The

chapter starts with revisiting the multi-agent self-organization problem and the proposed

solution. Section 4.2 explains the proposed Bayesian network learning.

4.1 Outline of the problem statement and the proposed solution

As stated in the introduction, we attempt to find how a common task can be performed by

a multi-agent self-organizing system. The agents are independent in terms of their model

of environment and their actions. Each agent explores the environment and decides its

actions by itself. Agents will have no information about the environment at the

beginning of their exploration of the environment. They will explore the environment,

model the environment and take actions to change the environment according to the

common task. We attempt to solve these problems by utilizing Bayesian networks and

influence diagrams.

Bayesian networks are employed to model the environment. Because the agents have

no or limited information about the environment at the beginning of their exploration, an

online Bayesian network learning method will be used. Influence diagrams will be

employed to obtain the agents’ actions. Bayesian networks and influence diagrams are

combined to produce a decision-theoretic agent [54] in a multi-agent system. Detailed

 59

discussion on the decision-theoretic agent design is presented in Chapter 5. The Bayesian

network learning is explored in the next section.

4.2 Online Bayesian network learning

Bayesian network learning is examined broadly in Chapter 3. There are four cases of

Bayesian network learning depending on the availability of the network and the data.

The unknown structure and incomplete data case is the nearest case to our problem. Our

network structure is not defined in advance and the sensor data may not be complete. On

the other hand, for simplicity we will assume the data is complete during the simulations.

The agents do not have significant amounts of prior knowledge about the environment.

Therefore, the BN will be formed during the agents’ exploration of the environment.

Each new data case will affect the structure of the network.

Online Bayesian network learning consist of two parts, namely parameter learning

and structural learning. Parameter learning is the calculation of the conditional

probability table elements of each node in a given Bayesian network. In this research, we

use a modified version of Maximum Likelihood Expectation method to calculate the

network parameters. Maximum likelihood estimation method is modified so that it has a

closed form when the probabilities need to be updated. The details of the parameter

learning are provided in Section 4.2.1.

Structural learning is the problem of finding the network that represents the data the

best. This involves two parameters, complexity of the network and fitness of the network

to the data. The structural learning process tries to find the optimal network that provides

optimal complexity and fitness. The main building block in structural learning is the

search algorithm that generates the network with the highest score. The structural

 60

learning is presented in Section 4.2.2. The following section provides detailed

description of the parameter learning in the online Bayesian learning.

4.2.1 The parameter learning

In Chapter 3, we introduced two types of parameter learning techniques used in the

literature, MLE and Bayesian estimation. It is stated that with a database having a large

number of data cases, these two methods converge to each other. The latter can take

prior knowledge if it is available. Also, it is shown that the latter has a closed form. In

this section we have redefined the Maximum Likelihood calculation to have a closed

form calculation. Because MLE is computationally simpler than Bayesian estimation, it

is employed in our parameter learning. The following paragraphs explain how the

parameter learning is performed by modified MLE method.

Let },,{X mXXX �21= be the discrete variables (nodes) in a Bayesian network, B.

Assume that we know that the node jX is the child of the node iX , which means

ji XX → . In this case, the parameter learning has to calculate the values in the

conditional probability table in the node jX . The conditional probability can be

calculated by utilizing using the fundamental formula for probability calculus as in

Equation (4.1)

)(
),(

)|(
j

ji
ji XP

XXP
XXP = (4.1)

Since MLE is employed in parameter learning, the probabilities can be calculated by

utilizing the natural frequencies of the data cases. A natural frequency of a data case is

calculated by counting the number of occurrences of the data case in the database. For

individual probabilities, we count the number of occurrences of a state of a variable in the

 61

database. Let nij be the number of occurrences of the state j of the ith variable in the

database and n is the total number of data cases in the database. Using these frequency

values, we can calculate the probabilities in the following way:

n
n

n
xXn

xXP ijji
ji =

=
==

)(
)((4.2)

Thus, the conditional probabilities can be calculated by using the individual probabilities

in Equation (4.1). The conditional probability)(ji XXP → can be obtained as in the

following equations.

)(
),(

)|(
j

ji
ji XP

XXP
XXP = (4.3)

n
XXn

XXP ji
ji

),(
),(= (4.4)

n
Xn

XP j
j

)(
)(= (4.5)

As can be seen in Equations (4.4) and (4.5), the denominators are the same in the both

terms. When we put these two terms into Equation (4.3), the denominators cancel each

other as shown in the following equation.

)(
),(

)(

),(
)|(

j

ji

j

ji

ji Xn
XXn

n
Xn

n
XXn

XXP == (4.6)

In the resulting equation, there are only two natural frequencies. There is no need to

involve the number of elements in the database for conditional probability calculations.

This technique simplifies the computations in the parameter learning. Equation (4.6) has

a closed form because if a new data case is encountered, we can easily update the

corresponding natural frequencies accordingly to update the conditional probabilities.

 62

The following example provides practical results to the conditional probability

calculation technique. For the cases that have not seen yet, the uniform probability

distribution is used to fill the conditional probability tables in the nodes.

Let X1, X2, and X3 be the system variables with two possible states, 0 and 1, in a

Bayesian network, B. Assume that we know the system dynamics (dependencies),

21 XX → and 32 XX → . Therefore, we need to calculate the conditional probabilities,

)|(12 XXP and)|(23 XXP . Let D be the database of cases to calculate the conditional

probabilities, shown in Table 4.1.

Table 4.1. The database to compute the parameters of the BN.

X1 X2 X3
0 0 0
1 0 1
1 1 0
0 1 1
1 0 0
1 0 0
0 1 0
1 1 1
0 1 0
0 1 1

For example, we can calculate the probabilities of the variable X1 as in the following

equation.

500
10
50

0 1
1

1 .)(
)(

)(==�=
=

== XP
n

Xn
XP (4.7)

Now, let us calculate the conditional probability of)|(00 12 == XXP by counting

corresponding frequency values,),(00 12 == XXn and)(01 =Xn .

 63

20
5
1

0
00

00
1

12
12 .

)(
),(

)|(==
=

==
===

Xn
XXn

XXP (4.8)

8001 12 .)|(=== XXP (4.9)

Similarly,

60
5
3

1
10

10
1

12
12 .

)(
),()|(==

=
==

===
Xn

XXnXXP (4.10)

4011 12 .)|(=== XXP (4.11)

The conditional probability)|(23 XXP can be easily calculated by counting the

corresponding natural frequencies.

The above technique is also useful to update the probabilities when a new case is

introduced to the network. When a new case is encountered, the related frequency counts

can be updated to calculate the new probabilities. Jensen introduces a similar updating

scheme in [1] as fractional updating.

The above technique works if the state of 3X as well as the states of its parents are

known. This could be a problem if the states of the parents are not known when the

probability update is being done. In our problem, the network update is done after new

data are gather for all the variables in the network. Therefore, the above restriction does

not apply to our problem.

For online Bayesian network learning, the parameter learning is not enough because

the agents do not know the system dynamics in advance. Thus, the structural learning

part is also necessary to discover the system dynamics. The following section presents

the details of the structural learning techniques explored in this research.

 64

4.2.2 The structural learning

Structural learning is finding the best network that fits the available data and is optimally

complex. This can be accomplished by utilizing a search algorithm over the possible

network structures. In this research, a greater importance is given to the search algorithm

because we have assumed that the data will be complete. That is, each element of the

database is a valid state of a variable. If there are non-applicable entries in the database,

then the database is said to be incomplete.

The greedy search algorithm, explained in Chapter 3, is employed to accomplish the

structural learning in the online Bayesian network learning. The search algorithm is a

score based searching algorithm. The search algorithm is evaluated in terms of the score

function used and the technique used to create the candidate networks, such as adding an

edge and removing an edge.

The greedy search algorithm is also upgraded to have some online properties such as

updating the network parameters and its structure adaptively. The outline of the search

algorithm can be given as follows:

1. Collect data

2. Define the variables from the available data

3. Start with a network with no arcs

4. Estimate the parameters (only independent probabilities) of the BN using the

MLE method using initial data.

5. Generate candidate networks by adding arcs in a defined fashion (heuristic or

exhaustive)

 65

6. Calculate the scores of the candidate networks and choose the network with the

highest score.

7. Do step 5 until no arc addition increases the likelihood of the network.

8. Update the network parameters along with new data

9. Update the network structure:

• If enough new data obtained, go to step 1 and generate a new network

structure.

• If no structural update is necessary go to step 7.

The algorithm above is a generic greedy search algorithm. How the arc addition is

done and which scoring method is used are not specified in the above algorithm. In the

following section we explore the search algorithms used in this research. In the

algorithms, the arcs are added heuristically and exhaustively.

4.2.2.1 Search algorithms

A Bayesian network is not allowed to have a cycle because of the computational

difficulties. A cycle in a Bayesian network lead to a "circular reasoning" between the

variables. For example, if the dependencies in above network are: 21 XX → , 32 XX → ,

and 13 XX → , a cycle will be formed. If evidence is entered into the variable 1X , the

Bayesian network will run the evidence to 2X , then to 3X . Then, The evidence will

travel to 1X because 1X depends on 3X . The evidence may run in the network forever

because all the variables depend on each other in a circular way.

 66

A heuristic arc addition is employed not to have a cycle in the Bayesian network

while generating the Bayesian structure. An exhaustive arc addition is also employed to

explore more network possibilities without limitation. In the exhaustive arc addition

algorithm, a cycle check is employed before and arc is added. The following section

presents the details of heuristic and exhaustive search algorithms.

Heuristic search

In the heuristic search algorithm, the variables of the system have to be ordered in a

certain way to prevent cycles from being created. The decision variables should be in the

last columns in the database; and, the first columns of the database should be filled with

the variables without parents, independent variables. After placing the independent

variables in the first columns, the children of the independent variables should be placed

in the following columns. The rest of the columns are filled with the children of the

previously placed variables. Ordering of the variables is necessary because the heuristic

arc addition adds the arcs from the first variables to the last variables. Because of the

ordering, we need to have some knowledge about the variables. This does not mean that

we need to know the dependencies between the variables. For example, let B be a

Bayesian network with three variables, { }321 XXX ,, . If we know the variable 1X is the

first variable and the variable 2X is the decision node. Then the column order will be

{ }231 XXX ,, .

The heuristic search starts with adding and removing arcs from the each variable to

the last variable. Let the network have n variables. After adding an arc, the algorithm

calculates the network score, records the score in a list, and removes the arc. The

 67

algorithm finds the arc that gives the highest increase in the network score. Let us

assume that the arc from the kth variable to the last variable, n, gives the highest increase

in network score. Then, the algorithm adds the arc from the kth variable to the last

variable. After the arc is added, the algorithm adds and removes arcs from the remaining

variables to the last variable. Then, the algorithm chooses the arc with the highest score

increase and adds the arc to the network. This continues until no increase in the network

score can be obtained by adding an arc to the last variable. Then, the algorithm starts

adding arcs from the variables },,,{ 221 −n� to the (n-1)th node. The algorithm adds

arcs to (n-1)th node until there is no increase in the network score. The algorithm stops

when it adds an arc from the first variable to the second variable. The following is the

heuristic search algorithm used in this research.

1. Collect data

2. Define the variables from the available data

3. Start with a network with no arc.

4. Estimate the parameters (only independent probabilities) of the BN using the

MLE method using initial data

5. Add a new arc from the ith variable to the jth variable to generate a network

candidate and remove the arc. Repeat the process with },,,{ 121 −= ji � and

generate networks (ΒΒΒΒ 1,…, ΒΒΒΒ j-1). Start j from n and decrease j by 1.

6. Calculate the scores of the candidate networks and record them in a list.

7. Find the network (ΒΒΒΒ ’) with the maximum score and keep it for the next step.

8. Repeat the steps 5, 6, and 7 until there is no increase in the network score.

9. If 1>j , then go to step 5.

 68

10. Update the network parameters along with new data

11. Update the network structure:

• If enough new data obtained, go to step 1 and generate a new network

structure.

• If no structural update is necessary go to step 10.

Consequently, the heuristic search algorithm adds arcs only in the forward direction

because this protects the network from having cycles and complex network structure. On

the other hand, there is a price of arranging the variables at the creation of the database in

the heuristic algorithm. Since the agents will not have much knowledge about the

environmental variables, it is hard to arrange the variables at the beginning. There is a

need for a better search algorithm that explores more possibilities in the network. The

following paragraph introduces another searching algorithm that eliminates the arranging

the variables, namely exhaustive search.

Exhaustive search

The exhaustive search algorithm explores all the possible arcs in the network during its

execution. The algorithm starts adding arcs from the ith variable to the jth variable where

},,,{ ni �21= , },,,{ nj �21= , ji ≠ . This covers)(1−⋅ nn arcs throughout the network.

The algorithm calculates the network score for each arc addition. Then, it chooses the arc

with the highest increase in the network score. The algorithm repeats the above steps

until there is no increase in the network score.

There are two major drawbacks in the exhaustive search algorithm. First, the number

of arcs to be tried might become intractable when the number of variables is large.

 69

Second, during the search, the algorithm might introduce cycles to the network because it

can add an arc in any direction. An additional algorithm is incorporated to the search

algorithm to keep track of cycles. Using the additional algorithm, the search algorithm

checks whether the new arc introduces a cycle or not. If the arc introduces a cycle, the

algorithm does not add the arc to the network. The following is the exhaustive search

algorithm used in this research.

1 Collect data

2 Define the variables from the available data

3 Start with an empty network

4 Estimate the parameters (only independent probabilities) of the BN using the

MLE method using initial data

5 Add a new arc from the ith variable to the jth variable to create a candidate

network and remove the arc. Repeat the process for every value of i and j where

},,,{ ni �21= , },,,{ nj �21= and ji ≠ . This step creates m possible networks

(ΒΒΒΒ 1,…, ΒΒΒΒ m). Algorithm creates)(1−×= nnm networks in first visit to step 5.

6 Remove the network with cycles from the candidate list.

7 Calculate the scores of the candidate networks and record it in a list.

8 Find the network (ΒΒΒΒ ’) with the maximum score and keep it for the next step.

9 Do step 5 through 8 until there is no increase in the network score.

10 Update the network parameters along with new data

11 Update the network structure:

• If enough new data obtained, go to step 1 and generate a new network

structure.

 70

• If no structural update is necessary go to step 10.

The search algorithms are explained in detail. There is a need to analyze the

complexity of the search algorithm before there are implemented. The following section

gives the complexity analysis of both search algorithms.

Complexity analysis for search algorithms

As stated earlier, the heuristic search algorithm needs prior knowledge about the

variables in terms of their order in the database. On the other hand, the number of

iterations in the heuristic search algorithm may be tractable. In the heuristic search, the

algorithm tries)(1−n arcs in the first trip from step 5 to step 7. The algorithm repeats

steps 5 through 7 until there is no increase in the network score. Assuming the algorithm

adds an arc in every trip, the number of arcs tried will be one less then the previous trip.

Algorithm can repeat step 5 through 7 at most)(1−n times. In)(1−n trips, the

algorithm generates 121 ++−+− �)()(nn networks candidates. When the algorithm

reaches step 8, the algorithm loops back to step 5 and repeats the same process for the

variables },,,{ 221 XXX nn �−− . Therefore, after the first loop, the algorithm generates

121 ++−+− �)()(nn network candidates. The complexity of the heuristic search

algorithm is denoted as Ch.

In the following complexity analysis, each loop shows the number of network

candidates tried until the algorithm reaches to the step 8. Since the algorithm will repeat

itself for)(1−n variables, the analysis has)(1−n loops as the following.

Loop 1))(()()()(1211121 −+++−−=++−+− nnnnn ��

 71

2
1

2
11)()()(−

�
−−−�

nnnnnn

Loop 2
2

21132))(()()(−−
=++−+−

nnnn �

�

�

Loop (n-1). 1
2

21 =−−−−))())(((nnnn

If we add the number of candidate networks from each loop, the following can be

obtained:

2
223212

2
21211

222))(()()(

))())((())(()(

−−++−+−=

−−−−++−−+−=

nnnnC

nnnnnnnnC

h

h

��

��

Then, we can further modify the equation as follows:

222 231))(()()(−−++−+−= nnnnCh �� (4.12)

Since each element in Ch is less than n2, we can state that

32 3 nnnCh <−<)((4.13)

Equation (4.13) illustrates the complexity of the heuristic search. The following

paragraphs will explore the complexity of the exhaustive search algorithm.

The exhaustive search algorithm tries every possible arc in the network during its first

visit to step 5. In a graph with n nodes, there can be)(1−nn possible directed edges in

the graph [30]. Therefore, the algorithm generates)(1−nn network candidates and the

complexity of the first visit is)(1−nn . Then the algorithm continues until it reaches to

step 9 and loops back to step 5 until there is no increase in the network score.

 72

After the first loop, the complexity decreases by 1 in each step because the algorithm

will not try the arc added in the previous step. The following presents the complexity

analysis of the exhaustive search algorithm. First, the complexity is calculated for each

loop. Then, they are added to obtain the complexity of the algorithm.

Loop 1)(1−nn

Loop 2 11 −−)(nn

�

Loop N 11 +−− Nnn)(

The exhaustive search algorithm does not perform a certain number of loops. The

algorithm will continue until there is no increase in the network score. Therefore, we will

assume that the algorithm end after N loops for the complexity calculations. If we add

the complexities of all the loops together, the complexity of the exhaustive search, Ce,

becomes the following.

))(()(1211 −+++−−= NNnnCe � (4.14)

2
11)()(−

−−=
NNNnnCe (4.15)

If the network has great number of arcs, then the complexity of the algorithm becomes

large. For example, if the algorithm ends in step nN = , the complexity becomes

2
112

2
11

2
2)()()()(−−−=−−−= nnnnnnnnCe (4.16)

2
121)()(−−

=
nnnCe for Nn = . (4.17)

In general, the number of nodes in a Bayesian network, n, is much larger than 1.

Therefore, we can reevaluate the complexity by assuming 1>>n . The following

 73

equation represents the computational complexity of the exhaustive search algorithm

when the number of steps is equal to the number of variables.

3
3

2
2

2
2 nCnnnnC ee ≅�=⋅⋅≅ (4.18)

As can be seen above, the complexity of the exhaustive algorithm is larger than the

complexity of the heuristic algorithm when nN = .

For the networks with large number of variables (nodes), the algorithm does not stop

when nN = . Let us calculate the worst case scenario for the exhaustive algorithm. The

algorithm might explore all possible arcs in the network, which is equal to)(1−nn . This

is true because a complete graph with n nodes has)(1−nn possible directed edges [30].

Therefore, we will replace N with)(1−nn in the complexity analysis. Then, the

complexity of the exhaustive search algorithm becomes the following.

2
11111

2
11])()[()()()()(−−−−−−=−−−= nnnnnnnnNNNnnCe (4.19)

2
11

2
1112 222222)()()()()(−−−=−−−−−= nnnnnnnnnnCe (4.20)

We can simplify the equation above by assuming 1>>n . In this case, the complexity of

the algorithm becomes the following.

22
1

2

422222 nCnnnnnC ee ≅�

−=−⋅≅)((4.21)

Two search algorithms are introduced to learn the structure of a Bayesian network in

the previous sections. The heuristic search algorithm is simple and explores a limited

number of network structures. On the other hand, the exhaustive search algorithm is

complex and explores many possible network structures. The complexity of the

 74

exhaustive algorithm is approximately n-fold larger than the complexity of the heuristic

search algorithm. Since we calculate the quality (score) of the networks to find the best

network, the search algorithm is a score based algorithm. The following section presents

the scoring functions explored in this research.

4.2.2.2 Network scoring functions

Three scoring functions are employed in this research, namely Log-Likelihood, Minimum

description length (MDL), and Bayesian (BDE) scores. The Log-Likelihood method

measures the likelihood of the network given the available data. The MDL also uses

likelihood of the network but it includes the measure of the network's complexity. The

Bayesian score involves the calculation of the probability of a network given the data.

Bayesian scoring method also penalizes complex networks as the MDL scoring. If the

length of the database is large enough these two methods converge to each other [54].

The following sections provide the details of the scoring methods used in the research.

Log-Likelihood scoring

The Log-Likelihood score of a network, B, is obtained by calculating the likelihood of

the data, D, given the network, B, and the network parameters, Bθ . After calculating the

likelihood of the data, a natural logarithm is applied to get the Log-Likelihood of the

data. The following formulas explain the details of the Log-Likelihood calculation.

),B|():B(BθDLDScoreL = (4.22)

∏=
m

mdPDL),B|][(),B|(BB θθ (4.23

 75

In the above formula,][md represents the mth data case in the database. Let us take the

logarithm of the likelihood. The logarithm converts the multiplication in to a summation.

),B|(log),B|(BB θθ DLDl = (4.24)

�=
m

mdPDl),B|][(log),B|(BB θθ (4.25)

This is basically equal to calculating the probability of each data case in the database,

taking their logarithms and adding them together. For example, assume that the network

given in the previous section has the relations 31 XX → and 23 XX → . Then, we can

calculate the log-likelihood of the data with the following equation.

��

�

++

=

m
X

m
X

m
XB

xmXPxmXP

mXPDl

),|][(log),|][(log

)|][(log),B|(

32

1

113103

1

θθ

θθ

),|][(log),|][(log || 312302 312302 xX
m

xX
m

xmXPxmXP θθ �� ++ (4.26)

In the log-likelihood approach, the score of the network increases as long as the length of

the database and the number of arc in the network increase. Therefore, the search

algorithm tries to add as many arcs as possible to the network to get the highest scoring

network. At the end of the search, the algorithm ends up with almost a complete

network. For the networks with a large number of nodes, this might cause a great

increase in complexity of the network. To overcome the complexity problem, we need to

find out a way to include the complexity of the network to the scoring function. If the

network gets complex, the scoring function should decrease accordingly. The following

scoring method handles the complexity problem by introducing the complexity parameter

in the scoring function.

 76

Minimum description length scoring

The MDL method combines the likelihood of the data and the complexity of the network

to find optimally complex and accurate networks. The MDL method penalizes networks

with complex structures. The MDL has two parts, the complexity of the network,

LNETWORK, and the likelihood of the data, LDATA. Then, the MDL score can be calculated

by the following.

NETWORKDATAMDL LLScore −= (4.27)

The complexity part involves the dimension of the network,)Β(Dim , and structural

complexity of the network,)Β(DL . The dimension of the network can be calculated

using the number of states in each node, Si. The following equation illustrates the

dimension of the network.

∏�
∈=

−=
)(

)()B(
ixpaj

j

N

i
i SSDim

1
1 (4.28)

where N is the number of nodes in the network. Let M be the number of data cases in the

database. Using the central limit theorem, each parameter has a variance of M . Thus,

for each parameter in the network, the number of bits required is given by the following.

2
MdMd loglog =�= (4.29)

The structural complexity of the network depends on the number of parents of the nodes.

The following formula calculates the structural complexity.

�
=

=
N

i
i NkDL

1
2)(log)B((4.30)

 77

where ik is the number of parents the node iX has. Finally, the following formula

presents the complexity part of the MDL score by combining the dimension of the

network and the structural complexity.

)Β()Β(log DLDimMLNETWORK +=
2

 (4.31)

�∏�
=∈=

+��
�

�
�
�
�

�
−=

N

i
i

xpaj
j

N

i
iNETWORK NkSSML

i 1
2

1
1

2
)(log)(log

)(
 (4.32)

The likelihood of the data needs to be defined after presenting the network complexity

part of the MDL score. The likelihood of the data given a network can be calculated by

using cross-entropy. The difference between the distribution of the data (P) and the

estimated distribution (Q) from the network. Kullback-Leiber and Euclidean distance are

the commonly used cross-entropy methods. Therefore, the likelihood of a data can be

calculated by measuring the distance between two distributions. If we use the Kullback-

Leiber cross-entropy, the likelihood of the data can be calculated by the following.

�
=

=
M

i i

i
i q

p
pDl

1

log),Β|(Βθ , (4.33)

�
=

=
M

i i

i
iDATA q

p
pL

1

log (4.34)

where ip is the probability of data case i using the database and iq is the estimate of the

probability of data case i from the network parameters. If Euclidean distance measure is

employed to calculate the distance between the distributions, the likelihood of the data is

calculated by the following.

()�
=

−=
M

i
ii qpDl

1

2)�,Β|(Βθ (4.35)

 78

()�
=

−=
M

i
iiDATA qpL

1

2 (4.36)

After defining the likelihood and complexity parts, the MDL score can be given as

)Β()Β(log),Β|():Β(Β DLDimMDlDScoreMDL −−=
2

θ (4.37)

Another commonly used scoring method is Bayesian score as explained in Chapter 3.

Now, we will provide the details of the Bayesian scoring technique. Bayesian scoring is

calculated by utilizing the Dirichlet parameters of the network.

Bayesian scoring

Bayesian statistics tells us that we should rank a prior probability over anything we are

uncertain about. In this case, we put a prior probability both over our parameters and

over our structure. The Bayesian score can be evaluated as the probability of the

structure given the data:

)(
)()|()|():(

DP
PDPDPDScoreBDE

ΒΒ=Β=Β (4.38)

The probability)(DP is constant. Therefore, it can be ignored when comparing different

structures. Thus, we can choose the model that maximizes)B()B|(PDP . Let us

assume that we do not have prior over the network structures. Assume that we have

uniform prior over the structures. One might ask whether we get back to the maximum

likelihood score. The answer is 'no' because the maximum likelihood score for B was

),B|(BθDP , i.e. the probability of the data in the most likely parameter instantiation. In

Bayesian scoring, we have not given the parameters. Therefore, we have to integrate

over all possible parameter vectors:

 79

� ΒΒΒ ΒΒ=Β θθθ dPDPDP)|(),|()|((4.39)

This is, of course, different from the maximum likelihood score.

To understand the Bayesian scoring better, consider two possible structures for a two-

node network, where] [B BA=1 and][B BA →=2 . Then, the probability of the data

given the network structures can be calculated by the following equations.

�=
1

0
1],[]),[|(),()B|(BABABA dDPPDP θθθθθθ (4.40)

�=
1

0
2 101010

],,[]),,[|(),,()B|(|||||| aBaBAaBaBAaBaBA dDPPDP θθθθθθθθθ (4.41)

The latter is a higher dimensional integral, and its value is therefore likely to be

somewhat lower. This is because there are more numbers less than 1 in the

multiplication. Multiplying the numbers less than 1 results in a number smaller than any

of the number in the multiplication. For example, multiplying three small numbers (less

than 1) is likely to be smaller than the number obtained by multiplying two small

numbers (less than 1). Since the probabilities in the integrals are less than 1, the above

argument applies to the integrals. Therefore, it can be said that the higher dimensional

integral is likely to have lower value that the lower dimensional integral. This idea

presents preference to the networks with fewer parameters. This is an automatic control

in the complexity of the network.

Let us analyze)B|(DP a little more closely to understand the Bayesian score

calculations. It is helpful to first consider the single parameter case even though there is

no structure learning to learn there. In that case, there is a simple closed form solution

for the probability of the data given by the following.

 80

)(
)()(

)(
)()(

n
nn

DP
+Γ

+Γ⋅+Γ
⋅

+Γ
Γ=

α
αα

αα
α 1100

10

 (4.42)

where][mΓ is equal to)!(1−m for an integer m, n is the number of data cases in the

database, 0n and 1n are the number of zeros and ones, respectively, and 10 ααα += .

Let us assume we have 40 zeros and 60 ones in the database. Assuming that we have

uniform priors, 310 ==αα , the probability of data is

)(
)()(

)()(
)()(

1006
603403

33
6

+Γ
+Γ+Γ⋅

ΓΓ
Γ=DP (4.43)

The probability for a structure with several parameters is simply the product of the

probabilities for the individual parameters. For example, in our two-node network, if the

same priors are used for all three parameters, and we have 45 zeros and 55 ones for the

variable B, then, the probability of the data for the network 1B can be calculated as

)(
)()(

)()(
)(

)(
)()(

)()(
)()B|(

106
5848

33
6

106
6343

33
6

1 Γ
ΓΓ

ΓΓ
Γ⋅

Γ
ΓΓ

ΓΓ
Γ=DP (4.44)

For the second network, let us assume that 2300 =α , 2201 =α , 2910 =α , and 2611 =α ,

where),(jiij ban=α is the number of cases with iaA = and jbB = . Then, we can

compute the probability of the data for the network 2B using the following equation.

)(
)()(

)()(
)(

)(
)()(

)()(
)(

)(
)()(

)()(
)()B|(

355
326329

33
6

345
322323

33
6

106
6343

33
6

2

+Γ
+Γ+Γ

ΓΓ
Γ⋅

+Γ
+Γ+Γ

ΓΓ
Γ⋅

Γ
ΓΓ

ΓΓ
Γ=DP

 (4.45)

The intuition is clearer. The analysis shows that we get a higher score by multiplying a

smaller number of bigger factorials rather than a larger number of small ones.

 81

It turns out that if we approximate the log posterior probability, and ignore all terms

that do not grow with M, we can obtain

)B(log)B,|()B|(log B DimMDlDP
2

−≈ θ (4.46)

i.e, as M grows large, the Bayesian score and the MDL score converge to each other

using Dirichlet priors. In fact, if we use a good approximation to the Bayesian score, and

eliminate all terms that do not grow with M, then we are left exactly with MDL score

[54]. Therefore, it can be concluded that the Bayesian score gives us, automatically, a

tradeoff between network complexity and fit to the data.

The Bayesian score is also decomposable like the MDL score since it can be

expressed as a summation of terms that corresponds to individual nodes. In this research,

we have decomposed the Bayesian score to make efficient calculations and a uniform

distribution is employed for Dirichlet priors. The simulation results will show that the

Bayesian score provides optimally complex and accurate network structures.

The online Bayesian network learning is proposed to model the environment for an

agent. Online Bayesian network learning has both structural and parametric learning

because it can discover the structure of the network and the conditional probabilities in

the network. After explaining the proposed Bayesian network learning, there is a need to

explain how the proposed Bayesian network learning and influence diagrams can be

combined to for an intelligent agent structure. The next chapter describes the design

process of the decision-theoretic intelligent agent and how a multi-agent self-organization

system can be designed by employing these agents.

 82

CHAPTER 5

Multi-agent self-organization system

As discussed in Chapter 1, in the literature, several methods are employed in multi-agent

learning and organization problem such as temporal difference (TD(λ)), genetic

algorithms, and learning classifier systems. The advantages and disadvantages of these

methods are also examined in Chapter 1. The main disadvantage of these methods is that

they perform badly when the data is not fully observable. Additionally, they do not have

the desired bi-directional learning property. We proposed Bayesian networks to ease

these problems because they can perform well with the partially observable data and,

more importantly, Bayesian networks have the bi-directional learning ability. The

following paragraphs will illustrate how Bayesian networks can solve the multi-agent

self-organization problem with the help of influence diagrams. The next section will

explain the structure of an agent, which is designed by a Bayesian network and an

influence diagram. Section 5.2 and Section 5.3 will examine a multi-agent organization

system and the bi-directional learning feature of the proposed multi-agent self-organizing

system. Finally, Section 5.4 presents the system representation of the decision-theoretic

intelligent agent design.

5.1 A decision-theoretic intelligent agent design

In Chapter 1, an agent was defined as an entity that can be viewed as perceiving its

environment through sensors and acting upon that environment through effectors [54].

Therefore, an agent should have sensors and actuators to interact with the environment.

 83

On the other hand, an intelligent agent is an agent that reasons with the sensory

information and creates optimal actions to satisfy a goal. Therefore, a reasoning system

and a decision support system are necessary elements of an intelligent agent. Bayesian

networks and influence diagrams can be considered as reasoning systems and decision

support systems respectively.

Communication between the agents is also necessary to establish organizational

behaviors in a multi-agent self-organizing system. Therefore, an intelligent agent should

have sensors, actuators for actions, a Bayesian network, an influence diagram and a

communication system.

An intelligent agent has five levels: sensors, belief, preferences, capabilities and

actions. In this design, Shohams’ agent oriented programming paradigm is followed.

According to this paradigm, the mental state of agents can be represented in terms of their

belief, capabilities, and preferences [4]. The belief level consists of a Bayesian network

(VA or VE) and its nodes represent agent’s possibly uncertain beliefs about the world. The

nodes in VA represent variables related to the other agents in the system. The nodes in VE

represent the variables related to the agent itself. The preference level is represented as a

utility node (UA and UE) that expresses the desirability of a world state. The capability

level is represented by decision nodes (VDA and VDE) that contain alternative courses of

action, which the agent can execute to interact with the world [42]. This is also called

belief, desire, and intention (BDI) architecture in the literature [42].

Each agent models other agents as an influence diagram by modeling other agents'

variables (VA), utility function (UA), and decision nodes (VDA). Duryadi and

Gmytrasiewicz stated that other agents’ models could be learned using influence

 84

diagrams [42]. As a modeling representation tool, the influence diagram is able to

express an agent’s belief, capabilities and preferences, which are required if we want to

predict the agent’s behavior [42]. Duryadi and Gmytrasiewicz established the learning of

other agents’ behaviors in the following way: Given an initial model of an agent and a

history of its observed behavior, new models can be constructed by refining the

parameters of the influence diagram in the initial model. The details of the learning

method can be seen in [42].

Agents also need a model of the environment. Bayesian networks can model the

environment efficiently, as stated in Chapter 2. The nodes in VE model the environment

and provide beliefs about the environment. Then, these beliefs are dragged into the utility

node UE. The utility node UE represents the agent’s own preference that is defined by

the goal of the multi-agent organization system. The utility UE is a function of the belief

about the environment (VE), the expected actions of the other agents (A2), its possibly

course of actions (A1). Figure 5.1 presents the proposed intelligent agent model.

Figure 5.1. The structure of an intelligent agent.

VE VA

VDE (A1) VDA (A2)

UE

A
ct

io
ns

Sensors

UA

M
od

el
 o

f o
th

er
 a

ge
nt

s

Belief

Preferences

Capabilities

Sensor

Action

 85

After establishing the world model and the utility function, the agent needs to take an

optimal action according to the principle of maximum expected utility (PMEU) [54]. The

PMEU lets the agents choose the best action from its set of action (A1), given the belief

about the environment (VE), and other agents’ expected behavior (A2). Formally, it can

be expressed as

),,(maxmax 21
11

AAVfU EaEa ii

= (5.1)

where),,,{ nE XXXV �21= , the variables iX are the nodes of the Bayesian network VE,

),,,{ kaaaA 112111 �= is the action set of the agent,),,,{ laaaA 222212 �= is the expected

action set of the other agents. Therefore, an agent takes its actions after evaluating the

environment and the other agents. This property will help to obtain self-organization

ability of the system. Each agent first check to see if other agents are performing task

before it takes its actions to perform the task.

5.2 Multi-agent self-organizing system.

In the previous section, the structure of an agent is presented. This section will examine

the learning problem when we have more than one agent. The agent described in the

previous section is specifically designed for multi-agent systems. In a multi-agent

environment, coordination requires an agent to recognize the current status and to model

the actions of the other agents to decide on its own next behavior [8]. That’s why agents

model other agents as well as the environment. A computational difficulty may arise if

the number of agents is large in the system because agents model the internal structure of

other agents in their network. The Bayesian network in the agent may become so large

that the calculation of the conditional probabilities might become difficult. The agents

 86

are independent but they take their actions by considering the other agents. Thus, agents

take their actions together in coordination. Formally speaking, the agent’s utility function

UE depends on the expected actions of other agents (A1), see Equation (5.1).

We can explain this ability with an example. Suppose we have two dogs and a sheep,

as in the sheepdog problem. Dogs are our agents and their goal is to put the sheep into a

barn. Dogs will explore the environment and they will model the environment. In this

case, the environment contains another dog, a sheep, and a barn. First, the dogs will

probably locate the sheep. Then, they will make movements to direct the sheep into the

barn. If the dogs do not consider (model) each other, they might not be able to put the

sheep into the barn since one’s action might hinder the other’s action. Thus, they need to

cooperate and make movements together. If each dog learns the model of the other dog,

then they can make movements together to put the sheep into the barn. If there is no

coordination, both dogs will probably go behind the sheep and direct it into the barn. If

there is coordination between the dogs, while one of them goes behind the sheep, the

other may move back and forth so that the sheep will not escape as shown in Figure 5.2.

Figure 5.2. Multi –agent behavior without coordination (a) and with coordination (b).

A multi-agent self-organization system with two agents can be seen in Figure 5.3. The

multi-agent system is designed by using the agents, shown in Figure 5.1.

S B
ar

n

D1

D2

(b) (a)

D1

D2

B
ar

n

S

Figure 5.3. Multi-agent self-organizing sch

NATURE & AGENTS

VE1
VA1

VDE (A21) VDA (A11)

UE1
A

ct
io

ns

Sensors

UA1

M
od

el
 o

f o
th

er
 a

ge
nt

s

A
ct

io
ns

M
od

el
 o

f o
th

er
 a

ge
nt

s
87

eme with two agents.

VE2 VA2

VDE (A22)VDA (A12)

UE2

Sensors

UA2

 88

In summary, agents will fire actions to change the environment as well as to organize

themselves. Self-organization will happen eventually because each agent takes its actions

considering other agents’ behaviors in the environment. The simulation of the dog and

sheep problem presented the results supporting that the self-organization and the learning

ability of the proposed intelligent agent design. This property will make our system a

multi-agent self-organizing system. In the proposed learning system, an agent learns the

environment using the sensory data, and modifying its world model (Bayesian Network)

accordingly. Then, an agent calculates the expected state of the environment using the

world model and creates actions to change the environment. Thus, the learning structure

is bi-directional because the agent interacts with nature and the world model in both

directions.

5.3 Bi-directional learning

As stated earlier, bi-directionality is the most important feature of an intelligent learning

system because it combines the supervised learning method and unsupervised learning

method and facilitates them at the same time. That is why a Bayesian network is chosen

to construct the learning system. Figure 5.4 shows the learning model of the proposed

system. The proposed system has four directed edges among nature, the learning system,

and the world model: evidence, action, adaptation, and expectation.

The learning system collects evidence through sensors. Then, it creates optimal

actions to change the environment according to the objective (utility). These two steps

are represented by Evidence and Action edges in Figure 5.4. On the other hand, the

learning system adapts the world model (Bayesian network) using the evidence from the

 89

environment. In other words, adaptation is the parameterization of the BN utilizing the

evidence. Then, the learning system calculates the expected state of the environment

using the world model. Last two steps are represented by Adaptation and Expectation

edges in the Figure 5.4. Evidence and action edges represent unsupervised learning while

adaptation and expectation edges represent supervised learning. This justifies that the

proposed learning system is bi-directional since supervised and unsupervised learning

schemes are employed simultaneously.

Figure 5.4. The learning model of the proposed system.

The learning system collects evidence through sensors. Then, it creates optimal

actions to change the environment according to the objective (utility). On the other hand,

the learning system adapts the world model (Bayesian network) using the evidence. Then,

it calculates the expected state of the environment using the world model. Adaptation is

the parameterization of the BN utilizing the evidence. Evidence and action edges

represent unsupervised learning while adaptation and expectation edges represent

supervised learning. This justifies that the proposed learning system is bi-directional

since it combines supervised and unsupervised learning schemes.

WORLD MODEL

LEARNING SYSTEM

NATURE

Evidence

Expectation

Action

Adaptation

 90

5.4. System representation of the decision-theoretic intelligent agent system

The decision-theoretic intelligent agent system has adaptive learning ability with

feedback from the environment. The agent starts with a limited knowledge of the plant

(environment), then it explores (samples) the plant to learn the plant's parameters. After it

learns about the plant, it takes its actions accordingly. The agent first estimates the

plant’s behavior using the previous observation, then takes its action according to the

estimation. The plant, then, responds to the agent's action with an output. The output of

the plant in this stage is used as feedback to update the plant parameters in the predictor

(BN). Figure 5.5 shows the decision theoretic-intelligent agent learning system in a

block diagram.

Figure 5.5. System Block representation of the intelligent agent system.

In Figure 5.5,)X(I represents the initial state of the plant,)X�(E is the expected

value of the state,)(yE is the expected value of the plant output, and GOALy is the desired

plant (system) output. The symbol 1−q represents one unit delay. The controller (ID)

applies controls to the plant to provide a certain plant output because the controller

creates the control according to the error between the expected value of the plant output

Controller
(ID:Decision node)

)(eh

World Model (BN)
Observer

Plant

(ID:Utility Node)

GOALy

y�

)(� yEy =

)X(I

)X�(E

1−q

y

)(1−ty

u
_

+ e

 91

and the reference. The reference is the desired output to be provided by the plant. The

observer (BN) models the plant by using the plant's input/outputs. After a control is

applied to the plant, the plant output is used in the next step to update the plant model.

Thus, there is a time delay between the control and the output of the plant. The controller

creates the control using a priori knowledge about the plant (environment).

The decision theoretic intelligent agent system (DTAS) has potential use in feedback

control and adaptive control because it uses the plant's output as a feedback and modifies

the controller and the observer accordingly. The first part of a DTAS establishes the

feedback control; the second part establishes the adaptive control part. The following

section presents an analysis to show the feedback and adaptive control ability of the

DTAS.

5.4.1 Feedback Control

In the literature, there are two main types of feedback control, namely output feedback

and state feedback [56]. Output feedback is performed by a path (loop) from the output

back to the controller as shown in Figure 5.6.

Figure 5.6. Output feedback control

y
Controller

Measurements

Plant

y�

y�

Desired plant
behavior

GOALy
ue

 92

The equations for the system in Figure 5.6 can be given as:

GOALyye −= � (5.2)

)(efu = (5.3)

)(ugy = (5.4)

Now, let us compare the system equations in the feedback control system and the

decision-theoretic intelligent agent system. In the DTAS, the output of the plant, y, also

depends on the control input, u. Let us compare the control signal u in both systems.

)()(efuehu FEEDBACKDTAS =⇔= (5.5)

If we choose the functions h and f to be equal, then the controllers will give the same

control u with the same error e. Let us compare the errors in both systems. In the DTAS,

the error is the difference between the desired output and the expected value of the plant

output provided by the predictor. This is very similar to the feedback control system but

the expected value of the plant output replaces the measured plant output. These two

values are equivalent only if the predictor estimates the output of the plant well enough.

In the DTAS, it is shown that the predictor estimates the plant output well enough when

there is sufficient data from the plant's input/output. Therefore, the expected value in the

DTAS is equivalent to the measured value of the plant output in a feedback control

system. The following equations summarize the discussion.

)(yEye GOAL −= (5.6)

yyE �)(≅ (5.7)

yye GOAL �−= (5.8)

From Equations (5.6), (5.7), and (5.8), we may conclude that the DTAS exhibits feedback

control properties.

 93

Another type of feedback control is state feedback control. In state feedback control,

the state variables are sensed and fed back to the input through appropriate gains [56]. If

there is direct access to the state variables, the state variables can be easily measured and

fed back to the input. If there is no direct access to the state variables, then an observer

may be employed to perform the estimation of the state variables. Figure 5.7 illustrates a

state feedback control system with an observer.

Figure 5.7. A control system with the state feedback.

In Figure 5.7, the block denoted by FE is the plant. The estimator predicts the state

variables of the plant. The estimated state variables are fed to the input with a gain K.

Then, the control signal becomes the following:

X�K+= ru (5.9)

Thus, the control is a function of estimated state variables and the reference input. Let us

compare the controls in both systems. In the DTAS, the control is defined as

)(efu = (5.10)

Reference

Estimator

Plant
FE

y

X�

u

K

 94

where yye GOAL �−= . The term y� represents the estimated output of the plant. The term

y� is a function of the estimated state variables because it is calculated by the utility

function of the system. Therefore, we can represent y� with the following equation.

X�C�� =y (5.11)

where the vector X� is the estimated state vector and the matrix C� is the transformation

matrix between the states and the output. Thus, the control can be rewritten as follows:

)�(yyfu GOAL −= (5.12)

)��()(XCyfXu GOAL −= (5.13)

Let us assume that the function f is a linear function with the following form.

xAxf ⋅=)((5.14)

X�C�)X�C�(⋅−⋅=−⋅= AyAyAu GOALGOAL (5.15)

Let C�K ⋅−= A , and GOALyAr ⋅= , then the control becomes

X�K ⋅+= ru (5.16)

As seen in Equation (5.16), the control signal in the DTAS can be interpreted as the

control signal in the state feedback control. This concludes the analysis of how the

DTAS corresponds to a feedback control system. It can be concluded that the DTAS will

have the inherent advantages of feedback control. The following section investigates the

adaptive control capabilities of the DTAS.

5.4.2 Adaptive Control

The term Adaptive Control covers a set of methods that provide a systematic approach for

automatic adjustment of the controllers in real time, in order to achieve or to maintain a

 95

desired level of performance of the control system when the parameters of the plant

dynamic model are unknown and/or change in time [57]. A block diagram presenting a

basic configuration of an adaptive control system is shown in Figure 5.8.

Figure 5.8. A basic adaptive control system.

The following definition provides an adaptive control system given in Figure 5.8.

Definition 5.4.1: An adaptive control system calculates a certain performance index (IP)

of the control system using the measured inputs, the states, the outputs, and the known

disturbances. From the comparison of the performance index and a set of given ones, the

adaptation mechanism modifies the parameters of the adjustable controller and/or

generates an auxiliary control signal in order to maintain the performance index of the

control system close to the set of given ones (i.e., within the set of acceptable ones) [57]

An adaptive control system will monitor the performance of the system in the

presence of parameter disturbances in addition to a feedback controller with adjustable

Adaptation
Mechanism

Reference

Performance
Measurement

Plant Adjustable
Controller

Comparison-
Decision

Desired
Performance

Adjustable System

Disturbance

Adaptation Scheme

+

+

u y

 96

parameters acting as a supplementary loop upon the adjustable parameters of the

controller.

There are three types of adaptive control schemes in the literature: open loop adaptive

control, direct adaptive control, and indirect adaptive control [57]. In open loop adaptive

control, the adaptation mechanism is a simple look-up table stored in the computer that

gives the controller parameters for a given set of environment measurements. In the

literature, this is also called gain-scheduling.

Direct adaptive control is based on the observation that the difference between the

output of the plant and the output of the reference model (called plant-model error) is a

measure of the difference between the real and the desired performance. The reference

model is a realization of the system with desired performance. This information is used

by the adaptation mechanism (called parameter adaptation) to directly adjust the

parameters of the controller in real-time in order to force (asymptotically) the plant

model-error to zero. This scheme corresponds to the use of a general concept called

Model Reference Adaptive Systems (MRAS) for the purpose of control [58]. The indirect

adaptive control was originally introduced by Kalman [59].

In an indirect adaptive control system, shown in Figure 5.9, the basic idea is that a

suitable controller can be designed on line if a model of the plant is estimated on line

from the available input-output measurements. The scheme is called indirect because the

adaptation of the controller parameters is performed in two stages:

1. On-line estimation of the plant parameters (e.g. Bayesian network construction)

2. On-line computation of the controller parameters based on the current estimated

plant model (e.g. Influence Diagrams-making decisions)

 97

Figure 5.9. Indirect adaptive control system

The main goal is to create an adjustable predictor for the plant output and compare

the predicted output with the measured output. The error between the plant output and

the predicted output (called prediction error or plant-model error) is used by a parameter

adaptation algorithm which at each sampling instant will adjust the parameters of the

adjustable predictor in order to minimize the prediction error in the sense of a certain

criterion.

In [57], there are two options given to effectively implement an indirect adaptive

control strategy. The choice is related to a certain extent to the ratio between the

computation time and the sampling period.

Strategy 1

1. Sample the plant output.
2. Update the plant model parameters.
3. Compute the controller parameters based on the new plant model parameter

estimates.
4. Compute the control signal.
5. Apply the control signal.
6. Wait for the next sample.

Adjustable
ControllerReference

Plant

Adaptation
Mechanism1

Parameter estimates

Adjustable
Predictor

y

Adaptive predictor

y�
Adaptation
Mechanism2
(design)

+

-

u

 98

In this strategy, there is a delay between)(tu and)(ty that will depend on the time

required to achieve (2) and (3). This delay should be smaller than the sampling period.

Strategy 2

1. Sample the plant output.
2. Compute the control signal based on the controller parameters computed during

the previous sampling periods.
3. Apply the control signal.
4. Update the plant model parameters.
5. Compute the controller parameters based on the new plant model parameter

estimates.
6. Wait for the next sample.

In the second strategy, the delay between)(tu and)(ty is smaller than in the previous

case. In this strategy, a priori parameter estimation is performed since we apply the

control without updating the plant parameters [57].

In the above paragraphs, a general definition of an adaptive control system is

provided. A greater importance is given to indirect adaptive control systems because the

decision-theoretic agent system (DTAS) has the properties of an indirect adaptive control

system. The DTAS has the same steps as the indirect adaptive control system.

Additionally, the learning strategy in DTAS is very similar to the second strategy of the

indirect adaptive control system.

The first step, the on-line estimation of the plant model parameters, is performed by

structuring a Bayesian network and calculating its parameters in the DTAS. As stated in

Chapter 4, the online Bayesian network learning is performed to model the plant. The

second step, the online computation of the controller parameters, is performed by a

decision system (influence diagrams).

 99

As shown in Figure 5.9, there are two adaptation mechanisms in the indirect adaptive

control. The first adaptation mechanism corresponds to the online Bayesian network

learning in the DTAS. The second adaptation mechanism corresponds to the utility node

in the influence diagram part of the decision-theoretic intelligent agent because it

determines which action will be fired in the decision node. The adjustable predictor

corresponds to the Bayesian network in the DTAS. Finally, the adjustable controller

corresponds to the decision nodes in the influence diagram in the DTAS.

Now, the indirect adaptive control system can be redrawn by using the decision-

theoretic intelligent agent components, shown in Figure 5.10.

Figure 5.10. Indirect adaptive control representation of the DTAS.

Consequently, the online Bayesian learning determines the plant model structure and

parameter estimation; and, the influence diagram determines the controller parameters.

Therefore, it can be concluded that the decision-theoretic intelligent agent system

implements an indirect adaptive control system.

(ID)
Decision
Node Reference

Plant

BN
Update

Parameter estimates

Bayesian
Network

y

Adaptive predictor

y�
(ID)
Utility
Node

+

-

u

 100

CHAPTER 6

IntelliAgent Software

This section explores the software created to perform experimental simulation for the

decision-theoretic intelligent agent. The IntelliAgent software is created under Visual

C++ with for Microsoft Windows NT�. The software is capable of creating intelligent

agents by employing Bayesian network and influence diagram structures. As explained

in previous chapters, the Bayesian network learning is an online learning since agents

continue to learn during their operations.

The IntelliAgent software is presented in three main parts, the user manual, tutorials

on Bayesian network creation and knowledge discovery, and the class definitions. The

class definitions are presented in Appendix A. The Visual C++ code and the application

software is available for the readers on: http://armyant.ee.vt.edu/IntelliAgent. One can

contact the author by email, sferat@vt.edu, for further information about the software.

6.1 The user manual for IntelliAgent software

The IntelliAgent software is a single document interface (SDI) visual C++ program. The

Microsoft Foundation classes are intensively used to create the software. The software is

a Windows application with a menu, a toolbar, and status bar, shown in Figure 6.1. The

user manual starts by explaining the menus available. Section 6.1.2 explains the toolbar

and the status bar operations. After exploring the menus and the toolbar, the dialog boxes

used throughout the program are explored in Section 6.1.3.

http://armyant.ee.vt.edu/IntelliAgent
mailto:sferat@vt.edu

 101

Figure 6.1. The IntelliAgent software (screen shot of the program)

6.1.1 Menus

In the IntelliAgent program, there are five menu items, File, Edit, View, Network, Agent,

and Help. The menu items File, Edit, View, and Help are standard Windows application

menus. Functions for these menu items are modified for the use of IntelliAgent software.

For example, the File menu functions are modified to open and save the files that are

specifically defined for the IntelliAgent software. The Network menu item is created for

the Bayesian network operations such as network creation, network update and network

edit. The Agent menu performs the creation of intelligent agents and the intelligent agent

simulation. The following paragraphs explore the menu items with their functionalities.

 102

File

In File menu, there are eight submenus, New, Open, Save, Save As, Print, Print View,

Print Setup, and Exit. Figure 6.2 shows the submenus in the File menu.

Figure 6.2. The File menu.

The New submenu creates a new online Bayesian network file in "obn" format. The

"obn" is online Bayesian network format created for the intelligent agent software. In the

format, there are nodes, arcs, and the dependencies in the network. The user chooses this

submenu whenever he/she needs to create a new network.

The Open submenu opens a "obn" network that is saved/created previously. The user

needs this submenu when there is a need to update or change the previously created

network. When the user chooses this submenu, a dialog box appears on the screen,

shown in Figure 6.3. This dialog box is a standard dialog box used in Windows

 103

programming. Functions for the dialog box are built-in functions in Microsoft visual

C++ but they are edited to be able to open a "obn" file.

Figure 6.3. Dialog box for the "Open" submenu in File menu.

The Save submenu is to save the "obn" files for future uses. This submenu also

creates a standard dialog box, shown in Figure 6.4, if a network is not saved before. If a

network is saved before, choosing Save submenu saves the file again without showing

any dialog box. The functions in the dialog box are edited to be able to save the online

Bayesian networks as an "obn" file. Nodes, arcs, dependencies in the network, and the

database are saved to the file. The program asks the user if it should save the newly

explored cases, shown in Figure 6.5. The Save As submenu is almost the same as the

Save submenu. The only difference is that the user can choose the file type before

saving. In Save submenu, the file format is set to "obn" whereas it can be different in

Save As.

 104

Figure 6.4. Dialog box for "Save" and "Save As" submenus in File menu.

Figure 6.5. Message box to choose saving the new cases into the database.

Print, Print Preview, and Print Setup are printing related submenus. In the

IntlliAgent, the users are able to print the networks they create. Print Preview and Print

Setup work as in any standard Windows application program. Finally, the Exit submenu

is to quit the software. The software asks the user whether to save the network before it

quits.

 105

Edit

This menu is kept for cutting, copying and pasting the network components. There are

four submenus in the Edit menu; Undo, Cut, Copy, and Paste. None of the submenus are

fully functional even though the software has adding and removing functions internally.

In the future, these submenus can be made operational by connecting them to the

functions in the software.

View

In View menu, there are two submenus; Toolbar and Status Bar. The user can check

these submenus by mouse operations. Depending on they are checked or not, the toolbar

and the status bar appear on the program window or not. Figure 6.6 show the submenus

of View menu in the software.

Figure 6.6. The View menu

 106

Network

The Network menu contains core operations in creating online Bayesian network. There

are six submenus in Network menu: Node, Arc, Update, Parameters, Load, and Create.

Figure 6.7 illustrates the Network menu on the IntelliAgent software.

Figure 6.7. The Network menu.

There are three groups of submenus under this menu: manual network creation

submenus, presentation submenus, and automatic network creation submenus. The

submenus Node and Arc are used to create the Bayesian network manually. The user can

create nodes and arcs between the nodes by simple mouse drag and drop operations.

After creating the network the user can apply inference by using Update submenu.

Parameter submenu is in the presentation group. It displays the parameters of a node in a

 107

network. The submenus Load and Create let the user load a database and construct the

Bayesian network using the database.

Node submenu lets the user create nodes of a Bayesian network. To create a node,

the user chooses node submenu in the Network menu. Then, the user moves the mouse to

a location where the node is going to be created. While the left mouse button is kept

pressed, the user draws an ellipsoid on the specified display area by moving the mouse.

When the ellipsoid is established, the user releases the left mouse button. With the

release of the left mouse button, the software creates a node with the default parameters.

There are two states with the values 0.5 by default. Node name is set to NodeX, where X

shows the order of the node. A conditional probability table with two rows and one

column is filled with 0.5. Figure 6.8 illustrates two nodes created by the user manually.

Figure 6.8. Creation of network nodes by mouse operations.

 108

After creating the nodes, the user can create arcs between the nodes by mouse

operations. The user, first, chooses Arc submenu in the Network menu. Second, the user

moves the mouse over a node that the arc is going to start from. Then, while the left

mouse button is pressed, the user draws an arc between the nodes by moving the mouse

on the node that the arc is going to point. When the user releases the left mouse button,

the software draws an arrow between the two nodes. The user can start drawing in any

part of the node because the software adjusts the starting and ending points of the arc

according to the nodes' relative positions. Figure 6.9 illustrates a network with two nodes

and an arc.

Figure 6.9. Creation of an arc between the nodes by mouse operations.

The parameters submenu takes care of presenting and changing the nodes' parameters.

When the user wants to see the parameters of a node, first, the node has to be selected by

 109

clicking the left mouse button on the node. Then, the user can choose the Parameter

submenu in the Network menu. After the submenu is chosen, a dialog box appear on the

screen as shown in Figure 6.10.

Figure 6.10. Dialog boxes for presenting and changing node attributes.

On the dialog box shown above, the user can change the name, the number of state,

the state values (probabilities), and the conditional probability table of the node. The

detailed description of the dialog boxes is provided in Section 6.1.3. To change the

conditional probability table of a node, the user needs to move the mouse on to a desired

element of the table and double clicks the left mouse button. Then, a dialog box, shown

in Figure 6.10, appears on the parameter dialog box. The user needs to enter the new

 110

probability value into the CPT updating dialog box. Finally, the user clicks "OK" button

on the CPT updating dialog box to put the new value into the CPT.

After creating nodes and arcs in a Bayesian network, the user can change the node

parameters by dialog boxes shown in Figure 6.10. Then, the user can perform inference

in the network by activating Update submenu. This button updates the network

parameters if evidence is entered to a node or a change has been made on a node. The

software performs the inference by employing the technique defined in [1,2].

Let us take the network given in Figure 6.9 and change the CPT of Node2 as in

Figure 6.11.

Figure 6.11. Changing the CPT of Node2.

 111

After changing the CPT values in Node2, the user can choose the Update submenu in

the Network menu. Choosing the Update submenu let the software calculate the other

parameters of the nodes accordingly. After choosing the Update submenu, the user can

choose the Parameters submenu to see the new values of Node2, shown in Figure 6.112.

Figure 6.12. Parameters of Node2 after the Update command.

As can be seen above, the probabilities of the node have changed according to the

new CPT values. The software checks every node in the network whether they need

updating or not. If the user makes changes on a node, the software sets a flag for the

node.. The user can change parameters in many nodes. Then, the Update submenu will

update all flagged nodes and related nodes. For example, if a parent node is modified,

 112

the Update submenu needs to update the child nodes of the node as well because child

nodes are dependent on the parent nodes.

As stated earlier, the user can create the Bayesian network using a database. Load

and Create submenus let the user create a Bayesian network from a database. When the

user chooses Load, a dialog box appears for loading a file as shown in Figure 6.13.

Figure 6.13. Loading a database to automatically construct a Bayesian network.

By double clicking the left mouse button on a database file, the dialog box loads a

database into the program. The database file is a text file with a specific format. It could

be a plain text file or ".db" file. The extension "db" stands for database and its is a

standard Bayesian network database used in the literature [28]. The first line of the

database file contains the name of the variables. The rest of the rows in the database are

the data cases recorded over time. Entries in a row are delimited by a space. There is a

"end of line" character after the last entry in each row. After loading the database file, the

software creates nodes by reading the first line. Then, it calculates independent

probabilities for the states of each node. Assume that the user has chosen the database

 113

file "college.db". Then, the software creates the nodes and calculates their parameters as

shown in Figure 6.14. The software draws the nodes on the screen in a line. The user

can move the nodes to the desired places by mouse drag and drop operations.

Figure 6.14. Bayesian network nodes created by a database file.

After the software has created the nodes of the network, the user can choose submenu

Create in Network menu to construct the Bayesian network automatically. When the user

chooses the Create submenu, a dialog box appears on the screen to specify how the

network search is going to be performed. Figure 6.15 shows the search dialog box.

 114

Figure 6.15. Dialog box for specifying the type of network search.

There are two search methods available in IntelliAgent software, heuristic and

exhaustive, as stated in Section 4. There are three scoring types, MDL, Bayesian scoring,

and Log-Likelihood. In the dialog box, Log-Likelihood is placed in the distance

measures group because Log-Likelihood score involves only the distance between the

distributions from the database and the network. Bayesian scoring and MDL use both

distance measure and complexity of the network. If the user chooses the MDL scoring, a

distance measure has to be chosen also. There are two distance measures for MDL

scoring, Kullback-Leiber and Euclidean. If Bayesian scoring is chosen, there is no need

to specify the distance measure because Bayesian scoring combines distance measure and

complexity as stated in Section 4.

Search types, score types and distance measure types are grouped in three sections.

The user can click on radio buttons besides the items to specify the search algorithm.

For example, for a heuristic search with MDL score and Euclidean distance, the user can

click the radio buttons in front of heuristic, Bayesian score and Euclidean. The default

 115

search type is a heuristic search with MDL score and Kullback-Leiber distance measure.

Let us assume that the user has chosen the heuristic search with Bayesian scoring. Figure

6.16 shows the resulting Bayesian network.

We have covered the submenus in Network menu. The user can create a Bayesian

network either manually or using a database. This part of the IntelliAgent software can

be used as knowledge discovery tool. For example, the network shown in Figure 6.16 is

created by employing a database. The database includes information about college plans

for number of students. The aim is to find out the relationship between the variables and

how they affect the decision to go to college. After loading the database, we have

searched a network that fits the database. The network shown in Figure 6.16 is a

resulting Bayesian network after the search.

Figure 6.16. A Bayesian network created by a heuristic search with Bayesian scoring.

 116

At this stage, the user can find out the probabilities for the nodes and their

relationships. Additionally, by specifying certain variables, the user can find out the

probability of making a college plan for a given student. To do that, the user will need to

set the variables with specific parameters, then choose Update submenu in Network menu

to run the inference to other nodes. Tutorials on inference in Bayesian network and

knowledge discovery with Bayesian networks are presented in Section 6.2.

Agent

The Agent menu contains submenus for intelligent agent simulations. There are two

submenus in Network menu, Create Agent and Simulate, shown in Figure 6.17.

Figure 6.17. The Agent menu in the IntelliAgent software.

 117

Create Agent submenu is designed for creating agents. When the user chooses Create

Agent, the software shows a dialog box shown in figure 6.18 to specify agent's

parameters. The Create Agent submenu and the Simulate submenu is designed for a

specific problem, the Dog & Sheep problem. In the dialog box, the user can enter the

name of the agent and its X and Y coordinates. The dialog box has also designed to

specify what type of simulation will be run. The user can choose step by step or

continuous simulation by pressing Step or Continuous button, respectively.

Figure 6.18. Dialog box for agent creation and simulation attributes.

There is one more push button on the dialog box, Training. When the user presses

Training button, an edit box appears on the dialog box to enter the number of training

steps. Figure 6.19 illustrates the dialog box after the training button is pushed. The

software simulates the system with random starting locations for the agents until the

number of training step is reached. The agent may not get enough information about the

environment by only using the initial database. With the training, the agents can modify

their conditional probability tables according to other agent's behavior.

 118

Figure 6.19. Dialog box for agent creation and simulation with training steps.

At this stage of the IntelliAgent software, Simulate submenu works for only our

Dog&Sheep problem. The reason is that the utility node has huge number of elements in

it because of the problem dimensionality. Therefore, in the software, the utility of an

agent is a function rather than a table. If the utility node is made visual, the user has to

enter too many elements in the utility table. In the future, a function editor can be placed

into the software so that the user can edit the utility function by typing the function in a

text box.

Help

There is no help for the IntelliAgent at this stage. This manual will be put into the

software in the future. In Help menu, there is only one submenu, About Project. The

About Project submenu presents the version and the icon of the software. Figure 6.20

shows the Help menu and About Project dialog box.

 119

Figure 6.20. About project dialog box and Help menu.

6.1.2 Context menus

There are two types of context menus. The first one appears when the user presses the

right mouse button on an empty space in the device context. The first context menu is

called network context menu. The second context menu is called node context and

appears when the user presses the right mouse button on a node.

Network context menu

Network context menu appears on the screen when the user clicks the right mouse button

when the mouse is on an empty space on the device context, as shown in Figure 6.21.

The network context menu contains the same submenus as the Network menu. The user

can choose the network submenus without moving the mouse to Network menu. Context

menus speed up the menu process in Windows applications.

 120

Figure 6.21. Context menu for the network submenus.

Node context menu

The IntelliAgent software has another context menu for node operation. The Node

context menu appears when the user clicks the right mouse button on a node. There are

two submenus in this menu, Set Evidence and Parameters, as shown in Figure 6.22.

Figure 6.22. Context menu for the node operations.

 121

Set Evidence submenu is used for instantiating the node. When the user chooses Set

Evidence, another menu opens from the Set Evidence submenu to determine which state

will be instantiated. Figure 6.23 illustrates how a node can be instantiated by the node

context menu.

Figure 6.23. Instantiation of a node by node context menu.

In Figure 6.23, there are two possible selections in the Set Evidence submenu because

the node has two states. When the number of states is more than two, the second menu

shows more selections. For different number of states, the software has a node context

menu assigned for them. For example, if the node has three states, the software shows

another node context menu with three states as shown in Figure 6.24.

Figure 6.24. Node context menu for a node with three states.

The user can use the node context menus until the node has eight states. The program

can handle nodes with more than eight states but the node context menu cannot. Instead

of using context menu, the user can set evidence on a node by choosing Parameters

 122

submenus and setting the state probabilities in the dialog box. The Parameters submenu

in the node context menu actives the same function as Parameters submenu in the

Network menu actives. Therefore, a dialog box appears to change the attributes of the

node as shown in Figure 6.10. If the user sets the desired state to 1 and other states to

zero, then the node becomes instantiated. We have not added context menu for handling

nodes with more than eight states because the context menu gets too long and hard to use.

6.1.2 Toolbar

The program toolbar consists of the buttons that performs the same operations with the

menu items. In the toolbar, there are 16 buttons. Figure 6.25 illustrates the toolbar of the

IntelliAgent software.

Figure 6.25. The toolbar of the IntelliAgent software.

First eight buttons are standard Windows toolbar buttons. They will not be explained

here. There are eight more buttons on the toolbar. They are used for Bayesian network

operations and intelligent agent simulations.

Node

This button has the same functionality as the Node submenu in the Network menu. The

user pushes this button if a node is going to be created as shown in Figure 6.8.

 123

Arc

The arc button is the short cut for the Arc submenu in Network menu. The user can

create arcs after pushing this button as shown in Figure 6.9.

Update

This button works as a short cut for the Update submenu in the Network menu. The user

can update the network or apply inference by pushing this toolbar button instead of using

menu.

Parameters

The parameters toolbar button is the short cut for the Parameters submenu in the Network

menu. The user first moves the mouse on a node and clicks the left mouse button to

choose the node. Then, the user moves the button to the toolbar and presses the

Parameters button. Then, the software displays the dialog box shown in Figure 6.10.

Changing node parameters is explained in the previous section.

Load

The load button works as the same as the Load submenu in the Network menu. The user

can load a database by simply pushing the Load button on the toolbar. After the user

 124

pushes the Load button, the program displays the dialog box shown in Figure 6.13. After

the user chooses a database on the dialog box, the software creates the nodes and their

parameters as shown in Figure 6.14.

Calculate

The calculate button is used for setting the structure of the search algorithm that creates

the Bayesian network. After pushing this button, a dialog box appears on the screen as

shown in Figure 6.15. Then, the user chooses the structure of the search algorithm by

clicking corresponding radio buttons on the dialog box. After the user sets the search

algorithm, the software creates the Bayesian network as shown in Figure 6.16.

Agent

The agent button is the short cut for the Create Agent submenu in the Agent menu. When

the user pushes this button, the software displays the dialog box shown in Figure 6.18.

The user can create by specifying agent's parameters such as name and location. In the

dialog box, there are additional parameters for the simulation. The user can set the type

of simulation and whether the agent will be trained in advance or not.

Simulate

 125

This button is the short cut for the Simulation submenu in the Agent menu. The software

simulates the Dog&Sheep problem, after the user clicks on this button. The program

displays the simulation on the device context in action.

6.1.3 Dialog boxes

Excluding the MFC's built-in dialog boxes such as printing and saving dialog boxes,

there are four dialog boxes for presenting the parameters of the nodes, updating

conditional probability table (CPT) in the nodes, generating Bayesian network, and agent

creating and training dialog boxes. In this section, the dialog boxes are introduced in

terms of their functionality and their operation. Detailed class definitions is given in

Appendix A.

Parameter Presentation

The Parameters dialog box is created for presenting and editing the parameters of a node.

Figure 6.26 illustrates the Parameters dialog box. The name of the node can be edited on

the dialog box by moving the mouse on the edit box in front of name. Similarly, the

number of states in the node can be entered from the second edit box. As soon as the

values are entered from the edit boxes, the dialog box actives corresponding functions to

update the values. If a user increases the number of states, the new probabilities for the

new states have to be entered. The user can enter the new probabilities by typing the

values in the edit box in front of Probabilities static text. Then, the user has to push the

enter push button to enter the new probabilities to the scroll box. The scroll box shows

the probabilities of the states of a node. The user can update the state probabilities by

 126

clicking the left mouse button on the probability that needs to be changed. Then, the

dialog box activates an edit box and a push button under the scroll box. The user can

enter the new value into the edit box and push the Update push button to enter the value

into the scroll box.

Figure 6.26. Dialog box for parameter presentation.

We have mentioned that the CPT of a node can also be edited by the user. To edit the

CPT values, the user double clicks the left mouse button on the value that needs to be

changed. Then, the software displays a dialog box for updating the CPT value.

 127

CPT Updating

As stated above, the user can change the values in the CPT with the help of a dialog box.

Figure 6.27 shows the dialog box for CPT updating. As soon as the user double clicks

the left mouse button on a CPT value, the CPT updating dialog box appears on the

Parameters dialog box. The user enters the new value into the edit box in the dialog box.

Then, the value is entered to the CPT as soon as the user pushes the "OK" button.

Figure 6.27. Dialog box for the CPT updating.

Bayesian network generation

The third dialog box used in the software is designed for Bayesian network generation.

After the user creates the nodes and the independent probabilities by evaluating a

database, a Bayesian network can be constructed by the help of a search algorithm. As

stated in Section 3, there are several search algorithms in the literature. The search

algorithms used in this research are introduced in Section 4. The Dialog box shown in

Figure 6.28 is designed for specifying the properties of the search algorithm to be used.

 128

Figure 6.28. Dialog box for setting submenu for Bayesian network generation.

The dialog box consists of three groups of radio buttons for the search type, the score

type, and the distance measure type, respectively. There are two radio buttons for the

type of search algorithm, Heuristic and Exhaustive. There are three types of score type,

MDL, Bayasian, and Log-Likelihood. Log-Likelihood is grouped in the distance

measure group because it is also a distance measure type. Log-Likelihood scoring is

modified to have complexity parameter in the score equation. Because of this

modification, it works as MDL scoring with the Log-Likelihood distance measure. The

user can choose the search type, the score type, and the distance measure type by clicking

the left mouse button on the desired radio buttons.

In the dialog box, there is a sliding bar to adjust complexity and the accuracy of the

search algorithm. The sliding bar is not functional in Bayesian scoring since Bayesian

scoring handles the complexity and the accuracy internally as explained in Section 4.

The sliding bar defines the weights for the accuracy and the complexity parts of the score.

 129

If the user slides the bar towards the complexity, the software decreases the penalty for

the complexity of the network. Therefore, the software ends up with a network with

more arcs. If the sliding bar is moved towards the accuracy, the software penalizes the

complexity completely. In this case, the software may end up with a network with no arcs

because having an arc may be more costly than not having an arc. The software starts

with the default complexity and the accuracy values. The default values weigh the

complexity and the accuracy equally.

Agent creation and training

The last dialog box designed for the software appears when the user would like to create

an intelligent agent for the simulation. Figure 6.29 shows the agent creation dialog box.

Figure 6.29. Dialog box for agent creation and training.

In the dialog box, the user can set the name and the location of the agent. In the

dialog box, the user can also set the properties of the simulation. The user can determine

whether the simulation will be performed step by step or continuous. If the user pushes

the Step button, the simulation runs step by step. The user has to click the Simulate

button on the toolbar for each step. If the Continuous button is pushed, the simulation

 130

runs continuously until either the number of maximum steps is reached or the goal of the

agent is established.

In most cases, the agents may not have enough information about the environment by

only evaluating the initial database. The user may choose to train the agents before the

actual simulation starts. The user can push the Training button to train the agents. As

shown in Figure 6.30, an edit box appears on the dialog box after the Training button is

pushed. The user can enter the number of training steps into the edit box. Then, the

software starts the simulation with random initial locations for the agents until the

number of training steps is reached. if the agents establish their goal and stop, then the

software starts the simulation again with random agent locations.

Figure 6.30. Training abilities of the agent creation dialog box.

6.2 Tutorials on Bayesian network creation and knowledge discovery

This section presents tutorials on how to create a Bayesian network learning system.

Bayesian networks can be created in two ways in the IntelliAgent software. First, they

can be created manually by mouse operations. This is the case where the user knows the

dependencies in the Bayesian network. It can be used for inference only. Second, a

 131

database can be utilized to create a Bayesian network. This is the case where a

knowledge discovery performed on a database.

6.2.1 Inference in a Bayesian network

This is the case where the user creates the Bayesian network by using the knowledge of

dependencies in the network. Let us use the same example defined in Section 4.

Figure 6.31. Example Bayesian network for manual network creation.

In the network, there are three variables, 321 XXX ,, . In the network, dependencies

are given as 21 XX → and 32 XX → . Figure 6.31 illustrates the Bayesian network to be

created. The independent probability for the first variable is]. .[)(50501 =XP as stated

in Equation 4.7. Similarly, the conditional probabilities)|(12 XXP and)|(23 XXP are

given as:

�����
1

4080
6020

12

X

XXP �
�

�
�
�

�
=

. .

. .
)|((6.1)

�������
2

50250
50750

23

X

XXP �
�

�
�
�

�
=

. .

. .
)|((6.2)

Now, the above Bayesian network can be created by the IntelliAgent software. First, the

user needs to create the nodes of the network. There will be three nodes with two states

1X

2X

3X

 132

each. The user moves the mouse on the Node button on the toolbar and clicks the left

mouse button for node creation. Then, the user can create the nodes by keeping the left

mouse button pressed and moving the mouse in a circular motion, shown in Figure 6. 32.

Figure 6.32. Creation on the network nodes.

In above figure, the nodes have the default parameters; two states with the

probabilities 0.5 and 0.5, 2x1 conditional probability table filled with 0.5, and a default

name. The user can change these values by double clicking the left mouse button on the

nodes or clicking the right mouse button and choosing the Parameters submenu in the

node context menu. Let us change the node names and put independent probabilities into

the first variable. Figure 6.33 shows the Bayesian network with the new node names.

 133

Figure 6.33. Changing node names and editing the independent probabilities.

After changing the names and placing the independent probabilities, the user can add

the dependencies by drawing an arc between the variables. To draw an arc, the user

clicks the left mouse button on the Arc button on the toolbar. Then, the user presses and

holds the left mouse button on the node where the arc starts. While keeping the left

mouse button pressed, the user moves the mouse to the node where the arc ends and

releases the left mouse button. Then, the software draws an arc between the nodes. The

user can start and end the arc anywhere on the nodes because the software calculates the

best place to start and end the arc according to the relative positions of the nodes. Figure

6.34 shows the creation of an arc between 1X and 2X before the mouse is released.

 134

Figure 6.34. Arc creation before the left mouse button is released.

As soon as the left mouse button is released, the software displays a message box

stating the creation of the arc as shown in Figure 6.35.

Figure 6.35. Message box stating the arc creation.

When the user clicks on OK button on the dialog box, the software draws an arc

between 1X and 2X . The second arc can be created by following the same procedure.

Figure 6.36 illustrates the network with two arcs.

 135

Figure 6.36. Creating an arc in a network.

When the user adds arcs from one to another node, the software automatically adjusts

the dimension of the CPT of the child node. A child node is the node to which an arc

points. In the network, 2X is the child node of 1X . After the arc creation, the software

expands the CPT of node 2X to 2x2. The software puts the same values into the new

column as in the first column. If the user increases the number of state in a node, the

software also expands the CPT by adding a row with zero probabilities.

The structural creation of the network is completed by adding the arcs. Now, the

CPTs can be edited according to Equations (6.1) and (6.2). As stated in the previous

section, the user can edit the CPTs by double clicking the left mouse button on the CPT

values. Then, the software displays a dialog box for CPT updating. Let us update the

CPT values of node 2X .

 136

First, the user double clicks on the node 2X to get the Parameters dialog box, shown

in Figure 6.37. Then, the user can double click the left mouse button on the value

corresponding to 01 stateX = and 02 stateX = . After the double clicking, the CPT

updating dialog box appears on the screen as shown in Figure 6.37.

Figure 6.37. Updating the CPT table with CPT updating dialog box.

After the CPT updating dialog box appears, the user can enter the new value into the

text box in the dialog box as shown in Figure 6.37. Then, the software puts the new

value into the corresponding location in the CPT. The same procedure can be followed to

put all values of the CPT in 2X and 3X using the values in Equation (6.1) and (6.2).

After the CPTs are updated, the user is ready to update the network. The user can

move the mouse on Update button on the toolbar and click the left mouse button to

activate the network update. The network update will produce probability values for 2X

 137

and 3X . An inference technique defined in [1] is used to calculate the probabilities. For

example, to calculate)(2XP , the software uses the probabilities)(1XP and)|(12 XXP

and computes the following equation:

)()|()(1122 XPXXPXP ⋅= (6.3)

The probability)(3XP is calculated by the similar equation.

After the network update, the manual creation of a Bayesian network is completed.

Now, the user can perform inference calculations by entering evidence to the network and

updating network. For example, the user can set the node 1X to state0 and click Update

button on the toolbar to forward the evidence to the network. Figure 6.38 illustrates how

to set evidence on the node 1X .

Figure 6.38. Setting node 1X to state0.

After clicking the Update button, the user can double click the left mouse button on

the other nodes to see the new probabilities. Figure 6.39 shows the parameters of the

node 2X before the inference. Figure 6.40 shows the network after the inference.

 138

Figure 6.39. Parameters of the node 2X before inference is applied.

Figure 6.40. Parameters of the node 2X after inference is applied.

 139

As can be seen the probabilities of the node 2X have changed with the inference.

The software also updates the probabilities of 3X according to the probabilities of the

node 2X . In short, the inference travels through the network until it reaches an end node.

An end node is the node that has no child. As can be seen in Figure 6.40, the CPT values

are the same as the CPT values given in Equation (6.1).

The IntelliAgent software can also be used as a knowledge discovery tool because of

its ability to create a Bayesian network from a database.

6.2.1 Knowledge discovery with IntelliAgent

This is the case where the user exploits a database to generate the Bayesian network that

fits the data best. The user can employ several Bayesian structural learning algorithms in

the IntelliAgent such as heuristic search and exhaustive search as defined in Section 4. To

explain the knowledge discovery with IntelliAgent software, we will present an example

in this section.

Let us take the example about the college student as defined in the previous section.

The database for the problem is gathered by surveying number of college students about

their college plan, sex, intelligence, family support, and social class. The IntelliAgent

software will be used to create a Bayesian network that fits the database the best.

 140

First, the user needs to load the database into the software by clicking the Load button

on the toolbar. After clicking this button, the software displays a dialog box as shown in

Figure 6.13. Let the user choose the database "college.db". Then, the software

automatically generates the nodes and the independent probabilities for these nodes as

shown in Figure 6.41.

Figure 3.41. Nodes of the Bayesian network after loading "college.db".

 141

After the software creates the nodes from the database, the user can click on Calculate

button on the toolbar or choose Create submenu in the Network menu to start the search

for the best Bayesian network that fits to the database. After clicking the Calculate

button, the software displays the dialog box shown in Figure 6.15. This is a dialog box

for setting the properties of the search algorithm as explained in the previous section.

Using this dialog box, the user can choose the type of search algorithm, the score type,

and the distance measure type. Let us assume that the user clicked the Heuristic radio

button for the search type, the MDL score for the score type and the Kullback-Lieber

distance measure for the distance measure type. Therefore, the software will search for a

Bayesian network using a heuristic MDL score based algorithm with Kullback-Lieber

distance measure. As soon as the user clicks OK button on the dialog box, the software

starts constructing the Bayesian network. Figure 6.42 shows the final Bayesian network.

Figure 6.42. Bayesian network created by the search algorithm.

 142

As can be seen above, the algorithm put all the possible arcs into the network. This is

computationally okay for this network because the number of nodes in the network is

only six. In any case, the user can decrease the complexity by sliding the complexity bar

in the dialog box. Let us assume that the user would like to have simpler network. First

user clicks the Calculate button on the toolbar again to get the dialog box. Then, the user

needs to slide the complexity bar towards the accuracy as shown in Figure 6.43. Finally,

Figure 6.43. Decreasing the complexity of the network with sliding bar.

Finally, the user can click the OK button on the dialog box to start the search. Figure

6.44 shows the resulting Bayesian network.

 143

Figure 6.44. Bayesian network after decreasing the complexity.

As seen in Figure 6.44, the complexity of the network decreased noticeably. Let us

assume that the user thinks that the resulting network is reasonable. Then, the user can

do the knowledge discovery by observing the parameters of the network such as

independent probabilities and conditional probability tables. Conditional probability

tables help us to discover the dependencies between the variables. For example, we can

find out how a variable effects another variable. More generally, we can find out the

college plan for a given college student. This is exactly the inference explained in

Section 6.2.1.

 144

Let us assume that we have a student who is male (state0), with average intelligence

(state1), in a high class (state0), and with family support (state0). To find out the

probability of him making a college plan, the user needs to enter above evidence to the

network and apply inference by clicking on the Update button on the toolbar. The

evidence can be entered by clicking the right mouse button on the nodes and choosing

desired state in the Evidence submenu as shown in Figure 6.45

Figure 6.45. Setting the evidence for the "intelligence" node.

After updating the network, the user now can double click the left mouse button on

the node for college plan to see its probabilities. Figure 6.46 illustrates the parameters of

the "plan" node.

 145

Figure 6.46. The parameters of the "plan".

In above Figure, the user can find out the probabilities of the college plan of the

student. State 1 of the plan means no college plan. Therefore, the probability that student

will go to college is 0.937642. This result is meaningful because the student has family

support and high intelligence. Additionally, he is from a high class so he can afford the

college easily.

The user can also find out how the variables effect each other. For example, how

much does being a male influence the parents’ support? Do families support their son

more that they support their daughter? These questions can be answered by setting the

"sex" node to state0 and state1 and observe the probabilities of the "support" node. In

 146

short, knowledge discovery can be performed on a database using the IntelliAgent

software.

In IntelliAgent software, when the network creation is completed, a message box

appears on the screen as shown in Figure 6.47.

Figure 6.47. Message box informing the end of the network generation.

After the user clicks OK button on the message box, the software displays another

message box that says the user should set the initial values of the dog and the sheep as

shown in Figure 6.48. This part of the software is dedicated for the Dog&Sheep problem.

Figure 6.48. Message box for initializing the dog and the sheep agents.

At this stage of the IntelliAgent software, only Dog&Sheep problem can be simulated

because the utility function is a function in the software rather than an editable table or

function. In the future, this function can be made an editable function by the user.

Details of the Dog & Sheep problem and its simulation results are presented in Section 6.

 147

CHAPTER 7

Experimental Results

In this section, the decision-theoretic intelligent agent model is employed to solve a

herding problem. Intelligent agent software is written to realize the proposed intelligent

agent model. The same software is then used to simulate the herding problem with one

sheep and one dog. Simulation results show that the proposed intelligent agent is

successful in establishing a goal (herding) and learning other agents behaviors.

In the herding problem, a dog (our intelligent agent) has to herd a sheep to a desired

location (i.e., a pen). The details of the herding problem are provided in Section 7.1. The

simulation results are presented in Section 7.2. Finally, Section 7.3 explores the

effectiveness of the online Bayesian network learning in intelligent agent system.

7.1 The Dog & Sheep Problem

The Dog & Sheep problem is considered in a rectangular mn × grid as shown in Figure

7.1. The goal of the dog is to herd the sheep into the pen. In other words, the dog is

trying to minimize the distance between the sheep and the pen. The pen is at (0,0).

Figure 7.1. The 4-by-4 Grid Dog & Sheep problem.

X

Y

(0,0) 1 2 n

1

 2

 m

S

D

 148

There are six system variables in the problem; the X and Y coordinates of the dog, the

X and Y coordinates of the sheep, the next action of the dog, and the next action of the

sheep. The following illustrates the system variables and their possible values.

Dx: X coordinate of the dog; takes values form 0 to n.

Dy: Y coordinate of the dog, takes values from 0 to m.

Sx: X coordinate of the sheep; takes values form 0 to n.

Sy: Y coordinate of the sheep; takes values form 0 to m.

DN: Next action of the dog, takes values from 0 to 4.

SN: Next action of the sheep, takes values from 0 to 4.

The coordinates of the dog can take values between 0 and n. The coordinates of the

sheep can take values between 0 and m. Therefore, the number of states in the variables

xD and xS is n. Similarly, the number of states in the variables yD and yS is m. The

number of states in the coordinate variables changes depending on the dimension of the

problem. Agents have five possible actions; “don’t move”, “move right”, “move left”,

“move down”, and “move up”. The states of the variables DN and SN are "don't move",

move right (x direction), left (-x direction), down (-y direction), and up (y direction) with

the state identifiers from 0 to 4 respectively, shown in Figure 7.2. Thus, the variables DN

and SN have 5 states.

Figure 7.2. Possible moves (states) for the sheep and the dog.

Y

1

4

3

2

X

i

j

 149

After defining the system variables, we need to define the node types in the influence

diagram. For the specific problem, the coordinate variables are chance nodes since they

show the environmental state. Therefore, they constitute the Bayesian network (world

model) of the agent. The variables DN and SN are decision nodes since their values can

change the environmental state. The variable DN is the decision node for the decision-

theoretic intelligent agent (the dog). The variable SN is the decision node for the other

agent. The dog observes the other agent's actions (SN) to make its decisions accordingly.

Figure 7.3 illustrates the nodes type in the intelligent agent (the dog).

Figure 7.3. The node types in the intelligent agent for the Dog & Sheep problem.

Finally, we need to define the utility node in the influence diagram. The goal of the

dog is to make the sheep go to the pen and/or to stay close to the sheep. Therefore, the

utility function for the dog includes the distance between the dog and the sheep and the

distance between the sheep and the dog. The utility function can be defined as:

() ()2222

1

yyxxyx

uD
DSDSSS

fU
−+−++

== (7.1)

Sx Sy Dx Dy

SN DN

UD

Chance
Nodes
(BN)

Utility
Node
(ID)

Decision
Nodes
(ID& BN)

 150

The Euclidean distance is employed to calculate the distances. Since the maximum

utility is established when the distances zero, the utility function is set to be the inverse of

the sum of the distances.

After defining the Bayesian network part and the influence diagram part, the

dependencies between the variables (the system dynamics) have to be established. If the

system dynamics are known, the dependencies are entered to the system by inserting arcs

between the variables using the agent software. If the system dynamics are not known,

the agent software uses network structuring algorithms defined in Section 4 to establish

the best network. The software needs a small database to generate the Bayesian network

of the agent. The details of the network search algorithms are explained in Section 4.

Section 6 explained how these algorithms are employed and how they can be modified.

Let us analyze the problem when the system dynamics are known. That is, we know

the conditional dependencies between variables in the Bayesian network. From the

nature of the Dog & Sheep problem, it is obvious that the sheep's next action is dependent

on the position variables (yyxx SDSD ,,,) and the dog's next action (ND). Figure 7.4

illustrates the structure of the agent with the system dynamics.

Figure 7.4. The structure of the intelligent agent with the known system dynamics.

Sx Sy Dx Dy

SN DN

UD

 151

In the Bayesian network shown in Figure 7.4, the following represents the conditional

probabilities to be calculated.

)(),(),(),(yxyx SPSPDPDP (7.2)

)(NDP (7.3)

),,,,|(NyxyxN DSSDDSP (7.4)

Equations (7.2), (7.3), and (7.4) define the dynamics of the system. The positions and the

sheep's next action are independent but the dog's next action is dependent on the other

five variables. The decision variables ND and NS are analyzed as chance nodes because

a decision node becomes a chance node once it is instantiated. The dog takes its action

before the sheep takes an action. The dog takes actions on the fly and estimates the next

sheep action by updating the network. Then, the program calculates the utility function

using estimated sheep position and the dog position. Finally, it fires the action that

creates the maximum utility. Note that the positions of the dog and the sheep do not

directly affect the dog's action. They affect the sheep's action directly. Since the dog

decides its actions according to the sheep's expected action, the positions affect the dog's

action.

As stated earlier, if the system dynamics are not known, the agent software generates

a network from the available data. The search algorithms defined in Section 4 are used to

find the network that fits to the available data. As stated in Section 4, the properties of

the algorithm used can be adjusted by the user.

Let us consider the network created by using the heuristic search with Bayesian

scoring. A small database is provided for the search algorithm. The resulting Bayesian

network is shown in Figure 7.5. In the generated Bayesian network, additional arcs

 152

between the variables are added by the algorithm. The algorithm showed that the

positions of the sheep and the dog affects not only the dog's next action but also the

sheep's next action. The dog models the sheep's dynamics with the arcs between the

sheep's next action and the position variables. The additional arcs complicate the

network but it also makes more sense to model the sheep's behavior.

Figure 7.5. The structure of the agent with BN created by the search algorithm.

The structure in Figure 7.5 adds one more conditional probability to the calculations

because the sheep's next action depends on the positions of the dog and the sheep.

Therefore, the equations necessary for the inference calculations become the following.

)(),(),(),(yxyx SPSPDPDP (7.5)

)(NSP (7.6)

),,,,|(NyxyxN DSSDDSP (7.7)

),,,|(yxyxN SSDDDP (7.8)

The equation (7.8) is added to the calculations. Section 7.3 provides more detailed

simulation results for the Dog & Sheep problem in a specific domain.

Sx Sy Dx Dy

SN DN

UD

 153

The creation of the decision theoretic intelligent agent is completed after generating

the structure of the Bayesian network. Now, the agent can start exploring the

environment to establish its goal. The agent exploits the environment during its

exploration by updating itself with the new information about the environment. The

following summarizes the exploration and exploitation processes of an agent.

The agent (the dog) takes its actions in order to maximize the utility function in

equation (7.1). First, the agent fires the actions on the fly and calculates the probabilities

of the states in the sheep's next action node. Second, the value of the utility function is

calculated for each possible action (state) of the variable SN. Then, using Equation (2.12),

the expected utility of the dog's (agent's) action, id . The following formula presents how

the expected utility is calculated for the action di.

� ==⋅====
js

iNjNiNjNiN dDsSPdDsSUdDU)|(),()((7.9)

The same formula is applied to calculate the expected utility of each action in the

agent's action set. The utility functions in the summation are calculated by the using

Equation (7.1). In the formulation, the positions of the dog and the sheep are not shown

because they are updated by the action id and js . Let us denote the updated positions

with a bar in the formulation. The following equation presents the utility function for the

action pair, id and js .

() ()2222

1

yyxxyx

iNjN
DSDSSS

dDsSU
−+−++

===),((7.10)

where ,,, xyx DSS and yD are the updated (expected) positions of the dog and the sheep.

The utilities for all possible action pairs are calculated by Equation (7.10). The

 154

conditional probability,)|(iNjN dDsSP == , is calculated by the inference algorithm

defined in [1].

Finally, the agent chooses the action with the highest expected utility by using the

PMEU as in equation (5.1).

��

�
�
�

��

�
�
�

==⋅===== �=
j

iN s
iNjNiNjNiiNdD

dDsSPdDsSUdDUd)|(),(max)(max (7.11)

where d represents the action with the highest expected utility.

To sum up, first the agent fires it actions on the fly. Second, the inference is run

through the BN to calculate the corresponding probabilities of the sheep's possible next

actions. Third, the utilities are calculated for each possible action of the sheep and the

dog's action using Equation (7.10). Then, the probabilities and the utilities are placed

into Equation (7.9) to calculate the expected utility of the dog's action. The process is

repeated for each possible action of the dog. Finally, the agent (the dog) chooses the

action with the maximum expected utility by employing the formula in (7.11).

After deciding which action will be fired, the dog takes the action and observes the

sheep's next action. The dog records the current states of the system variable after the

sheep moves. The agent updates its BN (the world model) using the current states of the

system variables according to the algorithm defined in Section 4. The dog (the agent)

continues to take actions in the same way until the sheep is in the pen. The following

section explains the Dog & Sheep simulation performed by the IntelliAgent software.

 155

7.2 The 4-by-4 Grid Dog & Sheep Simulation

In Figure 7.1, the Dog&Sheep problem is presented on a n-by-m grid. This section

presents the simulation results for a 4x4 grid, 3== mn . The section explores both

known dynamics case and unknown dynamics case. We have run the simulations by

placing the dog and the sheep in several different locations. For all the locations, the dog

herded the sheep to the pen successfully. The simulation results were satisfactory for

both known and unknown dynamics cases. Let us start with the simulations performed

with known system dynamics.

7.2.1 Simulation results for known system dynamics

Let us use the same system dynamics shown in Figure 7.4. The nodes in the Bayesian

networks can be created manually with mouse moves or with a database file. A database

is used to generate the initial network parameters. The database is created with 19 data

cases. Each data cases consist of the dog and the sheep locations and the corresponding

actions of the sheep and the dog.

The IntelliAgent software is used to create the Bayesian network for the intelligent

agent. The utility function is placed in the software as a function with the form of

Equation (7.1). Thus, the user does not have access to the utility function of the

intelligent agent in the software. The IntelliAgent software can only simulate the Dog &

Sheep problem. To simulate other intelligent agent problem, the utility function for the

agent has to be edited accordingly in the source code.

 156

Let us create the intelligent agent's Bayesian network by using IntelliAgent software.

First we need to create the network nodes. To create the network nodes, the database in

Table 7.1 is loaded to the software.

Table 7.1. Initial database for the Dog&Sheep problem

Dx Dy Sx Sy Dd Ds
3 0 3 1 0 4
3 1 3 0 0 2
2 1 1 1 4 3
1 2 1 0 3 2
2 1 1 1 2 3
0 2 1 1 1 3
1 2 0 1 2 3
3 0 1 0 2 2
2 1 1 0 3 2
1 2 1 1 0 3
2 0 1 0 0 2
0 1 1 0 1 2
0 2 1 0 1 0
1 0 0 1 1 0
1 1 0 1 4 3
0 3 1 3 0 1
2 2 3 3 1 3
3 2 2 3 4 1
3 2 2 3 4 3

The data cases are created manually. We put the dog and the sheep into random

locations and we have chosen the actions of the dog and the sheep. Then, we have put

those six values into a row in the database. The number of data cases in the database is

long enough to calculate the initial parameters of the Bayesian network. The agents

update their network parameters while they are exploring the environment.

 157

The above database is edited into a text file, called dogsheepdb.txt for the

IntelliAgent software. Then, we have loaded the database into the software as shown in

Figure 7.6.

Figure 7.6. Loading the initial database.

After loading the database, the IntelliAgent software creates the network nodes and

calculates the independent probabilities for each variable. Now, we have the network

nodes with their parameters. The software determines the number of states in the nodes,

their probabilities, and their names by evaluating the database.

After the software creates the network nodes, we need to define the dependencies. As

stated in Section 6, the dependencies (the arcs) between the nodes can be established by

mouse operations. A tutorial on how to create a Bayesian network is also presented in

Section 6.2. We have created a Bayesian network with same dependencies as the

network shown in Figure 7.1. Figure 7.7 presents the Bayesian network created in the

IntelliAgent software.

 158

Figure 7.7. Bayesian network with known dependencies.

After the arcs are drawn in the network, the software adjusts the CPTs and the

probabilities of the nodes by running inference in the network. Now, we can start

running the simulation.

To simulate the problem, we need to create the intelligent agent. As described in

Section 7, agents are created by using a dialog box. The user can give the name and the

location of the agents using this dialog box. In the IntelliAgent simulation the dog agent

and the sheep agent are named 1 and 2, respectively. Thus, the user should enter either 1

or 2 as the name of the agent during the creation of the agents. The software knows

which agent is the dog or the sheep by checking the name of the agent. Let us create the

 159

dog and the sheep at (0,0) and (3,3), respectively. This is the hardest case for the dog to

herd the sheep into the pen. As soon as an agent is created, the software draws a grid on

the screen to display the simulation. Figure 7.8 shows the simulation grid created by the

IntelliAgent software.

Figure 7.8. Bayesian network and the simulation grid.

Let us assume that we have chosen continuous simulation on the agent creation dialog

box. The simulation results were successful for different placements of the agents. We

will only present simulation results for the hardest case in this section. Figure 7.9 shows

the paths that the sheep and the dog have taken during the simulation. The dog was able

to establish its goal by herding the sheep to the pen. The simulation ended when the

sheep was at (0,0) and the dog was at (1,1).

 160

Figure 7.9. The paths taken by the dog and the sheep.

In Figure 7.9, the sheep does not move away from the corner until the dog is near the

sheep. When the dog comes closer to the sheep, the sheep moves away from the corner

and the dog. Then, the dog follows the sheep trying to herd it to the pen. The dog chases

the sheep until the sheep is in the pen.

We have also run three consecutive simulations without changing their positions,

shown in Figure 7.10. The goal of these consecutive simulations is to see whether the

dog learns from its experience. In the first run, the sheep has escaped from the pen by

moving to the right. The dog then followed the sheep and put the sheep into the pen. In

the second run, the sheep managed to escaped from the pen by moving up because the

dog moved down to stop the sheep moving to the right. The dog learned from its

previous experience that the sheep will move to the right. In the third simulation, the dog

first moved to the left to stop the sheep moving up and the sheep moved to the right.

Then, the dog moved to the right to stop the sheep moving to the right. Finally, the sheep

moved back into the pen in response to the dog's movement. The sheep could not escape

in the third run because the dog learned the sheep's behavior by experiencing previous

escapes. The dog takes its actions according to the knowledge it gets from its experience.

Dog's path

Sheep's path

S

D
1 2 3

1

 2

 3

 161

Figure 7.10. Learning from the experience.

As stated earlier, the dog agent updates the parameter of the Bayesian network while

it explores the environment. The simulation starts with the initialization of the positions

of the agent. Using Equations (7.9), (7.10), and (7.11), the dog calculates the expected

utility for its actions and finds the action with the highest expected utility.

The dog fires the action with the maximum expected utility. Then, it waits for the

sheep's next action. The sheep has its own dynamics and tries to avoid the dog. The

sheep's dynamics are bunch of rules that determine the next action of the sheep. The

rules are defined so that the sheep is moving away from the dog.

After the sheep takes its action, the dog records the current positions and actions of

the sheep and the dog into the database as a data case. Since the database is modified, the

software modifies the parameters of the Bayesian network according to the new data

case. The modification of the parameters does in fact establish the learning. The next

time the same setting is faced, the agent will take its actions according to the modified

parameters of the network. The following paragraph presents how learning occurs in the

decision-theoretic intelligent agent.

S

D

S

D

S

D

(a) (b) (c)

 162

In Figure 7.10, the simulation starts with specified agent locations; the dog is at (1,1)

and the sheep is at (0,0). Let us go through the learning process for the dog by analyzing

it possible actions and their expected utilities. The sheep has three possible actions in this

setting; "don't move", "move left", and "move up". The sheep cannot move down or

move left because it is at (0,0). To calculate the expected utilities for the dog's actions,

we need to calculate the probabilities of each state action and corresponding utility value.

Since the agent has limited information about the environment, the probabilities of the

sheep's actions will be uniformly distributed. The software places uniform priors if a

case has never seen before. The software can show the probabilities of the sheep's

decision node SN by simply double clicking on the node. The following is the

probabilities of the sheep's next action states.

{ }2020202020 .,.,.,.,.)|(== iNN dDSP (7.12)

As can be seen above, probabilities are uniformly distributed for all the action of the

dog. Now, let us calculate the expected utilities for each the dog's action id and the

possible actions of the sheep (310 sss ,,). The software only calculates the utility for the

sheep's possible actions. The utilities for the sheep's impossible actions are equal to zero.

The following equations present the calculation of the utilities for the sheep's possible

actions.

2
1

1100
1

00 =
+++

===),(dDsSU NN (7.13)

2
1

1001
1

01 =
+++

===),(dDsSU NN (7.14)

002 ===),(dDsSU NN (7.16)

 163

2
1

0110
1

03 =
+++

===),(dDsSU NN (7.15)

004 ===),(dDsSU NN (7.17)

Using Equations from (7.12) to (7.17), we can calculate the expected utility of the

dog's action 0d .

3404020
2
120

2
120

2
1

4

0
000

....

)|(),()(

≅⋅+⋅+⋅=

==⋅==== �
=i

NiNNiNN dDsSPdDsSUdDU
 (7.18)

The expected utilities for the other actions of the dog are calculated in the same way. The

following equation presents the expected utilities for the dog's all actions.

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

23850
47880
47880
23850
34040

.

.

.

.

.

)(NDU (7.19)

After the expected utility for each action is calculated, the agent (the dog) fires the action

that generates the maximum expected utility. Therefore, the dog fires the action 2d ,

which is "move left". Thus, the dog moves to (0,1) on the grid. The dog waits for the

sheep's next action after it fires its best action.

The sheep has move to the right because it is trying to get away from the dog.

Therefore, the new positions are (0,1) and (1,0) for the dog and the sheep, respectively.

The simulation is run until the sheep is in the pen again. When the simulation is ended,

the sheep was in the pen and the dog was at (1,1) as shown in Figure 7.10 (b).

Let us check the state probabilities of the sheep's action (decision) node SN and the

expected utilities for the dog's actions.

 164

{ }20202020200 .,.,.,.,.)|(== dDSP NN (7.20)

{ }20202020201 .,.,.,.,.)|(== dDSP NN (7.21)

{ }000102 ,,,,)|(== dDSP NN (7.22)

{ }20202020203 .,.,.,.,.)|(== dDSP NN (7.23)

{ }20202020204 .,.,.,.,.)|(== dDSP NN (7.24)

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

23850
47880
41410
23850
34040

.

.

.

.

.

)(NDU (7.25)

As can be seen in Equation (7.22), the conditional probability of SN given the action

2d is changed after the first run. This is because the sheep moved to the right in the first

simulation. The agent then updated this particular conditional probability accordingly.

This shows that the decision-theoretic agent can learn from its experience. The change in

the conditional probability is also changed the expected utility of the action 2d . The

expected utility of the action 2d is reduced because the sheep went away from the pen in

the previous run. Now, the dog knows that if it fires the action 2d again, the sheep will

move to the right.

Since the expected utilities are changed, the expected utility of the action 3d became

the maximum. Therefore, the dog moves down to stop the sheep going to the right. After

the dog moved down, the sheep went up)(4s to avoid the dog. We have run the

simulation until the sheep is in the pen. One should keep in mind that the agent updates

 165

its model of the environment in every step. The simulation is ended when the sheep is in

the pen and the dog is at (1,1) as shown in Figure 7.10 (c).

One might guess that the conditional probabilities and the expected utilities will be

different than that of the previous run. The following equations present the conditional

probabilities and the expected utilities.

{ }20202020200 .,.,.,.,.)|(== dDSP NN (7.26)

{ }20202020201 .,.,.,.,.)|(== dDSP NN (7.27)

{ }000102 ,,,,)|(== dDSP NN (7.28)

{ }100003 ,,,,)|(== dDSP NN (7.29)

{ }20202020204 .,.,.,.,.)|(== dDSP NN (7.30)

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

23850
41410
41410
23850
34040

.

.

.

.

.

)(NDU (7.31)

The agent continues to learn from its experience because the conditional probabilities

of NS given the action 3d . Therefore, the expected utility for the action 3d is also

changed. The utilities of the action 2d and 3d are equal. The agent chooses the action

with the lower indices if there is equality. Therefore, the dog fires the action 2d .

After the dog moved to the left by firing the action 2d , the sheep moved to the right

to avoid the dog. Then, the dog moved to the right by firing the action 1 because it

knows that in the first run the sheep moved to the right and escaped. To keep the sheep

around the pen, the dog moved to the right instead of going down and following the

 166

sheep. This shows that the dog learns the sheep's behavior in time and acts accordingly.

In fact, after the dog moved to the right, the sheep moved to the left and went into the pen

as shown in Figure 10 (c).

We have covered the case where the dynamics of the system is known. The

simulation results were satisfactory. This part of the research will be presented in IEEE

SMC2000 conference. In above simulations, the next action of the dog is not directly

dependent on the positions of the dog and the sheep. In reality, the dog's next action is

also dependent on the positions of the dog. The simulations worked well because the dog

had the exact knowledge of the relationship between the positions and the sheep's next

action. If the dog does not have that information, it cannot make its decisions only

depending on the sheep's next action. In that case, the agent has to create its Bayesian

network and find out the dependencies in the network. The next section explores the case

when the system dynamics are not known.

7.2.2 System dynamics are not known.

In real life, an intelligent agent may not have the knowledge of the system dynamics. For

example, if a mobile robot is placed in a room to do certain tasks, the robot will not have

the exact knowledge of the room at the beginning. Furthermore, if there are more than

one robot, the robots will not know the dynamics of other robots. In this kind of problem

settings, the robots have to explore the environment and exploit (learn) the data that they

have gathered. In our agent design, we have placed an online Bayesian network learning

ability to our decision-theoretic intelligent agents. In previous sections, the online

 167

Bayesian network learning and software are explained in detail. In this section, we will

simulate the Dog & Sheep problem with unknown system dynamics.

In the previous case, the agent learned the parameters of the network using a database

because the system dynamics were known. Now, the agent has to learn both structure

and parameters of the Bayesian network using the database. In Section 4, structural

learning and parameter learning in the online Bayesian network learning are presented.

Let us start the simulation by loading a database to the software. Loading a database

and creating the nodes are explained above. Since the agent will also learn the structure

of the network a longer database might be needed. A database of cases is created

simulating the problem for each position set and for each action in the dog's action set.

We have entered those five values into the sheep's dynamics and recorded the sheep's

action with other five values. For the following simulation, this database is used.

After the nodes are created, we can generate the Bayesian network from the database.

To generate the Bayesian network, we can either click on the Create button on the toolbar

or choose the submenu Create in the Network menu. Then, the software displays a dialog

box to specify the search algorithm. In the dialog box, the user can choose the search

type, the score type and the distance measure type. The details of the dialog box and how

to specify the search algorithm are given in knowledge discovery tutorial in Section 6.2.

In this section, we will give some simulation results obtained by applying different

search algorithms. There are eight possible search algorithms in the software as shown in

Table 7.2.

 168

Table 7.2. Possible search algorithms in the IntelliAgent software

Algorithm Search Type Score Type Distance Measure
1 Heuristic MDL Kullback-Leiber
2 Heuristic MDL Euclidean
3 Heuristic MDL LogLikelihood
4 Heuristic Bayesian -
5 Exhaustive MDL Kullback-Leiber
6 Exhaustive MDL Euclidean
7 Exhaustive MDL LogLikelihood
8 Exhaustive Bayesian -

Analyses of the search algorithms are presented in Section 4. In this section, we will

not repeat the analysis of the search algorithms. We will present two simulations. The

first one is a heuristic search with Bayesian scoring since it creates the network shown in

Figure 7.5. The second search algorithm will be an exhaustive search with MDL score

using Kullback-Lieber distance measure.

To create the first search algorithm, we have clicked heuristic and Bayesian score

radio buttons on the dialog box. Then, the software started to generate a Bayesian

network. We have run the search algorithm with the default complexity and accuracy but

the resulting network had only three arcs. Then, we have increased the complexity by

moving the sliding bar to the complexity. Finally, we have established a network with

reasonable amount of arcs. Figure 7.11 shows the resulting Bayesian network.

 169

Figure 7.11. Bayesian network generated by heuristic search with Bayesian score.

As can be seen above, the number of arcs in the network is higher than the network

created with known dynamics. The search algorithm discovered additional dependencies

in the network along with the known ones. For example, in the previous case, there was

no arc from the positions to the dog's next action. We have pointed out that there should

be some relationship between the positions and the dog's action. Since the previous

simulations were successful one might ask what benefit we will get by having more arcs

in the network. We can answer the question by running the simulation with the network

structure given in Figure 7.11.

We have started the simulation with same positions, (0,0) and (1,1) for the dog and

the sheep, respectively. After the first run, the dog managed to herd the sheep to the pen

by following the same paths shown in Figure 7.9. In the second run, we discovered that

the sheep could not move out of the pen because the dog was not letting it go. In the first

 170

case, the dog learned the same thing after three runs but with the network it learned the

sheep's behavior from the database by putting additional dependencies in the network. In

fact, the network shown in Figure 7.11 should be closer to the ideal system dynamics

because it has connection between the dog's action and the positions. In short, the

additional dependencies enabled faster learning for the dog.

As stated in Section 4, the heuristic search algorithm requires the ordering of the

network nodes in the database. The exhaustive algorithm lifts this requirement by

visiting more network structures during the search. In fact, it tries every possible arc in

the network to improve the network score. Let us perform an exhaustive search with

MDL score using Kullback-Lieber distance measure. Figure 7.12 illustrates the resulting

Bayesian network.

Figure 7.12. Bayesian network generated by exhaustive search with MDL score.

As can be seen above, the exhaustive search generated quite different network from

the network created by heuristic search. Even though the network is quite different, it has

 171

necessary dependencies representing the system dynamics in the known system dynamics

case. The directions of some arcs are in opposite direction in the network. This does not

cause any problem because inference can also travel in a backward direction. There are

arcs between the sheep's position and the dog's position. The arcs from the sheep's

positions to the dog's positions are logical because the sheep moves before the dog. The

arc from DogX to DogY is in the opposite direction and may not be necessary. Since

they will not increase the computational complexity too much, we can keep these arcs in

the network.

We have run several simulations starting with the same positions. After the first

simulation, the dog herded the sheep to the pen successfully. The simulation ended when

the sheep is in the pen and the dog is at (1,1). The paths for the agents are shown in

Figure 7.13.

Figure 7.13. Paths of the agents for the first simulation.

As can be seen above, the sheep is going forward and backward until the dog is close

enough to force the sheep out of the corner. The sheep tries to escape, but the dog moves

diagonally to the sheep to keep the sheep at the corner while the dog gets closer to the

sheep. When the dog is close enough to the sheep, the sheep has no choice but to move

Dog's path

Sheep's path

S

D
1 2 3

1

 2

 3

 172

out of the corner. The dog follows the sheep until the sheep is at (0,3) and the dog is at

(1,3). Then, the sheep moves towards the pen. The dog does not go down to be just

behind the sheep because the sheep may then go up and get away from the pen. Thus, the

dog moves parallel to the sheep to keep the sheep down and move it to the pen. The

sheep moves towards the pen until it is in the pen. When the sheep is in the pen, the

simulation stops.

There are two important behaviors in the simulations. First, the sheep does not move

away from the corner until the dog gets close. Second, the dog does not try to go behind

the sheep when the sheep is at bottom of the area. The dog does not go behind the sheep

any more because it estimates that the sheep may go up and get away from the pen.

These two behaviors make it clear that the dog can estimate the sheep's behavior and act

accordingly.

We have run couple of simulations to get a feeling about the dog's behavior. In one

of the simulations, the dog and the sheep were caught in a loop where they repeat the

same action for certain number of times. Then, the dog was able to break the loop and

herd the sheep successfully. During the loop, the dog updates its network parameters

with each action. After a certain amount of time, it reaches the knowledge of the loop

and takes action to break it. This can be explained as forgetting or changing the agent

beliefs. The dog had a certain knowledge about the sheep before the looping. When they

start looping, the dog sees that the sheep is not doing what the dog expects. Therefore,

after each step in the loop, the dog updates its belief about the sheep's behavior. When

the number of steps in the loop reaches a certain value, the dog's belief about the sheep

completely changes and the dog takes a different action to force the sheep out of the loop.

 173

That is, the conditional probability of the sheep's action (SN) and the expected utilities of

the dog's actions are changed by experiencing the loop. When the expected utilities of

the dog's actions are changed, the dog takes a different action and breaks the loop. Figure

7.14 illustrates how the agents changes its belief about the environment and takes actions

accordingly.

Figure 7.14. Changing belief of an intelligent agent.

In Figure 7.14, the follows the sheep to the corner. Then, they go back and forward

between (3,0) and (2,0) for a while. Finally, the dog stops and waits for sheep to move to

the pen. The dog learns the behavior of the sheep in time and fires a different action after

certain amount of experience.

Let us explain the loop in terms of the dog's belief about the sheep and the expected

utilities of the dog's actions. When the simulation is started, the dog moved towards the

sheep by firing the action 2d . Then, the sheep moved away from the dog by taking the

action 1s . Now, the dog is at (0,0) and the sheep is at (1,0). In the next step, the dog

moves to the right by firing the action 1d . Then, the sheep also moves to the right to get

away from the dog. Now, the dog is at (1,0) and the sheep is at (2,0). The following

DS

1 2 3

1

 2

 3

 174

equations present the conditional probability of the states of the sheep's decision node SN

given the dog's actions id and the expected utilities for the dog's actions.

{ }001000 ,,,,)|(== dDSP NN (7.32)

{ }0072025001 ,,.,.,)|(== dDSP NN (7.33)

{ }000102 ,,,,)|(== dDSP NN (7.34)

{ }001004 ,,,,)|(== dDSP NN (7.35)

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

19090
00
16660
43740
19990

.

.

.

.

.

)(NDU (7.36)

In above equations, we did not show the conditional probabilities for the action 3d

because it is physically impossible for the dog to move down. Thus, the action 3d is not

a possible action for the dog and the utility for this action is set to zero. As can be seen in

Equation (7.36), the maximum expected utility is provided by the action 1d . Therefore,

the dog fires the action 1d and moves to the right. Then, the sheep also moves to the

right to get away from the dog by taking the action 1s .

Now, the dog is at (2,0) and the sheep is at (3,0). The following equations present the

conditional probabilities and the expected utilities for this setting.

{ }100000 ,,,,)|(== dDSP NN (7.37)

{ }001001 ,,,,)|(== dDSP NN (7.38)

{ }100002 ,,,,)|(== dDSP NN (7.38)

{ }100004 ,,,,)|(== dDSP NN (7.40)

 175

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

24020
00
18520
33330
21850

.

.

.

.

.

)(NDU (7.41)

Using the equation (7.41), the dog fires the action 1d and moves to the right because

it provides the highest expected utility. Then, the sheep moves to the left by firing the

action 2s because it is physically impossible for the sheep to move to the right.

Now, the sheep is at (2,0) and the dog is at (3,0). Let us calculate the conditional

probabilities and the expected utilities for this setting.

{ }001000 ,,,,)|(== dDSP NN (7.42)

{ }00802002 ,,.,.,)|(== dDSP NN (7.43)

{ }001004 ,,,,)|(== dDSP NN (7.44)

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

30900
00
44990
00
33330

.

.

.

.

.

)(NDU (7.45)

As shown in Equation (7.45), the expected utilities for the actions 1d and 3d are zero

because they are not physically possible dog actions. Therefore, only the conditional

probabilities corresponding to the possible actions are shown above. After the expected

utilities are calculated, the dog fires the action 2d since it provides the maximum

expected utility. Then, the sheep moves to the right again by firing the action 1s . This is

basically where the loop starts in the simulation. The sheep and the dog moved back to

the same locations after two actions.

 176

The current locations for the dog and the sheep are (2,0) and (3,0), respectively. Let

us present the conditional probabilities and the expected utilities for this setting one more

time.

{ }100000 ,,,,)|(== dDSP NN (7.46)

{ }001001 ,,,,)|(== dDSP NN (7.47)

{ }100002 ,,,,)|(== dDSP NN (7.48)

{ }100004 ,,,,)|(== dDSP NN (7.49)

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

24020
00
18520
33330
21850

.

.

.

.

.

)(NDU (7.50)

These values are the same as the values shown two actions ago. Therefore, the dog takes

the action 1d and moves to the right. Then, the sheep fires the action 2s and moves to

the left.

Now, the dog is at (3,0) and the sheep is at (2,0). Thus, the dog and the sheep went

back to the same location after two firing two actions. Let us examine the conditional

probabilities and the expected utilities for this setting one more time.

{ }001000 ,,,,)|(== dDSP NN (7.51)

{ }0064036002 ,,.,.,)|(== dDSP NN (7.52)

{ }001004 ,,,,)|(== dDSP NN (7.53)

 177

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

30900
00
40990
00
33330

.

.

.

.

.

)(NDU (7.54)

In Equation (7.52), the conditional probabilities are different than that of Equation

(7.43). This shows that after firing two actions, the dog updated its belief about the

sheep. The change in the conditional probability is reflected on the expected utility of the

action 2d . The expected utility of the action 2d is decreased from 0.4499 to 0.4099.

Although the expected utility of the action 2d is decreased, it is still the maximum.

Therefore, the dog fires the action 2d . Then, the sheep fires the action 1s .

Now, the dog is at (2,0) and the sheep is at (3,0). The conditional probabilities and

the expected utilities of this setting are the same as the values obtained two actions ago.

Therefore, the dog fires the action 1d . Then, the sheep fires the action 2s . Now, the dog

is at (3,0) and the sheep is at (2,0). During the simulation, the dog and the sheep comes

to this setting three more times. The dog has to fire different action from the action 2d to

break the loop. Thus, we will examine only the conditional probability for the action 2d

and the expected utilities. The following equations show the conditional probabilities

and the expected utilities for these three visits.

{ }005120488002 ,,.,.,)|(== dDSP NN (7.55)

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

30900
00
37790
00
33330

.

.

.

.

.

)(NDU (7.56)

 178

{ }00436605634002 ,,.,.,)|(== dDSP NN (7.57)

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

30900
00
35230
00
33330

.

.

.

.

.

)(NDU (7.58)

{ }0032768067232002 ,,.,.,)|(== dDSP NN (7.59)

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

30900
00
33190
00
33330

.

.

.

.

.

)(NDU (7.60)

As can be seen in Equations (7.56), (7.58), and (7.60), the expected utility for the action

2d decreases after every visit. This is because the conditional probability for the action

2d (the dog's belief about the sheep) changes after every visit. Finally, the expected

utility of the action 2d becomes lower that the expected utility of the action 0d . This is

the point where the dog breaks the loop by firing the action 0d and staying at the same

location. Then, the sheep fires the action 2s and gets away from the dog. The sheep gets

closer to the pen. In the next step, the dog moves to the left by firing the action 2d .

Then, the sheep moves to the left and gets into the pen as shown in Figure 7.14.

Let us examine how the conditional probability and the expected utility for the action

2d change over time by summarizing the results shown above. The following equations

summarize the conditional probability)|(2dDSP NN = for each visit to the locations

(3,0) and (2,0) for the dog and the sheep, respectively.

 179

{ }00802002 ,,.,.,)|(== dDSP NN (7.61)

{ }0064036002 ,,.,.,)|(== dDSP NN (7.62)

{ }005120488002 ,,.,.,)|(== dDSP NN (7.63)

{ }00436605634002 ,,.,.,)|(== dDSP NN (7.64)

{ }0032768067232002 ,,.,.,)|(== dDSP NN (7.65)

The conditional probability)|(21 dDsSP NN == changes from 0.2 to 0.67232.

Similarly, the conditional probability)|(22 dDsSP NN == changes from 0.8 to 0.32768.

This can be interpreted as the dog changes its belief about the next action of the sheep.

At the beginning, it believes that sheep is most likely to fire the action 2s because

)|(22 dDsSP NN == is higher than)|(21 dDsSP NN == . After five visits to the same

positions, the conditional probabilities are changed drastically. Then, the probability

)|(21 dDsSP NN == became larger than)|(22 dDsSP NN == .

The change in the conditional probability has an affect on the expected utility for the

dog's actions. The expected utility for the action 2d was 0.4499 at the beginning of the

loop. The expected utility of the action 0d was 0.3333. After five visits to the same

location, the expected utility of the action 2d became 0.3319 while the expected utility of

the action 0d stayed the same. After the fifth visit, the utility of the action 2d became

smaller than the expected utility of the action 0d . As a result, the dog has fired the action

0d and broken the loop after the fifth visit. The following graph shows how the expected

utility of the actions 2d and 0d change over time.

 180

Figure 7.15. The expected utilities of the actions 2d and 0d .

Breaking a loop is another example of the learning capability of the decision-theoretic

intelligent agent design. The intelligent agent updates its world model according to its

experience over time. After certain amount of time, the intelligent agent changes its

behavior according to its experience. This is seen as similar to human belief. People do

not change their beliefs suddenly. They tend to wait a certain amount of time before they

change their mind. This is normal because if the agent changes its belief quickly, then, it

will not have any memory or belief about the environment. It will take its actions

according to the very latest experience, which could be a random one. The agents exhibit

a humanoid belief process in the simulation. The details of the biological aspects of the

agents are explained in Section 1.

In the simulations, the agents became stuck in a loop partly because their network

structure is not good enough to take better actions and partly because the length of the

database is not enough to provide accurate network parameters. After looping for a

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

1 2 3 4 5

Th

e
ex

pe
ct

ed
 u

til
ity

)(0dDU N =)(2dDU N =

 181

while, the agent updates the network parameters and takes actions to move the sheep out

of the loop. The agent records its experience into the database during its exploration.

The agent updates the network parameters with its experience, but it cannot change the

network structure automatically. The user can run the network creation algorithm to

regenerate the network with the modified database. We have run the network search

algorithm with the modified database and the new network structure has been generated.

Figure 7.16 shows the resulting network.

Figure 7.16. Network generated after the agent explored the environment.

In Figure 7.16, there are new arcs and some of the arcs have opposite directions if we

compare the network with the network shown in Figure 7.12. Additionally, the network

 182

has more arcs than the previous one. Since the network creation is not done by the agent

there is no way of knowing the score of the network. Therefore, we do not know that this

is a better network than the previous one. Simulations are performed with the new

network to find out its behavior. There was no looping after running 10 simulations. The

new network, in fact, is a better network than the previous one. Generating the network

with the modified database has improved the performance of the network and the agent.

In the future, the agent can automatically regenerate the network to see whether it can

create better networks using its experience.

We have shown that the learning from experience causes intelligent agents to take

better actions in time. After the learning, the intelligent agent establishes the task in a

shorter time or in fewer steps. The next section will present the effectiveness of the

proposed online Bayesian network learning by simulating the problem without learning.

In this section, we have performed simulations with different search algorithms and

databases. In all simulations, the dog herded the sheep successfully. In some

simulations, the agent had to explore the environment and learn more about the

environment to correct its behavior. In short, we can conclude that if the Bayesian

network structure is accurate enough, the agent can be successful with a limited initial

knowledge. On the other hand, if the network structure is not accurate enough, then, the

agent has to explore and learn the environment. In some cases, the agent may even need

to regenerate the network structure using its experience.

Simulation results show that the online Bayesian network learning provides the

learning from the experience and the self-organization in the intelligent agent model. The

next section presents the effectiveness of the online Bayesian network learning by

 183

simulating the problem without using the online Bayesian network learning in the

proposed intelligent agent model.

7.3 The effectiveness of the online Bayesian network learning.

The online Bayesian network learning is the most important feature of the proposed

intelligent agent model because the intelligent agents change their behavior after they

learn from their experience. The more they learn about the environment and the other

agents, the better they perform their task. For example, as shown in Figure 7.10, the

intelligent agent (the dog) learns to keep the sheep in the pen by only taking two actions

after two simulations. Before the learning, the dog put the sheep into the pen after

several steps.

The proposed intelligent agent model learns its environment continuously. The

learning causes the intelligent agents to change their belief about the environment and the

other agents. The change in the belief causes a change in the agent's behavior because

the agent takes different actions after the learning. Because the agents change their

behavior according to the other agent's behavior and the environmental changes, we can

claim that the agents take actions in coordination. The coordination between the agents

provides the self-organization of the agents in a multi-agent system.

The following simulation results show that if the online Bayesian Learning is

removed from the proposed agent design, the learning and self-organization capabilities

of the agents diminish. The agent act according to its knowledge from the initial data. If

initial data are not available, then the agent acts by assuming the uniform probability in

 184

the Bayesian network. We will repeat the three simulations in the previous section

without the online learning in the Bayesian network.

Let us simulate the dog & sheep problem by using the network in Figure 7.7 without

the online learning. In this case, the system dynamics are known. As stated in the

previous section, the intelligent agent learned to keep the sheep in the pen after two

simulations. Figure 7.17 shows the simulation results without the online learning.

Figure 7.17. (a) is the first run, (b) is the second run, and (c) is the 10th run.

As can be seen in Figure 7.17, the agents do not change their behavior over time. The

dog always takes the same route to put the sheep in to the pen. It does not try other

actions to do put the sheep into the pen in fewer steps. This is because the dog

(intelligent agent) does not adapt its belief about the sheep. In other words, the dog does

not learn from its experience over time. Therefore, we can conclude that the intelligent

agent performs poorly when it does not learn from its experience.

Although the dog performs poorly, it still puts the sheep into the pen successfully.

This is mostly because the expected utilities of the actions are determined by the utility

function, which involves the distance between the sheep and the pen and the distance

(a) (b) (c)

S

D

S

D

S

D

 185

between the dog and the sheep. Additionally, the structure of the network is good enough

that the agents do not get in a loop during the simulations. When the network structure is

not good enough, the agents will probably get in a loop and stay there forever.

Let us simuate the system by constructing the network from the data as in Figure

7.11. In this case, the heuristic search and the Bayesian score is employed to generate the

network. Figure 7.18 shows the results for the first, the second, and the 10th runs.

Figure 7.18. Simulations for unknown network structure and no online BN learning.

Figure 7.18 supports our claim that if the structure is good enough the dog can still

put the sheep into the pen but the dog has to take several actions. The behavior of the

dog is the same in each run since it does not learn during the simulation.

Finally, we will simulate the case where the network is not good enough as shown in

Figure 7.12. In this case, the exhaustive search and the MDL score with Kullback-Leiber

is employed to generate the Bayesian network. As shown in Figure 7.14, the agents get

into a loop during the simulation. In Figure 7.14, the dog breaks the loop after certain

number of steps because it continues to learn during the simulation. Figure 7.19 presents

the simulation results obtained by canceling the online BN learning in the agent model.

(a) (b) (c)

S

D

S

D

S

D

 186

Figure 7.19. Looping in the simulations when the online BN learning is not applied

In Figure 7.19, only two steps are shown because the agents loop between (2,0) and

(3,0). The simulation ends when the maximum number of steps is reached. If we do not

limit the number of steps in the simulation, the simulation continues forever. The agents

stay in the loop until the maximum number of step is reached. This is because the dog

takes its actions according to its initial belief about the sheep and the environment. Since

it does not learn the sheep's behavior and change its behavior accordingly, the dog takes

the same action for the same setting. The sheep also moves to avoid the dog and tries to

get away from the dog. In real life, the sheep will not take the same action forever

because it will definitely be tired after certain amount of time. When the sheep is tired, it

will behave differently and may break the loop. This is also valid for the dog. Even

though the loop can be broken after certain amount of time, it will take more steps than

that of the case where the intelligent agent learns from its experience.

In summary, the online BN learning provides the learning from the experience and

the self-organization of the multi-agent system. If the online BN learning is not applied,

D S

1 2 3

1

 2

 3

S D

1 2 3

1

 2

 3

(0,0) (0,0)

 187

the intelligent agent cannot improve its behavior according to the other agent's behavior

and the environmental changes. Since they cannot change their belief about the other

agents, the self-organization of the agents cannot be accomplished without applying the

online Bayesian network learning.

Simulation results show that if the online Bayesian network learning is not applied in

the intelligent agent design, the self-organization ability of the intelligent agents cannot

be accomplished. Additionally, the intelligent agents cannot adapt their behavior if the

environment changes over time. In the next section, we will conclude this research and

present possible future work.

 188

CHAPTER 8

Conclusions

A decision-theoretic intelligent agent model has been proposed and applied to a real

world problem. Bayesian networks and influence diagrams are combined with the help

of utility theory to define the decision-theoretic intelligent agent. Learning in the agent is

accomplished by introducing an online Bayesian network learning. An intelligent agent

software, IntelliAgent, is written using Visual C++ and a C++ class library for the

decision-theoretic intelligent agent design. Finally, The herding problem was

successfully simulated by the help of the intelligent agent software.

Bayesian network learning is explored in Section 3. Design of the proposed online

Bayesian network learning is explored in Section 4. The online Bayesian network

learning has the following properties:

• Bi-directional learning (Bottom-up, Top-down)

• Combines supervised and unsupervised learning

• Online; learning is continuous

• Adaptive; network structure and parameters are updated by the new information

• Biologically inspired by the usage of Bayesian networks.

The online Bayesian network is combined with influence diagrams to create an

intelligent agent as described in Section 4. Shoham's agent design is employed to design

the decision-theoretic intelligent agent. An agent consists of belief (BN), preference

(Utility - ID) and capabilities (action set - ID). In the decision-theoretic intelligent agent

 189

design, two more levels, sensors and actions, are added to the agent design for practical

purposes. The "sensors" level is responsible for gathering sensory information and

passing it to the BN. The "actions" level is responsible for carrying the actions fired by

the agent.

After designing the decision-theoretic intelligent agent, the IntelliAgent software is

utilized to perform simulations of a real life problem. The IntelliAgent software user

manual and tutorials are presented in Section 6. The software is Windows application

software created by C++ class libraries written for the decision-theoretic intelligent agent

design. Manual and automatic agent creation is possible in the IntelliAgent software.

As stated earlier, the decision-theoretic intelligent agent model is applied to a real

time problem, a herding problem. The herding problem, also called Dog&Sheep

problem, is analyzed for one sheep and one dog. The goal of the dog is to herd the sheep

to the pen. The goal of the sheep is to avoid the dog. The simulations are performed on a

nn × grid. The user can set the dimensions of the grid in the IntelliAgent software.

Simulation results for 44 × grid is presented in Section 7. The following is concluded

after analyzing the simulation results:

• The dog (intelligent agent) herds the sheep to the pen successfully in every

simulation. Simulations are run with different positions of the dog and the sheep.

• The intelligent agent shows learning capability by presenting behavioral change

by observing the sheep (other agent and the environment). This is also defined as

'learning from experience". The dog takes its actions according to sheep's

behavior. This is the self-organization property of the proposed decision-theoretic

 190

intelligent agent model. Each agent is independent but takes its actions according

to other agents' behaviors.

• The dog has human-like belief about its environment. The dog changes its belief

about the environment including other agents in a humanoid way. For example, if

the sheep and the dog are stuck in a behavioral loop, the dog does not change its

behavior immediately. As shown in Section 7, the dog does not change it's

believe about the sheep immediately. It waits for a couple of steps, then it

changes its behavior by taking a different action for the same situation. This type

of behavior is a standard human behavior. People do not change their belief

abruptly after they have encountered an unusual event on a specific subject. They

would like to experience the event several times. Then, they modify their believe

on the subject. The decision-theoretic agent also modifies its belief by a certain

amount of experience on an unusual environmental state.

After concluding the simulation results, the general properties of the decision-

theoretic intelligent agent model are presented. The system analysis of the model is

presented in Section 5. The following are the properties of the decision-theoretic

intelligent agent system:

• The agent has bi-directional learning capability. It starts with an initial world

model. It takes its actions according to the initial world model and its utility

function (goal). The agent explores the environment and gathers information after

taking actions. Then, it uses the information to modify its world model. As

 191

explained in Section 5, it has bottom-up and top-down learning. In the literature,

there are only a few learning methods that can claim to be bi-directional learning.

• The decision-theoretic intelligent agent also combines supervised and

unsupervised learning. It takes its actions according to the initial world model

and the utility function - unsupervised learning. Then, it modifies its world model

by responses it gets from the world. While it explores the environment, it also

exploits the environment by generating a world model - supervised learning.

• As stated in the context of system analysis, the decision-theoretic intelligent agent

system can be seen as adaptive and as a feedback control system. The agent

system combines feedback and adaptive control properties. There is a feedback

loop because the agent observes the current environmental state, compares it with

its goal state, and takes actions according to the difference between the current

state and the goal state. The agent system is an indirect adaptive control system

because the agent modifies the plant (world) model and the controller with the

actual responses from the environment. Section 5.2 presents the details of the

system analysis of the decision-theoretic intelligent agent system.

• As learning is biologically inspired, the decision-theoretic intelligent agent system

is also biologically inspired. Each agent has sensors, belief, preference (goal),

and capabilities, actuators as people do. People have sensors such as eyes, ears,

and skin. They also have belief about environment, i.e., there is a college in town.

They have a goal/goals, i.e., a college degree. They have capabilities such as

walking, studying, and reading. Finally, they have actuators such as arms, legs,

and brain. Therefore, a student is going to "walk" to the college, "get" an

 192

application, "fill" the application, and "hand in" the application, "get in" to the

college, "study" four years, and finally "get" a college degree. While the student

is taking his/her actions, he/she is updating his/her world model. For example,

when he/she applies to the college he/she sees the requirements and updates

his/her knowledge about the college. Then, the student plans his college career

and takes actions accordingly. The decision-theoretic intelligent agent takes its

decision using the same decision structure as humans. That is why the decision-

theoretic intelligent agent is said to be a biologically inspired agent model.

Hardware implementation of the problem is studied by using a mobile robot. An

advanced mobile robot is purchased from Real World Interface, Inc. for the research.

The robot has its own PC and a CORBA based software package, Mobility™. A C++

program is written using the CORBA based Mobility software to let the robot take

actions. The program takes a text file that contains dog’s action commands. Then, the

commands are used to control the robots “rotate” and “translate” movements. The closed

loop control algorithm is obtained by using the odometer of the robot. The control

system steers the robot to a target x-y coordinate. The target coordinate is calculated by

using the current position of the robot and the next command (next action) in the text file.

The IntelliAgent software is modified to record the dog’s actions into a text file.

In summary, the decision-theoretic intelligent agent model is successfully applied to a

real life problem. The herding problem is simulated by the IntelliAgent software.

Simulation results clearly reflect the behavior of the decision-theoretic intelligent agent.

The next section presents possible future work.

 193

CHAPTER 9

Future Work

Even though the results of the simulations are successful, additional work can be done in

the IntelliAgent software and practical implementation of the proposed agent design. This

section presents the future work in two parts; software and hardware.

The following is the list of possible improvement in the IntelliAgent software:

• The online Bayesian network learning in the IntelliAgent software can only

handle complete databases. The proposed Bayesian network learning method can

handle the cases where the network structure is known and the system variables

are observable and where the network structure is unknown and the system

variables are observable. The learning algorithm in the IntelliAgent software can

be modified to handle the unobservable system variables. In other words, the

software should handle databases with unknown values. Methods for learning

from incomplete databases are explored in Section 3. For example, expectation

maximization (EM) algorithm can be added to the software.

• The IntelliAgent software can be designed as Multiple Document Interface

programs so that the user can run different simulations at the same time. That is,

a problem can be run with different Bayesian network structures and a choice

made for the best one.

• Bayesian network creation can be done by mouse operations or by using a

database. As stated earlier, the user cannot edit the utility function in the agent

since the utility nodes cannot be created visually. The reason is that the utility

 194

node has many elements because it is dependent on four variables; X and Y

coordinates of the sheep and the dog. On the other hand, a visual function editor

can be placed into the program so that the user can edit the utility function of the

agents.

• Similarly, the decision nodes are not also created as a rectangle in the software.

They are shown as ellipsoidal because they can be treated as chance nodes after

they are instantiated. A radio button can be placed into the parameters dialog box

to specify the decision nodes after they are created as a chance node. This may

help the user to understand the network better for complex network structures.

• Finally, the Edit menu can be activated by creating functions for copying, cutting,

and pasting nodes and arcs. Adding a node and an arc is already in the C++ class

library. One can easily incorporate those functions to the Edit menu elements.

After visiting the future work for software development, the following is the future

work for the hardware aspect of the research.

• As explained in the conclusions, an offline hardware implementation is performed

where the robot gets all the actions necessary during the simulation. There is no

real time interaction between the robot and the sheep in this hardware

implementation since the robot moving according to the simulations results. To

make the system real-time. The IntelliAgent software can be recompiled with a

CORBA interface to communicate with the robot. Then, the IntelliAgent

software can tell the robot what to do. Similarly, the robot can send sensory

information to the IntelliAgent software. Another mobile robot can be designed

 195

to be a sheep with limited capabilities. Finally, the herding problem can be

performed with these two robots.

• Since the second robot is not ready at the moment, an alternative can be to use the

IntelliAgent for the sheep's behavior. The IntelliAgent knows the dynamics of the

sheep and easily determined its actions after the dog's actions. In this case, the

IntelliAgent software simulates the problem and sends "translate" and "rotate"

commands to the mobile robot through Internet.

• Experimental CORBA interface is written for communication of two Windows

programs over the net. Satisfactory results are obtained for the CORBA interface.

The next step will be to establish an interface between a Linux program to a

Windows program using CORBA. Since the robot's program is a CORBA based

program, connecting that program to IntelliAgent software should not be difficult.

• A program is written for the robot to move to a certain location. The program

takes three inputs; speed of translation, speed of rotation and the length of

operation. By choosing the right values for these parameters, the program can

move the robot to a certain location. The results obtained from this program are

not accurate because the distance is calculated by the speed and the time. The

robot may not obtain the same speed all the time because the surface friction may

not be constant. Therefore, there is a need to find out whether the program can

read translation values for the wheels. A study is being performed to find out how

the robot can be moved accurately.

 196

APPENDIX

A. Classes of the IntelliAgent Software

Four types of classes are used to create the IntelliAgent software, namely MFC classes,

helper classes, visual C++ project classes, and ActiveX classes. The MFC classes will

not be discussed here since there are standard classes in Microsoft Visual C++.

A.1 Helper classes

Helper classes can be presented in two categories, Bayesian network related classes and

intelligent agent related.

A.1.1 Bayesian network related classes

There are six classes related to the Bayesian network creation; CNode, CArrow, CMatrix,

CCptDialog, CParamDialog, and CNetGenerationDlg.

A.1.1.1 CNode

This class consists of the definition of a node and its functionality. The application

programmer creates nodes in a network by creating an object of this class. The class has

two constructors, CNode() and CNode(CRect nodeLocation). The second constructor

creates a node in a desired location whereas the first one creates a default node with

default parameters. Let us explore the functions in CNode class briefly.

 197

AddParentOnCPT()

As stated earlier, the software has the ability of expanding the CPT of a node when a new

arc is added or removed from the node. The AddParentOnCPT() function automatically

expands the CPT matrix of a node, whenever the number of child or parent is changed by

adding or removing an arc to the node.

Inference()

This function performs forward and backward inference after the network update is done.

BackwardInference()

BackwardInference() function performs backward inference by transmitting the evidence

to its parents. This function also calls Inference() function on its parents. Thus, the

inference travels through the network until a first level node or an end node is reached.

ForwardInference()

BackwardInference() works very similar to the BackwardInference() function. It

performs forward inference by changing its children's probabilities and calling

Inference() function on them.

OnCalculateBayesScore()

This function calculates the Bayesian score for the node. It uses the technique defined in

Section 4. To calculate the score, the function either uses the node's probabilities or

conditional probability table depending on the parents of the node.

 198

OnCalculateLikelihood(int r)

This function works similar to OnCalculateBayesScore() except it calculates the

likelihood score of the node given a data case. The resulting score value is used in MDL

and LogLikelihood score calculations.

OnCalNodeLength()

This function calculates the length of the node. The length of the node is the number of

element in the CPT. This value is then used to calculate the complexity of the network.

CreateNodeCPT()

This function creates the initial CPTs in the nodes when the software first creates the

node. It can be considered as initial creation of the CPTs in the nodes.

OnUpdateCPT()

This function updates the CPT similar to AddParentOnCPT() function. This function is

called when the user would like to update the network.

OnVisit()

OnVisit() functionrecords whether the node is visited on a path. This function is used to

determine whether there is a cycle in the network or not. If the node is visited twice on a

path, then the program decides there is a cycle.

 199

OnDraw()

This function draws the nodes on the device context whenever the creation of the node is

completed. The function draws an ellipsoid and fills the ellipsoid with green.

Serialize(CArchive &ar)

This is a serialization function for the node objects in the program. Whenever the user

chooses to save the work, this function determines what needs to be saved in the node.

CNode class variables

int m_InstantiatedState

int m_EvidenceFlag
int m_NumOfStates
int m_NodeNumber
CMatrix m_NodeCPTnum
CMatrix m_NodeCPTdenum

CMatrix m_Prob
CMatrix m_NodeCPT
CUIntArray m_Child
CUIntArray m_Parent
CRect m_NodeLocation
CString m_NodeName
BOOL m_VisitPass
BOOL m_IsNodeVisited
BOOL m_Modified

A.1.1.2 CArrow

CArrow class is designed to create arrow (arc) objects in the network. It has two

constructor, CArrow() and CArrow(CPoint tail, CPoint head). The first one is the default

constructor. The second constructor is designed to create the arrows mouse operations.

The constructor takes two points as input and creates an arrow between the corresponding

 200

nodes. It first finds in which nodes the points are. Then, it draws an arrow between those

nodes. Let us explore the functions in the class.

Draw(CDC *pDC)

This is the function for drawing the arrow on the device context of the software. The

function gets the pointer (pDC) to the device context (CDC).

Serialize(Archive &ar)

This function performs the serialization of the arrows in the network when the user saves

the network.

CArrow class varables

CPoint m_Head
CPoint m_Tail
int m_HeadNode
int m_TailNode
CPoint m_Arrow[3]

A.1.1.3 CMatrix

CMatrix class is designed to perform matrix operations in the inference calculations. The

are also used as a value type. For example, the variable m_Prob in a node is a one-

column matrix. Similarly, a CPT of a node can also be represented as a matrix, i.e.

m_NodeCPT. There are four constructors for the class;

CMatrix(): Default constructor.

CMatrix(int row, int row): Creates a matrix "row" rows and "col" columns.

CMatrix(int row, int col, char Iden): Creates identity matrix.

 201

There are 14 functions in the CMatrix class. The functions is presented with their

brief functionalities.

AddColumn(int i)

This function adds "i" number of columns to a matrix. The function fills the new column

with 0.5 because 0.5 is the initial probability for every variable.

AddRow(int i)

This function adds "i" number of row to a matrix. It also fills the new row with 0.5.

GetElement(int i, int j)

An element of a matrix can be obtained by this function. The function returns the

element in ith row and jth column.

MaxElement()

This function finds the maximum element in the matrix. It returns the row of the

maximum element as an integer.

OnZero()

All elements of the matrix becomes zero after this function is applied to a matrix.

 202

operator()(int i, int j)

This function works as the same as GetElement(int i, int j) function. It returns the value in

the ith row and jth column.

operator *(const CMatrix & rhs)

This is an override function of "*" operator for matrix multiplication. It multiples two

matrix and returns the resulting maxtrix.

operator =(const CMatrix &rhs)

This is an override function of "=" operator. It replaces the matrix on the left with the

matrix on the right.

SetElement(int row, int col, float x)

An element of a matrix can be replace with a new value. The value in row "row" and

column "col" is replaced by x.

Supermultiply(Cmatrix &)

This is a special multiplication designed for handling multiplication in inference

calculations. In inference calculations, multiplying two CPT is not equal to multiplying

two matrices. Supermultiply function multiplies two CPT according to the inference

calculation techniques.

 203

Transpose()

This function takes the transpose of a matrix. It returns a matrix.

NumOfStates()

This is not a standard matrix operation. It is designed for determining the number of

states in the nodes by going through a database. It looks for the maximum value in each

column and put in a row matrix with the same number of columns.

CalculateJP(Cmatrix &test, int m)

This is also a special function for calculation joint probability of a data case in a database.

It takes a database matrix and a row number (m), then, returns the joint probability of the

data case in the mth row of the database. This function is used in probability calculations

of the network variables.

CMatrix class variables

CArray <float, float> m_CPT
int m_col
int m_row

A.1.1.4 CCptDialog

This is a dialog box class. It handles the CPT updating dialog box. The user enters the

new values into this dialog. When the user clicks the OK button on the dialog the new

value is placed into the CPT. There are two main functions in the class:

 204

OnInitDialog()

This function handles the initialization of the dialog box. It displays the default

parameters of the dialog box.

OnOK()

This is the main function in the dialog box. Whenever the OK button is clicked by a user,

this function is called. The function puts the new value entered from the edit box into the

CPT.

CCptDialog class variables

CString m_dEditCPT: Handles the edit box in the dialog box.

A.1.1.5 CParamDialog

This is the class that handles the Parameters dialog box. The user edits and updates node

parameters using the functions in this class. The following paragraphs present the main

functions in the CparamDialog class.

OnOK()

This is the function for OK button. This function wraps up all the changes the user made

on the parameters dialog box. This function finalize the changes on the node parameters.

 205

OnCheckProbSum(double initial)

This function checks whether the new probabilities have legal values or not. It checks

whether the summation of the probabilities is 1 or not. It returns a Boolean value after

the check.

OnInitDialog()

This is the initialization function. It determines the values in the dialog box when the

dialog box appears.

OnListEnter()

This is the function for enter button on the dialog box. It takes the value in the

Probabilities edit box and puts the value into the state probability list. It is used for

entering the value of a state after increasing the number of states in the node.

OnSelchangeProbList()

This function is activated if the user clicks the left mouse button on one of the state

probabilities. The function enables an edit text box and a push button (Update) under the

probability list box. Then user can change the value in the state probability list.

OnListUpdateselitem()

This function is called whenever the user clicks the left mouse button on the Update push

button. The function takes the value in the edit box and places it in the selected line in

the probability list.

 206

SetModifiedFlag()

This fucntion sets a flag after the parameters of the node are updated. Then, the software

knows which nodes are updated. Finally, when the user clicks the network update button,

the software update the network according to these flag values.

SetParameters(int states, CMatrix prob, CString name, int nodeNumber, CUIntArray

&parent, CUIntArray &child, CMatrix cpt)

This function is designed to update the node parameters with the new values before the

dialog box is closed.

OnDblClickMsflexgridCpt()

This is the function for editing the CPTs in the nodes. When the user double clicks the

left button on a CPT value, this function is called. The function first gets the row and the

column of the CPT value. Then, it activates the CPT updating dialog box. Finally, the

value in the CPT updating dialog box is entered to the CPT table on the parameter dialog

box.

UpdateDialogCPT()

This function puts the CPT table on the parameter dialog box into the node's CPT table.

It also updates the CPT if the user has changed the number of states in the node.

Increasing the state number increases the number of row in the CPT.

 207

CParamDialog class variables

int m_States
int m_NodeNumber
CString m_Probabilities
CString m_Name
CString m_dChangeListItem
CStringArray m_ProbabilityList

CMatrix m_dCPT
CUIntArray m_ChildList
CUIntArray m_ParentList
CListBox m_ListControl
CMSFlexGrid m_dMSFlexGridCPT
CCptDialog m_EditCPTDialog

A.1.1.6 CNetGenerationDlg

This is also a dialog box class. It handles the network generation dialog box. The user

can specify the properties of the network search algorithm using the function of this class.

As stated earlier, there are seven radio buttons concerning the choices the user can make

in the dialog box. Each radio button has a function attached to it.

OnRadioHeuristic()

This function is called when the user chooses the Heuristic radio button. The function

sets the type of search algorithm by setting SEARCH_ALGORITHM to HEURISTIC

constant integer. The variable SEARCH_ALGORITHM is a global variable in the

document class. When the search algorithm starts, the software checks this value and

decides which search algorithm needs to be used.

 208

OnRadioExhaustive()

This function works as the same as OnRadioHeuristic() except it sets the variable

SEARCH_ALGORITHM to EXHAUSTIVE constant integer.

OnRadioMdl()

This function is called when the MDL radio button is clicked. The fucntion sets the

document global variable SCORE_TYPE to 0. The software checks the variable

SCORE_TYPE to decide the score type. Score type can take three values 0, and 1 for

MDL and Bayesian scores respectively.

OnRadioBayesian()

This function sets the variable SCORE_TYPE to 1 to choose the Bayesian scoring.

OnRadioKl()

This function sets the document global variable DISTANCE_TYPE to 0 to choose

Kullback-Lieber distance measure for the score calculations.

OnRadioEuclidean()

Similarly, this function sets the document global variable DISTANCE_TYPE to 1 to

choose Euclidean distance measure for the score calculations.

 209

OnRadioLoglikelihood()

This function sets the distance measure type to Log-Likelihood by setting the variable

DISTANCE_TYPE to 2.

OnInitDialog()

This is the initialization function for the network generation dialog box. It sets the

default values on the dialog box.

CNetGenerationDlg class variables

CSliderCtrl m_SliderCtrl
int m_SliderValue

A.1.2 Agent related classes

There are two agent-related classes; CAgent and CAgentDlg. First one handles the agent

object creation. The second handles the agent creation dialog box.

A.1.2.1 CAgent

This class has only one constructor, CAgent(). It creates an agent at (0,0) location with a

NULL name. There is only one function in the class, Draw (CDC *pDC). It draws an

agent on the screen at a specified location.

 210

A.1.2.1 CAgentDlg

The locations and names of the agents can be entered form the agent creation dialog box.

Additionally, simulation properties can be set with this dialog box. There are five main

functions in the class. Names and the locations of the agents can be entered into the

corresponding edit boxes on the dialog box. The dialog box automatically sets the

variables of the class using those values.

OnInitDialog()

This function handles the initialization of the dialog box.

OnOK()

This function finalizes the parameters edited in the dialog box. It closes the dialog box.

OnRadioStepsim()

This function is called when the user clicks on the Step push button on the dialog box.

The function sets a variable in the document class to run the simulation step by step.

OnRadioContsim()

Similar to the previous function, it is called by pushing the Continuous button on the

dialog box. The function sets a variable in the document class to run the simulation

continuously.

 211

OnButtonTraining()

This is the function for Training push button. The function enables an edit box and a

static text on the dialog box to let the user enter the number of training steps.

CAgentDlg class variables

int m_dAgentLocX
int m_dAgentLocY
int m_dAgent
int m_dTrainingStep

We have completed the helper classes used in the IntelliAgent software creation. The

following section explores the visual C++ project classes, CProjectDoc and

CProjectView. These two classes are responsible for network calculations, simulation

and visual parts of the software.

A.2 Visual C++ project classes

When an application program is written in visual C++, the program creates four classes

automatically, mainframe class (CMainFrame), application class (CprojectApp),

document class (CProjectDoc), and view class (CProjectView). Usually, the programmer

does not edit the mainframe and the application classes. Thus, they are not discussed

here. The document class contains all the data handling and the calculations of the

program. Finally, the view class handles the visualization of the program. In this

section, the focus will be on the functions added into the document class and the view

class.

 212

A.2.1 Document class

The document class has member functions and member variables to perform necessary

calculations in the decision-theoretic intelligent agent systems. The functions and

variables will be discussed in terms of their functionality in the program. Programming

details will not be presented here.

A.2.1.1 Document class member functions

The following list is the functions in the document class with their brief definitions.

Since the actual source code can be obtained from the author, the details of the functions

are not presented here.

BOOL OnIsNetworkCyclic()

The function returns TRUE if the Bayesian network has cycles.

void OnCreateDatabase()

The function reads a database into the program and puts the database in a matrix form.

The program uses this matrix for the network calculations.

void OnCreateDatabase(CStdioFile *f, CMatrix dataMatrix)

The function prepares the database for saving. This is important especially if new data is

collected from the environment. The function saves the database along with the Bayesian

network. The matrix dataMatrix represents the database for the system. It is a global

matrix called testTable throughout the program.

 213

void OnRenewOrUpdateNetwork()

After a change is made on the network, this function updates or renews the network

according to the changes.

CMatrix CreateNodeProbability(int i)

This function calculates the probabilities of the node i. It returns a matrix containing the

probabilities of the node.

long double Gamma(unsigned int i)

Gamma functions are necessary to calculate the Bayesian score of a network. This

function calculates the gamma function for a given integer and returns the results as long

double.

void RemoveAllArrows()

This function removes all the arcs (arrows) in a Bayesian network. It also updates the

network after the arcs are removed.

void OnNetworkGenerate()

This is the main function for the network generation. It generates a Bayesian network

according to the network creation parameters such as the search type, the score type and

the distance measure type.

 214

float OnCalculateActLikelihood(int i)

This function calculates the likelihood of the conditional probabilities in a node. The

function returns a float. The results produced by this function is then added together to

calculate the over all likelihood of the network.

float OnCalNetworkScore()

This function calculates the score of a Bayesian network depending on the distance

measure type such as Kullback-Lieber and Euclidean.

void OnPositionAgentsRandomly()

This function is used in the simulation of the intelligent agent system, namely

Dog&Sheep. It is used to train the agent by locating agents randomly and running the

simulations. This function places the agents on the environment randomly.

int createRandomNumber(int i)

This function generates a random integer between 0 and i. It is used in above function to

place the agent randomly.

CAgent* GetAgent(int i)

The function returns a pointer to the agent object at the specified location (i) in the agent

object array (m_oaAgents).

 215

CAgent * AddAgent(int X, int Y)

This function creates and agent located at X, Y. Then, it adds the agent to agent object

array and returns a pointer to the agent.

void UpdateDogSheepPos()

This function updates the locations of the dog and the sheep after they make a move.

void OnCreateNextPosTable()

This function creates a table for the next position for the sheep and the dog. The table

consist of the changes in the x and y direction for all possible actions of the dog and the

sheep. UpdateDogSheepPos() function uses this table to determine the new coordinates

of the dog and the sheep.

BOOL OnLegalMove(int x, int y, int m)

The function checks whether the actions of the agents are legal by comparing their

coordinates with the problem dimension (the dimension of the grid). It returns TRUE if

the action is legal and returns FALSE otherwise.

float OnDogSheepUtility(int i)

This function calculates the expected utility of a specified action. The function takes an

integer denoting the sheep's next move after the dog's next move. Then, the function

calculates the new position of the sheep and calculates the corresponding utility.

 216

void OnSetEvidence(int node, int state)

This function set evidence on a node. It takes the node number and the state to be

instantiated. Then, it sets the specified state value to 1 and the rest of the state values to

zero.

void OnRecordNewEntry()

This function records a new entry into the database after the sheep and the dog completed

one action. The function also updates the network parameters with the new data.

void OnCalculateNewSheepPos(int choice)

This function calculates the sheep's next coordinates after the sheep moves. The integer

choice presents the sheep's next action. The function uses the next position table created

by the OnCreateNextPosTable() function.

int OnDecision(CMatrix &values)

This function determines which action the dog will take after the expected utilities are

calculated for each action. The matrix values consists of the expected utilities of the

dog's actions. The function finds the maximum expected utility in the matrix and returns

its index. The index illustrates the action with the highest expected utility.

CMatrix OnValues(int dnode, int unode)

This function calculates the expected utilities for the actions in the node dnode. The

function fires each action in dnode and calculates the state probabilities of the node

 217

unode. Then, it calculates the expected utility of the system using these probabilities and

the action fired. The process is repeated for each action and the expected utilities are

placed into a matrix. Finally, the function returns the expected utility matrix.

void CreateJPT()

This function calculates the joint probability distribution from the database.

CMatrix CreateJPT(CUIntArray &list)

This function calculates the joint probability for a given data case. For example, it can

calculate),,(100 === CBAp for a database with three variables.

CMatrix CreateCPT(int node, CUIntArray &list)

This function creates a conditional probability table for a node with a specified parents.

The function takes an integer for the node number and an integer array for the numbers of

the parent nodes.

CMatrix CreateCPT(int i, int j)

This function calculates a conditional probability table for given variables. It takes two

integers for node numbers for the variables. For example, in)|(BAP , the integers i and

j represent the variable A and B, respectively.

 218

CMatrix CreateCPMatrix(CUIntArray &list)

This function is similar to the previous function. It can calculate the CPT for more than

two variables. It takes an array of integers for the node numbers. In the array, the first

element represents the first variable in a conditional probability equation. For

),|(CBAP , the first element of the integer array is filled with the node number of the

variable A. Then, the node numbers of the variables B and C are placed into the array.

void CalFirstLevelProbs()

This function calculates independent probabilities for the first level nodes. A first level

node is a node without any parents. These nodes do not have a conditional probability

table.

CNode * AddNode(CRect nodeLocation)

This function adds a node to the network at the location determined by the nodeLocation

variable. The function creates a node, adds it to the node object array (m_oaNodes), and

returns its pointer.

void SetNode(int nodePos, CString name, int states, CStringArray &prob, CMatrix cpt)

This function sets the name, the position, number of states, the state probabilities, and the

conditional probability table of a node. The nodePos represents the position of the node

in the node object array. The function sets the parameters of the node using the variables

name, states, prob, and cpt.

 219

CNode * GetNode(int nIndex)

This function returns a pointer to a specified node. The function takes an integer as an

index to get the corresponding pointer value from the node object array.

int GetNodeCount()

This function calculates the number of nodes in the network and returns the results as an

integer.

BOOL AddArrow(int i, int j)

This function adds and arrow (arc) to a Bayesian network. It takes the node numbers of

the parent node (i) and the child node (j). If the function is successfully adds the arc to

the network it returns TRUE. Otherwise, it returns FALSE and does not modify the arc

object array (m_oaArrows).

void RemoveArrow(int i, int j)

This function removes the arc from the node i to the node j. It also removes the arc from

the arc object array.

CArrow * GetArrow(int nIndex)

This function returns a pointer to a specified arc (arrow). The function takes an integer

nIndex as the index of the specified arrow in the arrow object array.

 220

int GetArrowCount()

This function calculates the number of arrow in the network and returns the results as an

integer.

CArrow * AddArrow(CPoint tail, CPoint head)

This function creates an arrow by using two points; tail and head. The program first

finds the nodes by comparing whether the points on a node or not. After determining the

corresponding nodes for the points, the function calls AddArrow(int i, int j) function to

create the corresponding arrow (arc).

void UpdateView()

This function updates the device context of the program after a modification is made in

the network.

void CreateNodes()

This function creates nodes after a database is read into the program. It generates the

names of the nodes from the first line of the database. The function also creates the

independent probabilities for the nodes.

CMatrix CreateNodeProb(int i)

This function calculates the probabilities of a specified node. It takes an integer for as the

node number and returns a matrix with the node probabilities.

 221

void GenerateNetwork()

This function is called when the user clicks the Create button on the toolbar. It calls the

OnNetworkGenerate() to generate the network.

void CreateTestTable()

This function creates a table from the database. It finds the number of states of each

node. Then, it creates a table that contains all the possible combinations of the states.

This table is then used in the network calculations as a reference.

CMatrix Parents(int x)

This function finds the parents of the node x. Then, it creates a vector using the

probabilities of the parent nodes. The function returns this vector as a matrix.

void UpdateNodeCPT()

This function updates the CPTs tables of the nodes in the network. If a change is made to

the network, this function is called and the CPTs are updated accordingly.

void ModifiedFlagChild(int x)

This is a function for specifying the nodes that need update after a change is made on a

node. The function sets a flag in its child nodes. When the update network command is

called, the program checks the flags in each node before it updates the node parameters.

 222

A.2.1.2 Document class member variables

The following list illustrates the member variables of the document class. These are also

called global variables since they can be reached from any function in the document

class.

int SEARCH_METHOD;
int DISTANCE_TYPE;
int TRAINING_STEP;
int COMPLEXITY;
int ACCURACY;
int SCORE_TYPE;
int caseCounter;
BOOL IsCyclic;
BOOL m_Continue;
CMatrix NextPosTable;
CMatrix g_JPT;
CMatrix testTable;
CMatrix cumStates;
CMatrix States;
CMatrix caseTable;
CObArray m_oaNodes;
CObArray m_oaArrows;
CObArray m_oaAgents;
CUIntArray lastCase;
CStringArray NodeNames;

A.2.2 View class

The view class handles the visualization of the software such as updating the workspace,

mouse operations, drawings, painting, and brushing. The following sections explore the

member functions and the member variables of the class.

A.2.2.1 View class member functions

The following is the list of view class member functions and their brief definitions.

 223

void OnDrawAgentRegion()

This function draws the problem domain for the Dog & Sheep simulation. It draws an

mn × grid depending on the number of states in the variables DogX, Dog Y, SheepX,

and SheepY. If the user increases the number of states in the variable, the software

updates the problem domain accordingly.

BOOL OnNoRelation(unsigned int node1, unsigned int node2)

This function returns TRUE if there is an arc between the nodes; node1 and node2.

The function is used during the arc additions to the network. The purpose of the function

is to avoid the creation of the same arc twice.

int OnInANode(CPoint point)

This function takes a point and finds whether the point on a node or not. If the point is on

node, the function returns the number of the node. Otherwise, it returns -1.

void OnShowParam(int x)

This function is called by the Parameters toolbar button. It displays the parameters of a

certain node. The node number is entered to the function as an integer.

afx_msg void OnNetworkArc()

This function is called when the user clicks on the Arc toolbar button. The function sets

the drawingElement member variable to ARC. The ARC is a constant integer set to 2.

 224

afx_msg void OnNetworkNode()

This is similar to the OnNetworkArc() functions. The function sets the drawingElement

variable to NODE. The NODE is defined as a constant integer set to 1. When the user

creates a network with mouse drag and drop operations, the program checks the value of

the drawingElement variable to determine what to draw.

afx_msg void OnLButtonDown(UINT nFlags, CPoint point)

This function is called when the user clicks the left mouse button. Many visual

operations is done by this function such as drawing and object, moving a node, choosing

a node or an arc, choosing a toolbar button operation.

afx_msg void OnLButtonUp(UINT nFlags, CPoint point)

This function is called when the user releases the left mouse button. This function is also

used in many operations, i.e., dropping a selected node to a desired location.

afx_msg void OnMouseMove(UINT nFlags, CPoint point)

This function is called when the mouse is moved around. Most of the time, this function

and the previous mouse operation functions work together. For example, To move a

node to a certain location, the OnLButtonDown(UINT nFlags, CPoint point) function

selects the node, this function moves the node, and finally the OnLButtonUp(UINT

nFlags, CPoint point) function releases the node on a desired location.

 225

afx_msg void OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)

This is the horizontal scrolling function. It updates the coordinates of the screen when

the user scrolls horizontally.

afx_msg void OnVScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)

This is the vertical scrolling function. It updates the coordinates of the screen when the

user scrolls vertically.

afx_msg void OnContextMenu(CWnd* pWnd, CPoint point)

This function is called when the right mouse button is clicked. It displays the context

menu on the screen. It lets the user choose the submenu items Set Evidence and

Parameters.

afx_msg void OnLButtonDblClk(UINT nFlags, CPoint point)

This function is called when the left mouse button is clicked twice. If the left mouse

button is double clicked on a node, the function displays the parameters of the node.

afx_msg void OnNetworkParameters()

This function is called when the user clicks on the Parameter toolbar button. It also

displays the parameters of a specified node.

 226

afx_msg void OnRButtonDown(UINT nFlags, CPoint point)

This function is called when the right mouse button is clicked. It displays the context

menu by calling the OnContextMenu(CWnd* pWnd, CPoint point).

afx_msg void OnSetevidenceState0()

To invoke this function, the user first chooses the Set Evidence menu item in the context

menu. Then, the user chooses the State0 submenu item. The function sets the probability

of the state0 to 1. It also sets the probability of the other states to zero.

The software has seven more functions similar to the above function to handle the

instantiation of a node with at most eight states. For the nodes with more states, the user

can display the parameters of the node and change the probabilities from the parameters

dialog box.

afx_msg void OnNetworkAgentLoc()

This function is called when the user clicks the Create Agent toolbar button. The function

displays a dialog box for agent creation. The user sets the parameters of the agent

creation dialog box. As soon as the user clicks OK button on the dialog box, the function

creates an agent at a specified location.

afx_msg void OnNetworkCreate()

This function is called when the Create toolbar button is clicked. The function displays

the network creation dialog box as presented in Chapter 6. The user can the parameters

 227

of the dialog box. As soon as the user clicks OK button on the dialog box, the function

transfers the parameters to the document class and call the OnNetworkGenerate()

function from the document class.

A.2.2.2 View class member varibles

HCURSOR cross;
HCURSOR arrow;
CPoint start, old;
BOOL started;
int moveNode;
int drawingElement;
CRect movingNodeLoc;
CNetGenerationDlg m_dNetGenerationDlg;
CPoint prevPoint;
CParamDialog m_dParamDialog;
CAgentDlg m_dAgents;
int hScrollPos,
int vScrollPos,
int lineSize,
int vPageSize,
int hPageSize,
int maxPos;

A.3 ActiveX classes

ActiveX classes are helper classes created by various programmers under Microsoft

visual C++. In IntelliAgent software, the ActiveX control "MSFlexGrid" is employed to

present the conditional probability tables in the nodes. A general definition of the

ActiveX is presented here. The MSFlexGrid ActiveX has four classes for row and

column operations (CRowCursor), picture operations (CPicture), fonts (COleFont), and

the main class (CMSFlexGrid).

 228

References

[1] F. V. Jensen, An Introduction to Bayesian Networks. London, UK: University

College London Press, 1996.

[2] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. San Mateo, CA: Morgan Kaufmann, 1988.

[3] D. Heckerman, “A tutorial on learning Bayesian networks,” Technical Report

MSR-TR-95-06, Microsoft Research, 1995.

[4] Y. Shoham, Agent-oriented programming,” Artificial intelligence, vol. 60(1),

pp. 51-92, 1993.

[5] J. Pearl, “Bayesian networks”, in M. Arbib (Ed.), Handbook of Brain Theory and

Neural Networks, MIT Press, pp. 149-153, 1995

[6] J. Pearl, “Bayesian networks,” Technical Report R-246, MIT Encyclapedia of the

Cognitive Science, October 1997.

[7] F.V. Jensen, “Bayesian network basics,” AISB Quarterly, vol. 94, pp. 9-22, 1996.

[8] S. Noh and P. J. Gmytrasiewic, “Coordination and belief update in a distributed

anti-air environment,” in Proceedings of the 31st Hawaii International Conference

on System Sciences, vol. V, pp. 142-145, Los Alamitos, CA: IEEE Computer

Society, January 1998.

[9] M. Ramoni and P. Sebastiani, “Parameter estimation in Bayesian networks from

incomplete databases,” Technical Report KMi-TR-57, Knowledge Median

Institute, The Open University, November 1997.

[10] G. Schwarz, “Estimation the dimension of a model,” Annals of Statistics, vol. 6,

pp. 462-464, 1978.

 229

[11] W. Lam and F. Bacchus, “Learning Bayesian belief networks: an approach based

on the MDL principle,” Computational Intelligence, vol. 10, pp. 269-293, 1994.

[12] N. Friedman, M. Goldszmidt, D. Heckerman, and S. Russell, “Challenge: Where

is the impact of the Bayesian networks in learning?” In Proceedings of the 15th

International Joint Conference on Artificial Intelligence (IJCAI), pp.10-15, 1997.

[13] D. Koller, Artificial intelligence: Knowledge representation and reasoning under

uncertainty, Course material (CS 288), winter 1999, available at

http://www.stanford.edu/class/cs228/index.html.

[14] J. H. Kim and J. Pearl, “A computational model for combined causal and

diagnostic reasoning in inference systems,” in Proceedings IJCAI-83, Karlsruhe,

Germany, pp. 190-193, 1983.

[15] S. Russell, “Learning agents for uncertain environments (Extended abstract),” in

Proceedings of the COLT-98, Wisconsin: ACM Press, pp. 101-103, 1998.

[16] S. Russell, J. Binder, and D. Koller, “Adaptive probabilistic networks,” Technical

Report UCB//CSD-94-824, July 1994.

[17] D. Nilsson and F. V. Jensen, “Probabilities of future decisions” Research Report

R-97-2007, Dept. of Mathematics, Aalborg University, Denmark, June 1997.

[18] J. Pearl, “Reverend bayes on inference engines: A distributed hierarchical

approach,” in Proceedings AAAI National Conference on AI, Pittsburgh, PA, pp.

133-136, 1982.

[19] N. Friedman, K. Murphy, and S. Russell, “Learning the structure of dynamic

probabilistic networks,” in G.F. Cooper and S. Moral (Eds.), Proceedings of

 230

Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI ’98), San

Francisco, CA: Morgan Kaufmann, 1998.

[20] T. S. Verna, “Causal networks: Semantics and expressiveness, Proceedings of the

Third Workshop on Uncertainty in Artificial Intelligence, pp. 352-359, 1987.

[21] G. F. Cooper and E. Herskovits, “A Bayesian method for constructing Bayesian

belief networks from databases,” in Proceedings of the Conference on

Uncertainty in AI, pp. 86-94, 1990.

[22] S. L. Lauritzen and D. J. Spiegelhalter, “Local computations with probabilities on

graphical structures and their application to expert systems,” Journal of the Royal

Statistical Society, Series B, vol. 50(2), pp. 157-224, 1988.

[23] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from

incomplete data via the EM algorithm,” Journal of the Royal Statistical Society,

Series B, vol. 39, pp. 1-38, 1977.

[24] B. Theisson, C. Meek, and D. M. Chickering, and D. Heckerman, “Learning

mixtures of Bayesian networks,” in G.F. Cooper and S. Moral (Eds.), Proceedings

of Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI ’98), San

Francisco, CA: Morgan Kaufmann, 1998.

[25] M. Ramoni and P. Sebastiani, “Efficient parameter learning in Bayesian networks

from incomplete databases,” Technical Report KMi-TR-41, Knowledge Median

Institute, The Open University, January 1997.

[26] M. Ramoni and P. Sebastiani, “Discovering Bayesian networks in incomplete

databases,” Technical Report KMi-TR-46, Knowledge Median Institute, The

Open University, March 1997.

 231

[27] P. Sebastiani and M. Ramoni, “Bayesian inference with missing data using bound

and collapse,” Technical Report KMi-TR-58, Knowledge Median Institute, The

Open University, November 1997.

[28] M. Ramoni and P. Sebastiani, “Learning conditional probabilities from

incomplete data: An experimental comparison,” Technical Report KMi-TR-64,

Knowledge Median Institute, The Open University, July 1998.

[29] N. Friedman, “The Bayesian structural EM algorithm,” in G.F. Cooper and S.

Moral (Eds.), Proceedings of Fourteenth Conference on Uncertainty in Artificial

Intelligence (UAI ’98), San Francisco, CA: Morgan Kaufmann, 1998.

[30] D. B. West, Graph Theory. New Jersey: Prentice Hall, 1996.

[31] K. G. Olesen, S. L. Lauritzen and F. V. Jensen, “aHUGIN: A system for creating

adaptive causal probabilistic networks,” in Proceedings of the Eighth Conference

on Uncertainty in AI (UAI ’92), Stanford, CA: Morgan Kaufmann, 1992.

[32] D. Spiegelhalter, P. Dawid, S. L. Lauritzen, and R. Cowell, “Bayesian analysis in

expert systems,” Statistical Science, vol. 8, pp. 219-282, 1993.

[33] J. Pearl, “Constraint-propagation approach to probabilistic reasoning,” in L. M.

Kanal and J. Lemmer (Eds.), Uncertainty in Artificial Intelligence, North-

Holland, Amsterdam, pp. 357-288, 1986.

[34] G. Cooper and E. Herskovits, “A Bayesian method for induction of probabilistic

networks from data,” Machine Learning, vol. 9, pp. 309-347, 1992.

[35] D. Heckerman, D. Gieger, and M. Chickering, “Learning Bayesian networks: The

combination of knowledge and statistical data,” Technical Report MSR-TR-94-

09, Microsoft Research, Redmond, WA, 1994.

 232

[36] J. L. Golmard and A. Mallet, “ Learning probabilities in causal trees from

incomplete databases,” Revue d'Intelligence Artificielle, vol. 5, pp. 93-106, 1991.

[37] S. L. Lauritzen, “The EM algorithm for graphical association models with missing

data,” Technical Report TR-91-05, Department of Statistics, Aalborg University,

1991.

[38] S. L. Lauritzen, “The EM algorithm for graphical association models with missing

data,” Computational Statistics and Data Analysis, vol. 19, pp. 191-201, 1995.

[39] D. J. Spiegelhalter and R.G. Cowell, “Learning in probabilistic expert systems,”

in J.M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (Eds.), Bayesian

Statistics 4, 1992.

[40] P. Dayan, “The convergence of TD(λ) for general λ,” Machine Learning, vol. 8,

pp. 341-362, 1992.

[41] R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data, Wiley,

New York, 1987.

[42] D. Suryadi and P. J. Gmytrasiewicz, “Learning models of other agents using

influence diagrams,” in Proceedings of User Modeling: The Seventh International

Conference, Springer Wien, New York, 1999, to apper.

[43] C. Gerber and C. Jung, “Resource management for boundedly optimal agent

societies,” in Proceedings of the ECAI'98 Workshop on Monitoring and Control

of Real-Time Intelligent Systems, Brighton, 1998.

[44] T. L. Dean and M. P. Wellman, Planning and Control. San Mateo, CA: Morgan

Kaufmann, 1991.

 233

[45] M. Ramoni and P. Sebastiani, “Learning Bayesian networks from incomplete

data,” Technical Report KMi-TR-43, Knowledge Median Institute, The Open

University, February 1997.

[46] J. Pearl, “A probabilistic calculus of actions,” in Proceedings of the Tenth

Conference on Uncertainty in AI (UAI-94), San Mateo, CA: Morgan Kaufmann,

1994.

[47] G. Shafer and J. Pearl, Readings in Uncertain Reasoning. San Mateo, CA:

Morgan Kaufmann, 1990.

[48] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the EM

algorithm,” Neural Computation, vol. 6, pp. 181-214, 1994.

[49] P. Maes, “How to do the right thing,” Connection Science, vol. 1, no.3, 1989.

[50] C. Claus, “Dynamics of multi-agent reinforcement learning in Cooperative multi-

agent systems,” Ph.D. Dissertation, Univ. of British Colombia, Canada, 1997.

[51] C. Gerber, “Evolution-based self-adaption as an expression for the autonomy

degree in multi-agent societies,” in Proceedings of the IEEE Joint Conference on

the Science and Technology of Intelligent Systems, Gaithersburg, MD, pp. 741-

746, September 1998.

[52] S. Sen and M. Sekaran, “Multi-agent coordination with learning classifier

systems,” in Proceedings of the IJCAI Workshop on Adaptation and Learning in

Multi-agent Systems, Montreal, pp. 84-89, 1995.

[53] C. Boutilier, “Planning, learning and coordination in multi-agent decision

processes,” in Sixth conference on Theoretical Aspects of Rationality and

Knowledge (TARK ‘96), The Netherlands, 1996.

 234

[54] S. Russell and P. Norvig, Artificial Intelligence: A modern Approach, New

Jersey: Prentice Hall, 1995.

[55] T. Malsch and I. Schulz-Schafer, “Generalized media of interaction and interagent

coordination,” in Socially Intelligent Agents – Papers from the 1997 AAAI Fall

Symposium, Technical Report FS-97-02, AAAI, 1997.

[56] G.H. Hostetter, C.J. Savant, and R.T. Stefani, Design of Feedback Control

Systems, New York: CBS College Publishing, 1982.

[57] I.D. Landau, R. Lozano, and M. M'Saad, Adaptive Control, London: Springer,

1998.

[58] I. Landau, Adaptive Control: The Modal Reference Approach, New York: Marcel

Dekker, 1979.

[59] R. Kalman, “Design of self-optimizing control systems,” Transactions of ASME,

J. Basic Eng., vol. 80, pp. 468-478, 1958.

 235

VITA

Ferat Sahin was born in Istanbul, the most beautiful city in Turkey, on October 12, 1971.

He expressed a very special interest in Electronics at very young age, and decided to

become an Electrical Engineer after an experiment about the electricity in Physics class

in the last year of secondary school. He continued his education in a technical high

school majoring in electronics. He blew his first capacitor when he was trying to repair a

hand radio in his senior year in high school. He received his Bachelor of Science degree

in Electronics and Telecommunications Engineering in October 1992, at Istanbul

Technical University and went on to pursue a Master of Science degree in the same field.

After one year, he decided to continue his study in the U.S. and came to Virginia Tech.

He received his Master of Science degree in Electrical Engineering in May 1997, at

Virginia Tech. His thesis topic was a Radial Basis Function Network solution to an

image classification problem is a real-time industrial setting. He is pursuing his Ph.D. in

Electrical Engineering at Virginia Tech. His dissertation topic is a Bayesian Network

approach to the self-organization and learning in intelligent agents. He will be a faculty

member at Rochester Institute of Technology starting September 2000. His

extracurricular interests include soccer, basketball, photography, saz (a Turkish musical

instrument), and social organizations. He was the president of Turkish Student

Association at Virginia Tech during 1996-1997 academic year. He also served in

Council of International Student Organizations (CISO) at Virginia Tech as Member at

Large.

	1.1 Learning systems in AI
	1.2 Self-organization systems
	1.3 Why Bayesian Networks?
	1.3.1 The relationship between Bayesian networks and neural networks

	1.4 Self-organizing system as a generalized graph of behaviors
	1.5 Outline of the dissertation
	2.1 Basic principles for reasoning under uncertainty
	2.1.1 Wet Grass
	2.1.2 Explaining away
	2.1.3 Dependence of events
	2.1.4 Prior Certainties

	2.2 Causal Networks
	2.3 Probability calculus
	2.3.1 Basic probability calculus
	2.3.2 Subjective probabilities
	2.3.3 Conditional Independence

	2.4 Bayesian networks
	2.4.1 The chain rule
	2.4.2 Evidential Reasoning
	2.4.3 Bayesian networks and the functionality of a human brain

	2.5 Influence Diagrams
	3.1 Known network structure and observable variables (complete data)
	3.2 Unknown network structure and observable variables
	3.3 Known structure and unobservable variables (incomplete data)
	3.4 Unknown structure and unobservable variables
	4.1 Outline of the problem statement and the proposed solution
	4.2 Online Bayesian network learning
	4.2.1 The parameter learning
	4.2.2 The structural learning
	4.2.2.1 Search algorithms
	Heuristic search
	Exhaustive search
	Complexity analysis for search algorithms

	4.2.2.2 Network scoring functions
	Log-Likelihood scoring
	Minimum description length scoring
	Bayesian scoring

	5.1 A decision-theoretic intelligent agent design
	5.2 Multi-agent self-organizing system.
	5.3 Bi-directional learning
	5.4. System representation of the decision-theoretic intelligent agent system
	5.4.1 Feedback Control
	5.4.2 Adaptive Control

	6.1 The user manual for IntelliAgent software
	6.1.1 Menus
	File
	Edit
	View
	Network
	Agent
	Help

	6.1.2 Context menus
	Network context menu
	Node context menu

	6.1.2 Toolbar
	Node
	Arc
	Update
	Parameters
	Load
	Calculate
	Agent
	Simulate

	6.1.3 Dialog boxes
	Parameter Presentation
	CPT Updating
	Bayesian network generation
	Agent creation and training

	6.2 Tutorials on Bayesian network creation and knowledge discovery
	6.2.1 Inference in a Bayesian network
	6.2.1 Knowledge discovery with IntelliAgent

	7.1 The Dog & Sheep Problem
	7.2 The 4-by-4 Grid Dog & Sheep Simulation
	7.2.1 Simulation results for known system dynamics
	7.2.2 System dynamics are not known.

	7.3 The effectiveness of the online Bayesian network learning.
	A.1 Helper classes
	A.1.1 Bayesian network related classes
	A.1.1.1 CNode
	AddParentOnCPT()
	Inference()
	BackwardInference()
	ForwardInference()
	OnCalculateBayesScore()
	OnCalculateLikelihood(int r)
	OnCalNodeLength()
	CreateNodeCPT()
	OnUpdateCPT()
	OnVisit()
	OnDraw()
	Serialize(CArchive &ar)
	CNode class variables

	A.1.1.2 CArrow
	Draw(CDC *pDC)
	Serialize(Archive &ar)
	CArrow class varables

	A.1.1.3 CMatrix
	AddColumn(int i)
	AddRow(int i)
	GetElement(int i, int j)
	MaxElement()
	OnZero()
	operator()(int i, int j)
	operator *(const CMatrix & rhs)
	operator =(const CMatrix &rhs)
	SetElement(int row, int col, float x)
	Supermultiply(Cmatrix &)
	Transpose()
	NumOfStates()
	CalculateJP(Cmatrix &test, int m)
	CMatrix class variables

	A.1.1.4 CCptDialog
	OnInitDialog()
	OnOK()
	CCptDialog class variables

	A.1.1.5 CParamDialog
	OnOK()
	OnCheckProbSum(double initial)
	OnInitDialog()
	OnListEnter()
	OnSelchangeProbList()
	OnListUpdateselitem()
	SetModifiedFlag()
	SetParameters(int states, CMatrix prob, CString name, int nodeNumber, CUIntArray &parent, CUIntArray &child, CMatrix cpt)
	OnDblClickMsflexgridCpt()
	UpdateDialogCPT()
	CParamDialog class variables

	A.1.1.6 CNetGenerationDlg
	OnRadioHeuristic()
	OnRadioExhaustive()
	OnRadioMdl()
	OnRadioBayesian()
	OnRadioKl()
	OnRadioEuclidean()
	OnRadioLoglikelihood()
	OnInitDialog()
	CNetGenerationDlg class variables

	A.1.2 Agent related classes
	A.1.2.1 CAgent
	A.1.2.1 CAgentDlg
	OnInitDialog()
	OnOK()
	OnRadioStepsim()
	OnRadioContsim()
	OnButtonTraining()
	CAgentDlg class variables

	A.2 Visual C++ project classes
	A.2.1 Document class
	A.2.1.1 Document class member functions
	BOOL OnIsNetworkCyclic()
	void OnCreateDatabase()
	void OnCreateDatabase(CStdioFile *f, CMatrix dataMatrix)
	void OnRenewOrUpdateNetwork()
	CMatrix CreateNodeProbability(int i)
	long double Gamma(unsigned int i)
	void RemoveAllArrows()
	void OnNetworkGenerate()
	float OnCalculateActLikelihood(int i)
	float OnCalNetworkScore()
	void OnPositionAgentsRandomly()
	int createRandomNumber(int i)
	CAgent* GetAgent(int i)
	CAgent * AddAgent(int X, int Y)
	void UpdateDogSheepPos()
	void OnCreateNextPosTable()
	BOOL OnLegalMove(int x, int y, int m)
	float OnDogSheepUtility(int i)
	void OnSetEvidence(int node, int state)
	void OnRecordNewEntry()
	void OnCalculateNewSheepPos(int choice)
	int OnDecision(CMatrix &values)
	CMatrix OnValues(int dnode, int unode)
	void CreateJPT()
	CMatrix CreateJPT(CUIntArray &list)
	CMatrix CreateCPT(int node, CUIntArray &list)
	CMatrix CreateCPT(int i, int j)
	CMatrix CreateCPMatrix(CUIntArray &list)
	void CalFirstLevelProbs()
	CNode * AddNode(CRect nodeLocation)
	void SetNode(int nodePos, CString name, int states, CStringArray &prob, CMatrix cpt)
	CNode * GetNode(int nIndex)
	int GetNodeCount()
	BOOL AddArrow(int i, int j)
	void RemoveArrow(int i, int j)
	CArrow * GetArrow(int nIndex)
	int GetArrowCount()
	CArrow * AddArrow(CPoint tail, CPoint head)
	void UpdateView()
	void CreateNodes()
	CMatrix CreateNodeProb(int i)
	void GenerateNetwork()
	void CreateTestTable()
	CMatrix Parents(int x)
	void UpdateNodeCPT()
	void ModifiedFlagChild(int x)

	A.2.1.2 Document class member variables

	A.2.2 View class
	A.2.2.1 View class member functions
	void OnDrawAgentRegion()
	BOOL OnNoRelation(unsigned int node1, unsigned int node2)
	int OnInANode(CPoint point)
	void OnShowParam(int x)
	afx_msg void OnNetworkArc()
	afx_msg void OnNetworkNode()
	afx_msg void OnLButtonDown(UINT nFlags, CPoint point)
	afx_msg void OnLButtonUp(UINT nFlags, CPoint point)
	afx_msg void OnMouseMove(UINT nFlags, CPoint point)
	afx_msg void OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)
	afx_msg void OnVScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)
	afx_msg void OnContextMenu(CWnd* pWnd, CPoint point)
	afx_msg void OnLButtonDblClk(UINT nFlags, CPoint point)
	afx_msg void OnNetworkParameters()
	afx_msg void OnRButtonDown(UINT nFlags, CPoint point)
	afx_msg void OnSetevidenceState0()
	afx_msg void OnNetworkAgentLoc()
	afx_msg void OnNetworkCreate()

	A.2.2.2 View class member varibles

	A.3 ActiveX classes

