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A Basic Three-Dimensional Turbulent Boundary Layer
Experiment

To Test Second-Moment Closure Models

Shereef A. Sadek

(ABSTRACT)

In this work, a three-dimensional turbulent boundary layer experiment was set up with
alternating stream-wise and span-wise pressure gradients. The pressure gradients are
generated as a result of the test section wavy side wall shape. Each side had six sine waves
with a trough to peak magnitude to wavelength ratio of 0.25. Boundary layer control
was used so that the flow over the side walls remains attached. The mean flow velocity
components, static and total pressures were measured at six plane along the stream-wise
direction. The alternating mean span-wise and stream-wise pressure gradients created
alternating stream-wise and span-wise vorticity fluxes, respectively, along the test section.
As the flow developed downstream the vorticity created at the tunnel floor and ceiling
diffused away from the wall.

The vorticity components in the stream-wise and span-wise directions are strength-
ened due to stretching and tilting terms in the vorticity transport equaitons. The positive-
z half of the test section contains large areas that generate positive vorticity flux in the
trough region and smaller areas generating negative vorticity around the wave peak. The
opposite is true for the negative-z half of the test-section. This results in a large posi-
tive stream-wise vorticity in the positive-z half and negative stream-wise vorticity in the
negative-z half of the test-section. The smaller regions of opposite sign vorticity in each
half tend to mix the flow such that as they diffuse away from the wall, the turbulent
stresses are more uniform.

Turbulent fluctuating velocity components were measured using Laser Doppler Ve-
locimetery. Mean velocities as well as Reynolds stresses and triple velocity component
correlations were measured at thirty stations along the last wave in the test section. Pro-
files at the center of the test section showed three dimensionality, but exhibited high tur-
bulence intensities in the outer layer.

Profiles off the test section centerline are highly three dimensional with multiple
peaks in the normal stress profiles. The flow also reaches a state where all the normal
stresses have equal magnitudes while the shear stresses are non-zero.



Flow angles, flow gradient angles and shear stress angles show very large differ-
ences between wall values and outer layer vlaues. The shear stress angle lagged the flow
gradient angle indicating non-equilibrium.

A turbulent kinetic energy transport budget is performed for all profiles and the
turbulence kinetic energy dissipation rate is estimated. Spectral measurements were also
made and an independent estimate of the kinetic energy dissipation rate is made. These
estimates agree very well with those estimates made by balancing the turbulence kinetic
energy transport equation.

Multiple turbulent diffusion models are compared to measured quantities. The mod-
els varied in agreement with experimental data. However, fair agreement with turbulence
kinetic energy turbulent diffusion is observed. A model for the dissipation rate tensor
anisotropy is used to extract estimates of the pressure-strain tensor from the Reynolds
stress transport equations. The pressure-strain estimates are compared with some of
the models in the literature. The comparison showed poor agreement with estimated
pressure-strain values extracted from experimental data.

A tentative model for the turbulent Reynolds shear stress angle is devloped that cap-
tures the shear stress angle near wall behvior to a very good extent. The model contains
one constant that is related to mean flow variables. However, the developed expression
needs modification so that the prediction is improved along the entire boundary layer
thickness.
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Chapter 1

Introduction

1.1 Motivation

Research has been going on for many decades for ways to predict turbulent flow
fields. Turbulent flows appear in a wide range of engineering applications and more
recently in bio-medical applications. Turbulent flow fields for Newtonian fluids are gov-
erned by the Navier-Stokes equations. These equations are a nonlinear set of time de-
pendent partial differential equations. As a consequence of this nonlinearity, turbulent
flow fields are chaotic and are very sensitive to initial and boundary conditions and ex-
ternal disturbances. Slight changes in initial and boundary conditions lead to completely
different time histories of flow variables.

Different methods have been developed in the last four decades to solve these equa-
tions. The most commonly used methods are Reynolds-Averaged Navier-Stokes methods
(RANS). Flow variables are assumed to be composed of a mean value and a fluctuating
component with zero mean value. The Navier-Stokes equations are then time or ensem-
ble averaged. Hence equations for mean flow variables are obtained. The effects of all
turbulent flow scales, fluctuating components, appear as stress terms in these equations,
called Reynolds stresses. These stresses are modeled either by simple algebraic formu-
las or by writing transport equations for each stress term. The resulting stress transport
equations contain higher order expressions that need to be modeled in terms of known
quantities. Modeling these terms have been the focus of research for over forty years.
However, the prediction capabilities of any one model are not satisfactory for different
flows and different configurations. This is in part due to the lack of experimental data
for some of the terms that needs modeling. Despite the above fact these models are still
used in industry extensively due to its ease of application and the need for fast solution
methods that can be incorporated in design processes.

Another approach to predict turbulent flows is to simulate the turbulent flow fields

1



Shereef A. Sadek Chapter 1. Introduction 2

directly using what is called Direct Numerical Simulations, DNS, Orszag and Patterson
[45] . This category of methods uses a very fine grid in order to resolve all flow details.
Unfortunately turbulent flows have a wide range of time and length scales that need to
be resolved in order to predict the flow field adequately. This range is dependent on the
flow Reynolds number, Re, to some power. Estimates of the required grid points to fully
resolve turbulent flows are given by different authors, e.g. Moin and Mahesh [36], Dubois
and Temam [12]. For a three dimensional flow, the number of points required to fully re-
solve the flow field is proportional to Re2.25. For engineering applications the Reynolds
number can be of the order of a few hundred thousand to a billion, which makes the
applicability of this category of methods unfeasible in the foreseeable future for engineer-
ing and industrial applications where multiple simulations are often required. However
these methods prove to be a valuable tool for fluid dynamics research where it can give
a better understanding of turbulent flow phenomena. A review of the applications and
potentials of DNS is given in Moin and Mahesh [36].

A different approach was also developed in the sixties, Large Eddy Simulations
or LES, by Smagorinsky [62]. This approach is intermediate between RANS and DNS
methods. It aims at resolving only large length scales of the flow field which would be
Reynolds number and flow dependent and to model the effects of the smaller structures
which would have a more universal nature. This methodology leads to a significant re-
duction in the number of points required to resolve the flow field. For example, for a
channel flow the number of points needed to resolve the wall region is proportional to
Re1.8, which is a significantly smaller than the requirement for a DNS solution. Reviews
of LES methods can be found in Lesieur and Metais [24], Piomelli [49], and Meneveau and
Katz [34]. However, the applicability of LES is still limited to the lower end of engineer-
ing applications since the above requirement is still too demanding. Attempts have been
made to reduce the grid size requirements by modeling the wall region by the so called
Wall-Layer Models, in which the effects of the smaller eddies near the wall are modeled
in an average sense. A review of these models can be found in Piomelli [48]. Although
DNS and LES are more accurate techniques for solving turbulent flow problems, their
applicability to engineering problems does not seem feasible in the near future, see Pope
[51] and Moin [36].

Hybrid approaches are also developed where RANS models are used where the flow
is attached and the boundary layer is thin and LES model is used where the flow is de-
tached. Such approach is called Detached-Eddy Simulation, DES, and Delayed Detached-
Eddy Simulation, DDES. A description of the method is given by Spalart [64].

On the other hand RANS models are routinely carried out in industry, hence improv-
ing the models for different terms in the RANS equations might have a big impact on their
predictive capability and hence on the design process in industry. This is the primary mo-
tivation for the present work, providing low uncertainty turbulent three dimensional flow
data to help improve modeling of different terms appearing in the governing equations.
In the next section the Reynolds Averaged Navier-Stokes equations are presented along
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with the transport equations for the Reynolds stresses.

1.2 Governing Equations

For incompressible isothermal flow the Reynolds Averaged Navier-Stokes (RANS)
equations along with the continuity equation for incompressible flow are given by, Chou [6],
Moore and Moore [38],
Continuity:

∂Ui

∂xi

= 0 (1.1)

Momentum:
∂Ui

∂t
+ Ul

∂Ui

∂xl

= −∂P

∂xi

+
∂

∂xl

(
ν
∂Ui

∂xl

− uiul

)
(1.2)

Where, Ui and P are the mean velocity components and pressure respectively. The last
term in the momentum equation is the Reynolds stress contribution to the mean flow
equations. In order to be able to solve the governing equations, the Reynolds stresses have
to be specified. We will consider the second-moment closure, where the transport equa-
tions for the Reynolds stresses, given in Equation 1.3, are solved along with the RANS
equations.

∂uiuj

∂t
+ Ul

∂uiuj

∂xl

= −uiul
∂Uj

∂xl

− ujul
∂Ui

∂xl

− ui
∂p

∂xj

− uj
∂p

∂xi

+ ν
∂2uiuj

∂x2
l

− ∂uiujuk

∂xk

− εij (1.3)

The above equation can be written symbolically as,

Lij + Cij = Pij + Πij + DT
ij + Dν

ij − εij (1.4)

Where,

• Lij Local time rate of change, first term on left hand side of Equation 1.3

• Cij Convective Transport, second term on left hand side of Equation 1.3

• Pij Stress Production, first two terms on right hand side of Equation 1.3

• Πij Velocity-Pressure Gradient, third and fourth terms on right hand side of Equa-
tion 1.3

• Dν
ij Viscous Diffusion, fifth term on right hand side of Equation 1.3

• DT
ij Turbulent Diffusion, sixth term on right hand side of Equation 1.3

• εij Dissipation, last term on right hand side of Equation 1.3
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An over bar denotes an ensemble or time average. All terms listed above can be
computed except three terms, velocity-pressure gradient, turbulent dissipation rate and
turbulent diffusion. The velocity-pressure gradient term can be broken into two terms,
the pressure-strain correlation and the pressure-velocity correlation. Most frequently the
pressure-velocity correlation is added in the turbulent diffusion term and both terms are
modeled together. In the current work we will focus on modeling turbulent diffusion
which involves the triple-velocity correlations. In general the magnitude of turbulent
diffusion is smaller than production and dissipation; however in some situations it is a
dominant term. For example, in separated flow the turbulent diffusion is important in the
recirculation region as pointed out by Suga [67] by analyzing the flow over an obstacle in
a channel. Turbulent diffusion term is also the easiest to measure among the three terms
to be modeled and it seems that available models in general were based on assumptions
that were valid only in the absence of anisotropy and viscous effects. Available models
are discussed in the next section.

1.3 Discussion of Turbulent Transport Modeling

Transport equations for turbulent flow were first introduced by Chou [6], who used
them to model the flow between two flat plates subject to a pressure gradient. These
equations included the mean flow equations, Reynolds stresses transport equations and
the triple-velocity correlations (turbulent transport) transport equation. In the equation
for turbulent transport, Chou argued that the fourth order correlations together with
velocity-dissipation rate correlations are small compared to the two velocity component
pressure-gradient correlations in the context of parallel flow between two flat plates.
Chou also neglected the velocity-instantaneous dissipation correlation compared to vis-
cous diffusion term. These assumptions were made for the special case of flow between
two parallel plates.

Davydov [9], further simplified the transport equations for the triple-velocity correla-
tions by neglecting all viscous terms and modeled the two velocity component pressure-
gradient correlations as a function of third order moments. Davidov also used the Mil-
lionshchikov’s, [35], approximation of fourth order correlation as the sum of second order
correlations, assuming zero fourth order Cumulant. Again the above assumptions are
valid only away from solid boundaries where viscous and anisotropy effects are negligi-
ble. These two pioneering models were differential in nature; simpler algebraic models
were later obtained.

Daly and Harlow [8] proposed a simpler model using the analogy to the approxi-
mation for the flux of a scalar. The turbulent transport term was approximated using a
gradient diffusion form. It is worth noting that in their paper they noted that the assump-
tions used to derive their model were partly correct. One drawback of this model is that
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it is not symmetric with respect to the indices in contrast with the term to be modeled. In
other words it is not invariant with respect to coordinate transformation.

Mellor and Herring [33] developed another simple algebraic model of the gradient
type in terms of gradients of the Reynolds stresses. The coefficients of the gradients were
isotropic tensors and assumed symmetry in all directions. This model was based on
purely mathematical considerations; no flow physics were included in the formulation.
Hence it is not expected to portray the physics involved in turbulent transport process.

Hanjalic and Launder [18] developed a more rigorous model using the transport
equations of the triple velocity correlations. Starting from the transport equation for the
triple-velocity products, they arrived at their model by neglecting the convection term,
viscous terms and using the Millionshchikov, [35], approximation of the fourth order
correlations. In addition they expressed the two velocity component pressure gradient
correlations as a function of the triple velocity correlations. Their model can be viewed as
an isotropic version of Daly and Harlow model. Their model is intended for flow regions
where the Reynolds number is high, away from solid boundaries, and assuming isotropy
of small scales. They used this model successfully to compute turbulent flows in an an-
nular channel and free shear flow. The agreement between this model and experimental
data in general is good away from boundaries, in the core of channel flow, but departs
from experimental data close to the wall as pointed out by Mansour and Kim [32]. This
model is often used where the assumption made to derive it don‘t hold, this is due to its
simple nature.

Another rigorous model was developed by Lumley and Khajeh-Nouri [28], where
they developed a general approach to derive models of third order moments of any given
order and for any order in Reynolds number. They assumed a tensor functional form of
third order moments in terms of Reynolds stresses and dissipation rate, then Taylor series
expansion of the arguments is formed and the coefficients are written in invariant form
while expressing the stresses in terms of the anisotropy tensor. Finally the coefficients are
determined by dimensional analysis.

Cormack et al. [7], extended Lumley and Khajeh-Nouri model to higher orders in
anisotropy and in-homogeneity. The model contained four constants and can be consid-
ered as a generalization of all algebraic models stated above. Amano et al. [2] analyzed
separating and reattaching flow behind a backward-facing step. In their calculations they
solved the transport equation for triple velocity correlations directly. Several terms in the
transport equations were modeled in order to close the system of equations. Their results
showed some improvements over algebraic models; however it does not justify the added
complexity of solving eleven partial differential equations.

Nagano and Tagawa [40], proposed a structural model based on the structure of
turbulence, where they were able to compute third order moments of any order using
skewness factors of the velocity components. They separated the contribution of differ-
ent kinds of turbulent motion to turbulent transport (ejection, sweeps and interaction).
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They concluded that ejections and sweeps are the dominant contributors and hence they
were able to relate different triple velocity correlations to the skewness of velocity compo-
nents. However, in order to obtain the skewness of the velocity components the transport
equations for the third order moments of these components need to be solved. Thus the
number of equations to be solved is reduced.

Magnaudet [31], further extended Lumleys work to model turbulent transport for
free surface flows. Magnaudet pointed out that all previous algebraic models didnt have
the correct asymptotic behavior close to boundaries. The resulting model included gra-
dients of the Reynolds stresses, turbulent kinetic energy and turbulent kinetic energy
dissipation rate.

Shimomura [60], used a statistical approach to derive a model for turbulent diffu-
sion. He used a two-scale direct interaction approximation where a scale parameter is
introduced and the flow fluctuations are separated into rapid and slow variations using
this scale parameter as a first approximation. The final expression obtained is similar to
Hanjalic and Launder model except that it had a term containing the gradients of the
dissipation rate. This model hasn t been popular in computations.

Mackinnon et al. [30], proposed two algebraic models for the triple velocity correla-
tions. The first model was a modified gradient diffusion model and the second was an
algebraic model derived from the triple velocity correlation transport equations. These
models were evaluated and compared to the Daly and Harlow model and to experimen-
tal data for turbulent boundary layer with free-stream turbulence. In general both models
were in good agreement with the data and responded correctly to changes in free-stream
turbulence intensity. However, the gradients of predicted quantities differed significantly
from the experimental data which would lead to large errors in computing the turbulent
diffusion terms in the near wall region.

Straatman [66], modified Lumley ’s model by analyzing zero-mean shear turbulence
and modifying the constants in the model. The model was then tested for jet flow, channel
flow and a backward facing step. The model shows mild improvements over the original
model.

Kurbatskii and Poroseva [22], modeled turbulent diffusion in a rotating cylindrical
pipe flow. The model was differential where the triple velocity correlation transport equa-
tions were simplified and solved. The dissipation term was neglected and the two veloc-
ity pressure gradient correlations were expressed in terms of mean velocity gradients and
triple velocity correlations and stress gradients. The results were compared with experi-
mental data favorably; however other algebraic models gave a comparable result, which
does not justify the added complexity of the differential model.

In a trial to find the most generalized model for third order moments and to include
the effects of mean flow gradients, Younis et al. [72], formulated a generalized form of
third order tensor functions in Reynolds stresses, their gradients and mean flow velocity
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gradients. Their work was based on the work of Smith [63]. They limited their formu-
lation to linear and bilinear terms of Reynolds stresses, their gradients and mean flow
velocity gradients. They also showed that all the above algebraic models were special
cases from the general form that they have obtained except for Magnaudet ’s model since
it contained derivatives of the turbulent kinetic energy dissipation rate. Other algebraic
models are also available; like Shir [61] and Wyngaard et al. [71] . These are basically
modified versions of the above mentioned models. However they are less popular than
the above mentioned ones. Despite the fact that efforts for modeling third order moments
of turbulent fluctuations have been going on for almost six decades, there is no one model
that performs well in all types of flow. Furthermore, all models perform poorly very close
to solid boundaries.

There are some conditions that must be met by any model for it to be expected to
perform well in different flow fields. These conditions were cited by Magnaudet, and
repeated below,

• Invariant modeling: The closed form of third order moment correlations must be a
fully symmetric third order tensor which vanishes in homogeneous situations. This
requirement is purely mathematical which stems from the symmetry of the triple
velocity correlations tensor. In reality in bounded flows for example there might be
preferred directions like the free stream direction, however if the model equation
contains the right physics it should detect these preferred directions.

• Realizability: If a velocity component fluctuations vanishes at a boundary, the third
order moments normal to the boundary must vanish.

• Asymptotic consistency: If ui, uj and uk decay as yl, ym and yn, respectively, then

uiujuk ∝ yl+m+n (1.5)

Other Realizability conditions were developed by Andre et al. [3], since most differ-
ential models neglect the viscous diffusion terms and as a consequence of quasi normality
of fourth order correlations the third order moments tend to grow to high values which
are not realistic. This condition is repeated below,

uiujuk ≤ Min
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The fact that available models do not satisfy the above conditions is clear when these

models are used to predict turbulent transport for a given flow and compared to exper-
imental data. For example, Mansour tested the Hanjalic and Launder model to predict
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turbulent transport in fully developed channel flow and compared it to their DNS simu-
lations. The model seemed to work well far away from the wall, y+ > 100 but close to the
wall it seems to underpredict turbulent transport. More importantly the model doesn ’t
always have the right trend for some of the components of the turbulent transport tensor.
This was revealed by the cross-streamwise turbulent transport of the shear stress.

Ölçmen and Simpson [44], also tested several algebraic models to predict turbulent
transport around a wing-body junction flow at the center of a horse-shoe vortex. In this
comparison all models performed poorly in predicting this complex flow. Hence, in the
present work an experiment is setup to provide a highly three dimensional flow to obtain
low uncertainty measurements of mean flow velocities, Reynolds stresses and the triple
velocity correlations to serve as a test case for improving modeling efforts of triple ve-
locity correlations. Flow velocities are measured using Laser Doppler Velocimetry (LDV)
techniques at a number of locations. Also spectral measurements are made at selected
stations. The layout of the dissertation is given in the next section.

1.4 Dissertation Organization

The dissertation is organized as follows. In the first chapter an introduction and
literature survey is presented as well as the motivation for this work. In chapter two the
experimental facility is described along with the instrumentation and data acquisition
systems used to acquire the measurements. A description of side wall boundary layer
control procedure and final setup is also given in chapter two.

In chapter three mean flow data at different stream-wise planes are presented. In
chapter four LDV measurements are presented. The measurements include mean flow
velcoity components, all six components of the Reynolds Turbulent stresses, triple veloc-
ity product correlations and Power and Cross-Spectra measurements. In chapter five the
results are discussed and some features of the experiment are highlighted and interpreted.

In chapter six different models for turbulent diffusion and velocity-pressure gradient
correlations are compared to experimental data with suggestions for ways to improve
modeling. Finally conclusions are presented in chapter seven. Appendices are added at
the end that contain the wavy wall test section geometry data in Appendix A, boundary
layer suction slots data in Appendix B, matching procedure and uncertainties in LDV
measurements in Appendix C and finally a simple numerical procedure used to calculate
the velocity field inside the test section to help interpret the data in Appendix D.



Chapter 2

Experimental Setup and Instrumentation

2.1 Experimental Facility

The test facility used in this research is the Virginia Tech Aerospace and Ocean En-
gineering Department Boundary Layer Wind Tunnel. It is a custom made open-circuit
wind tunnel powered by a 19kW centrifugal blower. The air blower withdraws ambient
air through a rectangular intake that is equipped with a set of 8 air filters to prevent dust
particles from entering the wind tunnel. After passing through the blower the air passes
through a variable shutter to set the flow speed, then it enters into a plenum which is
followed by a honeycomb section to remove large swirls in the mean flow, and seven
screens to make the flow more uniform and reduce the intensity of remaining turbulence.
Downstream of the screens the air passes through a 4 : 1 contraction to accelerate the flow
to the test speed and further reduce turbulence intensities remaining.

The wind tunnel test section is composed of two main parts; one part is common to
all experiments conducted in this facility and a second one that can be modified according
to each experiment. The total length of the test section is 7.62m. The common part extends
for about 2.34m starting from the contraction exit and is 0.91m in width. A 0.63cm trip is
located at the inlet to the test section in order to initiate the turbulent boundary layer. The
ceiling height of this part varies along its length reaching a minimum of 0.25m at about
1.41m from the contraction exit. Downstream of this minimum the height increases to a
value of 0.267m. The second part of the test section is usually rectangular in shape with
parallel flat side walls and flat or tapered ceiling.

However in this experiment wavy sidewalls were used. The flow qualities with flat
parallel side walls test section were studied extensively by Ahn [1] and Devenport and
Simpson [11]. When the free stream speed is 27m/s the potential core of the flow is uni-
form to within 0.5% in the span-wise direction and 1.0% in the vertical direction and has
a turbulence intensity of 0.1%, Byun [4]; Ma and Simpson [29]. More information can be

9
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found on the department’s website1.

2.2 Wavy Wall Test Section Geometry

The test section is designed in a way such that an alternating sign span-wise pressure
gradient is formed at the centerline of the test section. This is done by forming both side
walls in the shape of sine waves that are in phase. In order for the pressure gradient to
be felt at the centerline the wave amplitude was chosen to be a = 3” and the wave length
equal to λ = 24”. Given the large side wall amplitude, boundary layer control is used to
prevent the flow from separation over the side walls. The test section is length L = 16′

long and width Wx=0 = 36.25” at the entrance.

Each side wall is composed of an upstream and downstream part, as well as the
ceiling. The upstream side walls form a contraction in the test section’s width, this con-
traction is 2′ long and the width is reduced by 4” at the end of contraction. Downstream
of the contraction the side walls are curved over a 1′ to take on the shape of sine waves of
amplitude a = 3” and wavelength of λ = 24”. Each side wall (upstream plus downstream
part) has six full sine waves. The side walls are made of perforated aluminum sheets so
that boundary layer suction can be applied at any given location along the test section
length. The aluminum sheets used have 1/8” diameter staggered holes and the centers
were 3/32” apart. Attached to the side walls are suction cabinets where the air withdrawn
from the wavy channel exits the test section. Each cabinet is fitted with a gate valve to
control the amount of air exiting the test section. There are a total of 16 suction cabinets
attached to the side walls 8 cabinets on each side. One cabinet is attached to each wave.
Also a cabinet is attached to the flat contracting part of the side wall on each side. The
test section ceiling is made of 0.5” Plexiglas that is cut in a way such that it has the same
shape as the plan view of the test section. In order to compensate for the amount of air
withdrawn from the test section, the ceiling is kept flat but having a negative gradient of
0.013 to attempt to have constant stream-wise pressure. The height of the ceiling at the
entrance of the test section is 10.5” and at the exit the height is reduced to 8”. A plan
view of the test section geometry is shown in Figure 2.1 and a side view schematic of the
whole wind tunnel configuration is shown in Figure 2.2. Also a picture of the test sec-
tion is shown in Figure 2.3. Detailed listing of the test section geometry is presented in
Appendix A as well as uncertainty in measuring the geometry.

1http://www.aoe.vt.edu/research/facilities/bllab.php/
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2.3 Measuring Instruments and locations

Different instruments were used to obtain mean flow data as well as turbulent fluc-
tuations. A brief description of each instrument is given below.

2.3.1 Total Pressure Rake (16 tubes)

Profiles of total pressure were made using a home-made compact probe rake con-
sisting of 16, 1/16”diameter parallel tubes soldered together, shown in Figure 2.4. Profiles
were taken at the wave peaks of the test section at different streamwise locations in order
to investigate the development of the flow over the wave peaks and whether the bound-
ary layer is growing over the peaks or not. A total of 10 measurements were made using
this rake, the locations and x-coordinates of each measurement are shown in Figure 2.9.
Static pressure measurements were taken at the same location in order to calculate the
local speed and obtain velocity profiles near the side wall at the mid-height point be-
tween the floor and the local test section ceiling. A home-made probe holder assembly
was constructed to hold both the 16-tube rake and the Pitot-tube together so that they can
be traversed vertically and in the span-wise direction to switch probes and to measure
span-wise variation of pressure respectively. The assembly is shown in Figure 2.5.

2.3.2 Pitot-Static Tube

A Pitot-static tube was used to measure the total and static pressure at different lo-
cations in the test section. Total and static pressures were measured along the centerline.
While static pressures were measured at the wave peaks. The probe was rotated along the
vertical axis until a maximum reading was obtained. A Dwyer Probe model 160 was used
coupled with a Dwyer digital manometer model 474-FM mark III to calculate the pres-
sure differential in inches of water. The manometer had an uncertainty of ±0.005 inches
of water.

2.3.3 Scannivalve system

Floor surface pressures measurements were made using an 8” diameter plate which
had 426 pressure taps spanning an area of 2”× 8”. These pressure taps were connected to
a Scannivalve system model CTLR2P/S2-S6 manufactured by Scanivalve Corp. A Setra
239 pressure transducer with a 15” of water range was used to measure the floor pres-
sure. A 286 IBM PC with a DT2801 A/D board for acquiring data was connected to the
Scannivalve system to acquire data. The plate was used to measure the surface pressure
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at three different locations where the LDV profiles were taken to account for the pres-
sure gradients while calculating the friction velocity uτ . The locations were the pressure
measurements were taken are shown in Figure 2.1.

2.3.4 Seven-Hole Pitot tube

A seven-hole Pitot tube shown in Figure 2.6 was used to obtain the mean flow ve-
locities and directions at different planes along the tunnel centerline. This probe was first
used and documented by Wenger [70]. Pisterman [50] used the same probe to investigate
the flow field around an axisymmetric bump flow. The same system setup, data acquisi-
tion and reduction as of Pisterman is used in this work. The probe calibration was done
by Aeroprobe corporation2. The seven-hole probe has seven holes to detect the direction
and magnitude of the flow velocity. One hole is at the center of the probe while the other
six are distributed circumferentially around the center one. The probe has a conical tip
with a half angle of 30◦. The uncertainties in measuring flow angles and velocity magni-
tude are presented in Chapter 3. The seven-hole probe is connected to seven differential
pressure transducers through seven Tygon tubes with an internal diameter of 1/16”. The
transducers, XPCL04DTC, have a range of ±2.5” of water. Since the total pressure inside
the test section was larger than the transducer’s maximum pressure, reference pressure
ports were connected to the free stream total pressure.

2.3.5 Laser Doppler Velocimetery

Two 3-velocity component LDV probes were used to measure the mean flow veloci-
ties as well as Reynolds Stress and Turbulent Transport tensors at some selected positions.
Both probes shared the same optical table equipment, however the setup differed slightly.
A brief description of each is given below.

Optical Table

The optical table contained two laser sources, mirrors, beam splitting cubes, po-
larization rotators, Bragg cells, laser to fiber couplers and fiber optics. In the present
study beams with different colors were used; purple (476.5nm), blue (488.0nm) and green
(514.5nm) beams. The laser beams were supplied by INNOVA 90-5C argon-ion laser for
both systems.

2http://www.aeroprobe.com/
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Short System LDV Probe

The Short System LDV probe is a fiber-optic argon-ion laser system developed by
Ölçmen [42]. This system uses five laser beams, two blue beams (488.0nm) and three
green beams (514.5nm). In order to resolve direction ambiguity the beams were frequency
shifted using Bragg cells, IntraAction Acousto-optics AOM 405. The blue beams have a
Bragg cell frequency shift of 0MHz and 40MHz while the green breams have a frequency
shift of 0MHz, 30MHz and 50MHz.

This probe was designed so that in the region y ≤ 40mm the effective volume is
30µm, hence it would be capable of resolving the rapid variations occurring in the velocity
fields. Different researchers were able to use this probe as close as 50µm away from the
wall, [42], [4].

LDV measurements very close to the wall, y+ ≤ 10 are affected by Gradient Broaden-
ing effects. For the Short System LDV this is not significant for first and second moments
due to small measurement volume size. However, for third and higher order correla-
tions this is more significant. Hence, Gradient Broadening corrections were applied to all
measurements.

CompLDV Probe

The CompLDV probe was developed by Lowe [25]. This system was designed to
use up to 12 beams to measure velocity fluctuations as well as velocity-acceleration cor-
relations and velocity gradients, however only six beams were used during the present
work.

This probe used three colors, purple (476.5nm), blue (488.0nm) and green (514.5nm).
The probe consisted of three different heads that are adjusted independently. Each head
receives two laser beams from the optics table through fiber optics. One beam of each
pair is frequency shifted by the Bragg cells. The frequencies used are 40MHz, 60MHz
and 80MHz for the purple, green and blue respectively. The receiving lens is located at
the center of the three heads and attached to the green beams’ head. The measurement
volume of this system is approximately 120µm. Since it has a larger measurement volume
this system was used away from the wall (y ≥ 120µm). The probe assembly is shown in
Figure 2.7

2.3.6 Seeding System

In order to measure flow velocities using the LDV probes the flow had to be seeded.
Di-Octal Phthalate (DOP) was used as a seeding fluid.
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In order to reduce the size of the seeding particles, the DOP is mixed with air under
high pressure. The mixture is then heated up by passing through heated pipes. The
mixture is then allowed to settle in a closed container then it is injected into the wind
tunnel. The mixture is injected at the beginning of the test section through a row of tubes
attached to the tunnel’s floor.

The aerosol generator was originally designed by Echols and Young [13] and de-
scribed by Ölçmen [42]. The seeding particles size distribution was measured by a TSI-
Aerodynamic article Sizer and the geometric mean diameter, dg, of particles was calcu-
lated to be 0.956µm and the geometric standard deviation, σg, was 1.51µm.

2.3.7 Data Acquisition and Processing

The light signals collected by the receiving lens of both probes is passed through
three separate photomultiplier tubes, Hamamatsu model R4124, which converts all light
signals into electrical signals. The signals are then amplified using three Sonoma Instru-
ment 315 amplifiers. The blue and purple signal were merged together into one signal and
the green light formed another signal. Both signals are then digitized using Strategic-Test
model UF.258 high-speed digitizer board, which had an 8-bit resolution and 250 MS/s
sampling rate. Data sampling was done in multiple short durations, 0.54 sec durations,
and a total of approximately 30 kSamples were obtained for each data point. For mean
flow and turbulences statistics, burst detection was used for triggering. The acquired data
was then stored on multiple hard-drives for later processing.

Signal processing was done electronically using in-house codes developed by Lowe,
[25]. The codes included different modules for burst recognition, dual-burst separation
and frequency processing, [26]. The burst recognition is done by fitting the root-mean-
square (RMS) of the signal to a Guassian distribution. The frequency spectrum is obtained
for each valid burst and the Doppler frequency is calculated for each light signal. A three-
point Gaussian fit is used around each peak.

Finally, after determining the Doppler frequency for all light signals, the velocity
component in each optical measurement direction is calculated by multiplying the associ-
ated frequency by the fringe spacing in that direction. Knowing the velocity components
in the optical axes, a coordinate transformation is done to transform the velocity com-
ponents into tunnel coordinates. Histograms of all three velocity components are con-
structed in order to remove noise in measured data by rejecting unphysical points in the
skirts of the distribution. This is done by smoothing the histogram using built-in function
in MATLAB, “csaps”, that uses a smoothing parameter. If the smoothing parameter is set
to 0 a least-squares straight line fit is performed, on the other hand if the smoothing pa-
rameter is set to 1, a cubic spline fit is performed and the original data is recovered. The
smoothing parameter was always set to 0.98 or higher. After smoothing the histogram
the location where the smoothed histogram first reaches a lower threshold. This thresh-
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old was usually taken to be 1-3 samples. Then the original non-smoothed histogram is
clipped at the identified limits. This approach was tested with a Poisson distribution with
added random noise and yielded excellent results. Applying this approach to measured
data resulted in very smooth statistics especially third-order moments. Using the clipped
original histogram, mean flow velocities, turbulent Reynolds Stresses, third and fourth
moments were calculated.

2.4 Boundary Layer Control

In order to achieve the required flow field, boundary layer control had to be imple-
mented. Since the waves on the side wall had a large amplitude to wavelength ratio
2a/λ = 0.25, separation occurred down-stream of each wave peak without boundary
layer control. Initially boundary layer control was implemented by having the side walls
made of perforated aluminum sheets starting at x = 2′ along the tunnel axis. The sheets
were covered with clear adhesive plastic tape that covered the perforated sheets except
where suction is allowed. The aluminum sheets had 1/16” diameter staggered holes and
a total of 22% of open area. Boundary layer suction was implemented using a suction fan
that had a flow rate of 3000cfm at 14”H2O pressure difference. The first suction trials had
most of the area downstream of the wave’s peaks open for suction. However, these trials
were not successful in eliminating separation. It was decided then to use larger holes for
suction to reduce losses and increase suction rate. The aluminum sheets were replaced
by similar aluminum sheets that had larger holes, 1/8” diameter, and 40% total open area.
The holes’ centers were placed at 3/32”. Figure 2.8 shows a picture of the inlet side wall
taken from upstream of the test section inlet through the wind tunnel’s glass side wall.
The perforated aluminum sheets covering the side walls can be seen in this picture.

During the second trial several suction patterns were tried to eliminate separation.
It was possible to eliminate separation but at a very low free stream speed, 50 fps. This
was due to limited suction capability such that the flow speed had to be reduced so that
the required flow to be withdrawn out of the test section is the same as the fan capacity.
Having realized this problem, we had to find another way to implement suction.

It was decided to raise the tunnel’s internal pressure so that the flow was ejected from
inside the tunnel to the outside through the holes under the effect of the pressure differ-
ence from the atmospheric pressure. This was done by inserting a set of back pressure
screens with different grid densities at the downstream end of the test section in order
to increase the flow resistance and hence increase the total pressure inside the tunnel. A
pressure rise of 7.2”H2O above the ambient pressure was achieved. This helped increase
the amount of side wall suction. However, the flow was still separated in parts of the test
section.

The failure of the second trial led us to try using vortex generators to energize the
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boundary layer close to the surface of the side walls. It was also noted that the boundary
layer at the end of the contraction at the beginning of the test section was too big. There
was no suction applied along both sides of the contraction. Therefore it was decided
that suction should be applied at the middle of the flat sides of the contraction at the
entrance to the wavy wall test section. One row of vortex generators pairs was installed
4” upstream of each peak and another one about the same distance downstream. After
applying this setup it was noticed that the vortex generators weren’t effective and that
the flow separated after going over the peak. It was also noticed that the flow stayed
attached over the first wave when the vortex generators were taken off and suction was
applied at the middle of the flat sides of the contraction and using few suction slots along
the first wave. Hence, it was decided to remove all of the vortex generators and locate
where suction slots are need along each wave.

The locations where suction had to be applied were determined by trial and error.
Starting at the end of the contraction, rows of 2” long tufts were attached to the side walls
in order to know where separation occurs. Once the tufts start moving randomly this
indicated separation, a slot was then cut upstream of that row. Slots were cut vertically
along the whole height of the test section and their width varied according to the amount
of suction needed. This process was continued on both side walls of the test section
going in the downstream direction until the end of the test section was reached. The final
locations of the suction slots are shown in Figure 2.1. The stream-wise coordinates, width
of each slot as well as the number of holes are given in Appendix B. The suction flow
rates coming out of each cabinet were measured using a Lambda Square Venturi- meter
tube model 2300 with a throat diameter of 2.6” and inlet diameter of 5.8”. The measured
volume flow rates from each cabinet are shown in Figure 2.10 and listed in Table 2.1.

In order to make sure that all or most of the boundary layer flow along the side walls
was either minimized or removed, the velocity profiles at the local mid height of each
wave was measured. This was done by measuring the total and static pressure profiles
normal to the side wall. The total pressure was measured using the pressure rake which
was connected to the Scannivalve system while the static pressure was measured using an
ordinary Pitot-Static tube. The pressure rake and the Pitot-Static tube were attached to the
same probe holder but they were separated with a fixed distance in the vertical direction.
The total pressure rake was aligned to the mid point at each wave then a measurement
was taken; then the probe was displaced in the horizontal direction to complete the pro-
file. Afterward the probe was moved vertically and the Pitot-Static tube was aligned to
the mid point and the static pressure was measured at selected points. Since the static
and total pressures were not measured at the same normal distances from the wall, the
static pressure measurements were curve-fit and evaluated at the same locations as the
total pressure. Then the flow speed is calculated from the dynamic pressure.

Due to the complexity of the test section’s shape, the velocity profiles normal to the
side wall were measured at few selected stream-wise locations which are shown in Fig-
ure 2.9. A plot of the normalized velocity profiles at different streamwise locations for the
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left and right side walls are shown in Figures 2.11 and 2.12 respectively. It is clear from
these plots that the boundary layer thickness is less than 0.30in for all peaks shown. The
locations normal to the side wall of velocity profile maxima is given in Table 2.2. Figure
2.13 shows the Cp distributions at the side wall peaks for both side walls. These pressure
coefficients were obtained from the first rake port measurement. This distribution can be
utilized for numerical flow simulation.

For any attached viscous flow over a curved surface the velocity profile reaches a
maximum at the edge of the boundary layer then goes to zero at the wall. In the absence
of a boundary layer the maximum velocity occurs at the surface. This fact was used to
judge if the side wall boundary layer was removed effectively or not. It is clear that a
value close to unity occurs within at most 0.3 in away from the wall.

Cabinet # 1 2 3 4 5 6 7 8
Right Wall 163 356 582 402 365 350 347 254
Left Wall 178 234 460 446 317 383 308 286

Table 2.1: Boundary Layer Suction Volume Flow Rate in ft3/min.

XRight Wall[ft] ZUmax [in.] XLeft Wall[ft] ZUmax [in.]
2 0.196 3 0.156
6 0.094 5 0.031
10 0.288 9 0.031
12 0.125 11 0.031
14 0.188 13 0.031

Table 2.2: Location of Side Wall Velocity Profiles Maxima
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Figure 2.1: Wavy Wall Plan View
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Figure 2.2: Wind Tunnel Side View Schematic
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Figure 2.3: Wavy Wall Right Side Wall
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Figure 2.4: 16 hole Total Pressure Rake

Figure 2.5: Rake-Pitot Tube assembly
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Figure 2.6: Seven-Hole Probe

Figure 2.7: CompLDV Probe Head Assembly
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Figure 2.8: Wavy Wall Test section Inlet Side Wall showing tufts attached to the side wall
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Figure 2.9: Side Wall Boundary Layer Measurement Locations
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Figure 2.10: Side Wall Suctoin Flow Rates
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Figure 2.11: Right side wall normalized velocity profiles vs normal distance

Figure 2.12: Left side wall normalized velocity profiles vs normal distance
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Figure 2.13: Cp distribution along the side wall peaks



Chapter 3

Mean Flow Development

3.1 Measurement Locations

In order to document the flow development in the wavy wall test section and to
ensure that there are no flow separation, mean flow velocities were measured using the 7-
hole probe at different planes parallel to the y−z plane at different stream-wise locations.
A total of 6 planes were measured along the length of the test section at x/L = 0.00, 0.13,
0.39, 0.64, 0.79 and 0.90. In this chapter the mean flow velocities along with centerline
profiles at different locations are presented.

3.2 Seven-Hole Probe Alignment

For a seven-hole probe to measure flow direction and velocity component correctly,
the probe must be used to measure a uniform flow with a known direction after being
installed in place in the test section where a measurement is to be taken. This is essential
so that any misalignment with the tunnel centerline can be determined. For experiments
with simple geometries this is usually not a problem. However in the case of the wavy
wall, this was impossible since the side walls geometry altered the direction of the uni-
form incoming flow. Another method for checking misalignment had to be used. This
was done by using the wind tunnel’s centerline as a reference direction. A line was drawn
on the tunnel’s floor along the tunnel’s center. Then the probe was traversed to the center-
line and placed on the tunnel floor and aligned with the mark on the floor visually. Then
the distances between the centerline and two distant points on the probe were measured
with an uncertainty of 1/16”. This resulted in an uncertainty in yaw angle of ±0.72◦. In
order to account for pitch angle misalignment, the probe was traversed vertically and the
height of the probe from the floor was measured at two different points on the probe us-
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ing guage blocks with a precision of 0.01”. The calculated uncertainty in pitch angle was
±0.2◦.

3.3 Uncertainty Estimates

In order to confirm the level of uncertainties in aligning the probe and to estimate
the uncertainty in measuring the velocity magnitudes, two velocity profiles were taken
at the centerline of the entrance plane, x/L = 0. To estimate the 20:1 odds uncertainty
in the flow angles and velocity magnitude, the standard deviation is estimated using
Chauvenet’s criterion, Ölçmen [43] and Byun [4], was used,

dmax

σ
= 1.15 (3.1)

Where, dmax is half the mean difference between the two measurements over the entire
profile and σ is the estimated standard deviation. The 20:1 odds uncertainty is defined
as ± 1.96σ. The estimated overall uncertainties for the pitch, yaw angles (α, β) and the
velocity components are presented in Table 3.1. These estimates agree with the estimates
performed by Wenger [70].

α [◦] β [◦] U [m/s] V [m/s] W [m/s]

δ (·) 0.29 0.29 0.18 0.14 0.13

Table 3.1: Seven-Hole Probe Uncertainties

3.4 Mean Flow Velocity

In this section the mean flow velocities are discussed. The local ceiling maximum
heights at stations where seven-hole probe measurements were made are listed in Ta-
ble 3.3. The free-stream conditions for each plane measurements are shown in Table 3.2.
Since the measurements were made over an extended period of time, the atmospheric
conditions varied which influenced the free stream flow conditions to some extent.

• x/L = 0.00
Figure 3.1 shows contours of U-velocity component at x/L = 0.00. The y and
z coordinates are normalized by the maximum height and width at the entrance
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respectively. Due to the limited space inside the test section, due to the contrac-
tion at the entrance and due to the ceiling structure, the entire entrance plane was
not measured. The ranges covered in the vertical and spanwise directions were
0.03 < y/ymax < 0.74 and −0.35 < z/Wx=0 < 0.4 respectively.

The U-velocity component contours show a uniform flow entering the test section
with a uniform boundary layer thickness. The boundary layer thickness, δ99, is ap-
proximately equal to 34[mm]. The V and W velocity components are also shown in
Figure 3.1 as a superimposed vector plot. The magnitudes of the V and W velocity
components are less than 1[m/s] and the velocity vectors don’t seem to have a bulk
directed motion.

One observation that was made while measuring the mean flow using the Seven-
Hole probe is that there was a noticeable amount of air exiting the test section from
the slots in the test section ceiling that were used to traverse the probe. These slots
were kept clear so that the traverse can move freely. The amount of outflow from
these slots is estimated to be less than 3% of the amount of flow rate entering the
test section. However, all slots were covered when not in use.

• x/L = 0.13
This plane is at the end of the straight contracting side walls. At this location also,
the flow starts going around the sine wave shaped side walls. At the right side
wall, negative z-coordinates see Figure 2.1, the flow encounters the start of the first
sine wave, while at the left side wall, positive z-coordinate, the flow is at the peak
of a half sine wave. The bulk flow motion is directed into the positive z-direction.
Figure 3.2, shows the U-velocity component contours at x/L = 0.13. Also shown in
the same figure the in-plane velocity vectors.

The left wall is located at z/Wx=0 = 0.44. It is clear from Figure 3.2 that the boundary
layer is almost removed from the left wall by the effect of the suction slots. However,
there is a pocket of retarded flow at the side wall mid-height. This is due to some
protrusions in the side wall surface. Moreover, the floor boundary layer is almost
the same height but is not as uniform as the inlet plane. The floor boundary layer
near the left side wall is removed out by the suction slots leading to a decrease in
floor boundary layer height as the left side wall is approached. The bulk directed
motion can also be seen from the in-plane velocity vectors where the vectors are
directed toward the left wall.

The U-velocity component is almost uniform at the center of the plane, however it
increases dramatically as the left wall is approached. An increase of about 17%. The
large magnitude of the W-velocity component is attributed to the geometry of the
side walls whereas the magnitude of the V-velocity component can be attributed to
air exiting the test section from the ceiling slots.

• x/L = 0.39
This plane is at the peak of the second full wave close to the left wall, positive z-
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coordinates. The side wall is located at z/Wx=0 = 0.358. Figure 3.3 shows the U-
velocity components as well as in plane velocity vectors. The velocity vectors show
a strong directed motion in the positive z-coordinate direction. Also from the U
contours the boundary layer is seen to be stretched in the spanwise direction due
to suction effects. The boundary layer height is minimum around the centerline
and larger closer to the side walls. This may be due to the fact that before reaching
the second wave peak the flow encounters an adverse pressure gradient after going
around the first wave peak.

In Figure 3.3, the in-plane vector plots show the effect of suction on the span-wise
velocity profile close to the tunnel floor. Close to the side wall z/Wx=0 = 0.2−0.3 the
flow increases its magnitude in the span-wise direction. Away from the side wall
z/Wx=0 = 0.15 the span-wise velocity component decreases significantly.

• x/L = 0.64
This plane is shown in Figure 3.4. The left side wall is located at z/Wx=0 = 0.351.
The first column of measurement is 1” away from the left side wall. The U-velocity
component contours show an almost uniform value close to the side wall. It also
shows that the velocity magnitude increases as the side wall is approached. Along
the tunnel centerline, the boundary layer grows significantly, reaching about 40%
of the channel height. At this location there still exists some potential flow core
at the channel’s center. The effects of the side wall on the mean flow can be seen
close to the tunnel centerline by noticing the vertical contours lines of the U-velocity
component at z/Wx=0 = 0.1.

The in plane velocity vectors also show the effects of the side wall as it turns the
flow. Close to the wall the velocity vectors are almost horizontal, meaning that the
spanwise component (W ≈ 12m/s) is much greater than the vertical component.
The uniform magnitude of the velocity vectors close to the side wall can also be
noticed in Figure 3.4. Away from the side wall, the spanwise component decreases
and it has the same order as the vertical component.

• x/L = 0.79
This plane is located just upstream of the fifth wave peak on the right side wall,
negative z-coordinates. The measurements are closer to the right wall than to the
left side wall. Figure 3.5 shows the U-velocity component contours and in plane
velocity vectors.

Since the measurements are closer to the right wall for this plane, the contour pat-
terns are mirror imaged around the vertical axes. Figure 3.5 shows almost constant
U-velocity component close to the right wall. It also shows some potential core left
at the channel’s center.

The in plane velocity vectors show a directed motion in the positive z-direction.
The magnitude of spanwise and vertical velocity components are of the same order
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of magnitude. However, the vertical component tends to increase at the tunnel’s
center and decrease closer to the side walls.

• x/L = 0.90
This is the most downstream measured plane and is located upstream of the last
wave on the right side wall and downstream of the last wave on the left side wall.

Contour and in plane velocity vector plots are shown in Figure 3.6. The contour
lines have the same pattern as the plane x/L = 0.64 but with different magnitudes.
Moreover, the floor and ceiling boundary layers have merged together and there is
no free-stream left at the tunnel’s centerline.

Near the left side wall, the velocity contours are vertical and the in plane velocity
vectors are almost horizontal. At the tunnel’s centerline the vertical and spanwise
components are of the same order of magnitude.

• Summary
In order to have a good view of the global flow development, the U-velocity com-
ponent contour plots at five measurement planes are shown in Figure 3.7. The side
walls plan view is also shown in Figure 3.7 in order to relate flow development to
the test section geometry.

In summary, the flow enters the wavy wall test section with a uniform flow in the
x-direction. The flow undergoes acceleration in the contraction and the boundary
layer thickness is almost constant. Afterward the flow is turned by the effect of side
walls and the floor boundary layer thickness grows.

Close to the side walls the velocity is almost constant in the vertical direction but
varies in the spanwise direction. At the center of the tunnel, the potential core is
present up to about x/L = 0.79 afterwords the flow becomes developed and the
floor and ceiling boundary layers merge together.

3.5 Centerline Flow Development

In the previous section mean flow velocities at different streamwise locations were
presented. In this section mean flow velocities and pressure coefficient at the channel’s
midheight along the tunnel’s centerline will be presented. These quantities are extracted
from the plane measurements.

Figure 3.8 shows the velocity components and pressure coefficient at the channel’s
midheight versus distance along the tunnel’s centerline. The U-velocity component in-
creases along the centerline up to about x/L = 0.35 then decreases until the end of test
section. On the other hand the V and W velocity components are almost zero at the en-
trance to the test section. However, they increase in the convergent region at the test
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section inlet until they reach almost a constant value at about x/L = 0.35. It should be
noted here that the plane measurements where taken at integral number of wavelengths,
this means that if there were variations in the W-velocity component sign it won’t be
shown here unfortunately.

Also shown in Figure 3.8 the pressure coefficient along at the channel’s midheight
along the centerline. The pressure coefficient shows variations similar to a sine wave.
However, the variations only make one sine wave shape.

Finally, the floor boundary layer thickness development is also extracted from the
plane measurements. The boundary layer thickness, δ, is taken to be the distance from
the floor to the location where the velocity parallel to the floor, Qe, reaches 99% of the
edge or maximum velocity for that location.

Table 3.4 lists the edge speed as a fraction of the free stream speed, Qe/U∞, as well as
boundary layer thickness, δ99, boundary layer as a fraction of the channel height, δ99/ymax,
and the Reynolds’ number, Reδ99 , based on edge velocity and boundary layer thickness.
Figure 3.9 shows the boundary layer thickness development versus x/L.

x/L Pa [Pa] Ta [◦K] P∞ [Pa] T∞ [◦K] U∞ [m/s]
0.00 94590 297.00 95962 297.00 25.23
0.13 94810 297.15 96144 297.65 25.42
0.39 94795 298.15 96134 298.15 25.26
0.64 93925 297.55 95323 298.15 25.16
0.79 95015 298.00 96407 298.00 25.26
0.90 94319 298.30 95714 298.65 25.15

Table 3.2: Mean Flow Free Stream Conditions

x/L 0.00 0.13 0.39 0.64 0.79 0.90
Ymax in. 10.5 10.17 9.72 9.22 8.92 8.70

Table 3.3: Maximum test section ceiling height at seven-hole probe measurement planes

x/L Qe/U∞ δ99/ymax δ99 [mm] Reδ99

0.00 1.140 0.1305 33.58 5.139E + 04
0.13 1.159 0.1373 34.22 5.265E + 04
0.39 1.234 0.2331 54.41 8.294E + 04
0.64 1.088 0.4716 102.82 1.548E + 05
0.79 1.091 0.4871 101.74 1.557E + 05
0.90 0.929 0.5505 111.27 1.676E + 05

Table 3.4: Centerline Mean Edge Velocity and Boundary Layer Thickness
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Figure 3.1: U-velocity component contours at x/L = 0.00, Ymax = 10.5 in.
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Figure 3.2: U-velocity component contours at x/L = 0.13, Ymax = 10.17 in.
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Figure 3.3: U-velocity component contours at x/L = 0.39, Ymax = 9.72 in.
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Figure 3.4: U-velocity component contours at x/L = 0.64, Ymax = 9.22 in.
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Figure 3.5: U-velocity component contours at x/L = 0.79, Ymax = 8.92 in.
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Figure 3.6: U-velocity component contours at x/L = 0.90, Ymax = 8.70 in.
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Figure 3.7: U-velocity component contours at 5 x/L stations
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Figure 3.8: Centerline U
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Figure 3.9: Boundary Layer Thickness along tunnel centerline



Chapter 4

LDV Measurement Results

4.1 Measurement Locations

LDV measurements were taken at 30 locations at the last wave cycle in the test sec-
tion. Two more profiles were also performed at the test section entrance to determine
the properties of the incoming flow boundary layer. All LDV measurement locations are
marked in Figure 2.1. An enlarged view of the measurement locations at the tunnel’s
downstream end is shown in Figure 4.1.

The measurement locations consist of 3 clusters of five point stencils and a grid of 5x3
points in the x and z directions, respectively. For each cluster, the stream-wise and span-
wise distances were set to be 1in. This value was chosen based on a trial measurement
with a 0.5in separation in the span-wise direction and 1in in the stream-wise direction.
These trials showed little variation in the span wise direction so it was decided to use
1in in both directions. For the 5x3 grid, the grid step size in the x direction was also 1in
while the step in the z direction was 0.79in between the first and second row and 1in be-
tween the second and third row. On the other hand, the measurements were limited to
these locations due to the fact that the LDV system did not have optical access because of
the tunnel’s structure under the test section’s floor. This setup was anticipated to give a
good view of the flow changes across the test section and to enable estimation of convec-
tion, production, turbulent diffusion and viscous diffusion terms in the Reynolds stress
transport equations.

All 30 profiles were measured using the Short system and the CompLDV probes
with an overlap length between both profiles in order to match the two set of measure-
ments. All profiles were corrected for velocity-gradient broadening and normalized by
wall variables uτ and ν/uτ . Friction velocity estimation, uτ , velocity-gradient broadening
corrections and matching procedure are discussed in the following sections.

42
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All profiles are presented in tunnel coordinates, with x-axis in the downstream di-
rection as shown in Figure 2.1, the y-axis normal to the test section floor and the z-axis is
defined according to a right handed coordinate system.

4.2 Velocity-Gradient Broadening

Velocity-Gradient broadening effects are due to the fact that the LDV measurement
volume has a finite size and in flow-fields with strong gradients can influence the mea-
sured turbulence quantities. Hence corrections must be applied to each measured quan-
tity. However, from practice, the only quantities affected are the normal stresses, specifi-
cally the stream-wise stress u2 and the triple-velocity correlation in the stream-wise direc-
tion u3. The corrections of Fischer [15] were used. The effective measurement volume of
the short system reported by Olcmen [41] and Byun [4] was 30µm and 50µm respectively.
However, in this study it is was estimated to be 80µm while the CompLDV probe had
an effective measurement volume of 120µm. The scaling of DeGraff and Eaton [10] can
be used to confirm that the correct value of friction velocity is used to scale the profiles.
This scaling was used and is shown in Figure 4.2e, which shows excellent agreement with
DNS data of Spalart [53].

4.3 Skin Friction velocity uτ

The skin friction velocity defined in Equation 4.1, was estimated using the asymptotic
behavior of the mean flow velocity as dictated by the momentum equation. The near wall
behavior, y+ ≤ 9, can be modeled using equation 4.2

uτ =

√
τ

ρ
(4.1)

Q =
uτ

ν
y +

1

2µ

∂P

∂s
y2 + C·y4 (4.2)

Where Q is the velocity magnitude parallel to the wall, Q =
√

U2 + W 2, ∂P
∂s

is the
surface pressure gradient in the flow direction and C is a constant related to the shear
stress profile. Surface pressure measurements were made using pressure taps on a surface
mounted flat plate. The same plate was used and documented by Tian [69]. The pressure
taps were connected to the Scannivalve system. The pressure data were interpolated
linearly over a cartesian grid and the pressure gradients were evaluated at each profile
location. The level of pressure gradients were small so that the inclusion of the pressure
term resulted in a change in uτ less than 2%.
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In general, for all Short system profiles, at least 4 or 5 points were present in the
viscous sublayer that were used to fit the measurements to equation 4.2. In addition
to determining the friction velocity and the constant C in equation 4.2, a shift in the y-
coordinates, δy, is also determined. This is done by minimizing the sum of the square of
the residual between the left and right sides of the equation. The y-shifts for the Short
system profiles were less than 60µm for all profiles.

The details of matching the Short system and CompLDV profiles are presented in
Appendix C. Table 4.1 shows the tunnel coordinates of all profiles as well as the flow
conditions, pressure gradients, skin-friction velocity using Short System LDV probe, y-
shift and the correlation coefficient, R, for the fit to Equation 4.2.

It can be seen from table 4.1 that the estimated friction velocity for different clus-
ters showed some scatter. This led to some differences in the non-dimensional quanti-
ties. In order to obtain better collapse between profiles, the friction velocity used is ob-
tained by averaging the wall shear stress instead of the friction velocity. This way there
is less uncertainty in estimating the friction velocity. All profiles in each cluster are non-
dimensionalized using the cluster CompLDV average friction-velocity. Table C.1 lists the
friction velocity for each profiles for both probes and the average friction velocity for each
cluster.

4.4 Entrance Profiles

Two LDV profiles were taken at the entrance to the test section in the straight conver-
gent side walls part using the Short LDV system. The measured LDV profiles didn’t reach
the free-stream location. Hence the mean flow measurements obtained by the seven-hole
probe at the entrance, x = 0, were scaled using uτ estimated from short system profiles
and fitted to the LDV measurement in order to obtain an estimate of the boundary layer
thickness as well as momentum thickness. From the measured mean U profiles, the in-
coming boundary layer thickness, δ99 is about 39mm and the Reynolds number based on
momentum thickness is Reθ = 7200.

Plots of mean velocity, Reynolds stresses and triple products are shown in Figure 6.15.
The measured profiles are in very good agreement with DNS data. Moreover the Reynolds
normal streamwise stress scaled using the scaling proposed by DeGraff and Eaton [10] is
shown in Figure 4.2e. From this figure it is shown that this scaling is good up to y+ ≈ 700
for this flow condition.
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4.5 Down-stream Profiles

In this section LDV measurements at the down-stream locations will be discussed.
Profiles of measured quantities will be discussed at each measurement cluster.

4.5.1 P08 Cluster

Profiles P06, P08 and P10 are along the stream-wise direction, while profiles P07, P08
and P09 are along the span-wise direction as shown in Figure 4.1. The center profile,
P08, in this cluster is located at x/L = 0.871 and Z/Wx=0 = −0.158. The cluster is at the
stream-wise end of the fifth wave on the right side wall.

P08: Mean Stream-wise and Span-wise Velocities, U+, W+

Mean flow profiles of stream-wise and span-wise velocity components are shown in
Figure 4.3a. In general, all profiles show a viscous sub-layer and a semi-log layer. All pro-
files collapse onto a single profile which is close to the two-dimensional boundary layer
profile. For a two dimensional boundary layer the flow velocity in the semi-logarithmic
layer is given by Equation 4.3, [52]. Also shown in the figure, the stream-wise velocity
profile for a turbulent boundary layer DNS calculations by Spalart, [53]. The U-velocity
profiles become constant at about y+ = 103, however the speed seems to increase slowly
to a higher value. The span-wise velocity component increases in the stream-wise direc-
tion.

U =
1

κ
ln y+ + B (4.3)

The span-wise flow velocity is positive, W+, near the wall and increases in the stream-
wise direction and is almost constant in the span-wise direction. This is due to the fact
that this cluster is at the beginning of the last wave on the right side wall, hence , the
skewing effects of the new wave is felt more in the downstream direction. At y+ = 700,
the span-wise velocity component changes sign and becomes negative. This is due to the
mean flow moving over the fifth wave downstream of the previous peak which is toward
the negative w-direction.

P08: Reynolds’ Normal Stresses, u2+
, v2+

and w2+

Plots of the normal Reynolds stress in the stream-wise direction are shown in Fig-
ure 4.3b for all profiles along with DNS data of Spalart, [53], for a two-dimensional tur-
bulent boundary layer which are presented as a reference. The plot shows a much higher
values of stress than in the two-dimensional turbulent boundary layer case and instead
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of one peak, there is a secondary peak. The primary peak occurs at nearly y+ = 14 while
for the two-dimensional case the peak value occurs at y+ = 14.4. The peak value ranges
between 12-13. The second peak is visible in all profiles between y+ = 300 and 500. The
second peak value is higher than the primary one and ranges from 12 to 14. Fernholz,[14],
also reported the presence of a second peak at high Reynolds number. All profiles how-
ever collapse near the wall into a single curve approaching the DNS data.

At the maximum measured height the stresses didn’t reach zero value. Measure-
ments at higher distances from the wall, could not be obtained since the LDV probe was
blocked by the tunnel structure under the test section’s floor.

The normal to the wall and span-wise normal stresses are shown in Figure 4.3c.
The normal stresses increase slightly in the downstream direction, while the increase
in the span-wise direction is larger. Again, near the wall the stresses collapse on top
of one another and they approach the two-dimensional turbulent boundary layer DNS
calculations. However, the magnitude of maximum stress is much higher than the two-
dimensional case. Furthermore, both stresses reach a value of about 6.5 around y+ = 3000
which is the same magnitude of the stream-wise normal stress. This suggests that the
turbulence has reached near isotropic state at that height.

P08: Reynolds’ Shear Stresses, uv+, uw+ and vw+

The negative of Reynolds shear stresses, uv+ and vw+ are shown in Figure 4.3d. The
differences in both stresses between profiles are very small. Below y+ = 20 the uv+ stress
collapses with DNS data. Above this height the shear stress decreases to a minimum
value of −2 at y+ = 366. Between y+ = 800 and 1300 there is another extremum that is
aligned with the extremum in the vw+ stress.

The vw+ stress behavior is the same for all profiles, reaching a maximum of 1.9 at
y+ = 1518. At this maximum value, the vw+ stress is actually larger than the uv+ stress
which results in a very large magnitude of shear angle, γs.

Figure 4.3e shows the uw+ stress. There are two maxima at y+ = 11 and y+ = 530
approximately. The shear stress increases in the span-wise direction while it is almost
unchanged in the stream-wise direction. At y+ = 530 the stress starts decreasing to a
negative value with almost the same slope as the uv+ slope. Profile P07 is lower than
other profiles to some extent. Again, at the maximum measured height all shear stresses
are roughly equal in magnitude.

P08:Correlation Coefficient, ρuv

Figure 4.3f shows the correlation coefficient, ρuv, as defined by Equation 4.4 along
with values from DNS data.

ρuv =
−uv√

u2 ·
√

v2
(4.4)
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Measured values are lower than DNS data, which is usually the case in three-dimensional
flow fields. The correlation coefficients for the shown profiles don’t collapse near the wall,
however they have the same trend. The correlation coefficient for all profiles reaches a
value of about 0.3 at y+ = 345, then it decreases to a minimum value of about 1.5.

P08: 1/S Parameter

The 1/S parameter as defined by Equation 4.5 is shown in Figure 4.3g. DNS data are
also shown for comparison.

S−1 =

√
(−uv)2 + (−vw)2

v2
(4.5)

This parameter collapses all profiles’ data in the semi-log region and in the outer region.
Near the wall there is no collapse. Also the value of S−1 approaches the two-dimensional
value of 0.7 in the semi-log region. This suggests that this function approaches a uni-
versal behavior in the semi-log and outer region for two and three-dimensional flows.
According to Olcmen and Simpson [41] this is true as long as there are no stream-wise
vortices.

Profiles P08 and P09 experience lower values near the wall than the rest of the pro-
files. This might suggest that the alignment for these profiles is not as accurate as the
other ones.

P08: Turbulent Kinetic Energy TKE

The turbulent kinetic energy, TKE as given by Equation 4.6, is shown in Figure 4.3h
with corresponding DNS data.

TKE =
u2+

+ v2+
+ w2+

2
(4.6)

The level of turbulent kinetic energy is so much larger than the two-dimensional bound-
ary layer value. This might be due to the larger production due to larger shear stresses in
the stream-wise and span-wise directions, which is observed and explained in Chapter 5.
Near the wall all profiles collapse and approach the two dimensional values. At y+ = 20
all profiles reach different relatively constant values of TKE and at y+ = 42 the energy
increases more rapidly up to a maximum value between y+ = 200 and 400. There is also
a local minimum at about y+ = 1000.

P08: Turbulent Diffusion Velocity ~Vq
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Turbulent diffusion vector non-dimensionalized by uτ and defined by Equation 4.7,
is shown in Figures 4.3i to 4.3k for Vqx, Vqy and Vqz respectively.

~V +
q =

u2
l u

+ ·̂i + u2
l v

+·ĵ + u2
l w

+·k̂[
u2+

+ v2+
+ w2+

] (4.7)

The turbulent diffusion in the x-direction for profiles P06, P07 and P10 almost col-
lapse. On the other hand, profiles P07, P08 and P09 increase in value in the positive
z-direction. Profiles of the three velocity components show an extremum around y+ = 7
with almost a constant magnitude for all profiles. Another extremum is also shown
around y+ = 550 for the x and y-velocity components while for the z-component the
extremum is at y+ = 900 . In the region 30 ≤ y+ ≤ 150, the turbulent velocity is almost
constant with V +

qx = 0.45 while V +
qy and V +

qz are almost zero. This region corresponds to the
semi-log region. The positive peak in the V +

qx near the wall is due to sweeping motions
with positive u-fluctuations and negative v-fluctuations. In the outer layer the negative
peak is due to ejection motion creating negative u-fluctuations correlated with positive
v-fluctuations. The peaks in V +

qy and V +
qz can also be explained by sweeping and ejection

events.

P08: Townsend’s Structural Parameter A1

Townsend’s Structural parameter is given by Equation 4.8 and shown in Figure 4.3l.
This parameter tests the correlation between the Reynolds shear stress and the normal
stresses (turbulent kinetic energy). A typical maximum value for two-dimensional bound-
ary layers is 0.15. However, Olcmen and Simpson [41] showed that for three-dimensional
flow fields the maximum value is usually lower than that. In addition, the level of turbu-
lence in this experiment is higher than the two-dimensional boundary layer levels which
further reduces this parameter.

A1 =

√
uv2 + vw2

u2 + v2 + w2
(4.8)

Near the wall all profiles approach DNS data; however, in the semilog layer the profiles
don’t collapse to a single curve. All profiles increase up to a value of 0.08 and stay almost
constant for the range 200 ≤ y+ ≤ 600. Then all profiles increase in a similar manner.

P08: Flow Angle γa, Shear Stress Angle γs and Flow Gradient Angle γg

The flow, shear stress and flow gradient angles are defined as follows,

γa = arctan
(

W

U

)
(4.9)
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γs = arctan
(−vw

−uv

)
(4.10)

γg = arctan

(
∂W/∂y

∂U/∂y

)
(4.11)

Plots of flow angles, shear stress angles and flow gradient angles are shown in Fig-
ure 4.3m-4.3o respectively.

In a two dimensional flow the flow angle is zero, hence the flow angle is a measure of
three-dimensionality of the flow field. At this station close to the wall the flow is moving
in the positive z-direction. Close to the wall y+ ≤ 5 the flow angle seems to be constant
which is consistent with findings by Olcmen [41] and Byun [4]. All profiles in this cluster
show a semi-logarithmic region between 10 ≤ y+ ≤ 100. Near the wall, the flow angle
magnitude increases along profiles P06, P08 and P10 up to y+ = 800 due to pressure
gradient effects as the wave peak at x/L=0.94 is approached. In the positive span-wise
direction the flow angle also increases but with a lesser rate. For all profiles, the flow
changes direction from positive to negative span-wise direction at about y+ = 1420. This
might be due to the fact that away from the wall the flow is still directed in the negative
z-direction by the side wall turning effect from the previous wave cycle.

Shear angle profiles are shown in Figure 4.3n. For this cluster the shear angle is
close to zero near the wall and decreases away from the wall. Also the profiles show
a semi-logarithmic region; however, the variation is smaller than for the flow angle. A
local minimum is shown at about y+ = 1420, which is the same height where all profiles
experience a reversal in the flow angle sign. The magnitude of the minimum doesn’t
change in the stream-wise direction while it increases in the span-wise direction.

Flow gradient angle profiles are shown in Figure 4.3o. Near the wall the flow gra-
dient angle tends to a constant value. Also in the range 5 ≤ y+ ≤ 30 all profiles show
a semi-logarithmic region. In the region 100 ≤ y+ ≤ 300 the profiles experience a min-
imum followed by a maximum. At y+ = 1450 there exists another minimum. Above
this height the flow gradient increases to a positive value. Finally, an idea of the flow
anisotropy can be obtained by plotting the difference between the shear and flow gradi-
ent angles. If the flow is isotropic, then both angles should be equal meaning that the
shear stress component and the mean strain in the x-z plane are in the same direction.
From Figure 4.3p, it can be seen that near the wall all profiles almost collapse to a one
curve except profiles P08 and P09, which might be due to some misalignment of LDV.
Also near the wall the magnitude of the difference decreases to a constant value in the
semi-logarithmic region; then it reaches a maximum at y+ = 770.

P08: Mixing Length Lm and Turbulent Eddy viscosity νTx
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The mixing length (Cebeci [5], Olcmen [41]) , as defined by Equation 4.12, is given in
Figure 4.3q. All profiles are non-dimensionalized using wall variables.

L+
m =

[
(uv+)

2
+ (vw+)

2
] 1

4√(
∂ U+

∂ y+

)2
+
(

∂ W+

∂ y+

)2
(4.12)

All profiles collapse to one profile in the range y+ ≤ 1260, with more variation for
y+ ≥ 700. Above this height each profile experiences a maximum value that differs from
one profile to the other. If the mixing length is plotted versus y+ in a log-log plot, the
profiles behaves almost linearly with a sharp change of slope at y+ = 80. In the range
80 ≤ y+ ≤ 584 the profiles also show a semi-logarithmic behavior. Above y+ = 584
all profiles don’t collapse and their behavior is non-linear, however all profiles still have
the same trend. Figure 4.3q also shows the length scale for two-dimensional boundary
layer from DNS calculations by Spalart, [53]. The length scale for the two-dimensional
boundary layer collapses with measured data up to y+ = 100 approximately.

The turbulent eddy viscosity as defined by Equation 4.13 is shown in Figure 4.3s.

νTx

ν
=
−uv+

∂ U+

∂ y+

(4.13)

Shown in the figure are the turbulent eddy viscosity in the stream-wise direction, νTx,
normalized by the kinematic viscosity, ν. The behavior of eddy viscosity is similar to the
mixing length. All profiles collapse to a single curve below y+ = 400. The slope near
the wall, y+ ≤ 80, is not constant and it decreases away from the wall. In the range
80 ≤ y+ ≤ 620 the variation is non-linear then the profiles reach a maximum value of
1000 to 1300 at about y+ = 1500. DNS data are also shown. Again, the measured data
collapse onto DNS data up to y+ = 100 approximately.

4.5.2 P13 Cluster

Profiles P11, P13 and P15 are aligned in the stream-wise direction, while profiles P12,
P13 and P14 are aligned in the span-wise direction as shown in Figure 4.1. The center
profile, P13, in this cluster is located at x/L = 0.871 and Z/Wx=0 = −0.0173. This cluster
is at the same stream-wise location as cluster P08. This cluster is close to the centerline of
the test section.

P13: Mean Stream-wise and Span-wise Velocities, U+, W+

Mean flow velocities, U and W , are shown in Figure 4.4a. Again the profiles show
a viscous sublayer and a semi-logarithmic region between y+ = 30 and y+ = 200. The
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U velocity profiles don’t change much from one location to the other. Also the boundary
layer thickness is maximum at the center of the tunnel, hence measurements were not
made out to the free stream. The W velocity component show a similar behavior from one
location to the other. All profiles have a negative value close to the wall. The W velocity
component decreases away from the wall for all profiles up to y+ = 300 where the slope
reaches zero, then the slope increases toward the end of profiles. As the flow proceeds
downstream the magnitude of the span-wise velocity decreases as the flow starts turning
in the same way as the side walls. In the span-wise direction the W profiles don’t show
any difference between profiles P12, P13 and P14; this is expected since all profiles are
close to the tunnel centerline and very close to the stream-wise location of the side wall
peak.

P13: Reynolds’ Normal Stresses, u2+
, v2+

and w2+

Figure 4.4b shows the stream-wise Reynolds’ normal stress. All profiles collapse
very well to a single curve up to the peak value. The peak value of the normal stress
is almost twice the peak value for a two dimensional boundary layer as given by DNS
data of Spalart [53]. The location of the peaks occur around y+ = 14.9. All profiles show
another peak at y+ = 474. The second peak value range from 10 to 12.9. Between y+ = 74
up to the maximum height reached the stresses increase with a very small rate. Due to
the thickening boundary layer the stresses didn’t reach a zero value up to the measured
distance.

The normal to the wall and span-wise normal Reynolds’ stresses are shown in Fig-
ure 4.4c along with DNS data. Near the wall all stresses approach the two-dimensional
boundary layer behavior. However away from the wall the magnitude of both stresses
are much higher than the two-dimensional ones. The normal to the wall normal stress
changes slightly which might be due to uncertainty the matching procedure. Profiles for
the span-wise normal stress collapses to a single profile up to y+ = 25 approximately,
however profile P13 is slightly lower than the others. Both stresses tend to reach the same
values at the maximum height achieved.

P13: Reynolds’ Shear Stresses, uv+, uw+ and vw+

The Reynolds’ shear stresses uv+ and vw+ are shown in Figure 4.4d along with DNS
data of Spalart [53]. Below y+ = 11 all uv+ stress profiles collapse together on top of the
DNS profile. However away from the wall the shear stresses increase rapidly up to the
maximum height of measurements. The uv+ reaches a value of unity at about y+ = 60.
The vw+ stress has a similar behavior. Since the flow in this region is close to a two
dimensional flow, the magnitude of the vw+ is very small close to the wall but increases
away from the wall.
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The uw+ stress is shown in Figure 4.4e. Near the wall the stress is negative and
reaches a minimum at y+ = 10 then increases linearly up to the maximum measured
height. The trend is not clear at this location, since the profiles show some scatter due to
relatively small value of stress.

P13: Correlation Coefficient, ρuv

Figure 4.4f shows the correlation coefficient along with values from DNS data. Simi-
lar to P08 cluster the measured values are much lower than the DNS data. However the
correlation coefficient profiles have the same behavior as the DNS data increasing semi-
logarithmically with a peak at y+ = 15 of 0.30. Afterwards the coefficient decreases to a
minimum at y+ = 86 then increases with distance from the wall to values above 0.30 at
the maximum height measured.

P13: 1/S Parameter

Figure 4.4g shows the 1/S parameter. All profiles don’t collapse to a single curve
below y+ = 60,. Above that height all profiles collapse to a single curve. For a two-
dimensional boundary layer, the value of 1/S is 0.7 in the semi-logarithmic region, how-
ever for this cluster the 1/S parameter doesn’t show a constant value but instead it is
decreasing semi-logarithmically, in contrast to the two-dimensional behavior and to clus-
ter P08.

P13: Turbulent Kinetic Energy TKE

The turbulent kinetic energy is shown in Figure 4.4h with DNS data for a two-dimensional
boundary layer. Again, the level of kinetic energy is much higher than the two dimen-
sional boundary layer case. The TKE increases to a value of 9 at y+ = 15.7 then it stays
almost constant up to y+ = 74 and then increase again. This behavior suggest that the
boundary layer history increases the turbulence level by convection and diffusion down-
stream.

P13:Turbulent Diffusion Velocity ~Vq

Figures 4.4i-4.4k show the turbulent diffusion velocity components in the x, y and z
directions, respectively. The diffusion velocity in the stream-wise direction has a peak at
y+ = 6 with a value of 2.6 then decreases to a minimum at y+ = 35; the values of the
minimum ranges from 0.6 to 1.0. Above this height the stream-wise diffusion velocity is
almost constant.
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Figure 4.4j shows the normal to the wall turbulent diffusion velocity component. All
profiles collapse to a single curve near the wall up to y+ = 32, approximately. All profiles
show a negative peak with a value of −0.12 at y+ = 6. In the range 32 ≤ y+ ≤ 116
the diffusion velocity is positive and close to zero, then above that height the velocity
decreases. There isn’t a clear trend in the profiles due to some scatter in the data.

Figure 4.4k shows the span-wise turbulent diffusion velocity component. All pro-
files don’t collapse, however the trend is the same for all curves. In general the diffu-
sion velocity is positive and it increases to a maximum value at about y+ = 85 then
decreases towards zero. Values increase in the span-wise direction but almost constant
in the stream-wise direction.

P13: Townsend’s Structural Parameter A1

Townsend’s structural parameter is shown in Figure 4.4l. At this cluster, A1 increases
semi-logarithmically near the wall up to y+ = 35. In the same region all profiles col-
lapse to one curve, in contrast with P08 cluster which doesn’t show as good a collapse.
Figure 4.4l also shows that the A1 parameter has a value less than DNS data for a two-
dimensional boundary layer. However, near the wall the measured profiles approach the
DNS data.

P13: Flow Angle γa, Shear Stress angle γs and Flow Gradient Angle γg

Flow angles are shown in Figure 4.4m. All profiles show a semi-logarithmic region
corresponding to the semi-logarithmic region in the velocity profile. The flow angle
changes sign near the wall in the stream-wise direction, signifying changes in the flow
direction caused by surface pressure gradients. Away from the wall, the flow angle de-
creases into negative values as the flow in the outer layer is less sensitive to the local floor
pressure gradient. A minimum value is reached in the range 200 ≤ y+ ≤ 400 then the
flow angle increase up to the maximum height measured.

The shear stress angle is shown in Figure 4.4n. First thing to note is the discontinuity
in the curves. This is due to the fact that the curves are composed of two data sets obtained
by different probes. Data above y+ = 7 were obtained by the CompLDV and the data
below this height were obtained from the Short system. For the CompLDV data, the probe
alignment was not accurate enough which led to some unphysical spikes very close to the
wall in all quantities involving the v-velocity component fluctuations.

Near the wall, y+ ≤ 30, the shear stress angle doesn’t show significant changes from
one profile to the next since at this cluster the flow is very close to being two dimensional
and that in this range the uv and vw shear stresses almost collapse. Above this height all
profiles show an increase in the shear stress angle. In the stream-wise direction the shear
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angle profiles don’t change, while in the span-wise direction the shear stress angle profile
slope increase.

Flow gradient angle profiles are shown in Figure 4.4o. Again there is no significant
change among the profiles very close to the wall up to y+ = 30. The flow gradient angle
is very close to zero near the wall and it has a negative sign. This means that the mean
strain rate lags the shear stress, in contrast with P08 cluster, where the shear stress was
lagging the mean strain. Profiles in the stream-wise direction experience a minimum at
y+ = 100 and a maximum with a positive value at y+ = 565. This change in the sign of
the mean rate of strain is due to the flow changing direction away from the wall, near the
wall the flow angle is positive while away form the wall is negative.

Figure 4.4p shows the difference between the shear stress angle and the flow gradient
angle. Near the wall, there is a very large positive difference between both angles. The
positive value means that the turbulent shear stress is leading the mean rate of strain
vector. Near the wall the maximum difference is obtained reaching about 55◦. In the log-
layer range the difference drops to about 5◦ and is almost constant, then increases in the
span-wise direction.

P13: Mixing Length Lm and Turbulent Eddy viscosity νTx

Figures 4.4q and 4.4s show the mixing length and turbulent eddy viscosity, respec-
tively. An enlarged view of near wall region is also shown in Figures 4.4r and 4.4t for
the mixing length and eddy-viscosity, respectively. Both quantities collapse to a single
curve for the entire range of measurement. In the range y+ ≥ 500 both quantities show a
semi-logarithmic behavior.

4.5.3 P18 Cluster

Profiles P16p, P16, P18, P181 and P182 are aligned in the span-wise direction as
shown in Figure 4.1. The center profile, P18, in this cluster is located at x/L = 0.912
and z/Wx=0 = −0.192. The distance between each two profiles is 1.0in in the stream-wise
direction. This cluster is close to a side wall peak which is located at x/L = 0.9375 and
z/Wx=0 = −0.331.

P18: Mean Stream-wise and Span-wise Velocities, U+, W+

Figure 4.5a shows the mean stream-wise velocity components. All U-velocity profiles
show a viscous sub-layer and some what of a log-layer with different slopes. The U-
velocity profile becomes fuller going downstream as the side wall peak is approached.
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Also going downstream the slope in the log-layer region changes and at P182 the log-
layer region becomes very small.

The W-velocity components also shown in Figure 4.5a. All profiles show the same
trend with a maximum value that increases going downstream and ranges between 4.5
and 5.0. The location of the maximum shifts away from the wall in the downstream
direction from y+ = 87 to y+ = 167. All profiles show a semi-logarithmic behavior that
starts after the maximum value is reached. This region starts at the end of the semi-
logarithmic region in the stream-wise velocity profile as also pointed out by Olcmen [41].

P18: Reynolds’ Normal Stresses, u2+
, v2+

and w2+

The stream-wise Reynolds’ normal stresses, u2+
, is shown in Figure 4.5b. All profiles

show a similar trend. Near the wall, y+ ≤ 20, all profiles follow the two-dimensional
boundary layer behavior with values that are higher than the two-dimensional values.
The peak value is located around y+ = 14 for all profiles which is the same location for
the two-dimensional case. At about y+ = 500, all profiles show a second peak that is lower
in value than the first peak. The magnitude of the peak decreases going downstream and
the location shifts away from the wall. The second peak tends to smooth out at locations
down-stream, forming a plateau. This plateau region is followed by anther decrease in
the normal stress and a second plateau region is formed.

The normal to the wall and span-wise normal Reynolds’ stresses are shown in Fig-
ure 4.5c. Near the wall, profiles of both stresses collapse up to y+ = 25. The normal to
the wall normal stress shows values less than the two-dimensional case below y+ = 200,
higher than that the stress increases steadily. At y+ = 1392 the slope increases sharply
and the stress levels increase.

The span-wise normal stress increases up to y+ = 20, stays relatively constant, and
then increases again until it reaches a maximum at y+ = 700 for all profiles. Above this
height the stress decrease until it reaches almost the same values as the normal to the wall
normal stress.

A unique feature of this cluster is that all normal stresses reach a state of equal
magnitude at the maximum height measurements were obtained. Also in the range
1345 ≤ y+ ≤ 5200 the span-wise normal stress is actually higher than the stream-wise
normal stress. This might be due to the flow approaching the side wall peak where a
very strong favorable pressure gradient exists which accelerates the flow and reduces the
turbulence levels.

P18: Reynolds’ Shear Stresses, uv+, uw+ and vw+

The uv+ and vw+ stresses are shown in Figure 4.5d. Below y+ = 30 all profiles col-
lapse to single curve. The uv+ shear stress show a plateau between y+ = 30 to y+ = 150
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with a value of −0.5. All profiles have a minimum with a variable magnitude. The loca-
tion of the minimum also shifts upward going in the free-stream direction. At y+ = 2100
all profile show a local maximum of about −0.17, then all profiles decrease again.

The vw+ stress, also shown in Figure 4.5d is self similar below y+ = 30. At this height
all profiles show a minimum with a value of −0.3. The stress then increases with semi-
logarithmic behavior up to y+ = 533. In the range 533 ≤ y+ ≤ 1359 the stress is almost
constant at 0.37, then it undergoes anther maximum at y+ = 2367.

The uw+ stress is shown in Figure 4.5e. Profiles collapse below y+ = 14.1, where all
profiles experience a peak value between 2.0 and 2.5. All profiles experience two local
minimums and a local maximum at y+ = 550, y+ = 4234 and y+ = 1624 respectively.

Another unique feature of this cluster is that the shear stresses also reach a state at
the maximum height achieved where all shear stresses almost have the same values but
with different signs. Moreover, the vw stress, which is usually the smallest in magnitude
of all three stresses, is the largest stress in this case.

P18: Correlation Coefficient, ρuv

The correlation coefficient, ρuv, is shown in Figure 4.5f. A similar trend to that of
cluster P08 and P13 can be seen for this cluster. The correlation coefficient reaches a very
low value at the maximum height measured, even though the normal stresses are still
significantly higher than zero. This is due to the rapid decrease in shear stress as the
test section’s mid-height is approached which is located at about y+ = 5800, based on uτ

calculated at P18.

P18: 1/S Parameter

The S−1 parameter is shown in Figure 4.5g. Above y+ = 20 all profiles almost col-
lapse to a single curve. Near the wall and below y+ = 10, measured profiles don’t collapse
and they also don’t follow DNS data. This is due to measurement uncertainties. Above
this height all profiles follow DNS data decreasing with the same slope. In the range
150 ≤ y+ ≤ 478 the S−1 is almost constant with a value of about 0.5 which is lower
than the two-dimensional value of 0.7. Above y+ = 478 the S−1 parameter decreases
semi-logarithmically.

P18: Turbulent Kinetic Energy TKE

The turbulent kinetic energy is show in Figure 4.5h. Again the measurements follow
the DNS data trend near the wall up to y+ = 14. The turbulence levels are higher than
those experienced in the two-dimensional channel flow. The TKE profiles have the same
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trend as found in cluster P08, where there is a second peak in the TKE profile. The first
peak is located at y+ = 14 for all profiles and has a value between 5.0 and 6.5. The second
peak is located between y+ = 400 and 600 and it’s value ranges from 4.5 to 5.5. The value
of the second peak decreases monotonically going downstream. This can be attributed
again to the presence of a favorable pressure gradient that accelerates the flow as the side
wall peak is approached.

P18:Turbulent Diffusion Velocity ~Vq

The turbulent diffusion velocity components Vqx, Vqy and Vqz are shown in Figures 4.5i,
4.5j and 4.5k respectively. The x-component of the turbulent diffusion vector experience
multiple maxima at y+ = 4, 140 and 3900 and two minima at y+ = 30 and 950. The
stream-wise diffusion velocity has a positive sign near the wall indicating the dominance
of sweeping motion near the wall. In the range 14 ≤ y+ ≤ 50 and 488 ≤ y+ ≤ 2227 the
diffusion velocity is negative indicating dominant ejection motion.

The turbulent diffusion velocity in the vertical direction, Vqy shows a collapse of pro-
files at these locations within measurement uncertainties. All profiles seem to follow the
same trend and values. The diffusion velocity component changes sign five times over
the entire profile with three minima at y+ = 7, 300 and 3500 and two maxima at y+ = 50
and 1000. Near the wall the diffusion velocity is negative which again indicates the domi-
nance of sweeping motion. In the log-layer range the diffusion velocity is mostly positive.
Away from the wall the velocity component tends to shift towards a positive value.

Figure 4.5k shows profiles of Vqz. The diffusion velocity is positive near the wall
indicating a preferred positive direction of motion in the z-direction. This is due to the
skewing effect due to the approaching side wall. Away from the wall, the velocity is
negative which is due to the direction of motion upstream of this cluster.

P18: Townsend’s Structural Parameter A1

Figure 4.5l shows Townsend’s structural parameter. For this cluster this parameter
works well in collapsing most of the data in contrast with P08. The significance is that the
ratio of shear stress in a plane parallel to the tunnel centerline to twice the kinetic energy
doesn’t change from one profile to the other. All profiles show two peaks, at y+ = 70 and
y+ = 800. Again all values are much lower than two-dimensional values.

P18: Flow Angle γa, Shear Stress angle γs and Flow Gradient Angle γg

Figure 4.5m shows flow angle profiles. At the wall the flow angle decreases in the
stream-wise direction. This is due to the fact that the side wall starts to curve in the



Shereef A. Sadek Chapter 4. LDV Measurement Results 58

negative z-direction, which results in reduction in pressure which in turn would curve
the surface streamlines toward the wall. Away from the wall in the range y+ ≤ 145 for
profiles P16p and P16 the flow angle decreases and for profiles 181 and P182 the flow
angle increases while for profile P18 the flow angle is almost constant. This is due to a
change in sign for the span-wise pressure gradient close to profile P18. Upstream of P18
the span-wise pressure gradient is negative while positive downstream. Above y+ = 145
pressure gradient effects are negligible and all profiles have the same trend and decreases
to zero.

Figure 4.5n shows the shear stress angle. The first few points of all profiles experience
some scatter so they can’t be interpreted. However close to the wall all profiles show an
almost constant shear stress angle. The stress angle then decreases slowly until y+ =
100, approximately, then the decrease is semi-logarithmic with a more steeper slope. An
interesting observation to note here, is that all angle profiles change sign at about the
same height approximately which is the same height where all flow angles roughly have
the same value at y+ = 150. Also, all profiles show a plateau in the range 260 ≤ y+ ≤ 1000
followed by a minimum at y+ = 2200.

Figure 4.5o shows profiles of flow gradient angle. Near the wall and below y+ = 60,
profiles P16p and P16 while profiles P181 and P182 increase and P18 is constant. All
profiles then decrease semi-logarithmically in a similar behavior as the shear stress angle.

Profiles of the difference between shear stress angle and mean flow gradient angle
are shown in Figure 4.5p. Near the wall the difference is almost constant in the viscous
sub-layer and is equal approximately to 15◦. Then the difference decreases up to y+ = 150
then it increases again. This is the same height where the flow angle profiles show similar
behavior. Also all profiles show a maximum at y+ = 704 with different peak values. The
difference then decreases to positive values.

P18: Mixing Length Lm and Turbulent Eddy viscosity νTx

Figures 4.5q and 4.5s show the turbulent length scale, Lm, and the turbulent eddy
viscosity, µTx, respectively. An enlarged view of near wall region is also shown in Figures
4.5r and 4.5t for the mixing length and eddy-viscosity, respectively. Both quantities have
the same behavior with all profiles collapsing up to y+ = 1000. The length scale increases
monotonically until it reaches y+ = 300, then it increases rapidly. All profiles have a
maximum at y+ = 3800. The eddy viscosity profiles don’t collapse as well as the mixing
length profiles.

4.5.4 P19 Cluster

Profiles P19pp, P19p, P19, P191 and P192 are aligned in the span-wise direction as
shown in Figure 4.1. The center profile, P19, in this cluster is located at x/L = 0.912
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and z/Wx=0 = −0.1714. The distances between profiles is 1.0in in the stream-wise direc-
tion. The distance between this cluster and P18 cluster is 0.76 in in the positive span-wise
direction.

P19: Mean Stream-wise and Span-wise Velocities, U+, W+

Figure 4.6a shows the mean stream and span-wise velocity components. All profiles
show a viscous sub-layer and a semi-logarithmic regions. However the slope of the semi-
logarithmic region is less than 0.41−1 and in general changes slightly from one profile to
the other. No profiles show a free stream edge. The mean span-wise velocity component
shows a similar trend as the P18 cluster. The velocity profiles have a maximum that shifts
away from the wall moving in the stream-wise direction. The magnitude of the peak is
almost constant. Near the wall the profiles’ slope which is approximately equal to the
stream-wise vorticity component decreases going downstream, this is due to the change
in sign of the local span-wise pressure gradient between clusters P19p and P19.

P19: Reynolds’ Normal Stresses, u2+
, v2+

and w2+

Figure 4.6b shows the stream-wise normal stress. Qualitatively the stream-wise nor-
mal stresses at this cluster have the same trend as the P18 cluster. The stress profiles have
two peaks with the first at y+ = 14 and the location of the second peak shifting away
from the wall going downstream. The first peak has almost the same magnitude as the
P18 cluster, however the second peak magnitude is higher than that observed in the pre-
vious cluster. This may be due to a higher value of local shear stress than that for P18
cluster.

The normal to the wall and span-wise normal stresses are shown in Figure 4.6c. The
normal stresses show similar behavior as those in the P18 cluster. However, similar to the
stream-wise normal stress, the magnitudes of both stresses are higher than those in the
previous P18 cluster. The normal to the wall stress shows magnitudes lower than the DNS
data, which is due to three-dimensionality effects as pointed out by Moin [37]. Similarly,
the span-wise normal stress follows the same trends from the previous cluster, but with
higher magnitudes. For y+ ≥ 4000 all normal stresses approach the same magnitude.

P19: Reynolds’ Shear Stresses, uv+, uw+ and vw+

The uv+ shear stress is shown in Figure 4.6d. All profiles collapse as the wall is ap-
proached. However, shear stress values near the wall are much smaller than those for
two-dimensional boundary layer. For y+ ≥ 20 all profiles start to depart, developing a
maximum whose location shifts away from the wall with profile’s stream-wise location.
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The magnitude of the peaks decrease with stream-wise location. This may be due to de-
crease in the shear stress production which is reduced due to decrease in vertical normal
stress with stream-wise distance. Profiles at the downstream end of this cluster experi-
ence stronger three-dimensional effects than the upstream profiles since they are closer to
the side wall peak as shown in Figure 4.1. Also in the same figure, the vw+ shear stress
is shown. All profiles collapse near the wall up to y+ = 20 where they start to depart.
All profiles develop a minimum between y+ = 20 to 50 where the magnitude of the vw+

stress is about 60% of the uv+ stress. Above y+ = 50 the stress increases away from the
wall until it develops a plateau area with a positive sign at y+ = 350. Further away from
the wall a maximum is developed at y+ = 3000, then the stress start decreasing again.
Again as in the previous cluster, at the positive maxima the vw+ is greater than the uv+

shear stress.

The uw+ stress is shown in Figure 4.6e. The same trend shown in the previous cluster
is shown here. The uw+ stress develops a large positive peak value at y+ = 13. The peak
value is about six times larger than the uv+ shear stress. The uw+ stress then decreases
to a negative value, developing two minimas and a maxima at y+ = 450, 3000 and 2000,
respectively. The locations of the peaks differ slightly from one profile to the other. The
location of the maxima is coincident with the location of the maxima in the vw+ shear
stress.

P19:Correlation Coefficient, ρuv

The correlation coefficient ρuv is shown in Figure 4.6f. All profiles show almost a
constant value in the semi-logarithmic region with a value of about 0.3. At y+ = 655
there is a local maxima; above this height the correlation coefficient decreases to about
y+ = 2500 where it seems to have leveled off. This is due to the fact that the shear stress
approaches a constant value at the highest measurement location and that the normal
stresses are approaching equal values.

P19: 1/S Parameter

Figure 4.6g shows the S−1 parameter. All profiles collapse very well in the semi-
logarithmic and outer layers. In the semi-log layer the S−1 parameter is about constant at
about 0.6. At y+ = 700 all profiles decrease semi-logarithmically. This height is coincident
with the minimum in the uv+ shear stress.

P19: Turbulent Kinetic Energy TKE

Turbulent kinetic energy is shown in Figure 4.6h. Near the wall all profiles collapse
and have the same slope as the two-dimensional DNS data. Similar to the previous cluster
there are two peaks. However, the second peak is as high as the primary one at y+ = 18.
The position of the second peak shifts away from the wall going downstream.
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P19:Turbulent Diffusion Velocity ~Vq

The turbulent diffusion velocity components Vqx, Vqy and Vqz are shown in Figures 4.6i,
4.6j and 4.6k, respectively. All profiles collapse near the wall up to y+ = 15. The trend is
the same as for the previous cluster. Contributions to Vqx are mainly from u3+

and uw2+
.

The first positive peak and the last negative peak are associated with motions creating
u and w-fluctuations of same positive and negative signs, respectively. Between about
15 ≤ y+ ≤ 600 the peaks are associated with motions creating u and w-fluctuations of
opposite signs. The uw2+

correlation contributes significantly to the turbulent diffusion
velocity. This can be seen in the range 60 ≤ y+ ≤ 600 where for a two-dimensional
boundary layer, not shown here, the stream-wise diffusion velocity component is almost
zero.

The vertical turbulent diffusion velocity component is shown in Figure 4.6j. The u2v
+

correlation is the major contributor to this diffusion velocity component. The effect of the
v3+

and vw2+
correlations is to shift the diffusion velocity into positive values away from

the wall. The first peak near the wall is due to sweep motion while the positive peaks are
due to ejection motion.

Finally, the turbulent diffusion velocity in the span-wise direction is shown in Fig-
ure 4.6k. The diffusion velocity is mainly due to u2w

+
and w3+

. Near the wall up to
y+ = 15, motions creating positive u and w-fluctuations correlate while in the range
15 ≤ y+ ≤ 600 motions creating opposite sign u and w-fluctuations correlate. Above
this height the same trend repeats but with a much lower values.

P19: Townsend’s Structural Parameter A1

Townsend’s structural parameter is shown in Figure 4.6l. All profiles collapse near
the wall up to y+ = 30. All profiles have two peaks at y+ = 70 and 940, approximately.
The values of this parameter are much lower than two dimensional case which is typical
for three-dimensional flows.

P19: Flow Angle γa, Shear Stress angle γs and Flow Gradient Angle γg

The flow angle, shear angle and flow gradient angle are shown in Figures 4.6m, 4.6n
and 4.6o, respectively. All profiles show a semi-logarithmic region extending to y+ = 115.
The extent of this region changes for different profiles and is larger than for the previous
cluster. Above this height there is a small difference between all profiles. At the wall,
flow angles decrease in the downstream direction. The shear stress angle shows a little
variation for this cluster. All profiles show two semi-logarithmic variations with different
slopes in the ranges 8 ≤ y+ ≤ 60 and 60 ≤ y+ ≤ 300. The profiles in this cluster are



Shereef A. Sadek Chapter 4. LDV Measurement Results 62

very similar to those in the previous one even though both clusters have different flow
angles. Flow gradient angles have the same trend as in the previous cluster but have
different values. The near wall behavior of the flow gradient angle is similar to the flow
angle which indicate that the mean strain rate responds quickly to mean flow changes in
contrast with the shear stress angle. This is shown in Figure 4.6p where the difference
between the shear stress angle and the flow gradient angle profiles is shown. At the wall
the difference is close to 30◦, discarding the first point due to scatter, and is about constant
in the semi-log layer at about 20◦. The profiles develop a maxima at about y+ = 650 with
different peak values then all profiles decrease to a negative value.

P19: Mixing Length Lm and Turbulent Eddy viscosity νTx

The mixing length is shown in Figure 4.6q. All profiles collapse to a single curve
very close to the wall, y+ ≤ 50. All profiles show two regions with constant slope when
plotted in a log-log scale. The slopes change at y+ = 70 approximately. Above y+ = 950
all profiles increase steeply and show a peak with different values.

The eddy-viscosity is plotted in Figure 4.6s. The eddy viscosity shows a similar trend
as the mixing length, however the profiles increase smoothly then decrease with no steep
changes in slope.

Enlarged views of near wall region is shown in Figures 4.6r and 4.6t for the mixing
length and eddy-viscosity, respectively.

4.5.5 P20 Cluster

Profiles P20pp, P20p, P20, P201 and P202 are aligned in the stream-wise direction
as shown in Figure 4.1. The center profile, P20, in this cluster is located at x/L = 0.912
and z/Wx=0 = −0.144. The distances between profiles is 1.0in in the stream-wise direc-
tion. The distance between this cluster and P19 cluster is 1.0 in in the positive span-wise
direction. The distance between profile P201 and P202 is 0.4in. only in the stream-wise
direction, due to probe interference with tunnel structure.

P20: Mean Stream-wise and Span-wise Velocities, U+, W+

Figure 4.7a shows the mean velocities in the stream and span-wise directions. For
the stream-wise velocity component, all profiles show a viscous sub-layer region and a
semi-logarithmic region. The slope of the semi-logarithmic region is almost constant.
However the profiles show higher levels in the stream-wise direction. All profiles show
the beginning of a wake-like region close to the last measurement point. The last two
profiles show very similar values due to the fact that they are closer in distance than
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the other profiles. The span-wise velocity component shows the same shape as previous
clusters with a reduced value of the peak value.

P20: Reynolds’ Normal Stresses, u2+
, v2+

and w2+

The stream-wise normal stress is shown in Figure 4.7b. All profiles show the same
trend as the P18 and P19 clusters. All profiles show two peaks, with the largest peak at
y+ = 15 and the second is at y+ = 800. The location of the second peak varies slightly
for different profiles. Peak values are slightly higher than the previous two clusters. Fig-
ure 4.7c shows the normal to the wall and span-wise normal stresses. The normal to the
wall normal stress profiles show a plateau region starting at y+ = 60 that is present in
all profiles in this cluster and the previous two clusters. At about y+ = 170 the stress
increases semi-logarithmically, reaching values close to the span-wise normal stress. The
span-wise normal stress is also shown in Figure 4.7c. The profiles show the same trend as
previous clusters, approaching two-dimensional values close to the wall. Away from the
wall the stress levels off at about y+ = 60, which is the same height where a plateau exists
in the v2+

stress. The second peak that was present in the P18 and P19 clusters seems to
have smoothed out in this cluster. The scaling for profile P20 seems to be incorrect since
it higher than other profiles. Also, for profile P202 no near wall data were obtained so the
skin friction velocity was estimated by fitting the profile to DNS data. In general, profiles
of all three stresses show higher turbulence levels than two-dimensional data and most
of available three-dimensional attached boundary layer flows.

P20: Reynolds’ Shear Stresses, uv+, uw+ and vw+

The shear stresses uv+ and vw+ are shown in Figure 4.7d. Profiles of the uv+ shear
stress show a plateau area starting at approximately y+ = 40 with a value of about −0.60,
then decreases to a minimum at about y+ = 700. This is probably due to the plateau area
in the v2+

normal stress. The vw+ shear stress is also shown in the same figure. All profiles
show a negative sign close to the wall then changes sign in the range 75 ≤ y+ ≤ 230. The
negative peak close to the wall is smaller in magnitude than the previous two clusters. All
profiles also show a slight change in slope at about y+ = 920. The magnitude of this stress
is higher than the uv+ and uw+ shear stresses at the maximum height achieved. The uw+

stress shown in Figure 4.7e, has the same trend as the previous clusters, but with smaller
peak magnitudes. Also the last peak at y+ = 1050 has a positive value in contrast with
the previous two clusters.

P20:Correlation Coefficient, ρuv

The correlation coefficient is shown in Figure 4.7f. Profiles P20p, P20 and P202 have
almost constant ρuv at 0.3. Profiles P20pp and P201 show lower values close to the wall
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which might be due to mis-alignment of the LDV probe since the probe had to be moved
multiple times to measure all profiles in this cluster. However, above y+ = 400 all profiles
more or less have the same values and trend.

P20: 1/S Parameter

Figure 4.7g shows the 1/S profiles. Near the wall the profiles don’t collapse, since
this parameter tends to an infinite value at the wall. However, above y+ = 70 all profiles
collapse well to a single profile. The value of this parameter is almost constant in the
range 70 ≤ y+ ≤ 480 at about 0.6. Above y+ = 480 the parameter decreases semi-
logarithmically.

P20: Turbulent Kinetic Energy TKE

The turbulent kinetic energy is shown in Figure 4.7h. All profiles collapse to a single
profile up to about y+ = 60. Near the wall TKE profiles have the same slope as that of the
two-dimensional profile, but at a higher turbulence level. All profiles show two peaks,
the first is near y+ = 18 while the second peak’s location varies with position. Profile
P20 shows a higher second peak than all other profiles. This profile resembles the P19pp
profile. However, the second peak in the P20 profile is higher and shifted away from the
wall.

P20:Turbulent Diffusion Velocity ~Vq

The stream-wise turbulent diffusion velocity component, Vqx, is shown in Figure 4.7i.
All profiles collapse very well to a single curve except in the range 15 ≤ y+ ≤ 145.
The diffusion velocity has a positive peak close to the wall and changes sign about four
times away from the wall. This indicates that the direction of turbulence diffusion is
changing away from the wall. Figure 4.7j shows the turbulent diffusion velocity vertical
component. Similar to the previous two clusters the diffusion velocity normal to the wall
is negative close to the wall and positive away from the wall with a change in sign twice
at y+ = 20 and 2000. Profiles don’t collapse away from the wall maybe due to uncertainty
in the data. The last two peaks are lower in value than those observed in the last cluster.
Finally, Figure 4.7k shows the span-wise turbulent diffusion velocity component. All
profiles collapse fairly to a single profile within measurement uncertainty. However, the
shape of these profiles are similar to profiles in the P18 and P19 clusters. All profiles show
a positive peak close to the wall and a change in sign around y+ = 300. A negative peak
is also present at about y+ = 1170.

P20: Townsend’s Structural Parameter A1
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Townsend’s structural parameter is shown in Figure 4.7l. Profiles don’t collapse for
this cluster, however they still exhibit a semi-logarithmic behavior near the wall with two
plateau areas at y+ = 60 and 500. The maximum value is about 0.1 which is the same
magnitude for all other clusters. The lack of collapse in this cluster is probably due to
misalignment of the CompLDV probe as mentioned earlier.

P20: Flow Angle γa, Shear Stress angle γs and Flow Gradient Angle γg

Figure 4.7m shows the flow angles. The same trends observed in P18 and P19 clusters
can be seen here. However, profiles P20pp and P202 show much lower values than other
profiles near the wall. Away from the wall, all profiles approach the same angle and
slope. However, in the stream-wise and span-wise direction, flow angle profiles show
consistent trends for all clusters. Figure 4.7n shows the shear stress angle. For this cluster
the profiles don’t collapse well along the height of the profiles. However, all profiles have
the same trend as previous clusters.

In the buffer layer the angle is almost constant then in the semi-log layer it decreases
semi-logarithmically. There is a small plateau area around y+ = 300 where the angle is
approximately 20◦. The shear angle then decreases to a large negative value. The flow
gradient angle is shown in Figure 4.7o. The flow gradient angle profiles show very small
difference between profiles. Comparing mean flow angles and mean flow gradient an-
gles, it can be seen that the mean flow gradient angles follow closely the changes in the
mean flow angles. On the other hand the shear stress angle does not respond as fast to
changes in the mean flow, hence the shear stress angle is lagging the flow gradient angle.
This is shown in Figure 4.7p which shows the difference between the shear stress angle
and the flow gradient angle. The differences are almost constant or very slightly changing
along the profiles up to y+ = 200. At about y+ = 1000 all profiles cross zero, meaning that
at that height there is no lag between the two angles.

P20: Mixing Length Lm and Turbulent Eddy viscosity νTx

The mixing length is shown in Figure 4.7q. All profiles collapse to a single profile
near the wall. Away from the wall at about y+ = 500 all profiles start to depart. However,
the differences are within 15%. Up to the maximum height the mixing length is increasing.
Figure 4.7s shows the turbulent eddy viscosity. Similar trends to the mixing length can be
seen in this figure, however the differences between profiles are more clear in the eddy
viscosity profiles than the mixing length.

4.5.6 P33 Cluster

Profiles P31, P33, P35 are aligned in the stream-wise direction, while profiles P32,
P33, and P34 are aligned in the spanwise direction as shown in Figure 4.1. The center
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profile, P33, in this cluster is located at x/L = 0.935 and z/Wx=0 = −0.059. The distance
between any profile and the center profile is 1.0in in the stream-wise and span-wise di-
rection. The flow behavior in this cluster is very similar to that of P13 cluster. However,
there are some differences in flow angles, turbulent Reynolds shear stress angles and flow
gradient angles.

P33: Mean Stream-wise and Span-wise Velocities, U+, W+

The stream-wise velocity profiles are shown in Figure 4.8a. All profiles are very close
to two-dimensional boundary layer profiles, showing a viscous sub-layer and a semi-
logarithmic region. All profiles collapse in the viscous layer and agree well with DNS
data. In the semi-logarithmic region, the slope increases slightly in the stream-wise and
span-wise directions. A wake region starts to develop at the tip of the profiles. Also all
profiles show wider semi-logarithmic regions which suggest that the flow is becoming
more and more developed towards the end of the test section. Also shown in Figure 4.8a
is the span-wise velocity component. All profiles show inflexion points where the sec-
ond derivative changes sign. This means that the stream-wise vorticity which is approxi-
mately equal to ∂W/∂y changes sign along profiles. This is due to change in the spanwise
pressure gradient direction upstream of this location.

P33: Reynolds’ Normal Stresses, u2+
, v2+

and w2+

Figure 4.8b shows the stream-wise normal stress profiles. All profiles collapse to a
single profile in the viscous sublayer below y+ = 10. The peak value is approximately
located at y+ = 14, which is the same as DNS data. However the peak value is much
higher than the two-dimensional value. Above y+ = 100 all profiles show a near plateau
region where the stress doesn’t change significantly. However the last two points in the
profiles show a decrease in stress values except for profile P34 which is the furthest in the
positive span-wise direction. The trends in this cluster is the same as those observed in
P13. Profiles P13 and P34 are about 0.60 in. apart in the span-wise direction. Figure 4.8c
shows the normal to the wall and span-wise Reynolds normal stresses. Profiles of the
normal to the wall normal stress collapse very well near the wall and agree with DNS
data up to y+ = 40. The vertical stress has the same trend as the two-dimensional profile
up to about y+ = 80; above that the stress increases monotonically with a small plateau
area around y+ = 100. The span-wise normal stress profiles shown in the same figure
approach two-dimensional DNS data close to the wall. However, the level of stress is
much higher than the two-dimensional case. In the semi-logarithmic region the span-
wise normal stress decreases in the span-wise direction while is almost constant in the
stream-wise direction. At the highest end of the profile the stress reaches values very
close to the stream-wise normal stress.
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P33: Reynolds’ Shear Stresses, uv+, uw+ and vw+

The negative of uv+ and vw+ shear stresses are shown in figure 4.8d. Profiles of the
uv+ shear stress collapse near the wall and agree well with DNS data up to y+ = 60.
Above this height the shear stress decreases to more negative values. Profiles P32 show
a peak at y+ = 1245. In general, the trends in the uv+ shear stress profiles are similar to
those observed at P13. The vw+ shear stress also shows similar trends to those for the
P13 profile. However, in the outer layer the vw+ stress has a positive value while the P13
profile show a negative value in the outer layer.

The uw+ shear stress is shown in Figure 4.8e. Profiles P31, P34 and P35 show very
small stress values. On the other hand profiles P32 and P33 show a higher constant stress
value. This might be due to the fact that the velocity histograms at this location expe-
rienced a lot of noise which might have affected the histogram clipping procedure. The
vw+ stresses in this cluster are similar to those in P13 cluster, while the uw+ stresses look
different from P13 to some extent.

P33:Correlation Coefficient, ρuv

Figure 4.8f shows the correlation coefficient ρuv. The profiles show consistent trends
with almost constant value of about 0.3. The uncertainty in the correlation coefficient in
the semi-logarithmic region is about ±0.12; hence, the differences between profiles are
within measurement uncertainty.

P33: 1/S Parameter

The 1/S parameter is shown in Figure 4.8g. Profiles show a very good collapse above
y+ = 10. In the outer layer the profiles reach a value of 0.55 which is lower than the
two-dimensional case. At y+ = 40 the slope changes significantly. Also in the range
10 ≤ y+ ≤ 40, buffer-layer, profiles decrease in a semi-logarithmic fashion.

P33: Turbulent Kinetic Energy TKE

The turbulent kinetic energy is shown in Figure 4.8h. Near the wall all profiles col-
lapse up to y+ = 10. All profiles show a peak around y+ = 19. The peak value for some
of the profiles is about 80% greater than the two-dimensional vlaue. All profiles show a
small dip in the TKE value at about y+ = 100, followed by an increase in value to a value
equal to or greater than the peak value. This trend is also seen at the P13 cluster.

P33:Turbulent Diffusion Velocity ~Vq
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Figure 4.8i shows the turbulent diffusion velocity component in the stream-wise di-
rection. The collapse near the wall is not as good as P18, P19 and P20 clusters. However,
the trend of all profiles is similar and is the same as P13 cluster. The diffusion velocity
in the stream-wise direction is positive near the wall due to sweep events. The near wall
peak value is located roughly at y+ = 7. All profiles show positive values for the entire
profile which is the same trend in P13 cluster. This indicates that there is a preferred di-
rection for the transfer of turbulent kinetic energy. Profiles P32 and P33 show a smaller
peak value whose location is further away from the wall. This might be an artifact due
to the matching procedure between the two LDV probes used. Also these profiles show
lower values in the outer layer. The vertical component of the turbulent diffusion veloc-
ity is shown in Figure 4.8j. All profiles collapse very well near the wall up to y+ = 30.
The diffusion velocity component has a negative sign which is consistent with DNS data.
This is due to the sweep events being the active motion near the wall. Above y+ = 20 all
profiles change sign. Another sign change is observed in between y+ = 150 and 800. In
the range 30 ≤ y+ ≤ 80 the turbulent diffusion velocity is almost constant. Figure 4.8k
shows the span-wise turbulent diffusion velocity component. The profiles show more
scatter than previous profiles. However, there is a trend in the profiles. The uncertainty
in the span-wise turbulent velocity diffusion is ±0.05. The profiles change signs twice,
one very close to the wall and in the outer layer. Profile P33 shows some scatter in the
data. Attempts have been made to remove the scatter by clipping multiple times but it
seems that there were not enough data samples to obtain convergent histogram.

P33: Townsend’s Structural Parameter A1

Townsend’s structural parameter is shown in Figure 4.8l. Profiles collapse very well
close to the wall up to about y+ = 165. All profiles show a semi-logarithmic increase close
to the wall up to y+ = 30. Between y+ = 60 and 185 the parameter is almost constant
at about 0.65. Higher than this range the parameter increases again semi-logarithmically.
Towards the end of profiles a peak appears to form. Again, profile P34 shows some scatter
near the wall.

P33: Flow Angle γa, Shear Stress angle γs and Flow Gradient Angle γg

Figure 4.8m shows the mean flow angle. Near the wall, the flow angle increases semi-
logarithmically up to y+ = 100. Profiles P31, P32, P33 and P35 show bilateral, skewing
where the flow angle near the wall has a different sign than the free stream flow angle.
Profile P34 show changes in the slope sign, however, the flow angle remains negative.
The first three points in P33 show a change in the flow angle equal to 3◦ degrees over
a distance of about two wall units. This seems to be unreasonable change at such low
height. Hence, it is believed that this is due to uncertainty. The location of the peak
values in the outer layer shifts away from the wall as the flow progresses downstream.
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The shear stress angle is shown in Figure 4.8n. All profiles show an almost zero value
near the wall. However, the data show some scatter. The uncertainty in the shear stress
angle is about ±4◦. In general, all profiles don’t show any region of collapse. The angle
then increases to a positive value in the semi-logarithmic region, then changes sign above
y+ = 100. This shows the fact that the shear stress angle is lagging the flow mean angle,
since in the near wall region pressure changes affect the mean flow directly. However,
the shear stresses don’t respond as fast as the mean flow. Figure 4.8o shows the mean
flow gradient angle. It is clear that the mean strain rate direction adjust to changes in the
mean flow as the mean flow gradient angle is almost the same as the mean flow angles
very close to the wall in the viscous sub-layer. In the semi-logarithmic region the flow
gradient angles are larger than the mean flow angles. All profiles show a peak value
around y+ = 145. The flow gradient angles then change sign at y+ = 315. To show the lag
between the shear stress angle and the mean flow gradient angle, the difference between
the two angles are shown in Figure 4.8p. In the viscous sub-layer, the difference is almost
constant and equal to about 3◦. The difference then changes sign and decreases semi-
logarithmically in the range 30 ≤ y+ ≤ 210. The difference then reaches a minimum in
the range 220 ≤ y+ ≤ 400. The difference increases up to the last point in the profiles.

P33: Mixing Length Lm and Turbulent Eddy viscosity νTx

The mixing length is shown in Figure 4.8q. All profiles collapse to a single profile
near the wall. Away from the wall at about y+ = 600, all profiles start to depart slightly.
However, the differences are within 15%. Up to the maximum height the mixing length is
increasing. As observed in previous clusters all profile collapse when plotted in a log-log
scale. Figure 4.8s shows the turbulent eddy viscosity. Similar trends to the mixing length
can be seen in this figure, however the differences between profiles are more clear in the
eddy viscosity profiles than the mixing length.

4.6 Spectral Measurements

Spectral measurements were obtained at few selected locations. Five profiles were
acquired at profiles P08, P18, P19p, P19 and P191. The one-dimensional Power and
Cross Spectra of the Reynolds Normal and Shear Stresses are shown in Figures 4.9-4.12
for Profiles P18, P19p, P19 and P191. Data . Also shown in these figures lines of slopes
equal to −1, −5/3 and −7/3 for comparison. Details of the procedure used to estimate
spectra can be found in Lowe, [25].

Two methods were available to estimate the turbulent kinetic energy dissipation rate
depending on the shape of the spectrum. For spectra showing a −5/3 slope the dissipa-
tion rate is estimated using Equation 4.14,Hinze, [19].
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where, Eij is the one-dimensional power spectrum such that the Reynolds stresses are
given by Equation 4.15, U is the local velocity component, f is the frequency and C is a
constant equal to 0.49, Pope [52]. The second method is the Tchen theory which was used
for profiles not showing a −5/3 region. Tchen’s high mean vorticity model, (Hinze, [19],
and Saripali and Simpson, [56]), relates the spectral density to the turbulent dissipation
by Equation 4.16.
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Where α is a constant equal to 0.8 to match two-dimensional boundary layer results. This
method was used for all profiles except P08. For this profile both methods were attempted
to estimate the dissipation but no fit was possible. For each profile, the slope of the power
spectrum on a log-log scale is matched to either −5/3 if the −5/3 law is used and to −1 if
Tchen’s theory is used.

The estimated dissipation rate from spectral measurements were compared with es-
timates from balancing the turbulent kinetic energy transport equation using Lumley’s
model for the pressure diffusion term. Figures 4.13a-4.13d shows dissipation rate esti-
mates for the above profiles. The first point in each profiles is roughly at y+ = 15.

In general, estimates from spectral measurements agree very well with estimates
from the turbulence kinetic energy transport equation balance except for very close to
the wall. In the log-layer and towards the outer layer the dissipation rate balances the
turbulence kinetic energy production. Also shown in the figures are the DNS calcula-
tion of turbulence production and dissipation rate in a fully developed channel flow by
Iwamoto and Kasagi [20]. The spectral measurement estimate are estimates made using
Equation 4.16, while TKE transport equation estimates are estimates obtained by bal-
ancing the terms in the kinetic energy transport equation with the dissipation rate. The
agreement with the DNS data is very good above y+ = 100. Near the wall DNS data
has higher level of turbulence kinetic energy production and dissipation rate due to two
dimensionality. Also, measured near wall data suffered from low data samples.
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Table 4.1: Profiles’ Coordinates, estimated Pressure gradients, y-Shift and Friction Veloci-
ties

Profile X/L Z/Wx=0 δy uτ P∞ T∞ ∂P/∂x ∂P/∂z R
[µm] [m/s] [N/m2] [◦C] [N/m3] [N/m3]

P06 0.866 −0.158 25 0.77 95874 25.5 138.8 −218.6 0.9971
P07 0.871 −0.182 43 0.69 95714 25.8 127.5 −241.7 0.9983
P08 0.871 −0.158 11 0.75 95599 25.8 125.0 −240.0 0.9998
P09 0.871 −0.134 52 0.71 95594 27.0 123.3 −176.6 0.9991
P10 0.877 −0.158 21 0.69 95864 25.5 103.5 −219.1 0.9991
P11 0.866 −0.017 42 0.62 95919 26.8 40.2 −90.0 0.9992
P12 0.871 −0.045 28 0.61 95919 26.8 68.5 −96.5 0.9938
P13 0.871 −0.017 58 0.56 95919 26.8 63.2 −137.1 0.9872
P14 0.871 0.010 22 0.67 95919 26.8 50.7 −155.0 0.9950
P15 0.877 −0.017 42 0.67 95919 26.8 94.3 −97.0 0.9963
P16p 0.902 −0.192 33 0.78 95314 26.3 −349.2 −178.6 0.9986
P16 0.907 −0.192 22 0.90 95429 25.5 −354.5 −64.7 0.9999
P18 0.912 −0.192 31 0.96 95284 27.0 −359.6 56.2 0.9987
P181 0.917 −0.192 6 0.90 95214 26.5 −372.6 194.5 0.9990
P182 0.923 −0.192 66 0.93 95181 25.5 −377.2 338.3 0.9718
P19pp 0.902 −0.171 48 0.79 95491 26.0 −260.1 −158.6 0.9746
P19p 0.907 −0.171 22 0.83 95989 24.8 −268.5 −56.3 0.9962
P19 0.912 −0.171 34 0.91 95914 25.3 −268.4 42.8 0.9696
P191 0.917 −0.171 56 0.93 95939 25.0 −269.9 150.3 0.9737
P192 0.923 −0.171 18 0.97 95954 25.8 −274.4 264.9 0.9783
P20pp 0.902 −0.144 8 0.91 95079 25.5 −138.6 −220.3 0.9986
P20p 0.907 −0.144 29 0.70 95679 25.3 −139.0 −97.8 0.9984
P20 0.912 −0.144 43 0.83 95884 26.0 −145.0 17.8 0.9919
P201 0.917 −0.144 23 0.83 96069 25.0 −139.1 130.7 0.9839
P202 0.920 −0.144 20 0.87 95869 25.0 −139.1 130.7 0.9839
P31 0.929 −0.059 11 0.74 95689 26.0 −81.2 187.0 0.9984
P32 0.935 −0.087 25 0.80 96034 24.8 −61.6 136.2 0.9993
P33 0.935 −0.059 53 0.71 96021 24.5 −71.0 186.0 0.9993
P34 0.935 −0.032 16 0.66 95749 25.3 −50.3 197.0 0.9991
P35 0.940 −0.059 33 0.71 95579 25.8 −59.1 189.2 0.9995
E01 0.046 0.000 57 0.94 94884 25.0 0.0 0.0 0.9960
E03 0.056 0.028 0 0.94 96006 25.3 0.0 0.0 0.9965



Shereef A. Sadek Chapter 4. LDV Measurement Results 72

Figure 4.1: LDV Measurement Locations
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Figure 4.9: One-Dimensional Spectra of Reynolds Stresses at Profile P18
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Figure 4.10: One-Dimensional Spectra of Reynolds Stresses at Profile P19p
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Figure 4.11: One-Dimensional Spectra of Reynolds Stresses at Profile P19
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Figure 4.12: One-Dimensional Spectra of Reynolds Stresses at Profile P191



Shereef A. Sadek Chapter 4. LDV Measurement Results 138

y+

te
rm

*ν
/u

τ4

10-1 100 101 102 103 104

0

0.1

0.2

0.3

DNS Kasagi_TKE P
DNS Kasagi_TKE ε
ε TKE TRansport Eqn Estimates P18
P TKE Production Estimates P18
ε Spectral Measurement Estimates P18

(a) P18, Turbulence Kinetic Energy Dissipation Rate ε+

y+

te
rm

*ν
/u

τ4

10-1 100 101 102 103 104

0

0.1

0.2

0.3

DNS Kasagi_TKE P
DNS Kasagi_TKE ε
ε TKE TRansport Eqn Estimates P19p
P TKE Production Estimates P19p
ε Spectral Measurement Estimates P19p

(b) P19p, Turbulence Kinetic Energy Dissipation Rate ε+

Figure 4.13: ε+ Estimates
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Chapter 5

Discussion

5.1 Features of Interest

The data acquired in this experiment possess very distinctive features, some of which
are not present in typical three-dimensional attached boundary layer flows. In this chap-
ter those features will be highlighted and an attempt to explain them will be made. The
most distinctive features are:

• Very high Turbulence intensities in the outer layer, ú/U∞ ≈ 0.15

• Low normal, v2+
, and shear, uv+, stresses near the wall

• Profiles of turbulent quantities show multiple peaks

• In some locations (P18, P19 and P20) all normal stresses reaches a state close to
isotropy near the outer region, while the shear stresses are non-zero

• At the centerline, all stresses behave close to those for a 2-D boundary layer; how-
ever, in the outer layer turbulence levels reach very high values

• The mixing length shows a linear behavior in a log-log scale with regions of different
approximately constant slopes

In the next section the flow field results are discussed.

5.2 Discussion

In order to gain an understanding of the flow development, Reynolds’ Stress trans-
port budget is performed and the transport equations are examined along with mean flow

140
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data acquired using the seven-hole probe and the calculated potential flow field.

5.2.1 Reynolds’ Stress Transport Budget

Examining the Reynolds Transport equations gives an insight into the development
of turbulence quantities. The Reynolds stress transport budget shows the importance of
each term in the governing equations. The transport equations are given by Equation 5.1.

∂uiuj

∂t︸ ︷︷ ︸
Lij

+ Ul
∂uiuj

∂xl︸ ︷︷ ︸
Cij

= −uiul
∂Uj

∂xl

− ujul
∂Ui

∂xl︸ ︷︷ ︸
Pij

−ui
∂p

∂xj

− uj
∂p

∂xi︸ ︷︷ ︸
Πij

+ ν
∂2uiuj

∂x2
l︸ ︷︷ ︸

Dv

− ∂uiujuk

∂xk︸ ︷︷ ︸
Tij

−εij (5.1)

Where,

• Lij is the local time rate of change

• Cij is the convective transport

• Pij is the stress production

• Πij is the velocity-pressure gradient correlation

• Dv
ij is the viscous diffusion

• Tij is the turbulent diffusion

• εij is the turbulent dissipation

All terms in the stress transport equations are calculated from measured data except the
velocity-pressure gradient correlation. Hence the difference between the turbulent dissi-
pation and the velocity-pressure gradient correlation is balanced by all other terms in the
equation. Figures5.1a-5.7f show the stress budgets of all stresses for profiles P07, P13, P18,
P19p, P19, P20 and P33. Other profiles show similar trend as those presented here. Terms
in Equation 5.1 that could be calculated from measured data are plotted versus the wall
normal distance. The difference between the turbulent dissipation and velocity-pressure
gradient correlation is also plotted as a single curve. The DNS data by Iwamoto [20],
database for fully developed channel flow, are also shown in the figures for comparison.

In general, profiles P07, P13 and P33 show similar behavior close to that of a two-
dimensional boundary layer. However, all three profiles show higher normal and shear
stress production, u2+

and uv+, respectively. Further, the production in the outer layer
has large values compared to two-dimensional flows. Terms in the transport budgets for
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v2+
,uw+ and vw+ stresses are about two orders of magnitude smaller than the u2+

and
uv+ stresses.

For profiles P18, P19, P19p and P20 shown in Figures 5.3a-5.6f, respectively, the
production of u2+

, v2+
and uv+ stresses show a reduction in value compared to two-

dimensional boundary layer. This observation is also made by Moin [37], Sendstand and
Moin [58], Olcmen and Simpson [43]. Sendstand and Moin [58] pointed out that this is
due to three-dimensional effects which reduces the production of v2+

, which in turn re-
duce the production of uv+ stress which ultimately reduces the production of u2+

stress.
However the level of normal stress production, u2+

, are higher than those reported by
Olcmen [43] at station 5.

On the other hand, production of w2+
, uw+ and vw+ are non-zero. Furthermore, the

level of production of w2+
, uw+ and vw+ stresses are on the same order of magnitude of

the uv+ stress production. The production of vw+ stress in the outer layer is at the same
level as uv+ stress production, which explains why both stresses have the same value in
the outer layer and in some parts the vw+ stress is larger than uv+. The high level of
production is due to large Reynolds stress normal to the wall, v2+

, and mean span-wise
velocity gradients, ∂W/∂y. This is explained more in section 5.2.2.

The production of uw+ and vw+ stresses change sign at about y+ = 150. Also an-
other important feature is that the main terms in the transport equations for uw+ and
vw+ stresses are the production and the difference between turbulent dissipation and
velocity-pressure gradient correlation, all other terms are almost negligible except in the
inner layer where the viscous and turbulent diffusion contribute some to the transport
equations. For the w2+

, all terms seem to be contributing to the transport equations.

To gain more insight into what is causing the high production rates of stresses, the
stress production terms are broken up into their terms involving the Reynolds stresses
and the mean strain rate. Since the mean flow undergoes changes in direction due to the
presence of side walls that create stream-wise and span-wise pressure gradients which
in turn affect the vorticity flux at the tunnel’s floor, it would be useful to link changes
in turbulence production to the mean vorticity vector. The production terms, Pij , in the
transport equations will be expressed in terms of mean vorticity components.

To achieve this, the mean strain rates are replaced by the components of the mean
rotation tensor, Rij , given by Equation 5.2. The rotation rate tensor is related to the mean
vorticity vector, Ωi, through Equation 5.3, Tennekes and Lumley [68]. The stress produc-
tion in terms of the rotation rate tensor is given by Equation 5.4.

Rij =
1

2

(
∂Ui

∂xj

− ∂Uj

∂xi

)
(5.2)
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Rij = −1

2
εijkΩk (5.3)

Pij = −ujul
∂Ui

∂xl

− uiul
∂Uj

∂xl

= −2 (ujulRil + uiulRjl)− ujul
∂Ul

∂xi

− uiul
∂Ul

∂xj

(5.4)

The components of the rotation rate tensor are given in matrix form in Equation 5.5. Since
the rotation rate tensor is skew-symmetric, hence it has only three independent compo-
nents which are the components of the vorticity vector as indicated by Equation 5.2.

Rij =
1

2

 0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

 (5.5)

Hence the production terms for all Reynolds stresses are expressed individually in Equa-
tion 5.6 in terms of vorticity vector components. In addition to the stress transport equa-
tions, the mean vorticity equation as derived by Tennekes and Lumley [68] is given by
Equation 5.7. The terms on the left hand side of Equation 5.7 are the time rate of change
and the convective rate of change of mean vorticity, respectively. The first term on the
right hand side is the vortex stretching-tilting, present only in three-dimensional flows, is
responsible for stretching and tilting the vorticity vector by the effect of mean flow strain.
The second term is the viscous diffusion term and the last two terms are analogous to the
Reynolds stress terms in the Navier-Stokes equations. The first of which is the stretch-
ing of fluctuating vorticity due to fluctuating velocity gradient and the last term is the
turbulent transport of fluctuating vorticity.

P11 = − 2

[
uw

(
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)]
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+ 2
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∂x︸ ︷︷ ︸
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(5.6)
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∂ωi
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(5.7)

For the normal stresses, Equation 5.6 shows that the stress production is due to two
parts, the first, terms I and II, is the interaction between the shear stresses and the mean
vorticity normal to the normal stress direction and the interaction between shear stress
and mean shear strains, respectively. The second part, III, is due to the interaction be-
tween the individual normal stress and the mean normal strain in the direction of the
same stress. On the other hand the production terms for the shear stresses are due to
three parts. The first part, term I, is the interaction between normal stresses and the mean
shear strain in the direction of the individual stress and mean vorticity. The second part,
term II, is due to the interaction between the shear stresses and the mean normal strains
in the direction of shear stress and mean vorticity. Finally the third term, III, is due to
the interaction between the individual shear stress and the normal mean strains in the
direction of velocities making up the turbulent shear stress. This form is much more com-
plicated than the conventional form in terms of mean strain rate. However, it has the
advantage of revealing the effects of introducing mean vorticity, shear strain or normal
strain in the flow field on Reynolds stresses production. Examining these terms will be
used to interpret the behavior of measured turbulent quantities. This is done in the next
section.

5.2.2 Stress Production

Terms I, II and III in the stress production, Equation 5.6, are plotted for each stress
component for each of the profiles P08,P13, P18, P19p, P19, P20 and P33 in Figures 5.8a-
5.14f, respectively. In general, only one term in the stress production is responsible for
producing that stress except for profiles P13 and P33 in the uw+ and w22

equations. Fur-
thermore, these dominant terms contain only one vorticity vector component except for
the uw+ stress. Profiles P13 and P33 are located around the centerline, hence, have the
least three-dimensionality effects. This causes contributions from all three terms to be of
equal importance. However, the level of these contributions are much lower than those
of other profiles.

For the u2+
stress production,Figure 5.8a-5.14a, the main contribution comes from
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the interaction between the shear stress uv+ and the spanwise vorticity component, Ωz =
V,x − U,y, in term II.

For the v2+
stress,Figure 5.8c-5.14c, the production term is practically zero as in two-

dimensional boundary layers, hence the balance between turbulent diffusion, viscous dif-
fusion, velocity-pressure gradient and dissipation is responsible for the transport of this
stress.

For the w2+
stress,Figure 5.8e-5.14e, the main contribution comes from term I, which

is the interaction between the stream-wise vorticity component and the vw+ stress. There
is some contribution to the production of w2+

stress from term III which is the interaction
between the normal stress w2+

and the normal strain ∂W/∂z; however, this term is much
smaller than term I.

The uv+ shear stress production is shown in Figure 5.8d-5.14d. The main contribu-
tion is from the interaction between the span-wise vorticity and the normal stress v2+

. It
is important to note that this term contains two terms, both involving the span-wise vor-
ticity component. However the first term reduces to almost zero and the result is almost
totally from the second parenthesis which is the interaction between the v2+

stress and
the span-wise vorticity.

Figures 5.8e-5.14e show the uw+ stress production terms. The main contribution is
coming from terms II, which contain the stream-wise and span-wise vorticity compo-
nents. Both components have the same order of magnitude, however the span-wise com-
ponent contribution is larger.

Finally, Figure 5.8f-5.14f show the vw+ stress production terms. The main contri-
bution is from term I. Similar to the uv+ shear stress the main contribution to term I is
coming from the interaction between v2+

stress and Ωx.

In summary, the span-wise vorticity component is the driving force of the u2+
and

uv+ stresses. While the stream-wise vorticity component is responsible for producing
the vw+ stress. Both vorticity components are responsible for producing the uw+ shear
stress; however, one acts as a source and the other as a sink depending on the flow field
geometry. Finally, the mean vorticity vector doesn’t seem to contribute to the normal
stress in the normal to the wall direction, v2+

, hence the mechanism of amplifying the
wall-normal stress is different from other stresses.

It is important to note that the above observations are true for attached boundary
layer flows only. In other flow conditions, other terms in the stress production might
become important. The other important note to make here after reviewing the stress
production terms behavior is that, a comparison between Figures 5.8a-5.14f and profiles of
Reynolds’ stresses given in the previous chapter, shows that each stress profile follow very
closely the changes in the major production term in their respective equation. However,
there is some lag in the stress profile behavior as is expected and reported by different
previous experiments.
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Given the above observations, examining the development of stream-wise and span-
wise vorticity components will shed more light on why the turbulent stress profiles have
such high values, multiple peaks and sign changes. This will be shown in the next section.

5.2.3 Mean Vorticity Development

The mean vorticity, as shown in the previous section, is the main driving force into
generation of turbulent stresses. Hence, understanding of its development will lead to un-
derstanding of the development of turbulent stresses. Profiles of mean vorticity in planes
normal to the stream-wise direction can be calculated from seven-hole probe data, as well
as close to the wall from LDV measurements. The vorticity defined by Equation 5.8, is
calculated exactly where LDV measurements are available using multiple profiles in a
cluster of five profiles forming a cross.

~Ω = ∇× ~V = (W,y − V,z) · î + (U,z −W,x) · ĵ + (V,x − U,y) · k̂ (5.8)

For seven-hole probe data, the mean vorticity components, Ωy and Ωz, are calcu-
lated approximately, since the derivatives in the stream-wise direction were not available.
However, this affects only the vertical vorticity component, Ωy, the most. This is not of
any importance in this discussion, since the span-wise vorticity V,x << U,y, hence the
conclusions won’t be affected significantly.

In the following discussion, the side wall at the negative span-wise half of the test
section is labeled as the right side wall, while the wall at the positive span-wise half of
the test section is labeled the left side wall. Also, the peaks and troughs of waves on
the side walls corresponds to points of minimum and maximum absolute z-coordinates,
respectively.

Contour plots of the development of mean span-wise and stream-wise vorticity at
six different stream-wise stations are shown in Figures 5.15a-5.15f. Span-wise vorticity,
Ωz, is shown as colored contours while the stream-wise vorticity, Ωx, is shown as line
contours with dashed lines denoting negative values. All values are normalized by inflow
freestream reference velocity and test-section inlet height.

The flow enters the test section with vorticity mainly in the span-wise direction as
shown in Figure 5.15a. As the flow proceeds downstream, Figure 5.15b shows the vortic-
ity at x/L = 0.13, some stream-wise vorticity is developed on the left side wall. This is
due to the fact that the suction cabinet was divided into two sections in the vertical direc-
tion, so there was about 0.5in in the vertical direction at the center of the suction cabinet
that has reduced suction. However, this vorticity is sucked out by the boundary layer
control slots downstream.
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Figure 5.15c shows the vorticity contours at x/L = 0.64. In this figure we see two
massive areas of stream-wise vorticity of opposite signs at z/Wx=0 = ±0.2. Also at the
same location there is a reduction in span-wise vorticity and actually the span-wise vor-
ticity changes sign at these locations. At this plane the flow has passed over two peaks
on both side walls. Vorticity generation at the wall is related to the surface tangential
pressure gradients as pointed out by Morton [39] and given by Equation 5.9 derived from
the Navier-Stokes equations.

ν
∂Ωx

∂y
=

1

ρ

∂P

∂z
(5.9)

ν
∂Ωz

∂y
= −1

ρ

∂P

∂x
(5.10)

This is viewed as the flux density of vorticity, flow per unit area per unit time out of the
surface, hence any surface pressure gradients will generate new vorticity at the wall. As
a result, new vorticity is generated as the flow undergoes changes in pressure gradients
by passing over the first two waves on the side walls. On the tunnel’s floor, the span-wise
pressure gradient in the troughs of the left side wall and at the peaks of the right side wall
are positive, which will generate positive stream-wise vorticity, while the pressure gradi-
ents at the peaks of the left side wall and troughs of the right side wall are negative which
will generate negative stream-wise vorticity. This vorticity is convected downstream and
diffused away from the wall. This explains the presence of two concentrated regions of
stream-wise vorticity of opposite signs at this plane.

Another feature to note is that the span-wise vorticity at z/Wx=0 = ±0.2 is positive,
which might be counter-intuitive. However, this might be due to the fact that the first
two profiles in the plane close to the left side wall, 1 in, are affected by the side wall
suction which makes the flow turn sharply in the positive span-wise direction while the
third profile is affected by the pressure gradient which forces the flow into the negative
span-wise direction, however as the height increases the effects of the pressure gradient
diminishes and the inertia effects are dominant and the flow turns in the positive span-
wise direction. Another factor which might lead to increase of span-wise vorticity is the
tilting of stream-wise vorticity component into the span-wise direction by the action of
the stretching/titling term, Ωx · S31, in Equation 5.7.

Figure 5.15d shows vorticity contours at x/L = 0.64. As the flow proceeds down-
stream more vorticity is generated and a growth of stream-wise vorticity is visible in the
entire section reaching the center of the test section. The stream-wise vorticity is positive
in the positive half of the test section and negative in the negative half of the test section.
Figures 5.15e-5.15f show the vorticity contours at x/L = 0.79 and x/L = 0.90, respectively.
The span-wise and stream-wise vorticity are cross-diffused with vorticity from the ceiling
boundary layer of opposite sign indicating a channel flow type situation at the end of the
test section.
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In order to qualitatively assess the validity of the measurements, a three-dimensional
potential flow solver is developed to calculate the pressure distribution as well as the
stretching/titling term in the vorticity transport equation. The details of the flow solver
are presented in Appendix D. The stream-wise and span-wise pressure coefficient gradi-
ents are shown in Figure 5.16; dashed lines indicate negative values. The pressure coeffi-
cient gradients in the span-wise direction at the left wall troughs and the right wall peaks
are positive, further the area of positive span-wise pressure gradients along the left wall
is much greater than the areas where there is a negative span-wise gradient. Hence, the
stream-wise positive vorticity flux is much higher than the negative flux which leads to
the formation of resultant positive stream-wise vorticity in the positive span-wise half of
the test section. Similarly the same can be said about the right wall with negative stream-
wise vorticity being dominant in the negative span-wise half of the test section. This is
the reason why seven-hole probe data shows positive stream-wise vorticity for positive
z-coordinates and negative stream-wise vorticity for negative z-coordinates.

Also shown in Figure 5.16 are the stream-wise pressure coefficient gradients. The
sign of these gradients change along each single wave, being negative upstream of the
peaks and positive downstream of the peaks. This will lead to the generation of positive
and negative vorticity flux, respectively, according to Equation 5.9. As a result the span-
wise vorticity will be amplified and attenuated near the side walls depending on the
relative position along the waves.

The strain rates S11 = ∂U/∂x, S13 = 0.5 (∂U/∂z + ∂W/∂x) and S33 = ∂W/∂z are
also shown in Figure 5.17. In three-dimensional flows these terms are responsible for
amplifying or attenuating the vorticity by means of stretching and tilting as it is diffused
away from the wall as given by Equation 5.7. The terms S11 and S33 are stretching terms
while S13 is a tilting term. Hence, in the stream-wise vorticity transport equation, Ωx · S11

enhances stream-wise vorticity when the flow is accelerating and attenuates it when the
flow is decelerating. Also, the term Ωz ·S13 enhances the stream-wise vorticity, for positive
S13 and negative Ωz, by tilting the vorticity vector into the stream-wise direction. As
a result we can see that at the left wall troughs S13 is negative and hence it amplifies
the stream-wise vorticity. The same argument can be said about the right wall but with
opposite signs.

The strain rates S11 and S33 alternate signs along the side walls, hence amplify and
attenuate the stream-wise and span-wise vorticity components, respectively, depending
on location relative to the side wall.

In summary, the flow enters the test section with only a span-wise vorticity com-
ponent. As the flow proceeds downstream, stream-wise and span-wise surface pressure
gradients are generated by the side walls. The stream-wise pressure gradient alternates
signs along the test section and along the span-wise direction while the span-wise pres-
sure gradient alternates sign in the stream-wise direction only. This pattern of alternating
pressure gradients give rise to waves of stream-wise and spanwise vorticity. In the pos-
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itive span-wise half of the test section, the pressure gradients give rise to large positive
stream-wise vorticity flux in the trough areas followed by smaller amounts of negative
stream-wise vorticity flux at the wave peak. This is continued until the end of the test
section. As the vorticity is convected downstream and diffused away from the wall, it
interacts with new vorticity generated at a downstream location and depending on their
signs will either enhance or attenuate each other. Towards the end of the tunnel the vor-
ticity is diffused across the entire height of the test section. In the negative span-wise
half of the test section, the same pattern occurs but with opposite signs; the pressure gra-
dients will give rise to large negative vorticity flux in the troughs and smaller positive
stream-wise vorticity flux at the peaks. This pattern continues until the end of the test
section.

A schematic plot of the generation of stream-wise vorticity is shown in Figure 5.18. A
mirror image of this schematic is developed on the ceiling of the test section. A schematic
of the stream-wise vorticity in the y-z plane is shown in Figure 5.19. Keeping this schematic
in mind, features of measured quantities can be explained as follows:

• High level of v2+
in the outer layer at the centerline

This is probably because in the outer layer there is a significant amount of produc-
tion which might be attributed to the flow rate sucked out of the test section that will
create a large ∂V/∂y as shown in Figure 5.9c. Also, the velocity-pressure gradient
correlation has the same order of magnitude as the production as seen in Figure 5.2b.
The increase in pressure fluctuations might be attributed to the side-wall boundary
layer suction effects.

• High level of turbulent stresses at the centerline
This is because, as the spanwise vorticity is diffused into the outer layer it interacts
with the produced stream-wise vorticity. Since the vorticity from the tunnel’s floor
and ceiling have different signs, their effect on the span-wise vorticity near the cen-
ter height of the test section adds up as shown in Figure 5.19 and the net result is
stretching of the span-wise vorticity which in turn will produce a higher shear stress
uv+. Another factor is the very high level of v2+

stress in the outer layer mentioned
above.

• Multiple peaks in the turbulent stress profiles
The multiple peaks in the stress profile’s present in clusters P08 and P18-P20 are
due to waves of stream-wise vorticity that are being created at each wave peak and
trough. Cluster P08 is located halfway between the last two peaks on the right wall
at which the stream-wise pressure gradient, shown in Figure 5.16, changes sign from
positive to negative. In the outer layer the span-wise vorticity is enhanced by the
effect of mean rate of strain and by the stretching contribution by the stream-wise
vorticity. This is also why there is a large value of negative span-wise mean velocity.
On the other hand clusters P18-P20 show a reduction of shear stress as well as the
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normal stresses. This is due to the fact that upstream of these locations the stream-
wise pressure gradient is negative which will generate positive span-wise vorticity
flux which leads to reduction in span-wise vorticity at these locations. For example,
Figure 4.5d shows the uv+ stress at cluster P18. Near the wall the shear stress is
equal to 0.5, half the value at cluster P08, while in the outer layer a peak of 1.0 is still
being diffused away from the wall which was produced upstream of cluster P18.
The same conclusions can be generalized for clusters P19 and P20.

• Multiple peaks in the turbulent diffusion velocity ~V q
The different vorticity wave generated by the alternating pressure gradients can also
be the cause for multiple peaks in the turbulent diffusion velocity. For example,
the turbulent diffusion velocity component V qx for cluster P08 shows a positive
peak close to the wall and a negative peak away from the wall. Since this cluster is
halfway between peaks, the stream-wise vorticity is changing signs from negative
to positive, hence near the wall vorticity is positive while away from the wall it is
negative. This means that near the wall the sweep motion is more dominant and
it is associated with positive w-fluctuations while away from the wall the ejection
motion is more dominant and it is associated with negative w-fluctuations. This
results in positive u3+

, u2w
+

, uw2+
, uv2+

and negative u2v
+

and vw2+
near the wall

and opposite signs away from the wall.

• Almost Equal normal stresses in the Outer Layer
All profiles show normal stresses reaching a state where all stresses are almost equal
in the outer layer and for some profiles the span-wise normal stress exceeds the
stream-wise normal stress. This is due to the alternating pressure gradients giving
rise to alternating sign stream-wise vorticity which in term tilts and stretches the
span-wise component hence exchanging turbulent energy between normal direc-
tions. Also the different signs of strong and weak vorticies will create a swirling
motion of weak vorticity around strong vorticity which will make turbulent quan-
tities of more equal values as it diffuses away from the wall.
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Figure 5.1: Reynolds Stresses Transport Budgets at P07



Shereef A. Sadek Chapter 5. Discussion 152

y+

te
rm

*ν
/u

τ

10-1 100 101 102 103 104-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
P13_u2 C
P13_u2 P
P13_u2 DT

P13_u2 DV

P13_u2 ε-DP

Kasagi_u 2 C
Kasagi_u 2 P
Kasagi_u 2 DT

Kasagi_u 2 DV

Kasagi_u 2 ε-DP

(a) u2
+

Stress Budget

y+

te
rm

*ν
/u

τ

10-1 100 101 102 103 104

-0.01

0

0.01

0.02

P13_v2 C
P13_v2 P
P13_v2 DT

P13_v2 DV

P13_v2 ε-DP

Kasagi_v 2 C
Kasagi_v 2 P
Kasagi_v 2 DT

Kasagi_v 2 DV

Kasagi_v 2 ε-DP

(b) v2
+

Stress Budget

y+

te
rm

*ν
/u

τ

10-1 100 101 102 103 104

0

0.05

0.1

P13_w2 C
P13_w2 P
P13_w2 DT

P13_w2 DV

P13_w2 ε-DP

Kasagi_w 2 C
Kasagi_w 2 P
Kasagi_w 2 DT

Kasagi_w 2 DV

Kasagi_w 2 ε-DP

(c) w2
+

Stress Budget

y+

te
rm

*ν
/u

τ

10-1 100 101 102 103 104-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

P13_uv C
P13_uv P
P13_uv D T

P13_uv D V

P13_uv ε-DP

Kasagi_uv C
Kasagi_uv P
Kasagi_uv D T

Kasagi_uv D V

Kasagi_uv ε-DP

(d) uv+ Stress Budget

y+

te
rm

*ν
/u

τ

100 101 102 103 104-0.06

-0.04

-0.02

0

0.02

0.04

0.06

P13_uw C
P13_uw P
P13_uw D T

P13_uw D V

P13_uw ε-DP

(e) uw+ Stress Budget

y+

te
rm

*ν
/u

τ

100 101 102 103 104-0.01

-0.005

0

0.005

0.01

0.015

0.02

P13_vw C
P13_vw P
P13_vw D T

P13_vw D V

P13_vw ε-DP

(f) vw+ Stress Budget

Figure 5.2: Reynolds Stresses Transport Budgets at P13
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Figure 5.3: Reynolds Stresses Transport Budgets at P18
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Figure 5.4: Reynolds Stresses Transport Budgets at P19p



Shereef A. Sadek Chapter 5. Discussion 155

y+

te
rm

*ν
/u

τ

10-1 100 101 102 103 104-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
P19_u2 C
P19_u2 P
P19_u2 DT

P19_u2 DV

P19_u2 ε-DP

Kasagi_u 2 C
Kasagi_u 2 P
Kasagi_u 2 DT

Kasagi_u 2 DV

Kasagi_u 2 ε-DP

(a) u2
+

Stress Budget

y+

te
rm

*ν
/u

τ

10-1 100 101 102 103 104-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02
P19_v2 C
P19_v2 P
P19_v2 DT

P19_v2 DV

P19_v2 ε-DP

Kasagi_v 2 C
Kasagi_v 2 P
Kasagi_v 2 DT

Kasagi_v 2 DV

Kasagi_v 2 ε-DP

(b) v2
+

Stress Budget

y+

te
rm

*ν
/u

τ

10-1 100 101 102 103 104-0.05

0

0.05

0.1

0.15
P19_w2 C
P19_w2 P
P19_w2 DT

P19_w2 DV

P19_w2 ε-DP

Kasagi_w 2 C
Kasagi_w 2 P
Kasagi_w 2 DT

Kasagi_w 2 DV

Kasagi_w 2 ε-DP

(c) w2
+

Stress Budget

y+

te
rm

*ν
/u

τ

10-1 100 101 102 103 104-0.15

-0.1

-0.05

0

0.05

P19_uv C
P19_uv P
P19_uv D T

P19_uv D V

P19_uv ε-DP

Kasagi_uv C
Kasagi_uv P
Kasagi_uv D T

Kasagi_uv D V

Kasagi_uv ε-DP

(d) uv+ Stress Budget

y+

te
rm

*ν
/u

τ

100 101 102 103 104-0.1

-0.05

0

0.05

0.1

0.15

0.2

P19_uw C
P19_uw P
P19_uw D T

P19_uw D V

P19_uw ε-DP

(e) uw+ Stress Budget

y+

te
rm

*ν
/u

τ

100 101 102 103 104-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

P19_vw C
P19_vw P
P19_vw D T

P19_vw D V

P19_vw ε-DP

(f) vw+ Stress Budget

Figure 5.5: Reynolds Stresses Transport Budgets at P19
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Figure 5.6: Reynolds Stresses Transport Budgets at P20
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Figure 5.7: Reynolds Stresses Transport Budgets at P33
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Figure 5.8: Reynolds Stresses Production at P08, DNS data by Iwamoto [20]
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Figure 5.9: Reynolds Stresses Production at P13, DNS data by Iwamoto [20]
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Figure 5.10: Reynolds Stresses Production at P18, DNS data by Iwamoto [20]
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Figure 5.11: Reynolds Stresses Production at P19, DNS data by Iwamoto [20]
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Figure 5.12: Reynolds Stresses Production at P19p, DNS data by Iwamoto [20]
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Figure 5.13: Reynolds Stresses Production at P20, DNS data by Iwamoto [20]
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Figure 5.14: Reynolds Stresses Production at P33, DNS data by Iwamoto [20]



Shereef A. Sadek Chapter 5. Discussion 165

z/Wx=0

y/
H

x=
0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
ΩzH/U∞

0.95
0.79
0.64
0.48
0.33
0.17
0.01

-0.14
-0.30
-0.45
-0.61
-0.77
-0.92
-1.08
-1.23

(a) x/L = 0.00
z/Wx=0

y/
H

x=
0

-0.2 -0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ΩzH/U∞

0.95
0.79
0.64
0.48
0.33
0.17
0.01

-0.14
-0.30
-0.45
-0.61
-0.77
-0.92
-1.08
-1.23

(b) x/L = 0.13

z/Wx=0

y/
H

x=
0

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
ΩzH/U∞

0.95
0.79
0.64
0.48
0.33
0.17
0.01

-0.14
-0.30
-0.45
-0.61
-0.77
-0.92
-1.08
-1.23

(c) x/L = 0.39
z/Wx=0

y/
H

x=
0

-0.2 -0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6
ΩzH/U∞

0.95
0.79
0.64
0.48
0.33
0.17
0.01

-0.14
-0.30
-0.45
-0.61
-0.77
-0.92
-1.08
-1.23

(d) x/L = 0.64

z/Wx=0

y/
H

x=
0

-0.2 -0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6
ΩzH/U∞

0.95
0.79
0.64
0.48
0.33
0.17
0.01

-0.14
-0.30
-0.45
-0.61
-0.77
-0.92
-1.08
-1.23

(e) x/L = 0.79
z/Wx=0

y/
H

x=
0

-0.2 -0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

ΩzH/U∞

0.95
0.79
0.64
0.48
0.33
0.17
0.01

-0.14
-0.30
-0.45
-0.61
-0.77
-0.92
-1.08
-1.23

(f) x/L = 0.90

Figure 5.15: Contours of Span-wise Mean Vorticity, ΩzH
U∞

, shown as colored contours and
Stream-wise Mean Vorticity, ΩxH

U∞
, shown as line contours along different stream-wise sta-

tions. Dashed lines denote negative values. Step between each two lines is 0.1
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Figure 5.16: Stream-wise and Span-wise Coefficient of Pressure Gradients
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Figure 5.17: Mean Rate of Strain, S11, S13,S33
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Chapter 6

Second-Moment Closure Models

6.1 Turbulence Closure

As mentioned in Chapter one, incompressible turbulent flow fields are governed
by the Continuity and Navier-Stokes Equations, 1.1 and 1.2, respectively. The turbulent
Reynolds stresses are calculated from the Reynolds Stress Transport Equations, 1.3. How-
ever, the Reynolds Stress Transport Equations contain three tensor correlations that need
to be modeled. The modeling of these terms closes the set of equations required to cal-
culate any flow field. The three tensors are the velocity pressure-gradient correlation,
Πij , turbulent diffusion, DT

ij , and dissipation rate, εij . The velocity pressure-gradient cor-
relation is often split up into the pressure-strain correlation, φij , and pressure-diffusion
correlation, Dp

ij .

In this chapter some selected models for turbulent diffusion will be examined and
compared to measured values directly. All turbulent diffusion models require values
for the turbulent kinetic energy dissipation rate, ε. An estimate for the turbulent kinetic
energy dissipation rate is obtained by used measured quantities to calculate all terms in
the turbulent kinetic energy transport equation except the pressure-diffusion term and the
dissipation rate term. For the pressure-diffusion correlation Lumley’s pressure-diffusion
model is used, and then the remaining term which is the dissipation rate is estimated
by requiring that it balances all other terms calculated in the turbulent kinetic energy
transport equation.

The elements of the pressure-strain correlation are also estimated from each Reynolds
stress transport equation. This is done by calculating terms in the Reynolds stress trans-
port equations using measured data and then requiring that the pressure-strain corre-
lation balances all other terms in the equation. In order to do this, an estimate for the
dissipation rate tensor is needed. Three models for the dissipation rate tensor are evalu-
ated and only one is selected to estimate the pressure-strain tensor. All dissipation rate

170
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tensor models utilize the turbulent kinetic energy dissipation rate estimated as mentioned
above. The extracted pressure-strain correlations are then compared with different mod-
els in the literature.

6.2 Turbulent Diffusion Models

Various diffusion models have been discussed in Chapter One. Most of the men-
tioned models have been examined by different researchers. Ölçmen and Simpson, [44],
examined the Daly-Harlow, Mellor-Herring, Hanjalić and Launder and Lumley’s diffu-
sion models using data from their wing-body junction flow. In general, all models failed
to capture the magnitude of the triple-velocity products suggesting that the length scale,
q2/ε, used by these models may not be correct.

Schwarz and Bradshaw [57] also studied turbulent diffusion models in a three di-
mensional turbulent boundary layer. They used a standard cross-hot-wire probe to mea-
sure the Reynolds stresses and triple products. According to their comparisons the tur-
bulent diffusion models performed poorly. However, they argued that this correlation is
not important since it is small in magnitude. This might be true for boundary layer flows
but for wake flows or recirculating zones it becomes more dominant.

Kurbatskii and Poroseva,[22], tested the Daly-Harlow and Hanjalić-Launder models
in a rotating pipe flow. None was capable of reproducing the experimental data for the
entire flow for different swirl rates. They also proposed a differential model using the
transport equations of the triple-velocity products. Their model gave good estimates;
however for higher swirl and Reynolds Number the Hanjalić-Launder model showed
more stable performance. The main condition for a diffusion model to work is being
invariant with respect to coordinate transformation.

In addition to the models mentioned in Chapter One, Moore, [38], suggested a new
diffusion model that is tensorially consistent. The new model has the same form as the
Daly-Harlow but uses q/ω as a time scale instead of k/ε and a different velocity scale
tensor than the Reynolds Stresses.

The models chosen to be tested here are the Hanjalić-Launder model since it is the
most successful model to date, Moore’s model since it hasn’t been tested extensively yet,
Mackinnon model and the Daly-Harlow model due to its popularity and simplicity. The
models chosen are given as follows,

1. Hanjalić-Launder Model, [18]

uiujuk = −0.11
k

ε

[
uiul

∂ujuk

∂xl

+ ujul
∂ukui

∂xl

+ ukul
∂uiuj

∂xl

]
(6.1)
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This model was derived from the triple velocity product transport equations. It
was intended for high Reynolds number flows away from boundaries such that
viscous effects are negligible. It was also assumed that away from boundaries the
flow would be isotropic. Fourth order moments were approximated using the quasi-
normality assumption of Millionshchikov, [35]. Finally, the convection terms were
considered negligible and assuming the stress pressure gradient correlation to be
proportional to the triple velocity product.

2. Mackinnon’s Model, [30]

uiujuk = [Cφ1/ (1 + f ∗)] (k/ε) [DPijk + (1− Cφ2) Pijk,2] (6.2)

Where, Cφ1 = 0.6 and Cφ2 = 0.16 are constants and

f ∗ =
(1−e0.615b)eby∗

e0.615b(1−eby∗)

y∗ = 1.96
(

y
k1.5/ε

)
and b = −1.3

DPijk = −
(
uiul

∂ujuk

∂xl
+ ujul

∂ukui

∂xl
+ ukul

∂uiuj

∂xl

)
DPijk,2 = −

(
uiujul

∂Uk

∂xl
+ ujukul

∂Ui

∂xl
+ ukuiuk

∂Uj

∂xl

)
This model was developed to account for free stream turbulence and to correct the
near wall behavior of the v2+

normal stress. The assumptions made to obtain this
model are similar to those made by Hanjalić and Launder; however, the effect of
mean flow gradients are taken into account. Furthermore, the length scale function
is multiplied by an empirical function to account for free stream turbulence and wall
proximity.

3. Moore’s Model, [38]

DT
ij = −∂uiujuk

∂xk

=
∂

∂xk

cvq
q

ω
vkn

∂uiuj

∂xn

(6.3)

Where, cvq = 0.076 and the velocity scale tensor, vij , is defined such that vikvkj =
uiuj . The velocity scale tensor vij has the same eigen-vectors as the Reynolds stress
tensor and its eigen-values are equal to the square root of the principal Reynolds
normal stresses. In principal stress coordinates, this model can be viewed as based
on a turbulent viscosity composed of an isotropic length scale and a velocity scale
that is in the direction of diffusion, whose value is equal to the root mean square of
the fluctuating velocity.

4. Daly-Harlow Model

DT
ij =

∂

∂xk

csukul
∂uiuj

∂xk

(6.4)

Where, cs = 0.225. This model was developed based on analogy between turbulent
and viscous diffusion of a scalar quantity.
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Note that the last two models don’t give an expression for the triple-velocity cor-
relations but rather an expression for the turbulent diffusion tensor as it appears in the
Reynolds Stress Transport equations. Hence, calculation of different elements in the triple
velocity correlation tensor is not unique.

In the next section, the above models are used to calculate the triple velocity cor-
relations and are compared to experimental values. In evaluating the gradients in each
model only the normal to the wall gradients are considered, since the stream-wise and
span-wise gradients are almost two orders of magnitude smaller than the normal to the
wall gradients.

6.2.1 Results

Figures 6.1-6.4 show comparisons of different measured triple velocity correlations
and different models for profiles P07, P13, P19pp and P32. Those profiles were chosen
as representative for each cluster of profiles measured. Profile P07 shows almost two-
dimensional behavior near the wall, however, in the outer layer the span-wise velocity
magnitude increases to a large value. Profile P13 and P32 show very high turbulence
levels as well as turbulent transport levels. Profile P19pp, is among profiles showing the
strongest three-dimensional behavior.

Figures 6.1a, 6.2a, 6.3a and 6.4a show the u3 velocity correlation. In general, all mod-
els capture the right trend for all profiles except P13, but they all fail to capture the right
magnitude of the velocity correlation. For profile P13 the measured values show positive
correlation for the entire range while all the models show negative values at the begin-
ning of the semi-logarithmic region. All models give very close estimates except for the
Mackinnon model which shows very low values. This might be due to the fact that, the
scaling function k/ε is multiplied by a damping function to account for wall effects on the
pressure strain correlation.

Figures 6.1b, 6.2b, 6.3b and 6.4b show the v3 velocity triple product. In the inner
layer, the v3 triple product remains very small with respect to u3 then starts to increase
or decrease significantly in the outer layer above y+ = 200. All models predict higher
absolute values than the measured ones with different signs. Moreover, Moore’s model
doesn’t seem to follow the right trend as the measured values.

Figures 6.1c, 6.2c, 6.3c and 6.4c show the w3 velocity triple product. It is clear from
these figures that all models fail to reproduce the behavior of the w3 triple product; in
addition, the magnitude from all model estimates is too low.

Figures 6.1d, 6.2d, 6.3d and 6.4d show the u2v velocity correlation. This is the most
important triple velocity product since it represents the bulk of the turbulent diffusion.
Fortunately, it is the best triple product predicted by the models. All models follow the
same trend as the measured values. However, the difference in magnitude between mea-
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sured and modeled values increases away from the wall. Again, the Mackinnon model
gives the poorest predictions. The Daly-Harlow and the Hanjalić-Launder models give
the best predictions.

Figures 6.1e, 6.2e, 6.3e and 6.4e show the vw2 velocity triple product. This correlation
represents the transport of the span-wise component of turbulence kinetic energy in the
vertical direction. This correlation is typically zero in two dimensional boundary layers.
Again the models fail to capture the behavior of this correlation. This might indicate
that the models may be missing some physical ingredients to be able to predict three
dimensional flow-fields.

Finally, figures 6.1f, 6.2f, 6.3f and 6.4f show the turbulence kinetic energy turbulent
diffusion, DT

ij . The estimates for this quantity are much better than the estimates of the
individual triple-velocity product. This is because of the fact that the models predict
the u2v triple product very well in terms of trend and magnitude, which is the main
contributor to the turbulence kinetic energy turbulent diffusion term.

From the comparisons made above we can conclude the following,

• All models fail to model the correct magnitude of triple-velocity products. This was
also pointed out by Ölçmen and Simpson, [44].

• All models fail to compute the correct trend for the v3 and w3.

• For profiles with high free stream turbulence (e.g. P13) all models fail to predict the
right trend for u3

• The Daly-Harlow and Hanjalić-Launder models give the best overall estimates al-
though their magnitudes are to some extent higher than the measured ones.

• Moore’s model predictions are similar to Hanjalić-Launder model for u2v in terms
of trends, however the magnitude of the triple velocity products are much smaller
than Hanjalić-Launder model.

• The Mackinnon model gives consistently poor predictions for all correlations and
profiles.

• The Daly-Harlow and Hanjalić-Launder models consistently predict the turbulence
kinetic energy turbulent diffusion fairly well for this flow.

• The fact that all models can’t capture all triple-velocity products correctly and at
the same time their estimates of the contribution towards the turbulence kinetic en-
ergy equation being close to measured values; suggests that, there are some physical
components that are missing from these models. This means that in flow-fields that
experience large gradients of all triple-velocity products these models will break-
down.
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6.3 Dissipation Rate Tensor Anisotropy Models

In this section a brief comparison is presented between three models for the Dissipa-
tion Rate anisotropy tensor. The models are due to Hallback et al.[17], Jakirlić and Han-
jalić [21] and Perot and Natu [46]. All models require the estimation of turbulent kinetic
energy dissipation rate. This is done by using measured quantities to calculate all terms in
the turbulent kinetic energy transport equation except the pressure-diffusion term and the
dissipation rate term. For the pressure-diffusion correlation Lumley’s pressure-diffusion
model is used, and then the remaining term which is the dissipation rate is estimated by
requiring that it balances all other terms calculated in the turbulent kinetic energy trans-
port equation.

Hallback et al., expressed the dissipation rate anisotropy, using the Cayley-Hamilton
theorem, as a power series of the Reynolds stress anisotropy and the coefficients of the
series contained the invariants of the stress anisotropy. The constants in the model were
evaluated using the restrictions that the resulting tensor should be a traceless symmetric
tensor and satisfies the homogeneous two-component turbulence limiting value. Hall-
back’s model is given as follows,

eij =
[
1 + α

(
1

2
IIa −

2

3

)
aij − α

(
aikakj −

1

3
IIaδij

)]
(6.5)

Where, α = 3/4, aij = uiuj/2k − δij/3 and IIa = aikaki.

Perot and Natu [46], derived an expression for the dissipation rate anisotropy by
decomposing the fluctuating velocity components into two tensors, one has information
about the magnitude of fluctuations and the other contains the temporal and spatial vari-
ation correlations. Their final expression is given as follows,

εij = 2ν
(
k1/2

,n

)2
uiuj +νk,l

(
uiuj

k

)
+

2

3

ε̃Fk

1 + F
δij + ε̃

uiuj

1 + F
+2ν

F 1/2
,n uiujF

1/2
,n

F
δij +C∗kSij (6.6)

Where, F = det [3uiuj/2k] and C∗ = 0.18F/ (1 + F )2.

Finally, Jakirlić and Hanjalić, [21], derived an expression for the dissipation rate ten-
sor as equal to the homogeneous part of the dissipation rate tensor plus half the viscous
diffusion tensor. They also expressed the anisotropy of the homogeneous part of dissipa-
tion rate as proportional to the Reynolds stress anisotropy. This form was shown to satisfy
the wall limiting values exactly in an apriori DNS testing. The resulting expressions are
as follows,

εij = εh
ij +

1

2
Dv

ij (6.7)

εh
ij = (1− fs)

2

3
εh + fs

uiuj

k
εh (6.8)



Shereef A. Sadek Chapter 6. Second-Moment Closure Models 176

Where, fs = 1 −
√

AE2, A = 1 − 9
8
(aikaki − aikakjaji), E = 1 − 9

8
(eikeki − eikekjeji) and

eij = εij/2ε− δij/3 is the dissipation rate anisotropy tensor.

In order to use this model an equation for the turbulent kinetic energy homogeneous
dissipation rate part, εh, must be solved. However, since the turbulent dissipation rate,
ε, is estimated from the turbulence kinetic energy transport equation, these estimates are
inserted into Equation 6.8 and the homogeneous part, εh, is estimated. Then, the homoge-
neous dissipation rate and the total dissipation rate tensors are estimated. The function,
fs, depends on the dissipation rate anisotropy tensor; hence, in order to evaluate the dis-
sipation rate, fs must be calculated first. This is done by writing an expression for the
dissipation rate anisotropy in terms of, fs, and substituting in the definition of, fs. The
result is a sixth order algebraic equation in, fs, which is solved numerically at each point
in a profile. Once, fs, is known the dissipation rate tensor can be calculated. Figure 6.5
shows the values of fs for multiple profiles.

The three models presented above were compared for different profiles. Figures 6.6-
6.7 show the dissipation rate tensor component estimates for profiles P10 and P35, re-
spectively, along with the DNS data of Iwamoto and Kasagi, [20]. From these figures it
can be pointed out that all models predict the trend correctly for ε11, ε22, ε33 and ε12.

In general, the Perot and Natu model, (PN), and the Jakirlić and Hancalić, (JH),
model give similar results except for ε22 and ε12. The (JH) model produces higher values
of ε22. For ε12, the (PN) model doesn’t seem to give the right values for profile P10,
since it is giving a positive value and the DNS data and the other models show negative
estimates. The Hallback and Johansson model, (HJ), gives lower estimates for ε12 and ε13

while its estimates of ε22 matches the (JH) model.

Due to the fact that the differences between the three models are minor and that the
Jakirlić and Hanjalić model gives the near wall behavior exactly, this model is chosen to be
used to extract pressure-strain correlations from the Reynolds stress transport equations
and compare it to different models. This is presented in the next section.

6.4 Pressure-Strain Models

The velocity-pressure gradient correlation, Πij , in equation 1.3 is usually split into the
pressure-strain correlation tensor, φij , and the pressure-diffusion tensor, DP

ij , such that,

−
(
ui

∂p

∂xj

+ uj
∂p

∂xi

)
︸ ︷︷ ︸

Πij

=

(
p
∂ui

∂xj

+ p
∂uj

∂xi

)
︸ ︷︷ ︸

φij

−
(

∂pui

∂xj

+
∂puj

∂xi

)
︸ ︷︷ ︸

DP
ij

(6.9)

In this section a comparison between the extracted pressure-strain correlations from the
Reynolds stress transport equations and estimated values from different models is pre-
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sented.

Schwarz and Bradshaw, [57], tested four models for the pressure-strain correlation
using experimental data, acquired using a standard cross hot-wire probe, in a three-
dimensional boundary layer. They concluded that the models were in good agreement
with experimental data. However, the closest measurement point to the wall was at
y/δ99 = 0.1, which corresponds to y+ ≈ 130. At this distance away from the wall, most
models are expected to agree to some extent with measured data.

Ölçmen and Simpson, [43], extracted pressure-strain correlations from measured
data for flow around a wing-body junction using three-velocity component Laser Doppler
Velocimetery. The measured profiles extended well into the viscous sublayer. The ex-
tracted values were compared with a number of pressure-strain models using isotropic
and anisotropic estimates of the dissipation rate. They also examined the addition of
wall corrections to the pressure-strain correlations. The comparisons showed poor per-
formance for all models in the inner layer, y+ ≤ 25, even with wall correction. Different
models predicted different components better. For some models tested, the anisotropic
dissipation rate approximation gave worse results than the the isotropic approximation.

To extract the pressure-strain correlation tensor, φij , an estimate of the dissipation rate
tensor, εij is required. The Jakirlić and Hanjalić model, highlighted in the previous section,
is used. All other terms in the Reynolds stress transport equations, 1.3, are evaluated from
measured data except for the pressure-diffusion term, DP

ij . This term is evaluated using
Lumley’s model, [27] and [52], shown in Equation 6.10. This is based on an analysis of
nearly homogeneous turbulence.

− pui =
1

5
uiu2

k (6.10)

Four models are compared to experimental data. The models are, the Launder, Reece
and Rodi model, the Sarkar, Speziale and Gatski model, the Shih and Lumley model, the
Fu, Launder and Tselepidakis model. These are the most popular and widely used models
in current flow simulation codes. The models are given below,

1. Launder, Reece and Rodi model, (LRR) [23], [47]

φij = −C1εbij +C2K
(
bikSkj + Sikbkj −

2

3
bmnSmnδij

)
+C4K (bikWkj + Wikbkj) (6.11)

Where, Wij = 0.5 (∂Ui/∂xj − ∂Uj/∂xi), C1 = 3.0, C2 = 0.8, C3 = 1.75 and C4 = 1.31
and K is the turbulence kinetic energy.

2. Speziale, Sarkar and Gatski model, (SSG) [65], [47]
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φij = −C1εbij + Ć1ε
(
bikbkj −

1

3
bmnbmnδij

)
+ C2kSij (6.12)

+C3K
(
bikSkj + Sikbkj −

2

3
bmnSmnδij

)
+ C4K (bikWkj + Wikbkj)

Where, C1 = 3.4+1.8P
ε

, Ć1 = 4.2, C2 = 0.8−1.30 (bmnbmn), C3 = 1.25, C4 = 0.40 and P
and ε are the turbulence kinetic energy production and dissipation rate, respectively.

3. Shih and Lumley model, (SHL) [59]

φij = −ε
[
βbij + γ

(
b2
ij +

2

3
IIδij

)]
(6.13)

+K
[
0.8Sij + 12α

(
bikSkj + Sikbkj −

2

3
bmnSmnδij

)]
+K

[
4

3
(2− 7α) (bikWkj + Wikbkj)

]
+0.8K

[(
b2
ikSkj + Sikb

2
kj − 2bikSklblj − 3bijbmnSmn

)]
+0.8K

[(
b2
ikWkj + Wikb

2
kj

)]
Where, II = −0.5bmnbmn, β and γ are functions of the invariants of bij and the
turbulent Reynolds number, Ret = 2k

9ε
, [59].

4. Fu, Launder and Tselepidakis, (FLT ) [16], [47]

φij = −C1εbij + Ć1ε
(
bikbkj −

1

3
bmnbmn

)
(6.14)

+C2KSij + 1.2K
(
bikSkj + Sikbkj −

2

3
bmnSmnδij

)
+

26

15
K (bikWkj + Wikbkj)−

112

5
K [II (bikWkj + Wikbkj)]

+
4

5
K (bikbklSlj + Silblkbkj − 2bikSklblj − 3bmnSmnbij)

+
4

5
K (bikbklWlj + Wikbklblj)−

168

5
K (bikbklWlmbmj + bimWmlblkbkj)

Where, C1 = −120II
√

F − 2
√

F + 2, Ć1 = 144II
√

F , C2 = 0.8, F = 1 + 9II + 27III ,
II = −0.5b2

ij and III = b3
ij/3

The models are used to calculate the pressure-strain tensor for profiles P07, P13, P18,
P19, P20 and P32. These profiles represent all the features present in this experiment. All
models are used without wall correction.
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Figures 6.8-6.13 show the comparison between elements of the extracted pressure-
strain tensor and the models estimates. Figures 6.8a-6.13a show the estimates for the φ11.
In general, all models agree well with experimental data for y+ ≥ 50. Close to the wall
in the inner layer all models overestimates the pressure-strain correlation; however, the
SHL is closer to experimental data.

Figures 6.8b-6.13b show the φ22 component. Above y+ = 40 the LRR model agrees
very well with the data; all other models differ slightly. Near the wall all models fail to
capture the correct value, however they capture the right trend, except for the FLT model.

Figures 6.8c-6.13c show the φ33 component. All models capture the correct sign and
trend in for this component; however, the magnitude is significantly different. For profiles
P07 and P13 there is good agreement away from the wall, since these two profiles are
more two-dimensional than the other profiles. As three-dimensionality increases, the
disagreement between the experimental data and the models extends beyond the inner
layer up to y+ = 500. The LRR model is consistently closer to the experimental data in the
outer layer.

Figures 6.8d-6.13d show the φ12 component. The SSG model consistently gives very
good agreement with experimental data for this pressure-strain component. The agree-
ment extends to the near wall region down to y+ ≈ 11−20. All other models significantly
overestimate this correlation.

Figures 6.8e-6.13e show the φ13 component. The values of this correlation is an order
of magnitude smaller than φ12. For profiles P07, P13 and P33, the experimental estimates
are very close to zero. For the other profiles the flow is three dimensional, hence, φ13

is non-zero. Surprisingly, the models give good estimates of this component down to
y+ = 40. Furthermore, the SHL model is in very good agreement with the experimental
estimate further down to y+ ≈ 12.

Finally, figures 6.8f-6.13f show the φ23 component. The SSG model gives the best
estimates of this component down to y+ = 15. However, for profiles P13 and P33 the
agreement is not good up to y+ = 40. All other models overestimate this correlation near
the wall in the inner layer.

To summarize, all models need near-wall corrections. The SSG model gives very
good estimates for φ12 and φ23 while the SHL model give the best estimate for φ11 and φ13.
All models predict the right trend for φ22 and φ33 but all of them give the wrong magni-
tude. Furthermore, the disagreement between the experimental and model estimates for
φ33 extends all the way to the outer layer when the flow is highly three dimensional.

In general, the φ12 component is the most important term for boundary layer flows
since it appears in the uv+ stress transport equation. However, for strong three dimen-
sional flow situations the φ23 component might become equally important. This might be
the reason why the SSG model gained popularity since it predicts both φ12 and φ23 com-
ponents to a good extent. The conclusions drawn here are in line with those obtained by
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Ölçmen and Simpson, [43].

6.5 Reynolds Shear Stress Angle Lag Model

The flow angle, flow gradient angle and shear stress angle are important modeling
parameters. If the lag between the shear stress angle and flow angle can be expressed alge-
braically it would decrease the computational cost for turbulent boundary layer flow type
calculations since we would be solving one less equation. In this section, an expression
for shear stress lag is derived and tested with measured data by comparing calculated lag
with measured values.

The start point is the flow gradient angle, γg, defined by Equation 6.15

γg = arctan

(
W,y

U,y

)
(6.15)

The flow gradient angle can be related to the flow angle, γa, as follows,

γa = arctan
(

W

U

)
(6.16)

γa,y =
1

1 +
(

W
U

)2

[
W,y

U
− WU,y

U2

]
=

U2

U2 + W 2

U,y

U

[
W,y

U,y

− W

U

]
(6.17)

γg = γa + arcsin

(
Q

‖S‖
γa,y

)
(6.18)

Where, (•),y denotes derivative with respect to the normal to the wall direction and ‖S‖ =√
U,y

2 + W,y
2 is the rate of strain.

Figure 6.14 shows Equation 6.18 evaluated using measured flow angles and mean
flow strain. Figure 6.14 shows excellent agreement between measured lag for the Flow
gradient angle and the calculated lag using Equation 6.18. This give confidence in the
measurements and flow angle estimates since Equation 6.18 is an exact analytical result.
At the wall the Flow Gradient angle approaches the flow angle asymptotically and at the
wall the lag is zero. Away from the wall, inertial effects as well as history effects become
more dominant. There are some differences near the wall and around y+ = 1000 which
may be due to numerical differencing.

Equation 6.18 gives an analytical expression for the lag between the mean flow angle
and the flow gradient angle. The lag term, second term on the right hand side, is invari-
ant with respect to coordinate rotation about the wall-normal direction. The argument of
the arcsin function is basically a mean flow length scale multiplied by the rate of change
of flow angle normal to the wall. Since the shear stress angle usually follows the same
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trend of the flow gradient angle but with different magnitude and scale, this functional
expression can be utilized to describe the lag between the shear stress angle and the flow
angle. However, it would be reasonable to use a length scale based on turbulence quan-
tities rather than mean flow ones. Hence, a turbulence length scale LT should be used
instead. Moreover, the lag term in Equation 6.18 is zero at the wall since the Flow Gra-
dient Angle is equal to the Flow Angle, in general this is not true for the Reynolds Shear
Stress Angle. Hence, a constant term must be added to the lag term in order to account
for the lag at the boundary. Therefore the model for the Reynolds Shear Stress Angle can
be written in the following form,

γs = γa + arcsin [LT γa,y] + β (6.19)

In order to be able to use this model, the length scale, LT , and the constant, β, must be
specified. In the next section an analysis is made and an exact expression for β is obtained.

6.5.1 Reynolds Shear Stress Angle Wall Limiting Value

In order to use 6.19 the value of β has to be specified apriori. In order to do that, we
will look at the momentum equation and try to obtain a limiting value for the Reynolds
Shear Stress Angle consistent with the momentum equation. We start by writing the
Reynolds Averaged Navier-Stokes equation in the x and z directions as follows normal-
ized using wall variables, keeping in mind that as y → 0, Ul = 0, ∂ (•) /∂x = 0 and
∂ (•) /∂z = 0. All quantities are normalized by wall variables, uτ and ν.

DU

Dt
= −∂P

∂x
+

∂2U

∂y2
− ∂uv

∂y
(6.20)

DW

Dt
= −∂P

∂z
+

∂2W

∂y2
− ∂vw

∂y
(6.21)

Also the Reynolds shear stresses uv and vw are written in terms of the total Reynolds
Shear stress, τ , and the Reynolds Shear Stress Angle, γs.

uv = −τ cos [γs] (6.22)
vw = −τ sin [γs] (6.23)

Substituting Equations 6.22 and 6.23 into Equations 6.20 and 6.21 we get,

DU

Dt
= −∂P

∂x
+

∂

∂y

∂U

∂y
+

∂τ cos [γs]

∂y
(6.24)

DW

Dt
= −∂P

∂z
+

∂

∂y

∂W

∂y
+

∂τ sin [γs]

∂y
(6.25)
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Rearranging Equations 6.24-6.25 and noting that,

∂U

∂y
= ‖S‖ cos [γg] (6.26)

∂W

∂y
= ‖S‖ sin [γg] (6.27)

∂P

∂x
=

∂P

∂l
cos [γa] (6.28)

∂P

∂z
=

∂P

∂l
sin [γa] (6.29)

Where, ∂P/∂l is the pressure gradient along the projection of a streamline onto a plane
parallel to the wall and at the wall it is equal to the surface pressure gradient along the
limiting streamline direction. Hence we get,

cos [γs]
∂τ

∂y
− τ sin [γs]

∂γs

∂y
=

DU

Dt
+

∂P

∂l
cos [γa]−

∂

∂y
(‖S‖ cos [γg]) (6.30)

sin [γs]
∂τ

∂y
+ τ cos [γs]

∂γs

∂y
=

DW

Dt
+

∂P

∂l
sin [γa]−

∂

∂y
(‖S‖ sin [γg]) (6.31)

If Equation 6.31 is divided by Equation 6.30 and taking the limit as y → 0, we obtain
Equation 6.32.

[
sin [γs]

cos [γs]

]
y=0

= lim
y→0

 D(W )
Dt

+ ∂P
∂l

sin [γa]− ∂
∂y

(‖S‖ sin [γg])
D(U)
Dt

+ ∂P
∂l

cos [γa]− ∂
∂y

(‖S‖ cos [γg])

 . (6.32)

In Equation 6.32, both numerator and denominator are zero at the wall. Hence in order
to obtain the limiting value, l’Hôpital’s rule is used by differentiating the numerator and
denominator with respect to y as follows,

[
sin [γs]

cos [γs]

]
y=0

= lim
y→0

[
D(W )

Dt
+ ∂P

∂l
sin [γa]− ∂

∂y
(‖S‖ sin [γg])

]
,y[

D(U)
Dt

+ ∂P
∂l

cos [γa]− ∂
∂y

(‖S‖ cos [γg])
]
,y

(6.33)

Equation 6.33 contains three terms that need to be evaluated in the numerator and denom-
inator. Each term will be evaluated below. The first term to be evaluated is the substantial
derivative, D()/Dt, as follows,[

D (W )

Dt

]
,y

=
∂

∂y

[
∂W

∂t
+ Ul

∂W

∂xl

]
=

∂W,y

∂t
+

∂Ul

∂y

∂W

∂xl

+ Ul
∂W,y

∂xl

(6.34)

The right hand side of Equation 6.34 contains three terms, the first term in general is
non-zero for unsteady flows. It is also noted that this term is equal to the time rate of
change of x-direction vorticity flux since Ωx = W,y at the wall. The second and third
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terms in Equation 6.34 are exactly zero at the wall since, Ul = 0, ∂W/∂x = ∂W/∂z = 0 and
∂V/∂y = 0. Hence, at the wall Equation 6.34 reduces to,[

D (W )

Dt

]
,y

=

[
∂Ωx

∂t

]
y=0

(6.35)

Similarly, [
D (U)

Dt

]
,y

= −
[
∂Ωz

∂t

]
y=0

(6.36)

Next, the limiting value of the second term in Equation 6.33 is obtained as follows,[
∂P

∂l
sin [γa]

]
,y

=
∂2P

∂l∂y
sin [γa] +

∂P

∂l
cos [γa] γa,y (6.37)

In general, the terms in Equation 6.37 are non-zero at the wall so it will be left in this form,
however, for a boundary layer assumption ∂2P/∂l∂y can be shown to be equal to zero at
the wall. Similarly, in the denominator we obtain,[

∂P

∂l
cos [γa]

]
,y

=
∂2P

∂l∂y
cos [γa]−

∂P

∂l
sin [γa] γa,y (6.38)

Finally the limiting value of the last term is obtained as follows,

[
∂

∂y
(‖S‖ sin [γg])

]
,y

= [‖S‖,y sin [γg] + ‖S‖ cos [γg] γg,y],y (6.39)

[
∂

∂y
(‖S‖ sin [γg])

]
,y

= ‖S‖,yy sin [γg] + 2‖S‖,y cos [γg] γg,y − ‖S‖ sin [γg] γ
2
g,y (6.40)

+‖S‖,y cos [γg] γg,yy[
∂

∂y
(‖S‖ sin [γg])

]
,y

=
(
‖S‖,yy − ‖S‖γ2

g,y

)
sin [γg] + (2‖S‖,yγg,y + ‖S‖γg,yy) cos [γg] (6.41)

Similarly we can write the last term in the denominator of Equation 6.33 as,[
∂

∂y
(‖S‖ cos [γg])

]
,y

=
(
‖S‖,yy − ‖S‖γ2

g,y

)
cos [γg]− (2‖S‖,yγg,y + ‖S‖γg,yy) sin [γg] (6.42)

Now we can collect Equations 6.35,6.37 and 6.41 to form the numerator and Equa-
tions 6.36,6.38 and 6.42 to form the denominator. The result is shown in Equation 6.43.[
sin [γs]

cos [γs]

]
y=0

= (6.43)
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 Ω̇x + sin [γg]
(
P,ly − ‖S‖,yy + ‖S‖γ2

g,y

)
− cos [γg] (−P,lγa,y + 2‖S‖,yγg,y + ‖S‖γg,yy)

−Ω̇z + cos [γg]
(
P,ly − ‖S‖,yy + ‖S‖γ2

g,y

)
+ sin [γg] (−P,lγa,y + 2‖S‖,yγg,y + ‖S‖γg,yy)


y=0

Finally, the limiting value at a solid wall for the Reynolds Shear Stress Angle is given by
Equation 6.44. [

sin [γs]

cos [γs]

]
y=0

=

[
Ω̇x + sin [γg − θ]

−Ω̇z + cos [γg − θ]

]
y=0

(6.44)

Where,

θ = arctan

[
−P,lγa,y + 2‖S‖,yγg,y + ‖S‖γg,yy

P,ly − ‖S‖,yy + ‖S‖γ2
g,y

]
y=0

(6.45)

At the wall, the value of the Flow Gradient Angle is equal to the Flow Angle as a result
of Equation 6.18. Also for steady flow, the time rate of change of vorticity components
vanishes.

Equation 6.44 can be viewed as a compatibility condition between the mean flow
field and the turbulent shear stress field at a solid boundary. This condition must be met
regardless of the turbulence closure model used.

For unsteady flow Equation 6.44 reduces to the following,[
sin [γs]

cos [γs]

]
y=0

=

[
sin [γg − θ]

cos [γg − θ]

]
y=0

(6.46)

tan [γs]y=0 = [tan [γg − θ])y=0 (6.47)

Hence,
(γs)y=0 = (γg − θ)y=0 (6.48)

Comparing Equation 6.19 with Equation 6.48 at the wall for steady flows, it can be
seen that the value of the constant β is equal to−θ. Hence, substituting Equation 6.45 into
Equation 6.19 we can write the Reynolds Shear Stress angle for a steady flow as follows,

γs = γa + arcsin

[
LT

∂γa

∂y

]
− arctan

[
−P,lγa,y + 2‖S‖,yγg,y + ‖S‖γg,yy

P,ly − ‖S‖,yy + ‖S‖γ2
g,y

]
y=0

(6.49)

Equation 6.49 gives an explicit expression for the Reynolds Shear Stress Angle in
terms of the Flow Angle, Flow Gradient Angle and their gradient in addition to mean
Strain and Pressure gradients at the wall. This expression is also invariant under coordi-
nate axis rotation around the wall normal direction. Moreover, it has the right value at
the wall that is consistent with the momentum equation. The other advantage is that it
doesn’t have any user prescribed constants.
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Table 6.1 shows values of β computed from measured values and using Equation
6.45 for some profiles measured. Computed values are very close to measured ones ex-
cept for profiles P181 and P35. This is because Equation 6.45 contains multiple first and
second derivatives of very small quantities which makes it very hard to compute given
the experimental uncertainties.

Profile P16 P18 P181 P191 P35
y+ 2.9 6.8 2 6.5 2.8
γs − γa [deg] 19 22 −14 24 9
β = −θ [deg] 20 23 −6 23 3

Table 6.1: Comparison between measured and computed Reynolds Shear Stress angle, γs,
at the Wall

If this model is to be used in a numerical computation, the value of β need to be
estimated. One choice is to assume that at the wall the shear stress angle equals the flow
gradient angle. Then in the next iteration, β is taken as equal to −θ, where θ is calculated
as defined by Equation 6.45 using values of mean flow field from the previous iteration.

The last step is to define the turbulence length scale, LT . One choice is to use a
diffusive length scale such that, LT = k1.5/ε. The analysis here will be confined to this
choice. The next section shows the model results.

6.5.2 Results

Figures 6.15a-6.15f show the measured and calculated Reynolds Shear Stress angle
using Equations 6.19 and Rotta’s model, [55], for Profiles P06, P13, P181, P19pp, P201

and P33.

In order to test the functional form of Equation 6.19 and exclude errors in evaluating
β, the value of β is set equal to the measured difference between the shear stress angle
and the mean flow angle at the wall. In general, estimates using Equation 6.19 are very
close to experimental values near the wall up to about y+ = 200. Above this height
Equation 6.19 becomes sensitive to the uncertainties in estimating the turbulence kinetic
energy dissipation rate, ε. Moreover, the way the model is formulated so far offers no
guarantees that the absolute value of the argument of the arcsin function is going to be
less than unity. This is the reason why for profiles P181 and P19pp, Equation 6.19 gives a
different trend from experimental data.

However, the current model captures the right trend near the wall and up to y+ =
200. In contrast, Rotta’s model, [55], doesn’t give the right values nor trends in the same
region. For example for profiles P181, P19pp and P201, the Shear Stress Angle decreases
semi-logarithmically near the wall, Rotta’s model shows an increase in the Shear Stress
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Angle for profiles P181, P201 and an almost constant angle for profile P19pp. The current
model gives the right behavior in all cases in the inner layer up to y+ ≈ 250. The discrep-
ancy in Rotta’s model is due to the fact that the computed lag in Reynolds Shear Stress
Angle is proportional to the lag in the Flow Gradient Angle. This is not correct at the wall
since the Flow Gradient Angle approaches the Flow Angle and in general the Reynolds
Shear Stress Angle is not equal to the Flow Angle at the wall.

In general, Equation 6.19 gives a very good estimate for the Shear Stress Angle over
a wide range of flow situations present at different profiles. It is more consistent and
superior to Rotta’s model in the inner layer. However, it needs to be modified so that
the arcsin argument is guaranteed to be within the interval [−1, 1] which probably will
improve the performance in the outer layer.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: Comparison between measured and modeled triple-velocity correlations for
Profile P07, (Exp) Experiment,(HL) Hanjalić and Launder model, (Mk) Mackinnon
model, (DH) Daly-Harlow model and (MR) Moore’s model. DT

ii/2 is the Turbulence
Kinetic Energy Diffusion.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Comparison between measured and modeled triple-velocity correlations for
Profile P13, (Exp) Experiment,(HL) Hanjalić and Launder model, (Mk) Mackinnon
model, (DH) Daly-Harlow model and (MR) Moore’s model. DT

ii/2 is the Turbulence
Kinetic Energy Diffusion.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Comparison between measured and modeled triple-velocity correlations for
Profile P19pp, (Exp) Experiment,(HL) Hanjalić and Launder model, (Mk) Mackinnon
model, (DH) Daly-Harlow model and (MR) Moore’s model. DT

ii/2 is the Turbulence
Kinetic Energy Diffusion.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Comparison between measured and modeled triple-velocity correlations for
Profile P32, (Exp) Experiment,(HL) Hanjalić and Launder model, (Mk) Mackinnon
model, (DH) Daly-Harlow model and (MR) Moore’s model. DT

ii/2 is the Turbulence
Kinetic Energy Diffusion.
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Figure 6.5: Blending function, fs, in Jakirlić and Hanjalić dissipation rate tensor
anisotropy
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Figure 6.6: Comparison between dissipation rate models at profile P10, (HJ) Hallback
and Johansson model, (PN) Perot and Natu model, (JH) Jakirlić and Hanjalić model
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Figure 6.7: Comparison between dissipation rate models at profile P35, (HJ) Hallback
and Johansson model, (PN) Perot and Natu model, (JH) Jakirlić and Hanjalić model
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Figure 6.8: Comparison between Pressure-Strain models at profile P07, (Exp) experiment,
(LRR) Launder, Reece and Rodi model, (SSG) Sarkar, Speziale and Gatski model, (SHL)
Shih and Lumley model, (FLT ) Fu, Launder and Tselepidakis model
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Figure 6.9: Comparison between Pressure-Strain models at profile P13, (Exp) experiment,
(LRR) Launder, Reece and Rodi model, (SSG) Sarkar, Speziale and Gatski model, (SHL)
Shih and Lumley model, (FLT ) Fu, Launder and Tselepidakis model
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Figure 6.10: Comparison between Pressure-Strain models at profile P18, (Exp) experi-
ment, (LRR) Launder, Reece and Rodi model, (SSG) Sarkar, Speziale and Gatski model,
(SHL) Shih and Lumley model, (FLT ) Fu, Launder and Tselepidakis model
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Figure 6.11: Comparison between Pressure-Strain models at profile P19, (Exp) experi-
ment, (LRR) Launder, Reece and Rodi model, (SSG) Sarkar, Speziale and Gatski model,
(SHL) Shih and Lumley model, (FLT ) Fu, Launder and Tselepidakis model
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Figure 6.12: Comparison between Pressure-Strain models at profile P20, (Exp) experi-
ment, (LRR) Launder, Reece and Rodi model, (SSG) Sarkar, Speziale and Gatski model,
(SHL) Shih and Lumley model, (FLT ) Fu, Launder and Tselepidakis model
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Figure 6.13: Comparison between Pressure-Strain models at profile P33, (Exp) experi-
ment, (LRR) Launder, Reece and Rodi model, (SSG) Sarkar, Speziale and Gatski model,
(SHL) Shih and Lumley model, (FLT ) Fu, Launder and Tselepidakis model
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Figure 6.15: Comparison between Measured and modeled Reynolds Shear Stress Angle,
∇ Experiment, − Current Lag Model and − − Rotta’s Lag Model



Chapter 7

Conclusions

In the present work, a three-dimensional boundary layer experiment was devel-
oped such that span-wise and stream-wise pressure gradients are present with alternating
signs. The pressure gradients are responsible for generating an alternating sign vorticity
flux at the tunnel’s floor and ceiling. Mean flow velocity components as well as static and
total pressures were measured at different stream-wise locations along the test-section.
Turbulence quantities including Reynolds Stresses, Turbulent transport and dissipation
rate were measured at different stations along the last sine wave. Several observations
and conclusions can be made,

• Mean flow velocities, Reynolds stresses, turbulent transport and turbulence kinetic
energy dissipation rate were measured at selected locations along the test section.

• The data obtained using both LDV probes had very low uncertainty. However, the
process of using two probes to measure partial profiles then matching those profiles
together induces some uncertainty in the data.

• Mean flow velocities along the test section didn’t show any signs of flow separation.

• The entrance mean flow at the test section inlet is a two-dimensional boundary
layer. As the flow go through the test section it develops and becomes a complex
three-dimensional channel as the boundary layer from the floor and ceiling merge
together.

• Turbulent Reynolds stresses reaches a state of equal normal stresses with non-zero
shear stresses in the outer layers of all clusters.

• Estimated turbulent kinetic energy dissipation rate from spectral measurements
agreed very well with estimates from balancing the turbulent kinetic energy trans-
port equation.
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• The span-wise pressure gradient deforms the boundary layer and creates a flux of
stream-wise vorticity at the test section floor as the flow goes around the first sine
wave.

• As the flow progresses downstream more vorticity is generated at the wall and older
vorticity is diffused away from the wall.

• The vorticity components in the stream-wise and span-wise directions are strength-
ened due to stretching and tilting terms in the vorticity transport equations.

• The positive-z half of the test section contains large areas that generate positive
vorticity flux in the trough region and smaller areas generating negative vorticity
around the wave peak. The opposite is true for the negative-z half of the test-section.
This results in a large positive stream-wise vorticity in the positive-z half and nega-
tive stream-wise vorticity in the negative-z half of the test-section.

• The smaller regions of opposite sign vorticity in each half tend to mix the flow such
that as they diffuse away from the wall, the turbulent stresses are more uniform.

• The available turbulent diffusion models don’t predict the flow adequately. The
magnitude of estimated kinetic energy turbulent diffusion is incorrect for all models
tested. Furthermore, the trends for some of the terms are not correct.

• Different pressure-strain models are compared with estimates extracted from exper-
imental data also show poor agreement.

• Each component in the pressure-strain tensor is modeled best by a different model.
The SSG model gives very good estimates for φ12 and φ23 while the SHL model give
the best estimate for φ11 and φ13. All models predict the right trend for φ22 and φ33

but all of them give the wrong magnitude. Furthermore, the disagreement between
the experimental and model estimates for φ33 extends all the way to the outer layer
when the flow is highly three-dimensional.

• In order to improve turbulence modeling, in the context of second-moment closure,
better pressure-strain models are needed. More importantly, more experimental
data for the pressure-strain or velocity-pressure gradient is needed.

• A proposed model for the Reynolds shear stress angle is presented. The model out-
performs Rotta’s model in the inner layer reproducing the change in the turbulent
shear stress angle to a good extent. However, in the outer layer it deviates signifi-
cantly. The model still needs more improvements.
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Appendix A

Wavy Wall Geometry

Accurate measurement of the test section geometry is important for the documenta-
tion of the experiment. Thus the geometry of the side walls was measured and compared
to the original analytical geometry desired. The surface slope is also compared to the
original design.

Measurement Procedure

The wavy wall test section consists of two side walls and the ceiling. The side walls
and the ceiling are divided into two parts each. The plan view of the test section is shown
in Figure A.1; flow is from left to right.

The geometry of the side walls was obtained by laying the side walls flat on a flat
surface and attaching a 3/4” thick flat Plexiglas plate normal to the bottom surface of the
side walls. The geometry of the wavy side walls were measured relative to the Plexiglass
plate using a high precision . The setup is shown in Figure A.2.

The wall contours were measured as heights from the Plexiglas plate using a vertical
caliper as shown in Figure A.2. The vertical caliper had a resolution of 1/1000”. The
axial location of each measurement was read off of a tape measure attached to the bottom
of the wall. Unfortunately the Plexiglass plate was shorter than the side wall length, so
each part geometry was measured in multiple steps (3-4). In order to make sure that the
same reference is used for each measurement, overlap regions between different steps
were measured to make sure that all measurement had the same reference plane position.
In general there were differences of 0.003” to 0.01”. However, these differences were
constant for each overlap region and a constant shift was added to the measurements to
account for these differences. The comparisons between consecutive measurements are
shown in Figure.
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Measured Geometry

The final wall geometries are shown in Figure. Also shown is the departure from the
original sine wave geometries as a percentage of the peak to trough amplitude 6”.

It can also be seen that the agreement between the design and actual geometry is to
some extent very good. However the waves seem to be shifted vertically along the axial
direction such that the peaks and troughs are slightly higher than the design value which
accounts for the 10% error in the geometry. However the distance between the peaks and
troughs is more or less equal to 6”.

Figure shows the surface slopes of the walls which agree well to the design values
except for some points where the geometry deviates from the design.

Uncertainty of Measurement

The axial position of each height measurement is determined with uncertainty of
1/32”. For a given sine wave,

z = α· sin 2π
x

λ
(A.1)

Where, α = 3” and λ = 24”
This leads to a maximum uncertainty in z-location of 0.0245”, which is larger than the

resolution of the caliper used to measure the height of the wall. The axial positions were
taken each 1”, however these locations were modified because the caliper’s measuring
arm had a large width so that the actual position of measurement was different than the
actual position by the width of this arm which was 0.341”. This is done by either adding
or subtracting the arm’s width to or from the x-location depending on the position of the
arm relative to the waves.
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Table A.1: Wavy Wall Test Section Geometry

XR/L ZR/Wx=0 XL/L ZL/Wx=0 X/L Y/Yx=0

0.00E + 00 −5.00E − 01 0.00E + 00 5.00E − 01 0.00E + 00 1.00E + 00
5.21E − 03 −4.97E − 01 5.21E − 03 4.97E − 01 5.21E − 03 9.99E − 01
1.04E − 02 −4.95E − 01 1.04E − 02 4.95E − 01 1.04E − 02 9.98E − 01
1.56E − 02 −4.93E − 01 1.56E − 02 4.93E − 01 1.56E − 02 9.96E − 01
2.08E − 02 −4.90E − 01 2.08E − 02 4.91E − 01 2.08E − 02 9.95E − 01
2.60E − 02 −4.88E − 01 2.60E − 02 4.88E − 01 2.60E − 02 9.94E − 01
3.13E − 02 −4.87E − 01 3.13E − 02 4.86E − 01 3.13E − 02 9.93E − 01
3.65E − 02 −4.84E − 01 3.65E − 02 4.83E − 01 3.65E − 02 9.91E − 01
4.17E − 02 −4.82E − 01 4.17E − 02 4.81E − 01 4.17E − 02 9.90E − 01
4.69E − 02 −4.79E − 01 4.69E − 02 4.79E − 01 4.69E − 02 9.89E − 01
5.21E − 02 −4.77E − 01 5.21E − 02 4.76E − 01 5.21E − 02 9.88E − 01
5.73E − 02 −4.75E − 01 5.73E − 02 4.74E − 01 5.73E − 02 9.86E − 01
6.25E − 02 −4.71E − 01 6.25E − 02 4.72E − 01 6.25E − 02 9.85E − 01
6.77E − 02 −4.70E − 01 6.77E − 02 4.69E − 01 6.77E − 02 9.84E − 01
7.29E − 02 −4.67E − 01 7.29E − 02 4.67E − 01 7.29E − 02 9.83E − 01
7.81E − 02 −4.65E − 01 7.81E − 02 4.64E − 01 7.81E − 02 9.81E − 01
8.33E − 02 −4.63E − 01 8.33E − 02 4.61E − 01 8.33E − 02 9.80E − 01
8.85E − 02 −4.60E − 01 8.85E − 02 4.59E − 01 8.85E − 02 9.79E − 01
9.38E − 02 −4.58E − 01 9.38E − 02 4.56E − 01 9.38E − 02 9.78E − 01
9.90E − 02 −4.56E − 01 9.90E − 02 4.54E − 01 9.90E − 02 9.76E − 01
1.04E − 01 −4.54E − 01 1.04E − 01 4.52E − 01 1.04E − 01 9.75E − 01
1.09E − 01 −4.51E − 01 1.09E − 01 4.49E − 01 1.09E − 01 9.74E − 01
1.15E − 01 −4.49E − 01 1.15E − 01 4.46E − 01 1.15E − 01 9.73E − 01
1.20E − 01 −4.45E − 01 1.20E − 01 4.44E − 01 1.20E − 01 9.71E − 01
1.25E − 01 −4.43E − 01 1.25E − 01 4.42E − 01 1.25E − 01 9.70E − 01
1.30E − 01 −4.43E − 01 1.29E − 01 4.43E − 01 1.30E − 01 9.69E − 01
1.35E − 01 −4.38E − 01 1.35E − 01 4.46E − 01 1.35E − 01 9.68E − 01
1.41E − 01 −4.32E − 01 1.40E − 01 4.50E − 01 1.41E − 01 9.67E − 01
1.46E − 01 −4.23E − 01 1.45E − 01 4.55E − 01 1.46E − 01 9.65E − 01
1.51E − 01 −4.12E − 01 1.50E − 01 4.63E − 01 1.51E − 01 9.64E − 01
1.56E − 01 −3.99E − 01 1.55E − 01 4.71E − 01 1.56E − 01 9.63E − 01
1.61E − 01 −3.88E − 01 1.61E − 01 4.79E − 01 1.61E − 01 9.62E − 01
1.67E − 01 −3.76E − 01 1.66E − 01 4.87E − 01 1.67E − 01 9.60E − 01
1.72E − 01 −3.64E − 01 1.71E − 01 4.93E − 01 1.72E − 01 9.59E − 01
1.77E − 01 −3.57E − 01 1.76E − 01 4.97E − 01 1.77E − 01 9.58E − 01
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Table A.1 – continued from previous page
XR/L ZR/Wx=0 XL/L ZL/Wx=0 X/L Y/Yx=0

1.82E − 01 −3.52E − 01 1.81E − 01 5.00E − 01 1.82E − 01 9.57E − 01
1.88E − 01 −3.48E − 01 1.88E − 01 5.01E − 01 1.88E − 01 9.55E − 01
1.93E − 01 −3.46E − 01 1.93E − 01 4.95E − 01 1.93E − 01 9.54E − 01
1.97E − 01 −3.53E − 01 1.98E − 01 4.85E − 01 1.98E − 01 9.53E − 01
2.02E − 01 −3.64E − 01 2.03E − 01 4.71E − 01 2.03E − 01 9.52E − 01
2.07E − 01 −3.78E − 01 2.08E − 01 4.54E − 01 2.08E − 01 9.50E − 01
2.13E − 01 −3.96E − 01 2.14E − 01 4.34E − 01 2.14E − 01 9.49E − 01
2.18E − 01 −4.16E − 01 2.19E − 01 4.08E − 01 2.19E − 01 9.48E − 01
2.23E − 01 −4.38E − 01 2.24E − 01 3.90E − 01 2.24E − 01 9.47E − 01
2.28E − 01 −4.58E − 01 2.29E − 01 3.70E − 01 2.29E − 01 9.45E − 01
2.33E − 01 −4.74E − 01 2.34E − 01 3.52E − 01 2.34E − 01 9.44E − 01
2.39E − 01 −4.87E − 01 2.40E − 01 3.40E − 01 2.40E − 01 9.43E − 01
2.44E − 01 −4.95E − 01 2.45E − 01 3.35E − 01 2.45E − 01 9.42E − 01
2.49E − 01 −5.00E − 01 2.50E − 01 3.34E − 01 2.50E − 01 9.40E − 01
2.55E − 01 −4.97E − 01 2.54E − 01 3.36E − 01 2.55E − 01 9.39E − 01
2.60E − 01 −4.90E − 01 2.60E − 01 3.42E − 01 2.60E − 01 9.38E − 01
2.66E − 01 −4.78E − 01 2.65E − 01 3.58E − 01 2.66E − 01 9.37E − 01
2.71E − 01 −4.62E − 01 2.70E − 01 3.75E − 01 2.71E − 01 9.36E − 01
2.76E − 01 −4.41E − 01 2.75E − 01 3.95E − 01 2.76E − 01 9.34E − 01
2.81E − 01 −4.20E − 01 2.80E − 01 4.14E − 01 2.81E − 01 9.33E − 01
2.86E − 01 −3.98E − 01 2.86E − 01 4.36E − 01 2.86E − 01 9.32E − 01
2.92E − 01 −3.81E − 01 2.91E − 01 4.55E − 01 2.92E − 01 9.31E − 01
2.97E − 01 −3.60E − 01 2.96E − 01 4.75E − 01 2.97E − 01 9.29E − 01
3.02E − 01 −3.47E − 01 3.01E − 01 4.89E − 01 3.02E − 01 9.28E − 01
3.07E − 01 −3.38E − 01 3.06E − 01 4.97E − 01 3.07E − 01 9.27E − 01
3.13E − 01 −3.34E − 01 3.13E − 01 5.00E − 01 3.13E − 01 9.26E − 01
3.17E − 01 −3.36E − 01 3.18E − 01 4.95E − 01 3.18E − 01 9.24E − 01
3.22E − 01 −3.43E − 01 3.23E − 01 4.85E − 01 3.23E − 01 9.23E − 01
3.27E − 01 −3.55E − 01 3.28E − 01 4.70E − 01 3.28E − 01 9.22E − 01
3.32E − 01 −3.71E − 01 3.33E − 01 4.52E − 01 3.33E − 01 9.21E − 01
3.38E − 01 −3.90E − 01 3.39E − 01 4.32E − 01 3.39E − 01 9.19E − 01
3.43E − 01 −4.10E − 01 3.44E − 01 4.10E − 01 3.44E − 01 9.18E − 01
3.48E − 01 −4.31E − 01 3.49E − 01 3.88E − 01 3.49E − 01 9.17E − 01
3.53E − 01 −4.51E − 01 3.54E − 01 3.67E − 01 3.54E − 01 9.16E − 01
3.58E − 01 −4.71E − 01 3.59E − 01 3.52E − 01 3.59E − 01 9.14E − 01
3.64E − 01 −4.87E − 01 3.65E − 01 3.41E − 01 3.65E − 01 9.13E − 01



Shereef A. Sadek Appendix A. Wavy Wall Geometry 214
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XR/L ZR/Wx=0 XL/L ZL/Wx=0 X/L Y/Yx=0

3.69E − 01 −4.95E − 01 3.70E − 01 3.35E − 01 3.70E − 01 9.12E − 01
3.74E − 01 −4.99E − 01 3.75E − 01 3.34E − 01 3.75E − 01 9.11E − 01
3.80E − 01 −4.97E − 01 3.79E − 01 3.39E − 01 3.80E − 01 9.09E − 01
3.85E − 01 −4.90E − 01 3.85E − 01 3.45E − 01 3.85E − 01 9.08E − 01
3.91E − 01 −4.77E − 01 3.90E − 01 3.58E − 01 3.91E − 01 9.07E − 01
3.96E − 01 −4.61E − 01 3.95E − 01 3.75E − 01 3.96E − 01 9.06E − 01
4.01E − 01 −4.42E − 01 4.00E − 01 3.95E − 01 4.01E − 01 9.05E − 01
4.06E − 01 −4.22E − 01 4.05E − 01 4.16E − 01 4.06E − 01 9.03E − 01
4.11E − 01 −3.99E − 01 4.11E − 01 4.38E − 01 4.11E − 01 9.02E − 01
4.17E − 01 −3.81E − 01 4.16E − 01 4.56E − 01 4.17E − 01 9.01E − 01
4.22E − 01 −3.59E − 01 4.21E − 01 4.75E − 01 4.22E − 01 9.00E − 01
4.27E − 01 −3.47E − 01 4.26E − 01 4.89E − 01 4.27E − 01 8.98E − 01
4.32E − 01 −3.37E − 01 4.31E − 01 4.98E − 01 4.32E − 01 8.97E − 01
4.38E − 01 −3.33E − 01 4.38E − 01 4.98E − 01 4.38E − 01 8.96E − 01
4.42E − 01 −3.34E − 01 4.44E − 01 4.89E − 01 4.43E − 01 8.95E − 01
4.47E − 01 −3.44E − 01 4.49E − 01 4.78E − 01 4.48E − 01 8.93E − 01
4.52E − 01 −3.55E − 01 4.54E − 01 4.62E − 01 4.53E − 01 8.92E − 01
4.57E − 01 −3.71E − 01 4.59E − 01 4.44E − 01 4.58E − 01 8.91E − 01
4.63E − 01 −3.91E − 01 4.64E − 01 4.24E − 01 4.64E − 01 8.90E − 01
4.68E − 01 −4.09E − 01 4.70E − 01 4.02E − 01 4.69E − 01 8.88E − 01
4.73E − 01 −4.32E − 01 4.75E − 01 3.81E − 01 4.74E − 01 8.87E − 01
4.78E − 01 −4.53E − 01 4.80E − 01 3.60E − 01 4.79E − 01 8.86E − 01
4.83E − 01 −4.71E − 01 4.85E − 01 3.46E − 01 4.84E − 01 8.85E − 01
4.89E − 01 −4.86E − 01 4.90E − 01 3.36E − 01 4.90E − 01 8.83E − 01
4.94E − 01 −4.96E − 01 4.96E − 01 3.31E − 01 4.95E − 01 8.82E − 01
5.00E − 01 −4.99E − 01 5.01E − 01 3.32E − 01 5.00E − 01 8.81E − 01
5.05E − 01 −4.92E − 01 5.06E − 01 3.35E − 01 5.05E − 01 8.80E − 01
5.10E − 01 −4.84E − 01 5.11E − 01 3.42E − 01 5.10E − 01 8.78E − 01
5.16E − 01 −4.72E − 01 5.17E − 01 3.55E − 01 5.16E − 01 8.77E − 01
5.21E − 01 −4.56E − 01 5.22E − 01 3.72E − 01 5.21E − 01 8.76E − 01
5.26E − 01 −4.35E − 01 5.27E − 01 3.92E − 01 5.26E − 01 8.75E − 01
5.31E − 01 −4.14E − 01 5.32E − 01 4.13E − 01 5.31E − 01 8.74E − 01
5.36E − 01 −3.93E − 01 5.37E − 01 4.33E − 01 5.36E − 01 8.72E − 01
5.42E − 01 −3.74E − 01 5.43E − 01 4.53E − 01 5.42E − 01 8.71E − 01
5.47E − 01 −3.56E − 01 5.48E − 01 4.69E − 01 5.47E − 01 8.70E − 01
5.52E − 01 −3.41E − 01 5.53E − 01 4.84E − 01 5.52E − 01 8.69E − 01
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XR/L ZR/Wx=0 XL/L ZL/Wx=0 X/L Y/Yx=0

5.57E − 01 −3.32E − 01 5.58E − 01 4.92E − 01 5.57E − 01 8.67E − 01
5.63E − 01 −3.28E − 01 5.63E − 01 4.96E − 01 5.63E − 01 8.66E − 01
5.67E − 01 −3.31E − 01 5.68E − 01 4.92E − 01 5.68E − 01 8.65E − 01
5.72E − 01 −3.37E − 01 5.73E − 01 4.81E − 01 5.73E − 01 8.64E − 01
5.77E − 01 −3.50E − 01 5.78E − 01 4.66E − 01 5.78E − 01 8.62E − 01
5.82E − 01 −3.66E − 01 5.83E − 01 4.48E − 01 5.83E − 01 8.61E − 01
5.88E − 01 −3.85E − 01 5.89E − 01 4.28E − 01 5.89E − 01 8.60E − 01
5.93E − 01 −4.04E − 01 5.94E − 01 4.07E − 01 5.94E − 01 8.59E − 01
5.98E − 01 −4.26E − 01 5.99E − 01 3.85E − 01 5.99E − 01 8.57E − 01
6.03E − 01 −4.47E − 01 6.04E − 01 3.68E − 01 6.04E − 01 8.56E − 01
6.08E − 01 −4.66E − 01 6.09E − 01 3.51E − 01 6.09E − 01 8.55E − 01
6.14E − 01 −4.81E − 01 6.15E − 01 3.40E − 01 6.15E − 01 8.54E − 01
6.19E − 01 −4.90E − 01 6.20E − 01 3.33E − 01 6.20E − 01 8.52E − 01
6.24E − 01 −4.95E − 01 6.25E − 01 3.31E − 01 6.25E − 01 8.51E − 01
6.30E − 01 −4.92E − 01 6.30E − 01 3.33E − 01 6.30E − 01 8.50E − 01
6.35E − 01 −4.86E − 01 6.35E − 01 3.39E − 01 6.35E − 01 8.49E − 01
6.41E − 01 −4.74E − 01 6.41E − 01 3.51E − 01 6.41E − 01 8.47E − 01
6.46E − 01 −4.57E − 01 6.46E − 01 3.67E − 01 6.46E − 01 8.46E − 01
6.51E − 01 −4.35E − 01 6.51E − 01 3.88E − 01 6.51E − 01 8.45E − 01
6.56E − 01 −4.16E − 01 6.56E − 01 4.09E − 01 6.56E − 01 8.44E − 01
6.61E − 01 −3.95E − 01 6.61E − 01 4.31E − 01 6.61E − 01 8.43E − 01
6.67E − 01 −3.76E − 01 6.67E − 01 4.52E − 01 6.67E − 01 8.41E − 01
6.72E − 01 −3.57E − 01 6.72E − 01 4.71E − 01 6.72E − 01 8.40E − 01
6.77E − 01 −3.43E − 01 6.77E − 01 4.84E − 01 6.77E − 01 8.39E − 01
6.82E − 01 −3.31E − 01 6.82E − 01 4.92E − 01 6.82E − 01 8.38E − 01
6.88E − 01 −3.29E − 01 6.88E − 01 4.96E − 01 6.88E − 01 8.36E − 01
6.92E − 01 −3.31E − 01 6.94E − 01 4.91E − 01 6.93E − 01 8.35E − 01
6.97E − 01 −3.36E − 01 6.99E − 01 4.82E − 01 6.98E − 01 8.34E − 01
7.02E − 01 −3.50E − 01 7.04E − 01 4.67E − 01 7.03E − 01 8.33E − 01
7.07E − 01 −3.68E − 01 7.09E − 01 4.49E − 01 7.08E − 01 8.31E − 01
7.13E − 01 −3.86E − 01 7.14E − 01 4.27E − 01 7.14E − 01 8.30E − 01
7.18E − 01 −4.07E − 01 7.20E − 01 4.06E − 01 7.19E − 01 8.29E − 01
7.23E − 01 −4.29E − 01 7.25E − 01 3.85E − 01 7.24E − 01 8.28E − 01
7.28E − 01 −4.49E − 01 7.30E − 01 3.65E − 01 7.29E − 01 8.26E − 01
7.33E − 01 −4.66E − 01 7.35E − 01 3.49E − 01 7.34E − 01 8.25E − 01
7.39E − 01 −4.79E − 01 7.40E − 01 3.39E − 01 7.40E − 01 8.24E − 01
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XR/L ZR/Wx=0 XL/L ZL/Wx=0 X/L Y/Yx=0

7.44E − 01 −4.89E − 01 7.46E − 01 3.31E − 01 7.45E − 01 8.23E − 01
7.49E − 01 −4.96E − 01 7.51E − 01 3.28E − 01 7.50E − 01 8.21E − 01
7.55E − 01 −4.94E − 01 7.56E − 01 3.31E − 01 7.55E − 01 8.20E − 01
7.60E − 01 −4.87E − 01 7.61E − 01 3.38E − 01 7.60E − 01 8.19E − 01
7.66E − 01 −4.76E − 01 7.67E − 01 3.51E − 01 7.66E − 01 8.18E − 01
7.71E − 01 −4.59E − 01 7.72E − 01 3.68E − 01 7.71E − 01 8.16E − 01
7.76E − 01 −4.39E − 01 7.77E − 01 3.88E − 01 7.76E − 01 8.15E − 01
7.81E − 01 −4.18E − 01 7.82E − 01 4.09E − 01 7.81E − 01 8.14E − 01
7.86E − 01 −3.97E − 01 7.87E − 01 4.29E − 01 7.86E − 01 8.13E − 01
7.92E − 01 −3.77E − 01 7.93E − 01 4.51E − 01 7.92E − 01 8.12E − 01
7.97E − 01 −3.60E − 01 7.98E − 01 4.70E − 01 7.97E − 01 8.10E − 01
8.02E − 01 −3.45E − 01 8.03E − 01 4.83E − 01 8.02E − 01 8.09E − 01
8.07E − 01 −3.34E − 01 8.08E − 01 4.92E − 01 8.07E − 01 8.08E − 01
8.13E − 01 −3.31E − 01 8.13E − 01 4.95E − 01 8.13E − 01 8.07E − 01
8.17E − 01 −3.32E − 01 8.18E − 01 4.92E − 01 8.18E − 01 8.05E − 01
8.22E − 01 −3.37E − 01 8.23E − 01 4.81E − 01 8.23E − 01 8.04E − 01
8.27E − 01 −3.49E − 01 8.28E − 01 4.66E − 01 8.28E − 01 8.03E − 01
8.32E − 01 −3.66E − 01 8.33E − 01 4.48E − 01 8.33E − 01 8.02E − 01
8.38E − 01 −3.85E − 01 8.39E − 01 4.26E − 01 8.39E − 01 8.00E − 01
8.43E − 01 −4.04E − 01 8.44E − 01 4.07E − 01 8.44E − 01 7.99E − 01
8.48E − 01 −4.27E − 01 8.49E − 01 3.84E − 01 8.49E − 01 7.98E − 01
8.53E − 01 −4.45E − 01 8.54E − 01 3.67E − 01 8.54E − 01 7.97E − 01
8.58E − 01 −4.65E − 01 8.59E − 01 3.49E − 01 8.59E − 01 7.95E − 01
8.64E − 01 −4.80E − 01 8.65E − 01 3.40E − 01 8.65E − 01 7.94E − 01
8.69E − 01 −4.90E − 01 8.70E − 01 3.32E − 01 8.70E − 01 7.93E − 01
8.74E − 01 −4.96E − 01 8.75E − 01 3.30E − 01 8.75E − 01 7.92E − 01
8.80E − 01 −4.93E − 01 8.80E − 01 3.33E − 01 8.80E − 01 7.90E − 01
8.85E − 01 −4.86E − 01 8.85E − 01 3.40E − 01 8.85E − 01 7.89E − 01
8.91E − 01 −4.75E − 01 8.91E − 01 3.53E − 01 8.91E − 01 7.88E − 01
8.96E − 01 −4.57E − 01 8.96E − 01 3.69E − 01 8.96E − 01 7.87E − 01
9.01E − 01 −4.38E − 01 9.01E − 01 3.90E − 01 9.01E − 01 7.85E − 01
9.06E − 01 −4.17E − 01 9.06E − 01 4.10E − 01 9.06E − 01 7.84E − 01
9.11E − 01 −3.96E − 01 9.11E − 01 4.32E − 01 9.11E − 01 7.83E − 01
9.17E − 01 −3.76E − 01 9.17E − 01 4.52E − 01 9.17E − 01 7.82E − 01
9.22E − 01 −3.58E − 01 9.22E − 01 4.68E − 01 9.22E − 01 7.81E − 01
9.27E − 01 −3.44E − 01 9.27E − 01 4.82E − 01 9.27E − 01 7.79E − 01
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XR/L ZR/Wx=0 XL/L ZL/Wx=0 X/L Y/Yx=0

9.32E − 01 −3.34E − 01 9.32E − 01 4.91E − 01 9.32E − 01 7.78E − 01
9.38E − 01 −3.31E − 01 9.38E − 01 4.93E − 01 9.38E − 01 7.77E − 01
9.42E − 01 −3.33E − 01 9.44E − 01 4.88E − 01 9.43E − 01 7.76E − 01
9.47E − 01 −3.39E − 01 9.49E − 01 4.80E − 01 9.48E − 01 7.74E − 01
9.52E − 01 −3.51E − 01 9.54E − 01 4.66E − 01 9.53E − 01 7.73E − 01
9.57E − 01 −3.66E − 01 9.59E − 01 4.49E − 01 9.58E − 01 7.72E − 01
9.63E − 01 −3.85E − 01 9.64E − 01 4.29E − 01 9.64E − 01 7.71E − 01
9.68E − 01 −4.04E − 01 9.70E − 01 4.07E − 01 9.69E − 01 7.69E − 01
9.73E − 01 −4.26E − 01 9.75E − 01 3.87E − 01 9.74E − 01 7.68E − 01
9.78E − 01 −4.47E − 01 9.80E − 01 3.68E − 01 9.79E − 01 7.67E − 01
9.83E − 01 −4.65E − 01 9.85E − 01 3.50E − 01 9.84E − 01 7.66E − 01
9.89E − 01 −4.80E − 01 9.90E − 01 3.40E − 01 9.90E − 01 7.64E − 01
9.94E − 01 −4.91E − 01 9.96E − 01 3.34E − 01 9.95E − 01 7.63E − 01
1.00E + 00 −5.01E − 01 1.00E + 00 3.28E − 01 1.00E + 00 7.62E − 01
1.03E + 00 −5.01E − 01 1.03E + 00 3.28E − 01 1.03E + 00 7.62E − 01
1.06E + 00 −5.01E − 01 1.06E + 00 3.28E − 01 1.06E + 00 7.62E − 01
1.09E + 00 −5.01E − 01 1.09E + 00 3.28E − 01 1.09E + 00 7.62E − 01
1.13E + 00 −5.01E − 01 1.13E + 00 3.28E − 01 1.13E + 00 7.62E − 01
1.16E + 00 −5.01E − 01 1.16E + 00 3.28E − 01 1.16E + 00 7.62E − 01
1.19E + 00 −5.01E − 01 1.19E + 00 3.28E − 01 1.19E + 00 7.62E − 01
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Figure A.1: Wavy Wall Test Section Plan-view

Figure A.2: Side Wall Geometry Measurement Setup



Appendix B

Suction Slots Locations and Dimensions

The perforated aluminum sheets used had an open area of 40% of total area of per-
forated material. The hole diameters were 0.125”, the center to center distance between
holes was 0.1835” staggered. Table B.1 lists the location and dimensions of all the suction
slots used along the side walls.

The item listed are, X, b, h, A, N are the streamwise location, width, height, area and
number of holes for each suction slot respectively. The streamwise location is measured
at the upstream most end of the slot. Subscripts L and R refer to Left and Right side walls.

Table B.1: Suction Slots Location and Size

XL[ft] b[in] XR[ft] b[in] hL[in] hR[in] AL[in2] AR[in2] NL NR

0.88 2.50 1.21 2.50 10.36 10.31 10.36 10.31 844 840
2.96 1.00 3.06 0.50 10.04 10.02 4.02 2.00 327 163
3.13 1.00 3.23 0.50 10.01 10.00 4.00 2.00 326 163
3.40 0.50 3.44 0.50 9.97 9.96 1.99 1.99 162 162
4.02 0.50 3.73 0.50 9.87 9.92 1.97 1.98 161 162
4.19 0.50 3.85 0.50 9.85 9.90 1.97 1.98 160 161
4.41 0.25 4.02 0.50 9.81 9.87 0.98 1.97 80 161
4.73 0.50 4.19 0.50 9.76 9.85 1.95 1.97 159 160
5.02 0.50 4.39 0.25 9.72 9.81 1.94 0.98 158 80
5.32 0.30 4.47 0.25 9.67 9.80 1.16 0.98 95 80
6.02 0.50 5.02 0.50 9.56 9.72 1.91 1.94 156 158
6.19 0.50 5.31 0.50 9.53 9.67 1.91 1.93 155 158
6.41 0.25 5.56 0.50 9.50 9.63 0.95 1.93 77 157
6.73 0.50 5.80 0.25 9.45 9.59 1.89 0.96 154 78
7.02 0.50 6.02 0.50 9.40 9.56 1.88 1.91 153 156

219
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Table B.1 – concluded from previous page
XL[ft] b[in] XR[ft] b[in] hL[in] hR[in] AL[in2] AR[in2] NL NR

7.40 0.50 6.19 0.50 9.34 9.53 1.87 1.91 152 155
8.02 0.50 6.39 0.25 9.25 9.50 1.85 0.95 151 77
8.26 0.38 6.47 0.25 9.21 9.49 1.38 0.95 113 77
8.49 0.44 7.02 0.50 9.17 9.40 1.61 1.88 131 153
8.75 0.31 7.31 0.50 9.13 9.36 1.14 1.87 93 153
9.08 0.50 7.56 0.50 9.08 9.32 1.82 1.86 148 152
9.32 0.38 7.80 0.25 9.04 9.28 1.36 0.93 111 76
10.07 0.50 8.08 0.50 8.93 9.24 1.79 1.85 145 151
10.35 0.38 8.37 0.31 8.88 9.19 1.33 1.15 109 94
10.58 0.38 9.02 0.50 8.85 9.09 1.33 1.82 108 148
10.84 0.31 9.29 0.31 8.81 9.05 1.10 1.13 90 92
11.03 0.38 9.54 0.38 8.78 9.01 1.32 1.35 107 110
11.35 0.31 9.74 0.31 8.73 8.98 1.09 1.12 89 91
12.06 0.50 10.02 0.50 8.62 8.93 1.72 1.79 140 146
12.35 0.31 10.27 0.31 8.57 8.90 1.07 1.11 87 91
12.58 0.31 11.02 0.50 8.53 8.78 1.07 1.76 87 143
12.83 0.31 11.30 0.31 8.50 8.73 1.06 1.09 87 89
13.02 0.31 11.52 0.31 8.47 8.70 1.06 1.09 86 89
13.35 0.31 11.77 0.31 8.41 8.66 1.05 1.08 86 88
14.06 0.31 12.05 0.38 8.30 8.62 1.04 1.29 85 105
14.32 0.38 12.32 0.50 8.26 8.58 1.24 1.72 101 140
14.54 0.31 13.02 0.56 8.23 8.47 1.03 1.90 84 155
14.76 0.31 13.27 0.31 8.19 8.43 1.02 1.05 83 86
15.07 0.31 13.51 0.31 8.15 8.39 1.02 1.05 83 85

13.77 0.31 8.35 1.04 85
14.04 0.31 8.31 1.04 85
14.31 0.31 8.26 1.03 84
15.02 0.44 8.15 1.43 116
15.28 0.31 8.11 1.01 83
15.55 0.38 8.07 1.21 99
15.83 0.31 8.03 1.00 82



Appendix C

Matching Short LDV System and
CompLDV Profiles and Uncertainty
Estimates

C.1 Matching Procedure

Short LDV system measurements were performed to obtain an accurate estimate of
friction velocity while the CompLDV was used to obtain turbulence measurements in the
semi-log and outer layers. For each measurement location there was an overlap region
between the Short LDV system and the CompLDV profiles so that composite profiles can
be obtained.

Since two different probes were used with different settings for each group of profiles
it is unlikely to get a perfect fit for the data and in general the probes are not expected
to be aligned perfectly. In order to determine the orientation of LDV probes relative to
the tunnel coordinates a paper template was made that has the locations of all profile
locations marked. The probe measurement volume is placed at a given location on the
tunnel’s floor then was moved vertically a certain distance and the locations where the
beams crossed the floor are marked on the template. The beam angles and measurement
directions are then calculated. This is done for both LDV probes.

In order to match the Short system and CompLDV measurements, the Short system
is used as a reference for the flow directions, hence the CompLDV data were rotated
around the x, y and z axes to match the U, V and W velocity components to the Short
system values. The rotation angles were limited to 4◦, 2◦ and 4◦ in the x, y and z directions
respectively. However, for each cluster of profiles the angles didn’t change more than 1◦.

Values for friction velocities obtained at different locations from Short system mea-
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surements were also used to scale CompLDV data. However, these values were multi-
plied by a factor to improve the fit between the two sets of data. In general the friction
velocities used for each pair of profiles were within 6%; out of 29 profiles, five profiles
had a difference between 6% and 10% and four profiles were within 15%. Table C.1 shows
the estimated friction velocities for each profile along with the average friction velocity
for each cluster based on average wall shear stress. In addition, the CompLDV data were
also y-shifted to match Short system data. The maximum absolute y-shift was equal to
70µm which is about half the CompLDV measurement volume.

After aligning both sets of data from Short system and CompLDV system and y-
shifting and scaling so that the mean velocity components are in agreement, composite
profiles are produced from each pair of profiles. Near the wall Short system profiles are
expected to be more accurate due to the smaller measurement volume size and the ability
to obtain measurement at closer distances to the wall. Near the wall the Short system pro-
files had the same record length as the CompLDV profiles. However, the record length
was halved for the short system profiles at the 8th point in the profile, while the record
length was kept constant for the entire CompLDV profile. This leads to a small discon-
tinuity in the Short LDV system profiles that was apparent at some locations. Hence,
while generating the composite profiles, the transition from Short LDV system data to
CompLDV data was attempted before the 8th point. For profiles that didn’t show such
discontinuity, the Short LDVsystem data were used further away from the wall. Three
profiles,P16p, P18 and P181, didn’t have a good match between the Reynolds stresses
such that a composite profile was not possible. For these profiles the mean velocities are
matched perfectly and only the CompLDV data is used.

Mean velocity profiles as well as Reynolds stresses and triple velocity correlation
profiles for both Short system and CompLDV for some profiles are shown in Figures C.1-
C.5.

C.2 Uncertainty Estimates

Uncertainty estimates were made based on the two acquired sets of data from the
Short LDV system and CompLDV system. The uncertainties reported here are estimated
using the differences between the two data sets. The 20:1 uncertainty in each measured
quantity is given as the maximum of the mean absolute difference and ±1.96σ, where
σ is the standard deviation of the calculated differences in each quantity. This should
be a good estimate of overall uncertainty since data from different probes with different
settings (beam angles, fringe spacings and measurement volumes) taken at different times
are compared.

For each profile, the differences in each measured quantity are averaged along the
overlap region and a single value for the difference in this quantity is obtained for each
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profile. This is done for all profiles. Then, for each measured quantity the averaged dif-
ferences from all profiles are used as a sample to estimate the overall mean and standard
deviation of the difference. For this sample a systematic procedure was chosen to reject
outliers and obtain a closer estimate of the true mean and standard deviation. Previous
researchers, Olcmen [42], Byun [4] and others, used Chauvenet’s criterion to reject out-
liers from experimental data. In the present work Peirce’s criterion was used, Ross [54],
which is more rigorous than Chauvenet’s criterion and in fact Chauvenet’s criterion is a
simplification to Peirce’s criterion. The main advantage of Peirce’s criterion is the abil-
ity to handle the rejection of more than one outliers at the same time and that it doesn’t
make any assumptions regarding the rejection of outliers. The procedure is explained in
Ross [54].

To obtain a better feel of the measurement uncertainties, uncertainties related to each
probe are also estimated by measuring a single profile twice by the same probe. Then
following the same procedure as above, an estimate of uncertainties in each measured
quantity is obtained. The uncertainty estimates obtained by matching the two LDV sys-
tems and those for each system are shown in Tables C.2-C.4. In general the uncertainty
estimates from each probe are lower than those obtained by matching the two systems
together.

Finally, uncertainties in derived quantities are shown in Table C.5. These estimates
were obtained using uncertainties in primary quantities. Three values are given for each
quantity, since these quantities are very sensitive to the primary quantities behavior near
or away from the wall.
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Table C.1: Short system and CompLDV estimated friction velocity, uτ and average value
for each cluster

ProfileName ShortSystem Average CompLDV Average
P06 0.77 0.74
P07 0.69 0.71
P08 0.75 0.72 0.69 0.73
P09 0.69 0.64
P10 0.62 0.66

P11 0.62 0.67
P12 0.61 0.70
P13 0.56 0.63 0.62 0.69
P14 0.67 0.72
P15 0.67 0.67

P16p 0.78 0.90
P16 0.90 0.92
P18 0.96 0.90 0.95 0.94
P181 0.90 0.95
P182 0.93 0.99

P19pp 0.79 0.87
P19p 0.83 0.87
P19 0.91 0.89 0.93 0.93
P191 0.93 0.95
P192 0.97 0.99

P20pp 0.79 0.90
P20p 0.83 0.87
P20 0.91 0.83 0.88 0.88
P201 0.93 0.87
P202 0.97 0.87

P31 0.74 0.74
P32 0.80 0.81
P33 0.71 0.73 0.72 0.74
P34 0.66 0.64
P35 0.71 0.70
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Table C.2: 20:1 Uncertainties by matching Short system and CompLDV profiles using
Peirce’s Criterion

U+ ±0.18 u3+ ±3.67

V + ±0.06 v3+ ±0.90

W+ ±0.12 w3+ ±2.68

u2+ ±0.64 u2v
+ ±0.24

v2+ ±0.15 u2w
+ ±0.76

w2+ ±0.54 uv2+ ±0.27

uv+ ±0.07 uw2+ ±1.60

uw+ ±0.28 v2w
+ ±0.45

vw+ ±0.13 vw2+ ±0.23
uvw+ ±0.17

Table C.3: 20:1 Short system Uncertainties using Peirce’s Criterion

U+ ±0.14 u3+ ±1.23

V + ±0.11 v3+ ±0.26

W+ ±0.09 w3+ ±0.46

u2+ ±0.35 u2v
+ ±0.08

v2+ ±0.05 u2w
+ ±0.28

w2+ ±0.09 uv2+ ±0.09

uv+ ±0.05 uw2+ ±0.25

uw+ ±0.07 v2w
+ ±0.28

vw+ ±0.04 vw2+ ±0.33
uvw+ ±0.11

Table C.4: 20:1 CompLDV system Uncertainties using Peirce’s Criterion

U+ ±0.10 u3+ ±0.26

V + ±0.04 v3+ ±0.05

W+ ±0.03 w3+ ±0.21

u2+ ±0.10 u2v
+ ±0.09

v2+ ±0.02 u2w
+ ±0.16

w2+ ±0.06 uv2+ ±0.04

uv+ ±0.04 uw2+ ±0.17

uw+ ±0.06 v2w
+ ±0.04

vw+ ±0.03 vw2+ ±0.06
uvw+ ±0.05
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Table C.5: Derived quantities uncertainties using formal sensitivity analysis and esti-
mated uncertainties in measured primary quantities.

Range y+ ≤ 30 30 ≤ y+ ≤ 100 y+ ≥ 100
ρuv ±0.40 ±0.01 ±0.01
S−1 ±12.00 ±0.30 ±0.05
V +

qx ±0.47 ±0.05 ±0.04
V +

qy ±0.10 ±0.01 ±0.01
V +

qz ±0.30 ±0.04 ±0.03
A1 ±0.01 ±0.001 ±0.005
γa [deg.] ±0.50 ±0.07 ±0.08
γs [deg.] ±40.10 ±2.00 ±5.50
γg [deg.] ±1.90 ±10.00 ±25.00
L+

m ±0.16 ±5.00 ±395.00
νTx/ν ±0.23 ±4.00 ±450.00
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Figure C.1: Matching Short and CompLDV Profiles at P07
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Figure C.2: Matching Short and CompLDV Profiles at P16
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Figure C.3: Matching Short and CompLDV Profiles at P19
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Figure C.4: Matching Short and CompLDV Profiles at P192
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Figure C.5: Matching Short and CompLDV Profiles at P31



Appendix D

Inviscid Calculation

Introduction

In order to gain more insight and to explain the development of the mean flow field, a
generalized coordinates three dimensional potential flow solver was developed. Pressure
coefficient, Cp, as well as mean flow rate of strains S11, S12 and S33 could be estimated
which play a role in strengthening or attenuating the mean vorticity components. The
results are not expected to match the measured flow field, however the trends and the
mechanism of generating mean vorticity flux at the tunnel floor should be valid. The
governing equations and details of the numerical solution are discussed in the next sec-
tion.

Governing Equations

Potential flow is governed by Laplace equation, which is very simple to solve in carte-
sian coordinates. However, since the current geometry is very complicated, boundary fit-
ted grid had to be used. Hence Laplace equation was written in generalized coordinates
using as given by Equation D.1 in tensor notation.

A
∂2ϕ

∂ξ2
+ B

∂2ϕ

∂η2
+ C

∂2ϕ

∂ζ2
+ D

∂2ϕ

∂ξ∂η
+ E

∂2ϕ

∂ξ∂ζ
+ F

∂2ϕ

∂η∂ζ
+ G

∂ϕ

∂ξ
+ H

∂ϕ

∂η
+ I

∂ϕ

∂ζ
= 0 (D.1)

Where,

A = ξ2
,xi

; B = η2
,xi

; C = ζ2
,xi

; D = 2ξ,xi
η,xi

; E = 2ξ,xi
ζ,xi

; F = 2η,xi
ζ,xi

;

G = ξi,xj
ξ,xjξi

; H = ξi,xj
η,xjξi

; I = ξi,xj
ζ,xjξi

(D.2)
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Where, ϕ is the velocity potential, x, y and z are the cartesian spatial coordinates,
ξ, η and ζ are the generalized coordinates, xi and ξi are the cartesian and generalized
coordinates in tensor notation respectively. The generalized coordinates are defined as
follows,

ξ =
x

L
; η =

y

ymax (x)
; ζ =

z − zmin (x)

W (x)
(D.3)

In order to be able to solve Equation D.1, boundary conditions must be specified. Three
kinds of boundary conditions were used in this simulation given as follows,

• Solid Wall

The solid wall or zero-normal velocity component boundary condition is applied to
the side walls and to the top and bottom walls of the test section. This condition is
specified in Equation D.4.

n̂ · ∇ϕ = 0 (D.4)
n̂xi

· ξj,xi
ϕ,ξj

= 0

Where, n̂ is the normal vector to the boundary.

• Inflow Boundary Condition

At the test section inlet plane, inflow boundary condition is applied. Uniform flow
of magnitude U∞ is assumed to be entering the test section. The boundary condition
is given by Equation D.5.

ϕ,x = ξi,xϕ,ξi
= U∞ (D.5)

• Outflow Boundary Condition

At the test section exit, the flow exits and flows without any further changes, hence
the stream-wise velocity gradient is set equal to zero. This is given by Equation D.6.
In order to simplify the implementation of this boundary condition, an approxima-
tion is used and the condition is applied in the computational domain using the
generalized variables. This is given by Equation D.7.

u,x = ϕ,xx = 0 (D.6)
u,x ≈ ϕ,ξξ = 0 (D.7)

Numerics

Since the geometry is relatively simple to grid, an algebraic grid is used with uni-
form spacing along the y and z-coordinate direction. Coordinates in the stream-wise di-
rections were obtained from the measured geometry. Since the measured geometry had
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non-uniform grid spacings and in order not to complicate the discretization procedure,
the measured geometry was spline fitted and then sampled uniformly with a suitable
number of points to capture all the geometry details and at the same time maintain a rel-
atively low number of points. The number of points used was 129x6x16 points in the x, y
and z directions, respectively. All derivatives are discretized using second order central,
forward or backward schemes. The discretization results in 12-point stencil. The govern-
ing equation is written for all internal points of the domain and solved iteratively using
Gauss-Siedel scheme.
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