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(ABSTRACT) 
 

A Bayesian network approach to self-organization and learning is introduced for use 

with intelligent agents.  Bayesian networks, with the help of influence diagrams, are 

employed to create a decision-theoretic intelligent agent.  Influence diagrams combine 

both Bayesian networks and utility theory.  In this research, an intelligent agent is 

modeled by its belief, preference, and capabilities attributes.  Each agent is assumed to 

have its own belief about its environment.  The belief aspect of the intelligent agent is 

accomplished by a Bayesian network.  The goal of an intelligent agent is said to be the 

preference of the agent and is represented with a utility function in the decision theoretic 

intelligent agent.  Capabilities are represented with a set of possible actions of the 

decision-theoretic intelligent agent.  Influence diagrams have utility nodes and decision 

nodes to handle the preference and capabilities of the decision-theoretic intelligent agent, 

respectively. 

Learning is accomplished by Bayesian networks in the decision-theoretic intelligent 

agent.  Bayesian network learning methods are discussed intensively in this paper.  

Because intelligent agents will explore and learn the environment, the learning algorithm 

should be implemented online.  None of the existent Bayesian network learning 

algorithms has online learning.  Thus, an online Bayesian network learning method is 

proposed to allow the intelligent agent learn during its exploration.   
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Self-organization of the intelligent agents is accomplished because each agent models 

other agents by observing their behavior.  Agents have belief, not only about 

environment, but also about other agents.  Therefore, an agent takes its decisions 

according to the model of the environment and the model of the other agents.  Even 

though each agent acts independently, they take the other agents behaviors into account 

to make a decision.  This permits the agents to organize themselves for a common task.   

To test the proposed intelligent agent's learning and self-organizing abilities, 

Windows application software is written to simulate multi-agent systems.  The software, 

IntelliAgent, lets the user design decision-theoretic intelligent agents both manually and 

automatically.  The software can also be used for knowledge discovery by employing 

Bayesian network learning a database.   

Additionally, we have explored a well-known herding problem to obtain sound results 

for our intelligent agent design.  In the problem, a dog tries to herd a sheep to a certain 

location, i.e. a pen.  The sheep tries to avoid the dog by retreating from the dog.  The 

herding problem is simulated using the IntelliAgent software.  Simulations provided good 

results in terms of the dog's learning ability and its ability to organize its actions 

according to the sheep's (other agent) behavior.  

In summary, a decision-theoretic approach is applied to the self-organization and 

learning problems in intelligent agents.  Software was written to simulate the learning and 

self-organization abilities of the proposed agent design.  A user manual for the software 

and the simulation results are presented.   

This research is supported by the Office of Naval Research with the grant number 

N00014-98-1-0779.  Their financial support is greatly appreciated. 
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CHAPTER 1 

Introduction 

How can independent agents cooperate to solve a problem collectively in a real life 

environment?  How do the agents explore the environment while organizing a common 

task?  This research will attempt to answer these commonly asked questions from the 

machine learning literature.  The heart of the problem is how the agents will learn the 

environment independently and then how they will cooperate to establish the common 

task.  In the literature, these types of problems are referred to as self-organizing 

problems.   

An agent is an entity that can be viewed as perceiving its environment through 

sensors and acting upon that environment through effectors [54]. The 

Effector/Medium/Sensor (EMS) paradigm explains this definition.  Gerber stated that this 

paradigm provides an appropriate abstraction of a (human) agent acting and interacting 

with its environment and other (human) agents [54].  This idea comes from Malsch's 

work on Generalized Media of Interaction in sociology [55], where action and interaction 

are transmitted via appropriate media [51].  According to EMS, verbal communications 

are interpreted in the following manner: Each agent (human) has a speech effector (voice, 

speech apparatus) and an audio receptor (ear).  The spoken language, i.e. the sound, is 

transmitted through the air [51].   

In a multi-agent system, agents are independent in that they have independent access 

to the environment.  Therefore, each agent should incorporate a learning algorithm to 

learn and/or explore the environment.  Then, the agents should have some sort of 

communication between them to behave as a group.  In other words, they must organize 
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themselves to act together.  A sheepdog is a widely used example of self-organizing 

systems in the literature.  Multiple dogs cooperate to put all the sheep into a pen together.  

Dogs have independent beliefs about the sheep and the environment, but they learn to 

cooperate with other dogs at the same time.  Even though the dogs will have independent 

ideas about how to solve the problem, they also have to know how to solve the problem 

cooperatively.  Since the multi-agent self-organization problem is a learning problem, the 

following paragraphs will explore how researchers in the artificial intelligence (AI) 

literature approach a learning system. 

 

1.1 Learning systems in AI 

There are two approaches to model a learning system in the AI literature.  A learning 

system is modeled as either supervised or unsupervised.  The first approach is called 

supervised learning in which the learning system has a world model.  The learning 

system makes its decisions according to the world model.  Some type of feedback from 

the environment is required to change the world model.  This is also called a goal-driven 

learning system or a deliberative learning system.  Figure 1.1 (a) illustrates a goal driven 

learning system.   

The second approach is described as supervised learning in which the learning system 

explores the environment and takes actions to change it.  This type of learning is also 

called a data-driven or a reactive learning system because the learning system depends on 

only data, and it does not have a model of the world.  Figure 1.1 (b) illustrates an 

unsupervised/data-driven learning system model.  There has been some research on a 

method that tries to combine the two learning models.  The methods were combined often 
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in ad-hoc ways and usually with limited success.  This work will propose an approach 

that combines both types of learning models.  We will call the proposed learning model 

the bi-directional learning model.  These two approaches are used consecutively in some 

learning systems, but they are not usually used simultaneously. Figure 1.2 illustrates the 

bi-directional learning model.  After specifying what type of learning algorithm is needed 

for the self-organization problem, we need to explain the idea behind the self-organizing 

mechanism. 

 

 

 

 

 

 

Figure 1.1. (a) Supervised learning model.  (b) Unsupervised learning model. 

 

 

 

 

 

 

 

 

Figure 1.2. Bi-directional Learning System Model. 
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1.2 Self-organization systems  

The main idea of a self-organizing mechanism is to control a society of autonomous 

agents through structurization and organization [51].  The task of adapting the structure 

of a group or a society of artificial agents to the environment is considered an 

optimization problem by characterizing a search space and an objective function to be 

optimized.  The objective function denotes the current system's performance while a 

multi-dimensional search space describes the system's set of possible configurations [51].  

The search space dimensions can be derived from principles of a multi-agent system 

application: structural principles, communication principles, and agent architecture 

principles [51].   

Structural principles are, for example, the number of agents in the group, the number 

of specialists for a certain task, the organizational form of the group, migration (i.e. 

distribution of agents over the net), and so on.  Communication principles can be 

expressed through the introduction of communication channels between subunits or even 

between agents belonging to a common subunit.  Agent architecture principles are 

explicit resource distributions among the various agent modules [51].  A unified approach 

is provided by the paper [43]. 

Self-organization of multi-agent systems is commonly achieved by using some 

combination of rule-based systems, Q-learning, Temporal Difference )(λTD , and 

evolution-based algorithms.  Traditional Genetic algorithms (GAs) are well suited for 

off-line search, where search time is not important.  Unfortunately, the domains where 

multi-agent systems are in use are generally highly dynamic since the environment may 
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change anytime.  In addition, a traditional GA needs to process many individuals.  This 

might require storing the configuration of tens of complete agent societies, which is 

intractable.  That is why the evolution-based algorithms have to be modified greatly for 

on-line use.  Thus, the performance of a GA is inefficient in multi-agent systems [51].  

Temporal difference and Q-learning methods are also commonly employed to solve 

multi-agent learning and organization problems [50, 52].  Temporal difference methods 

require learning the value function for a fixed policy.  Thus, they must be combined with 

other reinforcement learning methods that can use the value function to make policy 

improvements [53].   

Temporal difference methods work in the following way.  Let )(sVΠ  denote the 

current estimated value of state s  under a fixed policy Π .  When a sample rtas ,,,  is 

received by performing action a  in state s  at time t with the reward r, the simplest TD-

method (known as )(0TD ) will update the estimated value to be  

))(()()1( tVrsV ΠΠ ++− βαα                                                   (1.1) 

Here α  is the learning rate ( )10 ≤≤ α , governing to what extent the new sample replaces 

the current estimate.  The symbol β  is the discount factor.  This is the basis of )(λTD , 

where a parameter λ  captures the degree to which past states are influenced by the 

current sample [40].  

Q-learning is a straightforward and elegant method for combining value function 

learning (as in TD-methods) with policy learning.  A Q-value, ),( asQ , is assumed for 

each state-action pair as, .  The Q-value provides an estimate of the value of 
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performing action a  at state s .  An agent updates its estimate ),( asQ  based on sample 

rtas ,,,  using the formula: 

)}))',({max((),()1(
'

atQrasQ
a

βαα ++−                                    (1.2) 

Temporal difference and Q-learning methods are successful in multi-agent learning 

under the assumption of full observability.  Full observability means that all states of the 

environment can be observed completely.  If the environment is not fully observable or 

we have incomplete data, these methods easily fail to converge.  Since an agent can adopt 

the best policy given its current knowledge, Q-learning is only guaranteed to converge to 

the optimal Q-function (and implicitly an optimal policy) if each state in the environment 

is sampled sufficiently [53]. 

Learning classifier systems [Holland, 1986] also have been employed to solve multi-

agent learning and self-organization problems.  The learning classifier system (LCS) is a 

rule-based, message-passing, machine learning paradigm designed to process 

environmental stimuli, much like the input-to-output mapping provided by a neural 

network.  The LCS provides learning through genetic and evolutionary adaptation to 

changing task environments.  The operation of the LCS is centered around a list of rules 

or classifiers.  These rules are essentially a set of “if-then” statements, where the “if” part 

of a rule is called condition, and the “then” part is called an action. 

Learning classifier systems are genetic-algorithm-based machine learning 

mechanisms for developing action policies to optimize environmental feedback.  Sen and 

Sekaran insist that learning classifier systems perform very competitively with the Q-

learning algorithm, and are able to generate good solutions to both a resource sharing and 

a robot navigation problem [52].  They also claim that learning classifier systems can be 
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used effectively to achieve near-optimal solutions more quickly than the Q-learning 

algorithm does.  Even though some [52] claim that learning classifier systems perform 

better than the Q-learning algorithm, these systems tend to have some deficiencies in 

decision-making because they are rule-based systems. Partial observability (incomplete 

data) is hard to handle for learning classifier systems too.  Main problem with the LCS is 

the "bucket-brigade", which cannot converge. 

Evolution-based algorithms are not efficient enough because they are not able to 

perform well on-line.  Q-learning algorithms perform well online, but they are not able to 

handle the partial observability of the environment.  Even though some claim that 

learning classifier systems perform better than Q-learning algorithms, they are not able to 

perform well with incomplete data.  They also have some conceptual and computational 

difficulties to overcome.   

Last, but not least, the methods described above are not completely bi-directional 

learning models although there is some bi-directionality in them.  The importance of bi-

directional learning comes from its potential to combine the supervised learning and 

unsupervised learning and facilitates them at the same time.  The present research 

attempts to provide a new approach that overcomes the difficulties described above 

paragraphs.  The new approach is based on Bayesian networks, directed acyclic graphs 

(DAG) that are constructed by a set of variables coupled with a set of directed edges 

between variables.  
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1.3 Why Bayesian Networks? 

The main driving force to choose Bayesian networks is that Bayesian networks have a bi-

directional message passing architecture.  Learning from the evidence can be interpreted 

as unsupervised learning.  Similarly, expectation of an action can be interpreted as 

supervised learning.  Since Bayesian networks pass evidence (data) between nodes and 

use the expectations from the world model, they can be considered as bi-directional 

learning systems.  In addition to bi-directional message passing, Bayesian networks have 

several important features such as allowing subjective a priori judgements, direct 

representation of causal dependence, nonmonotonic reasoning, distillation of sensory 

experience and the ability to imitate human thinking process.  

A Bayesian network is a graphical model that finds probabilistic relationships among 

variables of the system.  There are a number of models available for data analysis, 

including rule bases, decision trees and artificial neural networks.  There are also several 

techniques for data analysis such as classification, density estimation, regression and 

clustering.  One may wonder what Bayesian networks and Bayesian methods have to 

offer to solve such problems.  The following paragraphs provide four answers to the 

question. 

First, Bayesian networks handle incomplete data sets without difficulty because they 

discover dependencies among all variables.  When one of the inputs is not observed, most 

models will end up with an inaccurate prediction.  That is because they do not calculate 

the correlation between the input variables.  Bayesian networks suggest a natural way to 

encode these dependencies. 
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Second, one can learn about causal relationships by using Bayesian networks.  There 

are two important reasons to learn about causal relationships.  The process is worthwhile 

when we would like to understand the problem domain, for instance, during exploratory 

data analysis or when an agent is exploring the environment.  Additionally, in the 

presence of intervention, one can make predictions with the knowledge of causal 

relationships.   

Third, considering the Bayesian statistical techniques, Bayesian networks facilitate 

the combination of domain knowledge and data.  Prior or domain knowledge is crucially 

important if one performs a real-world analysis; in particular, when data is inadequate or 

expensive.  The encoding of causal prior knowledge is straightforward because Bayesian 

networks have causal semantics.  Additionally, Bayesian networks encode the strength of 

causal relationships with probabilities.  Therefore, prior knowledge and data can be put 

together with well-studied techniques from Bayesian statistics.  

Finally, in conjunction with Bayesian networks and other kinds of models, Bayesian 

methods give an efficient approach to avoid the over-fitting of data.  Models can be 

“smoothed” in such a way that all available data can be used for training by using 

Bayesian approach [3]. 

Rule based systems are also commonly used for data analysis.  After their first 

successes, it became clear that rule-based systems have their shortcomings.  One of the 

major problems of rule-based systems is that they are not able to treat uncertainty 

coherently. The reason why rule based systems cannot capture reasoning under 

uncertainty is that dependence between events changes with knowledge of other events.  
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Another deficiency of the rule-based system is that the transition between the rules might 

result in incorrect decisions.  For example, assume the system has the following rules: 

"If the bottle is broken, then the grass is wet" and "if it rains, the grass is wet" 

The rule-based system might make an incorrect conclusion considering these two rules.  

The system might decide that "if the bottle is broken, then it rained".  This statement is 

not a logical statement, and it is not possible to make this kind of decision with the 

Bayesian networks.  This is called a "dead end" in the machine learning literature [6].  

Bayesian networks ease many of the theoretical and computational difficulties of 

rule-based systems by utilizing graphical structures for representing and managing 

probabilistic knowledge [1].  Their basic properties and abilities can be combined as 

described below. 

Independencies can be dealt with explicitly.  They can be articulated by an expert, 

encoded graphically, read off the network, and reasoned about, yet they forever remain 

robust to numerical impression. 

Graphical representations uncover opportunities for efficient computation.  

Distributed updating is feasible in knowledge structures that are rich enough to exhibit 

intercausal interactions (e.g., “explaining away”). The explaining away property 

illustrates human-like behavior of the Bayesian Networks.  No other expert systems or 

rule-based systems have this property.  Additionally, when extended by clustering or 

conditioning, tree-propagation algorithms are capable of updating networks of arbitrary 

topology [1, 47]. 

The combination of predictive and abductive inference resolves many problems 

encountered by the expert systems and renders belief networks a viable model for 
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cognitive functions requiring both top-down and bottom-up inferences [6].  As stated 

above, Bayesian networks allow bi-directional learning and/or massage passing. 

 

1.3.1 The relationship between Bayesian networks and neural networks 

Even though Bayesian networks can model a broad spectrum of cognitive activity, their 

original strength is in causal reasoning, which performs reasoning about actions, 

explanations and preferences.  Such abilities are not easily established in neural networks, 

whose strengths lie in quick adaptation of simple motor-visual functions [6].  Pearl states 

that neural networks cannot do reasoning between events [6].  A Bayesian network gives 

a model of the environment rather than, as in many other knowledge representation 

methods (e.g., rule-based systems and neural networks), a model of the reasoning 

process.  In fact, it simulates the mechanisms that operate in the environment, and makes 

easier diverse models of reasoning, including prediction, abduction and control [6]. 

The relationship between Bayesian networks and neural networks is rather flimsy 

except for the usual ability to carry out distributed inferencing.  For instance, there are a 

limited number of neural features in Bayesian networks: weights, sums and sigmoids play 

no momentous role; familiar linguistic notions are employed for all computational units; 

and placement of bi-directional messages in acyclic structures has no well-defined 

biological bias [5].  In these senses, Bayesian networks are not considered to be a kind of 

neural network in the machine learning literature.   
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1.4 Self-organizing system as a generalized graph of behaviors 

This section explains how a self-organization problem can be considered as a 

generalized graph of behaviors and how they are related to cognitive learning and human 

thinking.  Then, the reasons why Bayesian networks are employed to solve the self-

organization problem of multi-agents will be provided.  

A self-organizing system can be presented as a generalized graph of behaviors.  Many 

viable cognitive learning models and brain function are spatially or temporarily localized, 

so that it is assumed that some ordered topology of behavior exists.  A graph of behaviors 

actually does little to constrain the topology, but it offers a fixed model and analysis 

paradigm.  The interconnections are somewhat better understood as a function of the 

behavior operations.  The interconnections can be categorized in two ways: quantitative 

and symbolic.  Symbolic messages might consist of command, queries or state 

information formatted in a textual form.  Networks having these kinds of 

interconnections generally contain relatively high-level behaviors because they are 

assumed to be individually capable of generating, parsing, and interpreting the messages.   

Quantitative interconnections may take various forms, such as in spreading activation 

networks [49], Bayesian networks [1, 2], neural modular networks (NMN), and mixtures 

of experts models (ME) [48].  Networks with quantitative interconnection exchange such 

information in a fixed format, which is not necessarily parsed at the receiving end.  It is 

much more difficult to organize and adapt systems that require symbolic exchange of 

information than for a system that exchanges quantitative information because symbolic 

information has an essentially limitless dimension and the problem space for self-

organization of such systems is extremely large.  Thus, networks with quantitative 
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information exchange are more tractable, and analytical learning methods exist for many 

of them.   

In recent years, Bayesian networks are commonly used networks with quantitative 

interconnections [1, 2].  Bayesian networks were developed in the 1970s to model 

distributed processing in reading comprehension, where both semantic expectations and 

perceptual evidence must be combined to form a cooperative interpretation.  The 

coordination of bi-directional inferences is discovered in expert systems technology of 

the early 1980s.  Lately, Bayesian networks have become known as a general 

representation scheme for uncertain knowledge [1, 2, 3].  The recent research is mainly 

focused on learning with Bayesian network [3, 15, 16, 17, 19, 24, 28, 29].  Learning with 

Bayesian networks will be discussed in Chapter 3. 

Bayesian networks maintain prior and posterior probability estimates of optimal 

parameter sets describing a behavior [1].  Bayesian networks contain a number of nodes 

whose parameters specify a transformation on the incoming information assuming that a 

behavior is continuously parameterized.  This is analogous to the view that a behavior is 

considered a mapping that depends on some numerical parameters.   

In our research, Bayesian networks are employed to design independent agents 

because they support a human-like learning strategy.  They have formal probabilistic 

semantics and yet can serve as a natural mirror of knowledge structures in the human 

mind [12].  Further information about the relationship between human reasoning and 

Bayesian networks will be discussed in the next section.   

The last question that may arise is how Bayesian networks will be employed to solve 

our problem of the self-organization of independent agents.  This brings up the following 
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related questions: What kind of methods will be employed in estimating parameters of 

the networks?  How will the optimal structure of the network be estimated by using 

complete or incomplete data?  How will the network adjust itself to environmental 

changes, etc.?  These questions are answered in Chapter 3, broadly explaining the various 

methods discovered in the literature.  

In our problem, each agent (the dog) will have its own Bayesian network whose 

nodes are obtained from the sensory data.  Bayesian networks will be incorporated with 

influence diagrams, which allow agents to create actions according to the agent’s 

objective and the state of the environment.  Influence diagrams will be explained in 

Chapter 2. The detailed explanation of the structure of an agent will be provided in 

Chapter 5.   

The agents have either no prior data, or limited data given by some sort of expert, 

when the agents start to explore the environment.  Since data are not reliable at the 

beginning, the estimated Bayesian network is not going to model the real world properly.  

Therefore, the Bayesian network has to be updated while the agent explores the 

environment.  In other words, the Bayesian networks should change its world modal by 

updating itself with the new data.  An online Bayesian network learning is proposed to 

establish continuous learning in Bayesian networks.  Chapter 4 explores the proposed 

online Bayesian network learning.  

Online Bayesian network learning is one of the main contributions of this research.  

Online learning helps agents perform self-organizational behaviors.  Since the agents 

learn during their exploration of the environment and observation of other agents, each 

agent takes its action according to the current state of the environment and its belief about 
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the other agents and environment.  In Chapter 7, the simulations are performed without 

applying online Bayesian network learning in the agent design.  Simulation results show 

that the agents cannot make cooperative actions since they do not learn/adapt their 

knowledge about the environment and the other agents by learning.  Details of the 

simulations and the effectiveness of the online Bayesian network learning are explored in 

Chapter 7. 

 

1.5 Outline of the dissertation 

Chapter 2 will provide detailed descriptions of causal networks, Bayesain networks, 

and influence diagrams.  Learning in Bayesian networks will be explored intensively in 

Chapter 3.  Chapter 4 explores the proposed online Bayesian network learning.  Chapter 5 

will talk about how we will combine Bayesian networks and influence diagrams to create 

an intelligent agent model, namely the decision-theoretic intelligent agent.  Then, the 

software, the IntelliAgent, is developed for creating and simulating intelligent agent 

design in Chapter 6.  A herding problem is simulated by the IntelliAgent software.  The 

problem definition and the simulation results are presented in Chapter 7.  Chapter 8 

concludes the research by presenting the main contributions of the research.  Finally, 

Chapter 9 presents possible future work on the research.   
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CHAPTER 2 

Causal Networks, Bayesian Networks and Influence Diagrams 

This chapter provides a detailed explanation of causal networks and Bayesian networks 

along with the necessary probabilistic calculus.  Subjects will be explained using an 

example: wet grass.  First, causal networks will be explained along with basic principles 

of reasoning under uncertainty.  Next, we will define the Bayesian networks.  Finally, 

influence diagrams will be explored.  

The causal information encoded in Bayesian networks facilitates the analysis of 

action sequences, their consequences, their interaction with observations, and their 

expected utilities, and hence the synthesis of plans and strategies under uncertainty [44, 

46].  That is, Bayesian networks handle reasoning under uncertainty very well. 

The isomorphism between the topology of Bayesian networks and the stable 

mechanisms that operate in the environment facilitates modular reconfiguration of the 

network in response to changing conditions, and permits deliberative reasoning about 

novel situations [6].  

Since the reasoning under uncertainty is one of the advantages of causal and Bayesian 

networks it is necessary to provide some details on the principles of reasoning under 

uncertainty.  The next section provides basic principles for reasoning under uncertainty. 

 

2.1 Basic principles for reasoning under uncertainty 

The basic problem when reasoning under uncertainty is whether information on some 

event influences our belief in other events.  Rule-based systems cannot capture reasoning 
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under uncertainty because the dependence between events changes with the knowledge of 

other events. The problem will be explored with the following example.   

2.1.1 Wet Grass 

The rest of the chapter will be explained with the wet grass example to show the 

reasoning process.  Mr. Holmes leaves his house in the morning and notices that his grass 

is wet.  He reasons it had been raining last night.  Then he thinks that his neighbor, Mr. 

Watson’s grass is most probably wet also.  That is, the information that Mr. Holmes’ 

grass is wet has an influence on his belief of the status of Mr. Watson’s grass.  Now, 

suppose that Mr. Holmes checks his rain meter, and it is dry.  Then he will not reason as 

above, and information on Mr. Holmes’ grass has no influence on his belief about Mr. 

Watson’s grass. 

Next, let us consider two possible causes for wet grass.  Besides rain, Mr. Holmes 

may have forgotten to turn his sprinkler off.  The next morning, suppose that Mr. Holmes 

again notices that his grass is wet.  Mr. Holmes’ belief of both rain and sprinkler 

increases.  Then he observes that Mr. Watson’s grass is wet, and he concludes that it had 

rained last night. The last step is virtually impossible through rules, but natural for human 

beings, called explaining away. 

 

2.1.2 Explaining away 

Explaining away is the process of decreasing one’s belief in a causal event as a result in 

an increase in the belief of an alternative causal event. Let us explain this with our 

example.  After seeing Mr. Watson’s grass is wet in the next morning, Mr. Holmes 

concluded that it had rained.  Consequently, Mr. Holmes’ wet grass has been explained 
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by the rain, and thus there is no longer any reason to believe that the sprinkler has been 

on.  Explaining away is another example of dependence changing with the information 

available [7]. The following section provides some details of dependence between the 

events. 

 

2.1.3 Dependence of events 

Dependence between two events is when the probability of an event depends on the 

knowledge of the other event.  For example, when nothing is known in the initial state, 

the variables Rain and Sprinkler are independent.  On the other hand, when the 

information on Mr. Holmes’ grass is present, then Rain and Sprinklers become 

dependent.  That is, change in the belief in whether it rained or not will change the belief 

in the sprinkler being on or off.  If it rained, then the sprinklers were not on.  Otherwise, 

the sprinklers were on.  Of course, this is true only if there is no other variable that causes 

Mr. Holmes’ grass being wet.  On the other hand, if the information on Mr. Holmes’ 

grass is not present, then we cannot relate the variables Rain and Sprinkler.  Dependence 

between events will be clearer when we introduce the concept of causal networks.   

The prior certainties are also an important concept in reasoning under uncertainty.  

The next paragraph will introduce the importance of the prior certainties for reasoning. 

 

2.1.4 Prior Certainties 

In the above example, it is obvious that if an event is known, the certainty on the other 

events must be changed.  In a certainty calculus, if the actual certainty of a specific event 

has to be calculated, then the knowledge of certainties prior to any information is also 
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required.  For instance, the certainty of Rain is still dependent on whether rain at night is 

rare (as in Los Angeles) or very common (as in London) given that Mr. Holmes' grass is 

wet [2].  

Since basic principles of reasoning under certainty are provided above, now causal 

networks can be introduced.  The following section introduces causal networks and 

provides related definitions such as connection types and d-separation.   

 

2.2 Causal Networks 

The reasoning above can be described by a graph.  The events are nodes, and two nodes 

A and B are connected by a directed link from A to B if A has a causal impact on B. 

Figure 2.1 is graphical model for Mr. Holmes’ small world of wet grass.  

 

 

 

Figure 2.1. A graphical model for the wet grass example [7]. 

 
Figure 2.1 is an example of a causal network.  A causal network is composed a set of 

variables and a set of directed links between variables.  In mathematics literature, this 

composition is called a directed graph.  In a directed graph, the terminology of family 

relations is adopted to explain the relations between the variables. If there exists a link 

from variable A to variable B, then A is called a parent of B and B is called a child of A. 

The variables symbolize events.  Every variable in a causal network has two (yes and no) 

or more states (i.e. color of a car: blue, green, red, and black).  In general, variables can 

Rain? 

Watson? Holmes?
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have continuous and discrete states.  Reasoning about uncertainty also has a quantitative 

part such as the calculation and combination of certainty numbers [2].  The certainty 

numbers are the probabilities of the event (variables) given the data.   

From the graph in Figure 2.1, one can read off the dependencies and independencies 

in the small world of wet grass.  For example, one can see that if he knows that it has not 

rained tonight, then information on Mr. Watson’s grass has no influence on Mr. Holmes’ 

grass. The ways in which influence may run between variables in a causal network have 

been analyzed by Pearl [33] and Verna [20].  Two variables are said to be separated if 

new evidence on one of them has no impact on our belief of the other.  If the state of a 

variable is known, then we say it is instantiated.   

There are three types of connections in a causal network: serial, diverging, and 

converging connections.  Figure 2.2 shows all type of connections in a causal network.  

 
Figure 2.2. Serial, diverging, and converging connections respectively. 

In Figure 2.2 (a), the variable A has a control on the variable B that then has control 

on the variable C.  Apparently, the evidence on the variable A will affect the certainty of 

the variable B that in turn affects the certainty of the variable C.  Analogously, the 

evidence on the variable C will affect the certainty of the variable A through the variable 

B.  On the contrary, if the state of the variable B is given, then the link is blocked, and the 
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variable A and the variable C become independent.  In other words, influence may run 

from A to C and vice versa unless B is instantiated.  

As shown in Figure 2.2 (b), in a diverging connection the influence can pass between 

all the children of the variable A unless the state of the variable A is given.  If the state of 

the variable A is known, then the variables B, C,…, E become independent from each 

other.  Therefore, influence may run between A’s children unless A is instantiated.   

In a converging connection shown in Figure 2.2 (c), if there is nothing known about 

the variable A other than what may be deduced from the knowledge of its parents B, 

C,…, E, then the parents are said to be independent.  The independence means that 

evidence on one of the parents has no effect on the certainty of the others.  If there is any 

other kind of evidence influencing the variable A, then the parents become dependent 

because of the principle of explaining away. Therefore, evidence may only be transmitted 

through a converging connection if either the variable in the connection or one of its 

descendants has received evidence.  The evidence can be direct evidence on the variable 

A, or it can be evidence from one of its children.  In causal networks, this fact is called 

conditional dependence. 

Jensen stated that evidence on a variable is a statement of the probabilities of its 

states.  If the statement supports the exact state of the variable it is called hard evidence.  

Otherwise, it is voiced soft evidence.  For example, soft evidence can be evidence stating 

the probabilities of the states of a variable.  Hard evidence is also referred as 

instantiation.  In the case of serial and diverging connections, blocking a link requires 

hard evidence, while opening a link is possible for all types of evidence [2]. 
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The three cases explained above wrap all the forms in which evidence may be 

transmitted through a variable.  If the rules below are followed, it is conceivable to decide 

for any pair of variables in a causal network whether or not they are dependent knowing 

the evidence entered into the network.  Two variables A and B are said to be d-separated 

if for all paths between variables A and B there is an intermediate variable V so that either 

- the connection is serial or diverging and the state of V is known 

or 

- the connection is converging and neither V nor any of V's descendants have 

received evidence [2]. 

If variables A and B are not d-separated they are said to be d-connected.  For example, if 

the state of the variable B is given in Figure 2.2 (a), then the link is blocked, and the 

variable A and the variable C become independent.  Therefore, it is said that the variable 

A and the variable C are d-separated given the variable B. Similarly, in Figure 2.1, 

Sprinkler? and Watson? are d-separated because the connecting trail is converging 

around the variable Holmes? 

One should note that d-separation is a property of human reasoning [7], and therefore 

any calculus for uncertainty in causal structures must obey the principle that whenever A 

and B are d-separated then new information on one of them does not change the certainty 

of the other. To understand causal networks better, we need to establish the quantitative 

part of the certainty assessment.  The next section will provide necessary probability 

calculus for certainty assessment.  
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2.3 Probability calculus 

Even though various certainty calculi exist in the literature, this section provides the 

Bayesian calculus, which is classical probability calculus.  The section starts with basic 

probability calculus.  Then, the concept of subjective probability and conditional 

probability will be introduced. 

 

2.3.1 Basic probability calculus 

The basic concept in the Bayesian treatment of certainties in causal networks is 

conditional probability. When the probability of an event A, P(A), is known, then it is 

given conditioned by other known factors.  A conditional probability statement has the 

following form: 

Given the event B, the probability of the event A is x. 

The mathematical representation of this statement is xBAP =)|( .  This does not mean 

whenever B is true, then the probability for A is x.  It means that if B is true, and 

everything else known is inapplicable to A, then xBAP =)|( . 

The fundamental rule for probability calculus is given in the following way in [2]; 

),()()|( BAPBPBAP =                                               (2.1) 

where ),( BAP is the probability of the joint event A∧ B.  Because probabilities ought to 

always be conditioned by a context C, the formula should be written as; 

)|,()|(),|( CBAPCBPCBAP =                                      (2.2) 

From (2.1), we can write that )()|()()|( APABPBPBAP =  and this gives the famous 

Bayes' rule: 
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If we condition the Bayes' rule, we will get the following; 

)|(
)|(),|(),|(

CAP
CBPCBAPCABP = .                                      (2.4) 

If A is a variable in a causal network with the set of states a1, a2,…, an, then the P(A) 

is a probability distribution over this set of states: 
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where xi is the probability of A being in the state ai.  One should note that the probability 

of A being in the state ai is expressed as P(A = ai) and expressed as P(ai) if the variable is 

obvious from the context.  Let B be another variable with the states b1,b2,…,bm, then    

P(A | B) is an n-by-m table consisting numbers P(ai | bj).  This table is called conditional 

probability table (CPT) for )|( BAP . 

The joint probability for the variables A and B, P(A, B), is also an n-by-m table 

containing the probabilities P(ai, bj).  The joint probabilities, P(A, B), can be computed by 

utilizing the fundamental rule (2.1): 

)()|(),( jjiji bPbaPbaP =  

or equivalently, 

)()|(),( BPBAPBAP =                                              (2.5) 

The joint probability, ),( BAP , has n⋅m entries.  The probability P(A), can be computed 

from the table ),( BAP .  Let ai denote a state of the variable A.  In the table ),( BAP , 

there are m different events for which the variable A is in state ai, namely the mutually 

exclusive events (ai, b1), …, (ai, bm).  Therefore, P(ai) can be calculated as; 
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),()(                                               (2.6) 

This operation is called marginalization and it is said that the variable B is marginalized 

out of ),( BAP  (producing P(A)). Thus, the notation can be written as follows: 

�=
B

BAPAP ),()(                                                 (2.7) 

The definitions above work for only classical (objective) probabilities.  Causal 

networks have another type of probability, called subjective probability.  The subjective 

probability is one of the important features of causal networks because of their ability to 

explain one’s belief on an event. 

 

2.3.2 Subjective probabilities 

Probability calculus does not require that the probabilities be based on theoretical results 

or frequencies of repeated experiments. Probabilities may also be completely subjective 

estimates of the certainty of an event. For example, a subjective probability may be my 

personal assessment of the chances of finishing my dissertation at the end of next Fall 

semester.  Jensen provides a way of assessing this probability by comparing to gambling 

[2]. 

Subjective probability is also called as Bayesian probability or personal probability in 

the literature [3].  The Bayesian probability of an event x is a person’s degree of belief in 

that event.  A Bayesian probability is a property of the person who assigns the probability 

(e.g., your degree of belief that a coin will land heads), whereas a classical probability is 

a physical property of the world (e.g., the probability that a coin will land heads).  In light 

of these statements, a degree of belief in an event is referred to as a Bayesian or personal 
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probability, and the classical probability is referred as the true or physical probability of 

that event [3].   

An important difference between physical probability and personal probability is that 

there is no need for repeated trials to measure the personal probability.  For example, 

consider the question: what is the probability that the Chicago Bulls will win the 

championship in 2001? The Bayesian method can assign a probability for this event.  One 

common criticism of the Bayesian approach of probability is that probabilities seem 

arbitrary.  This can be mainly observed as a probability assessment problem.  Much 

research has been done to overcome this problem.  A detailed construction of this 

criticism can be found in [3]. 

Another important concept in causal networks is the conditional independence 

between variables. The following subsection describes its importance in Bayesian 

calculus.  

 

2.3.3 Conditional Independence 

In the Bayesian calculus, the blocking of influence between variables is reflected in the 

concept of conditional independence.  The variables A and C are independent given the 

variable B if  

),|()|( CBAPBAP =                                             (2.8) 

This expresses that if the state of the variable B is given then no information of the 

variable C will change the probability of the variable A.  Conditional independence 

comes into view in the cases of serial and diverging connections.  If  (2.8) holds, then by 

the conditioned Bayes' rule (2.4) the following will be obtained 
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BCPBCAPABCP =⋅=⋅=                 (2.9) 

So, Equations (2.8) and (2.9) hold simultaneously.  

With this explanation of causal networks and Bayesian calculus, we can now explore 

Bayesian networks.  The next section will describe the Bayesian network structure and 

provide its properties in detail. 

 

2.4 Bayesian networks 

As stated earlier, causal networks are introduced to define and understand Bayesian 

networks. The following paragraphs provide a detailed definition of Bayesian networks 

and related theorems.  The chain rule theorem is introduced to do the necessary 

calculations in Bayesian networks.    

Causal relations also have a quantitative side, namely their strength.  This is 

expressed by attaching numbers to the links. Let the variable A be a parent of the variable 

B in a causal network.  Using probability calculus, it will be normal to let the conditional 

probability, ),|( ABP  be the strength of the link between these variables.  On the other 

hand, if the variable C is also a parent of the variable B, then conditional probabilities 

)|( ABP  and )|( CBP  do not provide any information on how impacts from the variable 

A and the variable B interact.  They may cooperate or counteract in various ways.  

Therefore, the specification of ),|( CABP  is required.   

It may happen that the domain to be modeled contains feedback cycles.  Feedback 

cycles are difficult to model quantitatively.  For causal networks no calculus coping with 
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feedback cycles has been developed.  Therefore, it is necessary for the network not to 

contain cycles. Thus, A Bayesian network consists of the following elements: 

- A set of variables and a set of directed edges between variables, 

- Each set contains a finite set of mutually exclusive states, 

- The variables coupled with the directed edges construct a directed acyclic 

graph (DAG), 

- Each variable A with parents B1, B2, …, Bn has a conditional probability table 

P(A | B1, B2, …, Bn) associated with it [2]. 

If the variable A does not have any parent, then the table can be replaced by the 

unconditional probabilities P(A). A graph is acyclic if there is no directed path 

nAA →→�1  such that nAA =1 .  For the directed acyclic graph in Figure 2.3, the prior 

probabilities )(AP  and )(BP  have to be specified. 

 

 

 

 

 

 

 
Figure 2.3. A directed acyclic graph. The probabilities to specify are shown. 

 
It has been insisted that prior probabilities introduce an undesired bias to the model 

[1].  The necessary calculi have been developed in order to avoid this problem [1].  On 

the other hand, as explained before, prior probabilities are essential.  They are important 
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not because of mathematical reasons but because prior certainty assessments are an 

integral part of human reasoning about certainty.  

One of the benefits of Bayesian networks is that they admit d-separation.  If the 

variables A and B are d-separated in a Bayesian network with evidence e inserted, then 

)|(),|( eAPeBAP = . Therefore, d-separation can be used to read-off conditional 

independencies.  Next, we will talk about one of the most crucial elements of Bayesian 

network calculations, namely the chain rule. 

 

2.4.1 The chain rule   

In a Bayesian Network, let ),,,( 21 nAAAU �=  be a universe of variables.  The chain rule 

provides a more compact representation of the joint probability ),,,()( 21 nAAAPUP �=  

to make the probability calculations easier.  If the joint probability table P(U) is obtained, 

then the probabilities P(Ai) can be calculated as well as the probabilities P(Ai | e), where e 

is evidence.  On the other hand, if the number of variables in the network increases, P(U) 

expands exponentially.  Therefore, a more compact representation of P(U) is necessary: a 

manner of reserving information from which P(U) can be computed if it is necessary [2]. 

Such a representation resides in a Bayesian network over U.  P(U) can be computed 

from the conditional probabilities defined in a Bayesian network if the conditional 

independencies hold for U.  The following theorem explains this representation. 

 

Theorem 2.1 (The Chain rule.) 

Let BN be a Bayesian network over 

),,,( 21 nAAAU �=  
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Then the joint probability distribution P(U) is the product of all conditional probabilities 

specified in BN: 

∏=
i

ii ApaAPUP ))(|()(                                           (2.10) 

where pa(Ai) is the parent set of Ai. 

Jensen proved this theorem by applying induction on the number of variables in the 

universe U [2].  The next section will provide theoretical and historical details on 

evidential reasoning using the chain rule.  

 

2.4.2 Evidential Reasoning 

As stated above, Bayesian networks accomplish such economy by pointing out, for each 

variable Xi, the conditional probabilities P(Xi | pai) where pai are the set of parents (of Xi) 

which render Xi independent of all its other parents.  After giving this specification, the 

joint probability distribution can be calculated by the product  

∏=
i

iin paxxxP )|(),,( P1 � .                                     (2.11) 

Using this product, all probabilistic queries can be found coherently using probability 

calculus.  There are a number of algorithms for probabilistic calculations in Bayesian 

networks.  Early algorithms employed message-passing architecture and they were 

limited to trees [18, 14].  In these algorithms, each variable was assigned a simple 

processor and allowed to pass messages asynchronously with its neighbors until 

equilibrium is accomplished.  Some techniques have been developed to extend this tree 

propagation to general networks starting around the 1990s.  Two of the most popular 

methods are Lauritzen and Spielgelhalter’s method of join-tree propagation [22] and the 

method of loop-cut conditioning, which is explained in [1, 2].  Learning methods have 
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also been proposed for systematic updating of the conditional probabilities P(Xi | pai), as 

well as the structure of the network in order to match empirical data [21].  The details of 

learning techniques are discussed in Chapter 3.  We will explore some questions about 

the relationship between Bayesian Networks and the functionality of a human brain as 

our last topic in Bayesian networks.  

 

2.4.3 Bayesian networks and the functionality of a human brain 

Does an architecture like the Bayesian network exist anywhere in the human brain? If 

not, how does the human brain achieve those cognitive functions in which Bayesian 

networks excel? Pearl answers these questions in the following sentences: “Nothing 

resembling Bayesian networks actually resides permanently in the brain. Instead, 

fragmented structures of causal organizations are constantly being assembled on the fly, 

as needed, from a stock of functional building blocks” [6].   

Every building block is concentrated on to accomplish a narrow context of experience 

and is presumably materialized in a structure of a neural network.  For example, a 

network as in Figure 2.1 can be assembled from several neural networks each 

specializing in one variable.  Such specialized networks will need to be stored in a 

permanent mental library, from which they are selected and assembled into a network 

structure. This is possible only when a specific problem displays itself, for instance, to 

resolve whether a working sprinkler could rationalize why Mr. Holmes' grass was wet in 

the middle of a dry season.  Therefore, Bayesian networks are particularly beneficial in 

studying higher cognitive functions, where the organizing and supervising large 

assemblies of specialized neural networks is an important problem.  As stated earlier, 
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Bayesian networks do human-like reasoning well not because the structure of the 

networks resembles the biological structure of a human brain but because the way 

Bayesian networks do reasoning resembles with the way humans do reasoning.  The 

resemblance is more psychological than biological. 

 

We have explained Bayesian networks and causal networks.  Bayesian networks will 

be employed in our intelligent agent design because of their ability of reasoning the 

events and modeling the environment accurately.  Modeling the environment is not 

enough for an intelligent agent to act rationally in the environment.  The beliefs about the 

environment have to be converted into actions.  The next section will introduce a method 

to convert beliefs of an agent into actions.  In the literature, they are also called influence 

diagrams [2], or sometimes decision networks [54].   

 

2.5 Influence Diagrams 

A Bayesian network serves as a model for a part of the world, and the relations in the 

model reflect causal impacts between events.  The reason for building these computer 

models is to use them when making decisions.  That is, probabilities provided by the 

network are used to support some kind of decision-making [1].  In principle, there are 

two types of decisions, test-decisions and action-decisions.  A test-decision is a decision 

to look for more evidence to be entered into the model.  An action-decision is a decision 

to change the state of the world [1].  In this research, the action-decisions will be the 

focus.   
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Decision problems can be treated in the framework of utility theory. The utility of an 

action may depend on the state of some variables called determining variables.  For 

example, the utility of a treatment with penicillin is dependent on the type of the infection 

and whether the patient is allergic to penicillin.  The type of the infection and the 

patient’s reaction to the penicillin are the determining variables of the utility of the 

treatment [2].  The utility theory and Bayesian network theory can be combined in a 

graphical representation, influence diagrams.  An influence diagram (ID) is a compact 

representation emphasizing features of decision problems.  The inference diagram 

formalism integrates the two components of knowledge, about beliefs and about actions.  

Influence diagrams are directed acyclic graphs with tree types of nodes−decision 

nodes, chance nodes, and a value node.  Decision nodes, shown as squares, represent 

choices available to the decision-maker.  Chance nodes, shown as circles, represent 

random variables (or uncertain quantities) the same as for Bayesian networks.  Finally, 

the value node, shown as a diamond, represents the objective (or utility) to be maximized.   

The edges in an ID have different meanings, based on their destinations.  An edge 

pointing to utility and chance nodes represent probabilistic or functional dependence, like 

the edges in Bayesian networks.  They do not necessarily imply causality or time 

precedence although in practice they often do.  Edges into decision nodes mean time 

precedence and are informational, i.e., they show which variables will be known to the 

decision-maker before the decision is made [2]. 

An influence diagram can be seen as a special type of Bayesian network, where the 

value of each decision variable is not determined probabilistically by its predecessors, but 

rather is imposed from the outside to meet some optimization objective.  The domain of 
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each decision variable in an influence diagram varies according to previous decisions 

although the domains of the variables in a Bayesian network are fixed.   

Figure 2.4 represents an influence diagram about weather and decision to carry an 

umbrella.  FORECAST  and  WEATHER  are  chance nodes, just as in Bayesian networks. 

 

 

 

 

 

 

Figure 2.4. An influence diagram.  

They have the probabilistic values about the weather and the forecast.  SATISFACTION is 

a utility or value node, i.e. a node that measures our scoring of the system.  UMBRELLA 

is a decision node, i.e. a node that we have to provide a value for.  The objective is to 

maximize expected SATISFACTION by appropriately selecting values of UMBRELLA for 

each possible FORECAST.  In addition to probabilities, the values of SATISFACTION for 

each combination of UMBRELLA and WEATHER are also given.  The objective in an 

influence diagram is to select values at the decision nodes in order to maximize the 

values at the utility nodes.   

Now, let us define how the optimal actions are calculated by employing the influence 

diagram theory.  Let },,{ 1 naaA �=  be set of mutually exclusive actions, and let H be 

the determining variable. A utility table ),( HAU  is necessary to yield the utility for each 

FORECAST WEATHER 

UMBRELLA SATISFACTION 
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configuration of action and determining variable in order to decide between the actions in 

A.  The problem is solved by calculating the action that maximizes the expected utility:  

� ⋅=
H

aHPHaUaEU )|(),()(    (2.12) 

where ),( HaU  are the members of the utility table in the value node U.  The conditional 

probability )|( aHP  is an entry in the CPT of the variable H, given the action a is fired.  

Figure 2.5 illustrates a simple influence diagram with one determining variable and 

one set of actions.  An action set is the set of actions in a decision node in an influence 

diagram.  The probability )|( aHP  is the probability of H given that the action a is fired.  

The probability )|( aHP  can be calculated by facilitating a standard probabilistic 

inference as in Bayesian network.  

 

 

 

 

 

Figure 2.5. An influence diagram with an action set. 

 
Actions are selected by evaluating the decision network for each possible setting of 

the decision node.  Once the decision node is set, it behaves exactly like a chance node 

that has been set as an evidence variable.  The following algorithm illustrates the 

evaluation of an influence diagram [54].   

1. Set the evidence variables for the current state 

2. For each possible value of the decision node: 

… … UH

A

Bayesian 
Network 

Influence 
Diagram 
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(a) Set the decision node to that value. 

(b) Calculate the posterior probabilities for the parent nodes of the utility node, 

using a standard probabilistic inference algorithm.  

(c) Calculate resulting utility function for the action 

3. Return the action with the highest utility. 

 

This is a straightforward extension of the Bayesian Network algorithm and will be 

incorporated into the agent design in the next chapter.  An agent that selects rational 

actions will be designed using the influence diagram theory.   

We have explained the causal networks, Bayesian networks, and influence diagrams 

in detail in this chapter.  We have also given theoretical background in Bayesian calculus 

and reasoning under uncertainty.  Since our problem is a learning problem, we need to 

explain how Bayesian networks learns.  The next chapter is devoted for that purpose.  

Chapter 3 will provide different type of learning situations and different approaches to 

solve those learning problems. 
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CHAPTER 3 

Learning Bayesian Networks 

This chapter is devoted to answering the question: how can Bayesian networks be learned 

from data?  The process of learning Bayesian networks takes different forms in terms of 

whether the structure of the network is known and whether the variables are all 

observable.  The structure of the network can be known or unknown, and the variables 

can be observable or hidden in all or some of the data points.  The latter distinction can 

also be expressed as complete and incomplete data.  Consequently, there are four cases of 

learning Bayesian networks from data; known structure and observable variables, 

unknown structure and observable variables, known structure and unobservable variables, 

and unknown structure and unobservable variables.   

Learning Bayesian networks can also be examined as the combination of parameter 

learning and structure learning.  Parameter learning is estimation of the conditional 

probabilities (dependencies) in the network.  Structural learning is the estimation of the 

topology (links) of the network.  The four types of learning Bayesian networks cases are 

discussed in the following paragraphs.  

 

3.1 Known network structure and observable variables (complete data) 

This is the easiest and the most studied case of learning Bayesian networks in the 

literature [31, 32].  The network structure is specified, and the inducer only needs to 

estimate the parameters.  The problem is well understood and the algorithms are 

computationally efficient.  Despite its simplicity, this problem is still extremely useful, 
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because numbers are very hard to elicit from people.  Additionally, it forms the basis for 

everything else in Bayesian learning.   

Because every variable is observable, each data case can be pigeonholed into the CPT 

entries corresponding to the values of the parent variables at each node.  The pigeonhole 

principle essentially states that if a set consisting of more than nk ⋅  objects is partitioned 

into n classes, then some classes receive more than k objects [30].  Therefore, estimations 

will be highly accurate since every variable is observable.   

Learning is achieved simply by calculating conditional probability table (CPT) entries 

using estimation techniques such as Maximum Likelihood Estimation (MLE) and 

Bayesian Estimation.  For simplicity, MLE and Bayesian estimators will be explained by 

employing parameter learning for a single parameter.  

Assume that an experiment was conducted by flipping a thumbtack in the air.  The 

thumbtack comes to land as either heads or tails.  As usual, the different tosses are 

assumed to be independent, and the probability of the thumbtack landing heads is some 

real number θ .  Therefore, the goal is to estimate θ .  Assume that we have a set of 

instances d[1],…, d[M] such that each instance is sampled from the same distribution and 

independently from the rest.  The goal is to find a good value for the parameter θ .  A 

parameter is good if it predicts the data well.  In other words, if data are very likely given 

the parameter, the parameter is a good predictor.  The likelihood function is defined as  

∏
=

==
M

m
mPDPDL

1

)|][d()|()|( θθθ .                                 (3.1) 

Thus, the likelihood for a sequence H, T, T, H, H is 

θθθθθθ )1)(1()|( −−=DL                                          (3.2) 



 39

or 23 )1( θθ − .  To calculate the likelihood we need to know number of heads hN  and the 

number of tails tN .  These are the sufficient statistics for this learning problem.  A 

sufficient statistic is a function of the data that summarize the relevant information for 

computing the likelihood.   

The Maximum Likelihood Estimation (MLE) principle tells us to choose θ  that 

maximizes the likelihood function.  The MLE is one of the most commonly used 

estimators in statistics.  For the above problem, the estimation of the parameter is  

th

h

NN
N
+

=θ̂                                                       (3.3) 

as expected.   

The MLE estimate seems plausible, but is overly simplistic in many cases.  Assume 

that the experiment with the thumbtack is done and 3 heads out of 10 are recorded.  It 

may be quite reasonable to conclude that the parameter θ  is 0.3.  On the other hand, what 

if the same experiment is done with a dime and also 3 heads are recorded.  We would be 

much less likely to jump the conclusion that the parameter of the dime is 0.3 because we 

have a lot more experience with tossing dimes.  Thus, we have a lot more prior 

knowledge about their behavior. 

Using MLE, we cannot make the following distinctions: between a thumbtack and a 

dime, and between 10 tosses and 1,000,000 tosses of a dime. On the other hand, there is 

another method recommended by Bayesian statistics. The MLE is a frequentist approach 

since it relies on the frequency in the data.  Another approach is the Bayesian approach 

that assumes that there is unknown but fixed parameter θ .  It estimates the parameter 
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with some confidence, i.e., it calculates a range such that, if the parameter is out of this 

range, the probability of the data is very low.   

The Bayesian approach deals with uncertainty over anything that is unknown by 

putting a distribution over it.  In other words, the parameter θ  is treated as a random 

variable and a distribution )(θP  is defined over it.  Therefore, we can tell how likely the 

parameter is to take on one value versus another.  In other words, we now have a joint 

probability space that contains both the tosses and the parameter.  This joint probability is 

easy to find given our prior distribution over θ .  Let X[1],…, X[M] be our coin tosses.  

The conditional probabilities )|][( θmXP  are according to θ , i.e., θθ == )|][( HmXP .  

Now, the value of the next toss X[M + 1]can be predicted by 

� +=+ θθθ dDPMXPMXXMXP )|()|]1[(])[,],1[|]1[( �              (3.4) 

where  

)(
)()|()|(

DP
PDPDP θθθ = .                                         (3.5) 

The first term in the numerator is the likelihood, the second is the prior over 

parameters, and the third is a normalizing factor, which is the marginal probability of the 

data.   

If we reconsider the thumbtack problem again with a uniform prior over θ  in the 

interval [0, 1], then )|( DP θ  is proportional to the likelihood th NNDP )1()|( θθθ −= .  

After plugging this into the integral and doing all the math and normalizing, it can be 

shown that the following equation holds [13]. 
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DMXP                                       (3.6) 
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Clearly, as the number of samples grows, the Bayesian estimator and the MLE 

estimator converge to each other.  This result depends on the use of uniform prior.  In the 

Bayesian networks literature, the most commonly used class of priors are the Dirichlet 

priors [26, 28, 29] because it turns out that most of the interesting calculations can be 

done in closed form.  The conjugacy of the Dirichlet priors allows us to have the 

posterior probabilities in the same form as prior probabilities. Therefore, we can do 

sequential updating within the same representations and the closed form solution can be 

found both for the update and the prediction problem in many cases. 

Recall that a multinomial is parameterized via a set of parameters kθθ ,,1 � such that 

� =
i i 1θ ; iθ  corresponds to the probability of ith outcome.  A Dirichlet distribution over 

this set of parameters is defined via a set of hyperparameters kαα ,,1 � .  Then, the 

generalization can be written as 

∏∏
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α

αααθ � .                               (3.7) 

All of the results regarding prediction and computing the posterior extend in the 

obvious way.  That is, if θ  is distributed as in (3.7), then  

�
=

j j

i
ixP

α
α

)(  

and if there is a data set D whose sufficient statistics are kNN ,,1 � , then  

),,|(Dir)|( kk NNDP ++= ααθθ �11 .                           (3.8) 

To generalize these results for a Bayesian network, we need to define the sufficient 

statistic as N(x, u) for the event X = x and the parents U = u.  In the MLE case, the 

estimation of the parameters can be calculated as 
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)u(
)u,(ˆ

u| N
xN

x =θ .                                                 (3.9) 

Similarly, in the Bayesian case, the parameter estimation is calculated as  

))u,(,),u,((Dirˆ
11u| kxx xNxN

k
++= ααθ � .                          (3.10) 

If the data were actually generated from the given network structure, then both 

methods converge asymptotically to the correct parameter setting.  If not, then they 

converge to the distribution with the given structure that is closest to the distribution from 

which the data were generated.  Both estimations can be implemented online by 

accumulating sufficient statistics. 

The process above is the method by which Bayesian network parameters are learned 

when the network topology is known and all variables are fully observable.  The next 

section provides an overview of some proposed methods in the literature if the structure 

of the network is not known in advance. 

 

3.2 Unknown network structure and observable variables 

In this case, the inducer is given the set of variables in the model, and needs to select the 

arcs between them and estimate the parameters.  This problem is very useful for a variety 

of applications; in general, when we are given a new domain with no available domain 

expert, and want to get all of the benefits of a BN model.  It is also useful for data-mining 

style applications, where there are masses of data available and we would like to interpret 

them.  In addition to providing a model that will allow us to predict behavior of cases that 

we have not seen, the structure also gives the expert some indication of what attributes 
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are correlated.  The algorithms for this problem are combinatorially expensive.  They 

basically reduce to a heuristic search over the space of BN structures. 

There has been some attention given to the problem of unknown network structure in 

the literature.  The key aspect of the problem is to reconstruct the topology of the network 

from fully observable variables.  In the literature, this is considered as a discrete 

optimization problem solved by a greedy search algorithm in the space of structures.  

Some examples of the greedy search algorithm can be found in [34, 35].   

A MAP (Maximum a Posterior) analysis of the most likely network structure has 

been studied in [34] and [35] when the data are fully observable.  The resulting 

algorithms are capable of recovering fairly large networks from large data sets with a 

high degree of accuracy [16]. On the other hand, they usually adopt a greedy approach to 

choosing the set of parents for a given node because the problem of finding the best 

topology is intractable.   

There are two main approaches to structure learning in BNs: 

• Constraint based: Perform tests of conditional independence on the data, and search 

for a network that is consistent with the observed dependencies and independencies. 

• Score based: Define a score that evaluates how well the (in)dependencies in a 

structure match the data, and search for a structure that maximizes the score. 

Constraint-based methods are more intuitive.  They follow the definition of a BN more 

closely.  They also separate the notion of the independence from the structure 

construction.  The advantage of score-based methods is that they are less sensitive to 

errors in individual tests.  Compromises can be made between the extent to which 

variables are dependent in the data and the cost of adding the edge [13]. 
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The score-based methods operate on the same principle: a scoring function is defined 

for each network structure, representing how well it fits the data.  The goal is to find the 

highest-scoring network structure.  The space of Bayesian networks is a combinatorial 

space, consisting of a superexponential number of structures.  Thus, it is not clear how 

one can find the highest-scoring network even with a scoring function. In general, the 

problem of finding the highest-scoring network structure is NP-hard [13].  On the other 

hand, the problem of searching a combinatorial space with the goal of optimizing a 

function is very well studied in AI literature.  Consequently, the answer is to define a 

search space, and then do heuristic search. 

In light of the above statements, a BN structure learning algorithm requires the 

following components be determined: 

i) Scoring function for different candidate network structures. 

ii) The definition of the search space: operators that take one structure and 

modify it to produce another. 

iii) A search algorithm that does the optimization search. 

Each component will be discussed separately.  The three main scoring functions 

commonly used to learn Bayesian networks are the log-likelihood [13], the one based on 

the principle of minimal description length (MDL) [11] which is equivalent to Schwarz’ 

Bayesian information criterion (BIC) [10], and Bayesian score [3,13]. 

The log-likelihood function is simply the log of the likelihood function. That is, 

),|(log),|( ΒΒΒΒΒΒΒΒ ΒΒΒΒΒΒΒΒ θθ DLDl =                                  (3.11) 

The log-likelihood is easier to analyze than the likelihood, because the logarithm turns all 

the products into sums.  Therefore,  
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∏=
m

mPDL ),|][d(),|( ΒΒΒΒΒΒΒΒ ΒΒΒΒΒΒΒΒ θθ                                    (3.12) 

and, the following equation can be written: 

),|][d(log),|( ΒΒΒΒΒΒΒΒ ΒΒΒΒΒΒΒΒ θθ mPDl
m
�=                                    (3.13) 

There are a couple of important things to note about the log-likelihood.  The log-

likelihood increases linearly with the length of data, M.  The higher scoring networks are 

those where the node and the parents are highly correlated.  Adding a node to the 

networks always increases the log-likelihood.  As a result, the network structure that 

maximizes the likelihood is often the fully connected network.  This is the deficiency of 

the log-likelihood score and is not desired.  Thus, a score that makes it harder to add 

edges is necessary.  In other words, we would like to penalize structures with too many 

edges.   

One possible formulation of this idea is called the MDL score.  It is defined as: 

)()(
2

log)ˆ,|():( ΒΒΒΒΒΒΒΒΒΒΒΒΒΒΒΒ ΒΒΒΒ DLDimMDlDScoreMDL −−= θ                   (3.14) 

where )(ΒΒΒΒDim is the number of independent parameters in ΒΒΒΒ  and )(ΒΒΒΒDL  is the number 

of bits (the description length) required to represent the structure of ΒΒΒΒ .  The abbreviation 

MDL stands for minimum description length.  The MDL score is a compromise between 

fit to data and model complexity.  Adding a variable as a parent causes the log-likelihood 

term to increase, but so does the penalty term.  There will be an edge addition if its 

increase to the likelihood is worth it. 

Another commonly used score is called Bayesian score.  In this case, the network 

score is evaluated as the probability of the structure given the data.  The Bayesian score 

has the following form: 
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ΒΒΒΒΒΒΒΒΒΒΒΒΒΒΒΒ ==                             (3.15) 

As usual )(DP  is constant, so it can be ignored when different structures are compared.  

Therefore, the model maximizes )()|( SPSDP , where S represents a structure.  The 

ability to ascribe a prior over structures gives us a way of preferring some structures to 

others. Here, the probability )|( ΒΒΒΒDP can be calculated as 

�= ΒΒΒΒΒΒΒΒΒΒΒΒ ΒΒΒΒΒΒΒΒΒΒΒΒ θθθ dPDPDP )|(),|()|( .                                (3.16) 

From Equation (3.16), one can see that the more parameters we have the more variables 

we are integrating over.  As a result, each dimension causes the value of the integral go 

down because the “hill” of the likelihood function is a smaller fraction of the space.  

Therefore, this idea gives preference to networks with fewer parameters.  It can be shown 

that the Bayesian score is a general form of MDL score.  The MDL score can be viewed 

as an approximation of the Bayesian score.  Therefore, the Bayesian score is also a 

compromise between the model complexity and fit to the data.  

Several ways of scoring different Bayesian network structures have been explained. 

Different scores have been explored in terms of the network complexity and how the 

network fits to the correlation in the data.  Now, the goal is to find the network that has 

the highest score.  In other words, training data D, the scoring function, and a set of 

possible structures are the inputs of the search algorithm while the desired output is a 

network that maximizes the score.  It can be shown that finding maximal scoring network 

structures where nodes are restricted to having at most k parents is NP-hard for any k > 1.  

Therefore, a heuristic search is resorted to for this optimization problem.  A search space 

is defined, where the states in the space are possible structures and the operators denote 
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the adjacency of structures.  This space is traversed looking for high-scoring functions to 

complete the optimization.  The obvious operators in the search spaces are add an edge, 

delete an edge, and reverse an edge.  The search starts with some candidate network, 

which may be the empty one, or one that some expert has provided as a starting point.  

Then, applying the operators, the high-scoring network is searched in the space.  The 

parameters of the network are calculated by using training data D. 

The most commonly used algorithm for optimization search is simple greedy hill 

climbing, which has the following form: 

Greedy BN search 

Pick a random network structure ΒΒΒΒ  as starting point 
Calculate parameters for each ΒΒΒΒ i 
Compute score for ΒΒΒΒ  
Repeat 
 Let ΒΒΒΒ 1,…, ΒΒΒΒ m be the successor networks of ΒΒΒΒ  (i.e., operations on ΒΒΒΒ ) 
 Calculate parameters for each ΒΒΒΒ i 
 Compute score for each ΒΒΒΒ i    
 Let ΒΒΒΒ ’ be the highest scoring ΒΒΒΒ i 
 If score ( ΒΒΒΒ ’) > score ( ΒΒΒΒ i) 
  Then let ΒΒΒΒ  := ΒΒΒΒ ’ 
  Else return( ΒΒΒΒ ) 
 

Even though the hill-climbing method is commonly used, it has several key problems 

such as local maxima where all one-edge changes reduce the score and plateaux where a 

large set of neighboring networks that have the same score.  There are some clever tricks 

that avoid some of these problems such as TABU-search, random restart, and simulated 

annealing.  In general, greedy hill climbing with random start works quite well in 

practice.   

We examined methods for learning a Bayesian network from fully observable data.  

The next sections provide the Bayesian network learning with partially observable data.  
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Sections 3.3 and 3.4 explore the Bayesian network learning with known network 

structure and unknown network structure, respectively.  

 

3.3 Known structure and unobservable variables (incomplete data) 

The learning of Bayesian networks with known structure and unobservable variables has 

been studied by Golmard and Mallet [36], Lauritzen [37, 38], Olesen et al. [31], and 

Spiegelhalter and Cowel [39].  The algorithm that these papers describe is the expectation 

maximization (EM) algorithm [23].  The EM algorithm is an iterative method to calculate 

maximum likelihood estimates (MLEs) and MAP estimates of the network parameters.  

The EM algorithm alternates an expectation step with a maximization step.  In the 

expectation step, unknown quantities depending on the missing entries are replaced by 

their expectations in the likelihood. In the maximization step, the likelihood completed in 

the expectation step is maximized with respect to the unknown parameters, and the 

resulting estimates are employed to replace unknown quantities in the next expectation 

step.  The algorithm continues until the difference between successive estimates is 

smaller than a fixed threshold. [38].  Lauritzen states some difficulties with the use of EM 

algorithm such as slow convergence rate and local maxima.  He then suggests that the 

gradient descent algorithm can be used as a possible alternative [38].  

The third possible approach, introduced by Heckerman [3], is to use Gibbs sampling 

(GS).  Gibbs Sampling is one of the most popular Markov Chain Monte Carlo methods 

for Bayesian inference.  The GS algorithm generates a value for the missing data from 

some conditional distributions and provides stochastic estimations of the posterior 

probabilities [45].  To illustrate Gibbs sampling, let us approximate the probability 
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density ),|( h
s SDp θ  for the configuration of parameters sθ  of a particular network hS , 

given an incomplete data set },,{ 1 ND yy �=  and a Bayesian network for discrete 

variables with independent Dirichlet priors. To approximate ),|( h
s SDp θ , we first 

initialize the states of the unobserved variables in each case somehow (e.g., at random).  

Therefore, we have a complete random sample cD .  Then, we choose some variable ilX  

(variable iX  in case l) that is not observed in the original random sample D, and reassign 

its states according to the probability distribution 

� ″
″

′
=′

ilx
h

ilcil

h
ilcilh

ilcil
SxDxp

SxDxpSxDxp
)|\,(

)|\,(,\|(                              (3.17) 

where ilc xD \ denotes the data set cD  with observations ilx  removed, and the sum in the 

denominator runs over all states of variable ilX .  Then, this reassignment for all 

unobservable variables in D is repeated producing a new complete random sample cD′ .  

Using this data set, the posterior density ),|( h
cs SDp ′θ  is computed.  Finally, the three 

steps are iterated and the average of ),|( h
cs SDp ′θ  is used as our approximation [3].   

Both the GS and EM algorithms use a basic strategy called the missing information 

principle [41]: fill in the missing observations on the basis of the available information.  

Unfortunately, these approximate methods are prone to errors when little and/or biased 

information is available about the pattern of the missing data [26].   

In recent years, an exciting solution to this problem was proposed by Sabestiani and 

Ramoni [27].  The algorithm is called Bound and Collapse (BC), which is a deterministic 

method to estimate conditional probabilities from incomplete data.  The method bounds 
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the set of possible estimates consistent with the available information by computing the 

minimum and the maximum estimates that would be gathered from all possible 

completions of the database.  These bounds then collapse into a unique value via a 

convex combination of the extreme points with weights depending on the assumed 

pattern of missing data [28].   

The basic intuition behind BC is that an incomplete database is still able to constrain 

the possible estimates within a set and that, when exogenous information is available on 

the pattern of missing data, this can be used to select a point estimate within the set of 

possible ones.  Let iX  be a variable in the set [ ]nXXX ,,�1=  with parent variable iΠΠΠΠ .  

Sebastiani and Ramoni [25] show that the maximum Bayesian estimate of ( )ijikxp π|  is 
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=                           (3.18) 

and the minimum Bayesian estimate is  
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=                               (3.19) 

where ijkα  are the Dirichlet hyperparameters, )|( ijikxn π•  and )|( ijikxn π• are maximum 

and minimum achievable virtual frequencies of )|( ijikx π  in the incomplete data, 

respectively.  The frequency )|( ijikxn π  is the number of occurrences of )|( ijikx π  in the 

data.  The maximum and minimum values of the virtual frequency are calculated by 

filling the missing entries in order to have maximum and minimum number of 

occurrences of )|( ijikx π  and counting the number of occurrences of the entry )|( ijikx π , 

respectively. The probability interval defined by )],|(),,|([ DxpDxp ijikijik ππ •
•   contains 
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all possible estimates consistent with D, therefore it is sound and it is the tightest 

estimable interval.  

The main feature of the BC method is its independence of the distribution of missing 

data because it does not attempt to infer them: with no information on the missing data 

mechanism, an incomplete database can only provide bounds on the possible estimates 

that could be learned [9].  A complete database is just a special case, within available data 

are enough to constrain the set of possible estimates to a single point.  Another advantage 

of this method is that the width of each interval accounts for the amount of information 

available in D about the parameter to be estimated.  Each interval represents a measure of 

quality of probabilistic information conveyed by the database about a parameter: the 

wider the interval, the greater the uncertainty due to the incompleteness of the database.  

In this way, intervals provide an explicit representation of the reliability of the estimates, 

which can be taken into account when the extracted BN is employed to perform a 

particular task.   

The second step of the BC method collapses the intervals estimated in the bound step 

into point estimates employing a convex combination of the extreme estimates.  This 

convex combination can be determined either by using external information about the 

pattern of missing data or by a dynamic estimation of this pattern from the available data.   

Assume that some external information is available on the pattern of missing data.  

One can encode this information as a probability distribution defining, for each datum in 

the database, the probability of the datum being missing as 

ijkiijik XxP φπ == ?),|(  
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where ick ,,1�= , the number of state in iX  is denoted by ic , and 1=�k ijkφ .  The 

notation ?=iX  denotes that the state of iX  is missing.  The probabilities ijkφ  can be 

employed to determine accurate estimates of ijkθ , which is the probability of iX  being in 

the kth state given the parent states ijπ .  A single probability for each state of the variable 

iX  given the parent states ijπ  as 
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=                             (3.20) 

for kl ≠ .  Therefore, the local minimum of )|( DE ijkθ  can be calculated as 
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which shows that the difference between ),|( Dxp ijik π•  and ),|( Dxp ijik
l π•  depends 

only on the cases in which the state of the child variable is known and the parent 

configuration is not.   

The distribution of missing entries in terms of ijkφ  can be employed to identify a 

point estimate within the interval )],|(),,|([ DxpDxp ijikijik
l ππ •
•   via convex 

combination of extreme probabilities: 

),|(),|(),,|(ˆ DxpDxpDxp ijikijkijik
kl

l
ijkijkijik πφπφφπ •

≠
• +=� .              (3.22) 

Finally, if data are missing only on the child variable ( •• = ijijik nxn )|( π ), then we get 
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so that the incomplete cases are distributed across the states of iX  according to the prior 

knowledge on the pattern of missing data.  Note that Equation (3.23) is the expected 

Bayesian estimate given the assumed pattern of missing data [9]. 

If there is no external information about the pattern of missing data, the BC method 

works similar to EM and GS methods due to the use of the pattern of the available data.  

In this case, )|( ijikijk xp πφ =  and it can be estimated from the available data as  
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= .                                          (3.24) 

This estimate can then be employed to compute the convex combination of the extreme 

probabilities.  The estimate of ),|( Dxp ijik π  can be computed as 
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which is a consistent estimate of ijkθ  since ),|(ˆ Dxp ijik π  is a generalized version of the 

Maximum Likelihood Estimate of ijkθ .  If 0=ijkα , then the BC estimate becomes the 

classical MLE of ijkθ .  Clearly, the estimates of the conditional probabilities computed by 

Equation (3.25) are the expected estimates and, as the database increases, they will be the 

same estimates computed by GS [9].   

Sebastiani and Romani compared the accuracy and the efficiency of EM, GS, and BC 

methods.  They found that both EM and GS provide reliable estimates of the parameters 

and they are currently regarded as the most viable solutions to the missing data [28].  On 

the other hand, both these iterative methods can be trapped into local minima and the 

convergence detection can be difficult.  Furthermore, they assume that the missing data 

mechanism is ignorable; i.e., within each observed parent configuration, the available 
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data is a representative sample of the complete database and the distribution of missing 

data can therefore be inferred from the available entries [41].  When this assumption fails, 

and the missing data mechanism is not ignorable (NI), the accuracy of these methods can 

drastically decrease.  Additionally, Sabestiani and Romani state that the computational 

cost of these methods depends mainly on the absolute number of missing data, and this 

dependency can prevent their scalability to large databases [28].   

The most important characteristic of BC is its ability to represent the pattern of 

available data and the assumed pattern of missing data explicitly and separately.  The BC 

algorithm provides probability intervals that can make the analyst aware of the range of 

possible estimates, and hence of the quality of information on which inference is based.  

The probability intervals used by BC provide a specific measure of the quality of 

information conveyed by the database and explicit representation of the impact of the 

assumption made on the pattern of missing data [9].  Therefore, BC does not depend on 

the ignorability assumption [28].  Furthermore, BC reduces the cost of estimating each 

conditional distribution of each variable Xi  to the cost of one exact Bayesian updating 

and one convex combination for each state of Xi in each parent configuration. This 

deterministic process does not decrease the convergence rate and the convergence 

detection relative to stochastic processes.  Additionally, the BC method’s computational 

complexity is independent of the number of missing data [28].   

Consequently, the BC algorithm gives almost the same results as EM and GS when 

the missing data is ignorable but it gives better results when the missing data mechanism 

is not ignorable.  The convergence rate of BC is also better than EM and GS.  Thus, BC 

learns the network faster than EM and GS methods [28].  The experimental comparison 



 55

with EM and GS proves that a substantial equivalence of the estimates provided by these 

three methods and a dramatic gain in efficiency using BC.   

Ramoni and Sebastiani claimed the estimates provided by BC are more robust to 

departure of the data from the true pattern of missing data.  The computational cost of BC 

is equal to the cost of two exact Bayesian updates−one for each extreme distribution−plus 

the cost of a convex combination for each parameter in the BN [45]. 

One may ask what happens if the network structure is unknown in addition to 

partially observable data.  There is no easy answer to this question given in the literature.  

Some possibilities are explored in the next section. 

 

3.4 Unknown structure and unobservable variables 

This is the most difficult case to resolve because the structure of the networks is unknown 

and the variables are not fully observable.  There is no significant amount of research for 

this case.  When some variables are sometimes or always unobserved, the techniques 

stated in Section 3.2 for recovering the network structure become difficult to apply since 

they essentially require averaging over all possible combinations of values of the 

unknown variables [16].  There are two recently developed methods that recover the 

Bayesian network structure with unobserved variables. 

The first algorithm was proposed by Russell [29] and is called structural EM (SEM) 

algorithm.  The algorithm combines the standard EM algorithm, which optimizes the 

network parameters, with structure search for model selection.  The main idea of this 

method is that it attempts to maximize the expected score of models instead of their 

actual scores at each iteration.  Russell proves a theorem that the SEM algorithm makes 
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progress in each iteration on finding the better scoring network.  Then, he states that if 

one chooses a model that maximizes the expected score at each iteration, then a better 

choice is provably made in terms of the marginal score of the network [29].  The SEM 

algorithm is exciting since it attempts to directly optimize the true Bayesian score within 

EM iteration rather than an asymptotic approximation.  

The most problematic aspect of SEM is that it might converge to a sub-optimal 

model.  This could happen if the model generates a distribution that causes other models 

to appear worse when the expected score is examined [29].  This difficulty becomes more 

obvious when the ratio of missing information is higher.  Russell suggests that, in 

practice, the algorithm needs to be run from several starting points to get a better estimate 

of the MAP model [29].  Another restriction of the SEM is that it focuses on learning a 

single model.  In practice, several high scoring models is necessary for better prediction.  

Additional to this deficiency, the algorithm requires large number of computations during 

learning.  This is the main problem in applying this technique to large-scale domains.  

The following paragraphs provide a computationally cheaper method. 

The second algorithm was proposed by Sebastiani and Marino [27].  They were able 

to show that BC algorithm could also learn the structure of the network with small 

changes in the algorithm.  The algorithm has the following form: 

Pick a random network structure ΒΒΒΒ  as starting point 
Pick parameters for the network structure ΒΒΒΒ  
Compute score for ΒΒΒΒ  
Repeat 
 Add an edge to the network, the network ΒΒΒΒ′  is created 
 Estimate the posterior expectations of parameters of ΒΒΒΒ′  using BC method     
 Estimate the posterior values of the network parameters 
 Compute score for the network with ΒΒΒΒ′  
 If score ( ΒΒΒΒ ’) > score ( ΒΒΒΒ ) 
  Then let ΒΒΒΒ  := ΒΒΒΒ ’ 
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  Else return ( ΒΒΒΒ ) 
 
This method is very similar to the search method described in Section 3.2 where we 

had fully observed data.  The only difference is that, in this case, we have partially 

observed data or incomplete data.  Therefore, the estimation of the parameters of the 

network is also necessary.  The BC method is employed to estimate the parameters of the 

network.  The estimation process is performed in each step, i.e., after adding each edge to 

the network.  Consequently, the method involves both parameter learning and structure 

learning.  However, the main attention was given to the parameter estimation part since it 

is newly discovered method.  The structure learning part can be modified as a greedy 

search algorithm.  In that case, “delete an edge” operator and “reverse an edge” operator 

have to be incorporated to the algorithm.   

There is a slight difference between SEM and BC methods and the problem of self-

organizing agents in terms of required data structure.  The SEM and BC algorithms 

require a certain minimum length database.  Unfortunately, there will not be a prior 

database to work with at the beginning of the agents’ exploration of the environment.  

Thus our learning method has to be online: estimation of the network structure and 

parameters will be performed simultaneously with the gathering of new entries in the 

database.  So, our method has to learn the network while the agents are exploring the 

environment and organizing themselves to manage a common task.  Using the current 

methods this problem cannot be solved because they do not contain an online learning 

algorithm.  In the next chapter we propose a method that allows the agents learn the 

environment while they are exploring the environment and organizing a common task.  
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CHAPTER 4 

Online Bayesian Network Learning and Multi-agent Organization 

This chapter introduces online Bayesian network learning in detail.  The structural and 

parametric learning abilities of the online Bayesian network learning are explored.   The 

chapter starts with revisiting the multi-agent self-organization problem and the proposed 

solution.  Section 4.2 explains the proposed Bayesian network learning.   

 

4.1 Outline of the problem statement and the proposed solution 

As stated in the introduction, we attempt to find how a common task can be performed by 

a multi-agent self-organizing system.  The agents are independent in terms of their model 

of environment and their actions. Each agent explores the environment and decides its 

actions by itself.  Agents will have no information about the environment at the 

beginning of their exploration of the environment.  They will explore the environment, 

model the environment and take actions to change the environment according to the 

common task.  We attempt to solve these problems by utilizing Bayesian networks and 

influence diagrams.   

Bayesian networks are employed to model the environment.  Because the agents have 

no or limited information about the environment at the beginning of their exploration, an 

online Bayesian network learning method will be used.  Influence diagrams will be 

employed to obtain the agents’ actions.  Bayesian networks and influence diagrams are 

combined to produce a decision-theoretic agent [54] in a multi-agent system.  Detailed 
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discussion on the decision-theoretic agent design is presented in Chapter 5.  The Bayesian 

network learning is explored in the next section.  

4.2 Online Bayesian network learning 

Bayesian network learning is examined broadly in Chapter 3.  There are four cases of 

Bayesian network learning depending on the availability of the network and the data.  

The unknown structure and incomplete data case is the nearest case to our problem.  Our 

network structure is not defined in advance and the sensor data may not be complete.  On 

the other hand, for simplicity we will assume the data is complete during the simulations.  

The agents do not have significant amounts of prior knowledge about the environment.  

Therefore, the BN will be formed during the agents’ exploration of the environment.  

Each new data case will affect the structure of the network.   

Online Bayesian network learning consist of two parts, namely parameter learning 

and structural learning.  Parameter learning is the calculation of the conditional 

probability table elements of each node in a given Bayesian network.  In this research, we 

use a modified version of Maximum Likelihood Expectation method to calculate the 

network parameters.  Maximum likelihood estimation method is modified so that it has a 

closed form when the probabilities need to be updated.  The details of the parameter 

learning are provided in Section 4.2.1.    

Structural learning is the problem of finding the network that represents the data the 

best.  This involves two parameters, complexity of the network and fitness of the network 

to the data.  The structural learning process tries to find the optimal network that provides 

optimal complexity and fitness.  The main building block in structural learning is the 

search algorithm that generates the network with the highest score. The structural 
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learning is presented in Section 4.2.2.  The following section provides detailed 

description of the parameter learning in the online Bayesian learning.   

4.2.1 The parameter learning  

In Chapter 3, we introduced two types of parameter learning techniques used in the 

literature, MLE and Bayesian estimation.  It is stated that with a database having a large 

number of data cases, these two methods converge to each other.  The latter can take 

prior knowledge if it is available.  Also, it is shown that the latter has a closed form.  In 

this section we have redefined the Maximum Likelihood calculation to have a closed 

form calculation.  Because MLE is computationally simpler than Bayesian estimation, it 

is employed in our parameter learning.  The following paragraphs explain how the 

parameter learning is performed by modified MLE method.  

Let },,{X mXXX �21=  be the discrete variables (nodes) in a Bayesian network, B.   

Assume that we know that the node jX  is the child of the node iX , which means 

ji XX → .  In this case, the parameter learning has to calculate the values in the 

conditional probability table in the node jX .  The conditional probability can be 

calculated by utilizing using the fundamental formula for probability calculus as in 

Equation (4.1) 
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Since MLE is employed in parameter learning, the probabilities can be calculated by 

utilizing the natural frequencies of the data cases.  A natural frequency of a data case is 

calculated by counting the number of occurrences of the data case in the database.  For 

individual probabilities, we count the number of occurrences of a state of a variable in the 
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database.  Let nij be the number of occurrences of the state j of the ith variable in the 

database and n is the total number of data cases in the database.  Using these frequency 

values, we can calculate the probabilities in the following way: 

n
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)(        (4.2) 

Thus, the conditional probabilities can be calculated by using the individual probabilities 

in Equation (4.1).  The conditional probability )( ji XXP →  can be obtained as in the 

following equations.  
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As can be seen in Equations (4.4) and (4.5), the denominators are the same in the both 

terms.  When we put these two terms into Equation (4.3), the denominators cancel each 

other as shown in the following equation. 
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In the resulting equation, there are only two natural frequencies.  There is no need to 

involve the number of elements in the database for conditional probability calculations.  

This technique simplifies the computations in the parameter learning.  Equation (4.6) has 

a closed form because if a new data case is encountered, we can easily update the 

corresponding natural frequencies accordingly to update the conditional probabilities.  
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The following example provides practical results to the conditional probability 

calculation technique.  For the cases that have not seen yet, the uniform probability 

distribution is used to fill the conditional probability tables in the nodes. 

Let X1, X2, and X3 be the system variables with two possible states, 0 and 1, in a 

Bayesian network, B.  Assume that we know the system dynamics (dependencies), 

21 XX →  and 32 XX → .  Therefore, we need to calculate the conditional probabilities, 

)|( 12 XXP  and )|( 23 XXP .  Let D be the database of cases to calculate the conditional 

probabilities, shown in Table 4.1. 

Table 4.1. The database to compute the parameters of the BN. 

X1 X2 X3 
0 0 0 
1 0 1 
1 1 0 
0 1 1 
1 0 0 
1 0 0 
0 1 0 
1 1 1 
0 1 0 
0 1 1 

 

For example, we can calculate the probabilities of the variable X1 as in the following 

equation. 
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Now, let us calculate the conditional probability of )|( 00 12 == XXP  by counting 

corresponding frequency values, ),( 00 12 == XXn and )( 01 =Xn . 
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Similarly, 
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4011 12 .)|( === XXP      (4.11) 

The conditional probability )|( 23 XXP  can be easily calculated by counting the 

corresponding natural frequencies.   

The above technique is also useful to update the probabilities when a new case is 

introduced to the network.  When a new case is encountered, the related frequency counts 

can be updated to calculate the new probabilities.  Jensen introduces a similar updating 

scheme in [1] as fractional updating. 

The above technique works if the state of 3X  as well as the states of its parents are 

known.  This could be a problem if the states of the parents are not known when the 

probability update is being done.  In our problem, the network update is done after new 

data are gather for all the variables in the network.  Therefore, the above restriction does 

not apply to our problem.   

For online Bayesian network learning, the parameter learning is not enough because 

the agents do not know the system dynamics in advance.  Thus, the structural learning 

part is also necessary to discover the system dynamics.  The following section presents 

the details of the structural learning techniques explored in this research.   
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4.2.2 The structural learning 

Structural learning is finding the best network that fits the available data and is optimally 

complex.  This can be accomplished by utilizing a search algorithm over the possible 

network structures.  In this research, a greater importance is given to the search algorithm 

because we have assumed that the data will be complete.  That is, each element of the 

database is a valid state of a variable.  If there are non-applicable entries in the database, 

then the database is said to be incomplete.  

The greedy search algorithm, explained in Chapter 3, is employed to accomplish the 

structural learning in the online Bayesian network learning.  The search algorithm is a 

score based searching algorithm.  The search algorithm is evaluated in terms of the score 

function used and the technique used to create the candidate networks, such as adding an 

edge and removing an edge. 

The greedy search algorithm is also upgraded to have some online properties such as 

updating the network parameters and its structure adaptively.  The outline of the search 

algorithm can be given as follows: 

1. Collect data 

2. Define the variables from the available data  

3. Start with a network with no arcs  

4. Estimate the parameters (only independent probabilities) of the BN using the 

MLE method using initial data. 

5. Generate candidate networks by adding arcs in a defined fashion (heuristic or 

exhaustive) 



 65

6. Calculate the scores of the candidate networks and choose the network with the 

highest score. 

7. Do step 5 until no arc addition increases the likelihood of the network. 

8. Update the network parameters along with new data  

9. Update the network structure: 

• If enough new data obtained, go to step 1 and generate a new network 

structure. 

• If no structural update is necessary go to step 7. 

 

The algorithm above is a generic greedy search algorithm.  How the arc addition is 

done and which scoring method is used are not specified in the above algorithm.  In the 

following section we explore the search algorithms used in this research.  In the 

algorithms, the arcs are added heuristically and exhaustively.   

 

4.2.2.1 Search algorithms 

A Bayesian network is not allowed to have a cycle because of the computational 

difficulties.  A cycle in a Bayesian network lead to a "circular reasoning" between the 

variables.  For example, if the dependencies in above network are: 21 XX → , 32 XX → , 

and 13 XX → , a cycle will be formed.  If evidence is entered into the variable 1X , the 

Bayesian network will run the evidence to 2X , then to 3X .  Then, The evidence will 

travel to 1X  because 1X  depends on 3X .  The evidence may run in the network forever 

because all the variables depend on each other in a circular way.   
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A heuristic arc addition is employed not to have a cycle in the Bayesian network 

while generating the Bayesian structure.  An exhaustive arc addition is also employed to 

explore more network possibilities without limitation.  In the exhaustive arc addition 

algorithm, a cycle check is employed before and arc is added.  The following section 

presents the details of heuristic and exhaustive search algorithms. 

 

Heuristic search 

In the heuristic search algorithm, the variables of the system have to be ordered in a 

certain way to prevent cycles from being created.  The decision variables should be in the 

last columns in the database; and, the first columns of the database should be filled with 

the variables without parents, independent variables.  After placing the independent 

variables in the first columns, the children of the independent variables should be placed 

in the following columns.  The rest of the columns are filled with the children of the 

previously placed variables.  Ordering of the variables is necessary because the heuristic 

arc addition adds the arcs from the first variables to the last variables.  Because of the 

ordering, we need to have some knowledge about the variables.  This does not mean that 

we need to know the dependencies between the variables.  For example, let B be a 

Bayesian network with three variables, { }321 XXX ,, .  If we know the variable 1X  is the 

first variable and the variable 2X  is the decision node.  Then the column order will be 

{ }231 XXX ,, .  

The heuristic search starts with adding and removing arcs from the each variable to 

the last variable.  Let the network have n variables.  After adding an arc, the algorithm 

calculates the network score, records the score in a list, and removes the arc.  The 
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algorithm finds the arc that gives the highest increase in the network score.  Let us 

assume that the arc from the kth variable to the last variable, n, gives the highest increase 

in network score.  Then, the algorithm adds the arc from the kth variable to the last 

variable.  After the arc is added, the algorithm adds and removes arcs from the remaining 

variables to the last variable.  Then, the algorithm chooses the arc with the highest score 

increase and adds the arc to the network.  This continues until no increase in the network 

score can be obtained by adding an arc to the last variable.  Then, the algorithm starts 

adding arcs from the variables },,,{ 221 −n�  to the (n-1)th node.  The algorithm adds 

arcs to (n-1)th node until there is no increase in the network score.  The algorithm stops 

when it adds an arc from the first variable to the second variable.  The following is the 

heuristic search algorithm used in this research. 

1. Collect data 

2. Define the variables from the available data  

3. Start with a network with no arc.  

4. Estimate the parameters (only independent probabilities) of the BN using the 

MLE method using initial data  

5. Add a new arc from the ith variable to the jth variable to generate a network 

candidate and remove the arc.  Repeat the process with },,,{ 121 −= ji �  and 

generate networks ( ΒΒΒΒ 1,…, ΒΒΒΒ j-1).  Start j from n and decrease j by 1.   

6. Calculate the scores of the candidate networks and record them in a list. 

7. Find the network ( ΒΒΒΒ ’) with the maximum score and keep it for the next step. 

8. Repeat the steps 5, 6, and 7 until there is no increase in the network score. 

9. If 1>j , then go to step 5.   
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10. Update the network parameters along with new data  

11. Update the network structure: 

• If enough new data obtained, go to step 1 and generate a new network 

structure. 

• If no structural update is necessary go to step 10. 

Consequently, the heuristic search algorithm adds arcs only in the forward direction 

because this protects the network from having cycles and complex network structure.  On 

the other hand, there is a price of arranging the variables at the creation of the database in 

the heuristic algorithm. Since the agents will not have much knowledge about the 

environmental variables, it is hard to arrange the variables at the beginning.  There is a 

need for a better search algorithm that explores more possibilities in the network.  The 

following paragraph introduces another searching algorithm that eliminates the arranging 

the variables, namely exhaustive search. 

 

Exhaustive search 

The exhaustive search algorithm explores all the possible arcs in the network during its 

execution.  The algorithm starts adding arcs from the ith variable to the jth variable where 

},,,{ ni �21= , },,,{ nj �21= , ji ≠ .  This covers )( 1−⋅ nn  arcs throughout the network.  

The algorithm calculates the network score for each arc addition.  Then, it chooses the arc 

with the highest increase in the network score.  The algorithm repeats the above steps 

until there is no increase in the network score.   

There are two major drawbacks in the exhaustive search algorithm.  First, the number 

of arcs to be tried might become intractable when the number of variables is large.  
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Second, during the search, the algorithm might introduce cycles to the network because it 

can add an arc in any direction.  An additional algorithm is incorporated to the search 

algorithm to keep track of cycles.  Using the additional algorithm, the search algorithm 

checks whether the new arc introduces a cycle or not. If the arc introduces a cycle, the 

algorithm does not add the arc to the network.  The following is the exhaustive search 

algorithm used in this research. 

1 Collect data 

2 Define the variables from the available data  

3 Start with an empty network  

4 Estimate the parameters (only independent probabilities) of the BN using the 

MLE method using initial data  

5 Add a new arc from the ith variable to the jth variable to create a candidate 

network and remove the arc.  Repeat the process for every value of i and j where 

},,,{ ni �21= , },,,{ nj �21=  and ji ≠ .  This step creates m possible networks 

( ΒΒΒΒ 1,…, ΒΒΒΒ m).  Algorithm creates )( 1−×= nnm  networks in first visit to step 5.   

6 Remove the network with cycles from the candidate list. 

7 Calculate the scores of the candidate networks and record it in a list. 

8 Find the network ( ΒΒΒΒ ’) with the maximum score and keep it for the next step. 

9 Do step 5 through 8 until there is no increase in the network score. 

10 Update the network parameters along with new data 

11 Update the network structure: 

• If enough new data obtained, go to step 1 and generate a new network 

structure. 
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• If no structural update is necessary go to step 10. 

 

The search algorithms are explained in detail.  There is a need to analyze the 

complexity of the search algorithm before there are implemented.  The following section 

gives the complexity analysis of both search algorithms. 

 

Complexity analysis for search algorithms 

As stated earlier, the heuristic search algorithm needs prior knowledge about the 

variables in terms of their order in the database.  On the other hand, the number of 

iterations in the heuristic search algorithm may be tractable.  In the heuristic search, the 

algorithm tries )( 1−n  arcs in the first trip from step 5 to step 7.  The algorithm repeats 

steps 5 through 7 until there is no increase in the network score.  Assuming the algorithm 

adds an arc in every trip, the number of arcs tried will be one less then the previous trip.  

Algorithm can repeat step 5 through 7 at most )( 1−n  times.  In )( 1−n  trips, the 

algorithm generates 121 ++−+− �)()( nn  networks candidates.  When the algorithm 

reaches step 8, the algorithm loops back to step 5 and repeats the same process for the 

variables },,,{ 221 XXX nn �−− .  Therefore, after the first loop, the algorithm generates 

121 ++−+− �)()( nn  network candidates.  The complexity of the heuristic search 

algorithm is denoted as Ch.   

In the following complexity analysis, each loop shows the number of network 

candidates tried until the algorithm reaches to the step 8.  Since the algorithm will repeat 

itself for )( 1−n  variables, the analysis has )( 1−n  loops as the following.  

Loop 1  ))(()()()( 1211121 −+++−−=++−+− nnnnn ��  
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If we add the number of candidate networks from each loop, the following can be 

obtained: 
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Then, we can further modify the equation as follows: 

222 231 ))(()()( −−++−+−= nnnnCh ��    (4.12) 

Since each element in Ch is less than n2, we can state that 

32 3 nnnCh <−< )(           (4.13) 

Equation (4.13) illustrates the complexity of the heuristic search.   The following 

paragraphs will explore the complexity of the exhaustive search algorithm. 

The exhaustive search algorithm tries every possible arc in the network during its first 

visit to step 5.  In a graph with n nodes, there can be )( 1−nn  possible directed edges in 

the graph [30].  Therefore, the algorithm generates )( 1−nn  network candidates and the 

complexity of the first visit is )( 1−nn .  Then the algorithm continues until it reaches to 

step 9 and loops back to step 5 until there is no increase in the network score.   
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After the first loop, the complexity decreases by 1 in each step because the algorithm 

will not try the arc added in the previous step.  The following presents the complexity 

analysis of the exhaustive search algorithm.  First, the complexity is calculated for each 

loop.  Then, they are added to obtain the complexity of the algorithm. 

Loop 1  )( 1−nn  

Loop 2  11 −− )(nn  

�  

Loop N  11 +−− Nnn )(  

The exhaustive search algorithm does not perform a certain number of loops.  The 

algorithm will continue until there is no increase in the network score.  Therefore, we will 

assume that the algorithm end after N loops for the complexity calculations.  If we add 

the complexities of all the loops together, the complexity of the exhaustive search, Ce, 

becomes the following. 

))(()( 1211 −+++−−= NNnnCe �      (4.14) 

2
11 )()( −

−−=
NNNnnCe                 (4.15) 

If the network has great number of arcs, then the complexity of the algorithm becomes 

large.  For example, if the algorithm ends in step nN = , the complexity becomes 

2
112

2
11

2
2 )()()()( −−−=−−−= nnnnnnnnCe          (4.16) 

2
121 )()( −−

=
nnnCe   for Nn = .            (4.17) 

In general, the number of nodes in a Bayesian network, n, is much larger than 1.  

Therefore, we can reevaluate the complexity by assuming 1>>n .  The following 
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equation represents the computational complexity of the exhaustive search algorithm 

when the number of steps is equal to the number of variables. 

3
3

2
2

2
2 nCnnnnC ee ≅�=⋅⋅≅     (4.18) 

As can be seen above, the complexity of the exhaustive algorithm is larger than the 

complexity of the heuristic algorithm when nN = .  

For the networks with large number of variables (nodes), the algorithm does not stop 

when nN = .  Let us calculate the worst case scenario for the exhaustive algorithm.  The 

algorithm might explore all possible arcs in the network, which is equal to )( 1−nn .  This 

is true because a complete graph with n nodes has )( 1−nn  possible directed edges [30].  

Therefore, we will replace N with )( 1−nn  in the complexity analysis.  Then, the 

complexity of the exhaustive search algorithm becomes the following. 
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11111

2
11 ])()[()()()()( −−−−−−=−−−= nnnnnnnnNNNnnCe            (4.19) 

2
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2
1112 222222 )()()()()( −−−=−−−−−= nnnnnnnnnnCe       (4.20) 

We can simplify the equation above by assuming 1>>n .  In this case, the complexity of 

the algorithm becomes the following. 

22
1

2

422222 nCnnnnnC ee ≅�

−=−⋅≅ )(           (4.21) 

Two search algorithms are introduced to learn the structure of a Bayesian network in 

the previous sections.  The heuristic search algorithm is simple and explores a limited 

number of network structures.  On the other hand, the exhaustive search algorithm is 

complex and explores many possible network structures.  The complexity of the 
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exhaustive algorithm is approximately n-fold larger than the complexity of the heuristic 

search algorithm.  Since we calculate the quality (score) of the networks to find the best 

network, the search algorithm is a score based algorithm.  The following section presents 

the scoring functions explored in this research.   

 

4.2.2.2 Network scoring functions 

Three scoring functions are employed in this research, namely Log-Likelihood, Minimum 

description length (MDL), and Bayesian (BDE) scores.  The Log-Likelihood method 

measures the likelihood of the network given the available data.  The MDL also uses 

likelihood of the network but it includes the measure of the network's complexity. The 

Bayesian score involves the calculation of the probability of a network given the data.  

Bayesian scoring method also penalizes complex networks as the MDL scoring.  If the 

length of the database is large enough these two methods converge to each other [54]. 

The following sections provide the details of the scoring methods used in the research.  

 

Log-Likelihood scoring 

The Log-Likelihood score of a network, B, is obtained by calculating the likelihood of 

the data, D, given the network, B, and the network parameters, Bθ .  After calculating the 

likelihood of the data, a natural logarithm is applied to get the Log-Likelihood of the 

data.  The following formulas explain the details of the Log-Likelihood calculation. 

),B|():B( BθDLDScoreL =          (4.22) 

∏=
m

mdPDL ),B|][(),B|( BB θθ              (4.23 
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In the above formula, ][md  represents the mth data case in the database.  Let us take the 

logarithm of the likelihood.  The logarithm converts the multiplication in to a summation. 

),B|(log),B|( BB θθ DLDl =           (4.24) 

�=
m

mdPDl ),B|][(log),B|( BB θθ                (4.25) 

This is basically equal to calculating the probability of each data case in the database, 

taking their logarithms and adding them together.  For example, assume that the network 

given in the previous section has the relations 31 XX →  and 23 XX → .  Then, we can 

calculate the log-likelihood of the data with the following equation. 
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In the log-likelihood approach, the score of the network increases as long as the length of 

the database and the number of arc in the network increase.  Therefore, the search 

algorithm tries to add as many arcs as possible to the network to get the highest scoring 

network.  At the end of the search, the algorithm ends up with almost a complete 

network.  For the networks with a large number of nodes, this might cause a great 

increase in complexity of the network.  To overcome the complexity problem, we need to 

find out a way to include the complexity of the network to the scoring function.  If the 

network gets complex, the scoring function should decrease accordingly.  The following 

scoring method handles the complexity problem by introducing the complexity parameter 

in the scoring function. 
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Minimum description length scoring 

The MDL method combines the likelihood of the data and the complexity of the network 

to find optimally complex and accurate networks.  The MDL method penalizes networks 

with complex structures.  The MDL has two parts, the complexity of the network, 

LNETWORK, and the likelihood of the data, LDATA.  Then, the MDL score can be calculated 

by the following. 

NETWORKDATAMDL LLScore −=        (4.27) 

The complexity part involves the dimension of the network, )Β(Dim , and structural 

complexity of the network, )Β(DL .  The dimension of the network can be calculated 

using the number of states in each node, Si. The following equation illustrates the 

dimension of the network.  
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where N is the number of nodes in the network.  Let M be the number of data cases in the 

database.  Using the central limit theorem, each parameter has a variance of M .  Thus, 

for each parameter in the network, the number of bits required is given by the following. 

2
MdMd loglog =�=             (4.29) 

The structural complexity of the network depends on the number of parents of the nodes.  

The following formula calculates the structural complexity. 
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where ik  is the number of parents the node iX  has.  Finally, the following formula 

presents the complexity part of the MDL score by combining the dimension of the 

network and the structural complexity. 

)Β()Β(log DLDimMLNETWORK +=
2

    (4.31) 
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The likelihood of the data needs to be defined after presenting the network complexity 

part of the MDL score.  The likelihood of the data given a network can be calculated by 

using cross-entropy.  The difference between the distribution of the data (P) and the 

estimated distribution (Q) from the network.  Kullback-Leiber and Euclidean distance are 

the commonly used cross-entropy methods.  Therefore, the likelihood of a data can be 

calculated by measuring the distance between two distributions.  If we use the Kullback-

Leiber cross-entropy, the likelihood of the data can be calculated by the following. 
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where ip  is the probability of data case i  using the database and iq  is the estimate of the 

probability of data case i  from the network parameters.  If Euclidean distance measure is 

employed to calculate the distance between the distributions, the likelihood of the data is 

calculated by the following. 
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After defining the likelihood and complexity parts, the MDL score can be given as 

)Β()Β(log),Β|():Β( Β DLDimMDlDScoreMDL −−=
2

θ   (4.37) 

Another commonly used scoring method is Bayesian score as explained in Chapter 3.  

Now, we will provide the details of the Bayesian scoring technique.  Bayesian scoring is 

calculated by utilizing the Dirichlet parameters of the network.  

 

Bayesian scoring 

Bayesian statistics tells us that we should rank a prior probability over anything we are 

uncertain about.  In this case, we put a prior probability both over our parameters and 

over our structure.  The Bayesian score can be evaluated as the probability of the 

structure given the data: 

)(
)()|()|():(

DP
PDPDPDScoreBDE

ΒΒ=Β=Β        (4.38) 

The probability )(DP  is constant. Therefore, it can be ignored when comparing different 

structures.  Thus, we can choose the model that maximizes )B()B|( PDP .  Let us 

assume that we do not have prior over the network structures.  Assume that we have 

uniform prior over the structures.  One might ask whether we get back to the maximum 

likelihood score. The answer is 'no' because the maximum likelihood score for B  was 

),B|( BθDP , i.e. the probability of the data in the most likely parameter instantiation.  In 

Bayesian scoring, we have not given the parameters.  Therefore, we have to integrate 

over all possible parameter vectors: 
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� ΒΒΒ ΒΒ=Β θθθ dPDPDP )|(),|()|(    (4.39) 

This is, of course, different from the maximum likelihood score.   

To understand the Bayesian scoring better, consider two possible structures for a two-

node network, where ]     [B BA=1  and ][B BA →=2 .  Then, the probability of the data 

given the network structures can be calculated by the following equations. 

�=
1

0
1 ],[]),[|(),()B|( BABABA dDPPDP θθθθθθ         (4.40) 

�=
1

0
2 101010

],,[]),,[|(),,()B|( |||||| aBaBAaBaBAaBaBA dDPPDP θθθθθθθθθ  (4.41) 

The latter is a higher dimensional integral, and its value is therefore likely to be 

somewhat lower.  This is because there are more numbers less than 1 in the 

multiplication.  Multiplying the numbers less than 1 results in a number smaller than any 

of the number in the multiplication.  For example, multiplying three small numbers (less 

than 1) is likely to be smaller than the number obtained by multiplying two small 

numbers  (less than 1).  Since the probabilities in the integrals are less than 1, the above 

argument applies to the integrals.  Therefore, it can be said that the higher dimensional 

integral is likely to have lower value that the lower dimensional integral.  This idea 

presents preference to the networks with fewer parameters.  This is an automatic control 

in the complexity of the network.   

Let us analyze )B|(DP  a little more closely to understand the Bayesian score 

calculations.  It is helpful to first consider the single parameter case even though there is 

no structure learning to learn there.  In that case, there is a simple closed form solution 

for the probability of the data given by the following. 
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where ][mΓ  is equal to )!( 1−m  for an integer m, n is the number of data cases in the 

database, 0n  and 1n  are the number of zeros and ones, respectively, and 10 ααα += .  

Let us assume we have 40 zeros and 60 ones in the database.  Assuming that we have 

uniform priors, 310 ==αα , the probability of data is  
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The probability for a structure with several parameters is simply the product of the 

probabilities for the individual parameters.  For example, in our two-node network, if the 

same priors are used for all three parameters, and we have 45 zeros and 55 ones for the 

variable B, then, the probability of the data for the network 1B  can be calculated as 
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For the second network, let us assume that 2300 =α , 2201 =α , 2910 =α , and 2611 =α , 

where ),( jiij ban=α  is the number of cases with iaA =  and jbB = .  Then, we can 

compute the probability of the data for the network 2B  using the following equation. 
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  (4.45) 

The intuition is clearer.  The analysis shows that we get a higher score by multiplying a 

smaller number of bigger factorials rather than a larger number of small ones.  
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It turns out that if we approximate the log posterior probability, and ignore all terms 

that do not grow with M, we can obtain 

)B(log)B,|()B|(log B DimMDlDP
2

−≈ θ    (4.46) 

i.e, as M grows large, the Bayesian score and the MDL score converge to each other 

using Dirichlet priors.  In fact, if we use a good approximation to the Bayesian score, and 

eliminate all terms that do not grow with M, then we are left exactly with MDL score 

[54].  Therefore, it can be concluded that the Bayesian score gives us, automatically, a 

tradeoff between network complexity and fit to the data. 

The Bayesian score is also decomposable like the MDL score since it can be 

expressed as a summation of terms that corresponds to individual nodes.  In this research, 

we have decomposed the Bayesian score to make efficient calculations and a uniform 

distribution is employed for Dirichlet priors.  The simulation results will show that the 

Bayesian score provides optimally complex and accurate network structures.   

The online Bayesian network learning is proposed to model the environment for an 

agent.  Online Bayesian network learning has both structural and parametric learning 

because it can discover the structure of the network and the conditional probabilities in 

the network.  After explaining the proposed Bayesian network learning, there is a need to 

explain how the proposed Bayesian network learning and influence diagrams can be 

combined to for an intelligent agent structure.  The next chapter describes the design 

process of the decision-theoretic intelligent agent and how a multi-agent self-organization 

system can be designed by employing these agents. 
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CHAPTER 5 

Multi-agent self-organization system 

As discussed in Chapter 1, in the literature, several methods are employed in multi-agent 

learning and organization problem such as temporal difference (TD(λ)), genetic 

algorithms, and learning classifier systems.  The advantages and disadvantages of these 

methods are also examined in Chapter 1.  The main disadvantage of these methods is that 

they perform badly when the data is not fully observable.  Additionally, they do not have 

the desired bi-directional learning property.  We proposed Bayesian networks to ease 

these problems because they can perform well with the partially observable data and, 

more importantly, Bayesian networks have the bi-directional learning ability.  The 

following paragraphs will illustrate how Bayesian networks can solve the multi-agent 

self-organization problem with the help of influence diagrams.  The next section will 

explain the structure of an agent, which is designed by a Bayesian network and an 

influence diagram.  Section 5.2 and Section 5.3 will examine a multi-agent organization 

system and the bi-directional learning feature of the proposed multi-agent self-organizing 

system.  Finally, Section 5.4 presents the system representation of the decision-theoretic 

intelligent agent design. 

 

5.1 A decision-theoretic intelligent agent design 

In Chapter 1, an agent was defined as an entity that can be viewed as perceiving its 

environment through sensors and acting upon that environment through effectors [54].  

Therefore, an agent should have sensors and actuators to interact with the environment.  
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On the other hand, an intelligent agent is an agent that reasons with the sensory 

information and creates optimal actions to satisfy a goal.  Therefore, a reasoning system 

and a decision support system are necessary elements of an intelligent agent.  Bayesian 

networks and influence diagrams can be considered as reasoning systems and decision 

support systems respectively. 

Communication between the agents is also necessary to establish organizational 

behaviors in a multi-agent self-organizing system.  Therefore, an intelligent agent should 

have sensors, actuators for actions, a Bayesian network, an influence diagram and a 

communication system.  

An intelligent agent has five levels: sensors, belief, preferences, capabilities and 

actions.  In this design, Shohams’ agent oriented programming paradigm is followed.  

According to this paradigm, the mental state of agents can be represented in terms of their 

belief, capabilities, and preferences [4].  The belief level consists of a Bayesian network 

(VA or VE) and its nodes represent agent’s possibly uncertain beliefs about the world.  The 

nodes in VA represent variables related to the other agents in the system.  The nodes in VE 

represent the variables related to the agent itself.  The preference level is represented as a 

utility node (UA and UE) that expresses the desirability of a world state.  The capability 

level is represented by decision nodes (VDA and VDE) that contain alternative courses of 

action, which the agent can execute to interact with the world [42].  This is also called 

belief, desire, and intention (BDI) architecture in the literature [42].   

Each agent models other agents as an influence diagram by modeling other agents' 

variables (VA ), utility function (UA), and decision nodes (VDA).  Duryadi and 

Gmytrasiewicz stated that other agents’ models could be learned using influence 
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diagrams [42].  As a modeling representation tool, the influence diagram is able to 

express an agent’s belief, capabilities and preferences, which are required if we want to 

predict the agent’s behavior [42].  Duryadi and Gmytrasiewicz established the learning of 

other agents’ behaviors in the following way: Given an initial model of an agent and a 

history of its observed behavior, new models can be constructed by refining the 

parameters of the influence diagram in the initial model.  The details of the learning 

method can be seen in [42].  

Agents also need a model of the environment.  Bayesian networks can model the 

environment efficiently, as stated in Chapter 2.  The nodes in VE model the environment 

and provide beliefs about the environment. Then, these beliefs are dragged into the utility 

node UE.  The utility node UE  represents the agent’s own preference that is defined by 

the goal of the multi-agent organization system.  The utility UE is a function of the belief 

about the environment (VE), the expected actions of the other agents (A2), its possibly 

course of actions (A1).  Figure 5.1 presents the proposed intelligent agent model. 

 

 

 

 

 

 

 

 

 
Figure 5.1. The structure of an intelligent agent. 
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After establishing the world model and the utility function, the agent needs to take an 

optimal action according to the principle of maximum expected utility (PMEU) [54].  The 

PMEU lets the agents choose the best action from its set of action (A1), given the belief 

about the environment (VE), and other agents’ expected behavior (A2).  Formally, it can 

be expressed as 

),,(maxmax 21
11

AAVfU EaEa ii

=     (5.1) 

where ),,,{ nE XXXV �21= , the variables iX  are the nodes of the Bayesian network VE, 

),,,{ kaaaA 112111 �=  is the action set of the agent, ),,,{ laaaA 222212 �=  is the expected 

action set of the other agents.  Therefore, an agent takes its actions after evaluating the 

environment and the other agents.  This property will help to obtain self-organization 

ability of the system.  Each agent first check to see if other agents are performing task 

before it takes its actions to perform the task. 

 

5.2 Multi-agent self-organizing system. 

In the previous section, the structure of an agent is presented.  This section will examine 

the learning problem when we have more than one agent.  The agent described in the 

previous section is specifically designed for multi-agent systems.  In a multi-agent 

environment, coordination requires an agent to recognize the current status and to model 

the actions of the other agents to decide on its own next behavior [8].  That’s why agents 

model other agents as well as the environment.  A computational difficulty may arise if 

the number of agents is large in the system because agents model the internal structure of 

other agents in their network.  The Bayesian network in the agent may become so large 

that the calculation of the conditional probabilities might become difficult.  The agents 
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are independent but they take their actions by considering the other agents.  Thus, agents 

take their actions together in coordination.  Formally speaking, the agent’s utility function 

UE depends on the expected actions of other agents (A1), see Equation (5.1).   

We can explain this ability with an example.  Suppose we have two dogs and a sheep, 

as in the sheepdog problem.  Dogs are our agents and their goal is to put the sheep into a 

barn.  Dogs will explore the environment and they will model the environment. In this 

case, the environment contains another dog, a sheep, and a barn.  First, the dogs will 

probably locate the sheep.  Then, they will make movements to direct the sheep into the 

barn.  If the dogs do not consider (model) each other, they might not be able to put the 

sheep into the barn since one’s action might hinder the other’s action.  Thus, they need to 

cooperate and make movements together.  If each dog learns the model of the other dog, 

then they can make movements together to put the sheep into the barn. If there is no 

coordination, both dogs will probably go behind the sheep and direct it into the barn.  If 

there is coordination between the dogs, while one of them goes behind the sheep, the 

other may move back and forth so that the sheep will not escape as shown in Figure 5.2.  

 

 

 

 
 

Figure 5.2. Multi –agent behavior without coordination (a) and with coordination (b). 

 

A multi-agent self-organization system with two agents can be seen in Figure 5.3.  The 

multi-agent system is designed by using the agents, shown in Figure 5.1. 
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Figure 5.3. Multi-agent self-organizing sch

NATURE & AGENTS 

VE1 
VA1 

VDE  (A21) VDA  (A11) 

UE1
A

ct
io

ns
 

Sensors 

UA1 

M
od

el
 o

f o
th

er
 a

ge
nt

s 

A
ct

io
ns

 

M
od

el
 o

f o
th

er
 a

ge
nt

s 
87

eme with two agents. 

VE2 VA2 

VDE  (A22)VDA  (A12)

UE2

Sensors 

UA2



 88

In summary, agents will fire actions to change the environment as well as to organize 

themselves. Self-organization will happen eventually because each agent takes its actions 

considering other agents’ behaviors in the environment.  The simulation of the dog and 

sheep problem presented the results supporting that the self-organization and the learning 

ability of the proposed intelligent agent design.  This property will make our system a 

multi-agent self-organizing system.  In the proposed learning system, an agent learns the 

environment using the sensory data, and modifying its world model (Bayesian Network) 

accordingly.  Then, an agent calculates the expected state of the environment using the 

world model and creates actions to change the environment.  Thus, the learning structure 

is bi-directional because the agent interacts with nature and the world model in both 

directions.  

 

5.3 Bi-directional learning 

As stated earlier, bi-directionality is the most important feature of an intelligent learning 

system because it combines the supervised learning method and unsupervised learning 

method and facilitates them at the same time.  That is why a Bayesian network is chosen 

to construct the learning system.  Figure 5.4 shows the learning model of the proposed 

system.  The proposed system has four directed edges among nature, the learning system, 

and the world model: evidence, action, adaptation, and expectation. 

The learning system collects evidence through sensors. Then, it creates optimal 

actions to change the environment according to the objective (utility).  These two steps 

are represented by Evidence and Action edges in Figure 5.4.  On the other hand, the 

learning system adapts the world model (Bayesian network) using the evidence from the 
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environment.  In other words, adaptation is the parameterization of the BN utilizing the 

evidence. Then, the learning system calculates the expected state of the environment 

using the world model.  Last two steps are represented by Adaptation and Expectation 

edges in the Figure 5.4.  Evidence and action edges represent unsupervised learning while 

adaptation and expectation edges represent supervised learning.  This justifies that the 

proposed learning system is bi-directional since supervised and unsupervised learning 

schemes are employed simultaneously.  

 

 

 

 

 

 

 

Figure 5.4. The learning model of the proposed system. 

The learning system collects evidence through sensors. Then, it creates optimal 

actions to change the environment according to the objective (utility).  On the other hand, 

the learning system adapts the world model (Bayesian network) using the evidence. Then, 

it calculates the expected state of the environment using the world model.  Adaptation is 

the parameterization of the BN utilizing the evidence.  Evidence and action edges 

represent unsupervised learning while adaptation and expectation edges represent 

supervised learning.  This justifies that the proposed learning system is bi-directional 

since it combines supervised and unsupervised learning schemes. 
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5.4. System representation of the decision-theoretic intelligent agent system 

The decision-theoretic intelligent agent system has adaptive learning ability with 

feedback from the environment.  The agent starts with a limited knowledge of the plant 

(environment), then it explores (samples) the plant to learn the plant's parameters. After it 

learns about the plant, it takes its actions accordingly.  The agent first estimates the 

plant’s behavior using the previous observation, then takes its action according to the 

estimation. The plant, then, responds to the agent's action with an output.  The output of 

the plant in this stage is used as feedback to update the plant parameters in the predictor 

(BN).  Figure 5.5 shows the decision theoretic-intelligent agent learning system in a 

block diagram.   

 
Figure 5.5. System Block representation of the intelligent agent system. 

In Figure 5.5, )X(I  represents the initial state of the plant, )X�(E  is the expected 

value of the state, )( yE  is the expected value of the plant output, and GOALy  is the desired 

plant (system) output.  The symbol 1−q  represents one unit delay.  The controller (ID) 

applies controls to the plant to provide a certain plant output because the controller 

creates the control according to the error between the expected value of the plant output 
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and the reference.  The reference is the desired output to be provided by the plant.  The 

observer (BN) models the plant by using the plant's input/outputs.  After a control is 

applied to the plant, the plant output is used in the next step to update the plant model.  

Thus, there is a time delay between the control and the output of the plant.  The controller 

creates the control using a priori knowledge about the plant (environment). 

The decision theoretic intelligent agent system (DTAS) has potential use in feedback 

control and adaptive control because it uses the plant's output as a feedback and modifies 

the controller and the observer accordingly.  The first part of a DTAS establishes the 

feedback control; the second part establishes the adaptive control part.  The following 

section presents an analysis to show the feedback and adaptive control ability of the 

DTAS.   

 

5.4.1 Feedback Control 

In the literature, there are two main types of feedback control, namely output feedback 

and state feedback [56].  Output feedback is performed by a path (loop) from the output 

back to the controller as shown in Figure 5.6.   

 
Figure 5.6. Output feedback control 
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The equations for the system in Figure 5.6 can be given as: 

GOALyye −= �      (5.2) 

)(efu =       (5.3) 

)(ugy =       (5.4) 

Now, let us compare the system equations in the feedback control system and the 

decision-theoretic intelligent agent system.  In the DTAS, the output of the plant, y, also 

depends on the control input, u.  Let us compare the control signal u in both systems.   

)()( efuehu FEEDBACKDTAS =⇔=     (5.5) 

If we choose the functions h and f  to be equal, then the controllers will give the same 

control u with the same error e.  Let us compare the errors in both systems.  In the DTAS, 

the error is the difference between the desired output and the expected value of the plant 

output provided by the predictor.  This is very similar to the feedback control system but 

the expected value of the plant output replaces the measured plant output.  These two 

values are equivalent only if the predictor estimates the output of the plant well enough.  

In the DTAS, it is shown that the predictor estimates the plant output well enough when 

there is sufficient data from the plant's input/output.  Therefore, the expected value in the 

DTAS is equivalent to the measured value of the plant output in a feedback control 

system.  The following equations summarize the discussion. 

)( yEye GOAL −=      (5.6) 

yyE �)( ≅       (5.7) 

yye GOAL �−=       (5.8) 

From Equations (5.6), (5.7), and (5.8), we may conclude that the DTAS exhibits feedback 

control properties.   
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Another type of feedback control is state feedback control.  In state feedback control, 

the state variables are sensed and fed back to the input through appropriate gains [56].  If 

there is direct access to the state variables, the state variables can be easily measured and 

fed back to the input.  If there is no direct access to the state variables, then an observer 

may be employed to perform the estimation of the state variables.  Figure 5.7 illustrates a 

state feedback control system with an observer.  

 

Figure 5.7. A control system with the state feedback. 

In Figure 5.7, the block denoted by FE is the plant.  The estimator predicts the state 

variables of the plant.  The estimated state variables are fed to the input with a gain K.  

Then, the control signal becomes the following: 

X�K+= ru              (5.9) 

Thus, the control is a function of estimated state variables and the reference input.  Let us 

compare the controls in both systems.  In the DTAS, the control is defined as 

)(efu =      (5.10) 
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where yye GOAL �−= .  The term y�  represents the estimated output of the plant.  The term 

y�  is a function of the estimated state variables because it is calculated by the utility 

function of the system.  Therefore, we can represent y�  with the following equation. 

X�C�� =y      (5.11) 

where the vector X�  is the estimated state vector and the matrix C�  is the transformation 

matrix between the states and the output.  Thus, the control can be rewritten as follows: 

)�( yyfu GOAL −=      (5.12) 

)��()( XCyfXu GOAL −=     (5.13) 

Let us assume that the function f is a linear function with the following form. 

xAxf ⋅=)(       (5.14) 

X�C�)X�C�( ⋅−⋅=−⋅= AyAyAu GOALGOAL     (5.15) 

Let C�K ⋅−= A , and GOALyAr ⋅= , then the control becomes 

X�K ⋅+= ru       (5.16) 

As seen in Equation (5.16), the control signal in the DTAS can be interpreted as the 

control signal in the state feedback control.  This concludes the analysis of how the 

DTAS corresponds to a feedback control system.  It can be concluded that the DTAS will 

have the inherent advantages of feedback control.  The following section investigates the 

adaptive control capabilities of the DTAS. 

 

5.4.2 Adaptive Control 

The term Adaptive Control covers a set of methods that provide a systematic approach for 

automatic adjustment of the controllers in real time, in order to achieve or to maintain a 
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desired level of performance of the control system when the parameters of the plant 

dynamic model are unknown and/or change in time [57].  A block diagram presenting a 

basic configuration of an adaptive control system is shown in Figure 5.8.  

 

 

 

 

 

 

 

 

 

Figure 5.8.  A basic adaptive control system. 

The following definition provides an adaptive control system given in Figure 5.8. 
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adaptation mechanism modifies the parameters of the adjustable controller and/or 

generates an auxiliary control signal in order to maintain the performance index of the 

control system close to the set of given ones (i.e., within the set of acceptable ones) [57] 
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parameters acting as a supplementary loop upon the adjustable parameters of the 

controller. 

There are three types of adaptive control schemes in the literature: open loop adaptive 

control, direct adaptive control, and indirect adaptive control [57].  In open loop adaptive 

control, the adaptation mechanism is a simple look-up table stored in the computer that 

gives the controller parameters for a given set of environment measurements. In the 

literature, this is also called gain-scheduling. 

Direct adaptive control is based on the observation that the difference between the 

output of the plant and the output of the reference model (called plant-model error) is a 

measure of the difference between the real and the desired performance.  The reference 

model is a realization of the system with desired performance.  This information is used 

by the adaptation mechanism (called parameter adaptation) to directly adjust the 

parameters of the controller in real-time in order to force (asymptotically) the plant 

model-error to zero. This scheme corresponds to the use of a general concept called 

Model Reference Adaptive Systems (MRAS) for the purpose of control [58].  The indirect 

adaptive control was originally introduced by Kalman [59]. 

In an indirect adaptive control system, shown in Figure 5.9, the basic idea is that a 

suitable controller can be designed on line if a model of the plant is estimated on line 

from the available input-output measurements.  The scheme is called indirect because the 

adaptation of the controller parameters is performed in two stages: 

1. On-line estimation of the plant parameters (e.g. Bayesian network construction) 

2. On-line computation of the controller parameters based on the current estimated 

plant model (e.g. Influence Diagrams-making decisions) 
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Figure 5.9. Indirect adaptive control system 

The main goal is to create an adjustable predictor for the plant output and compare 

the predicted output with the measured output.  The error between the plant output and 

the predicted output (called prediction error or plant-model error) is used by a parameter 

adaptation algorithm which at each sampling instant will adjust the parameters of the 

adjustable predictor in order to minimize the prediction error in the sense of a certain 

criterion.   
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In this strategy, there is a delay between )(tu and )(ty  that will depend on the time 

required to achieve (2) and (3).  This delay should be smaller than the sampling period. 

Strategy 2 

1. Sample the plant output. 
2. Compute the control signal based on the controller parameters computed during 

the previous sampling periods. 
3. Apply the control signal. 
4. Update the plant model parameters. 
5. Compute the controller parameters based on the new plant model parameter 

estimates. 
6. Wait for the next sample. 
 
 
In the second strategy, the delay between )(tu and )(ty  is smaller than in the previous 

case.  In this strategy, a priori parameter estimation is performed since we apply the 

control without updating the plant parameters [57].   

In the above paragraphs, a general definition of an adaptive control system is 

provided. A greater importance is given to indirect adaptive control systems because the 

decision-theoretic agent system (DTAS) has the properties of an indirect adaptive control 

system.  The DTAS has the same steps as the indirect adaptive control system.  

Additionally, the learning strategy in DTAS is very similar to the second strategy of the 

indirect adaptive control system. 

The first step, the on-line estimation of the plant model parameters, is performed by 

structuring a Bayesian network and calculating its parameters in the DTAS. As stated in 

Chapter 4, the online Bayesian network learning is performed to model the plant.  The 

second step, the online computation of the controller parameters, is performed by a 

decision system (influence diagrams).   
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As shown in Figure 5.9, there are two adaptation mechanisms in the indirect adaptive 

control.  The first adaptation mechanism corresponds to the online Bayesian network 

learning in the DTAS.  The second adaptation mechanism corresponds to the utility node 

in the influence diagram part of the decision-theoretic intelligent agent because it 

determines which action will be fired in the decision node.  The adjustable predictor 

corresponds to the Bayesian network in the DTAS. Finally, the adjustable controller 

corresponds to the decision nodes in the influence diagram in the DTAS.   

Now, the indirect adaptive control system can be redrawn by using the decision-

theoretic intelligent agent components, shown in Figure 5.10.  

 

 

 

 

 

 

 

 

Figure 5.10. Indirect adaptive control representation of the DTAS. 
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CHAPTER 6 

IntelliAgent Software 

This section explores the software created to perform experimental simulation for the 

decision-theoretic intelligent agent.  The IntelliAgent software is created under Visual 

C++ with for Microsoft Windows NT�.  The software is capable of creating intelligent 

agents by employing Bayesian network and influence diagram structures.  As explained 

in previous chapters, the Bayesian network learning is an online learning since agents 

continue to learn during their operations.   

The IntelliAgent software is presented in three main parts, the user manual, tutorials 

on Bayesian network creation and knowledge discovery, and the class definitions.  The 

class definitions are presented in Appendix A.  The Visual C++ code and the application 

software is available for the readers on: http://armyant.ee.vt.edu/IntelliAgent.  One can 

contact the author by email, sferat@vt.edu, for further information about the software. 

 

6.1 The user manual for IntelliAgent software 

The IntelliAgent software is a single document interface (SDI) visual C++ program.  The 

Microsoft Foundation classes are intensively used to create the software.  The software is 

a Windows application with a menu, a toolbar, and status bar, shown in Figure 6.1.  The 

user manual starts by explaining the menus available.  Section 6.1.2 explains the toolbar 

and the status bar operations.  After exploring the menus and the toolbar, the dialog boxes 

used throughout the program are explored in Section 6.1.3.  

 

http://armyant.ee.vt.edu/IntelliAgent
mailto:sferat@vt.edu
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Figure 6.1. The IntelliAgent software (screen shot of the program) 

 

6.1.1 Menus 

In the IntelliAgent program, there are five menu items, File, Edit, View, Network, Agent, 

and Help.  The menu items File, Edit, View, and Help are standard Windows application 

menus.  Functions for these menu items are modified for the use of IntelliAgent software.  

For example, the File menu functions are modified to open and save the files that are 

specifically defined for the IntelliAgent software.  The Network menu item is created for 

the Bayesian network operations such as network creation, network update and network 

edit.  The Agent menu performs the creation of intelligent agents and the intelligent agent 

simulation.  The following paragraphs explore the menu items with their functionalities. 
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File 

In File menu, there are eight submenus, New, Open, Save, Save As, Print, Print View, 

Print Setup, and Exit.  Figure 6.2 shows the submenus in the File menu. 

 
Figure 6.2. The File menu. 

The New submenu creates a new online Bayesian network file in "obn" format.  The 

"obn" is online Bayesian network format created for the intelligent agent software.  In the 

format, there are nodes, arcs, and the dependencies in the network.  The user chooses this 

submenu whenever he/she needs to create a new network. 

The Open submenu opens a "obn" network that is saved/created previously.  The user 

needs this submenu when there is a need to update or change the previously created 

network.  When the user chooses this submenu, a dialog box appears on the screen, 

shown in Figure 6.3.  This dialog box is a standard dialog box used in Windows 
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programming.  Functions for the dialog box are built-in functions in Microsoft visual 

C++ but they are edited to be able to open a "obn" file.   

 
Figure 6.3. Dialog box for the "Open" submenu in File menu. 

 

The Save submenu is to save the "obn" files for future uses.  This submenu also 

creates a standard dialog box, shown in Figure 6.4, if a network is not saved before.  If a 

network is saved before, choosing Save submenu saves the file again without showing 

any dialog box.  The functions in the dialog box are edited to be able to save the online 

Bayesian networks as an "obn" file.  Nodes, arcs, dependencies in the network, and the 

database are saved to the file.  The program asks the user if it should save the newly 

explored cases, shown in Figure 6.5.  The Save As submenu is almost the same as the 

Save submenu.  The only difference is that the user can choose the file type before 

saving.  In Save submenu, the file format is set to "obn" whereas it can be different in 

Save As.   
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Figure 6.4. Dialog box for "Save" and "Save As" submenus in File menu. 

 
Figure 6.5. Message box to choose saving the new cases into the database. 

 

Print, Print Preview, and Print Setup are printing related submenus.  In the 

IntlliAgent, the users are able to print the networks they create.  Print Preview and Print 

Setup work as in any standard Windows application program.  Finally, the Exit submenu 

is to quit the software. The software asks the user whether to save the network before it 

quits.   
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Edit 

This menu is kept for cutting, copying and pasting the network components.  There are 

four submenus in the Edit menu; Undo, Cut, Copy, and Paste.  None of the submenus are 

fully functional even though the software has adding and removing functions internally.  

In the future, these submenus can be made operational by connecting them to the 

functions in the software. 

 

View 

In View menu, there are two submenus; Toolbar and Status Bar.  The user can check 

these submenus by mouse operations.  Depending on they are checked or not, the toolbar 

and the status bar appear on the program window or not.  Figure 6.6 show the submenus 

of View menu in the software. 

 
Figure 6.6. The View menu 
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Network 

The Network menu contains core operations in creating online Bayesian network.  There 

are six submenus in Network menu: Node, Arc, Update, Parameters, Load, and Create. 

Figure 6.7 illustrates the Network menu on the IntelliAgent software. 

 
Figure 6.7. The Network menu. 

 

There are three groups of submenus under this menu: manual network creation 

submenus, presentation submenus, and automatic network creation submenus.  The 

submenus Node and Arc are used to create the Bayesian network manually.  The user can 

create nodes and arcs between the nodes by simple mouse drag and drop operations.  

After creating the network the user can apply inference by using Update submenu.   

Parameter submenu is in the presentation group.  It displays the parameters of a node in a 
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network.  The submenus Load and Create let the user load a database and construct the 

Bayesian network using the database.   

Node submenu lets the user create nodes of a Bayesian network.  To create a node, 

the user chooses node submenu in the Network menu. Then, the user moves the mouse to 

a location where the node is going to be created.  While the left mouse button is kept 

pressed, the user draws an ellipsoid on the specified display area by moving the mouse.  

When the ellipsoid is established, the user releases the left mouse button.  With the 

release of the left mouse button, the software creates a node with the default parameters.  

There are two states with the values 0.5 by default.  Node name is set to NodeX, where X 

shows the order of the node.  A conditional probability table with two rows and one 

column is filled with 0.5.  Figure 6.8 illustrates two nodes created by the user manually. 

 
Figure 6.8. Creation of network nodes by mouse operations. 
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After creating the nodes, the user can create arcs between the nodes by mouse 

operations.  The user, first, chooses Arc submenu in the Network menu.  Second, the user 

moves the mouse over a node that the arc is going to start from.  Then, while the left 

mouse button is pressed, the user draws an arc between the nodes by moving the mouse 

on the node that the arc is going to point.  When the user releases the left mouse button, 

the software draws an arrow between the two nodes.  The user can start drawing in any 

part of the node because the software adjusts the starting and ending points of the arc 

according to the nodes' relative positions.  Figure 6.9 illustrates a network with two nodes 

and an arc. 

 
Figure 6.9. Creation of an arc between the nodes by mouse operations. 

 

The parameters submenu takes care of presenting and changing the nodes' parameters.  

When the user wants to see the parameters of a node, first, the node has to be selected by 
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clicking the left mouse button on the node.  Then, the user can choose the Parameter 

submenu in the Network menu.  After the submenu is chosen, a dialog box appear on the 

screen as shown in Figure 6.10.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.10. Dialog boxes for presenting and changing node attributes. 

 

On the dialog box shown above, the user can change the name, the number of state, 

the state values (probabilities), and the conditional probability table of the node.  The 

detailed description of the dialog boxes is provided in Section 6.1.3.  To change the 

conditional probability table of a node, the user needs to move the mouse on to a desired 

element of the table and double clicks the left mouse button.  Then, a dialog box, shown 

in Figure 6.10, appears on the parameter dialog box. The user needs to enter the new 
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probability value into the CPT updating dialog box.  Finally, the user clicks "OK" button 

on the CPT updating dialog box to put the new value into the CPT.   

After creating nodes and arcs in a Bayesian network, the user can change the node 

parameters by dialog boxes shown in Figure 6.10.  Then, the user can perform inference 

in the network by activating Update submenu.  This button updates the network 

parameters if evidence is entered to a node or a change has been made on a node.  The 

software performs the inference by employing the technique defined in [1,2].  

Let us take the network given in Figure 6.9 and change the CPT of Node2 as in 

Figure 6.11. 

 
Figure 6.11. Changing the CPT of Node2. 
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After changing the CPT values in Node2, the user can choose the Update submenu in 

the Network menu.  Choosing the Update submenu let the software calculate the other 

parameters of the nodes accordingly.  After choosing the Update submenu, the user can 

choose the Parameters submenu to see the new values of Node2, shown in Figure 6.112. 

 
Figure 6.12. Parameters of Node2 after the Update command. 

As can be seen above, the probabilities of the node have changed according to the 

new CPT values.  The software checks every node in the network whether they need 

updating or not.  If the user makes changes on a node, the software sets a flag for the 

node..  The user can change parameters in many nodes.  Then, the Update submenu will 

update all flagged nodes and related nodes.  For example, if a parent node is modified, 
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the Update submenu needs to update the child nodes of the node as well because child 

nodes are dependent on the parent nodes. 

As stated earlier, the user can create the Bayesian network using a database.  Load 

and Create submenus let the user create a Bayesian network from a database.  When the 

user chooses Load, a dialog box appears for loading a file as shown in Figure 6.13.   

 
Figure 6.13. Loading a database to automatically construct a Bayesian network. 

By double clicking the left mouse button on a database file, the dialog box loads a 

database into the program.  The database file is a text file with a specific format.  It could 

be a plain text file or ".db" file. The extension "db" stands for database and its is a 

standard Bayesian network database used in the literature [28].  The first line of the 

database file contains the name of the variables.  The rest of the rows in the database are 

the data cases recorded over time.  Entries in a row are delimited by a space.  There is a 

"end of line" character after the last entry in each row.  After loading the database file, the 

software creates nodes by reading the first line. Then, it calculates independent 

probabilities for the states of each node.  Assume that the user has chosen the database 
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file "college.db".  Then, the software creates the nodes and calculates their parameters as 

shown in Figure 6.14.   The software draws the nodes on the screen in a line.  The user 

can move the nodes to the desired places by mouse drag and drop operations.  

 
Figure 6.14. Bayesian network nodes created by a database file. 

 

After the software has created the nodes of the network, the user can choose submenu 

Create in Network menu to construct the Bayesian network automatically.  When the user 

chooses the Create submenu, a dialog box appears on the screen to specify how the 

network search is going to be performed.  Figure 6.15 shows the search dialog box. 
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Figure 6.15. Dialog box for specifying the type of network search. 

There are two search methods available in IntelliAgent software, heuristic and 

exhaustive, as stated in Section 4.  There are three scoring types, MDL, Bayesian scoring, 

and Log-Likelihood.  In the dialog box, Log-Likelihood is placed in the distance 

measures group because Log-Likelihood score involves only the distance between the 

distributions from the database and the network.  Bayesian scoring and MDL use both 

distance measure and complexity of the network.  If the user chooses the MDL scoring, a 

distance measure has to be chosen also.  There are two distance measures for MDL 

scoring, Kullback-Leiber and Euclidean.  If Bayesian scoring is chosen, there is no need 

to specify the distance measure because Bayesian scoring combines distance measure and 

complexity as stated in Section 4.  

Search types, score types and distance measure types are grouped in three sections.  

The user can click on radio buttons besides the items to specify the search algorithm.   

For example, for a heuristic search with MDL score and Euclidean distance, the user can 

click the radio buttons in front of heuristic, Bayesian score and Euclidean.  The default 
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search type is a heuristic search with MDL score and Kullback-Leiber distance measure.  

Let us assume that the user has chosen the heuristic search with Bayesian scoring.  Figure 

6.16 shows the resulting Bayesian network. 

We have covered the submenus in Network menu.  The user can create a Bayesian 

network either manually or using a database.  This part of the IntelliAgent software can 

be used as knowledge discovery tool.  For example, the network shown in Figure 6.16 is 

created by employing a database.  The database includes information about college plans 

for number of students.  The aim is to find out the relationship between the variables and 

how they affect the decision to go to college.  After loading the database, we have 

searched a network that fits the database.  The network shown in Figure 6.16 is a 

resulting Bayesian network after the search. 

 
Figure 6.16. A Bayesian network created by a heuristic search with Bayesian scoring. 
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At this stage, the user can find out the probabilities for the nodes and their 

relationships.  Additionally, by specifying certain variables, the user can find out the 

probability of making a college plan for a given student.  To do that, the user will need to 

set the variables with specific parameters, then choose Update submenu in Network menu 

to run the inference to other nodes.  Tutorials on inference in Bayesian network and 

knowledge discovery with Bayesian networks are presented in Section 6.2. 

 

Agent 

The Agent menu contains submenus for intelligent agent simulations.  There are two 

submenus in Network menu, Create Agent and Simulate, shown in Figure 6.17.   

 
Figure 6.17. The Agent menu in the IntelliAgent software. 
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Create Agent submenu is designed for creating agents.  When the user chooses Create 

Agent, the software shows a dialog box shown in figure 6.18 to specify agent's 

parameters.  The Create Agent submenu and the Simulate submenu is designed for a 

specific problem, the Dog & Sheep problem.  In the dialog box, the user can enter the 

name of the agent and its X and Y coordinates.  The dialog box has also designed to 

specify what type of simulation will be run.  The user can choose step by step or 

continuous simulation by pressing Step or Continuous button, respectively. 

 

Figure 6.18. Dialog box for agent creation and simulation attributes. 

 
There is one more push button on the dialog box, Training.  When the user presses 

Training button, an edit box appears on the dialog box to enter the number of training 

steps.  Figure 6.19 illustrates the dialog box after the training button is pushed.  The 

software simulates the system with random starting locations for the agents until the 

number of training step is reached.  The agent may not get enough information about the 

environment by only using the initial database.  With the training, the agents can modify 

their conditional probability tables according to other agent's behavior.    
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Figure 6.19. Dialog box for agent creation and simulation with training steps. 

 

At this stage of the IntelliAgent software, Simulate submenu works for only our 

Dog&Sheep problem.  The reason is that the utility node has huge number of elements in 

it because of the problem dimensionality.  Therefore, in the software, the utility of an 

agent is a function rather than a table.  If the utility node is made visual, the user has to 

enter too many elements in the utility table.  In the future, a function editor can be placed 

into the software so that the user can edit the utility function by typing the function in a 

text box.   

 

Help 

There is no help for the IntelliAgent at this stage.  This manual will be put into the 

software in the future.  In Help menu, there is only one submenu, About Project.  The 

About Project submenu presents the version and the icon of the software.  Figure 6.20 

shows the Help menu and About Project dialog box.   
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Figure 6.20. About project dialog box and Help menu. 

6.1.2 Context menus  

There are two types of context menus.  The first one appears when the user presses the 

right mouse button on an empty space in the device context.  The first context menu is 

called network context menu. The second context menu is called node context and 

appears when the user presses the right mouse button on a node.   

 

Network context menu 

Network context menu appears on the screen when the user clicks the right mouse button 

when the mouse is on an empty space on the device context, as shown in Figure 6.21.   

The network context menu contains the same submenus as the Network menu.  The user 

can choose the network submenus without moving the mouse to Network menu.  Context 

menus speed up the menu process in Windows applications.  
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Figure 6.21. Context menu for the network submenus. 

Node context menu 

The IntelliAgent software has another context menu for node operation.  The Node 

context menu appears when the user clicks the right mouse button on a node.  There are 

two submenus in this menu, Set Evidence and Parameters, as shown in Figure 6.22.   

 
Figure 6.22. Context menu for the node operations. 
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Set Evidence submenu is used for instantiating the node.  When the user chooses Set 

Evidence, another menu opens from the Set Evidence submenu to determine which state 

will be instantiated.  Figure 6.23 illustrates how a node can be instantiated by the node 

context menu. 

 
Figure 6.23. Instantiation of a node by node context menu. 

In Figure 6.23, there are two possible selections in the Set Evidence submenu because 

the node has two states.  When the number of states is more than two, the second menu 

shows more selections.  For different number of states, the software has a node context 

menu assigned for them.  For example, if the node has three states, the software shows 

another node context menu with three states as shown in Figure 6.24.   

 
Figure 6.24. Node context menu for a node with three states. 

 

The user can use the node context menus until the node has eight states.  The program 

can handle nodes with more than eight states but the node context menu cannot.  Instead 

of using context menu, the user can set evidence on a node by choosing Parameters 
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submenus and setting the state probabilities in the dialog box.  The Parameters submenu 

in the node context menu actives the same function as Parameters submenu in the 

Network menu actives.  Therefore, a dialog box appears to change the attributes of the 

node as shown in Figure 6.10.  If the user sets the desired state to 1 and other states to 

zero, then the node becomes instantiated.  We have not added context menu for handling 

nodes with more than eight states because the context menu gets too long and hard to use.   

 

6.1.2 Toolbar 

The program toolbar consists of the buttons that performs the same operations with the 

menu items.  In the toolbar, there are 16 buttons.  Figure 6.25 illustrates the toolbar of the 

IntelliAgent software.  

 
Figure 6.25. The toolbar of the IntelliAgent software. 

First eight buttons are standard Windows toolbar buttons.  They will not be explained 

here.  There are eight more buttons on the toolbar.  They are used for Bayesian network 

operations and intelligent agent simulations. 

 

Node 

 
This button has the same functionality as the Node submenu in the Network menu.  The 

user pushes this button if a node is going to be created as shown in Figure 6.8. 
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Arc 

 
The arc button is the short cut for the Arc submenu in Network menu.  The user can 

create arcs after pushing this button as shown in Figure 6.9. 

Update  

 
This button works as a short cut for the Update submenu in the Network menu.  The user 

can update the network or apply inference by pushing this toolbar button instead of using 

menu. 

 

Parameters 

 
The parameters toolbar button is the short cut for the Parameters submenu in the Network 

menu.  The user first moves the mouse on a node and clicks the left mouse button to 

choose the node.  Then, the user moves the button to the toolbar and presses the 

Parameters button.  Then, the software displays the dialog box shown in Figure 6.10.  

Changing node parameters is explained in the previous section.   

 

Load 

 
The load button works as the same as the Load submenu in the Network menu.  The user 

can load a database by simply pushing the Load button on the toolbar.  After the user 



 124

pushes the Load button, the program displays the dialog box shown in Figure 6.13.  After 

the user chooses a database on the dialog box, the software creates the nodes and their 

parameters as shown in Figure 6.14. 

 

Calculate  

 
The calculate button is used for setting the structure of the search algorithm that creates 

the Bayesian network.   After pushing this button, a dialog box appears on the screen as 

shown in Figure 6.15.  Then, the user chooses the structure of the search algorithm by 

clicking corresponding radio buttons on the dialog box. After the user sets the search 

algorithm, the software creates the Bayesian network as shown in Figure 6.16. 

 

Agent 

 
The agent button is the short cut for the Create Agent submenu in the Agent menu.  When 

the user pushes this button, the software displays the dialog box shown in Figure 6.18.  

The user can create by specifying agent's parameters such as name and location.  In the 

dialog box, there are additional parameters for the simulation.  The user can set the type 

of simulation and whether the agent will be trained in advance or not.    

 

Simulate 
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This button is the short cut for the Simulation submenu in the Agent menu.  The software 

simulates the Dog&Sheep problem, after the user clicks on this button.  The program 

displays the simulation on the device context in action.   

 

6.1.3 Dialog boxes 

Excluding the MFC's built-in dialog boxes such as printing and saving dialog boxes, 

there are four dialog boxes for presenting the parameters of the nodes, updating 

conditional probability table (CPT) in the nodes, generating Bayesian network, and agent 

creating and training dialog boxes.  In this section, the dialog boxes are introduced in 

terms of their functionality and their operation.  Detailed class definitions is given in 

Appendix A. 

 

Parameter Presentation 

The Parameters dialog box is created for presenting and editing the parameters of a node.  

Figure 6.26 illustrates the Parameters dialog box.  The name of the node can be edited on 

the dialog box by moving the mouse on the edit box in front of name.  Similarly, the 

number of states in the node can be entered from the second edit box.  As soon as the 

values are entered from the edit boxes, the dialog box actives corresponding functions to 

update the values.  If a user increases the number of states, the new probabilities for the 

new states have to be entered. The user can enter the new probabilities by typing the 

values in the edit box in front of Probabilities static text.  Then, the user has to push the 

enter push button to enter the new probabilities to the scroll box.  The scroll box shows 

the probabilities of the states of a node.  The user can update the state probabilities by 
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clicking the left mouse button on the probability that needs to be changed.  Then, the 

dialog box activates an edit box and a push button under the scroll box.  The user can 

enter the new value into the edit box and push the Update push button to enter the value 

into the scroll box.   

 
Figure 6.26. Dialog box for parameter presentation. 

 

We have mentioned that the CPT of a node can also be edited by the user.  To edit the 

CPT values, the user double clicks the left mouse button on the value that needs to be 

changed.  Then, the software displays a dialog box for updating the CPT value.   
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CPT Updating 

As stated above, the user can change the values in the CPT with the help of a dialog box.  

Figure 6.27 shows the dialog box for CPT updating.  As soon as the user double clicks 

the left mouse button on a CPT value, the CPT updating dialog box appears on the 

Parameters dialog box.  The user enters the new value into the edit box in the dialog box. 

Then, the value is entered to the CPT as soon as the user pushes the "OK" button.   

 
Figure 6.27. Dialog box for the CPT updating. 

 

Bayesian network generation 

The third dialog box used in the software is designed for Bayesian network generation.  

After the user creates the nodes and the independent probabilities by evaluating a 

database, a Bayesian network can be constructed by the help of a search algorithm.  As 

stated in Section 3, there are several search algorithms in the literature.  The search 

algorithms used in this research are introduced in Section 4.  The Dialog box shown in 

Figure 6.28 is designed for specifying the properties of the search algorithm to be used.   
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Figure 6.28. Dialog box for setting submenu for Bayesian network generation. 

The dialog box consists of three groups of radio buttons for the search type, the score 

type, and the distance measure type, respectively.  There are two radio buttons for the 

type of search algorithm, Heuristic and Exhaustive.  There are three types of score type, 

MDL, Bayasian, and Log-Likelihood.  Log-Likelihood is grouped in the distance 

measure group because it is also a distance measure type.  Log-Likelihood scoring is 

modified to have complexity parameter in the score equation. Because of this 

modification, it works as MDL scoring with the Log-Likelihood distance measure.  The 

user can choose the search type, the score type, and the distance measure type by clicking 

the left mouse button on the desired radio buttons.   

In the dialog box, there is a sliding bar to adjust complexity and the accuracy of the 

search algorithm.  The sliding bar is not functional in Bayesian scoring since Bayesian 

scoring handles the complexity and the accuracy internally as explained in Section 4.  

The sliding bar defines the weights for the accuracy and the complexity parts of the score.  



 129

If the user slides the bar towards the complexity, the software decreases the penalty for 

the complexity of the network.  Therefore, the software ends up with a network with 

more arcs.  If the sliding bar is moved towards the accuracy, the software penalizes the 

complexity completely. In this case, the software may end up with a network with no arcs 

because having an arc may be more costly than not having an arc.  The software starts 

with the default complexity and the accuracy values.  The default values weigh the 

complexity and the accuracy equally.   

 

Agent creation and training 

The last dialog box designed for the software appears when the user would like to create 

an intelligent agent for the simulation.  Figure 6.29 shows the agent creation dialog box. 

 
Figure 6.29. Dialog box for agent creation and training. 

In the dialog box, the user can set the name and the location of the agent.  In the 

dialog box, the user can also set the properties of the simulation.  The user can determine 

whether the simulation will be performed step by step or continuous.  If the user pushes 

the Step button, the simulation runs step by step.  The user has to click the Simulate 

button on the toolbar for each step.  If the Continuous button is pushed, the simulation 
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runs continuously until either the number of maximum steps is reached or the goal of the 

agent is established. 

In most cases, the agents may not have enough information about the environment by 

only evaluating the initial database.  The user may choose to train the agents before the 

actual simulation starts.  The user can push the Training button to train the agents.  As 

shown in Figure 6.30, an edit box appears on the dialog box after the Training button is 

pushed.  The user can enter the number of training steps into the edit box.  Then, the 

software starts the simulation with random initial locations for the agents until the 

number of training steps is reached.  if the agents establish their goal and stop, then the 

software starts the simulation again with random agent locations. 

 
Figure 6.30. Training abilities of the agent creation dialog box. 

 
6.2 Tutorials on Bayesian network creation and knowledge discovery 

This section presents tutorials on how to create a Bayesian network learning system. 

Bayesian networks can be created in two ways in the IntelliAgent software.  First, they 

can be created manually by mouse operations.  This is the case where the user knows the 

dependencies in the Bayesian network.  It can be used for inference only.  Second, a 
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database can be utilized to create a Bayesian network.  This is the case where a 

knowledge discovery performed on a database.  

 

6.2.1 Inference in a Bayesian network 

This is the case where the user creates the Bayesian network by using the knowledge of 

dependencies in the network.  Let us use the same example defined in Section 4.   

 

 

 

 

Figure 6.31. Example Bayesian network for manual network creation. 

In the network, there are three variables, 321 XXX ,, .  In the network, dependencies 

are given as 21 XX →  and 32 XX → .  Figure 6.31 illustrates the Bayesian network to be 

created.  The independent probability for the first variable is ].   .[)( 50501 =XP  as stated 

in Equation 4.7.  Similarly, the conditional probabilities )|( 12 XXP  and )|( 23 XXP are 

given as: 
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Now, the above Bayesian network can be created by the IntelliAgent software.  First, the 

user needs to create the nodes of the network.  There will be three nodes with two states 

1X  

2X  

3X  
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each.  The user moves the mouse on the Node button on the toolbar and clicks the left 

mouse button for node creation.  Then, the user can create the nodes by keeping the left 

mouse button pressed and moving the mouse in a circular motion, shown in Figure 6. 32. 

 

Figure 6.32. Creation on the network nodes. 

 
In above figure, the nodes have the default parameters; two states with the 

probabilities 0.5 and 0.5, 2x1 conditional probability table filled with 0.5, and a default 

name.  The user can change these values by double clicking the left mouse button on the 

nodes or clicking the right mouse button and choosing the Parameters submenu in the 

node context menu.  Let us change the node names and put independent probabilities into 

the first variable.  Figure 6.33 shows the Bayesian network with the new node names. 
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Figure 6.33. Changing node names and editing the independent probabilities. 

After changing the names and placing the independent probabilities, the user can add 

the dependencies by drawing an arc between the variables.  To draw an arc, the user 

clicks the left mouse button on the Arc button on the toolbar.  Then, the user presses and 

holds the left mouse button on the node where the arc starts.  While keeping the left 

mouse button pressed, the user moves the mouse to the node where the arc ends and 

releases the left mouse button.  Then, the software draws an arc between the nodes.  The 

user can start and end the arc anywhere on the nodes because the software calculates the 

best place to start and end the arc according to the relative positions of the nodes.  Figure 

6.34 shows the creation of an arc between 1X  and 2X  before the mouse is released. 
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Figure 6.34. Arc creation before the left mouse button is released. 

 
As soon as the left mouse button is released, the software displays a message box 

stating the creation of the arc as shown in Figure 6.35. 

 

 

Figure 6.35. Message box stating the arc creation. 

 

When the user clicks on OK button on the dialog box, the software draws an arc 

between 1X  and 2X .  The second arc can be created by following the same procedure.  

Figure 6.36 illustrates the network with two arcs. 
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Figure 6.36. Creating an arc in a network. 

 

When the user adds arcs from one to another node, the software automatically adjusts 

the dimension of the CPT of the child node.  A child node is the node to which an arc 

points.  In the network, 2X  is the child node of 1X .  After the arc creation, the software 

expands the CPT of node 2X  to 2x2. The software puts the same values into the new 

column as in the first column.  If the user increases the number of state in a node, the 

software also expands the CPT by adding a row with zero probabilities.  

The structural creation of the network is completed by adding the arcs.  Now, the 

CPTs can be edited according to Equations (6.1) and (6.2).  As stated in the previous 

section, the user can edit the CPTs by double clicking the left mouse button on the CPT 

values.  Then, the software displays a dialog box for CPT updating.  Let us update the 

CPT values of node 2X .   
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First, the user double clicks on the node 2X  to get the Parameters dialog box, shown 

in Figure 6.37.  Then, the user can double click the left mouse button on the value 

corresponding to 01 stateX =  and 02 stateX = .  After the double clicking, the CPT 

updating dialog box appears on the screen as shown in Figure 6.37. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.37. Updating the CPT table with CPT updating dialog box. 

After the CPT updating dialog box appears, the user can enter the new value into the 

text box in the dialog box as shown in Figure 6.37.  Then, the software puts the new 

value into the corresponding location in the CPT.  The same procedure can be followed to 

put all values of the CPT in 2X  and 3X  using the values in Equation (6.1) and (6.2). 

After the CPTs are updated, the user is ready to update the network.  The user can 

move the mouse on Update button on the toolbar and click the left mouse button to 

activate the network update.  The network update will produce probability values for 2X  
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and 3X .  An inference technique defined in [1] is used to calculate the probabilities.  For 

example, to calculate )( 2XP , the software uses the probabilities )( 1XP  and )|( 12 XXP  

and computes the following equation: 

)()|()( 1122 XPXXPXP ⋅=     (6.3) 

The probability )( 3XP  is calculated by the similar equation.   

After the network update, the manual creation of a Bayesian network is completed. 

Now, the user can perform inference calculations by entering evidence to the network and 

updating network.  For example, the user can set the node 1X  to state0 and click Update 

button on the toolbar to forward the evidence to the network.  Figure 6.38 illustrates how 

to set evidence on the node 1X .   

 
Figure 6.38. Setting node 1X  to state0. 

 

After clicking the Update button, the user can double click the left mouse button on 

the other nodes to see the new probabilities.  Figure 6.39 shows the parameters of the 

node 2X  before the inference.  Figure 6.40 shows the network after the inference. 
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Figure 6.39. Parameters of the node 2X  before inference is applied. 

 

 
Figure 6.40. Parameters of the node 2X  after inference is applied. 
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As can be seen the probabilities of the node 2X  have changed with the inference.  

The software also updates the probabilities of 3X  according to the probabilities of the 

node 2X .  In short, the inference travels through the network until it reaches an end node.  

An end node is the node that has no child.  As can be seen in Figure 6.40, the CPT values 

are the same as the CPT values given in Equation (6.1).   

The IntelliAgent software can also be used as a knowledge discovery tool because of 

its ability to create a Bayesian network from a database. 

 

6.2.1 Knowledge discovery with IntelliAgent 

This is the case where the user exploits a database to generate the Bayesian network that 

fits the data best.  The user can employ several Bayesian structural learning algorithms in 

the IntelliAgent such as heuristic search and exhaustive search as defined in Section 4. To 

explain the knowledge discovery with IntelliAgent software, we will present an example 

in this section. 

Let us take the example about the college student as defined in the previous section.  

The database for the problem is gathered by surveying number of college students about 

their college plan, sex, intelligence, family support, and social class.  The IntelliAgent 

software will be used to create a Bayesian network that fits the database the best.   
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First, the user needs to load the database into the software by clicking the Load button 

on the toolbar.  After clicking this button, the software displays a dialog box as shown in 

Figure 6.13.  Let the user choose the database "college.db".  Then, the software 

automatically generates the nodes and the independent probabilities for these nodes as 

shown in Figure 6.41.   

 
Figure 3.41. Nodes of the Bayesian network after loading "college.db". 
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After the software creates the nodes from the database, the user can click on Calculate 

button on the toolbar or choose Create submenu in the Network menu to start the search 

for the best Bayesian network that fits to the database. After clicking the Calculate 

button, the software displays the dialog box shown in Figure 6.15.  This is a dialog box 

for setting the properties of the search algorithm as explained in the previous section.  

Using this dialog box, the user can choose the type of search algorithm, the score type, 

and the distance measure type.  Let us assume that the user clicked the Heuristic radio 

button for the search type, the MDL score for the score type and the Kullback-Lieber 

distance measure for the distance measure type.  Therefore, the software will search for a 

Bayesian network using a heuristic MDL score based algorithm with Kullback-Lieber 

distance measure.  As soon as the user clicks OK button on the dialog box, the software 

starts constructing the Bayesian network.  Figure 6.42 shows the final Bayesian network.   

 
Figure 6.42. Bayesian network created by the search algorithm. 
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As can be seen above, the algorithm put all the possible arcs into the network.  This is 

computationally okay for this network because the number of nodes in the network is 

only six.  In any case, the user can decrease the complexity by sliding the complexity bar 

in the dialog box.  Let us assume that the user would like to have simpler network. First 

user clicks the Calculate button on the toolbar again to get the dialog box.  Then, the user 

needs to slide the complexity bar towards the accuracy as shown in Figure 6.43.  Finally,  

 
Figure 6.43. Decreasing the complexity of the network with sliding bar. 

 

Finally, the user can click the OK button on the dialog box to start the search.  Figure 

6.44 shows the resulting Bayesian network. 
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Figure 6.44. Bayesian network after decreasing the complexity. 

 

As seen in Figure 6.44, the complexity of the network decreased noticeably.  Let us 

assume that the user thinks that the resulting network is reasonable.  Then, the user can 

do the knowledge discovery by observing the parameters of the network such as 

independent probabilities and conditional probability tables.  Conditional probability 

tables help us to discover the dependencies between the variables.  For example, we can 

find out how a variable effects another variable.  More generally, we can find out the 

college plan for a given college student.  This is exactly the inference explained in 

Section 6.2.1.   
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Let us assume that we have a student who is male (state0), with average intelligence 

(state1), in a high class (state0), and with family support (state0).  To find out the 

probability of him making a college plan, the user needs to enter above evidence to the 

network and apply inference by clicking on the Update button on the toolbar.  The 

evidence can be entered by clicking the right mouse button on the nodes and choosing 

desired state in the Evidence submenu as shown in Figure 6.45 

 
Figure 6.45. Setting the evidence for the "intelligence" node. 

 

After updating the network, the user now can double click the left mouse button on 

the node for college plan to see its probabilities.  Figure 6.46 illustrates the parameters of 

the "plan" node. 
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Figure 6.46. The parameters of the "plan". 

 

In above Figure, the user can find out the probabilities of the college plan of the 

student. State 1 of the plan means no college plan. Therefore, the probability that student 

will go to college is 0.937642.  This result is meaningful because the student has family 

support and high intelligence.  Additionally, he is from a high class so he can afford the 

college easily.   

The user can also find out how the variables effect each other. For example, how 

much does being a male influence the parents’ support?  Do families support their son 

more that they support their daughter?  These questions can be answered by setting the 

"sex" node to state0 and state1 and observe the probabilities of the "support" node.  In 
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short, knowledge discovery can be performed on a database using the IntelliAgent 

software. 

In IntelliAgent software, when the network creation is completed, a message box 

appears on the screen as shown in Figure 6.47. 

 
Figure 6.47. Message box informing the end of the network generation. 

 

After the user clicks OK button on the message box, the software displays another 

message box that says the user should set the initial values of the dog and the sheep as 

shown in Figure 6.48.  This part of the software is dedicated for the Dog&Sheep problem.   

 
Figure 6.48. Message box for initializing the dog and the sheep agents. 

 
At this stage of the IntelliAgent software, only Dog&Sheep problem can be simulated 

because the utility function is a function in the software rather than an editable table or 

function.  In the future, this function can be made an editable function by the user.  

Details of the Dog & Sheep problem and its simulation results are presented in Section 6. 
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CHAPTER 7 

Experimental Results 

In this section, the decision-theoretic intelligent agent model is employed to solve a 

herding problem.  Intelligent agent software is written to realize the proposed intelligent 

agent model.  The same software is then used to simulate the herding problem with one 

sheep and one dog.  Simulation results show that the proposed intelligent agent is 

successful in establishing a goal (herding) and learning other agents behaviors.   

In the herding problem, a dog (our intelligent agent) has to herd a sheep to a desired 

location (i.e., a pen).  The details of the herding problem are provided in Section 7.1.  The 

simulation results are presented in Section 7.2.  Finally, Section 7.3 explores the 

effectiveness of the online Bayesian network learning in intelligent agent system. 

 

7.1 The Dog & Sheep Problem 

The Dog & Sheep problem is considered in a rectangular mn ×  grid as shown in Figure 

7.1. The goal of the dog is to herd the sheep into the pen.  In other words, the dog is 

trying to minimize the distance between the sheep and the pen.  The pen is at (0,0).   

 

 

 

 

 

 
Figure 7.1. The 4-by-4 Grid Dog & Sheep problem. 
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There are six system variables in the problem; the X and Y coordinates of the dog, the 

X and Y coordinates of the sheep, the next action of the dog, and the next action of the 

sheep.  The following illustrates the system variables and their possible values. 

Dx: X coordinate of the dog; takes values form 0 to n. 

Dy: Y coordinate of the dog, takes values from 0 to m. 

Sx: X coordinate of the sheep; takes values form 0 to n. 

Sy: Y coordinate of the sheep; takes values form 0 to m. 

DN: Next action of the dog, takes values from 0 to 4. 

SN: Next action of the sheep, takes values from 0 to 4. 

 

The coordinates of the dog can take values between 0 and n.  The coordinates of the 

sheep can take values between 0 and m.  Therefore, the number of states in the variables 

xD and xS  is n. Similarly, the number of states in the variables yD and yS  is m.  The 

number of states in the coordinate variables changes depending on the dimension of the 

problem.  Agents have five possible actions; “don’t move”, “move right”, “move left”, 

“move down”, and “move up”.  The states of the variables DN and SN are "don't move", 

move right (x direction), left (-x direction), down (-y direction), and up (y direction) with 

the state identifiers from 0 to 4 respectively, shown in Figure 7.2.  Thus, the variables DN 

and SN have 5 states.   

 

 

 
 
 

Figure 7.2. Possible moves (states) for the sheep and the dog. 
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After defining the system variables, we need to define the node types in the influence 

diagram.  For the specific problem, the coordinate variables are chance nodes since they 

show the environmental state.  Therefore, they constitute the Bayesian network (world 

model) of the agent.  The variables DN  and SN are decision nodes since their values can 

change the environmental state.  The variable DN is the decision node for the decision-

theoretic intelligent agent (the dog).  The variable SN is the decision node for the other 

agent.  The dog observes the other agent's actions (SN) to make its decisions accordingly.  

Figure 7.3 illustrates the nodes type in the intelligent agent (the dog). 

 

 

 

 

 

 

 

 
Figure 7.3. The node types in the intelligent agent for the Dog & Sheep problem. 

 
Finally, we need to define the utility node in the influence diagram.  The goal of the 

dog is to make the sheep go to the pen and/or to stay close to the sheep.  Therefore, the 

utility function for the dog includes the distance between the dog and the sheep and the 

distance between the sheep and the dog.  The utility function can be defined as: 
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The Euclidean distance is employed to calculate the distances.  Since the maximum 

utility is established when the distances zero, the utility function is set to be the inverse of 

the sum of the distances.  

After defining the Bayesian network part and the influence diagram part, the 

dependencies between the variables (the system dynamics) have to be established.  If the 

system dynamics are known, the dependencies are entered to the system by inserting arcs 

between the variables using the agent software.  If the system dynamics are not known, 

the agent software uses network structuring algorithms defined in Section 4 to establish 

the best network.  The software needs a small database to generate the Bayesian network 

of the agent. The details of the network search algorithms are explained in Section 4.  

Section 6 explained how these algorithms are employed and how they can be modified. 

Let us analyze the problem when the system dynamics are known.  That is, we know 

the conditional dependencies between variables in the Bayesian network.  From the 

nature of the Dog & Sheep problem, it is obvious that the sheep's next action is dependent 

on the position variables ( yyxx SDSD ,,, ) and the dog's next action ( ND ).  Figure 7.4 

illustrates the structure of the agent with the system dynamics.   

 

 

 

 
 
 
 
 
Figure 7.4. The structure of the intelligent agent with the known system dynamics. 
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In the Bayesian network shown in Figure 7.4, the following represents the conditional 

probabilities to be calculated. 

)(),(),(),( yxyx SPSPDPDP        (7.2) 

)( NDP              (7.3) 

),,,,|( NyxyxN DSSDDSP               (7.4) 

Equations (7.2), (7.3), and (7.4) define the dynamics of the system.  The positions and the 

sheep's next action are independent but the dog's next action is dependent on the other 

five variables.  The decision variables ND  and NS  are analyzed as chance nodes because 

a decision node becomes a chance node once it is instantiated.  The dog takes its action 

before the sheep takes an action.  The dog takes actions on the fly and estimates the next 

sheep action by updating the network. Then, the program calculates the utility function 

using estimated sheep position and the dog position.  Finally, it fires the action that 

creates the maximum utility.  Note that the positions of the dog and the sheep do not 

directly affect the dog's action.  They affect the sheep's action directly.  Since the dog 

decides its actions according to the sheep's expected action, the positions affect the dog's 

action. 

As stated earlier, if the system dynamics are not known, the agent software generates 

a network from the available data.  The search algorithms defined in Section 4 are used to 

find the network that fits to the available data.  As stated in Section 4, the properties of 

the algorithm used can be adjusted by the user.  

Let us consider the network created by using the heuristic search with Bayesian 

scoring.  A small database is provided for the search algorithm.  The resulting Bayesian 

network is shown in Figure 7.5.  In the generated Bayesian network, additional arcs 
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between the variables are added by the algorithm.  The algorithm showed that the 

positions of the sheep and the dog affects not only the dog's next action but also the 

sheep's next action.  The dog models the sheep's dynamics with the arcs between the 

sheep's next action and the position variables.  The additional arcs complicate the 

network but it also makes more sense to model the sheep's behavior.  

 

 

 

 

 

 

Figure 7.5. The structure of the agent with BN created by the search algorithm. 

 
The structure in Figure 7.5 adds one more conditional probability to the calculations 

because the sheep's next action depends on the positions of the dog and the sheep.  

Therefore, the equations necessary for the inference calculations become the following. 

)(),(),(),( yxyx SPSPDPDP        (7.5) 

)( NSP              (7.6) 

),,,,|( NyxyxN DSSDDSP               (7.7) 

),,,|( yxyxN SSDDDP                 (7.8) 

The equation (7.8) is added to the calculations.  Section 7.3 provides more detailed 

simulation results for the Dog & Sheep problem in a specific domain. 
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The creation of the decision theoretic intelligent agent is completed after generating 

the structure of the Bayesian network.  Now, the agent can start exploring the 

environment to establish its goal.  The agent exploits the environment during its 

exploration by updating itself with the new information about the environment.  The 

following summarizes the exploration and exploitation processes of an agent. 

The agent (the dog) takes its actions in order to maximize the utility function in 

equation (7.1).  First, the agent fires the actions on the fly and calculates the probabilities 

of the states in the sheep's next action node.  Second, the value of the utility function is 

calculated for each possible action (state) of the variable SN.  Then, using Equation (2.12), 

the expected utility of the dog's (agent's) action, id .  The following formula presents how 

the expected utility is calculated for the action di. 

� ==⋅====
js

iNjNiNjNiN dDsSPdDsSUdDU )|(),()(   (7.9) 

The same formula is applied to calculate the expected utility of each action in the 

agent's action set.  The utility functions in the summation are calculated by the using 

Equation (7.1).  In the formulation, the positions of the dog and the sheep are not shown 

because they are updated by the action id  and js .  Let us denote the updated positions 

with a bar in the formulation.  The following equation presents the utility function for the 

action pair, id  and js .   
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−+−++

=== ),(   (7.10) 

where ,,, xyx DSS  and yD  are the updated (expected) positions of the dog and the sheep.  

The utilities for all possible action pairs are calculated by Equation (7.10).  The 
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conditional probability, )|( iNjN dDsSP == , is calculated by the inference algorithm 

defined in [1].   

Finally, the agent chooses the action with the highest expected utility by using the 

PMEU as in equation (5.1). 
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j

iN s
iNjNiNjNiiNdD

dDsSPdDsSUdDUd )|(),(max)(max    (7.11) 

where d  represents the action with the highest expected utility.   

To sum up, first the agent fires it actions on the fly.  Second, the inference is run 

through the BN to calculate the corresponding probabilities of the sheep's possible next 

actions.  Third, the utilities are calculated for each possible action of the sheep and the 

dog's action using Equation (7.10).  Then, the probabilities and the utilities are placed 

into Equation (7.9) to calculate the expected utility of the dog's action.  The process is 

repeated for each possible action of the dog.  Finally, the agent (the dog) chooses the 

action with the maximum expected utility by employing the formula in (7.11).  

After deciding which action will be fired, the dog takes the action and observes the 

sheep's next action.  The dog records the current states of the system variable after the 

sheep moves.  The agent updates its BN (the world model) using the current states of the 

system variables according to the algorithm defined in Section 4.  The dog (the agent) 

continues to take actions in the same way until the sheep is in the pen.  The following 

section explains the Dog & Sheep simulation performed by the IntelliAgent software. 
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7.2 The 4-by-4 Grid Dog & Sheep Simulation 

In Figure 7.1, the Dog&Sheep problem is presented on a n-by-m grid.  This section 

presents the simulation results for a 4x4 grid, 3== mn .  The section explores both 

known dynamics case and unknown dynamics case.  We have run the simulations by 

placing the dog and the sheep in several different locations.  For all the locations, the dog 

herded the sheep to the pen successfully.  The simulation results were satisfactory for 

both known and unknown dynamics cases.  Let us start with the simulations performed 

with known system dynamics.   

 

7.2.1 Simulation results for known system dynamics 

Let us use the same system dynamics shown in Figure 7.4.  The nodes in the Bayesian 

networks can be created manually with mouse moves or with a database file.  A database 

is used to generate the initial network parameters.  The database is created with 19 data 

cases.  Each data cases consist of the dog and the sheep locations and the corresponding 

actions of the sheep and the dog.   

The IntelliAgent software is used to create the Bayesian network for the intelligent 

agent.  The utility function is placed in the software as a function with the form of 

Equation (7.1).  Thus, the user does not have access to the utility function of the 

intelligent agent in the software.  The IntelliAgent software can only simulate the Dog & 

Sheep problem.  To simulate other intelligent agent problem, the utility function for the 

agent has to be edited accordingly in the source code. 
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Let us create the intelligent agent's Bayesian network by using IntelliAgent software.  

First we need to create the network nodes.  To create the network nodes, the database in 

Table 7.1 is loaded to the software.   

Table 7.1. Initial database for the Dog&Sheep problem 

Dx Dy Sx Sy Dd Ds
3 0 3 1 0 4 
3 1 3 0 0 2 
2 1 1 1 4 3 
1 2 1 0 3 2 
2 1 1 1 2 3 
0 2 1 1 1 3 
1 2 0 1 2 3 
3 0 1 0 2 2 
2 1 1 0 3 2 
1 2 1 1 0 3 
2 0 1 0 0 2 
0 1 1 0 1 2 
0 2 1 0 1 0 
1 0 0 1 1 0 
1 1 0 1 4 3 
0 3 1 3 0 1 
2 2 3 3 1 3 
3 2 2 3 4 1 
3 2 2 3 4 3 

 

The data cases are created manually.  We put the dog and the sheep into random 

locations and we have chosen the actions of the dog and the sheep.  Then, we have put 

those six values into a row in the database.  The number of data cases in the database is 

long enough to calculate the initial parameters of the Bayesian network.  The agents 

update their network parameters while they are exploring the environment. 
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The above database is edited into a text file, called dogsheepdb.txt for the 

IntelliAgent software.  Then, we have loaded the database into the software as shown in 

Figure 7.6.   

 
Figure 7.6. Loading the initial database. 

 
After loading the database, the IntelliAgent software creates the network nodes and 

calculates the independent probabilities for each variable.  Now, we have the network 

nodes with their parameters.  The software determines the number of states in the nodes, 

their probabilities, and their names by evaluating the database.   

After the software creates the network nodes, we need to define the dependencies.  As 

stated in Section 6, the dependencies (the arcs) between the nodes can be established by 

mouse operations.  A tutorial on how to create a Bayesian network is also presented in 

Section 6.2.  We have created a Bayesian network with same dependencies as the 

network shown in Figure 7.1. Figure 7.7 presents the Bayesian network created in the 

IntelliAgent software. 
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Figure 7.7. Bayesian network with known dependencies. 

 
After the arcs are drawn in the network, the software adjusts the CPTs and the 

probabilities of the nodes by running inference in the network.  Now, we can start 

running the simulation. 

To simulate the problem, we need to create the intelligent agent.  As described in 

Section 7, agents are created by using a dialog box.  The user can give the name and the 

location of the agents using this dialog box.  In the IntelliAgent simulation the dog agent 

and the sheep agent are named 1 and 2, respectively.  Thus, the user should enter either 1 

or 2 as the name of the agent during the creation of the agents.  The software knows 

which agent is the dog or the sheep by checking the name of the agent.  Let us create the 
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dog and the sheep at (0,0) and (3,3), respectively.  This is the hardest case for the dog to 

herd the sheep into the pen.  As soon as an agent is created, the software draws a grid on 

the screen to display the simulation.  Figure 7.8 shows the simulation grid created by the 

IntelliAgent software.   

 
Figure 7.8. Bayesian network and the simulation grid. 

 

Let us assume that we have chosen continuous simulation on the agent creation dialog 

box.  The simulation results were successful for different placements of the agents.  We 

will only present simulation results for the hardest case in this section.  Figure 7.9 shows 

the paths that the sheep and the dog have taken during the simulation. The dog was able 

to establish its goal by herding the sheep to the pen.  The simulation ended when the 

sheep was at (0,0) and the dog was at (1,1). 
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Figure 7.9. The paths taken by the dog and the sheep. 

In Figure 7.9, the sheep does not move away from the corner until the dog is near the 

sheep.  When the dog comes closer to the sheep, the sheep moves away from the corner 

and the dog.  Then, the dog follows the sheep trying to herd it to the pen.  The dog chases 

the sheep until the sheep is in the pen. 

We have also run three consecutive simulations without changing their positions, 

shown in Figure 7.10.  The goal of these consecutive simulations is to see whether the 

dog learns from its experience.  In the first run, the sheep has escaped from the pen by 

moving to the right.  The dog then followed the sheep and put the sheep into the pen.  In 

the second run, the sheep managed to escaped from the pen by moving up because the 

dog moved down to stop the sheep moving to the right.  The dog learned from its 

previous experience that the sheep will move to the right.  In the third simulation, the dog 

first moved to the left to stop the sheep moving up and the sheep moved to the right.  

Then, the dog moved to the right to stop the sheep moving to the right.  Finally, the sheep 

moved back into the pen in response to the dog's movement.  The sheep could not escape 

in the third run because the dog learned the sheep's behavior by experiencing previous 

escapes.  The dog takes its actions according to the knowledge it gets from its experience.  
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Figure 7.10. Learning from the experience. 

As stated earlier, the dog agent updates the parameter of the Bayesian network while 

it explores the environment.  The simulation starts with the initialization of the positions 

of the agent.  Using Equations (7.9), (7.10), and (7.11), the dog calculates the expected 

utility for its actions and finds the action with the highest expected utility.  

The dog fires the action with the maximum expected utility.  Then, it waits for the 

sheep's next action.  The sheep has its own dynamics and tries to avoid the dog.  The 

sheep's dynamics are bunch of rules that determine the next action of the sheep.  The 

rules are defined so that the sheep is moving away from the dog.  

After the sheep takes its action, the dog records the current positions and actions of 

the sheep and the dog into the database as a data case.  Since the database is modified, the 

software modifies the parameters of the Bayesian network according to the new data 

case.  The modification of the parameters does in fact establish the learning.  The next 

time the same setting is faced, the agent will take its actions according to the modified 

parameters of the network.  The following paragraph presents how learning occurs in the 

decision-theoretic intelligent agent. 
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In Figure 7.10, the simulation starts with specified agent locations; the dog is at (1,1) 

and the sheep is at (0,0).  Let us go through the learning process for the dog by analyzing 

it possible actions and their expected utilities.  The sheep has three possible actions in this 

setting; "don't move", "move left", and "move up".  The sheep cannot move down or 

move left because it is at (0,0).  To calculate the expected utilities for the dog's actions, 

we need to calculate the probabilities of each state action and corresponding utility value.  

Since the agent has limited information about the environment, the probabilities of the 

sheep's actions will be uniformly distributed.  The software places uniform priors if a 

case has never seen before.  The software can show the probabilities of the sheep's 

decision node SN by simply double clicking on the node.  The following is the 

probabilities of the sheep's next action states. 

{ }2020202020 .,.,.,.,.)|( == iNN dDSP    (7.12) 

As can be seen above, probabilities are uniformly distributed for all the action of the 

dog.  Now, let us calculate the expected utilities for each the dog's action id  and the 

possible actions of the sheep ( 310 sss ,, ).  The software only calculates the utility for the 

sheep's possible actions.  The utilities for the sheep's impossible actions are equal to zero. 

The following equations present the calculation of the utilities for the sheep's possible 

actions. 
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Using Equations from (7.12) to (7.17), we can calculate the expected utility of the 

dog's action 0d .   
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The expected utilities for the other actions of the dog are calculated in the same way.  The 

following equation presents the expected utilities for the dog's all actions.   
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After the expected utility for each action is calculated, the agent (the dog) fires the action 

that generates the maximum expected utility.  Therefore, the dog fires the action 2d , 

which is "move left".  Thus, the dog moves to (0,1) on the grid.  The dog waits for the 

sheep's next action after it fires its best action.  

The sheep has move to the right because it is trying to get away from the dog.  

Therefore, the new positions are (0,1) and (1,0) for the dog and the sheep, respectively.  

The simulation is run until the sheep is in the pen again.  When the simulation is ended, 

the sheep was in the pen and the dog was at (1,1) as shown in Figure 7.10 (b).   

Let us check the state probabilities of the sheep's action (decision) node SN and the 

expected utilities for the dog's actions.   
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{ }20202020200 .,.,.,.,.)|( == dDSP NN     (7.20) 

{ }20202020201 .,.,.,.,.)|( == dDSP NN     (7.21) 

{ }000102 ,,,,)|( == dDSP NN          (7.22) 

{ }20202020203 .,.,.,.,.)|( == dDSP NN     (7.23) 

{ }20202020204 .,.,.,.,.)|( == dDSP NN     (7.24) 
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As can be seen in Equation (7.22), the conditional probability of SN given the action 

2d  is changed after the first run.  This is because the sheep moved to the right in the first 

simulation.  The agent then updated this particular conditional probability accordingly.  

This shows that the decision-theoretic agent can learn from its experience.  The change in 

the conditional probability is also changed the expected utility of the action 2d .  The 

expected utility of the action 2d  is reduced because the sheep went away from the pen in 

the previous run.  Now, the dog knows that if it fires the action 2d  again, the sheep will 

move to the right.  

Since the expected utilities are changed, the expected utility of the action 3d  became 

the maximum.  Therefore, the dog moves down to stop the sheep going to the right.  After 

the dog moved down, the sheep went up )( 4s  to avoid the dog.  We have run the 

simulation until the sheep is in the pen.  One should keep in mind that the agent updates 
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its model of the environment in every step.  The simulation is ended when the sheep is in 

the pen and the dog is at (1,1) as shown in Figure 7.10 (c).   

One might guess that the conditional probabilities and the expected utilities will be 

different than that of the previous run.  The following equations present the conditional 

probabilities and the expected utilities. 

{ }20202020200 .,.,.,.,.)|( == dDSP NN     (7.26) 

{ }20202020201 .,.,.,.,.)|( == dDSP NN     (7.27) 

{ }000102 ,,,,)|( == dDSP NN          (7.28) 

{ }100003 ,,,,)|( == dDSP NN          (7.29) 

{ }20202020204 .,.,.,.,.)|( == dDSP NN     (7.30) 
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The agent continues to learn from its experience because the conditional probabilities 

of NS  given the action 3d .  Therefore, the expected utility for the action 3d  is also 

changed.  The utilities of the action 2d  and 3d  are equal.  The agent chooses the action 

with the lower indices if there is equality.  Therefore, the dog fires the action 2d . 

After the dog moved to the left by firing the action 2d , the sheep moved to the right 

to avoid the dog.  Then, the dog moved to the right by firing the action 1 because it 

knows that in the first run the sheep moved to the right and escaped.  To keep the sheep 

around the pen, the dog moved to the right instead of going down and following the 
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sheep.  This shows that the dog learns the sheep's behavior in time and acts accordingly. 

In fact, after the dog moved to the right, the sheep moved to the left and went into the pen 

as shown in Figure 10 (c).  

We have covered the case where the dynamics of the system is known.  The 

simulation results were satisfactory.  This part of the research will be presented in IEEE 

SMC2000 conference.  In above simulations, the next action of the dog is not directly 

dependent on the positions of the dog and the sheep.  In reality, the dog's next action is 

also dependent on the positions of the dog.  The simulations worked well because the dog 

had the exact knowledge of the relationship between the positions and the sheep's next 

action.  If the dog does not have that information, it cannot make its decisions only 

depending on the sheep's next action.  In that case, the agent has to create its Bayesian 

network and find out the dependencies in the network.  The next section explores the case 

when the system dynamics are not known.  

 

7.2.2 System dynamics are not known.  

In real life, an intelligent agent may not have the knowledge of the system dynamics.  For 

example, if a mobile robot is placed in a room to do certain tasks, the robot will not have 

the exact knowledge of the room at the beginning.  Furthermore, if there are more than 

one robot, the robots will not know the dynamics of other robots.  In this kind of problem 

settings, the robots have to explore the environment and exploit (learn) the data that they 

have gathered.  In our agent design, we have placed an online Bayesian network learning 

ability to our decision-theoretic intelligent agents.  In previous sections, the online 
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Bayesian network learning and software are explained in detail.  In this section, we will 

simulate the Dog & Sheep problem with unknown system dynamics. 

In the previous case, the agent learned the parameters of the network using a database 

because the system dynamics were known.  Now, the agent has to learn both structure 

and parameters of the Bayesian network using the database.  In Section 4, structural 

learning and parameter learning in the online Bayesian network learning are presented.   

Let us start the simulation by loading a database to the software.  Loading a database 

and creating the nodes are explained above.  Since the agent will also learn the structure 

of the network a longer database might be needed.  A database of cases is created 

simulating the problem for each position set and for each action in the dog's action set.  

We have entered those five values into the sheep's dynamics and recorded the sheep's 

action with other five values.  For the following simulation, this database is used.   

After the nodes are created, we can generate the Bayesian network from the database.  

To generate the Bayesian network, we can either click on the Create button on the toolbar 

or choose the submenu Create in the Network menu.  Then, the software displays a dialog 

box to specify the search algorithm.  In the dialog box, the user can choose the search 

type, the score type and the distance measure type.  The details of the dialog box and how 

to specify the search algorithm are given in knowledge discovery tutorial in Section 6.2.   

In this section, we will give some simulation results obtained by applying different 

search algorithms.  There are eight possible search algorithms in the software as shown in 

Table 7.2.  
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Table 7.2. Possible search algorithms in the IntelliAgent software 

Algorithm Search Type Score Type Distance Measure 
1 Heuristic MDL Kullback-Leiber 
2 Heuristic MDL Euclidean 
3 Heuristic MDL LogLikelihood 
4 Heuristic Bayesian - 
5 Exhaustive MDL Kullback-Leiber 
6 Exhaustive MDL Euclidean 
7 Exhaustive MDL LogLikelihood 
8 Exhaustive Bayesian - 

 

Analyses of the search algorithms are presented in Section 4.  In this section, we will 

not repeat the analysis of the search algorithms.  We will present two simulations.  The 

first one is a heuristic search with Bayesian scoring since it creates the network shown in 

Figure 7.5.  The second search algorithm will be an exhaustive search with MDL score 

using Kullback-Lieber distance measure. 

To create the first search algorithm, we have clicked heuristic and Bayesian score 

radio buttons on the dialog box.  Then, the software started to generate a Bayesian 

network.  We have run the search algorithm with the default complexity and accuracy but 

the resulting network had only three arcs.  Then, we have increased the complexity by 

moving the sliding bar to the complexity.  Finally, we have established a network with 

reasonable amount of arcs.  Figure 7.11 shows the resulting Bayesian network. 
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Figure 7.11. Bayesian network generated by heuristic search with Bayesian score. 

As can be seen above, the number of arcs in the network is higher than the network 

created with known dynamics.  The search algorithm discovered additional dependencies 

in the network along with the known ones.  For example, in the previous case, there was 

no arc from the positions to the dog's next action.  We have pointed out that there should 

be some relationship between the positions and the dog's action.  Since the previous 

simulations were successful one might ask what benefit we will get by having more arcs 

in the network.  We can answer the question by running the simulation with the network 

structure given in Figure 7.11. 

We have started the simulation with same positions, (0,0) and (1,1) for the dog and 

the sheep, respectively.  After the first run, the dog managed to herd the sheep to the pen 

by following the same paths shown in Figure 7.9.  In the second run, we discovered that 

the sheep could not move out of the pen because the dog was not letting it go.  In the first 
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case, the dog learned the same thing after three runs but with the network it learned the 

sheep's behavior from the database by putting additional dependencies in the network.  In 

fact, the network shown in Figure 7.11 should be closer to the ideal system dynamics 

because it has connection between the dog's action and the positions.  In short, the 

additional dependencies enabled faster learning for the dog.   

As stated in Section 4, the heuristic search algorithm requires the ordering of the 

network nodes in the database.  The exhaustive algorithm lifts this requirement by 

visiting more network structures during the search.  In fact, it tries every possible arc in 

the network to improve the network score.  Let us perform an exhaustive search with 

MDL score using Kullback-Lieber distance measure.  Figure 7.12 illustrates the resulting 

Bayesian network. 

 
Figure 7.12. Bayesian network generated by exhaustive search with MDL score. 

As can be seen above, the exhaustive search generated quite different network from 

the network created by heuristic search.  Even though the network is quite different, it has 
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necessary dependencies representing the system dynamics in the known system dynamics 

case.  The directions of some arcs are in opposite direction in the network.  This does not 

cause any problem because inference can also travel in a backward direction.  There are 

arcs between the sheep's position and the dog's position.  The arcs from the sheep's 

positions to the dog's positions are logical because the sheep moves before the dog.  The 

arc from DogX to DogY is in the opposite direction and may not be necessary.  Since 

they will not increase the computational complexity too much, we can keep these arcs in 

the network. 

We have run several simulations starting with the same positions.  After the first 

simulation, the dog herded the sheep to the pen successfully.  The simulation ended when 

the sheep is in the pen and the dog is at (1,1).  The paths for the agents are shown in 

Figure 7.13. 

 

 

 

 

 

 

Figure 7.13. Paths of the agents for the first simulation. 

As can be seen above, the sheep is going forward and backward until the dog is close 

enough to force the sheep out of the corner.  The sheep tries to escape, but the dog moves 

diagonally to the sheep to keep the sheep at the corner while the dog gets closer to the 

sheep.  When the dog is close enough to the sheep, the sheep has no choice but to move 
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out of the corner.  The dog follows the sheep until the sheep is at (0,3) and the dog is at 

(1,3).  Then, the sheep moves towards the pen. The dog does not go down to be just 

behind the sheep because the sheep may then go up and get away from the pen.  Thus, the 

dog moves parallel to the sheep to keep the sheep down and move it to the pen.  The 

sheep moves towards the pen until it is in the pen.  When the sheep is in the pen, the 

simulation stops.   

There are two important behaviors in the simulations.  First, the sheep does not move 

away from the corner until the dog gets close.  Second, the dog does not try to go behind 

the sheep when the sheep is at bottom of the area.  The dog does not go behind the sheep 

any more because it estimates that the sheep may go up and get away from the pen.  

These two behaviors make it clear that the dog can estimate the sheep's behavior and act 

accordingly. 

We have run couple of simulations to get a feeling about the dog's behavior.  In one 

of the simulations, the dog and the sheep were caught in a loop where they repeat the 

same action for certain number of times.  Then, the dog was able to break the loop and 

herd the sheep successfully.  During the loop, the dog updates its network parameters 

with each action.  After a certain amount of time, it reaches the knowledge of the loop 

and takes action to break it.  This can be explained as forgetting or changing the agent 

beliefs.  The dog had a certain knowledge about the sheep before the looping.  When they 

start looping, the dog sees that the sheep is not doing what the dog expects.  Therefore, 

after each step in the loop, the dog updates its belief about the sheep's behavior.  When 

the number of steps in the loop reaches a certain value, the dog's belief about the sheep 

completely changes and the dog takes a different action to force the sheep out of the loop.  
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That is, the conditional probability of the sheep's action (SN) and the expected utilities of 

the dog's actions are changed by experiencing the loop.  When the expected utilities of 

the dog's actions are changed, the dog takes a different action and breaks the loop. Figure 

7.14 illustrates how the agents changes its belief about the environment and takes actions 

accordingly.   

Figure 7.14. Changing belief of an intelligent agent. 

In Figure 7.14, the follows the sheep to the corner.  Then, they go back and forward 

between (3,0) and (2,0) for a while.  Finally, the dog stops and waits for sheep to move to 

the pen.  The dog learns the behavior of the sheep in time and fires a different action after 

certain amount of experience.   

Let us explain the loop in terms of the dog's belief about the sheep and the expected 

utilities of the dog's actions.  When the simulation is started, the dog moved towards the 

sheep by firing the action 2d .  Then, the sheep moved away from the dog by taking the 

action 1s .  Now, the dog is at (0,0) and the sheep is at (1,0).  In the next step, the dog 

moves to the right by firing the action 1d .  Then, the sheep also moves to the right to get 

away from the dog.  Now, the dog is at (1,0) and the sheep is at (2,0).  The following 
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equations present the conditional probability of the states of the sheep's decision node SN 

given the dog's actions id  and the expected utilities for the dog's actions. 

{ }001000 ,,,,)|( == dDSP NN     (7.32) 

{ }0072025001 ,,.,.,)|( == dDSP NN     (7.33) 

{ }000102 ,,,,)|( == dDSP NN          (7.34) 

{ }001004 ,,,,)|( == dDSP NN          (7.35) 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

19090
00
16660
43740
19990

.

.

.

.

.

)( NDU     (7.36) 

In above equations, we did not show the conditional probabilities for the action 3d  

because it is physically impossible for the dog to move down.  Thus, the action 3d  is not 

a possible action for the dog and the utility for this action is set to zero.  As can be seen in 

Equation (7.36), the maximum expected utility is provided by the action 1d .  Therefore, 

the dog fires the action 1d  and moves to the right.  Then, the sheep also moves to the 

right to get away from the dog by taking the action 1s .   

Now, the dog is at (2,0) and the sheep is at (3,0).  The following equations present the 

conditional probabilities and the expected utilities for this setting. 

{ }100000 ,,,,)|( == dDSP NN     (7.37) 

{ }001001 ,,,,)|( == dDSP NN     (7.38) 

{ }100002 ,,,,)|( == dDSP NN          (7.38) 

{ }100004 ,,,,)|( == dDSP NN          (7.40) 
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Using the equation (7.41), the dog fires the action 1d  and moves to the right because 

it provides the highest expected utility.  Then, the sheep moves to the left by firing the 

action 2s  because it is physically impossible for the sheep to move to the right.   

Now, the sheep is at (2,0) and the dog is at (3,0).  Let us calculate the conditional 

probabilities and the expected utilities for this setting. 

{ }001000 ,,,,)|( == dDSP NN     (7.42) 

{ }00802002 ,,.,.,)|( == dDSP NN         (7.43) 

{ }001004 ,,,,)|( == dDSP NN          (7.44) 
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As shown in Equation (7.45), the expected utilities for the actions 1d  and 3d  are zero 

because they are not physically possible dog actions.  Therefore, only the conditional 

probabilities corresponding to the possible actions are shown above.  After the expected 

utilities are calculated, the dog fires the action 2d  since it provides the maximum 

expected utility.  Then, the sheep moves to the right again by firing the action 1s .  This is 

basically where the loop starts in the simulation.  The sheep and the dog moved back to 

the same locations after two actions.   
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The current locations for the dog and the sheep are (2,0) and (3,0), respectively.  Let 

us present the conditional probabilities and the expected utilities for this setting one more 

time. 

{ }100000 ,,,,)|( == dDSP NN     (7.46) 

{ }001001 ,,,,)|( == dDSP NN     (7.47) 

{ }100002 ,,,,)|( == dDSP NN          (7.48) 

{ }100004 ,,,,)|( == dDSP NN          (7.49) 
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These values are the same as the values shown two actions ago.  Therefore, the dog takes 

the action 1d  and moves to the right.  Then, the sheep fires the action 2s  and moves to 

the left.   

Now, the dog is at (3,0) and the sheep is at (2,0).  Thus, the dog and the sheep went 

back to the same location after two firing two actions.  Let us examine the conditional 

probabilities and the expected utilities for this setting one more time. 

{ }001000 ,,,,)|( == dDSP NN     (7.51) 

{ }0064036002 ,,.,.,)|( == dDSP NN         (7.52) 

{ }001004 ,,,,)|( == dDSP NN                (7.53) 
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In Equation (7.52), the conditional probabilities are different than that of Equation 

(7.43).  This shows that after firing two actions, the dog updated its belief about the 

sheep.  The change in the conditional probability is reflected on the expected utility of the 

action 2d .  The expected utility of the action 2d  is decreased from 0.4499 to 0.4099.  

Although the expected utility of the action 2d  is decreased, it is still the maximum.  

Therefore, the dog fires the action 2d .  Then, the sheep fires the action 1s .  

Now, the dog is at (2,0) and the sheep is at (3,0).  The conditional probabilities and 

the expected utilities of this setting are the same as the values obtained two actions ago.  

Therefore, the dog fires the action 1d .  Then, the sheep fires the action 2s .  Now, the dog 

is at (3,0) and the sheep is at (2,0).  During the simulation, the dog and the sheep comes 

to this setting three more times.  The dog has to fire different action from the action 2d  to 

break the loop.  Thus, we will examine only the conditional probability for the action 2d  

and the expected utilities.  The following equations show the conditional probabilities 

and the expected utilities for these three visits. 

{ }005120488002 ,,.,.,)|( == dDSP NN         (7.55) 
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{ }00436605634002 ,,.,.,)|( == dDSP NN         (7.57) 
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{ }0032768067232002 ,,.,.,)|( == dDSP NN         (7.59) 
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As can be seen in Equations (7.56), (7.58), and (7.60), the expected utility for the action 

2d  decreases after every visit.  This is because the conditional probability for the action 

2d  (the dog's belief about the sheep) changes after every visit.  Finally, the expected 

utility of the action 2d  becomes lower that the expected utility of the action 0d .  This is 

the point where the dog breaks the loop by firing the action 0d  and staying at the same 

location.  Then, the sheep fires the action 2s  and gets away from the dog.  The sheep gets 

closer to the pen.  In the next step, the dog moves to the left by firing the action 2d .  

Then, the sheep moves to the left and gets into the pen as shown in Figure 7.14.   

Let us examine how the conditional probability and the expected utility for the action 

2d  change over time by summarizing the results shown above.  The following equations 

summarize the conditional probability )|( 2dDSP NN =  for each visit to the locations 

(3,0) and (2,0) for the dog and the sheep, respectively. 
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{ }00802002 ,,.,.,)|( == dDSP NN    (7.61) 

{ }0064036002 ,,.,.,)|( == dDSP NN    (7.62) 

{ }005120488002 ,,.,.,)|( == dDSP NN    (7.63) 

{ }00436605634002 ,,.,.,)|( == dDSP NN   (7.64) 

{ }0032768067232002 ,,.,.,)|( == dDSP NN   (7.65) 

The conditional probability )|( 21 dDsSP NN ==  changes from 0.2 to 0.67232.  

Similarly, the conditional probability )|( 22 dDsSP NN ==  changes from 0.8 to 0.32768.  

This can be interpreted as the dog changes its belief about the next action of the sheep.  

At the beginning, it believes that sheep is most likely to fire the action 2s  because 

)|( 22 dDsSP NN ==  is higher than )|( 21 dDsSP NN == .  After five visits to the same 

positions, the conditional probabilities are changed drastically.  Then, the probability 

)|( 21 dDsSP NN ==  became larger than )|( 22 dDsSP NN == .   

The change in the conditional probability has an affect on the expected utility for the 

dog's actions.  The expected utility for the action 2d  was 0.4499 at the beginning of the 

loop.  The expected utility of the action 0d  was 0.3333.  After five visits to the same 

location, the expected utility of the action 2d  became 0.3319 while the expected utility of 

the action 0d  stayed the same.  After the fifth visit, the utility of the action 2d  became 

smaller than the expected utility of the action 0d .  As a result, the dog has fired the action 

0d  and broken the loop after the fifth visit.  The following graph shows how the expected 

utility of the actions 2d  and 0d  change over time. 
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Figure 7.15. The expected utilities of the actions 2d  and 0d . 

Breaking a loop is another example of the learning capability of the decision-theoretic 

intelligent agent design.  The intelligent agent updates its world model according to its 

experience over time.  After certain amount of time, the intelligent agent changes its 

behavior according to its experience.  This is seen as similar to human belief.  People do 

not change their beliefs suddenly.  They tend to wait a certain amount of time before they 

change their mind.  This is normal because if the agent changes its belief quickly, then, it 

will not have any memory or belief about the environment.  It will take its actions 

according to the very latest experience, which could be a random one.  The agents exhibit 

a humanoid belief process in the simulation.  The details of the biological aspects of the 

agents are explained in Section 1.  

In the simulations, the agents became stuck in a loop partly because their network 

structure is not good enough to take better actions and partly because the length of the 

database is not enough to provide accurate network parameters.  After looping for a 
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while, the agent updates the network parameters and takes actions to move the sheep out 

of the loop.  The agent records its experience into the database during its exploration.  

The agent updates the network parameters with its experience, but it cannot change the 

network structure automatically.  The user can run the network creation algorithm to 

regenerate the network with the modified database.  We have run the network search 

algorithm with the modified database and the new network structure has been generated.  

Figure 7.16 shows the resulting network. 

 
Figure 7.16. Network generated after the agent explored the environment. 

 
In Figure 7.16, there are new arcs and some of the arcs have opposite directions if we 

compare the network with the network shown in Figure 7.12.  Additionally, the network 
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has more arcs than the previous one.  Since the network creation is not done by the agent 

there is no way of knowing the score of the network.  Therefore, we do not know that this 

is a better network than the previous one.  Simulations are performed with the new 

network to find out its behavior.  There was no looping after running 10 simulations.  The 

new network, in fact, is a better network than the previous one.  Generating the network 

with the modified database has improved the performance of the network and the agent.  

In the future, the agent can automatically regenerate the network to see whether it can 

create better networks using its experience.   

We have shown that the learning from experience causes intelligent agents to take 

better actions in time.  After the learning, the intelligent agent establishes the task in a 

shorter time or in fewer steps.  The next section will present the effectiveness of the 

proposed online Bayesian network learning by simulating the problem without learning.  

In this section, we have performed simulations with different search algorithms and 

databases.  In all simulations, the dog herded the sheep successfully.  In some 

simulations, the agent had to explore the environment and learn more about the 

environment to correct its behavior.  In short, we can conclude that if the Bayesian 

network structure is accurate enough, the agent can be successful with a limited initial 

knowledge.  On the other hand, if the network structure is not accurate enough, then, the 

agent has to explore and learn the environment.  In some cases, the agent may even need 

to regenerate the network structure using its experience.   

Simulation results show that the online Bayesian network learning provides the 

learning from the experience and the self-organization in the intelligent agent model.  The 

next section presents the effectiveness of the online Bayesian network learning by 
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simulating the problem without using the online Bayesian network learning in the 

proposed intelligent agent model. 

 

7.3 The effectiveness of the online Bayesian network learning. 

The online Bayesian network learning is the most important feature of the proposed 

intelligent agent model because the intelligent agents change their behavior after they 

learn from their experience.  The more they learn about the environment and the other 

agents, the better they perform their task.  For example, as shown in Figure 7.10, the 

intelligent agent (the dog) learns to keep the sheep in the pen by only taking two actions 

after two simulations.  Before the learning, the dog put the sheep into the pen after 

several steps.   

The proposed intelligent agent model learns its environment continuously.  The 

learning causes the intelligent agents to change their belief about the environment and the 

other agents.  The change in the belief causes a change in the agent's behavior because 

the agent takes different actions after the learning.  Because the agents change their 

behavior according to the other agent's behavior and the environmental changes, we can 

claim that the agents take actions in coordination.  The coordination between the agents 

provides the self-organization of the agents in a multi-agent system.   

The following simulation results show that if the online Bayesian Learning is 

removed from the proposed agent design, the learning and self-organization capabilities 

of the agents diminish.  The agent act according to its knowledge from the initial data.  If 

initial data are not available, then the agent acts by assuming the uniform probability in 
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the Bayesian network.  We will repeat the three simulations in the previous section 

without the online learning in the Bayesian network.   

Let us simulate the dog & sheep problem by using the network in Figure 7.7 without 

the online learning.  In this case, the system dynamics are known.  As stated in the 

previous section, the intelligent agent learned to keep the sheep in the pen after two 

simulations.  Figure 7.17 shows the simulation results without the online learning. 

 
Figure 7.17. (a) is the first run, (b) is the second run, and (c) is the 10th run. 

 
As can be seen in Figure 7.17, the agents do not change their behavior over time.  The 

dog always takes the same route to put the sheep in to the pen.  It does not try other 

actions to do put the sheep into the pen in fewer steps.  This is because the dog 

(intelligent agent) does not adapt its belief about the sheep.  In other words, the dog does 

not learn from its experience over time.  Therefore, we can conclude that the intelligent 

agent performs poorly when it does not learn from its experience.   

Although the dog performs poorly, it still puts the sheep into the pen successfully.  

This is mostly because the expected utilities of the actions are determined by the utility 

function, which involves the distance between the sheep and the pen and the distance 
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between the dog and the sheep.  Additionally, the structure of the network is good enough 

that the agents do not get in a loop during the simulations.  When the network structure is 

not good enough, the agents will probably get in a loop and stay there forever.   

Let us simuate the system by constructing the network from the data as in Figure 

7.11.  In this case, the heuristic search and the Bayesian score is employed to generate the 

network.  Figure 7.18 shows the results for the first, the second, and the 10th runs. 

 

Figure 7.18. Simulations for unknown network structure and no online BN learning. 

 
Figure 7.18 supports our claim that if the structure is good enough the dog can still 

put the sheep into the pen but the dog has to take several actions.  The behavior of the 

dog is the same in each run since it does not learn during the simulation.   

Finally, we will simulate the case where the network is not good enough as shown in 

Figure 7.12.  In this case, the exhaustive search and the MDL score with Kullback-Leiber 

is employed to generate the Bayesian network.  As shown in Figure 7.14, the agents get 

into a loop during the simulation.  In Figure 7.14, the dog breaks the loop after certain 

number of steps because it continues to learn during the simulation.  Figure 7.19 presents 

the simulation results obtained by canceling the online BN learning in the agent model.  
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Figure 7.19. Looping in the simulations when the online BN learning is not applied 

 
In Figure 7.19, only two steps are shown because the agents loop between (2,0) and 

(3,0).  The simulation ends when the maximum number of steps is reached.  If we do not 

limit the number of steps in the simulation, the simulation continues forever.  The agents 

stay in the loop until the maximum number of step is reached.  This is because the dog 

takes its actions according to its initial belief about the sheep and the environment.  Since 

it does not learn the sheep's behavior and change its behavior accordingly, the dog takes 

the same action for the same setting.  The sheep also moves to avoid the dog and tries to 

get away from the dog.  In real life, the sheep will not take the same action forever 

because it will definitely be tired after certain amount of time.  When the sheep is tired, it 

will behave differently and may break the loop.  This is also valid for the dog.  Even 

though the loop can be broken after certain amount of time, it will take more steps than 

that of the case where the intelligent agent learns from its experience.  

In summary, the online BN learning provides the learning from the experience and 

the self-organization of the multi-agent system.  If the online BN learning is not applied, 
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the intelligent agent cannot improve its behavior according to the other agent's behavior 

and the environmental changes.  Since they cannot change their belief about the other 

agents, the self-organization of the agents cannot be accomplished without applying the 

online Bayesian network learning.   

Simulation results show that if the online Bayesian network learning is not applied in 

the intelligent agent design, the self-organization ability of the intelligent agents cannot 

be accomplished.  Additionally, the intelligent agents cannot adapt their behavior if the 

environment changes over time.  In the next section, we will conclude this research and 

present possible future work.  
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CHAPTER 8 

Conclusions 

A decision-theoretic intelligent agent model has been proposed and applied to a real 

world problem.  Bayesian networks and influence diagrams are combined with the help 

of utility theory to define the decision-theoretic intelligent agent.  Learning in the agent is 

accomplished by introducing an online Bayesian network learning.  An intelligent agent 

software, IntelliAgent, is written using Visual C++ and a C++ class library for the 

decision-theoretic intelligent agent design.  Finally, The herding problem was 

successfully simulated by the help of the intelligent agent software.   

Bayesian network learning is explored in Section 3.  Design of the proposed online 

Bayesian network learning is explored in Section 4.  The online Bayesian network 

learning has the following properties: 

• Bi-directional learning (Bottom-up, Top-down) 

• Combines supervised and unsupervised learning 

• Online; learning is continuous 

• Adaptive; network structure and parameters are updated by the new information 

• Biologically inspired by the usage of Bayesian networks. 

 

The online Bayesian network is combined with influence diagrams to create an 

intelligent agent as described in Section 4.  Shoham's agent design is employed to design 

the decision-theoretic intelligent agent.  An agent consists of belief (BN), preference 

(Utility - ID) and capabilities (action set - ID).  In the decision-theoretic intelligent agent 
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design, two more levels, sensors and actions, are added to the agent design for practical 

purposes.  The "sensors" level is responsible for gathering sensory information and 

passing it to the BN.  The "actions" level is responsible for carrying the actions fired by 

the agent.   

After designing the decision-theoretic intelligent agent, the IntelliAgent software is 

utilized to perform simulations of a real life problem.  The IntelliAgent software user 

manual and tutorials are presented in Section 6.  The software is Windows application 

software created by C++ class libraries written for the decision-theoretic intelligent agent 

design.  Manual and automatic agent creation is possible in the IntelliAgent software. 

As stated earlier, the decision-theoretic intelligent agent model is applied to a real 

time problem, a herding problem.  The herding problem, also called Dog&Sheep 

problem, is analyzed for one sheep and one dog.  The goal of the dog is to herd the sheep 

to the pen.  The goal of the sheep is to avoid the dog.  The simulations are performed on a 

nn ×  grid.  The user can set the dimensions of the grid in the IntelliAgent software.  

Simulation results for 44 ×  grid is presented in Section 7.  The following is concluded 

after analyzing the simulation results: 

• The dog (intelligent agent) herds the sheep to the pen successfully in every 

simulation.  Simulations are run with different positions of the dog and the sheep. 

• The intelligent agent shows learning capability by presenting behavioral change 

by observing the sheep (other agent and the environment).  This is also defined as 

'learning from experience".  The dog takes its actions according to sheep's 

behavior.  This is the self-organization property of the proposed decision-theoretic 
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intelligent agent model.  Each agent is independent but takes its actions according 

to other agents' behaviors.  

• The dog has human-like belief about its environment.  The dog changes its belief 

about the environment including other agents in a humanoid way.  For example, if 

the sheep and the dog are stuck in a behavioral loop, the dog does not change its 

behavior immediately.  As shown in Section 7, the dog does not change it's 

believe about the sheep immediately.  It waits for a couple of steps, then it 

changes its behavior by taking a different action for the same situation.  This type 

of behavior is a standard human behavior.  People do not change their belief 

abruptly after they have encountered an unusual event on a specific subject.  They 

would like to experience the event several times.  Then, they modify their believe 

on the subject.  The decision-theoretic agent also modifies its belief by a certain 

amount of experience on an unusual environmental state.  

 

After concluding the simulation results, the general properties of the decision-

theoretic intelligent agent model are presented.  The system analysis of the model is 

presented in Section 5.  The following are the properties of the decision-theoretic 

intelligent agent system: 

• The agent has bi-directional learning capability.  It starts with an initial world 

model.  It takes its actions according to the initial world model and its utility 

function (goal).  The agent explores the environment and gathers information after 

taking actions.  Then, it uses the information to modify its world model.  As 
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explained in Section 5, it has bottom-up and top-down learning.  In the literature, 

there are only a few learning methods that can claim to be bi-directional learning. 

• The decision-theoretic intelligent agent also combines supervised and 

unsupervised learning.  It takes its actions according to the initial world model 

and the utility function - unsupervised learning.  Then, it modifies its world model 

by responses it gets from the world.  While it explores the environment, it also 

exploits the environment by generating a world model - supervised learning.  

• As stated in the context of system analysis, the decision-theoretic intelligent agent 

system can be seen as adaptive and as a feedback control system.  The agent 

system combines feedback and adaptive control properties.  There is a feedback 

loop because the agent observes the current environmental state, compares it with 

its goal state, and takes actions according to the difference between the current 

state and the goal state.  The agent system is an indirect adaptive control system 

because the agent modifies the plant (world) model and the controller with the 

actual responses from the environment.  Section 5.2 presents the details of the 

system analysis of the decision-theoretic intelligent agent system. 

• As learning is biologically inspired, the decision-theoretic intelligent agent system 

is also biologically inspired.  Each agent has sensors, belief, preference (goal), 

and capabilities, actuators as people do.  People have sensors such as eyes, ears, 

and skin.  They also have belief about environment, i.e., there is a college in town.  

They have a goal/goals, i.e., a college degree.  They have capabilities such as 

walking, studying, and reading.  Finally, they have actuators such as arms, legs, 

and brain.  Therefore, a student is going to "walk" to the college, "get" an 
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application, "fill" the application, and "hand in" the application, "get in" to the 

college, "study" four years, and finally "get" a college degree.  While the student 

is taking his/her actions, he/she is updating his/her world model.  For example, 

when he/she applies to the college he/she sees the requirements and updates 

his/her knowledge about the college.  Then, the student plans his college career 

and takes actions accordingly.  The decision-theoretic intelligent agent takes its 

decision using the same decision structure as humans.  That is why the decision-

theoretic intelligent agent is said to be a biologically inspired agent model. 

 

Hardware implementation of the problem is studied by using a mobile robot.  An 

advanced mobile robot is purchased from Real World Interface, Inc. for the research.  

The robot has its own PC and a CORBA based software package, Mobility™.  A C++ 

program is written using the CORBA based Mobility software to let the robot take 

actions.  The program takes a text file that contains dog’s action commands.  Then, the 

commands are used to control the robots “rotate” and “translate” movements.  The closed 

loop control algorithm is obtained by using the odometer of the robot.  The control 

system steers the robot to a target x-y coordinate.  The target coordinate is calculated by 

using the current position of the robot and the next command (next action) in the text file.  

The IntelliAgent software is modified to record the dog’s actions into a text file.  

In summary, the decision-theoretic intelligent agent model is successfully applied to a 

real life problem.  The herding problem is simulated by the IntelliAgent software.  

Simulation results clearly reflect the behavior of the decision-theoretic intelligent agent.  

The next section presents possible future work. 
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CHAPTER 9 

Future Work 

Even though the results of the simulations are successful, additional work can be done in 

the IntelliAgent software and practical implementation of the proposed agent design. This 

section presents the future work in two parts; software and hardware. 

The following is the list of possible improvement in the IntelliAgent software: 

• The online Bayesian network learning in the IntelliAgent software can only 

handle complete databases.  The proposed Bayesian network learning method can 

handle the cases where the network structure is known and the system variables 

are observable and where the network structure is unknown and the system 

variables are observable.  The learning algorithm in the IntelliAgent software can 

be modified to handle the unobservable system variables.  In other words, the 

software should handle databases with unknown values.  Methods for learning 

from incomplete databases are explored in Section 3.  For example, expectation 

maximization (EM) algorithm can be added to the software.  

• The IntelliAgent software can be designed as Multiple Document Interface 

programs so that the user can run different simulations at the same time.  That is, 

a problem can be run with different Bayesian network structures and a choice 

made for the best one. 

• Bayesian network creation can be done by mouse operations or by using a 

database.  As stated earlier, the user cannot edit the utility function in the agent 

since the utility nodes cannot be created visually.  The reason is that the utility 
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node has many elements because it is dependent on four variables; X and Y 

coordinates of the sheep and the dog.  On the other hand, a visual function editor 

can be placed into the program so that the user can edit the utility function of the 

agents. 

• Similarly, the decision nodes are not also created as a rectangle in the software.  

They are shown as ellipsoidal because they can be treated as chance nodes after 

they are instantiated.  A radio button can be placed into the parameters dialog box 

to specify the decision nodes after they are created as a chance node.  This may 

help the user to understand the network better for complex network structures. 

• Finally, the Edit menu can be activated by creating functions for copying, cutting, 

and pasting nodes and arcs.  Adding a node and an arc is already in the C++ class 

library.  One can easily incorporate those functions to the Edit menu elements. 

 

After visiting the future work for software development, the following is the future 

work for the hardware aspect of the research. 

• As explained in the conclusions, an offline hardware implementation is performed 

where the robot gets all the actions necessary during the simulation.  There is no 

real time interaction between the robot and the sheep in this hardware 

implementation since the robot moving according to the simulations results. To 

make the system real-time.  The IntelliAgent software can be recompiled with a 

CORBA interface to communicate with the robot.  Then, the IntelliAgent 

software can tell the robot what to do. Similarly, the robot can send sensory 

information to the IntelliAgent software.  Another mobile robot can be designed 



 195

to be a sheep with limited capabilities.  Finally, the herding problem can be 

performed with these two robots. 

• Since the second robot is not ready at the moment, an alternative can be to use the 

IntelliAgent for the sheep's behavior.  The IntelliAgent knows the dynamics of the 

sheep and easily determined its actions after the dog's actions.  In this case, the 

IntelliAgent software simulates the problem and sends "translate" and "rotate" 

commands to the mobile robot through Internet.   

• Experimental CORBA interface is written for communication of two Windows 

programs over the net.  Satisfactory results are obtained for the CORBA interface.  

The next step will be to establish an interface between a Linux program to a 

Windows program using CORBA.  Since the robot's program is a CORBA based 

program, connecting that program to IntelliAgent software should not be difficult. 

• A program is written for the robot to move to a certain location.  The program 

takes three inputs; speed of translation, speed of rotation and the length of 

operation.  By choosing the right values for these parameters, the program can 

move the robot to a certain location.  The results obtained from this program are 

not accurate because the distance is calculated by the speed and the time.  The 

robot may not obtain the same speed all the time because the surface friction may 

not be constant.  Therefore, there is a need to find out whether the program can 

read translation values for the wheels.  A study is being performed to find out how 

the robot can be moved accurately.  
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APPENDIX  

 

A. Classes of the IntelliAgent Software 

Four types of classes are used to create the IntelliAgent software, namely MFC classes, 

helper classes, visual C++ project classes, and ActiveX classes.  The MFC classes will 

not be discussed here since there are standard classes in Microsoft Visual C++.   

 

A.1 Helper classes 

Helper classes can be presented in two categories, Bayesian network related classes and 

intelligent agent related. 

 

A.1.1 Bayesian network related classes 

There are six classes related to the Bayesian network creation; CNode, CArrow, CMatrix, 

CCptDialog, CParamDialog, and CNetGenerationDlg.   

 

A.1.1.1 CNode 

This class consists of the definition of a node and its functionality.  The application 

programmer creates nodes in a network by creating an object of this class.  The class has 

two constructors, CNode() and CNode(CRect nodeLocation).  The second constructor 

creates a node in a desired location whereas the first one creates a default node with 

default parameters.  Let us explore the functions in CNode class briefly.   
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AddParentOnCPT() 

As stated earlier, the software has the ability of expanding the CPT of a node when a new 

arc is added or removed from the node.  The AddParentOnCPT() function automatically 

expands the CPT matrix of a node, whenever the number of child or parent is changed by 

adding or removing an arc to the node.   

 

Inference() 

This function performs forward and backward inference after the network update is done. 

 

BackwardInference() 

BackwardInference() function performs backward inference by transmitting the evidence 

to its parents.  This function also calls Inference() function on its parents.  Thus, the 

inference travels through the network until a first level node or an end node is reached. 

 

ForwardInference() 

BackwardInference() works very similar to the BackwardInference() function.  It 

performs forward inference by changing its children's probabilities and calling 

Inference() function on them. 

 

OnCalculateBayesScore() 

This function calculates the Bayesian score for the node.  It uses the technique defined in 

Section 4.  To calculate the score, the function either uses the node's probabilities or 

conditional probability table depending on the parents of the node. 
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OnCalculateLikelihood(int r) 

This function works similar to OnCalculateBayesScore() except it calculates the 

likelihood score of the node given a data case.  The resulting score value is used in MDL 

and LogLikelihood score calculations. 

 

OnCalNodeLength() 

This function calculates the length of the node.  The length of the node is the number of 

element in the CPT.  This value is then used to calculate the complexity of the network. 

 

CreateNodeCPT() 

This function creates the initial CPTs in the nodes when the software first creates the 

node.  It can be considered as initial creation of the CPTs in the nodes. 

 

OnUpdateCPT() 

This function updates the CPT similar to AddParentOnCPT() function.  This function is 

called when the user would like to update the network.   

 

OnVisit() 

OnVisit() functionrecords whether the node is visited on a path.  This function is used to 

determine whether there is a cycle in the network or not.  If the node is visited twice on a 

path, then the program decides there is a cycle. 
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OnDraw() 

This function draws the nodes on the device context whenever the creation of the node is 

completed.  The function draws an ellipsoid and fills the ellipsoid with green. 

 

Serialize(CArchive &ar) 

This is a serialization function for the node objects in the program.  Whenever the user 

chooses to save the work, this function determines what needs to be saved in the node. 

 

CNode class variables 

int  m_InstantiatedState 

int  m_EvidenceFlag 
int  m_NumOfStates 
int  m_NodeNumber 
CMatrix  m_NodeCPTnum 
CMatrix  m_NodeCPTdenum 

CMatrix  m_Prob 
CMatrix  m_NodeCPT 
CUIntArray   m_Child 
CUIntArray   m_Parent 
CRect  m_NodeLocation 
CString  m_NodeName 
BOOL  m_VisitPass 
BOOL  m_IsNodeVisited 
BOOL  m_Modified 
 
 

A.1.1.2 CArrow 

CArrow class is designed to create arrow (arc) objects in the network.  It has two 

constructor, CArrow() and CArrow(CPoint tail, CPoint head).  The first one is the default 

constructor. The second constructor is designed to create the arrows mouse operations. 

The constructor takes two points as input and creates an arrow between the corresponding 
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nodes.  It first finds in which nodes the points are.  Then, it draws an arrow between those 

nodes. Let us explore the functions in the class. 

 

Draw(CDC *pDC) 

This is the function for drawing the arrow on the device context of the software.  The 

function gets the pointer (pDC) to the device context (CDC). 

 

Serialize(Archive &ar) 

This function performs the serialization of the arrows in the network when the user saves 

the network.   

 

CArrow class varables 

CPoint   m_Head 
CPoint   m_Tail 
int      m_HeadNode 
int      m_TailNode 
CPoint m_Arrow[3] 

 

A.1.1.3 CMatrix 

CMatrix class is designed to perform matrix operations in the inference calculations.  The 

are also used as a value type. For example, the variable m_Prob in a node is a one-

column matrix.  Similarly, a CPT of a node can also be represented as a matrix, i.e. 

m_NodeCPT.  There are four constructors for the class;  

CMatrix():  Default constructor. 

CMatrix(int row, int row):  Creates a matrix "row" rows and "col" columns. 

CMatrix(int row, int col, char Iden):  Creates identity matrix. 
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There are 14 functions in the CMatrix class.  The functions is presented with their 

brief functionalities. 

 

AddColumn(int i) 

This function adds "i" number of columns to a matrix.  The function fills the new column 

with 0.5 because 0.5 is the initial probability for every variable. 

 

AddRow(int i) 

This function adds "i" number of row to a matrix.  It also fills the new row with 0.5.  

 

GetElement(int i, int j) 

An element of a matrix can be obtained by this function.  The function returns the 

element in ith row and jth column. 

 

MaxElement() 

This function finds the maximum element in the matrix.  It returns the row of the 

maximum element as an integer. 

 

OnZero() 

All elements of the matrix becomes zero after this function is applied to a matrix. 

 



 202

operator()(int i, int j) 

This function works as the same as GetElement(int i, int j) function. It returns the value in 

the ith row and jth column. 

 

operator *(const CMatrix & rhs) 

This is an override function of "*" operator for matrix multiplication.  It multiples two 

matrix and returns the resulting maxtrix. 

 

operator =(const CMatrix &rhs) 

This is an override function of "=" operator.  It replaces the matrix on the left with the 

matrix on the right.   

 

SetElement(int row, int col, float x) 

An element of a matrix can be replace with a new value.  The value in row "row" and 

column "col" is replaced by x. 

 

Supermultiply(Cmatrix &) 

This is a special multiplication designed for handling multiplication in inference 

calculations.  In inference calculations, multiplying two CPT is not equal to multiplying 

two matrices.  Supermultiply function multiplies two CPT according to the inference 

calculation techniques. 
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Transpose() 

This function takes the transpose of a matrix. It returns a matrix. 

 

NumOfStates() 

This is not a standard matrix operation. It is designed for determining the number of 

states in the nodes by going through a database.  It looks for the maximum value in each 

column and put in a row matrix with the same number of columns.  

 

CalculateJP(Cmatrix &test, int m) 

This is also a special function for calculation joint probability of a data case in a database.  

It takes a database matrix and a row number (m), then, returns the joint probability of the 

data case in the mth row of the database.  This function is used in probability calculations 

of the network variables. 

 

CMatrix class variables 

CArray <float, float>  m_CPT 
int  m_col 
int  m_row 

 

A.1.1.4 CCptDialog 

This is a dialog box class.  It handles the CPT updating dialog box.  The user enters the 

new values into this dialog.  When the user clicks the OK button on the dialog the new 

value is placed into the CPT. There are two main functions in the class: 
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OnInitDialog() 

This function handles the initialization of the dialog box.  It displays the default 

parameters of the dialog box.  

 

OnOK() 

This is the main function in the dialog box.  Whenever the OK button is clicked by a user, 

this function is called.  The function puts the new value entered from the edit box into the 

CPT. 

 

CCptDialog class variables 

CString m_dEditCPT:  Handles the edit box in the dialog box. 

 

A.1.1.5 CParamDialog  

This is the class that handles the Parameters dialog box.  The user edits and updates node 

parameters using the functions in this class.  The following paragraphs present the main 

functions in the CparamDialog class. 

 

OnOK() 

This is the function for OK button.  This function wraps up all the changes the user made 

on the parameters dialog box.  This function finalize the changes on the node parameters. 
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OnCheckProbSum(double initial)  

This function checks whether the new probabilities have legal values or not. It checks 

whether the summation of the probabilities is 1 or not.  It returns a Boolean value after 

the check. 

 

OnInitDialog() 

This is the initialization function.  It determines the values in the dialog box when the 

dialog box appears.   

 

OnListEnter() 

This is the function for enter button on the dialog box.  It takes the value in the 

Probabilities edit box and puts the value into the state probability list.  It is used for 

entering the value of a state after increasing the number of states in the node.  

 

OnSelchangeProbList() 

This function is activated if the user clicks the left mouse button on one of the state 

probabilities.  The function enables an edit text box and a push button (Update) under the 

probability list box.  Then user can change the value in the state probability list. 

 

OnListUpdateselitem() 

This function is called whenever the user clicks the left mouse button on the Update push 

button.  The function takes the value in the edit box and places it in the selected line in 

the probability list. 
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SetModifiedFlag() 

This fucntion sets a flag after the parameters of the node are updated.  Then, the software 

knows which nodes are updated.  Finally, when the user clicks the network update button, 

the software update the network according to these flag values. 

 

SetParameters(int states, CMatrix prob, CString name, int nodeNumber, CUIntArray 

&parent, CUIntArray &child, CMatrix cpt) 

This function is designed to update the node parameters with the new values before the 

dialog box is closed.   

 

OnDblClickMsflexgridCpt() 

This is the function for editing the CPTs in the nodes.  When the user double clicks the 

left button on a CPT value, this function is called.  The function first gets the row and the 

column of the CPT value. Then, it activates the CPT updating dialog box.  Finally, the 

value in the CPT updating dialog box is entered to the CPT table on the parameter dialog 

box. 

 

UpdateDialogCPT() 

This function puts the CPT table on the parameter dialog box into the node's CPT table.  

It also updates the CPT if the user has changed the number of states in the node.  

Increasing the state number increases the number of row in the CPT. 
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CParamDialog class variables 

int m_States 
int  m_NodeNumber 
CString m_Probabilities 
CString m_Name 
CString m_dChangeListItem 
CStringArray  m_ProbabilityList 

CMatrix  m_dCPT 
CUIntArray  m_ChildList 
CUIntArray  m_ParentList 
CListBox m_ListControl 
CMSFlexGrid m_dMSFlexGridCPT 
CCptDialog  m_EditCPTDialog 

 

A.1.1.6 CNetGenerationDlg 

This is also a dialog box class.  It handles the network generation dialog box.  The user 

can specify the properties of the network search algorithm using the function of this class. 

As stated earlier, there are seven radio buttons concerning the choices the user can make 

in the dialog box.  Each radio button has a function attached to it.   

 

OnRadioHeuristic()  

This function is called when the user chooses the Heuristic radio button. The function 

sets the type of search algorithm by setting SEARCH_ALGORITHM to HEURISTIC 

constant integer.  The variable SEARCH_ALGORITHM is a global variable in the 

document class.  When the search algorithm starts, the software checks this value and 

decides which search algorithm needs to be used. 
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OnRadioExhaustive() 

This function works as the same as OnRadioHeuristic() except it sets the variable 

SEARCH_ALGORITHM to EXHAUSTIVE constant integer. 

 

OnRadioMdl() 

This function is called when the MDL radio button is clicked.  The fucntion sets the 

document global variable SCORE_TYPE to 0.  The software checks the variable 

SCORE_TYPE to decide the score type.  Score type can take three values 0, and 1 for 

MDL and Bayesian scores respectively.   

 

OnRadioBayesian() 

This function sets the variable SCORE_TYPE to 1 to choose the Bayesian scoring.   

 

OnRadioKl() 

This function sets the document global variable DISTANCE_TYPE to 0 to choose 

Kullback-Lieber distance measure for the score calculations. 

 

OnRadioEuclidean() 

Similarly, this function sets the document global variable DISTANCE_TYPE to 1 to 

choose Euclidean distance measure for the score calculations. 
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OnRadioLoglikelihood() 

This function sets the distance measure type to Log-Likelihood by setting the variable 

DISTANCE_TYPE to 2. 

 

OnInitDialog() 

This is the initialization function for the network generation dialog box.  It sets the 

default values on the dialog box. 

 

CNetGenerationDlg class variables 

CSliderCtrl m_SliderCtrl 
int m_SliderValue 

 

 

A.1.2 Agent related classes 

There are two agent-related classes; CAgent and CAgentDlg.  First one handles the agent 

object creation.  The second handles the agent creation dialog box. 

 

A.1.2.1 CAgent 

This class has only one constructor, CAgent().  It creates an agent at (0,0) location with a 

NULL name.  There is only one function in the class, Draw (CDC *pDC).  It draws an 

agent on the screen at a specified location.  
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A.1.2.1 CAgentDlg 

The locations and names of the agents can be entered form the agent creation dialog box.  

Additionally, simulation properties can be set with this dialog box.  There are five main 

functions in the class.  Names and the locations of the agents can be entered into the 

corresponding edit boxes on the dialog box.  The dialog box automatically sets the 

variables of the class using those values.   

 

OnInitDialog() 

This function handles the initialization of the dialog box. 

 

OnOK() 

This function finalizes the parameters edited in the dialog box.  It closes the dialog box.  

OnRadioStepsim() 

This function is called when the user clicks on the Step push button on the dialog box. 

The function sets a variable in the document class to run the simulation step by step. 

 

OnRadioContsim() 

Similar to the previous function, it is called by pushing the Continuous button on the 

dialog box.  The function sets a variable in the document class to run the simulation 

continuously. 
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OnButtonTraining() 

This is the function for Training push button.  The function enables an edit box and a 

static text on the dialog box to let the user enter the number of training steps.   

 

CAgentDlg class variables 

int  m_dAgentLocX 
int  m_dAgentLocY 
int  m_dAgent 
int  m_dTrainingStep 

 

We have completed the helper classes used in the IntelliAgent software creation.  The 

following section explores the visual C++ project classes, CProjectDoc and 

CProjectView.  These two classes are responsible for network calculations, simulation 

and visual parts of the software. 

 

 

A.2 Visual C++ project classes 

When an application program is written in visual C++, the program creates four classes 

automatically, mainframe class (CMainFrame), application class (CprojectApp), 

document class (CProjectDoc), and view class (CProjectView).  Usually, the programmer 

does not edit the mainframe and the application classes.  Thus, they are not discussed 

here.  The document class contains all the data handling and the calculations of the 

program.  Finally, the view class handles the visualization of the program.  In this 

section, the focus will be on the functions added into the document class and the view 

class.  
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A.2.1 Document class 

The document class has member functions and member variables to perform necessary 

calculations in the decision-theoretic intelligent agent systems.  The functions and 

variables will be discussed in terms of their functionality in the program.  Programming 

details will not be presented here.   

 

A.2.1.1 Document class member functions 

The following list is the functions in the document class with their brief definitions.  

Since the actual source code can be obtained from the author, the details of the functions 

are not presented here. 

 

BOOL OnIsNetworkCyclic()   

The function returns TRUE if the Bayesian network has cycles. 

 

void OnCreateDatabase() 

The function reads a database into the program and puts the database in a matrix form.  

The program uses this matrix for the network calculations. 

void OnCreateDatabase(CStdioFile *f, CMatrix dataMatrix) 

The function prepares the database for saving.  This is important especially if new data is 

collected from the environment.  The function saves the database along with the Bayesian 

network.  The matrix dataMatrix represents the database for the system.  It is a global 

matrix called testTable throughout the program. 
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void OnRenewOrUpdateNetwork() 

After a change is made on the network, this function updates or renews the network 

according to the changes.  

CMatrix CreateNodeProbability(int i) 

This function calculates the probabilities of the node i.  It returns a matrix containing the 

probabilities of the node. 

 

long double Gamma(unsigned int i) 

Gamma functions are necessary to calculate the Bayesian score of a network.  This 

function calculates the gamma function for a given integer and returns the results as long 

double. 

 

void RemoveAllArrows() 

This function removes all the arcs (arrows) in a Bayesian network.  It also updates the 

network after the arcs are removed. 

 

void OnNetworkGenerate() 

This is the main function for the network generation.  It generates a Bayesian network 

according to the network creation parameters such as the search type, the score type and 

the distance measure type. 

 



 214

float OnCalculateActLikelihood(int i) 

This function calculates the likelihood of the conditional probabilities in a node.  The 

function returns a float.  The results produced by this function is then added together to 

calculate the over all likelihood of the network.  

 

float OnCalNetworkScore() 

This function calculates the score of a Bayesian network depending on the distance 

measure type such as Kullback-Lieber and Euclidean. 

 

void OnPositionAgentsRandomly() 

This function is used in the simulation of the intelligent agent system, namely 

Dog&Sheep.  It is used to train the agent by locating agents randomly and running the 

simulations.  This function places the agents on the environment randomly. 

 

int createRandomNumber(int i) 

This function generates a random integer between 0 and i.  It is used in above function to 

place the agent randomly. 

 

CAgent* GetAgent(int i) 

The function returns a pointer to the agent object at the specified location (i) in the agent 

object array (m_oaAgents). 
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CAgent * AddAgent(int X, int Y) 

This function creates and agent located at X, Y.  Then, it adds the agent to agent object 

array and returns a pointer to the agent. 

 

void UpdateDogSheepPos() 

This function updates the locations of the dog and the sheep after they make a move.  

 

void OnCreateNextPosTable() 

This function creates a table for the next position for the sheep and the dog.  The table 

consist of the changes in the x and y direction for all possible actions of the dog and the 

sheep.  UpdateDogSheepPos() function uses this table to determine the new coordinates 

of the dog and the sheep.  

 

BOOL OnLegalMove(int x, int y, int m) 

The function checks whether the actions of the agents are legal by comparing their 

coordinates with the problem dimension (the dimension of the grid).  It returns TRUE if 

the action is legal and returns FALSE otherwise. 

 

float OnDogSheepUtility(int i) 

This function calculates the expected utility of a specified action.  The function takes an 

integer denoting the sheep's next move after the dog's next move.  Then, the function 

calculates the new position of the sheep and calculates the corresponding utility. 
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void OnSetEvidence(int node, int state) 

This function set evidence on a node.  It takes the node number and the state to be 

instantiated.  Then, it sets the specified state value to 1 and the rest of the state values to 

zero. 

 

void OnRecordNewEntry() 

This function records a new entry into the database after the sheep and the dog completed 

one action.  The function also updates the network parameters with the new data. 

 

void OnCalculateNewSheepPos(int choice) 

This function calculates the sheep's next coordinates after the sheep moves.  The integer 

choice presents the sheep's next action.  The function uses the next position table created 

by the OnCreateNextPosTable() function. 

 

int OnDecision(CMatrix &values) 

This function determines which action the dog will take after the expected utilities are 

calculated for each action.  The matrix values consists of the expected utilities of the 

dog's actions. The function finds the maximum expected utility in the matrix and returns 

its index.  The index illustrates the action with the highest expected utility. 

 

CMatrix OnValues(int dnode, int unode) 

This function calculates the expected utilities for the actions in the node dnode.  The 

function fires each action in dnode and calculates the state probabilities of the node 



 217

unode.  Then, it calculates the expected utility of the system using these probabilities and 

the action fired.  The process is repeated for each action and the expected utilities are 

placed into a matrix.  Finally, the function returns the expected utility matrix. 

 

void CreateJPT() 

This function calculates the joint probability distribution from the database. 

 

CMatrix CreateJPT(CUIntArray &list) 

This function calculates the joint probability for a given data case.  For example, it can 

calculate ),,( 100 === CBAp  for a database with three variables.  

 

CMatrix CreateCPT(int node, CUIntArray &list) 

This function creates a conditional probability table for a node with a specified parents.  

The function takes an integer for the node number and an integer array for the numbers of 

the parent nodes. 

 

CMatrix CreateCPT(int i, int j) 

This function calculates a conditional probability table for given variables.  It takes two 

integers for node numbers for the variables.  For example, in )|( BAP , the integers i and 

j represent the variable A and B, respectively. 
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CMatrix CreateCPMatrix(CUIntArray &list) 

This function is similar to the previous function.  It can calculate the CPT for more than 

two variables.  It takes an array of integers for the node numbers.  In the array, the first 

element represents the first variable in a conditional probability equation.  For 

),|( CBAP , the first element of the integer array is filled with the node number of the 

variable A.  Then, the node numbers of the variables B and C are placed into the array. 

 

void CalFirstLevelProbs() 

This function calculates independent probabilities for the first level nodes.  A first level 

node is a node without any parents.  These nodes do not have a conditional probability 

table. 

 

CNode * AddNode(CRect nodeLocation) 

This function adds a node to the network at the location determined by the nodeLocation 

variable.  The function creates a node, adds it to the node object array (m_oaNodes), and 

returns its pointer. 

 

void SetNode(int nodePos, CString name, int states, CStringArray &prob,  CMatrix cpt) 

This function sets the name, the position, number of states, the state probabilities, and the 

conditional probability table of a node.  The nodePos represents the position of the node 

in the node object array.  The function sets the parameters of the node using the variables 

name, states, prob, and cpt.  
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CNode * GetNode(int nIndex) 

This function returns a pointer to a specified node.  The function takes an integer as an 

index to get the corresponding pointer value from the node object array. 

 

int GetNodeCount() 

This function calculates the number of nodes in the network and returns the results as an 

integer. 

 

BOOL AddArrow(int i, int j) 

This function adds and arrow (arc) to a Bayesian network.  It takes the node numbers of 

the parent node (i) and the child node (j).  If the function is successfully adds the arc to 

the network it returns TRUE.  Otherwise, it returns FALSE and does not modify the arc 

object array (m_oaArrows). 

 

void RemoveArrow(int i, int j) 

This function removes the arc from the node i to the node j.  It also removes the arc from 

the arc object array. 

CArrow * GetArrow(int nIndex) 

This function returns a pointer to a specified arc (arrow).  The function takes an integer 

nIndex as the index of the specified arrow in the arrow object array.   
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int GetArrowCount() 

This function calculates the number of arrow in the network and returns the results as an 

integer. 

 

CArrow * AddArrow(CPoint tail, CPoint head) 

This function creates an arrow by using two points; tail and head.  The program first 

finds the nodes by comparing whether the points on a node or not.  After determining the 

corresponding nodes for the points, the function calls AddArrow(int i, int j) function to 

create the corresponding arrow (arc). 

 

void UpdateView() 

This function updates the device context of the program after a modification is made in 

the network.  

 

void CreateNodes() 

This function creates nodes after a database is read into the program.  It generates the 

names of the nodes from the first line of the database.  The function also creates the 

independent probabilities for the nodes.  

 

CMatrix CreateNodeProb(int i) 

This function calculates the probabilities of a specified node.  It takes an integer for as the 

node number and returns a matrix with the node probabilities. 
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void GenerateNetwork() 

This function is called when the user clicks the Create button on the toolbar.  It calls the 

OnNetworkGenerate() to generate the network.   

 

void CreateTestTable() 

This function creates a table from the database.  It finds the number of states of each 

node.  Then, it creates a table that contains all the possible combinations of the states.  

This table is then used in the network calculations as a reference. 

 

CMatrix Parents(int x) 

This function finds the parents of the node x.  Then, it creates a vector using the 

probabilities of the parent nodes.  The function returns this vector as a matrix. 

 

void UpdateNodeCPT() 

This function updates the CPTs tables of the nodes in the network.  If a change is made to 

the network, this function is called and the CPTs are updated accordingly. 

 

void ModifiedFlagChild(int x) 

This is a function for specifying the nodes that need update after a change is made on a 

node.  The function sets a flag in its child nodes.  When the update network command is 

called, the program checks the flags in each node before it updates the node parameters. 
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A.2.1.2 Document class member variables 

The following list illustrates the member variables of the document class.  These are also 

called global variables since they can be reached from any function in the document 

class. 

int SEARCH_METHOD; 
int  DISTANCE_TYPE; 
int  TRAINING_STEP; 
int  COMPLEXITY; 
int  ACCURACY; 
int  SCORE_TYPE; 
int  caseCounter; 
BOOL IsCyclic; 
BOOL  m_Continue; 
CMatrix  NextPosTable; 
CMatrix  g_JPT; 
CMatrix  testTable; 
CMatrix  cumStates; 
CMatrix  States; 
CMatrix  caseTable; 
CObArray  m_oaNodes; 
CObArray  m_oaArrows; 
CObArray  m_oaAgents; 
CUIntArray lastCase; 
CStringArray  NodeNames; 
 

 

 

A.2.2 View class 

The view class handles the visualization of the software such as updating the workspace, 

mouse operations, drawings, painting, and brushing.  The following sections explore the 

member functions and the member variables of the class. 

 

A.2.2.1 View class member functions 

The following is the list of view class member functions and their brief definitions. 
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void OnDrawAgentRegion() 

This function draws the problem domain for the Dog & Sheep simulation.  It draws an 

mn ×  grid depending on the number of states in the variables DogX, Dog Y, SheepX, 

and SheepY.  If the user increases the number of states in the variable, the software 

updates the problem domain accordingly. 

 

BOOL OnNoRelation(unsigned int node1, unsigned int node2) 

This function returns TRUE if there is an arc between the nodes; node1 and node2. 

The function is used during the arc additions to the network.  The purpose of the function 

is to avoid the creation of the same arc twice. 

 

int OnInANode(CPoint point) 

This function takes a point and finds whether the point on a node or not.  If the point is on 

node, the function returns the number of the node. Otherwise, it returns -1. 

 

void OnShowParam(int x) 

This function is called by the Parameters toolbar button.  It displays the parameters of a 

certain node.  The node number is entered to the function as an integer. 

 

afx_msg void OnNetworkArc() 

This function is called when the user clicks on the Arc toolbar button.  The function sets 

the drawingElement member variable to ARC.  The ARC is a constant integer set to 2. 
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afx_msg void OnNetworkNode() 

This is similar to the OnNetworkArc() functions.  The function sets the drawingElement 

variable to NODE.  The NODE is defined as a constant integer set to 1.  When the user 

creates a network with mouse drag and drop operations, the program checks the value of 

the drawingElement variable to determine what to draw. 

 

afx_msg void OnLButtonDown(UINT nFlags, CPoint point) 

This function is called when the user clicks the left mouse button.  Many visual 

operations is done by this function such as drawing and object, moving a node, choosing 

a node or an arc, choosing a toolbar button operation.  

 

afx_msg void OnLButtonUp(UINT nFlags, CPoint point) 

This function is called when the user releases the left mouse button.  This function is also 

used in many operations, i.e., dropping a selected node to a desired location. 

 

afx_msg void OnMouseMove(UINT nFlags, CPoint point) 

This function is called when the mouse is moved around.  Most of the time, this function 

and the previous mouse operation functions work together.  For example, To move a 

node to a certain location, the OnLButtonDown(UINT nFlags, CPoint point) function 

selects the node, this function moves the node, and finally the OnLButtonUp(UINT 

nFlags, CPoint point) function releases the node on a desired location. 
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afx_msg void OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar) 

This is the horizontal scrolling function.  It updates the coordinates of the screen when 

the user scrolls horizontally. 

 

afx_msg void OnVScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar) 

This is the vertical scrolling function.  It updates the coordinates of the screen when the 

user scrolls vertically. 

 

afx_msg void OnContextMenu(CWnd* pWnd, CPoint point) 

This function is called when the right mouse button is clicked.  It displays the context 

menu on the screen. It lets the user choose the submenu items Set Evidence and 

Parameters. 

 

afx_msg void OnLButtonDblClk(UINT nFlags, CPoint point) 

This function is called when the left mouse button is clicked twice.  If the left mouse 

button is double clicked on a node, the function displays the parameters of the node. 

 

afx_msg void OnNetworkParameters() 

This function is called when the user clicks on the Parameter toolbar button.  It also 

displays the parameters of a specified node. 
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afx_msg void OnRButtonDown(UINT nFlags, CPoint point) 

This function is called when the right mouse button is clicked.  It displays the context 

menu by calling the OnContextMenu(CWnd* pWnd, CPoint point).   

 

afx_msg void OnSetevidenceState0() 

To invoke this function, the user first chooses the Set Evidence menu item in the context 

menu.  Then, the user chooses the State0 submenu item.  The function sets the probability 

of the state0 to 1.  It also sets the probability of the other states to zero. 

 

The software has seven more functions similar to the above function to handle the 

instantiation of a node with at most eight states.  For the nodes with more states, the user 

can display the parameters of the node and change the probabilities from the parameters 

dialog box.   

 

afx_msg void OnNetworkAgentLoc() 

This function is called when the user clicks the Create Agent toolbar button. The function 

displays a dialog box for agent creation.  The user sets the parameters of the agent 

creation dialog box.  As soon as the user clicks OK button on the dialog box, the function 

creates an agent at a specified location. 

 

afx_msg void OnNetworkCreate() 

This function is called when the Create toolbar button is clicked.  The function displays 

the network creation dialog box as presented in Chapter 6.  The user can the parameters 
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of the dialog box.  As soon as the user clicks OK button on the dialog box, the function 

transfers the parameters to the document class and call the OnNetworkGenerate() 

function from the document class.  

 

A.2.2.2 View class member varibles 

HCURSOR  cross; 
HCURSOR  arrow; 
CPoint   start, old; 
BOOL     started; 
int moveNode; 
int drawingElement; 
CRect movingNodeLoc; 
CNetGenerationDlg  m_dNetGenerationDlg; 
CPoint  prevPoint; 
CParamDialog  m_dParamDialog; 
CAgentDlg    m_dAgents; 
int  hScrollPos, 
int vScrollPos, 
int lineSize, 
int vPageSize, 
int hPageSize, 
int maxPos; 

 

 

A.3 ActiveX classes 

ActiveX classes are helper classes created by various programmers under Microsoft 

visual C++.  In IntelliAgent software, the ActiveX control "MSFlexGrid" is employed to 

present the conditional probability tables in the nodes.  A general definition of the 

ActiveX is presented here.  The MSFlexGrid ActiveX has four classes for row and 

column operations (CRowCursor), picture operations (CPicture), fonts (COleFont), and 

the main class (CMSFlexGrid). 
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