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(ABSTRACT) 
 
An analytical model of cracked composite beams vibrating in coupled bending-torsion is 

developed. The beam is made of fiber-reinforced composite with fiber angles in each ply 

aligned in the same direction. The crack is assumed open. The local flexibility concept is 

implemented to model the open crack and the associated compliance matrix is derived. The 

crack introduces additional boundary conditions at the crack location and these effects in 

conjunction with those of material properties are investigated. Free vibration analysis of the 

cracked composite beam is presented. The results indicate that variation of natural 

frequencies in the presence of a crack is affected by the crack ratio and location, as well as 

the fiber orientation. In particular, the variation pattern is different as the magnitude of 

bending-torsion coupling changes due to different fiber angles. When bending and torsional 

modes are essentially decoupled at a certain fiber angle if there is no crack, the crack 

introduces coupling to the initially uncoupled bending and torsion. Based on the crack model, 

aeroelastic characteristics of an unswept composite wing with an edge crack are investigated. 

The cracked composite wing is modeled by a cracked composite cantilever and the inertia 

coupling terms are included in the model. An approximate solution on critical flutter and 

divergence speeds is obtained by Galerkin’s method in which the fundamental mode shapes 

of the cracked wing model in free vibration are used. It is shown that the critical 

divergence/flutter speed is affected by the elastic axis location, the inertia axis location, fiber 

angles, and the crack ratio and location. Moreover, model-based crack detection (size and 

location) by changes in natural frequencies is addressed. The Cawley-Adams criterion is 

implemented and a new strategy in grouping frequencies is proposed to reduce the 

probability of measurement errors. Finally, sensitivity of natural frequencies to model 

parameter uncertainties is investigated. Uncertainties are modeled by information-gap theory 

and represented with a collection of nested sets. Five model parameters that may have larger 

uncertainties are selected in the analysis, and the frequency sensitivities to uncertainties in 

the five model parameters are compared in terms of two immunity functions. 
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Chapter 1 
 

Introduction 
 

1.1 Motivation for Vibration Analysis of Cracked Composite 
 

Composite materials have been used for a long time. They can be traced all the way 

back to early human history. For instance, archaeologists discovered that ancient Israelites 

used straw to strengthen mud bricks, and many medieval swords and armors were even 

constructed with layers of different materials. In general, composite materials can be defined 

as the combination of two or more materials on a microscopic scale to form a useful material. 

The advantage of composites is that the overall properties are superior to those of the 

individual constituents. The properties that can be improved during the formation of a 

composite material usually include, but not limited to: strength; stiffness; corrosion resistance; 

surface finish; weight; fatigue life. In recent decades, due to the high strength-to-weight and 

stiffness-to-weight ratios, fiber-reinforced composites have been extensively used for many 

applications, such as aerospace structures and high-speed turbine machinery. Accordingly, 

mechanics of fiber-reinforced composites have been intensively studied and handbooks 

guiding the design and testing have also published. The present research is concerned with 

investigation on the vibration characteristics of a cracked composite beam, with motivations 

explained in the following two subsections. Specifically, the topic on a composite laminated 

beam that has a surface crack and vibrates in coupled bending and torsion will be studied. 

Unless stated otherwise, the composites mentioned thereafter refer to the fiber-reinforced 

composite materials. 
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1.1.1 Failure of Composite Wings 
 

Unlike conventional metals and metal alloys, composites possess properties that can be 

controlled to large extent by selecting constitutive components, the volume fraction ratio of 

fiber to matrix, and the geometry and orientation of fibers. The design flexibility, high 

strength-to-weight ratio, improved corrosion and temperature resistance, and reduced 

manufacturing costs are especially desirable for space and aeronautical applications, and 

consequently composites are widely used in aerospace engineering. For instance, NASA and 

Boeing jointly launched the NASA ACT (Advanced Composite Technology) program in 

1989 to improve the efficiency of composite structures, which aimed to reduce air travel 

costs through the use of composite materials on commercial aircrafts. Technologies such as 

stitching, braiding and knitting were applied to 3-D composites, resulting in significant 

reduction in cost (20% to 25%) and weight (30% to 35%) (Dow and Dexter, 1997; 

http://www.larc.nasa.gov). 

 

The direct motivation of this research stems from the wing failure of some Unmanned 

Aerial Vehicles (UAVs). As one of the UAVs designed for surveillance and reconnaissance 

missions, the Predator is a long endurance, medium altitude and low speed unmanned 

airplane with the fuselage and wings all made of composites. It has been given strike 

capability with the addition of laser-guided missiles. It is 27 ft. long and has a 49 ft. 

wingspan. The system operates at an altitude of 25,000 ft. and at a range of 400 nautical 

miles. Some of these aircrafts deployed in service crashed without suffering from any 

external attacks, resulting initially from a sudden wing failure. Inherent flaws from the 

manufacturing processes as well as design deficiencies may account for the original sources 

of the wing failure; internal damage such as delamination, fiber/matrix cracking and 

debonding between matrix and fibers could be the direct outcome of impact and/or fatigue 

loading during the flight. While failure resistance at the design and manufacturing stages 

needs to be improved or qualitatively controlled, understanding the dynamics of the 

composite wing once some form of damage develops and propagates is of very importance. 

Not only is structural analysis for the system important, but the analysis is needed to develop 

a systematic tool for in-service damage detection and lifetime prediction of aerial vehicles. 
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The actual wing failure may result from the combination of different damage some of 

which are mentioned above. Depending on the actual design, stacking sequences, fiber 

orientation and volume fraction, manufacturing processes, loading spectrum, and 

environmental factors, to name a few, are all important. Since different damage has fairly 

different mechanisms in terms of its static and dynamic characteristics, it is common in the 

composite community to differentiate an individual damage format from others for both 

theoretical and experimental analysis in order to construct cornerstones for more complicated 

situations. With delamination the prevailing format among others, fatigue cracks inside the 

structure and on the surface are also widely observed, either in composite wings or in other 

composite structures. In this research, a surface fatigue crack on a composite wing is 

investigated. 

 

Cracks in a composite structure and the associated stress analysis are real engineering 

problems in fracture mechanics. With relatively high strength and low ductility, composite 

materials usually possess fatigue properties similar to some brittle metals. Cracks in fibers, 

matrix, and the interfaces of fibers and matrix are very common as the fatigue failure mode 

in composites. A large number of publications can be found dealing specifically with cracks 

in composite materials. Fracture mechanics of composite materials were well developed in 

recent decades supported with intensive theoretical and experimental analyses (Sih and Chen, 

1981). Fracture testing of composite structures in aerospace engineering plays an important 

role in determining the failure resistance of composites. For instance, the fracture behavior of 

a stitched carbon fabric composite was investigated at NASA (Clarence et al., 2001). 

Specimens with various thicknesses representing a wing skin from tip to root were tested. 

Normal and shear strains were calculated on fracture planes for plane anisotropic crack 

problems. The crack propagation mechanisms of composite wing skin panels were assessed 

with mathematical models using fracture mechanics in anisotropic cracked structures (Yuan, 

2001). Critical fracture parameters governing the severity of stress and deformation field 

ahead of the cracks were evaluated.  

 

While a vast amount of research has focused on the stress and deformation analyses of 

cracked composites using various fracture mechanics, relatively less investigation has been 
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devoted to studying the vibration characteristics of cracked composite structures, especially 

aiming at those of composite aircraft wings under some damage conditions. A detailed 

literature review will be given in the next chapter. This research concentrates on the vibration 

analysis of a cracked composite beam, which could contribute to research on real cracked 

composite wings with large wing span and high aspect ratio for damage diagnosis and 

prognosis on the remaining life. 

 

1.1.2 Vibration-based Structural Health Monitoring 
 

With a tremendous growth in the last years, structural health monitoring (SHM) has 

emerged as a well-recognized field of technology. The essential concerns of structural health 

monitoring involve the integration of smart materials, sensors, data processing, telemetry, 

modern computational power and decision-making algorithms into structures to detect 

damage, access the integrity and even predict the remaining life time based on projected 

loading and environmental conditions. Traditional non-destructive evaluation (NDE) 

techniques such as liquid penetrant, magnetic particles, radiography, ultrasonics and eddy 

current methods usually require off-line inspection and the knowledge of possible damaged 

areas. The inaccessibility to the inspection location could result in great challenges and even 

become prohibitive for most NDE techniques. Structural health monitoring, on the other hand, 

may have an array of sensors attached on or imbedded in the host structure in service, and be 

able to continuously monitor in real time those physical parameters that can be further 

processed for damage detection and health status assessment. The inaccessibility issues could 

be eliminated to the lowest possible level. The downtime for pre-scheduled maintenance as 

well as associated costs is greatly reduced. 

 

Techniques in structural health monitoring especially benefit aerial and ground vehicles, 

aerospace structures, civil infrastructures such as bridges and buildings, offshore systems, 

and many more. SHM has attracted significant attentions in both industry and academe 

worldwide. Since 1997 a biannual international workshop on SHM is held in Stanford, 

California. Alternatively another biannual international workshop takes place in Europe 

(from 2002 on). Papers involving SHM are also frequently presented in many other 
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conferences, for instance, the joint annual international symposiums on Smart Structures and 

Materials and Nondestructive Evaluation for Health Monitoring and Diagnostics organized 

by the Society for Optical Engineering (SPIE), the annual International Modal Analysis 

Conference (IMAC), and the biannual International Conference on Damage Assessment of 

Structures (DAMAS). An increasing number of articles about research and applications with 

SHM have also appeared in a few journals in the field of structural design and dynamics. 

Particularly, An International Journal of Structural Health Monitoring was launched in 2002 

to publish peer-viewed papers involving theoretical, analytical and experimental 

investigations on SHM. 

 

There are several cornerstones for a SHM technique to build upon in order to be 

successfully used in a real application satisfying reliability, cost-effectiveness and other pre-

defined requirements. Understanding damage mechanisms of the materials as well as 

dynamics and failure mechanisms of target structures under working conditions could be the 

first step for a feasible SHM scheme. This will provide guidelines for further implementation 

of sensor arrays, data processing and decision making. While a large amount of work on 

material properties including fatigue mechanisms has to be performed before a material can 

be actually used, most of them are performed at the coupon level with which external 

loadings and working environments are well controlled. Investigation on failure dynamics at 

the system level may require experiments and testing on prototypes; current CAE software 

may not be able to predict the exact failure behavior with the accuracy heavily depending on 

the complexity and previous knowledge of the failure mode. The primary objective of SHM 

is to detect a variety of damages at the earliest possible stage to prevent catastrophic failure. 

The more one understands the dynamics of a structure with various damages, the more 

possible a reliable SHM strategy can be developed. Since damage (e.g., crack, corrosion, 

creep) on a structure usually changes the mass, stiffness and/or damping distribution of the 

structure either locally or globally, vibration characteristics of the structure may be changed 

so that evaluation of vibration responses may be used to detect the damage. The importance 

and summary on previous research can be found in several survey papers, for instance the 

one by Doebling et al. (1998). Other fundamentals in SHM include development of more 

advanced sensors and implementation of smart materials aiming at measuring accurately 
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small changes of a variety of physical parameters in real time. Unlike many NDE techniques 

requiring no historical data, SHM techniques usually take measurement and store historical 

data for comparison and analysis. Data processing, feature extraction, statistical analysis and 

final decision making are very important for a SHM technique to be implemented. 

 

The research proposed here contributes to the SHM communities through an 

investigation on vibration characteristics of cracked structures. Attention is focused on the 

cracked beam made of fiber reinforced composite vibrating in coupled bending and torsion. 

A brief review on SHM, vibration-based damage detection and vibration characteristics of 

damaged composites will be given in the next chapter. 

 

1.2 Objectives 
 

As mentioned above, this research is focused on the composite beam of a relatively 

large aspect ratio. Due to the anisotropic nature of fiber-reinforced composites, a torsional 

movement coupled in most cases with the bending mode is more significant compared with 

the shear deformation and rotary inertia of the beam, especially during the aeroelastic 

analysis of an aircraft wing. The composite beam under investigation is basically a one-

dimensional problem but with two independent variables (bending and torsion), with the 

shear deformation and rotary inertia neglected. As a damage mode, cracks on the composite 

could take various formats, such as surface or internal cracks, fiber or matrix cracks, regular 

or irregular cracks, or a combination of any of these. To reduce the complexity and as an 

initial step toward more sophisticated situations, this research assumes the crack is on the 

edge surface and remains open to avoid non-linearity problems. Moreover, damping of any 

kind is also neglected. The objectives are then to model the edge crack, analyze the vibration 

characteristics of the cracked beam considering also the composite anisotropic properties, 

and implement the model for predicting flutter/divergence instability of a cracked composite 

wing. Detailed tasks are described as follows: 
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• Modeling the edge surface crack based on linear fracture mechanics. The local 

flexibility method is used and a local flexibility matrix is derived specifically for the 

composite beam considering only bending and torsion. Then additional boundary 

conditions at the crack location can be established such that the beam can be 

replaced with two intact beams connected at the crack location. 

• Analysis of free vibration characteristics of the cracked composite beam. To 

facilitate the analysis on flutter/divergence of a cracked composite wing, clamped-

free (a cantilever beam) boundary conditions are assumed. Changes in natural 

frequencies and mode shapes with respect to the crack location, crack ratio, fiber 

angles and fiber volume fraction are obtained and plotted. 

• Prediction on flutter and divergence speed for a cracked composite wing. A 

beam model is taken to simulate a composite wing with a large aspect ratio. The 

fundamental bending and torsional modes of the cracked cantilever beam are used 

with Galerkin’s method for an approximate solution to flutter and divergence speed. 

Again, variation of the flutter/divergence speed for different crack location, crack 

ratio and material properties are compared. 

• Crack detection based on changes in natural frequencies. While natural 

frequencies are relatively easier and more accurately measured than other modal 

parameters, solving an inverse problem for crack detection based only on changes 

in natural frequencies is not so easy, considering that fact that natural frequency has 

a global nature while damage in most cases is a local phenomenon. However, if the 

crack is the most possible failure mode and no other form of damage exists, 

detecting the crack by natural frequencies is possible, even with the presence of 

measurement errors. 

• Uncertainty analysis of model parameters. Since no experimental data is 

available so far for the beam model with or without a crack, an analysis on the 

uncertainty of model parameters complements this research. It will also help future 

efforts in model updating. Information-gap theory is selected to investigate the 

uncertainties in model parameters, because no statistical data is available. Two 

stiffness parameters, EI and GJ, and the coupling term, K, are chosen as the 
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statistically varying quantities. The output performance will be the correlation of 

natural frequencies.  

 

1.3 Review 
 

The following chapter reviews the literature on structural health monitoring, vibration 

analyses of damaged composites with a special attention on that of cracked composite beams, 

and uncertainty analysis of model parameters using Info-Gap theory. The background of this 

research and other related work will also be reviewed. Chapter 3 starts with modeling a 

surface crack and establishing the local flexibility matrix at the crack location. The prototype 

is based on a cracked prismatic bar made of isotropic and homogenous materials. Then 

correction of related coefficients for an isotropic composite is made so that the local 

flexibility matrix for a cracked composite beam is obtained. The composite beam model is 

directly taken from a paper by Weisshaar (1985) since it has the quality close to a box model 

for an aircraft wing made of fiber-reinforced composites. This model, considering coupling 

between bending and torsion, is also widely used for aeroelastic analysis of composite wings. 

Combined with the crack model, a cracked beam model is then developed and the natural 

frequencies and corresponding mode shapes of a cantilever beam (clamped-free boundary 

conditions) are plotted. A simple comparison with a cracked composite beam considering 

only bending is given. Chapter 4 uses the cracked composite beam model to simulate a 

cracked composite wing and applies quasi-steady aerodynamic forces for an aeroelastic 

stability analysis. The fundamental coupled bending and torsional modes are used in 

Galerkin’s method to obtain an approximation solution of flutter and divergence speeds. 

Plots of the crack induced changes in flutter/divergence speed, in conjunction with material 

properties, are obtained. In Chapter 5, a crack detection method based on changes in natural 

frequencies, the Cawlay-Adams Criterion, is taken to detect both the crack location and crack 

ratio. It is shown with the presence of measurement error that each frequency change is not 

equally valuable for the detection. Chapter 6 comes back to the initial cracked beam model 

and investigates the sensitivity of natural frequency to the model parameters. The Info-Gap 

theory is taken since no statistical data is available for the model so far. Finally, Chapter 7 

summarizes contributions of this research and proposes some work for future endeavor. 
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Chapter 2 
 

Literature Review 
 

2.1 Structural Health Monitoring (SHM) 
 

It is quite common that before and after a mechanical system is finally put into service, 

evaluation and testing on its integrity, including that of its components, should be performed. 

Non-destructive evaluation (NDE) or non-destructive testing (NDT) is then widely 

implemented for safety/reliability purpose, which usually refers a noninvasive assessment of 

structural quality during or after manufacturing, or of its condition during or after use. Many 

NDE techniques are well developed and successfully instrumented for a variety of 

applications, such as ultrasonic inspection, eddy current testing, X-radiography and acoustic 

emission testing. However, traditional NDE methods can not satisfy the increasing needs of 

on-line inspection and continuous assessment of structures’ health condition while the 

structures are in service. Nor are they capable of predicting the remaining life once some 

damage is diagnosed. With technological advances in smart materials, sensors, data and 

signal processing, computational power as well as increasing needs on real time assessment 

of structural health status, it is not surprising that structural health monitoring has emerged as 

a natural evolution from traditional NDE technologies to meet those requirements. Although 

SHM may be literally categorized under the framework of NDE in terms of terminology, it 

does deviate from traditional concepts of NDE in the sense that the ultimate goal of SHM is 

the real time, automatic and continuous assessment of structures in service with minimum 

human labor involved. 
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A brief comparison of differences between traditional NDE methods and current SHM 

techniques is given in the table that follows. It is noted that apparent distinction between the 

two is difficult, since many ideas and techniques are certainly applicable to both NDE and 

SHM. 

Table 2.1 A brief comparison of traditional NDE and SHM 

 Traditional NDE SHM 
Objectives 
 
 
 
 
Data history 
 
 
Maintenance 
approach 
 
Typical techniques 
 
 
 
 
Physics 
 
 
 
Damage format 
 
 
Instrumentation 
 
Sensor  
 
 
 
On-line or off-line 
 
Accessibility 
 
Cost 
 
Operational guidance 

Detection of local structural damage. 
 
 
 
 
No historical data required. 
 
 
Schedule-based; fixed-time overhauls. 
 
 
Visual inspection; liquid penetrant; 
eddy current; ultrasonic wave; 
magnetic particles; acoustic emission; 
radiography; etc. 
 
Capillary action; electrical/magnetic 
properties; wave propagation; X-ray. 
 
 
Cracks (internal and surface); voids; 
pores; surface corrosion; etc. 
 
Well instrumented. 
 
Single type of sensor; isolation from 
host structures. 
 
 
Off-line inspection. 
 
Direct access to damage locations. 
 
High maintenance cost. 
 
No guidance with damage removed 
during downtime. 

Continuous assessment of 
structural health conditions, 
including damage detection and 
lifetime prediction. 
 
Data history needed for 
continuous monitoring. 
 
Condition-based. 
 
 
Variety such as vibration-based 
(global or local), wave 
propagation, strain; etc. 
 
 
Static or dynamic changes in 
physical properties due to 
presence of damage. 
 
Any kind of structural damage. 
 
 
To be instrumented. 
 
Sensor array; fusion of different 
kinds of sensors; integration of 
sensors to host structures. 
 
Both, with on-line targeted. 
 
Direct access not necessary. 
 
Low labor and maintenance costs. 
 
On-line guidance while damage is 
developing. 

 

The fundamental of SHM technology is the development of damage detection 

techniques. Structural damage may be defined as changes introduced to a system that 
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adversely affects its current or future performance (Doebling et al., 1998). A classification 

system for damage detection defined by Rytter (1993) includes four levels: 1) determination 

of damage existence in a structure; 2) level 1 plus determination of damage type and location; 

3) level 2 plus quantification of damage severity; 4) level 3 plus prediction of remaining 

service life based on damage assessment and operational conditions. 

 

The development of damage diagnosis in SHM is typically the collaboration between 

multi-disciplinary fields, such as sensing technology, smart materials, signal processing, 

system integration, data interpretation, etc. Vibration-based technologies are among topics 

that received intensive research interests during the relatively earlier stage of SHM history, 

and still play significant role in concurrent SHM strategies. Papers presented in a series of 

conferences on SHM indicate that a variety of sensing techniques and diagnosis algorithms 

have been investigated to monitor the health status of various structures, and many of them 

have been targeted directly for real applications in civil infrastructure, aeronautical and 

astronautic systems, ground vehicles, offshore platforms and underground pipelines. 

 

The development of SHM techniques has been closely embraced by applications in a 

variety of industries. Monitoring the health status of aging and new structures in civil and 

aerospace engineering in order to reduce the maintenance cost and provide real time 

assessment on structural integrity supplied the original motivation during earlier stages. 

Implementation of SHM technologies have now expanded from these two traditional areas to 

ground transportation, underground pipelines, offshore and undersea structures and vehicles, 

and even biomedical devices, which will also affect the traditional philosophy of structural 

design and maintenance practice. Many experiments were conducted in labs at the coupon 

level or in the field. For infrastructures, Huston et al. (1997) studied the inspection of bridge 

decks by ground penetrating radar, and reported the feasibility of detecting internal cracks. 

Liu and Sun (1997) proposed a neural network system to data processing for a bridge health 

monitoring where the longitudinal elongations of the bridge subjected to moving trucks are 

used for damage detection. A research group at Los Alamos National Laboratory (Farrar et 

al., 1997) conducted intensive investigation on SHM with a focus on civil structures (e.g., the 

I-40 and Alamosa Canyon bridges). Vibration-based methods and statistical pattern 
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recognition are exploited for damage detection in real structures. Van der Auweraer and 

Peeters (2003) reviewed many projects launched worldwide in recent years to promote SHM 

development in versatile applications. In aerospace engineering, with more and more 

commercial (and military) aircraft now serving near or beyond the design life, the real-time 

assessment on structural integrity is specially desired for increasing reliability and reducing 

maintenance cost. For instance, NASA and Lockheed Martin jointly initiated a fiber optic-

based integrated vehicle health management (IVHM) system for NASA space shuttles and 

Lockheed Martin X-33 reusable launch vehicle (RLV) (Melvin et al., 1997; Sirkis et al., 

1999). The concept of IVHM has become a terminology widely accepted in the aerospace 

community (Derriso et al., 2003). With advances in sensor technology, smart materials, data 

processing and computer simulation and visualization, integrated SHM systems for a variety 

of applications along with codes and standards could come into use in the near future.   

 

The following two sub-sections briefly review SHM techniques from two different 

perspectives in order to provide background for the present research. Firstly, techniques in 

damage detection are roughly grouped to the vibration-based methods and the methods based 

on wave propagation. Next, based on whether or not mathematical models are used, SHM 

techniques can be divided into two groups. A brief discussion on advantages and 

disadvantages of each group will be addressed. 

 

2.1.1 Vibration-based SHM and SHM based wave propagation  
 

A) Vibration-based SHM 
 

Vibration usually refers to a periodic motion in an elastic structure about an 

equilibrium position. The premise of vibration-based techniques in SHM is that damage will 

alter the stiffness, mass, or damping properties of a structure which in turn affect the dynamic 

response of the structure such as natural frequencies, mode shapes and damping ratio of the 

structure. Intuitively then, changes in dynamic responses (modal parameters, forced 

responses, etc.) could be used to locate and even quantify the damage in the structure. An 

excellent review paper by Doebling et al. (1998) summarized the vibration-based damage 
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detection methods published up to 1996. Recently Sohn et al. (2004) reviewed SHM 

literature in a wider range for papers published between 1996 and 2001, in which SHM 

problems are considered as statistical pattern recognition and damage detection techniques 

including the vibration-based methods are categorized into the statistical pattern recognition 

paradigm. More comprehensive review and analysis can be found in these two papers. The 

following is devoted to briefly sketching a background for this research, with topics grouped 

by the dynamic characteristics considered during the vibration-based damage diagnostics. 

 

Natural Frequencies 
 
Among all modal parameters, natural frequencies of a structure are relatively easier and 

more accurate to measure. Inspecting changes in natural frequencies for damage detection 

was the major approach in vibration-based evaluation decades ago when modern 

experimental modal analysis had not been fully established, and so far still receives much 

research attention in SHM. Early systematic investigation on damage detection by changes in 

natural frequencies may be attributed to Adams et al. (1978) and Cawley and Adams (1979). 

Under the premise that the change in stiffness is independent of frequency, the ratio of 

frequency changes in two modes is only a function of the damage location. Experiments were 

carried out on an aluminum plate with damage in the form of a rectangular hole and a CFRP 

(carbon-fiber-reinforced plastic) plate with saw cuts and crushing damage. With a finite 

element model, good agreement was obtained on the damage location and magnitude for the 

aluminum plate, although less accurate results were found with the CRRP plate. Stubbs and 

Osegueda (1990a, 1990b) developed a sensitivity approach for damage detection from 

changes in natural frequencies that is based on the so-called Cawley-Adams criterion. 

Friswell et al. (1994) also extended the criterion by introducing statistical analysis on the 

likely damage scenarios. Palacz and Krawczuk (2002) compared several vibration-based 

methods including the Cawley-Adams for damage detection in a cracked beam, and indicate 

that first two frequency changes without measurement errors or four frequency changes with 

measurement errors could successfully detect both the location and depth of the surface crack. 

In Chapter 5 the Cawley-Adams criterion is again applied for the composite beam with an 

edge crack. With the presence of measurement errors, the feasibility of crack detection based 

on the analytical model is presented. However, as mentioned by Doebling et al. (1998) and 
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Firswell and Penny (1997), damage identification by frequency shifts alone has practical 

limitations in some applications. For instance, frequency changes are far more affected by 

temperature and humidity than by damage in the inspection of a bridge (Farrar et al., 1994). 

Moreover, natural frequency exhibits the global nature of a structure, and is usually 

insensitive to incipient damages, especially when the damage is located at a low stress region. 

 

Salawu (1997) provided a good review on damage detection by changes in natural 

frequencies. Although it might not be so reliable using natural frequency changes alone for 

damage identification in some infrastructures such as prestressed concrete structures as 

indicated in the paper, many strategies and algorithms were developed to further explore the 

advantages of natural frequencies. Messina et al. (1996) developed an algorithm called 

damage location assurance criterion (DLAC). A DLAC value is calculated from the vector of 

experimental frequency changes and the vector based on theoretical analysis on a presumed 

damage location. The damage location is obtained by comparing the patterns of frequency 

changes. Messina et al. (1997) later extended the approach to the multiple damage location 

assurance (MDLAC) by incorporating mode shapes for the frequency sensitivity. Armon et 

al. (1994) proposed a rank-ordering of modes by the frequency shifts to detect slots and 

cracks in a beam, and showed that this method is robust with respect to both measurement 

errors and model uncertainties. Nicholson and Alnefaie (2000) introduced another damage-

sensitive parameter called the modal moment index (MMI) extracted from measured modal 

parameters. The index has an abrupt change at the damage location and can be related to 

damage magnitude. Solving an inverse problem from the first three natural frequency 

changes, Chaudhari and Maiti (2000) used the Frobenius technique for the governing 

differential equation and then obtained the crack location by a semi-numerical approach, 

while Chinchalkar (2001) resorted to finite element modeling by a rank-one modification of 

an eigenvalue problem. Neural networks are also implemented for damage detection using 

natural frequencies, such as Luo and Hanagud (1997), Zhao et al. (1998), Yun and Bahng 

(2000), and Zapico et al. (2003). Jones and Turcotte (2001) took antiresonant frequencies in 

finite element model updating to detect structural damages. While the beating phenomenon 

was first investigated by Cattarius and Inman (1997) for damage detection in time domain, 

Abdel Wahab and Mottershead (2001) used the beating frequencies rather than the natural 
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frequencies to detect the onset of damage, which was demonstrated by the authors to be more 

sensitive as a damage indicator. Friswell et al. (1998) combined genetic and eigensensitivity 

algorithms for locating structural damages. Pawar and Ganguli (2003) used a genetic fuzzy 

system to find both the location and extent of damage in a cantilever beam. 

 

Mode Shapes/Curvatures 
 
Mode shapes are known as the spatial description of the amplitude at each resonance 

frequency. The modal assurance criterion (MAC) and related variations were developed in 

last two decades as a quality assurance indicator to explore the spatial modal information in 

the area of experimental and analytical structural dynamics (Allemang, 2002). West (1984) 

proposed possibly the first systematic investigation on damage detection by using MAC as 

the statistical indicator correlating mode shapes of the damaged and undamaged structure 

without the use of a prior finite element model. Another widely used criterion in damage 

detection is coordinate modal assurance criterion (COMAC) that identifies the coordinates 

where two sets of mode shapes do not agree (Lieven and Ewins, 1988). Examples with a 

focus primarily on MAC and COMAC include Yuen (1985), Rizos et al. (1990), Lin (1994), 

Saitoh and Takei (1996), Natke and Cempel (1997) and Marwala and Hunt (2000). 

Furthermore, Ratcliffe (1997) proposed a method for damage detection based solely on mode 

shapes. The location of damage can be identified from the finite difference approximation of 

a Laplacian operator to the mode shapes. Khan et al. (1999) used a continuously scanning 

laser Doppler vibrometer to monitor the discontinuities in mode shapes for detecting cracks 

and slots. Shi et al. (2000) formulated the MDLAC with incomplete mode shapes instead of 

natural frequencies for damage detection. 

 

As an alternative in using mode shapes, curvature mode shapes were proposed and 

considered more sensitive to damage than the displacement mode shapes (Pandey et al., 

1991). Lew et al. (1997) compared the method by curvature mode shapes with two other 

modal based methods and found it is reliable for beam-type structures but not suitable for 

truss-type structures. Amaravadi et al. (2001) obtained the curvature mode shapes by 

differentiating mode shapes twice, and then combined a wavelet map with them to improve 

the sensitivity and accuracy for locating damage in a lattice structure and a cantilever beam. 
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Stubbs et al. (1995) presented a damage index from the integration of the mode shapes for a 

pattern recognition technique in damage detection. Carrasco et al. (1997) used changes in 

modal strain energy to locate as well as quantify damage in a space truss model containing 12 

bays. It is claimed that magnitude of the changes can be used as the indicator of overall 

magnitude of damage. Kim and Kwak (2001) studied strain mode shapes to detect cracks in 

plates. Abdo and Hori (2002) found that the rotation of mode shapes is a sensitive and robust 

indicator of damage. Cho et al. (2004) proposed a probabilistic neural network trained by 

mode shapes and natural frequencies and applied the technique for damage detection in a 

cable stayed bridge. 

 

Unlike frequency extraction, estimating mode shapes usually requires the measurement 

at each of the points where estimates are needed, posing practical difficulties due to 

limitations in the number of sensors and the capability of accurate measurement. Moreover, 

mode shape estimation from the frequency response functions, even in the absence of any 

damage, could become problematic when the structure has complicated configurations. It is 

typically an application dependent technique, the feasibility and accuracy being affected by 

the type of structure, the damage format, the way to extract mode shapes and the algorithms 

in post-processing. 

 

Damping 
 
Although the estimation of damping matrix (mass and stiffness matrices as well) by 

frequency response functions (Chen et al., 1996), input/output data (Fritzen, 1986) and many 

other approaches has been the topic in the field of system identification for many years, 

damage detection based on changes in damping parameters alone has not been studied 

intensively compared to methods based on natural frequencies and mode shapes. This could 

be due to the existence of various types of damping and the relatively high uncertainties in 

damping estimates. While an abnormal increase in damping coefficients, suggesting more 

energy dissipation, could indicate damage in the structure as observed experimentally in most 

cases (Morgan and Osterle, 1985; Napolitano and Kosmarka, 1996), damage in a structure 

may also result in a decrease in damping or an increase followed by a decrease (Salane and 

Baldwin, 1990; Hearn and Testa, 1991). Williams and Salawu (1997) reviewed studies 
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mainly in civil engineering on the correlation of damage and damping changes, and 

concluded that damping values alone can not provide a reliable means for damage detection 

(location and size). 

 

Changes in damping, however, may have the ability to detect damage to which 

conventional methods based on changes in natural frequencies and mode shapes are not 

sensitive. Modena et al. (1999) showed that visually undetectable cracks cause negligible 

changes in natural frequencies, but a considerable increase in damping that can be used to 

locate the cracking. Testing to identify manufacturing defects and structural damage in 

precast reinforced concrete elements justified the use of damping changes and non-linear 

response as damage indicators. Kawiecki (2000) measured damping coefficient of a metal 

beam and a metal blank used to fabricate 3.5" computer disks. An array of piezotransducers 

is used to provide both excitation and sensing. Changes in damping due to damage are 

observed; only the existence of damage, rather than the location and severity, can be 

answered. Recently, Kyriazoglou et al. (2004) defined a damping parameter as the ratio of 

energy dissipated in one cycle over the total energy stored in that cycle. With fatigue 

cracking in all specimens, the damping values are obtained from testing on cross-ply GFRP 

(glass fiber reinforced plastic) laminates, woven GFRP laminates and woven CFRP laminates. 

The results indicate that while there are no detectable changes in resonance frequencies, the 

damping parameter is fairly sensitive to small cracks in composites and hence promising for 

detection of initial damage. Techniques of damage detection based on measuring damping in 

a structure seem only able to answer the Level 1 (existence of damage) questions, and may 

monitor the growth of damage severity by comparing historical data. Locating and 

quantifying damage by changes in damping alone still remains a challenging problem.  

 

Frequency Response Functions (FRFs) 
 
Frequency response functions depict in frequency domain the input/output relationship 

for a system, and are extensively used in structural dynamics and system identification to 

extract resonance frequencies, estimate mode shapes and damping coefficients, and verify 

matrices of mass, stiffness and damping. Many damage detection methods based on 

evaluation of modal parameters aforementioned rely on some FRF data, directly or indirectly. 
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This also implies that information in FRF data may contain features that can be directly 

analyzed for damage detection. Chaudhry and Ganino (1994) trained an artificial neural 

network with frequency response data of a composite/aluminum beam in both damaged and 

undamaged situations. The training data contain the magnitude and phase of FRFs obtained 

experimentally over a specified frequency range. The trained neural network is able to 

identify the debonding on the beam. Wang et al. (1997) demonstrated an algorithm to locate 

and quantify the damage on a plane 3-bay frame structure by using the directly-measured 

FRF data. A damage vector indicating the location and magnitude is calculated from the 

perturbation equations of the FRF data. The selection of sensor/actuator locations and 

excitation frequencies is addressed in order to reduce the influence of measurement errors. 

Swamidas and Cheng (1997) measured the acceleration and strain FRFs in tubular T-joints, 

and found the antiresonant regions and quasi-static regions of the FRF curves showed 

considerable changes during the crack initiation and growth that may be undetectable by 

changes in natural frequencies. With a simply supported truss bridge, Thyagarajan et al. 

(1998) studied damage detection by using minimum number of sensors in optimization of 

FRFs. Lopes et al. (2000) used the FRFs obtained from a finite element model to train a 

neural network, and measured FRF data extracted from electric impedance through 

piezoceramic transducers are used to solve an inverse problem of damage detection. 

Mottershead et al. (2003) explored the possibility of detecting damage by using rotational 

FRFs. Recently, based on the observation that damage may increase the non-linear behavior 

in a structure in which the dynamic response is predominantly linear in the absence of 

damage, techniques focused on extraction of non-linear distortions in FRF data were 

developed to locate and quantify damage (Vanhoenacker, et al., 2004). Hwang and Kim 

(2004) presented a method in damage detection by using only a subset of vectors from the 

full set of FRF data for a few frequencies to calculate changes in the stiffness matrix. 

Damage detection by direct use of FRFs is still a research topic under exploration. 

 

Time Domain Features 
 
Modal parameters and FRF data usually involve data reduction and feature extraction 

during the transform of recorded data in time domain to features in frequency domain. The 

process may cause loss of important information related to damage dynamics; this 
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disadvantage could be avoided by directly using time response data for damage detection. 

Another advantage of using time domain features is that non-linearity responses raised by 

damage in a structure could be preserved further facilitating diagnostics. Numerous 

researchers used the family of ARMA (autoregressive moving average) models for damage 

detection by either extracting modal parameters from the model (Qian et al., 1990; Li et al., 

1993), or via comparison of parameters of the ARMA model to a baseline as the damage 

indicator (Garcia and Osegueda, 1999; Sohn and Farrar, 2000).  

 

Methods by estimating damage-sensitive parameters from time responses without 

resorting to the extraction of modal parameters are investigated by many researchers. 

Agbabian et al. (1991) demonstrated the potential of using time responses for identification 

of structural changes in the presence of noise interference. An equivalent discrete 

mathematical model with the degrees of freedom compatible with the number of sensors is 

constructed from time-domain data. The identification involves the determination of the 

mean, variance and probability density function corresponding to each element of the system 

matrices. With piezoceramic patches as sensors and actuators, Banks et al. (1996) developed 

a model-based technique to estimate changes in damping, mass and stiffness properties from 

the time histories of input/output data. An inverse optimization problem is solved via the 

enhanced least square error minimization. Damage simulated by holes on a cantilever beam 

is identified in a satisfactory accuracy. Without relying on modal parameters and analytical 

models, Cattarius and Inman (1997) proposed a time-domain approach by taking the 

advantage of beating phenomenon to detect small damage that many be unnoticeable in 

natural frequency changes. Carneiro and Inman (2000) investigated the detection of a surface 

crack on a Timoshenko beam in time domain with the aid of an analytical model developed 

by the authors. A bilinear model of a closing crack is also considered. While the minimum 

rank perturbation theory (MRPT) has been extensively investigated in frequency domain by 

Zimmerman and his co-workers for damage detection, Lopez III and Zimmerman (2002) 

introduced a time-domain MRPT for detection of structural damage over a specified analysis 

time interval. The stiffness perturbation between successive time steps is evaluated via a 

recursive updating. With finite element models, Cacciola et al. (2003) applied the Monte 

Carlo method to evaluate the higher order statistics of a non-linear beam with an edge crack. 
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Measurement of the skewness coefficient of rotational degrees of freedom that is sensitive to 

the non-linear behavior can be used to locate and quantify the crack. Majumder and Manohar 

(2004) investigated damage identification on a non-linear beam subjected to moving load, a 

simulation of bridge with moving traffic load. Finite element models including a reduced-

order model accommodating the limited number of sensors are constructed with time varying 

coefficients. A damage indicator vector is determined from time response to locate the 

damage in the form of stiffness loss.  

 

It is noted, however, model-based time domain methods usually involve intensive 

computational effort and a considerable larger amount of data to process than the modal-

based approaches in damage detection. 

 

Others 
 
In addition to methods mentioned above, there is a group of damage detection 

techniques that estimate changes in stiffness through the dynamically measured flexibility 

matrix (the inverse of static stiffness matrix) formulated usually from the lowest a few 

natural frequencies and mass normalized mode shapes. The flexibility matrix is more 

sensitive than the stiffness matrix to changes in lower modes and frequencies (Doebling et al., 

1998). Proposed methods include the comparison of flexibility changes (Pandey and Biswas, 

1994; Zhang and Aktan, 1995), the unity check method (Lim, 1990; Lin, 1998), and the 

residual flexibility method (Doebling et al., 1996), etc.  

 

Techniques in model updating can also be closely related to, and used for, damage 

detection in that the updated structural matrices (mass, stiffness and damping) from the 

testing data may reflect changes due to the presence of damage. Proposed methods include, 

but not limited to, optimal matrix update methods (Baruch and Bar Itzhack, 1978; Kammer, 

1988; Smith and Beattie, 1991; Liu, 1995), the minimum rank perturbation theory 

(Zimmerman and Kaouk, 1994; Kaouk and Zimmerman, 1995; and their co-workers), 

sensitivity-based methods (Norris and Meirovitch, 1989; Sanayei and Onipede, 1991), 

eigenstructure assignment methods (Zimmerman and Kaouk, 1992; Lim, 1995). 
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Another class of techniques based on electro-mechanical impedance method has been 

widely investigated in damage diagnostics. The electro-mechanical impedance can relate 

changes of local vibration characteristics to the existence or growth of structural damages. 

Typically, small piezoelectric patches bonded to the area close to a possible damage site are 

used to excite the local area at high frequencies, and both electrical and mechanical 

impedance can be obtained through the electro-mechanical coupling of the piezoelectric 

sensors. The electro-mechanical impedance is shown very sensitive to incipient damages. 

Another advantage is that no analytical or numerical models are needed so that errors 

introduced during the modeling can be avoided. The impedance-based methods, on the other 

hand, so far could hardly locate accurately nor quantify the damage in a structure. The 

possible damage area is usually known a prior in order to place the sensor/actuator patches 

for the testing on the local properties. A large number of publications can be found in 

literature from the earlier investigation on the basic concept (Liang et al., 1994; Sun et al., 

1995), to various implementations and applications (Chaudhry et al., 1995; Raju et al.,1998; 

Park et al., 2000). A comprehensive survey on impedance-based SHM can be found in Park 

et al. (2003). 

 

B) SHM based on wave propagation 
 

As one class of the widely used approaches, wave propagation methods adopt a 

transmitter and a receiver to send a diagnostic stress wave along the structure and measure 

the changes in the received signal due to the presence of damage in the structure. This 

approach is a natural extension of traditional NDE techniques and is very effective in 

detecting damage in the form of geometrical discontinuities. To detect damage in a one-

dimensional bar, Pines (1997) addressed the advantages of wave propagation models over 

finite element techniques in that the former has higher fidelity of detecting small changes in 

mass or stiffness. With the acousto-ultrasonic technique, Russell-Floyd and Phillips (1988) 

investigated statistically the parameter called “stress-wave factor” for detecting damages in 

carbon-fiber-reinforced composite. At the 0.1% significant level, holes within 4 mm in a 20-

ply laminate was detected. Attenuation and dispersion of elastic waves in randomly cracked 

solids were investigated by Zhang and Gross (1993). Effects of the micro-crack density, the 

micro-crack orientation or the direction of wave incidence, and the wave frequency on the 
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attenuation coefficient and the effective wave velocity are exploited to identify the statistical 

distribution and orientation of micro-cracks. Mouritz et al. (2000) studied the low-frequency 

pulse-echo ultrasonics for fatigue detection in thick polymer composites. Damages consist of 

debonding of surface glass fibers and a combination of cracks and delaminations within the 

composite. The ability to detect damage improves with increasing thickness of the composite. 

In a paper by Van Den Abeele et al. (2001) micro-scale damage in a micro-inhomogeneous 

material were detected by means of nonlinear elastic wave spectroscopy. It is shown that 

distortion in acoustic and ultrasonic waves with nonlinear features can be used to detect 

cracks and flaws more reliably than linear acoustical methods (measures of wave speed and 

dissipation). Krawczuk (2002) combined the wave propagation approach with a genetic 

algorithm and the gradient technique to detect a transverse open crack on a beam-like 

structure modeled with spectral finite elements. Damage detection is performed in frequency 

domain. Similarly by the wave propagation and the spectral element method, Palacz and 

Krawczuk (2002) also investigated damage detection of a cracked rod. Moreover, wave 

propagation is used to detect delaminations in beam structures by the group of researchers 

(Ostachowicz et al., 2004). Trifunac et al. (2003) recorded low frequency wave numbers in a 

seven-story reinforced concrete building to eleven earthquakes. A significant and permanent 

increase of wave numbers is related to damage that increases with the number of earthquakes, 

and the wave numbers can indicate the location of damage. In another civil infrastructure 

application, Ma and Pines (2003) used dereverberated transfer functions by eliminating wave 

reflections to extract local dynamic characteristics for damage detection in a three-story 

building. With seismic wave excitation, this method is shown to be able to locate damage, 

determine its type and quantify its severity. 

 

It is worth mentioning that, within guided ultrasonic wave propagation, Lamb waves are 

extensively used as an effective tool for damage detection by inspecting changes in the 

received waveforms. Lamb waves are basically two-dimensional propagating vibrations in 

plates (Viktrov, 1967) with mathematical equations originally formulated by Horace Lamb 

(Lamb, 1917). The velocities of Lamb waves depend on the frequency and the thickness of 

the plate, or the dispersion relation. While the fundamental symmetric mode is often used to 

detect surface cracks in metallic structures, the fundamental anti-symmetric mode is widely 
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used for damage detection in composites due to its sensitivity to delaminations. For instance, 

Chimenti and Martin (1991) applied Lamb waves in graphite-epoxy laminates to detect 

various defects such as delamination, porosity, ply gap, foreign matter and changes in fiber 

volume fraction. Tan et al. (1995) compared Lamb waves with the normal incidence pulse-

echo approach for detecting delaminations near the surface of a composite plate. Changes in 

the Lamb wave amplitude are used to determine both the size and depth of the delamination. 

Another comparison between Lamb wave tomography conventional C-scan techniques was 

carried by Jansen et al. (1994) in detecting fiber failure, matrix cracking and delamination of 

polymer composite plates. More recently, piezoelectric materials are widely used as 

transducers in Lamb wave techniques. Kessler et al. (2002) used piezoceramic actuators to 

provide Lamb wave scans in damage detection on various composite structures (laminated 

plates, sandwich beams, cylinders, and plates with stiffeners). It is shown that Lamb wave 

techniques provide more information about damage type, severity and location than 

frequency response techniques. In another paper, a linear array of piezoceramic patches are 

attached on the surface of a composite structure to generate and monitor the interaction of 

Lamb waves in order to detect defects or damages (Diamanti et al., 2002). Furthermore, 

wavelet techniques are used to process the data of Lamb wave response generated by 

embedded piezoceramic transducers (Paget et al., 2002). Neural networks are widely 

implemented for data processing and decision making in damage detection (e.g., Liu and Sun, 

1997; Liu et al., 1999; Lloyd and Wang, 1999; Lopes et al., 1999; Chang et al., 2002). A 

large number of publications about using Lamb waves for damage detection can be found in 

recent conferences and journals. 

 

2.1.2 Non Model-based versus Model-based 
 

Depending on whether or not mathematical models (analytical or finite element models) 

are explicitly used as the reference or baseline, SHM techniques can be grouped into two 

categories. Due to the well-established experimental modal analysis, evaluation of modal 

parameters for damage detection could rely only on experimental measurements without 

using a mathematical model. Examination on input/output data for damage sensitive features 

usually requires no models for the damaged structure. Examples include the methods by 
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modal sensitivities, the flexibility methods and the impedance-based methods as mentioned 

above. Non model-based techniques can avoid errors and uncertainties inherent during most 

modeling processes; computational errors and sometimes time-consuming burdens could also 

be eliminated. The disadvantage is that it is very difficult to locate and even quantify damage 

with most non model-based techniques as indicated by the impedance-based methods. 

 

Damage may be detected by inspecting the local strain changes using fiber optic 

sensors, especially the fiber Bragg gating (FBG) sensors. Mathematical models of the target 

structure are not necessarily constructed before or after the inspection for the purpose of 

damage detection. FBG sensors have a great potential in SHM with many advantages such as 

high sensitivity and accuracy, immunity to electromagnetic and radiation interferences, easily 

embedded or coated to structures, ease to be multiplexed, low transmission loss and low cost. 

A FBG is a longitudinal periodic variation of refractive index that is formed in the core of an 

optical fiber due to exposure to interfering UV laser beams. The grating pattern acts as a fine 

narrow-band filter in the way that the back reflected is only a tiny part of the spectrum 

around the wavelength called the Bragg wavelength. The shift in Bragg wavelength is 

approximately linear to the strain and temperature change. A local strain can be determined 

by the grating bound to the structure at the point of interest, and multiple gratings with well-

separated Bragg wavelengths in a single fiber provide straightforward multiplexing, a 

favorable feature for monitoring strains at a local point or area in SHM. Johnson et al. (1999) 

used a multi-channel FBG sensor system for monitoring bending motions, local strain 

concentrations and dynamic strain response of a composite hull, to facilitate further on-line 

SHM of a navel vessel in service. Moerman et al. (1999) set up a remote monitoring system 

with FBG sensors for a civil structure, and obtained good results of measuring strains during 

a tensile test as well as a bending test. It is shown that FBG sensors are also capable of 

monitoring shrinkage and creep deformations. A series of papers presented in 2002 at the 

first European SHM workshop addressed the application of FBG sensors, such as the crack 

detection in composites (Okabe et al., 2002) and detection of static and dynamic strains 

(Calabro et al., 2002; James et al., 2002; Cheng et al., 2002; Kang et al., 2002). More 

recently at the second European SHM workshop 26 papers were presented on various 

applications of fiber optic sensors for SHM, especially the FBG sensors. For instance, 
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Cusano et al. (2004) performed modal analysis of an aircraft wing with embedded FBG 

sensors and compared results obtained by accelerometers. A similar experiment on a beam 

sample was done by Zonta et al. (2004) in order to identify damage by the measurement of 

curvature mode shapes. Betz et al. (2004) discussed a damage identification system involving 

Lamb wave excitations and the detection of linear strain components with FBG sensors. 

Experiment on an aluminum structure was conducted with damage simulated by drilling 

holes on it. Fiber optic sensors other than the FBG sensors for SHM were also reported, from 

the earlier techniques of directly monitoring light power loss due to damages (Crane and 

Gagorik, 1984; Hofer, 1987; Glossop et al., 1990), to recent advances in using fiber optic 

interferometry (Elvin et al., 1999; Xu et al., 2003) for delamination detection. Fiber optic 

sensors are very promising in the development of future on-line SHM systems. 

 

On the other hand, most vibration-based techniques tend to use mathematical models 

for either numerical verification or comparison to experimental results, whenever these 

models can be formulated to a certain confidence level. While having disadvantages 

mentioned earlier, model-based approaches do have advantages in many aspects (Carneiro, 

2000): 1) once updated with experimental data, the model permits implementation of many 

parameter identification methods and may reduce the amount of experimental data required; 

2) off-line simulations of system responses with slight variations in parameters and boundary 

conditions can be inexpensive as well as informative for pre-testing considerations; 3) 

models can be utilized to optimize the number and location of sensors and actuators; 4) a 

large amount of data can be generated inexpensively for further analysis, such as training a 

neural network in SHM. Moreover, with a feasible model available, it becomes possible to 

predict the remaining life of a damaged structure with the knowledge of damage growth 

mechanism and operational conditions. 

 

For damage identification on fundamental structure elements (e.g., rods, shafts, pipes, 

beams, plates and trusses), finite element or spectral element methods are widely used for 

most model-based techniques. While these structural elements can be modeled relatively 

accurately in terms of their static and dynamic properties, incorporating damage mechanisms 

into the model to reveal the dynamics of a damaged structure could be a great challenge. 
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Damages of different formats (crack, corrosions, debonding, delamination, etc.) and 

geometry (single crack or distributed cracks; straight crack or curved crack, etc.), and at 

different locations (welded joints, around holes, near boundaries, etc.) may possess distinct 

dynamics in different structures.  

 

In terms of modeling cracks in a beam-type structure made of homogenous and 

isotropic materials, most techniques to date can be grouped to three categories: finite element 

methods, continuous (analytical) models and discrete-continuous models. Ostachowicz and 

Krawczuk (2001) provided a comprehensive survey on modeling of a single crack. A crack 

in finite element methods is usually modeled by a stiffness reduction in the element (Yuen, 

1985), by refining meshes around the crack tip (Markstrom and Storakers, 1980), by moving 

nodes toward the crack tip at the quarter point to account for stress singularity (Shen and 

Pierre, 1990), or by constructing a special crack element (Gounaris and Dimarogonas, 1988; 

Krawczuk and Ostachowicz, 1993). Friswell and Penny (2002) compared methods in these 

three categories for crack effects on a beam structure, and concluded that simple models 

considering crack flexibility are adequate to detect cracks in SHM. Finite element methods 

allow more complicated structures that have internal or surface cracks. However, the results 

as well as interpretation on the results may vary largely with different elements, schemes, and 

even users involved. In the continuous model class, Barr (1966) extended the Hu-Washizu 

variational principle for dynamic problems. The so-called Hu-Washizu-Barr variational 

principle is further investigated by Christides and Barr (1986) for torsional vibration of 

cracked beams, by Shen and Pierre for a pair of symmetric cracks (1990) and a single edge 

crack (1994) on a Bernoulli-Euler beam, and by Carneiro (2000) for a single crack on a 

Timoshenko beam. A set of exponential stress disturbance functions are constructed to 

account for the stress singularity ahead of the crack tip, and the stress/strain concentration is 

integrated into the partial differential equations. The main limitation of this approach, as 

indicated by Ostachowicz and Krawczuk (2001), is that the coefficients in the stress 

disturbance functions still need to be determined by experiments or finite element methods.  

 

The discrete-continuous models are by far the most commonly used models in dynamic 

analysis of cracked beams. The basic concept is the introduction of additional boundary 
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conditions at the crack location where two intact beams are connected with a flexibility 

matrix whose components are determined by linear fracture mechanics. Hence, the most 

important work by this approach is to determine the local flexibility matrix. Dimarogonas 

and Massouros (1981) determined the compliance of torsional mode in a shaft that has a 

circumferential crack. Anifantis and Dimarogonas (1983) calculated a flexibility matrix for a 

beam of rectangular cross section and with a single edge crack. It is used to study the stability 

of a cracked column to follower and vertical loads. A complete 6×6 flexibility matrix for a 

crack in a beam of rectangular or circular cross section can be found in a series of papers 

published by Dimarogonas and his co-workers in last two decades. The main limitation of the 

flexibility approach is that it can only be applied to one-dimensional problems and works 

well mostly for fundamental structural elements. However, the discrete-continuous crack 

models are advantageous in many aspects. For instance, the intact part of a structure 

containing no cracks can still be modeled with corresponding partial differential equations; 

cracks only increase the boundary conditions that require less computational effort than most 

finite element methods involving fine meshes around the crack region. The local compliances 

based on linear fracture mechanics can be verified as well as calibrated with a wealth of 

experimental data available in literature. The flexibility method can be easily extended to 

construct special crack elements for finite element analysis. The present research takes 

advantage of the local flexibility method to investigate an edge crack on a composite beam 

that vibrates in coupled bending and torsion.  

 

2.2 Vibration of Damaged Composite Laminates 
 

As with other engineering materials, understanding failure mechanisms of composite 

laminates is very important for real applications involving the design, manufacturing, testing, 

and damage inspection of composite structures. Of particular interest in the community of 

structural health monitoring is the dynamic characteristics of composite laminates subjected 

to some forms of damage. Common damage in composite laminates includes matrix cracking, 

fiber breakage, fiber-matrix debonding, delamination between plies, and a mixture of any of 

these incidents (Voyiadjis, 1993). Some defects such as matrix cracking and fiber-matrix 

debonding are inherent during the fabrication (e.g., air trapped in the resin); they may also 
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form as initial transient damage under service loading. These defects are usually in micro 

scale and can rarely distribute to a large area without developing into delamination or 

transpiercing cracking.  

 

2.2.1 Delamination 
 

Delamination is probably the most important macro-scale failure in composite 

laminates. Vibration analysis of delaminated composites has been extensively investigated in 

last a few decades. Zou et al. (2000) provided a brief review on delamination detection that is 

based on various beams models. Ramkumar et al. (1979) is usually referred as the first 

systematic study on the free vibration of delaminated beams. The delaminated beam is 

modeled by four Timoshenko beams connected at the delamination front cross-sections as 

shown in Figure 2.1. This is known as the free model since the two sub-laminates (2 and 3 in 

the figure) separated by the delamination plane are allowed to vibration independently. This 

model was observed to overestimate the frequency reduction and later improved by Wang et 

al. (1982) by including the coupling between flexural and axial motions of the sub-laminates. 
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Figure 2.1 The four-beam model of a delaminated beam. 

 

To avoid the physical incompatibility of some overlapping open modes predicted by 

free models, Mujumdar and Suryanarayan (1988) proposed a so-called constrained mode 

model in which the continuity of axial displacements and forces at the delamination fronts is 

ensured. The constrained mode model was further applied to simply-supported beams (Tracy 



 

 

29

and Pardoen, 1989) with two different assumptions that, the axial and bending stiffnesses are 

uncoupled and two sub-laminates are constrained to vibrate together. Each of the four 

segments is modeled by Euler beam theory. Shen and Grady (1992) investigated with 

experiments on both models but based on Timoshenko beam theory. There is significant 

discrepancy between results predicted by the two models. The constrained model predicts 

frequency change more accurately for some opening modes shown in the experiment even 

though these modes can not open by the prediction of the model. Luo and Hanagud (2000) 

considered the nonlinear interaction between the two sub-laminates by adding a piecewise 

linear spring model that has a uniformly distributed stiffness. Each segment is modeled by 

Timoshenko beam theory and the bending-extension coupling is also taken into account. The 

stiffness can then be adjusted for the model to predict more accurate results for the situations 

where either the free model or the constrained mode model could not work well. A similar 

concept was later extended by Brandinelli and Massabo (2003) to investigate how a stitching 

reinforcement to a delamination could improve the dynamic behavior of the delaminated 

composite plates. An analytical model on the delaminated composite beam involving strain-

displacement non-linearity was investigated recently by Luo et al. (2004). 

 

Finite element methods are widely used for modeling delaminations in composite 

laminates. A finite element model using a layer-wise plate theory was proposed by Barbero 

and Reddy (1991) to study multiple delaminations. The basic assumption is that the same 

displacement distribution in individual layers is capable of representing the displacement 

discontinuity at interfaces between layers. Delamination is modeled by the jump 

discontinuity at the interface. The model indicates an accurate analysis of local effects in 

delaminated composite plates. However, the computational cost makes it relatively 

unattractive to predict the global behavior. Sankar (1991) developed a finite element beam 

model by laminated shear deformable theory. Friction between sub-laminates is considered 

and spring elements are constructed. Ju et al. (1995) presented a finite element model based 

on the Midlin plate theory. Effects of transverse shear deformation and the coupling between 

bending and extension are also considered. Composite plates with multiple delaminations, 

including elliptical delaminations, are investigated. Krawczuk et al. (1997a) developed finite 

element beam and plate models in which the delaminated part is divided into three segments 
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connected that the tip of the delamination by additional boundary conditions. Their models 

can be modified to handle delamination in various geometries. Later they investigated 

composite plates with closing delamination by adding a node-to-node contact model (Zak, et 

al., 2001). Parhi et al. (2001) constructed a shell element containing eight nodes with five 

degrees of freedom per node to investigate vibrations of composite shells with multiple 

delaminations. Finite element methods for vibration analysis of delaminated composites are 

also utilized to study dynamics and controls with embedded piezoelectric sensors and 

actuators, damping effects of the delamination, and delamination detection in SHM.  

 

Other studies include the vibration characteristics of delaminated composite in the state 

of buckling or post-buckling deformation, such as Yin and Jane (1992), Chen (1994) and 

Chang and Liang (1998). 

 

2.2.2 Cracking 
 

The stress/strain distribution around the crack region in composite materials has been 

an important issue in fracture mechanics (Sih and Chen, 1981). While delamination (or 

“delamination crack” in some earlier papers) in composite laminates contains discontinuity 

planes parallel to the lamination plane, cracks that received the most investigation in fracture 

mechanics and structural dynamics usually have planes perpendicular to the laminates, 

especially for thin structures such as beams, plates and shells. A review paper by 

Dimarogonas (1996) summarized vibration analysis of cracked structures including some 

crack identification methods based on vibration signatures. Cracks on composite beams or 

plates are mostly investigated by the discrete-continuous models and finite element methods 

mentioned in the last sub-section. 

 

Nikpur and Dimarogonas (1988) derived the energy release rate for a through-thickness crack 

in beams made of fiber-reinforced composite. Figure 2.2 illustrates the laminated composite 

beam with a thickness B, remotely loaded with six generalized forces. With the formulation 

of the energy release rate and by Castigliano’s theorem, the final compliance matrix has the 

components expressed by 
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Figure 2.2 A laminated beam segment with a through-thickness crack. 
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(2.1) 

where coefficients D’s are determined from the material properties, stacking sequence of 

laminates and characteristic equation of the beam, and KIn, KIIn and KIIIn are stress intensity 

factors (SIF) of mode I, II and III, respectively, corresponding to the generalized loading Pn. 

Equation (2.1) is the basis for the flexibility method to be applied for various cracked 

composite beams and plates. 

 

With equation (2.1) Nikpour (1990a) later studied the vibration of a laminated 

anisotropic cylindrical shell with a circumferential crack. The shell is modeled with the 

Donnell-Mushtari-Vlasov theory and the crack introduces four additional boundary 

conditions at the crack location. Variation of natural frequencies is found to be magnified by 

the anisotropy of the material in conjunction to the crack effects. The same local flexibility 

method was also used by the author (Nikpour, 1990b) to investigate the buckling of cracked 

composite columns. Ghoneam (1995) studied a laminated composite beam with an open 

crack based on the flexibility concept. However, the formulation of corresponding stress 

intensity factors does not consider variations due to the material’s anisotropy; the same forms 

for isotropic materials are taken instead. The interaction between mode I and II as shown in 

equation (2.1) is neglected. Krawczuk and Ostachowicz (1995) analyzed a composite 

cantilever beam with an open crack in which those neglected by Ghoneam (1995) are 
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considered. Frequency reduction patterns in terms of the crack location and depth are plotted. 

A finite element containing the crack is constructed and the results are compared with that 

obtained by the discrete-continuous model. However, equation (2.1) is misused by taking the 

summation of the SIF squares for the first two terms in the integral, instead of squares of the 

SIF summation. Kim and Kim (2003) studied a rotating composite beam with a closing 

surface crack. The beam rotates around one end in the plane perpendicular to the crack plane. 

A similar finite element is used for the cracked beam, and the crack may fully open or close 

as an intact beam at each time step. Again, equation (2.1) is misused in the same way. The 

equation is correctly used by Song et al. (2003) in the study on a cantilever composite beam 

with multiple surface cracks. The beam is separated by cracks to individual intact 

Timoshenko beams. The final characteristic matrix has the dimension (4n+2)×(4n+2) where 

n is the number of cracks. Numerical results are compared to those by Krawczuk and 

Ostachowicz (1995). Kisa (2004) addressed on vibration of a cantilever composite Bernoulli-

Euler beam with multiple cracks. The finite element method proposed by Krawczuk and 

Ostachowicz (1995) is taken and solution is sought in modal domain. Results are compared 

with Krawczuk et al. (1997b) for a single crack and Song et al. (2003) for multiple cracks. 

To study a composite plate with an edge crack, Wang and Hwang (1998) applied the concept 

proposed by Leissa et al. (1993) in studying vibrations of circular plates with radial cracks. 

The two-dimensional displacement field is decomposed to two components, one representing 

the displacement without the crack and the other representing the singular displacement due 

to the crack. The problem is finally solved by integrating the vibration of the cracked plate 

with an assumed displacement across the crack and the non-uniform shear stress distribution 

along the crack surface. Limited by the measurement method (electronic speckle pattern 

interferometry), only the tearing mode (III) is taken into account to determine the stress 

intensity factors. 

 

It is noted from the aforementioned papers addressing cracked composite beams that 

the laminates are stacking horizontally the same way as shown in Figure 2.2 with the surface 

through-width crack parallel to the y-z plane, while the bending vibration is considered as a 

vertical movement such that each ply experiences the in-plane bending. This is not typically 

an engineering application, especially for thin beams or plates. In the present research, the 
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beam laminates have a vertical ply stacking with a through-thickness edge crack. The 

sequence is symmetric with respect to the mid-plane, balanced or unbalanced. This is 

modeled to simulate a cracked composite wing so that two vibration modes – bending and 

torsion – are considered. To date publications on the vibration analysis of cracked composite 

beams involving coupled bending and torsion modes can not be found in literature, and hence 

this research could be the first effort on the specific as well as important topic. 

 

2.3 Composite Wing Beam Models 
 

Composite materials have been increasingly used in airplane design with many 

advantages such as the high strength-to-weigh and stiffness-to-weight ratios, and the 

isotropic nature in favor of aeroelastic tailoring. Aeroelastic tailoring usually involves the 

design optimization of a lifting surface to achieve desired aeroelastic responses such as the 

maximization of flutter and divergence speeds and the improvement of lift and control 

effectiveness. An accurate and computationally effective model of the composite wing is 

fundamental in aeroelastic analysis. Although finite element methods seem powerful in many 

aspects, most often they are too expensive to be coupled with other constrains to provide 

similar level of details for the preliminary design phase so that a reduced analytical model is 

still desired to provide insights on aeroelastic phenomena with the total number of states kept 

as low as possible (Cesnik et al., 1996).  

 

It is quite common that one-dimensional beam models with two independent variables 

(bending and torsion) are used as the analytical method to study the basic aeroelastic 

phenomena (Bisplinghoff et al., 1996; Fung, 1969). Similarly it is the most popular approach 

in literature to model a composite wing with a one-dimensional beam or box-beam model. 

Based on variational principles, Lottati (1985) developed a beam model for a cantilevered 

wing from an idealized box-beam model in which stiffnesses of bending and torsion as well 

as stiffness coupling between bending and torsion are derived from laminated composite 

skins. With the assumption on chordwise rigidity the governing partial differential equation 

on the bending deflection, h(y), and twisting angle, α(y), is given by 
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where EI and GJ are bending and torsional stiffness, respectively; K is the coupling stiffness 

between bending and torsion; S is the torsional stiffness due to warping effect; m is the mass 

per unit span; Iα is the cross-sectional mass moment of inertia about the rotation axis; Xα is 

the offset of mass center from the rotation axis; d22 is the coupling term due to the offset 

between the rotation axis and the reference axis; L and M are the aerodynamic lifting force 

and pitching moment, respectively. The two-dimensional displacement field is then obtained 

from the one-dimensional beam model by the relation )()(),( yxyhyxw α+= that was 

originally suggested by Stein and Housner (1974) to study orthotropic laminates and later 

extended by Weisshaar (1978, 1981) for symmetrical but unbalanced laminated plates. 

Weisshaar and Foist (1985) calculated the stiffness parameters EI, GJ and the coupling term 

K for two different assumptions – zero chordwise moment and zero chordwise curvature 

(chordwise rigidity). The effective bending stiffness and torsion stiffness as well as a non-

dimensional cross-coupling parameter defined by /K EI GJΨ = ⋅ are compared with those 

obtained by box-beam models for different fiber angles. It is shown that the beam model 

characterized by EI, GJ and K is fairly equivalent to the box-beam model that is usually 

believed more accurate in modeling composite wings; the model with the assumption of zero 

chordwise moment predicts these parameters closer to the results by the box-beam model. 

The beam model is applied by Guo et al. (2003) to investigate the effect of laminate lay-up 

on the flutter speed of composite wing. With the rotation axis offset and warping effects 

neglected, terms involving d22 and S in equation (2.2) vanish and the elastic coupling left is 

the bending-torsion coupling represented by the K term. It should be noted, however, two-

dimensional thin-walled models or even one-dimensional box-beam models developed in the 

last decades can be very complicated depending on whether one or more considerations are 

given on the coupling effects between the extension, in-plane and out-plane bending, twisting, 

warping of cross section, shear deformation and rotary inertia. For instance, analytical thin-

walled closed-section models of various complicities were investigated by Rehfield et al. 

(1990), Chandra et al. (1990), Smith and Chopra (1991) and Dancila and Armanios (1998). 
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On the other hand in the context of aeroelasticity, the aerodynamic loading can also be 

modeled increasingly sophisticated based on assumptions that may vary between two-

dimensional incompressible flow and three-dimensional unsteady flow. Finally, combining 

the structural model with the aerodynamic model to solve the aeroelastic problem for an 

analytical solution could be very challenging, e.g., Librescu and Song (1992), Qin et al. 

(2003). 

 

As a study in order to provide insight on the primary effect of cracks on a composite 

wing, simple structural and aerodynamic models are used in the present research with the 

further assumption that the inertia axis coincides with the reference axis, which eliminates 

the inertia coupling shown in equation (2.2). The effect of damage on flutter boundaries was 

investigated by a few researchers. Chen and Lin (1985) used finite element methods for the 

flutter characteristics of thin cracked panels. The existence of an edge crack decreases the 

flutter speed. Strganac and Kim (1996) integrated a damage growth scheme to study the 

aeroelastic behavior of damaged composite plates. Damage is distributed in the form of 

matrix cracking in each ply, and a damage parameter is formulated to represent the crack 

density. The governing equations are solved in time domain. With damage growth, the flutter 

boundary is first reduced and then leveled off at a certain damage level. The aeroelastic 

response depends also on the distribution of damage. Bauchau et al. (1997) also studied the 

effect of matrix cracking on flutter characteristics of a composite wing. They concluded that 

matrix damage does not have significant influence on the flutter speed, but increases the 

amplitude of aeroelastic oscillations significantly. Realizing that matrix cracking is limited to 

cross-ply laminates in previous studies, Kim et al. (1998) used finite difference and finite 

element methods to investigate bilinear flutter oscillations of damaged composite plates with 

angle-ply laminates. Aeroelastic stability is degraded due to the matrix cracking. The 

degradation is further enhanced by the decrease of the bending-torsion coupling level 

resulting from the matrix cracking. The effect of an edge crack on the aeroelastic behavior of 

a composite wing or panel has not been addressed to date, which will be part of the present 

research. Some results will be presented in Chapter 4. 
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2.4 Analysis of Model Parameter Uncertainties by Information-
gap Theory 

 

The accuracy of structural models, including finite element models now widely used 

for many engineering problems, are frequently inspected by the correlation between the 

model prediction and the testing data. In addition to the modeling methodologies themselves, 

uncertainties in model parameters could be the important source of errors that attract a large 

amount of research in the community of structural dynamics. Many techniques have been 

developed under the discipline of model updating to modify or refine structural parameters 

such as stiffness matrices, geometrical parameters and parameters characterizing boundary 

conditions in order to improve the prediction from mathematical models (Mottershead and 

Friswell, 1993). In some cases when the model parameters can be explicitly measured with 

accuracy at a high confidence level such as the static stiffness of a simple beam element, 

uncertainty may be analyzed probabilistically with more or less sample data. In other cases 

when a probabilistic structure can not be established, or stated alternatively that the model 

parameter is “severely” uncertain, the information-gap decision theory (Ben-Haim, 2001), or 

info-gap theory in short, could be a good choice to investigate the model robustness as an 

alternative in model updating. Hemez and Ben-Haim (2004) studied the effect of 

uncertainties in model parameters on the propagation of a transient impact passing a layer of 

hyper-elastic material. The info-gap theory is used to model a series of uncertain events with 

a family of nested sets. Model updating is then performed with the concepts of robustness to 

uncertainty and opportunity from uncertainty. The authors’ additional work illustrated the 

relationship between fidelity-to-data, robustness-to-uncertainty and confidence in prediction 

for model updating (Ben-Haim and Hemez, 2004). It is concluded that in order to assess the 

predictive accuracy of numerical models, one should not focus only on a single aspect during 

the model updating procedure. Ben-Haim (2001) provided examples on how model updating 

can be evaluated in terms of the performance of the system itself. In short, the info-gap 

theory could be used as a means to understand the model robustness to parameter 

uncertainties that can not be characterized with probability density functions, and to improve 

the model performance without loss of robustness. 
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The last task of the present research investigates the sensitivity of model prediction to 

the uncertainties in model parameters using the info-gap theory. Since no test data are 

available for the cracked composite beam model, and model parameters (e.g., EI, GJ and K) 

are estimated from laminated plate or box-beam model rather than experimentally measured 

directly, severe uncertainty may exist. Some results are presented in Chapter 6. 
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Chapter 3 
 

Free Vibration of a Cracked Composite 
Beam with Coupled Bending-Torsion 
 

3.1 Introduction 
 

One-dimensional beam or box-beam models are widely used as the analytical approach 

to investigate the primary aeroelastic phenomena during the initial design of an aircraft wing. 

The most important variables that affect the aerodynamic forces as well as the wing’s 

dynamics are the flexural deflection along the wingspan and the twisting of camber about a 

spanwise axis. The bending and torsion modes of a wing structure are usually coupled, 

elastically and/or inertially, due to non-uniform and asymmetric configurations. For a wing 

made of laminated composites, the most significant elastic parameters in one-dimensional 

beam models are the bending stiffness parameter, the torsional stiffness parameter and the 

bending-torsion coupling. These parameters can be determined experimentally or calculated 

by classical laminated plate theory. Although other elastic interactions such as extension-

bending coupling, warping of cross section, rotary inertia and shear deformation exist in 

composite laminates, they are relatively less significant than the bending-torsion coupling in 

terms of their effects to the aeroelastic stability of a composite wing. Therefore these 

interactions are neglected in the present research. As a primary study on the crack effect for a 

composite wing, a composite beam model involving bending, torsion and their coupling is 

considered in this chapter. 
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Vibrations of cracked composite beams, either in Bernoulli-Euler type considering only 

bending movement or in Timoshenko type with shear deformation and rotary inertia included, 

have been investigated by a few researchers. Until the present research no published papers 

could be found addressing the analytical modeling on vibrations of cracked beams with 

coupled bending-torsion. Based on linear fracture mechanics and Castigliano’s theorem, the 

local flexibility approach is implemented to model the crack. Correction on stress intensity 

factors due to the anisotropic nature of composite materials will be given. Stiffness and 

coupling parameters of the composite beam are calculated based on the coupled bending-

torsion model presented by Weisshaar (1985). The additional boundary conditions are then 

determined following the governing differential equations. Unidirectional fiber-reinforced 

composite is assumed to investigate the effects of anisotropic properties. Analytical solutions 

with the first few natural frequencies and mode shapes are presented for a cantilever beam. 

 

3.2 Local Flexibility Matrix 
 

A crack on an elastic structure introduces a local flexibility that affects the dynamic 

response of the system and its stability. To establish the local flexibility matrix of the cracked 

member under general loading, a prismatic bar with a transverse surface crack is considered 

as shown in Figure 3.1 below. The crack has a uniform depth along z-axis and the bar is 

loaded with an axial force P1, shear forces P2 and P3, bending moments P4 and P5, and a 

torsional moment P6. 
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Figure 3.1 A prismatic bar with a uniform surface crack under generalized loading conditions. 
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Let the additional displacement be ui along the direction of loading Pi and U the strain 

energy due to the crack. The additional displacement and strain energy are related by 

Castigliano’s theorem as 

 
i

i P
Uu
∂
∂

=  (3.1) 

where U has the form ∫=
a
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)( αα ; αα ∂∂= /)( UJ  is the strain energy release rate; a is 

the crack depth. By the Paris’ equation i

a

i PdJu ∂∂= ∫ /))((
0

αα , the local flexibility matrix [cij] 

per unit width has the components 

 ∫∂∂
∂

=
∂
∂

=
a

jij

i
ij dJ

PPP
uc

0

2

)( αα  (3.2) 

 

x

y

z

P1P2

P3
P4

P5 P6

L

l
a

b

fibers

x

z

t

b

a
1

2

h

φθ

t

 
 

Figure 3.2 A unidirectional fiber-reinforced composite beam with an open edge crack. 

 

Figure 3.2 illustrates a fiber-reinforced composite beam with an edge surface crack and 

unidirectional plies. For an isotropic composite material, Nikpour and Dimarogonas (1988) 

derived the final equation for the strain energy release rate J(a) as 
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where KIn, KIIn, and KIIIn are stress intensity factors (SIF) of mode I, II and III, respectively, 

corresponding to the generalized loading Pn. Here, mode I is the crack opening mode in 



 

 

41

which the crack surfaces move apart in the direction perpendicular to the crack plane, while 

the other two are associated with displacements in which the crack surfaces slide over one 

another in the direction perpendicular (mode II, or sliding mode), or parallel (mode III, or 

tearing mode) to the crack front. D1, D2, D12 and D3 are constants defined by 
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with m1 and m2 the roots of the characteristic equation (A.1) in Appendix A. Coefficients 

2211, AA , A44 and A55 are also given in Appendix A. Note in equation (3.3) the first two 

modes are mixed while the third mode is uncoupled with the first two modes if the material 

has a plane of symmetry parallel to the x-y plane, which is the case under investigation. 

 

In general the SIFs Kjn (j = I, II, III) can not be taken as the same formats as the 

counterparts of isotropic material with the same geometry and loading. Bao et al. (1992) 

suggested that Kjn (j = I, II, III) for a crack in a fiber-reinforced composite beam can be 

expressed as 

 ),/,/( 4/1 ζτπσ bLbaFaK jnnjn =  (3.5) 

where σn is the stress at the crack cross section due to the nth independent force; a is the crack 

depth; Fjn denotes the correction function; L and b are the beam length and width, 

respectively; t and z are dimensionless parameters taking into account the in-plane 

orthotropy, which are defined by 
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where the elastic constants 12121122 ,,, νGEE and 21ν are given in Appendix A. 

 

Following the paper by Bao et al. (1992) the term related to bL /4/1τ  is negligible for 

2/4/1 ≥bLτ . This condition is fulfilled for the fiber-reinforced composite beam in which the 

aspect ratio L/b is greater than 4. The SIF in equation (3.5) is then reduced to the form 
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 )/()( baFYaK jnnnjn ζπσ=  (3.7) 

where Yn(z) takes into account the anisotropy of the material, and Fjn(a/b) takes the same 

form as in isotropic material and can be found in the handbook by Tada et al. (2000) for 

different geometry and loading modes. 

 

For the unidirectional fiber-reinforced composite beam, the SIFs become: 
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 1)()( == ζζ IIIII YY . 

In equation (3.8), σ6 is the stress along the short edge of the cross section, determined with 

the classical theory of elasticity as follows. 

 

Consider the beam with rectangular cross section as shown in Figure 3.2 for stress 

analysis under the torsional moment T (= P6 while P1~5 = 0). With b > t, the stress 

distribution on the cross section can be found in the classical theory of elasticity. Denote σ6 

with engineering notation on shear stress τyz. Specifically the stress along the short edge can 

be found (Sokolnikoff, 1983) to be 
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where tnkn /)12( π+= , and µα  relates to the torsional moment by 
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For b/t > 2 and 9963.0)2/tanh(1 >> tbπ , truncating the series in equations (3.9-10) 

with the first term will result 92% and 99.5% accuracy of the analytical solution for the stress 

and moment, respectively. With only the first term in both summations along with the 

approximation 1)2/tanh( =tbπ , eliminating µα  in equations (3.9-10) and taking the 

magnitude of the stress along the short edge yields 
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For the composite beam with an edge crack shown in Figure 3.2 equation (3.2) 

becomes 
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Substitution of equation (3.3) into (3.12) yields 
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For the composite beam under consideration, there are two independent variables – the 

transverse and torsional displacements, and one dependent variable – the rotational 

displacement of the cross section. Correspondingly the external forces the beam could take 

are the bending moment (P4 in Figure 3.2), the shear force (P2) and the torsional moment (P6). 

Out of all components in the flexibility matrix only those related to i, j = 2, 4, 6 are needed. It 

is easily to show that the matrix [C] is symmetric and c24 = c46 = 0. Based on equations (3.8) 

and (3.13) the components of interest in the local flexibility matrix [C] become: 
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The final flexibility matrix at the crack location for the coupled bending and torsional 

vibration is then 
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with components given in equation (3.14). Note the off-diagonal term c22 (= c62) indicates the 

coupling between bending and torsion due to the presence of the crack. 
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3.3 The Composite Beam Model with Coupled Bending-Torsion  
 

In the preliminary design, it is quite common that an aircraft wing is modeled as a 

slender beam or box to study the bending-torsion characteristics. Weisshaar (1985) presented 

an idealized beam model for composite wings describing the coupled bending-torsion with 

three beam cross-sectional stiffness parameters along a spanwise midsurface reference axis 

(y-axis): the bending stiffness parameter EI; the torsional stiffness parameter GJ and the 

bending-torsion coupling parameter K. Note that EI and GJ are not the bending and torsion 

stiffnesses of the beam since the reference axis is not the elastic axis in general. Figure 3.3 

illustrates a beam segment with internal bending and torsional moments. 

 

x

y

z

b

tT
M

h
φ

 
 

Figure 3.3 A beam segment with internal bending  moment, 

torsional moment and deformations. 

 

The two-dimensional displacement field w(x, y, t) may be represented by a bending 

deflection h(y, t) along the y-axis and a twisting φ(y, t) about this axis. At any cross section of 

the beam the relation between the internal bending moment M, the torsional moment T, and 

the beam curvature 22 / yh ∂∂ and twisting rate y∂∂ /φ  may be expressed as 
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If a coupling measure is defined as GJEIK ⋅=Ψ /  as in Weisshaar (1985), it has been 

shown that 11 <Ψ<−  with the magnitude closing to ≤1 indicating the highly coupled while 

Ψ = 0 indicates no coupling between bending and torsion. 
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On the other hand, the relation between the plate bending moments, torsional moment 

and curvatures can be determined by classical laminated plate theory as 

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

xy

y

x

xy

y

x

DDD
DDD
DDD

M
M
M

κ
κ
κ

662616

262212

161211

. (3.17) 

Following the paper by Weisshaar (1985) the three stiffness parameters in equation (3.16) 

may be determined for high aspect-ratio beams (assuming Mx = 0 but κx is not restrained) as 

 )(
11

2
12

22 D
DDbEI −= ; 

 )(2
11

1612
26 D

DDDbK −= ; (3.18) 

 )(4
11

2
16

66 D
DDbGJ −= , 

where bending stiffnesses D11, D22, D66, D12, D16 and D26 are given in Appendix A. It may be 

of interest to know that, for the assumption of chordwise rigidity w(x, y, t) = h(y, t) – xφ(y, t) 

(here κx = 0, but Mx ∫ 0), the second term in each equation of (3.18) disappears and only the 

first term is left for EI, K and GJ. This is equivalent to the situation that D11 tends to infinity, 

or infinite chordwise rigidity. 

 

Once the parameters EI, K and GJ are obtained, the free vibration of the coupled 

bending and torsion for the composite beam, with damping, shear deformation and rotary 

inertia neglected, may be governed by the equation 
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where m is the mass per unit length, Ia the polar mass moment of inertia per unit length about 

the y-axis. 

 

Using separation of variables ( ) titi eytyeyHtyh ωω φ )(),(,)(, Φ== , equation (3.19) is 

transferred to 
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0
0

2

2

=Φ+′′′−Φ ′′

=−Φ ′′′−

ω

ω

αIHKGJ
HmKEIH iv

 (3.20) 

where the Roman letter and primes in superscript denote the derivative with respect to the 

spatial variable. As shown by Banerjee (2001), eliminating either H or Φ in equation (3.20) 

will yield a general solution in the normalized form 

 
γξγξβξβξαξαξξ
γξγξβξβξαξαξξ

sincossincossinhcosh)(
sincossincossinhcosh)(

654321

654321

BBBBBB
AAAAAAH

+++++=Φ
+++++=

 (3.21) 

where A1-6 and B1-6 are related by 

 
;/,/,/

,/,/,/

566534

431221

LAkBLAkBLAkB
LAkBLAkBLAkB

γγβ

βαα

−==−=

===
 

and other parameters are defined consequently as 

 343434 /)(,/)(,/)( γγββαα γβα kbkkbkkbk −=−=−= ,  

with  

 EIKk /−= , 

 ,]3/)3/cos()3/(2[ 2/12/1 aq −= ϕα  

 ,]3/)3/)cos(()3/(2[ 2/12/1 aq +−= ϕπβ  

 ,]3/)3/)cos(()3/(2[ 2/12/1 aq ++= ϕπγ  

 ,3/2abq +=  

 ],)3(2/()2927[(cos 2/3231 baaababc +−−= −ϕ  

 ,/ caa =  

 ,/ cbb =  

 ),/(1 2 GJEIKc ⋅−=  

 ,/22 GJLIa ωα=  

 ,/42 EILmb ω=  

 Ly /=ξ . 

 

Details about solving the sixth-order auxiliary equation resulted from eliminating either 

H or Φ in equation (3.20) are provided in Appendix B. 
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Following Banerjee (2001), the expressions for the cross-sectional rotation Q(x), the 

bending moment M(x), the shear force S(x) and the torsional moment T(x) are obtained with 

the normalized coordinate x as 

 
],cossincos

sincoshsinh)[/1()(
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 (3.22) 
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where 

 ,/,/,/ 222 γγββαα bbb ===  

 242424 /)(,/)(,/)( γγββαα γβα kcbgkcbgkcbg −=−=−= . 

 

One issue related to the coupled bending-torsion equation (3.19) is that, for the 

unidirectional composite beam in some specific fiber orientation (e.g. at 0±, 90±), bending 

and torsion will be decoupled such that equation (3.21) is no longer a valid solution to the 

eigenvalue problem. Under this situation the coupled equation simply reduces to two 

independent equations for bending and torsion. Then separation of variables yields 
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αIGJ
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 (3.23) 

The general solution in the normalized form in this case is 
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 (3.24) 

where 2/1224/142 )/(,)/( GJLIEILm ωσωη α== and m and Ia are defined as in equation (3.19). 

Again, the expressions for cross-sectional rotation Q(x), the bending moment M(x), the shear 

force S(x) and the torsional moment T(x) become 

 ],cossincoshsinh)[/1()( 4321 ηξηηξηηξηηξηξ AAAAL +−+=Θ  
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 ],cossincoshsinh)[/()( 3
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3 ηξηηξηηξηηξηξ AAAALEIS −++−=  (3.25) 

 ]cossin)[/()( 21
2 σξσσξσξ BBLGJT +−= . 

 

3.4 Additional Boundary Conditions at the Crack Location 
 

Let the edge crack be located at Llc /=ξ , as shown in Figure 3.2. The beam can be 

replaced with two intact beams connected at the crack location by the local flexibility matrix. 

The solution of H and F for each intact beam is given next. 

 

When bending and torsion are coupled due to the fiber orientation (not at 0± or 90±), let 
T]sincossincossinh[cosh γξγξβξβξαξαξ=Γ , then 

cξξ ≤≤0 , 
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1≤≤ ξξc , 
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 (3.26.2) 

There are 12 unknowns in equation (3.26) since B1-12 are related to A1-12 by the relationship in 

equation (3.21). When bending and torsion are decoupled due to the fiber orientation at 0± or 

90±, similarly let TT ]sin[cos,]sincossinh[cosh 21 σξσξηξηξηξηξ =Γ=Γ , then 

cξξ ≤≤0 , 
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 (3.27.1) 

1≤≤ ξξc , 
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There are still 12 unknowns in equation (3.27) since B1-2 are not related to A1-6. 
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At the crack location, cξξ = , the local flexibility concept demands 

1) continuity of the bending moment: 

 )()( 21 cc MM ξξ =  (3.28.1) 

2) continuity of the shear force: 

 )()( 21 cc SS ξξ =  (3.28.2) 

3) continuity of the torsional moment: 

 )()( 21 cc TT ξξ =  (3.28.3) 

4) discontinuity of the transverse displacement: 

 2 1 22 1 26 1( ) ( ) ( ) ( )c c c cH H c S c Tξ ξ ξ ξ= + +  (3.28.4) 

5) discontinuity of the cross-sectional rotation: 

 )()()( 14412 ccc Mc ξξξ +Θ=Θ  (3.28.5) 

6) discontinuity of the torsional angle: 

 )()()()( 16616212 cccc TcSc ξξξξ ++Φ=Φ  (3.28.6) 

 

For the beam in coupled bending-torsion, each crack will result in 6 additional 

boundary conditions at the crack location. Note the coupling between the transverse 

displacement and the torsional angle in equations (3.28.4) and (3.28.6) due to the presence of 

crack. 

 

3.5 Elastic Parameters of the Composite Beam 
 

The unidirectional composite beam consists of several plies aligned in the same 

direction. In each ply (and for the whole laminate), the material is assumed orthotropic with 

respect to its axes of symmetry. Material properties of each ply are taken to be: 

 

  Modulus of elasticity: Em = 2.76 GPa, Ef = 275.6 GPa; 

  Poisson’s ratio:   nm =  0.33, nf = 0.2; 

  Modulus of rigidity:  Gm = 1.036 GPa, Gf = 114.8 GPa; 

  Mass density:    rm = 1600 kg/m3, rf = 1900 kg/m3; 



 

 

51

 

where the subscript m stands for matrix and f for fiber. The geometry of the beam is taken to 

be: length L = 0.5 m, width b = 0.1 m and thickness t = 0.005m. In the following sections, q 

stands for the fiber angle, and V the fiber volume fraction, h = a/b the crack ratio, and xc = l/L 

the dimensionless crack location. 

 

Coefficients of the local flexibility matrix 
 
Once incorporated with the boundary conditions (3.28), the components in the local 

flexibility matrix given by expression (3.14), may be expressed in dimensionless formats for 

further comparison. The dimensionless constants become: 

 IIIL
EIcc Λ== 2232222 ε , with 3

22 3
2 D EI

tL
πε = ; 

 1444444 Λ== ε
L
EIcc , with 

2
1

44 3
24 ID Y EI

t L
πε = ; 

 IIIL
GJcc Λ== 666666 ε , with 

7 2
3

66 5 2 3 2
576

( 192 )
D hb GJ

bt t L
πε

π
=

−
; (3.29) 

 IIIL
GJcc Λ== 2622626 ε , with 

3
3

26 5 2 3 2
96

( 192 )
D bGJ

bt t L
πε

π
=

−
; 

 IIIL
EIcc Λ== 6222662 ε , with 

3
3

62 5 2 3 2
96

( 192 )
D bEI

bt t L
πε

π
=

−
; 

where 1Λ  and IIIΛ are dimensionless and defined the same as in equation (3.14). They are 

functions of crack ratio only (a/bœ[0, 1]) and both go to infinity with a/b approaching unity, 

as shown in Figure 3.4 and 3.5. For a crack ratio close to 1, which means the beam is nearly 

completely broken, the beam dynamics suffer severe instability and these coefficients may 

not be used in analyzing vibration characteristics. The following analysis is focused on crack 

ratios up to 0.9. 
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Figure 3.4 Dimensionless coefficient 1Λ as a function of the crack 

    ratio a/b: (a) for a/bœ[0, 0.5]; (b) for a/bœ[0.5, 1]. 

 

 

 

 

Figure 3.5 Dimensionless coefficient IIIΛ as a function of the crack 

  ratio a/b: (a) for a/b œ[0, 0.5]; (b) for a/b œ[0.5, 1]. 

 

The coefficients 6226664422 ,,,, εεεεε are all dimensionless, and are functions of fiber 

orientation, q, and volume fraction, V. Their variations are shown in Figure 3.6. 
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Figure 3.6 Variation of 6226664422 ,,,, εεεεε as a function of  

            the fiber angle (q) and the volume fraction (V). 

 

It is obvious that coefficients 6226664422 ,,,, εεεεε exhibit double symmetry for q = 0± and 

V = 0.5. Among these dimensionless coefficients, 44ε has the largest magnitude, followed by 

66ε and then 26ε and 62ε with the last two accounting for the coupling effects. In other words, 

the bending or torsional mode is affected most by the internal bending or torsional moment, 

respectively, whose distribution along the beam has been altered by the surface crack. The 

internal shear force plays the least important role by noting its relatively low magnitude. The 

dimensionless 1Λ  and IIIΛ work as “weighing” factors for the final dimensionless 

components in the local flexibility matrix. For a crack ratio up to 0.9, 1Λ is always larger than 

(d) variation of ε26 

(e) variation of ε62 
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IIIΛ so that the role of the coefficient 44ε is further enhanced. Note that in equation (3.29) 

only 44c is affected by 1Λ . 

 

As shown in equation (3.29) the coefficients 6226664422 ,,,, εεεεε are normalized with 

either EI or GJ. The plot of each coefficient shown in Figure 3.6 bears a similar “shape” to 

that of the normalized stiffness parameter EI or GJ as shown in Figure 3.7. 

 

 

Bending and torsional stiffness parameters, and the coupling term 
 
The bending and torsional stiffness parameters, EI and GJ, are functions of  q and V, as 

shown in Figure 3.7(a) and (c). For q = 0± or 90± (bending and torsion are decoupled), the 

torsional stiffness parameter GJ has the same variation with respect to the fiber volume 

fraction. However the bending stiffness parameter varies differently. When normalized by 

the stiffness of fiber angle at 0±, the dimensionless EI(q, V)/EI(0, V) and GJ(q, V)/GJ(0, V) 

are shown in Figure 3.7(b) and (d). 
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Figure 3.7 Various bending and torsional stiffness parameters, and the coupling  

         term as functions of the fiber angle (q) and the volume fraction (V). 

  Note the regions of strong coupling corresponding to q = ≤65±. 

 

The dimensionless coupling measure Ψ, defined by GJEIK ⋅=Ψ / , is an indication 

on how “strong” the bending and torsion are coupled, with ≤1 indicating the “strongest” 

coupling while 0 indicating no coupling. Figure 3.7(e) shows the coupling measure with 

respect to the fiber angle and volume fraction. Bending and torsion are decoupled when q = 

0± or 90±, or V = 0 or 1. For the fiber volume fraction being 0 or 1, the material is isotropic 

and homogeneous so that bending and torsion is basically decoupled for the beam with 

rectangular cross section.  

 

As shown in the figure, the “strong” coupling is expected for the fiber angle around 

≤65±, while the coupling is very “weak” for the angle between ≤35±. The variation of the 

coupling term with respect to the fiber angle agrees with the results presented in Weisshaar 

(1985). Note that in Figure 3.7 the stiffness parameters (EI and GJ) and the coupling measure 

(Ψ) are determined by the fiber angle and the volume fraction, and no crack is involved.  

 

Since the stiffness parameters as well as the coupling term are determined by the 

material properties (q and V), natural frequencies of the beam will be affected not only by the 

crack location and its depth, but also by the material properties. The analysis of the natural 

frequency changes follows. Three situations are selected in terms of the degree of coupling. 

(e) GJEIK ⋅=Ψ /  
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3.6 Frequency Changes 
 

In the next two sub-sections the composite beam with an edge crack is assumed to be a 

cantilever beam with a fixed end at the origin of the y-axis. In addition to the six boundary 

conditions at the crack location, other boundary conditions of the cantilever beam will be: 

at the fixed end, 0=ξ , 

 0)0()0()0( 111 =Φ=Θ=H ; (3.30.1-3) 

at the free end, 1=ξ , 

 0)1()1()1( 222 === TSM . (3.30.4-6) 

Substitution of equation (3.26) into (3.28) and (3.30) will yield the characteristic equation of 

the initially coupled beam: 

 0][ =Λ A  (3.31) 

where TAAAAAAAAAAAAA ][ 121110987654321= and [L] the 12ä12 characteristic matrix 

being the function of frequency. Substitution of equation (3.27) into (3.28) and (3.30) yields 

the characteristic equation of the initially decoupled beam: 

 0][ =Λ A  (3.32) 

where TBBBBAAAAAAAAA ][ 432187654321= and ][Λ still being a 12ä12 characteristic 

matrix. 

 

Solving for 0]det[ =Λ  or 0]det[ =Λ  yields the natural frequencies. Substituting each 

natural frequency back into equation (3.31) or (3.32) will give the corresponding mode shape. 

Note that both the natural frequency and the mode shape now depend not only on the crack 

depth and location, but also on the material properties (fiber orientation and volume fraction). 

The bending-torsion coupling described by equation (3.31) arises from both the equation of 

motion and the crack boundary condition. However, in equation (3.32) only the crack 

contributes to the coupling between bending and torsion that is initially decoupled by 

equation (3.23). 
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A) Natural frequency change as a function of crack ratio and fiber angle 
 
Assume that the crack is located at 3.0=cξ and the fiber volume fraction is V = 0.5. 

The natural frequency will be affected by the crack ratio and fiber angle. The first four 

natural frequencies are plotted in Figure 3.8 to Figure 3.11. 
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Figure 3.8 Variation of the first natural frequency as a function  

of the crack ratio (a/b) and fiber angle (q). 
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Figure 3.9 Variation of the second natural frequency as a function  

of the crack ratio (a/b) and fiber angle (q). 
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Figure 3.10 Variation of the third natural frequency as a function  

of the crack ratio (a/b) and fiber angle (q). 

 

 

 

 

 

 

(a) The third natural  

 frequency, rad/s 

(b) Normalized at 0=η   

 for each fiber angle 
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Figure 3.11 Variation of the fourth natural frequency as a function  

of the crack ratio (a/b) and fiber angle (q). 

 

When the fiber angle is around 60±, where the bending and torsion are highly coupled, 

the frequency reduction with the crack ratio increased has a different pattern as that when the 

fiber angle is smaller. For instance, Figure 3.9 and Figure 3.10 indicate an accelerated 

reduction of the second and third frequencies with respect to the crack ratio in the region of q 

= 60±. At a certain crack ratio, the natural frequency is controlled by either the bending or 

torsional mode when the fiber angle is small (the coupling is weak). However, when the fiber 

angle is increased such that the coupling becomes stronger, the same natural frequency which 

is previously controlled by the bending mode (or the torsional mode) becomes controlled by 

the torsional mode (or the bending mode). This could be the main reason for the transient 

region of the frequency reduction. 

(a) The fourth natural 

 frequency, rad/s 

(b) Normalized at 0=η   

 for each fiber angle 
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B) Natural frequency change as a function of crack location and fiber angle 
 
Assume that the crack ratio is fixed at 3.0=η  and the fiber volume fraction is V = 0.5. 

The natural frequency will be affected by the crack location and fiber angle. The first four 

natural frequencies are plotted in Figure 3.12 to Figure 3.15 as follows. 
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Figure 3.12 Variation of the first natural frequency as a function  

of the normalized crack location (xc) and fiber angle (q). 

 

 

 

 

 

 

(a) The first natural  

 frequency, rad/s 

(b) Normalized at °= 90θ   

 for each crack location 
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Figure 3.13 Variation of the second natural frequency as a function  

of the normalized crack location (xc) and fiber angle (q). 

 

 

 

 

 

 

 

 

(a) The second natural 

 frequency, rad/s 

(b) Normalized at °= 90θ   

 for each crack location 
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Figure 3.14 Variation of the third natural frequency as a function  

of the normalized crack location (xc) and fiber angle (q). 
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Figure 3.15 Variation of the fourth natural frequency as a function  

of the normalized crack location (xc) and fiber angle (q). 

 

Similar to the results in section A) where the crack ratio and fiber angle are taken as 

variables, the frequency change when bending and torsion are highly coupled has a pattern 

different from that when the coupling is “weak” at smaller fiber angles. When the fiber angle 

is fixed, the frequency change for different crack locations is affected by the corresponding 

mode shape.  

 

C) In the case of high bending-torsion coupling 
 

Assume that q = 70± and V = 0.5. Bending and torsion are highly coupled with Ψ = 

0.846. The natural frequency changes are plotted in Figure 3.16. 

(a) The fourth natural 

 frequency, rad/s 

(b) Normalized at °= 90θ   

 for each crack location 



 

 

67

00.1
0.3

0.5
0.7

0.9

η=aêb 0.1

0.3

0.5

0.7
0.9

ξc

0
20
40
60

fHη,ξcL

00.1
0.3

0.5
0.7

0.9

η=aêb

 

00.1
0.3

0.5
0.7

0.9

η=aêb 0.1

0.3

0.5

0.7
0.9

ξc

200

300

400

fHη,ξcL

00.1
0.3

0.5
0.7

0.9

η=aêb

 

00.1
0.3

0.5
0.7

0.9

η=aêb 0.1

0.3

0.5

0.7
0.9

ξc

400

600

800

fHη,ξcL

00.1
0.3

0.5
0.7

0.9

η=aêb

 

(a) The first natural frequency, 

 rad/s (fintact = 75.2 rad/s) 

(b) The second natural frequency, 

    rad/s (fintact = 445.6 rad/s) 

(c) The third natural frequency, 

    rad/s (fintact = 916.1 rad/s) 
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Figure 3.16 Variation of natural frequencies as a function of the crack ratio (a/b) and the 

normalized crack location, xc, for highly coupled situation due to material properties. 

 

In general the natural frequencies experience further reduction with the crack ratio 

increased. Figure 3.16 indicates clearly that for high crack ratio, the frequencies have a 

different variation in terms of the crack location. As noticed in Krawczuk and Ostachowicz 

(1995) and Song et al. (2003) where only bending vibration is investigated, the higher 

frequency reduction may be expected for the crack located around the largest curvature of the 

mode related to that frequency. While the trend is still shown in Figure 3.16, the largest 

frequency reduction no longer coincides with either the largest bending curvature or torsion 

curvature, since bending and torsional mode usually do not have the largest curvature or node 

at the same location. 

 

D) In cases of low bending-torsion coupling and bending-torsion decoupled 
 

When q = 30± and V = 0.5, bending and torsion are weakly coupled with Ψ = 0.0545. 

The natural frequency changes are plotted in Figure 3.17. 

 

 

 

 

 

(c) The fourth natural frequency, 

    rad/s (fintact = 1179.7 rad/s) 
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(a) The first natural frequency, 

 rad/s (fintact = 42.35 rad/s) 

(b) The second natural frequency, 

    rad/s (fintact = 265.42 rad/s) 

(c) The third natural frequency, 

    rad/s (fintact = 554.38 rad/s) 
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Figure 3.17 Variation of natural frequencies as a function of the crack ratio, a/b, and the 

normalized crack location, xc, for weakly coupled situation. 

 

It is obvious that the third natural frequency does not show a similar variation as that in 

Figure 3.16(c) of section C) where bending and torsion are highly coupled. When the 

coupling due to the material properties is weak, i.e. the coupling measure Ψ is very small, the 

frequency variation exhibits quite a similar feature as the case where bending and torsion are 

initially decoupled due to the material properties, and then coupled only due to the presence 

of the crack. The frequency variation for the latter case is shown in Figure 3.18. 

 

When q = 0± or 90±, the bending and torsion are decoupled if there are no cracks. The 

natural frequencies for bending and torsion are listed in Table 3.1 as follows. 

 

Table 3.1 The first five natural frequencies for q = 0± and 90±, rad/s 
 

rad/s θ  = 0± θ  = 90± 
 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 

Bending 43.6 273.1 764.7 1498.5 2477.2 181.0 1134.5 3176.7 6225.0 10290.4 
Torsion 413.5 1240.6 2067.7 2894.7 3721.8 same as θ  = 0± 

 

However, the presence of an edge crack introduces coupling through the additional 

boundary condition at the crack location. For q = 0± and V = 0.5, the natural frequency 

changes are plotted in Figure 3.18 as a function of the crack ratio and location. 

 

(c) The fourth natural frequency, 

    rad/s (fintact = 743.41 rad/s) 
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(a) The first natural  

  frequency, rad/s  

(b) The second natural  

  frequency, rad/s  

(c) The third natural  

  frequency, rad/s  
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Figure 3.18 Variation of natural frequencies as a function of the crack ratio, a/b, and the 

normalized crack location, xc, for situation that the coupling is introduced by the crack only. 

 

When the coupling of bending and torsion is introduced by the crack only (no coupling 

if there was no cracks), the third natural frequency has very similar variation as that of the 

first natural frequency. The coupled natural frequency is predominantly controlled by either 

the bending mode or the torsional mode, while the surface crack introduces only a “weak” 

coupling between bending and torsion. The third coupled frequency is actually close to the 

first torsional frequency so that the variation is quite close to that of the first coupled 

frequency that is controlled by the first bending mode. 

 

For the situation shown in Figure 3.17 where coupling due to material properties is 

“weak”, the coupling seems predominantly controlled by the local flexibility due to the crack 

such that the frequency variation exhibits a similar trend as in Figure 3.18. 

 

3.7 Mode Shape Changes 
 

For theoretical analysis, the change of mode shapes may help to locate the crack as 

well as its magnitude, in conjunction with the change of natural frequencies. In the situation 

of highly coupled bending and torsion (q = 70± and V = 0.5 as in Section 3.6) due to the 

material properties, the first three mode shapes are plotted in Figure 3.19-24 for different 

crack depths and locations. 

(d) The fourth natural  

  frequency, rad/s  
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A) For crack at location xc = 0.2 
 

In the following figures, each mode shape is obtained with the crack ratio at 0.2, 0.4 

and 0.6, while the crack ratio of 0 indicates no cracks. 

 

 

 

Figure 3.19 The first mode shapes for xc = 0.2, V = 0.5 and q = 70± as the crack ratio changes. 

Note that the discontinuity increases with the crack ratio at the crack location. 

 

 

 

Figure 3.20 The second mode shapes for xc = 0.2, V = 0.5  

and q = 70± as the crack ratio changes. 
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Figure 3.21 The third mode shapes for xc = 0.2, V = 0.5  

and q = 70± as the crack ratio changes. 

 

Each of the first three modes is normalized by the value at the free end of the cantilever. 

The higher mode seems more sensitive to the crack depth, even though the crack is not 

located at the large curvature position. The discontinuity of the torsional mode is more 

obvious than the bending mode. Since the characteristic equation consists of 12 simultaneous 

equations, any small deviation from the exact frequency solution changes the magnitude of 

the mode shape a lot (especially for the torsional modes). However, the shape and increasing 

distortion at the crack location may still be of value for detecting the crack location, 

particularly when both bending and torsional modes are taken into consideration.  

 

B) For crack at location xc = 0.5 
 

 

Figure 3.22 The first mode shapes for xc = 0.5, V = 0.5 and q = 70± as the crack ratio changes. 

Note that the discontinuity increases with the crack ratio at the crack location. 
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Figure 3.23 The second mode shapes for xc = 0.5, V = 0.5  

and q = 70± as the crack ratio changes. 

 

 

Figure 3.24 The third mode shapes for xc = 0.5, V = 0.5  

and q = 70± as the crack ratio changes. 

 

For the crack located at the mid-point of the cantilever, distortion of higher mode 

shapes is even more obvious. Compared with those where only the bending mode, either for 

the Euler-Bernoulli beam or for the Timoshenko beam, is studied, the change of mode shapes 

due to the crack for the composite beam with bending and torsion coupled is more significant. 

This change may be utilized to locate the crack as well as to quantify its magnitude. 
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3.8 Summary 
 

A composite beam with an edge crack and of high aspect ratio vibrates in coupled 

bending and torsional modes, either due to the material properties, due to the crack or both. 

The beam consists of several fiber-reinforced plies with all fibers orientated in the same 

direction. The local flexibility approach based on linear fracture mechanics is taken to model 

the crack and a local compliance matrix at the crack location is derived. Changes in natural 

frequencies and mode shapes of a cantilevered beam are investigated. Some observations 

include: 

 

1) The dimensionless coefficients of the compliance matrix exhibit double symmetry 

with respect to the fiber orientation and fiber volume fraction. The internal bending 

moment distribution due to the crack affects the bending mode most significantly 

through the local flexibility matrix; the effect is same for the torsional mode; the 

internal shear force distribution plays the least role in the local flexibility. 

2) The decrease of natural frequencies for a cracked composite beam depends not only 

on the crack location and its depth, but also on the material properties, as shown in 

Krawczuk and Ostachowicz (1995) for an Euler-Bernoulli beam. However, for the 

composite cantilever with bending and torsional modes coupled, the largest 

frequency reduction no longer coincides with the case that crack is located at either 

the largest bending or torsion curvatures. 

3) A “strong” coupling between the bending and torsion is observed for the fiber angle 

around ≤60±, while the coupling is “weak” for the fiber angle between ≤35±. The 

frequency variation with respect to either the crack ratio or its location usually 

experiences a transient state when the coupling is “strong”, such that the pattern is 

significantly different from the “weakly” coupled case. At this transient state the 

frequency variation previously controlled mainly by the bending mode (or the 

torsional mode) becomes controlled by the torsional mode (or the bending mode). 

4) When the fiber angle is 0 or ≤90±, bending and torsion are decoupled if there is no 

crack. The edge crack introduces coupling to the initially uncoupled bending and 

torsion. The decrease of natural frequencies exhibits a similar pattern as that when 
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the fiber angle is between ≤35±; the pattern is predominantly controlled by either 

bending or torsional mode, but not both. 

5) The coupled mode shapes are more sensitive to both the crack location and its depth. 

Higher modes exhibit more distortion at the crack location. 

 

An analytical model of a fiber-reinforced composite beam with an edge crack has been 

developed. The spectrum of the natural frequency reduction, along with observations on the 

mode shape changes indicated by this model, may be used to detect both the crack location 

and its depth for on-line structural health monitoring. When the cracked beam vibrates with a 

specific loading spectrum, the model presented in this paper may help analyze the stress 

distribution around the crack tip such that a crack propagation model may be developed to 

investigate damage prognosis, and make predictions regarding the behavior of the structure 

to future loads. For instance these results may be useful for predicting flutter speed reduction 

in aircraft with composite wings due to fatigue cracking. 

 

Contributions 
 

The following lists contributions to the literature on cracked composite beams: 

1) An analytical model of cracked composite beam vibrating in coupled bending and 

torsion is developed. The effects of the crack in conjunction of the material 

anisotropy to the modal parameters are investigated. 

2) The local flexibility concept is extended in the cracked composite beam model. 

One new coefficient (tearing mode by torsional moment) in the local flexibility 

matrix is calculated from linear fracture mechanics and classical theory of elasticity. 

The final 3×3 flexibility matrix is obtained including the bending-torsion coupling 

term in the off-diagonal position. 

3) The model developed here is new, and no analytical model of cracked composite 

beams vibrating in coupled bending-torsion exists in the literature prior to this 

research. 
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Chapter 4 
 

Crack Induced Changes in Aeroelastic 
Stabilities of a Composite Wing 
 

4.1 Introduction 
 

The one-dimensional beam model presented in Chapter 3 is selected as the basic elastic 

model of an aircraft composite wing in this chapter. The wing is assumed to be unswept with 

a large aspect ratio and uniform cross-section. The elastic coupling between bending and 

torsion modes is introduced by the unbalanced laminates as shown in Chapter 3. In addition, 

the offset of the center of gravity from the reference axis introduces an inertial coupling 

between the two modes as recognized in most wing structures. The final equation of motion 

will then include the coupling of both types. Other elastic interactions such as extension-

bending coupling, warping of cross section, rotary inertia and shear deformation are 

relatively less significant and therefore neglected here again. It is assumed that the elastic 

axis of the composite wing coincides with the reference axis of the beam model. The edge 

crack introduces additional boundary conditions at the crack location. The local flexibility 

matrix has the same components as determined in Chapter 3. Steady and quasi-steady 

aerodynamic forces are assumed in calculating flutter and divergence speeds, considering the 

fact that many UAVs with slender composite wings fly at relatively low speed. 

Unidirectional fiber orientation is used again to better understand the effect of material 

properties in conjunction with the edge crack. The fundamental mode shapes of both the 

intact and cracked beam are used in Galerkin’s method to provide an approximate solution 
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for flutter and divergence speeds. Free vibration of the cracked composite wing is analyzed. 

Changes in the flutter/divergence speed with respect to the crack ratio, its location and the 

fiber orientation are presented.  

 

4.2 Free Vibration of an Unswept Composite Wing with an Edge 
Crack 

 

The unswept composite wing modeled by a cantilever beam with uniform cross section 

is shown in Figure 4.1 where a transverse edge crack has a uniform depth and a crack plane 

parallel to the x-z plane. The elastic axis of the wing coincides with the reference axis of the 

beam model (the y-axis). The 1-2 axes are the material’s principle axes in each ply and at an 

angle of q with respect to the x-y axes. The fiber angle in each ply as well as the ply sequence 

does not affect the formulation of the beam model. However, without losing generality it is 

assumed that the fiber in each ply is orientated in the same direction, in order to investigate 

the effect of material properties on the flutter/divergence speed in the presence of the edge 

crack. 
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Figure 4.1 A cantilever beam model for an unswept composite wing with an edge crack. 

(L – beam length; b – beam width; t – beam height; l – crack location; a – crack width; x0 – 

elastic axis location; S – offset of the center of gravity; U – flow speed; f - rotation of beam 

around the reference axis; h – transverse displacement of the reference axis.) 
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The bending stiffness parameter EI, the torsional stiffness parameter GJ and the 

bending-torsion coupling parameter K are formulated the same way as in Chapter 3. Once the 

stiffnesses EI, K and GJ are obtained, free vibration of the composite wing model with 

damping neglected becomes 

 

4 3 2 2

4 3 2 2

2 3 2 2

2 3 2 2

0

0

y

y y

h hEI K m S
y y t t

h hGJ K I S
y y t t

φ φ

φ φ

∂ ∂ ∂ ∂
− + + =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
− − − =

∂ ∂ ∂ ∂

 (4.1) 

where m is the mass per unit length, Iy the polar mass moment of inertia per unit length about 

the y-axis ( 2
. .y c gI I mS= + with Ic.g. the polar mass moment of inertia per unit length about the 

center of gravity), and yS mS= . Note equation (4.1) now includes the additional inertia 

coupling term containing Sy, compared to the composite beam equation (3.19) in Chapter 3. 

 

Based on separation of variables ( ), ( ) , ( , ) ( )i t i th y t H y e y t y eω ωφ= = Φ , equation (4.1) 

is transferred to the eigenproblem 

 
2

2

( ) 0

( ) 0

iv
y

y y

EIH K mH S

GJ KH I S H

ω

ω

′′′− Φ − + Φ =

′′ ′′′Φ − + Φ + =
 (4.2) 

where the primes or Roman numeral indicate differentiation with respect to y, and are used 

throughout this chapter. Let /y Lξ =  and ( ) /D d dξ= ⋅ , then eliminating either H or Φ in 

equation (4.2) yields the auxiliary equation 

 6 4 2( ) 0D aD bD abc W+ − − =  (4.3) 

where W = Φ or H and 

 
2 2

2
yI EIL

a
EI GJ K

ω
=

⋅ −
 

 
4 2

2
mGJLb

EI GJ K
ω

=
⋅ −

 

 
2 2

(1 )(1 )y

y

S Kc
I m EI GJ

= − −
⋅
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Since 2
. .y c gI I mS= +  > 0 and 0 < 2 /( )K EI GJ⋅ < 1, it is obvious that 0 < c < 1. The closed 

form solution given in Appendix B is still valid for equation (4.2). Expressions of a, b and c 

are now different as the counterparts for the composite beam equation (3.21) in Chapter 3. 

 

The general solution of equation (4.2) becomes 

 1 2 3 4 5 6

1 2 3 4 5 6

( ) cosh sinh cos sin cos sin
( ) cosh sinh cos sin cos sin

H A A A A A A
B B B B B B

ξ αξ αξ βξ βξ γξ γξ
ξ αξ αξ βξ βξ γξ γξ

= + + + + +
Φ = + + + + +

 (4.4) 

where 

 1/ 2 1/ 2[2( / 3) cos( / 3) / 3]q aα ϕ= −  

 1/ 2 1/ 2[2( / 3) cos(( ) / 3) / 3]q aβ π ϕ= − +  

 1/ 2 1/ 2[2( / 3) cos(( ) / 3) / 3]q aγ π ϕ= + +  

with 

 2 / 3q b a= +  

 1 3 2 3/ 2cos [(27 9 2 ) /(2( 3 ) ]abc ab a a bϕ −= − − +  

and a, b and c are given in equation (4.3). 

 

Similarly, coefficients A1-6 and B1-6 are related, but the relations no longer bear the 

same formulae as in Chapter 3 for the case of no inertia coupling. After an algebraic 

manipulation, the relationships are determined to be: 

 1 2 1( ) /B k A m A Lα α= − , 2 1 2( ) /B k A m A Lα α= −  

 3 3 4( ) /B m A k A Lβ β= + , 4 4 3( ) /B m A k A Lβ β= −  (4.5) 

 5 5 6( ) /B m A k A Lγ γ= + , 6 6 5( ) /B m A k A Lγ γ= −  

where 

 3 2
ym L S tα αω= − , 3k K tα αα=  

 3 2
ym L S tβ βω= , 3

bk K tββ=  

 3 2
ym L S tγ γω= , 3k K tγ γγ=  

with 
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4 4 2

2 6 6 2 4
y

EI L mt
K L Sα

α ω
α ω

−
=

−
, 

4 4 2

2 6 6 2 4
y

EI L mt
K L Sβ

β ω
β ω

−
=

+
, 

4 4 2

2 6 6 2 4
y

EI L mt
K L Sγ

γ ω
γ ω

−
=

+
 

In particular, rather than the one-to-one relation in equation (3.21), two coefficients in A1-6 

and now coupled with two coefficients in B1-6. 

 

Substituting equation (4.5) to (4.4) yields the dimensionless expression for the twisting 

angle Φ(ξ): 

 
1 2

3 4

5 6

( ) [( sinh cosh ) ( cosh sinh )
( cos sin ) ( sin cos )
( cos sin ) ( sin cos ) ] /

k m A k m A
m k A m k A
m k A m k A L

α α α α

β β β β

γ γ γ γ

ξ αξ αξ αξ αξ
βξ βξ βξ βξ

γξ γξ γξ γξ

Φ = − + −
+ − + −

+ − + −

 (4.6) 

At any cross section, the cross-sectional rotation Q(x), the bending moment M(x), the shear 

force S(x) and the torsional moment T(x) with the normalized coordinate x become: 

 1 2 3

4 5 6

1 ( ) 1( ) [ sinh cosh sin

cos sin cos ]

dH A A A
L d L

A A A

ξξ α αξ α αξ β βξ
ξ

β βξ γ γξ γ γξ

Θ = = + −

+ − +
 (4.7) 

 

2

2 2

1 22

3 4

5 6

( ) ( )( )

[( sinh cosh ) ( cosh sinh )

( cos sin ) ( sin cos )
( cos sin ) ( sin cos ) ]

EI d H K dM
L d L d
EI r n A r n A
L

n r A n r A
n r A n r A

α α α α

β β β β

γ γ γ γ

ξ ξξ
ξ ξ

αξ αξ αξ αξ

βξ βξ βξ βξ

γξ γξ γξ γξ

Φ
= −

= − + −

+ + + −

+ + + −

 (4.8) 

 1 23

3 4

5 6

1 ( )( )

[ ( sinh cosh ) ( cosh sinh )

( sin cos ) ( cos sin )

( sin cos ) ( cos sin ) ]

dMS
L d

EI n r A n r A
L

n r A n r A

n r A n r A

α α α α

β β β β

γ γ γ γ

ξξ
ξ

α αξ αξ α αξ αξ

β βξ βξ β βξ βξ

γ γξ γξ γ γξ γξ

= −

= − + −

+ − − +

+ − − +

 (4.9) 

 

2

2 2 2

1 22

3 4

5 6

( ) ( )( )

[ ( cosh sinh ) ( sinh cosh )

( cos sin ) ( sin cos )
( cos sin ) ( sin cos ) ]

a a

K d H GJ dT
L d L d

GJ p g A p g A
L

p g A p g A
p g A p g A

α α

β β β β

γ γ γ γ

ξ ξξ
ξ ξ

αξ αξ αξ αξ

βξ βξ βξ βξ

γξ γξ γξ γξ

Φ
= − +

= − + − +

+ − + +

+ − + +

 (4.10) 
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where 

 ( ) /R Rn R Kk R EI EI= − ⋅ , /R Rr RKm EI=  

 ( ) /R Rp R RK GJk GJ= − , R Rg Rm= , R = α, β, γ. 

Expressions for Q(x), M(x), S(x) and T(x) become more sophisticated as apposed to the 

counterparts in equation (3.22) in Chapter 3. 

 

The local flexibility matrix [C] is the same as expressed in equation (3.15) with 

components given in equation (3.14). Let the edge crack be located at Llc /=ξ , as shown in 

Figure 4.1. The beam can be replaced with two intact beams connected at the crack location. 

let T]sincossincossinh[cosh γξγξβξβξαξαξ=Γ , then 

cξξ ≤≤0 , 

 
;][)(
,][)(

6543211

6543211

Γ=Φ
Γ=

BBBBBB
AAAAAAH

ξ
ξ

 (4.11.1) 

1≤≤ ξξc , 

 
.][)(
,][)(

1211109872

1211109872

Γ=Φ
Γ=

BBBBBB
AAAAAAH

ξ
ξ

 (4.11.2) 

There are 12 unknowns in equation (4.11) since B1-12 are related to A1-12 by the relationship in 

equation (4.5). Again, at the crack location, cξξ = , the local flexibility concept demands 

 1 2( ) ( )c cM Mξ ξ=  

 1 2( ) ( )c cS Sξ ξ=   

 1 2( ) ( )c cT Tξ ξ=  (4.12.1-6) 

 2 1 22 1 26 1( ) ( ) ( ) ( )c c c cH H c S c Tξ ξ ξ ξ= + +   

 2 1 44 1( ) ( ) ( )c c cc Mξ ξ ξΘ = Θ +  

 2 1 62 1 66 1( ) ( ) ( ) ( )c c c cc S c Tξ ξ ξ ξΦ = Φ + +  

For a cantilever wing, the fixed-free boundary conditions require that 

at the fixed end, 0=ξ , 

 0)0()0()0( 111 =Φ=Θ=H ; (4.13.1-3) 

at the free end, 1=ξ , 
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 0)1()1()1( 222 === TSM . (4.13.4-6) 

Substitution of equation (4.11) into (4.12) and (4.13) will yield the characteristic equation: 

 [ ] 0AΛ =  (4.14) 

where TAAAAAAAAAAAAA ][ 121110987654321= and [L] the 12ä12 characteristic matrix 

being a function of frequency. Natural frequencies can be obtained by solving equations 

0]det[ =Λ . Substituting each natural frequency back into equation (4.14) yields the 

corresponding mode shape. Here the bending-torsion coupling is permanently present due to 

the inertial coupling, even though the elastic coupling vanishes when fiber angle q = 0± or 90± 

as seen in Chapter 3. 

 

4.3 Aeroelastic Stabilities of the Cracked Composite Wing  
 

A) Location of the elastic axis 
 

One of the important structural properties in aeroelastic analysis of an aircraft wing is 

the location of the elastic axis. The elastic axis of a beam is usually defined as the locus of 

shear centers of the cross sections along the wing span (Fung, 1969), while the shear center is 

defined as a point through which a shear force produces only bending and no torsional 

deflection at any cross section of the beam. However, except in some special cases such as 

when the composite laminate has a symmetric stacking, it is nearly impossible to find such an 

elastic axis of a composite beam in a closed form for arbitrary lay-ups. The beam model 

without the inertia coupling as presented in Chapter 3 is taken here as a simple example to 

illustrate this issue. 

 

By equation (3.16), the bending curvature and twisting rate of the beam’s mid-surface, 

defined as one-dimensional variables along the reference axis, can be written as 

 11 12
2

12 22

1 a ah GJ K M M
a aK EI T TEI GJ Kφ

′′⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎡ ⎤⎡ ⎤
= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥′ ⋅ −⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

 (4.15) 

where 11 12 222 2 2, ,GJ K EIa a a
EI GJ K EI GJ K EI GJ K

= = =
⋅ − ⋅ − ⋅ −

. 
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Assume that a shear force, P, in the negative z-axis, is applied at the point M(x0, y0), 

such that only bending and no twisting result on the cross section perpendicular to y-axis and 

containing Point M. Then at any other cross section between the fixed end and the point M, 

one has the internal bending and torsional moments as )( 0 yyPM −−= and 0T Px= , 

respectively. Substituting these back into equation (4.15) and solving for f by imposing the 

boundary condition f(0) = 0 yields 

 PyayaxPyay )(
2
1)( 120220

2
12 −+=φ  (4.16) 

The assumption requires that 2
0 12 0 0 22 0 12 0

1( ) ( ) 0
2

y a Py x a y a Pyφ = + − = , which implies that 

 12
0 0 0

22

1
2 2

a Kx y y
a EI

= =  (4.17) 

However, condition (4.17) only ensures that the cross section (containing point M) on which 

the shear force P is applied has only bending and no twisting deflection. Substituting 

equation (4.17) back to (4.16) gives the twist angle of any other cross section between the 

fixed end and up to y = y0 as: 

 2 2
12 0 02

1( ) ( ) ( )
2 2( )

KPy a P y y y y y y
EI GJ K

φ = − = −
⋅ −

 (4.18) 

It is obvious that on any cross section for 0 < y < y0 there is always twisting, and the angle 

depends not only on the material properties, but also on the magnitude of the shear force P. 

Therefore, the straight line defined by equation (4.17) is not the elastic axis defined earlier in 

this section, but the flexural line as defined in Fung (1969). 

 

The inertia axis, elastic axis, aerodynamic center and airfoil are fundamental factors to 

determine aerodynamic forces (steady, quasi-steady or unsteady). Before the lifting force L 

and pitching moment M can be selected, some assumptions should be made. The beam model 

is used only as the load-carrying structure; the real wing must have upper and lower skins 

such that specific airfoil profile is obtained to meet aerodynamic requirements. The actual 

elastic axis of the wing, if it exists, may never coincide with the one of the beam model (also 

if it exists). In other words, the assumption on the elastic axis may be independent on the 

beam model; it may result from actual aerodynamic requirements on the airfoil profile and 
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the wing structure in detail. In short, the elastic axis, as well as the inertia axis, is used only 

to provide the external forces to the beam model, and could have nothing to do with the 

actual elastic axis of the beam model. In the following analysis, it is assumed that the elastic 

axis of the wing coincides with the reference axis of the beam model, and the inertia axis is 

parallel to the elastic axis at a constant distance S as shown in Figure 4.1. 

 

B) Aeroelastic analysis by Galerkin’s method 
 

Since the flight speed is presumed to be low enough and little vortex could be produced 

due to the low angle of attack and small displacements, it is reasonable to consider that the 

flow is incompressible and irrotational. Furthermore, the large aspect ratio also justifies the 

use of two-dimensional strip theory, which means that the aerodynamic lift and moment at 

one chord section depends only on the angle of attack at that section, and is independent of 

the angle of attack at any other spanwise locations. Under these circumstances, the lifting 

force and pitching moment per unit span by a steady aerodynamic model can be expressed as 

(Dowell et al., 1978): 

 

2

2
1
4

L

o

U CL b

xM Lb
b

ρ φ
φ

∂
=

∂

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (4.19) 

where L is the lifting force, positive upward, and M the pitching moment, positive nose up; 

CL is the lifting coefficient with the theoretical value dCL/df = 2p; U is the speed of an 

incompressible air fluid; ρ is the air density; x0 is the distance between the leading edge and 

the assumed elastic axis as shown in Figure 4.1. If the effective angle of attack contribution is 

also taken into account, the slightly more complex counterparts by a quasi-steady 

aerodynamic model may be expressed as (Fung, 1969): 

 

2

2 3
2

1 3
2 4

1 1 3
2 4 4 16

L o

L o o

U C h b xL b
U t U b t

U C x h b x UbM b
b U t U b t t

ρ φφ
φ

ρ φ ρ π φφ
φ

∂ ∂ ∂⎡ ⎤⎛ ⎞= + + −⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦
∂ ∂ ∂ ∂⎡ ⎤⎛ ⎞ ⎛ ⎞= − + + − −⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

 (4.20) 
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The equation of motion of the composite wing with aerodynamic forces applied 

becomes: 

 

4 3 2 2

4 3 2 2

2 3 2 2

2 3 2 2

0

0

y

y y

h hEI K m S L
y y t t

h hGJ K I S M
y y t t

φ φ

α φ

∂ ∂ ∂ ∂
− + + + =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
− − − + =

∂ ∂ ∂ ∂

 (4.21) 

 

Flutter/divergence speed by steady aerodynamic forces 
 
Substituting equation (4.19) to (4.21) yields the governing equation with steady 

aerodynamic forces as: 

 

4 3 2 2
2

14 3 2 2

2 3 2 2
2

12 3 2 2

0

0

y

y y

h hEI K m S LU
y y t t

h hGJ K I S M U
y y t t

φ φ φ

α φ φ

∂ ∂ ∂ ∂
− + + + =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
− − − + =

∂ ∂ ∂ ∂

 (4.22) 

where 

 1 2
Lb CL ρ
φ

∂
=

∂
, 

2

1
1

2 4
L ob C xM

b
ρ

φ
∂ ⎛ ⎞= −⎜ ⎟∂ ⎝ ⎠

 

The linear homogeneous equations (4.22) may have a solution in the form: 

 ( , ) ( ) , ( , ) ( )t th y t Af y e y t Bg y eλ λφ= =  (4.23) 

where A, B and l are complex constants in general.  

 

Since the flutter modes are not known at the beginning, an approximate solution by 

Galerkin’s method is usually obtained by assuming that the functions f(y) and g(y) are real 

and satisfy the boundary conditions so that they can be taken as the fundamental mode 

shapes of free vibration. Similarly it is natural for the cracked beam model to assume that f(y) 

and g(y) are the fundamental mode shapes satisfying boundary conditions not only at the 

ends but also at the crack location. The real functions f(y) and g(y) are now piecewise 

continuous with a discontinuity at the crack location. Since both f(y) and g(y) satisfy the 

boundary condition at the crack location, they are carrying most of the information related 

directly to the presence of the crack. Meanwhile since the aerodynamic forces are derived 

from two-dimensional strip theory, they are determined by the airfoil and angle of attack at 
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each cross section; the aerodynamic forces at one cross section do not affect the forces at 

other cross sections. In other words, the discontinuity of f(y) and g(y) does not affect the 

validation of the aerodynamic forces as given in equation (4.19) or (4.20). In the following 

analysis, functions f(y) and g(y) are taken as the fundamental bending and torsional mode 

shapes, respectively. They are obtained during the free vibration analysis presented in the last 

sub-section. Note that f(y) and g(y) are not decoupled bending and torsional mode shapes as 

widely used in the preliminary aeroelastic analysis of a wing structure, but coupled mode 

shapes at the first natural frequency. Using coupled modes as trial functions certainly 

provides more accurate solutions than the decoupled modes in aeroelastic analysis (Fung, 

1969). 

 

Substituting equation (4.23) to equation (4.22), and eliminating teλ yields 

 2 2 2
1[ ] [ ] 0iv

yA EIf mf B Kg S g LU gλ λ′′′+ + − + + =  (4.24.1) 

 2 2 2
1[ ] [ ] 0y yA Kf S f B GJg I g M U gλ λ′′′ ′′− − + + + =  (4.24.2) 

The coupled bending and torsional mode shapes for the cracked wing model can be 

expressed, respectively, as: 

 1 1

2 2

( ) 0 ( ) 0
( ) , ( )

( ) ( )
f y y l g y y l

f y g y
f y l y L g y l y L

≤ ≤ ≤ ≤⎧ ⎧
= =⎨ ⎨< ≤ < ≤⎩ ⎩

 (4.25) 

where l is the crack location with f1(y), f2(y), g1(y) and g2(y) all continuous within the 

individual domain. Multiplying equation (4.24.1) by f(y) and equation (4.24.2) by g(y), and 

integrating over [0, L] yields: 

 
2 2 2

11 11 12 12 12
2 2 2

21 21 22 22 22

[ ] [ ] 0

[ ] [ ] 0

A a c B a b U c

A a c B a b U c

λ λ

λ λ

+ + + + =

+ + + + =
 (4.26) 

where 

11 1 1 2 20
( )

l Liv iv

l
a EI f f dy f f dy= +∫ ∫ , 12 1 1 2 20

( )
l L

l
a K g f dy g f dy′′′ ′′′= − +∫ ∫  

21 1 1 2 20
( )

l L

l
a K f g dy f g dy′′′ ′′′= +∫ ∫ , 22 1 1 2 20

( )
l L

l
a GJ g g dy g g dy′′ ′′= − +∫ ∫  

12 1 1 1 2 20
( )

l L

l
b L g f dy g f dy= +∫ ∫ , 2 2

22 1 1 20
( )

l L

l
b M g dy g dy= − +∫ ∫  
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2 2
11 1 20

( )
l L

l
c m f dy f dy= +∫ ∫ , 12 1 1 2 20

( )
l L

y l
c S g f dy g f dy= +∫ ∫  

21 12c c= , 2 2
22 1 20

( )
l L

y l
c I g dy g dy= +∫ ∫  

A non-trivial solution of equation (4.26) requires that 

 
2 2 2

11 11 12 12 12
2 2 2

21 21 22 22 22

det 0
a c a b U c
a c a b U c

λ λ
λ λ

⎡ ⎤+ + +
=⎢ ⎥+ + +⎣ ⎦

 

or, 

 4 2 2 2
1 1 1 1 1( ) 0A B C U D FUλ λ+ + + + =  (4.27) 

where coefficients A1, B1, C1, D1 and F1 are all constants and depend only on integrals given 

in equation (4.26): 

1 11 22 12 21A c c c c= − , 1 11 22 22 11 21 12 12 21B a c a c a c a c= + − − , 1 22 11 12 21C b c b c= −  

1 11 22 12 21D a a a a= − , 1 11 22 21 12F a b a b= −  

The characteristic equation (4.27) can be rewritten as 

 4 2
0 0 0 0A C Eλ λ+ + =  (4.28) 

where the coefficients depend on the constants given in equation (26) and the speed of air 

flow U as 

0 1A A= , 2
0 1 1C B C U= + ,  2

0 1 1E D FU= + . 

For non-zero A0, Equation (4.28) has a solution in the form: 

 
2

2 0 0 0 0

0

4
2

C C A E
A

λ
− ± −

=  (4.29) 

 

Solving equation (4.28) for λ2 would yields a pair of real or complex values, depending 

on the sign of 2
0 0 04C A E− . Since the system has no damping as shown in the governing 

equation (4.22), a solution of h(y, t) and φ(y, t) is stable only in the case that all values of λ2 

are purely real and negative. A positive real value of λ2 yields a positive real root of λ in 

equation (4.28) while a complex value of λ2 yields that at least one root of λ has a positive 

real part – both indicate an unstable motion. Meanwhile, it can be shown easily that A0 = A1 

is a positive constant, not depending on air speed. Therefore, a stable solution requires that 

the following coefficients must be all positive simultaneously: 



 

 

90

 2
0 0 0 0 00, 0, 4 0C E C A E> > − >  (4.30) 

When air speed U increases from zero, C0, E0 and 2
0 0 04C A E−  must be all greater than zero 

for a stable motion. With the increasing of U, it is obvious that either E0 or 2
0 0 04C A E− will 

become zero before C0 does if the system becomes unstable. Hence, it is needed only to 

check the signs of E0 and 2
0 0 04C A E− . At the critical speed, E0 = 0 or 2

0 0 04 0C A E− = . 

 

1) If E0 = 0, equation (4.28) has a root λ = 0, which results in the divergence speed as 

 
12212211

22112112

1

12

baba
aaaa

F
DUdiv −

−
=−=  (4.31) 

2) If 2
0 0 04 0C A E− = , substitution of C0, A0 and E0 in equation (4.28) yields 

 4 2 0RU SU T+ + =  (4.32) 

where 
2
1R C= , 1 1 1 22( 2 )S B C A F= − , 2

1 1 14T B A D= − . 

The flutter speed can then be determined from equation (4.32) to be: 

 2 21 4
2 2flutt
SU S RT
R R

= − ± −  (4.33) 

where the smaller positive value corresponds to the critical flutter speed. 

 

In the cases that F1 = 0 or D1/F1 > 0 in equation (4.31), or J = 0 or S2 – 4RT <0 in 

equation (4.33), the stability condition can be determined from the criterion (4.30) by 

calculating all coefficients in equation (4.28) with a slightly increased air speed, U, above 

zero. This may result in infinite (or zero) divergence/flutter speed, indicating 

aerodynamically stable (or unstable) motion in each situation. The flutter instability is 

usually reached first in the design of an aircraft wing. However, in some cases such as when 

the fibers are orientated at a certain angle, divergence can occur first, thus divergence needs 

to be considered as well. 
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Flutter/divergence speed by quasi-steady aerodynamic forces 
 
Similarly, substituting equation (4.20) to (4.21) yields the governing equation with 

quasi-steady aerodynamic forces as: 

 

4 3 2 2

1 24 3 2 2

2 3 2 2

1 22 3 2 2

( ) 0

( ) 0

y

y y

h h hEI K m S LU U L U
y y t t t t

h h hGJ K I S M U U M U
y y t t t t

φ φ φφ

α φ φφ

∂ ∂ ∂ ∂ ∂ ∂
− + + + + + =

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
− − − + + + =

∂ ∂ ∂ ∂ ∂ ∂

 (4.34) 

where L1 and M1 are the same as in equation (4.22) and 

 2 1
3
4

oxL L b
b

⎛ ⎞= −⎜ ⎟
⎝ ⎠

, 
3

2 1
3
4 16

ox bM M b
b

ρ π⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 

Substituting the same assumed harmonic solution by equation (4.23) into equation (4.34) and 

eliminating teλ yields 

 2 2 2
1 1 2[ ( )] [ ( )] 0iv

yA EIf f m L U B Kg g LU S L Uλ λ λ λ′′′+ + + − + + + =  (4.35.1) 

 2 2 2
1 1 2[ ( )] [ ( )] 0y yA Kf f S M U B GJg g M U I M Uλ λ λ λ′′′ ′′+ − + − − − + =  (4.35.2) 

where 2121 and,, MMLL are the same as in equation (4.34). With the same assumption on 

f1(y), f2(y), g1(y) and g2(y) as expressed with equation (4.25), multiplying equation (4.35.1) by 

f(y) and equation (4.35.2) by g(y), and integrating over [0, L] yields: 

 
2 2 2

11 11 11 12 12 12 12
2 2 2

21 21 21 22 22 22 22

[ ] [ ] 0

[ ] [ ] 0

A a c d U B a b U c d U

A a c d U B a b U c d U

λ λ λ λ

λ λ λ λ

+ + + + + + =

+ + + + + + =
 (4.36) 

where 

11 1 1 2 20
( )

l Liv iv

l
a EI f f dy f f dy= +∫ ∫ , 12 1 1 2 20

( )
l L

l
a K g f dy g f dy′′′ ′′′= − +∫ ∫  

21 1 1 2 20
( )

l L

l
a K f g dy f g dy′′′ ′′′= +∫ ∫ , 22 1 1 2 20

( )
l L

l
a GJ g g dy g g dy′′ ′′= − +∫ ∫  

12 1 1 1 2 20
( )

l L

l
b L g f dy g f dy= +∫ ∫ , 2 2

22 1 1 20
( )

l L

l
b M g dy g dy= − +∫ ∫  

2 2
11 1 20

( )
l L

l
c m f dy f dy= +∫ ∫ , 2 2

22 1 20
( )

l L

y l
c I g dy g dy= +∫ ∫  

12 1 1 2 2 210
( )

l L

y l
c S g f dy g f dy c= + =∫ ∫  

2 2
11 1 1 20

( )
l L

l
d L f dy f dy= +∫ ∫ , 12 2 1 1 2 20

( )
l L

l
d L g f dy g f dy= +∫ ∫  
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21 1 1 1 2 20
( )

l L

l
d M f g dy f g dy= − +∫ ∫ , 2 2

22 2 1 20
( )

l L

l
d M g dy g dy= − +∫ ∫ . 

A non-trivial solution of equation (4.36) requires that 
2 2 2

11 11 11 12 12 12 12
2 2 2

21 21 21 22 22 22 22

det 0
a c d U a b U c d U
a c d U a b U c d U

λ λ λ λ
λ λ λ λ

⎡ ⎤+ + + + +
=⎢ ⎥+ + + + +⎣ ⎦

 

or, 

 4 3 2 2 3 2
1 2 1 1 2 2 1 1( ) ( ) 0A B U B C U D U F U D FUλ λ λ λ+ + + + + + + =  (4.37) 

where the constants are given by 

1 11 22 12 21A c c c c= −  

1 11 22 22 11 21 12 12 21B a c a c a c a c= + − − , 2 11 22 22 11 21 12 12 21B c d c d c d c d= + − −  

1 22 11 11 22 12 21 12 21C b c d d b c d d= + − −  

1 11 22 12 21D a a a a= − , 2 11 22 22 11 21 12 12 21D a d a d a d a d= + − −  

1 11 22 21 12F a b a b= − , 2 22 11 12 21F b d b d= −  

 

The characteristic equation (4.37) can then be rewritten as 

 000
2

0
3

0
4

0 =++++ EDCBA λλλλ  (4.38) 

where  

10 AA = ,  UBB 20 = ,  2
110 UCBC += ,  3

220 UFUDD += ,  2
110 UFDE += . 

 

The stability condition requires that all roots of equation (4.38) have negative real parts. 

The necessary and sufficient condition is that the coefficients A0, B0, C0, D0, E0 and the Routh 

discriminant 
2 2

0 0 0 0 0 0 0R B C D B E D A= − −  

have the same sign (Fung, 1969). Since 10 AA = is always positive, the stability condition 

becomes 

 B0 > 0, C0 > 0,  D0 > 0,  E0 > 0 and R > 0 (4.39) 

Again, since E0 and R become zero before either B0, C0 or D0 does with increasing air speed, 

the stability condition can be further simplified to evaluate the signs of E0 and R. At the 

critical condition, E0 = 0 or/and R = 0. 
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1) If E0 = 0, equation (4.38) has a root l = 0, which results in the same divergence speed as in 

equation (4.31). 

 

2) If R = 0, substitution of B0, C0, D0 and E0 for R yields 

 2 4 2( ) 0U JU MU N+ + =  (4.40) 

where 
2

2 1 2 1 2J B C F A F= −  

2
2 1 2 2 1 1 2 2 1 2 22M B C D B F B B F A D F= − + −  

2 2
1 2 2 2 1 1 2N B B D B D A D= − −  

The solution U = 0 in equation (4.40) is trivial since it only indicates that the beam has a 

harmonic response in still air. The actual flutter speed can be determined from equation (4.40) 

to be: 

 2 21 4
2 2flutt
MU M JN
J J

= − ± −  (4.41) 

where the smaller positive value corresponds to the critical flutter speed. Following the same 

procedure aforementioned for the cases that J = 0 or M2 – 4JN <0 in equation (4.41), the 

stability condition can be finally determined. 

 

C) Some plots for the wing without cracks 
 

The composite beam consists of several plies aligned in the same direction. In each ply 

the material is assumed orthotropic with respect to its axes of symmetry. Material properties 

of each ply are taken to be the same as in Chapter 3. Although the three elastic parameters 

(EI, GJ and K) are calculated directly form the beam model, they are equivalent to those 

obtained by a box-beam model, and can be further determined numerically or experimentally 

by the real composite wing structure. Values from a real composite wing certainly benefit the 

analysis, affecting the actual flutter/divergence speed. However, the present research does not 

aim at an accurate calculation of either flutter or divergence speed; instead our focus is on the 

variation or rate of variation in the presence of a surface crack. Therefore, the variation of 

flutter and divergence speeds predicted by Galerkin’s method here for an intact wing with 

respect to different fiber angles should be treated as a profile, rather than an accurate 
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mapping. The model geometry of the cantilever wing is taken to be: length L = 1.0 m, width 

b = 0.25 m, thickness t = 0.02 m and offset of the center of gravity S = 0.05 m. In the 

following sections, q stands for the fiber angle, and V the fiber volume fraction, h = a/b the 

crack ratio, and xc = l/L the dimensionless crack location. 

 

It may be of interest to first explore the variation of the three elastic parameters, natural 

frequencies and flutter/divergence speed with respect to fiber angles for the beam without 

any cracks. Figure 4.2 illustrates the variation of EI, GJ, K and Ψ ( /K EI GJ= ⋅ ) for fiber 

angles between 0° and 180°. Figure 4.3 shows the variation of the first four natural 

frequencies for the same range of fiber angles. Figure 4.4 is the plot of normalized flutter and 

divergence speeds for steady aerodynamic forces, while the same plot for quasi-steady 

aerodynamic forces is shown in Figure 4.5. 

 

Figure 4.2 indicates the symmetry of EI and GJ and antisymmetry of K and Ψ with 

respect to the fiber angle at 90± (or 0±), which is expected as the same characteristics 

presented in Chapter 3. However, the symmetric nature of natural frequencies for beams 

without the inertia coupling no longer exists for the wing model including the inertia 

coupling, except for the very first natural frequency as shown in Figure 4.3. The lowest mode 

is predominantly controlled by the bending mode during the variation of fiber angles. Plots of 

higher modes show the effect that either the bending or torsional mode is no longer in the 

shape of a certain mode but “distorted” to some extent, especially in the range that two 

consecutive frequencies are close to each other. However, for the variation of the lowest 

frequency, both the bending and torsional modes bear the shape of its first mode. The lowest 

coupled bending and torsional modes will be selected in the following analysis, for both the 

intact and cracked beams. 

 

In Figures 4.4 and 4.5, VD and VF represent the divergence speed and flutter speed, 

respectively, and VR is a reference speed selected to normalized VD and VF. Although the 

divergence speed is the same for either steady or quasi-steady aerodynamic models, flutter 

speeds predicted by the steady aerodynamics model are about 60% higher than those by the 

quasi-steady aerodynamic model for fiber angles less than 50± or greater than 149±, and about 
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35% higher for fiber angles between 50± and 94±. Flutter speeds predicted by the steady 

aerodynamic model are much less conservative. Another significant difference is that the 

quasi-steady aerodynamic model predicts flutter instabilities for fiber angles between 94± and 

149 with a severe instability around 97±, while the steady aerodynamic model indicates no 

flutter for the same range of fiber angles. Flutter speeds can be higher or lower than 

divergence speeds, depending on the range of fiber angles; either speed can go to infinity at a 

certain range of fiber angles. The same phenomena were also observed by Cesnik et al. (1996) 

who investigated variation of flutter and divergence speeds of composite wing with box-

beam models. Moreover, changing the elastic axis location or inertia axis location 

significantly affects both divergence and flutter curves in the way that the curves are not only 

shifted but also “re-shaped.” The inertia axis ahead of the elastic axis (with a negative S 

value) tends to improve aerodynamic stabilities by increasing both flutter and divergence 

speeds for the same range of fiber angles, the same phenomenon for conventional wing 

structures (Dowell et at., 1978). The current research assumes that the elastic axis is located 

in the leading half chord with the distance to the leading edge as xo = 0.45b, close to the 

center line, while the inertia axis is 0.2b aft. This is a reasonable assumption for a cantilever 

composite wing with a large aspect ratio. 
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Figure 4.2 Variation of the elastic parameters EI, GJ, K and Ψ with respect to fiber angles. 
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Figure 4.3 Variation of the first four natural frequencies with respect to fiber angles. 
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Figure 4.4 Variation of flutter and divergence speeds w.r.t. fiber angles (steady aero forces). 
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Figure 4.5 Variation of flutter and divergence speeds w.r.t. fiber angles  

(quasi-steady aero forces). 

 

4.4 Effects of Crack Ratios and Fiber Angles 
 

The edge crack reduces the stiffness of the composite wing so that the global vibration 

modes are disturbed. The disturbance is not equally exerted on the coupled bending mode or 

torsional mode, as indicated in the case of no inertia coupling in Chapter 3. A plot of the first 

coupled bending and torsional modes in terms of the crack ratio indicates that the bending 

mode is always disturbed more than the torsional mode due to the crack. 

 

To investigate effects of crack to flutter/divergence speed at different fiber angles, the 

following 9 fiber angles are selected: 10±, 20±, 30±, 75±, 90±, 110±, 130±, 146± and 155±. The 

selection is based on the variation of flutter speed shown in Figure 4.4 and 4.5. A fiber angle 

is chosen for the range in which the flutter speed experiences either increasing or decreasing. 

For the crack located at xc = 0.2, the normalized divergence speed with respect to the crack 
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ratio is plotted in Figure 4.6, and Figure 4.7 and 4.8 illustrate the variation of flutter speeds. 

The corresponding speed in the absence of the crack is selected as the reference speed VR. 
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Figure 4.6 Variation of divergence speed w.r.t. crack ratio. 
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Figure 4.7 Variation of flutter speed w.r.t. crack ratio (steady aero-forces). 
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Figure 4.8 Variation of flutter speed w.r.t. crack ratio (quasi-steady aero-forces). 

 

The divergence speed shown in Figure 4.6 tends to increase with the crack ratio 

increased for the fiber angle at 110± or 146±, while in any other situations the divergence 

speed decreases with the increasing crack ratio. On the other hand, the flutter speed predicted 

by the steady aerodynamic model tends to increase slightly for fiber angle at 75±, with an 

increase-decrease variation for fiber angle at 90±. At any other fiber angles the speed 

decreases with the increasing crack ratio. The flutter speed predicted by the quasi-steady 

aerodynamic model, however, decreases with the increasing crack ratio for most fiber angles. 

The rate of decrease is much higher for smaller fiber angles. An increase is only observed for 

the fiber angle at 130± and 146± where the steady aerodynamic model predicts no flutter 

instability. Recall that due to the existence of inertia coupling, the cracked mode shapes are 

no longer symmetric when the fiber angle is symmetric by the elastic axis. The change in 

divergence/flutter speed of the composite wing is now affected by the interaction of the crack 

ratio, the elastic bending-torsion coupling of the material and the inertia bending-torsion 

coupling of the wing structure. 
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The phenomenon that a crack tends to increase divergence/flutter speeds at a certain 

range of fiber angles was also observed by Lin et al. (1991) who investigated the aeroelastic 

stabilities of a cracked anisotropic panel. For a wing structure, the flutter instability usually 

occurs when two consecutive frequencies coalesce or tend to “merge” (Bisplinghoff et al., 

1996). It is true that at any fiber angles and for a fixed crack (both magnitude and location), 

solving equation (4.38) for the quasi-steady aerodynamic model indicates that the first two 

critical frequencies tend to merge with increasing airspeed. However, with the directional 

stiffness changing with fiber angles, the presence of a crack may cause changes in mode 

shapes such that certain critical frequencies may be increased or remain unchanged while 

other critical frequencies may be decreased. In other words, there exists the chance that a 

crack may result in two consecutive frequencies separating rather than merging with each 

other.  

 

To illustrate the crack effects, two fiber angles (20± and 146±) are selected in solving 

equation (4.38) for critical frequencies with the quasi-steady aerodynamic model. When the 

wing has no cracks, there is no significant difference between elastic parameters and the first 

two natural frequencies for the two fiber angles, as shown in Table 4.1. For the airspeed is 

fixed at 100 m/s (below divergence and flutter speeds), Figure 4.9 clearly indicates that with 

increasing crack ratio, the two critical frequencies (obtained by equation (4.38)) tend to 

coalesce for fiber angle at 20± and separate for fiber angle at 146±. 

 

Table 4.1 Elastic parameters and the first two natural frequencies of the intact wing 

Fiber 
angle 

EI, N⋅m2 GJ, N⋅m2 Ψ, N⋅m2 The 1st natural 
frequency, rad/s 

The 2nd natural 
frequency, rad/s 

θ = 20± 3635.2 7537.1 -0.054 69.8 429.1 

θ = 146± 3722.3 11391.3 -0.132 70.5 435.9 

 

It should be noted that the cracked composite beam model as well as the cracked 

composite wing model is valid only for small cracks, since a larger crack may violate the 

assumption that the system is linear and involves only small displacements. Therefore, it is 

suggested that for a crack ratio larger than 0.5, predictions shown in all related plots should 

not be relied on as an accurate result. 
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  (a) Fiber angle θ = 20±           (b) Fiber angle θ = 146± 

Figure 4.9 Variation of the two critical frequencies w.r.t. crack ratio at a constant airspeed. 

 

4.5 Effects of Crack Locations and Fiber Angles 
 

For the case that the crack ratio is constant at h = a/b = 0.3, effects of the dimensionless 

crack location are shown in Figure 4.10 for divergence speeds and Figures 4.11 and 4.12 for 

flutter speeds. 

 

For smaller fiber angles (θ = 10± or 20±) where the bending stiffness is low and the 

elastic coupling is weak, the lowest flutter and divergence speeds are found near the root of 

the wing as shown in the figures below. For the fiber angle larger than 30±, the overall 

variation in divergence speeds is within the 5% range. When the crack location moves along 

the wing span, the flutter speed predicted by the quasi-steady aerodynamic model usually 

does not change monotonically with the crack location. Whether a crack near the wing root 

reduces the flutter speed more than the one at other locations is certainly affected by the 

elastic and inertia properties of the wing, and the question may not be answered simply by 

“yes” or “no.” 
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Figure 4.10 Variation of divergence speed w.r.t. crack location. 
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Figure 4.11 Variation of flutter speed w.r.t. crack location (steady aero-forces). 
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Figure 4.12 Variation of flutter speed w.r.t. crack location (quasi-steady aero-forces). 

 

4.6 Summary 
 

The aeroelastic characteristics of an unswept composite wing with an edge crack are 

investigated. The cracked wing is modeled by a cracked composite cantilever developed in 

Chapter 3 and the inertia coupling terms are included in the governing equations. The critical 

flutter and divergence speeds are obtained by Galerkin’s method in which the fundamental 

mode shapes of the cracked beam in free vibration are used. The mode shapes satisfy all 

boundary conditions including those at the crack location and thus carry most of the 

information of the cracked beam for the final approximate solution. Both steady and quasi-

steady aerodynamic forces are considered in the analysis. 

 

The divergence/flutter speed varies with the elastic axis location, the inertia axis 

location, fiber angles, and the crack ratio and location. For the elastic axis fixed in the 

leading half chord with the inertia axis aft, the divergence/flutter speed is more sensitive to 

the stiffness orientation than to the crack itself. At certain fiber angles, the presence of a 
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crack tends to increase the flutter or divergence speed, a similar phenomenon as observed by 

Lin et al (1991). The instability boundaries that are constant for an isotropic wing become 

alternating with the varying fiber angles of a composite wing (Lin et al, 1989). The 

anisotropy of the composite wing introduces many completely different phenomena in the 

aeroelastic instability. 

 

The flutter speed tends to increase with the crack ratio increased at certain fiber angles. 

However, in most situations the flutter speed decreases with the increasing crack ratio, 

especially for that predicted by the quasi-steady aerodynamic model. The rate of change is 

higher with smaller fiber angles. Although an edge crack does not always reduce either 

flutter or divergence speed, it does reduce the stability boundaries in most cases in terms of 

stiffness orientation considered in the present research. As to a crack of fixed magnitude, the 

lowest flutter speed is observed when the crack approaches the root of the composite wing 

with smaller fiber angles. However, both flutter and divergence speeds experience variation 

with different crack locations, and the magnitude of variation with respect to the crack 

location is relatively small. 

 

Once a crack is found on a composite wing, monitoring of the crack growth could be 

more critical to determine the aeroelastic stability of the wing, especially in the case that the 

crack does not result in a flutter speed drop due to certain fiber orientation. But in the case 

that a crack does reduce the flutter speed, a fast drop in flutter speed might result in a 

catastrophic failure by a small crack that has not ever grown. When coupled with a crack 

detection algorithm, the connection presented here between crack properties and flutter speed 

may be used as a damage prognosis tool to predict how the system will behave under future 

loading. 

 

Contribution 
 

The following lists contributions to the literature on cracked composite wings: 

1) An analytical model of cracked composite wings including both elastic and inertia 

couplings between bending and torsion is developed. Free vibration of the cracked 

composite wing is analyzed with the model. 
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2) Aeroelastic characteristics of an unswept composite wing with an edge crack are 

investigated. Changes in flutter and divergence speeds due to the presence of the 

crack and under the condition of varying stiffness orientation are studied. The 

current research contributes to the literature by adding an analytical model on a 

cracked composite wing along with the primary study on the crack induced changes 

in aeroelastic stabilities. It may also be used as a damage prognosis for future 

composite wing structures. 
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Chapter 5 
 

Crack Detection by Changes in Natural 
Frequencies 
 

5.1 Introduction 
 

Damage detection by changes in natural frequencies has been widely implemented in 

model-based damage monitoring. Compared to other modal parameters, natural frequencies 

are relatively easier to measure with significantly high accuracy. Sensor locations and 

numbers are usually not restricted as opposed to the determination of mode shapes. As the 

global nature of a structure, natural frequencies may not be sensitive to the local incipient 

damage. In some situations such as damage detection on bridges and buildings, changes in 

environmental conditions (e.g., climate changes) even in a single day could affect natural 

frequencies more than the possible damage by changing mass and stiffness of the structure. 

Precaution should be taken by using frequency changes alone for damage detection.  

 

On the other hand, many researchers have successfully demonstrated the identification 

of various damages by using frequency changes, both theoretically and experimentally. For 

structures that can be accurately modeled by finite element methods or analytical approaches, 

the location of damage can be related to relative frequency changes or the rate of change of 

frequency. In this chapter, the Cawley-Adams criterion (Cawley and Adams, 1979) is taken 

to explore the possibility of determining both the crack location and magnitude. Criteria 

based on frequency sensitivities are usually capable of locating the damage accurately with 
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the help of reliable models. In the presence of measurement errors, it is very difficult to 

determine the damage magnitude, even with an accurate model (Palacz and Krawczuk, 2002). 

In this chapter, a strategy similar to the rank-ordering of eigenfrequency shifts developed by 

Armon et al. (1994) is applied so that the Cawley-Adams criterion become capable of 

detecting both the crack location and magnitude even when measurement errors are 

considered.  

 

The threshold of measurement errors related to the crack size and location is also 

investigated. The cracked composite cantilever beam addressed in Chapter 3 is used as the 

reference model. Several assumptions are made before the application: 1) the beam model is 

calibrated and natural frequencies of the intact beam are measured accurately in a lab 

environment so that they can be taken as the baseline; 2) the cracked beam model developed 

in Chapter 3 is validated as well as calibrated so that little modeling errors exist in predicting 

natural frequencies of the cracked beam; 3) changes in natural frequencies result only from 

the single crack and no other factors such as boundary conditions, other form of damage, or 

changes in environmental conditions; 4) when the beam is deployed in service (e.g., aircraft 

wings in the middle of flight), the source of error in determining natural frequencies results 

from the online measurement. The sensitivity of natural frequency to model parameter 

uncertainties will be addressed in Chapter 6. Note with inexplicit assumptions on the first 

three conditions, many researchers did not consider measurement errors for their successful 

damage detection based on changes in natural frequencies, e.g., Messina et al. (1996) and 

Chinchalkar (2001). 

 

5.2 The Cawley-Adams Criterion 
 

The Cawley-Adams criterion is based on the premise that change in stiffness is 

independent of frequency. The rate of frequency changes in two modes is then only a 

function of the damage location. For the cracked composite cantilever beam, let the non-

dimensional crack location be λ = ξc and the crack ratio be η = a/b. The lowest M natural 

frequencies are measured when the beam is free from damage and after the crack is formed. 
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Let δΩk be the change in frequency k by measurement with unknown damage, and δωk(λ,η) 

be the change in frequency k from the model prediction on a crack (λ,η). Then a matching 

error used to validate the prediction can be defined as 
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A total matching error of the prediction on the crack is summed by 

 
1

1 1

( , ) ( , )
M M

ij
i j i

e eλ η λ η
−

= = +

= ∑ ∑  (5.2) 

If normalized with the minimum value, equation (5.2) will give a crack indicator as 

 min( , )
( , )
eE

e
λ η

λ η
=  (5.3) 

where E(λ, η) is less than or equal to 1, with 1 indicating the crack location and magnitude. 

In the following analysis otherwise specifically stated, “crack detection” means determining 

both the location and magnitude of the crack. 

 

For one-dimensional cracked beams made of isotropic materials where only bending 

modes are concerned, the largest frequency reduction of a certain mode always happens 

when the crack is located at the largest curvature of that mode shape. A plot of the relative 

frequency reduction with respect to the crack location for each mode provides a unique tool 

for crack identification. Based on this observation, Armon et al. (1994) used the first four 

natural frequencies by re-ordering the fractional shifts and resorting to the plot to locate the 

crack vicinity. However, for the cracked composite beam involving coupled bending and 

torsional modes, the largest frequency reduction no longer coincides with either the largest 

bending curvature or torsional curvature, as indicated in Chapter 3. A similar plot (of either 

bending mode or torsional mode) can not be readily used to locate the crack. At certain fiber 

orientation, vibration of the composite beam may be predominantly controlled by either the 

bending mode or torsional mode. With the variation of fiber angles, both the mode and the 

order may be changed as illustrated by Figure 5.1 where 1B refers to the first bending mode, 

1T the first torsional mode, and 2B the second bending mode, and so on. 
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As indicated in Chapter 3, frequency reduction in the case of strong bending-torsion 

coupling has a different pattern than does the weakly coupled case due to the different fiber 

orientation. In the next sub-section, two cases will be considered: strong bending-torsion 

coupling (θ = 70°) and weak bending-torsion coupling (θ = 30°). 
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Figure 5.1 Variation of first 6 natural frequencies w.r.t. fiber angles. 

 

5.3 Crack Detection by Means of Natural Frequency Changes 
 

In the following sections, the composite beam is assumed to have the same geometry 

and material properties as in Chapter 3. The fiber volume fraction is set at V = 0.5. It is very 

common to consider the lowest natural frequencies. However, increasing the number of 

frequencies does not necessarily increase the accuracy in the presence of measurement errors. 

This issue is unsolved in Palacz and Krawczuk (2002) who replaced the first two frequency 

changes with the first four frequency changes and found the plots are still unable to identify 

both the crack location and size in the cracked isotropic beam. The following will address 

three fundamental questions: 1) the effects of the number of frequencies and the strategy to 
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select frequencies for crack detection; 2) the effects of measurement errors; 3) the threshold 

of measurement errors for different crack size and location.  

 

A) When the bending-Torsion coupling is strong (θ = 70°) 
 

Assume that the crack with ratio η = a/b = 0.3 is located at λ = ξc = 0.3. Without 

measurement errors involved, the first ten natural frequencies, before and after the damage, 

are listed in Table 5.1. In the table, f refers to natural frequencies of the intact beam while fd 

refers to those of the damaged beam. 

 

Table 5.1 The first ten natural frequencies, θ = 70°, without measurement errors 

rad/s 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
f 75.26 445.90 916.12 1179.69 2089.93 2762.14 3253.14 4062.82 5162.14 5202.32 
fd 67.95 441.88 665.15 1144.80 2015.08 2758.13 3252.38 3879.50 4381.99 5023.80 

f-fd 

(%) 

7.31 
(9.7) 

4.02 
(0.9) 

250.97 
(27.4) 

34.89 
(2.9) 

74.85 
(3.6) 

4.01 
(0.14) 

0.76 
(0.02) 

183.32 
(4.5) 

780.15 
(15.1) 

178.52 
(3.4) 

 

Without measurement errors, the crack can be detected even with the first two natural 

frequencies as shown in Figure 5.2. Increasing the number of frequencies does not affect the 

accuracy. 

 
Figure 5.2 Crack detection by the first 2 frequencies, θ = 70°, no measurement errors. 
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However, with a 1% error in each measured frequency, it becomes difficult to detect 

the crack by using the first two up to the first ten frequencies. The first ten natural 

frequencies with the measurement errors are listed in Table 5.2. The plots of damage 

indicator of the first 4, 6, 8 and 10 frequencies are shown in Figures 5.3 – 5.6. Table 5.3 re-

arranges the ten frequencies in the descending order by the percentage reduction. 

 

Table 5.2 The first ten natural frequencies, with measurement errors 

rad/s 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
f 75.26 445.90 916.12 1179.69 2089.93 2762.14 3253.14 4062.82 5162.14 5202.32 

fd_err 68.63 437.47 671.80 1133.36 1994.93 2730.55 3219.86 3918.30 4425.81 5074.04 
f- fd_err 

(%) 
6.63 
(8.8) 

8.43 
(1.9) 

244.32 
(26.7) 

46.33 
(3.9) 

95.0 
(4.5) 

31.59 
(1.1) 

33.28 
(1.0) 

144.52 
(3.5) 

736.33 
(14.3) 

128.28 
(2.5) 

 

Table 5.3 The re-ordered ten natural frequencies, with measurement errors 

order 1 2 3 4 5 6 7 8 9 10 
rad/s 3rd 9th 1st 5th 4th 8th 10th 2nd 6th 7th 

f 916.12 5162.14 75.26 2089.93 1179.69 4062.82 5202.32 445.90 2762.14 3253.14 
fd_err 671.80 4425.81 68.63 1994.93 1133.36 3918.30 5074.04 437.47 2730.55 3219.86 

f- fd_err 
(%) 

244.32 
(26.7) 

736.33 
(14.3) 

6.63 
(8.8) 

95.0 
(4.5) 

46.33 
(3.9) 

144.52 
(3.5) 

128.28 
(2.5) 

8.43 
(1.9) 

31.59 
(1.1) 

33.28 
(1.0) 

 

 
Figure 5.3 Crack detection by the first 4 frequencies, θ = 70°. 
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Figure 5.4 Crack detection by the first 6 frequencies, θ = 70°. 

 

 

 
Figure 5.5 Crack detection by the first 8 frequencies, θ = 70°. 
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Figure 5.6 Crack detection by the first 10 frequencies, θ = 70°. 

 

If frequencies are re-ordered as listed in Table 5.3 and the higher priority is given to the 

frequency having larger reduction rate, the results are plotted in Figure 5.7 – 5.10. 

 
Figure 5.7 Crack detection by the first 4 re-ordered frequencies, θ = 70°. 
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Figure 5.8 Crack detection by the first 5 re-ordered frequencies, θ = 70°. 

 

 

 
Figure 5.9 Crack detection by the first 6 re-ordered frequencies, θ = 70°. 
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Figure 5.10 Crack detection by the first 7 re-ordered frequencies, θ = 70°. 

 

Figures 5.3 – 5.10 clearly indicate that compared to the crack size, the crack location 

can be detected relatively accurately by the Cawley-Adams criterion. These are consistent 

with published results that damage detection based on sensitivity of natural frequencies is 

relatively immune to measurement errors in determining damage location (Armon et al., 

1994; Messina et al., 1996). However, the crack size can not be determined accurately if the 

number of frequencies is increased by adding frequencies consecutively from the lowest one 

to the highest one. The accuracy can not improved even by increasing the number of 

frequencies. 

 

On the other hand, when the frequencies are re-ordered by the percentage reduction as 

listed in Table 5.3, an accurate result to determine both the crack location and size can be 

obtained. This indicates that although each natural frequency experiences a reduction due to 

the damage, the significance in crack detection is not equal for each frequency. The 

frequency having the larger percentage reduction is more significant than the one with lower 

percentage reduction. Again, increasing the number of frequencies does not necessarily 

increase the accuracy in crack detection. 
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To further verify the robustness of the strategy for crack detection as well as to 

determine the threshold of measurement error for various crack sizes and locations, the 

following numerical testing is conducted. Since there are ten frequencies available, they can 

be grouped in nine sets in terms of the number of frequencies such that Set 1 has 2 

frequencies, Set 2 has 3 frequencies, and so on. In Strategy A, the frequency with lower order 

has higher priority to be selected to any set. In Strategy B, however, the frequency that has 

larger percentage reduction has higher priority to be selected. Figure 5.11 illustrates the 

procedure of the testing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Flowchart of the numerical testing. 

Notation 
λ1 ~ λm – crack locations 
η1 ~ ηn – crack ratios 
e – measurement error 
δe – error increment   
N – total number of runs 
n – number of successful detection
f1 ~ f10 – first 10 frequencies of 

intact beam, as baseline 
f1d ~ f10d – first 10 frequencies of 

cracked beam, each in m×n 
matrix 

f1d-err ~ f10d-err – first 10 frequencies 
with measurement error 

Initialization: 
e = 0.1%; δe = 0.1%;  
obtain f1 ~ f10, f1d ~ f10d. 

Obtain f1d-err ~ f10d-err for crack (λo, ηo), 
each disturbed by a random error 
within ±e; set n = 0, N = 1. 

Obtain δΩk and δωk(λi, ηj); group 
frequencies by Strategy A and B. 

Perform the Cawley-Adams 
criterion for crack detection. 

Detection successful? 

N = N + 1 > 50? 

n = n + 1 

No 

n/N > 0.8? e = e + δe 

Record last e for A 
and B, end. 

Yes 

Yes 

No 

No 

Yes 

Each step contains calculation for A 
and B separately, until the rate n/N 
is less than 0.8 for both A and B. 
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Since the crack location can be detected more accurately than the crack ratio, the 

testing is conducted with emphasis on an accurate determination of crack ratio for both 

strategies. For a crack located at λo with ratio ηo, detection is considered to be successful 

when more than 4 sets out of 9 sets indicate the crack at λo±0.05 with the exact ratio ηo. The 

measurement error threshold is defined as the error by which 40 out of the 50 runs can 

successfully detect the crack. For various crack ratios and locations, the results are listed in 

Table 5.4. 

 

Table 5.4 Measurement error threshold for strategy A and B, θ = 70° 

   η = 0.1   

% λ = 0.1±0.05 0.3±0.05 0.5±0.05 0.7±0.05 0.9±0.05 
A 0.1 ≈ 0 ≈ 0 ≈ 0 ≈ 0 
B 0.2 0.2 0.1 0.2 ≈ 0 

 

   η = 0.2   

% λ = 0.1±0.05 0.3±0.05 0.5±0.05 0.7±0.05 0.9±0.05 
A 0.4 ≈ 0 0.1 0.1 ≈ 0 
B 0.6 0.3 0.4 0.6 0.2 

 

   η = 0.3   

% λ = 0.1±0.05 0.3±0.05 0.5±0.05 0.7±0.05 0.9±0.05 
A 0.5 0.1 0.4 0.6 ≈ 0 
B 1.2 1.8 1.1 2.1 0.5 

 

   η = 0.4   

% λ = 0.1±0.05 0.3±0.05 0.5±0.05 0.7±0.05 0.9±0.05 
A 0.6 0.2 0.7 0.8 ≈ 0 
B 1.3 1.3 1.8 2.6 1.4 

 

   η = 0.5   

% λ = 0.1±0.05 0.3±0.05 0.5±0.05 0.7±0.05 0.9±0.05 
A 0.7 0.3 0.8 0.9 0.1 
B 1.3 2.1 2.8 2.7 2.5 

 

It is obvious that Strategy B is more robust to measurement errors than Strategy A in 

this model-based crack detection. While larger measurement errors are allowed for larger 

cracks, the error threshold is not the same when the crack of the same size is located at 
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different locations. For instance, the crack close to the free end is relatively more difficult to 

detect, especially for Strategy A. It is reasonable since in that case the crack is located at a 

low stress area. When the crack ratio is less than 0.1, it is very difficult for both strategies to 

detect the crack accurately even in the presence of small measurement errors. 

 

B) When the bending-Torsion coupling is weak (θ = 30°) 
 

As addressed in Chapter 3, frequency reduction patterns are usually different when the 

bending-torsion coupling is strong (e.g., θ = 70°) or weak (e.g., θ = 30°). To further study the 

effect of fiber orientation, the same crack location and size are assumed, i.e., λ = 0.3 and η = 

0.3. Table 5.5 lists the first ten natural frequencies of the beam before and after the damage. 

Similarly with 1% measurement errors, results by Strategy A and B are shown in Figures 

5.12 – 19. 

Table 5.5 The first ten natural frequencies, θ = 30°, without measurement errors 

rad/s 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
f 42.37 265.52 554.59 743.40 1456.53 1663.86 2407.29 2773.25 3594.79 3883.13 
fd 39.03 259.77 531.15 683.31 1417.57 1661.62 2383.94 2692.07 3329.27 3695.83 

f-fd 

(%) 

3.34 
(7.9) 

5.75 
(2.2) 

23.44 
(4.2) 

60.09 
(8.1) 

38.96 
(2.7) 

2.24 
(0.13) 

23.35 
(0.97) 

81.18 
(2.9) 

265.52 
(7.4) 

187.30 
(4.8) 

 

 
Figure 5.12 Crack detection by the first 4 frequencies, θ = 30°. 
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Figure 5.13 Crack detection by the first 6 frequencies, θ = 30°. 

 

 

 
Figure 5.14 Crack detection by the first 8 frequencies, θ = 30°. 
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Figure 5.15 Crack detection by the first 10 frequencies, θ = 30°. 

 

 
Figure 5.16 Crack detection by the first 4 re-ordered frequencies, θ = 30°. 
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Figure 5.17 Crack detection by the first 5 re-ordered frequencies, θ = 30°. 

 

 

 
Figure 5.18 Crack detection by the first 6 re-ordered frequencies, θ = 30°. 
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Figure 5.19 Crack detection by the first 7 re-ordered frequencies, θ = 30°. 

 

The same numerical testing is then run for various crack sizes and locations when the 

coupling is weak (θ = 30°), and the results are listed in Table 5.6. 

Table 5.6 Measurement error threshold for strategy A and B, θ = 30° 

   η = 0.2   

% λ = 0.1±0.05 0.3±0.05 0.5±0.05 0.7±0.05 0.9±0.05 
A ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 
B 0.1 0.1 0.1 0.1 ≈ 0 

 

   η = 0.3   

% λ = 0.1±0.05 0.3±0.05 0.5±0.05 0.7±0.05 0.9±0.05 
A ≈ 0 0.2 0.1 ≈ 0 ≈ 0 
B 0.2 0.4 0.3 0.4 0.3 

 

   η = 0.4   

% λ = 0.1±0.05 0.3±0.05 0.5±0.05 0.7±0.05 0.9±0.05 
A ≈ 0 0.4 0.1 0.2 ≈ 0 
B 0.4 0.9 0.9 0.9 0.7 

 

   η = 0.5   

% λ = 0.1±0.05 0.3±0.05 0.5±0.05 0.7±0.05 0.9±0.05 
A 0.1 0.5 0.2 0.6 0.1 
B 0.6 1.5 1.7 1.5 1.2 
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For the crack with the same size and location, the measurement error thresholds are 

relatively smaller when the bending-torsion coupling is weak. Moreover, cracks with the 

ratio less than 0.2 are difficult to detect in the presence of measurement errors. A comparison 

of Table 5.1 with 5.5 indicates that when the coupling is weak, the span of percentage 

frequency reductions is much narrower than that when the coupling is strong. The different 

frequency reduction pattern along with the narrow span of percentage changes due to the 

fiber orientation does affect the accuracy of crack detection. 

 

5.4 Summary 
 

Crack detection (size and location) by changes in natural frequencies is presented in 

this chapter. The cracked beam model is used as the reference, and the size and location of 

the crack are determined by the Cawley-Adams criterion. If measurement errors are taken 

into account, it is demonstrated that increasing the number of frequencies for consideration 

does not necessarily improve the accuracy in crack detection. In fact, all frequencies are not 

equally significant in the sensitivity based approach. A new strategy in grouping frequencies 

is proposed by which the frequency with a larger percentage reduction has the priority to be 

selected. Numerical testing is conducted and the results indicate that the proposed strategy is 

less sensitive to measurement errors than the conventional idea by which the number of 

frequencies is increased by adding frequencies from the lowest to the highest order 

consecutively. 

 

It is also demonstrated that both the size and location of the crack can be determined by 

the Cawley-Adams criterion within a certain level of measurement errors. It is more accurate 

to locate the crack than to determine the size. The smaller the crack size, the less the 

measurement errors that can be allowed to detect the crack accurately. The measurement 

error threshold is also affected by the crack location. Moreover, for the crack of the same size 

and at the same location, the threshold is smaller when the bending-torsion coupling is weak 

than that when the coupling is strong due to the fiber orientation. To accurately detect the 

crack on a composite beam with coupled bending-torsion modes, it is suggested that 
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allowable measurement errors be considered in conjunction with possible crack sizes and 

locations, as well as the situation whether the bending-torsion coupling is strong or weak. 

 

Contribution 
 

The following lists contributions to the literature on crack detection by changes in 

natural frequencies: 

1) It is demonstrated that the model-based approach by using the Cawley-Adams 

criterion can be used to detect both the size and location of the crack on a 

composite beam. A new strategy is proposed in selecting natural frequencies for 

crack detection, which is much less sensitive to measurement errors than the 

conventional idea that frequencies are selected consecutively from the lowest order 

to the highest. 

2) For a combination of different crack sizes and locations, measurement error 

thresholds are obtained by numerical testing. For the cracked composite beam, it is 

found that the threshold is affected not only by the crack size and location, but also 

by how strong the coupling between bending and torsion is due to the fiber 

orientation.  
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Chapter 6 
 

Analysis of Model Parameter 
Uncertainties by Information-gap 
Theory 
 

6.1 Introduction 
 

The cracked composite beam model developed in Chapter 3 has not been verified or 

calibrated with experimental data. Although the analytical model may involve less systematic 

errors compared to numerical modeling, uncertainty in model parameters could result in 

erroneous prediction on various system outputs. The fact that some model parameters may 

not be measured directly and precisely in experiments introduces further difficulty in model 

verification and validation. On the other hand, with no experimental data available, 

uncertainties in model parameters can hardly be characterized by assuming some form of 

probability density functions. Under such circumstances, a methodology named information-

gap decision theory (Ben-Haim, 2001), or info-gap theory in short, serves as a good 

alternative to model parameter uncertainties and their effects to system outputs. Info-gap 

theory is developed to model and manage severe uncertainties in system models for 

situations in which neither statistical methods nor fuzzy logic can be readily applied because 

of the large disparity between what is known and what could be known. In this chapter, the 

basic concept of info-gap modeling of parameter uncertainties is first explained briefly. A 

series of uncertain events are represented by a family of nested sets. Two immunity functions 
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– robustness and opportunity – are then constructed to account for two contrasting 

consequences of uncertainty. Parameters that may have uncertainties at higher levels are then 

discussed. While no restriction needs to be exerted in selection of performance parameters, 

natural frequencies are chosen to investigate the sensitivity of model prediction under various 

model parameter uncertainties. 

 

6.2 Info-gap Modeling of Parameter Uncertainties 
 

A structural model – either analytical or numerical – may be expressed symbolically as 

 ( )M=y q  (6.1) 

where M represents a mapping between the model performance or vector of output features y 

and the vector of model’s decision parameters q. In addition to model parameters, vector q 

may comprise other factors, such as design variables, constitutive laws, structure geometries 

and operational options. A model specified by q is usually considered to be validated if q is 

verified to be able to accurately represent the physical properties of the system throughout 

the design domain or operational space (Hemez and Ben-Haim, 2004). However in many 

cases, there exist a cluster of variables, denoted by vector u, that are uncertain in the way that 

not only is information related to these variables fragmentary, but even the identity of some 

of them could be completely unknown or very difficult to characterize. It is therefore not 

uncommon that sometimes it is ambiguous to categorize a given variable to either vector q or 

u. With both decision parameters and uncertain variables included, the model expressed by 

equation (6.1) becomes 

 ( ; )M=y q u  (6.2) 

where the uncertain variables u possess characteristics that can not be represented by either 

probability density functions or fuzzy logic membership functions. However, an info-gap 

model (IGM), denoted by U(un; α) may be constructed such that u∈U(un; α). Here the IGM 

U is simply a collection of nested sets. All sets are “centered” around the nominal values (un) 

of corresponding uncertain variables, with the “size” determined by a uncertain level factor 

(α) which is a nonnegative real value. Therefore the set with a smaller value of α is 

completely contained in the set with a larger value of α, i.e., for α1<α2, U(un, α1)⊂U(un, α2). 
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Basically there is no restriction in formulating the IGM; the detailed format is typically case-

dependent. For instance, if each uncertain variable has a lower bound and an upper bound, 

denoted by u- and u+, respectively, the IGM may be expressed as 

 ( ; ) { }, 0 1U α α α α− += ≤ − ≤ ≤ ≤n nu u u u u u  (6.3) 

 

The model’s performance in the presence of uncertain model parameters can be 

evaluated in many different ways. One of the most widely used metrics is the correlation 

between test data and the model prediction. For instance, a correlation error function R(q; u), 

which is used to evaluate the magnitude of discrepancy between experiment data and the 

model prediction, may be defined as 

 ( ; ) [ ] [ ]TR = − −test testq u y y W y y  (6.4) 

where W is a square weighting matrix. Hemez and Ben-Haim (2004) named this function as 

the fidelity function which depends on both the decision parameters and uncertain variables. 

It is simply a scalar performance function and directly related to the uncertain level factor α. 

Let Rc be the largest level of infidelity acceptable during the evaluation of the model’s 

performance. Then the model is considered to be calibrated if 

 ( ; ) cR R≤q u  (6.5) 

 

There are two fundamental and unique functions in the implementation of info-gap 

decision theory for uncertainty analysis – robustness and opportunity functions. The 

robustness of decision q is the greatest level of uncertainty factor α at which the model 

performance is never worse than the critical value Rc. The robustness function α̂ can be 

formally defined as 

 { }( ; )
ˆ( ; ) max 0, max ( ; )c cU

R R R
α

α α α
∈

= ≥ ≤
nu u

q q u  (6.6) 

Since the robustness function reflects the degree of resistance to uncertainty, it addresses the 

detrimental facet of uncertainty and therefore a larger value of α̂ is desirable. On the other 

hand, the opportunity of decision q is the least level of uncertainty factor α at which the 

model performance can be – but not always – as good as a threshold value Rw. The 

opportunity function β̂ can then be defined as 



 

 

128

 { }( ; )
ˆ( ; ) min 0, min ( ; )w wU

R R R
α

β α α
∈

= ≥ ≤
nu u

q q u  (6.7) 

The threshold Rw entails the possibility of an occasional reward. Due to the nature that the 

opportunity represents the least level of uncertainty that must be tolerated to ensure the 

possibility of an occasional reward as a result of decision q, a smaller value of β̂ is desirable. 

Since a better performance is defined with a smaller value of R as in inequation (6.5), Rw is 

usually chosen such that it is much smaller than the critical value Rc, i.e., Rw<<Rc. In contrary 

to the robustness function, the opportunity function addresses the beneficial aspect of 

uncertainty. Note that the above expressions about the performance, robustness and 

opportunity are presented to illustrate the basic concept of info-gap theory, and should not be 

considered to be unique. For instance, in some cases a larger performance value of R may be 

desirable rather than a smaller value, and the expressions for α̂ and β̂ will change, 

respectively, to 

 { }( ; )
ˆ( ; ) max 0, min ( ; )c cU

R R R
α

α α α
∈

= ≥ ≥
nu u

q q u  (6.8.1) 

 { }( ; )
ˆ( ; ) min 0, max ( ; )w wU

R R R
α

β α α
∈

= ≥ ≥
nu u

q q u  (6.8.2) 

Accordingly Rw is chosen such that it is much larger than the critical value Rc, i.e., Rw>>Rc. 

 

The following analysis is concerned with the former situation that a smaller value of R 

is preferred. Let Rn be the performance value corresponding to the nominal values, i.e., α = 0 

and u = U(un, α) = un. When the uncertainty level is increased from zero, a conceptual plot 

of α with respect to the performance level R is shown in Figure 6.1 for the robustness and 

opportunity functions. Given the uncertainty level, the opportunity curve is obtained by 

solving for the smallest performance value, while the robustness curve is obtained by solving 

for the largest performance value. 

 

It is obvious that with the uncertainty level increased, the performance value is 

monotonously increasing on the robustness curve and on the other hand, monotonously 

decreasing on the opportunity curve. This is due to the fact that the IGM set with a smaller 

uncertainty level is completely included in the set with a larger uncertainty level. As 
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indicated by equation (6.6), the robustness of decision q for a larger critical value Rc can 

never be less than the one with smaller value of Rc. Likewise, by equation (6.7), if the 

threshold value Rw is reduced, the range of uncertainty must be increased in order to find a 

chance to ensure an occasional reward.  

R

R1 R2 R3 R4

α

(a) (b) (c) (d)

α2

α1

α3

opportunity curve

robustness curve

0
Rn  

Figure 6.1 Conceptual illustration of info-gap robustness and opportunity curves. 

 

In Figure 6.1, path (a) indicates that in order to find a chance to ensure an occasional 

reward of performance R1, the uncertainty level needs to be as large as the value α1. In other 

words, when the uncertainty level is less than α1, it is impossible that the performance can 

reach the value R1. On the other hand, path (d) indicates that if the critical performance value 

is required to be R4, it is guaranteed only when the uncertainty level is less than the value α2. 

Path (b) and (c) simply shows that at the uncertainty level α3, all performance values are 

always in the range between R2 and R3. Moreover, the starting point of the performance, Rn, 

is determined by the nominal values. If all uncertain parameters have lower and upper 

bounds, the slope of the robustness and opportunity curves for an individual uncertain 

parameter may be affected by its corresponding bounds. Since changing the lower and upper 

bounds of an uncertain parameter affects only the domain of the largest IGM set of that 

parameter, at the same uncertain level the actual “size” of the IGM set varies so that the slope 

of both curves may change accordingly. When the performance is designated as the 

correlation between the model prediction and experimental data, the desirable situation is that 

the opportunity curve is very “flat” while the robustness curve is very “steep.” 
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6.3 Uncertainties in Model Parameters 
 

Model parameters selected for uncertainty analysis are usually those that may be hardly 

determined at a high level of accuracy by experimental measurement. When an experiment is 

conducted to verify the cracked composite model, some influences not included in the model 

may also affect the test-analysis correlation. For instance, the discrepancy could come from 

the added mass of an actuator/sensor (e.g., PZT patches) and the local stiffness changes, 

unless these external effects are taken into account by additional models. Assumptions in the 

modeling, such as the one-dimensional beam, LEFM and classical lamination theory, may 

also contribute to the correlation error. These “systematic” errors may be differentiated from 

the modeling errors if a composite beam without any cracks is tested first to verify as well as 

calibrate the intact beam model. 

 

The following three tables list model parameters of the cracked composite beam, out of 

which some parameters may have more uncertainties than others. In particular, stiffness 

parameters may not be measured accurately in an experiment. The coupling term K can not 

be measured directly and may be subject to larger uncertainty. 

 

Table 6.1 Material properties of each ply (subscript m stands for matrix and f for fiber) 

Symbol Definition unit 
Em, Ef Modulus of elasticity GPa 
nm, nf Poisson’s ratio - 

Gm, Gf Modulus of rigidity Gpa 
rm, rf Mass density kg/m3 

V Fiber volume fraction - 
q Fiber angle degree 

 

Table 6.2 Beam geometry 

Symbol Definition unit 
b Beam width m 
t Beam thickness m 
L Beam length m 
l Crack location m 
a Crack depth m 
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Table 6.3 Other parameters of the beam model 

Symbol Definition unit Function of 

EI Bending stiffness parameter N⋅m2 E, G, n, V, q, b and t 

GJ Torsional stiffness parameter N⋅m2 E, G, n, V, q, b and t 

K Coupling parameter N⋅m2 E, G, n, V, q, b and t 
m Mass/length kg/m r, b and t 

Ia Polar mass moment of inertia/length kg⋅m r, b and t 
c22 Transverse flexibility at crack location m/N E, G, n, V, t, a and b 

c44 Bending flexibility at crack location 1/(N⋅m) E, G, n, V, q, t, a and b 

c66 Torsional flexibility at crack location 1/(N⋅m) E, G, n, V, t, a and b 
c26 Flexibility coupling at crack location 1/N E, G, n, V, t, a and b 

 

Compared to other parameters, the stiffness parameters (EI and GJ) and the coupling 

term (K) may experience more uncertainty for the aforementioned reasons. It is also of 

interest to know the effects of uncertainties in crack location (λ) and ratio (η). In the 

following analysis the five parameters – EI, GJ, K, λ and η – are selected with uncertainties 

characterized by info-gap models, i.e., u = [ui] = [EI  GJ  K  λ  η], i = 1, 2, 3, 4, 5. 

 

6.4 Frequency Sensitivity to Model Parameter Uncertainties 
 

Since natural frequencies of the cracked beam are relatively easier to measure in an 

experiment, the first four natural frequencies are selected as the system outputs. It has been 

shown in the last three chapters that a certain system output may exhibit different patterns 

with changes in fiber orientation, e.g., frequency patterns with the same crack are different 

when the bending-torsion coupling is strong or weak. The two situations in terms of fiber 

angles (70° or 30°) are again considered.  

 

The same geometry as in Chapter 3 is assumed for the cracked beam. To simulate 

experimental data, natural frequencies obtained from the model for fiber volume fraction V = 

0.5, crack location λ = 0.3 and crack ratio η = 0.3 are used as reference data. The info-gap 

modeling requires a nominal value for each uncertain parameter; the assumed nominal values 

along with the references are listed in Table 6.4 and 6.5. 
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Table 6.4 Reference and nominal values of uncertain parameters, θ = 70° 

unit N⋅m2 N⋅m2 N⋅m2 - - 

reference EI = 89.5 GJ = 58.8 K = 61.3 λ = 0.3 η = 0.3 
nominal u1n = 80.5 u2n = 50.0 u3n = 55.2 u4n = 0.315 u5n = 0.27 

 

Table 6.5 Reference and nominal values of uncertain parameters, θ = 30° 

unit N⋅m2 N⋅m2 N⋅m2 - - 

reference EI = 8.0 GJ = 22.8 K = 0.74 λ = 0.3 η = 0.3 
nominal u1n = 7.2 u2n = 19.4 u3n = 0.67 u4n = 0.315 u5n = 0.27 

 

The IGM of uncertain parameters is defined by 

 ( ; ) { | | }, 0U α α α= − ≤ ≥n n nu u u u u  (6.9) 

where un = [u1n  u2n  u3n  u4n  u5n] and α is the uncertainty level. The model performance R is 

defined by 

 ( ; ) | | / , 1,...,4; 1,...5r r
ij j ij i iR u y y y i j= − = =q  (6.10) 

where r
iy is the ith reference frequency and ijy the ith frequency as a result of  uncertainty in 

model parameter uj. Parameters such as the beam geometry and material properties of 

selected prepregs may be included in the decision vector q which should be decided before 

conducting an actual experiment. For comparison purposes, model performance is evaluated 

for uncertain parameters individually. When one parameter experiences uncertainty, all other 

parameters are set at the nominal values. With the uncertainty level increased from zero, 

opportunity and robustness curves for a single performance factor start from the same point 

so that the rate of change of each uncertain parameter can be compared on a single plot. Note 

that if the reference frequencies are obtained by experiment, the model performance becomes 

the test-analysis correlation. However, since the reference used here is directly obtained from 

the model, the performance evaluated is actually the sensitivity of natural frequencies to 

model parameter uncertainties. 

 

Based on the implementation of info-gap theory, the following opportunity curves are 

obtained by solving the best performance at different uncertainty levels, while the robustness 

curves are obtained by solving the worst performance at the same uncertainty level. 
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A) When the bending-Torsion coupling is strong (θ = 70°) 
 

Frequency sensitivities are shown in Figures 6.2 – 6.5. 
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(b) Robustness curves 

Figure 6.2 Sensitivity of the first natural frequency, θ = 70°. 
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(a) Opportunity curves 
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(b) Robustness curves 

Figure 6.3 Sensitivity of the second natural frequency, θ = 70°. 
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(a) Opportunity curves 
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(b) Robustness curves 

Figure 6.4 Sensitivity of the third natural frequency, θ = 70°. 

 

 

 



 

 

136

0 2 4 6 8 10 12 14
0

2

4

6

8

10

best possible performance R, %

un
ce

rta
in

ty
 le

ve
l  α

, %

EI
GJ
K
λ
η

 
(a) Opportunity curves 
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(b) Robustness curves 

Figure 6.5 Sensitivity of the fourth natural frequency, θ = 70°. 
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B) When the bending-Torsion coupling is weak (θ = 30°) 
 

Frequency sensitivities are shown in Figures 6.6 – 6.9. 
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(a) Opportunity curves 
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(b) Robustness curves 

Figure 6.6 Sensitivity of the first natural frequency, θ = 30°. 
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(a) Opportunity curves 
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(b) Robustness curves 

Figure 6.7 Sensitivity of the second natural frequency, θ = 30°. 
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(a) Opportunity curves 
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(b) Robustness curves 

Figure 6.8 Sensitivity of the third natural frequency, θ = 30°. 
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(a) Opportunity curves 
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(b) Robustness curves 

Figure 6.9 Sensitivity of the fourth natural frequency, θ = 30°. 

 

The reference frequencies are obtained when all uncertain parameters take their 

reference values such that yr = [67.9 441.5 665.2 1143.8] rad/s for θ = 70° and yr = [39.0 
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259.8 531.1 683.3] rad/s for θ = 30°.  Determination of either the opportunity or robustness 

curve starts from the uncertainty level at zero, and the procedure is same for each uncertain 

parameter. For instance, with no uncertainty in each parameter, i.e., the uncertain level α = 0, 

all parameters have their nominal values given in Table 6.4 for θ = 70°. The first four natural 

frequencies predicted by the model are yn = [61.8 384.6 640.7 1006.2] where n refers to the 

nominal value. Therefore, when the uncertain level is zero, the performance denoted by Rn 

becomes 

 [ ]{ ( ; )} {| | / } 9.0% 12.9% 3.7% 12.0%r r
n in i i iR y y y= = − =R q u  (6.11) 

Note that these percentage values are the starting points of opportunity and robustness curves 

shown in Figures 6.2 to 6.5. Next, consider only the sensitivity of the first natural frequency 

due to the uncertainty in the first parameter u1 (i.e., EI), as illustrated in Figure 6.2. While 

other uncertain parameters still take their nominal values, the first parameter u1 is now 

subject to some uncertainty governed by the IGM as defined in equation (6.10): 

 1 1( ; )u U u α∈ , or 1 1 1(1 ) (1 )n nu u uα α− ≤ ≤ +  (6.12) 

which means u1 may take any value within this range confined by its nominal value u1n and 

the uncertainty level α. The model performance defined by equation (6.10) in terms of the 

sensitivity of the first natural frequency in the presence of uncertainty in parameter u1 

becomes 

 11 1 11 1 1( ; ) | | /r rR u y y y= −q  (6.13) 

where y11 (the first natural frequency) is a function of u1 and so is the performance R11. With 

the uncertainty level α set at a specific value, solving the model for y11 will yield a minimum 

and maximum value of R11, since u1 is varying in the range defined by (6.12). The minimum 

value of R11 corresponds to the point on the opportunity curve of EI in Figure 6.2(a), while 

the maximum value corresponds to the point on the robustness curve of EI in Figure 6.2(b). 

 

When the bending-torsion coupling is strong, uncertainty in the coupling term K affects 

the first, second and fourth natural frequencies the most, followed by the stiffness parameters 

EI and GJ. However, the third natural frequency is more sensitive to uncertainty in the 

torsional stiffness parameter. At a specific uncertainty level, the parameter that has the best 

chance for an occasional reward likely brings the worst performance. Therefore there is a 
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trade-off in deciding the acceptable uncertainty level for any parameters. The observation 

could be of great value to guide the crack detection by changes in natural frequencies, 

considering the results presented in Chapter 5 that some frequencies are more important than 

others measured by their percentage changes. For instance, more attention should be paid to 

uncertainties in the torsional stiffness parameter if the third natural frequency is more 

significant than the first two in crack detection. 

 

When the bending-torsion coupling is weak, uncertainty in the coupling term K affects 

the frequency sensitivities much less than the two stiffness parameters. In fact, the coupling 

term has a much smaller nominal value compared to either EI or GJ, as indicated by Table 

6.5. Since the uncertainty is measured by the percentage of a nominal value, the same amount 

of percentage results in a small change in magnitude for K, and hence the uncertainty has an 

insignificant effect on the model performance. Except for the third natural frequency which is 

more sensitive to GJ, the bending stiffness parameter EI affects the other three frequencies 

more significantly in the same way as the coupling term K in the case of strong bending-

torsion coupling. 

 

Compared to uncertainties in EI, GJ and K, the same percentage of disturbance in crack 

location and ratio does not affect the performance much. In most cases, natural frequencies 

are relatively more sensitive to uncertainties in crack ratio than those in crack location. 

 

6.5 Summary 
 

In this chapter, sensitivity of natural frequencies to uncertainty in model parameters is 

investigated. Uncertainties are modeled by info-gap theory and the info-gap models are 

represented with a series of nested sets. With reference frequencies obtained from the 

cracked beam model, the frequency sensitivities to uncertainties in five model parameters are 

compared in terms of two immunity functions – opportunity and robustness functions. When 

the bending-torsion coupling is strong due to the fiber orientation, the first, second and fourth 

natural frequencies are more sensitive to uncertainties in the coupling term K, while the third 

natural frequency is more sensitive to uncertainty in the torsional stiffness parameter GJ. On 
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the other hand, when the bending-torsion coupling is weak, the same group of frequencies is 

more sensitive to uncertainties in the bending stiffness parameter EI, while the third 

frequency is more sensitive to uncertainties in the torsional stiffness parameter GJ. At a fixed 

uncertainty level, the parameter that is more robust in model performance is also the one that 

has less chance to bring the best possible performance, and vice versa. 

 

The sensitivity of natural frequencies to model parameter uncertainties is important to 

the model-based crack detection presented in Chapter 5. Since each natural frequency is not 

equally significant in crack detection as addressed in Chapter 5, the sensitivity analysis 

presented in this chapter provides a guideline to allocate the importance level among 

different model parameters, so that more attention can be paid to the parameter whose 

uncertainty affects the significant natural frequency more than uncertainties in the other 

parameters. 

 

Contribution 
 

The following lists contributions to the literature on the analysis of model parameter 

uncertainties: 

1) Info-gap decision theory is implemented to investigate parameter uncertainties of 

the cracked composite beam model.  

2) Model performance in terms of natural frequency sensitivities is evaluated as well 

as compared for several uncertain parameters, considering the situation that the 

bending-torsion coupling is strong or weak. The analysis provides guidance to 

crack detection by changes in natural frequencies. 
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Chapter 7 
 

Conclusions and Future Work 
 

7.1 Conclusions and Contributions 
 

This research was first motivated by cracking failure of composite wings in some 

unmanned aerial vehicles (UAVs). A crack on the composite wing changes the local stiffness, 

causes stress concentration around the crack front, affects structural dynamics, and influences 

the wing’s aeroelastic instabilities. Many UAVs fly at a relatively low speed with unswept 

composite wings of large aspect ratio.  To this end, this research models cracked composite 

wings with a composite beam of large aspect ratio that has an edge crack and vibrates in 

coupled bending and torsional modes, either due to the material properties, due to the crack, 

or both. Moreover, cracked beams made of isotropic materials have been extensively studied 

in the structural health monitoring (SHM) community during the last few decades; cracked 

composite beams vibrating in bending mode only were also studied by several researchers. 

This research introduces to the SHM community a new analytical model of cracked 

composite beams in which bending and torsional modes are coupled, providing modal 

analysis of the cracked beam, and presenting an enhanced crack detection strategy using 

changes in natural frequencies. 

 

The first part of this dissertation addresses modeling of a surface crack, and analyzes 

vibration characteristics of a cracked composite beam that consists of several fiber-reinforced 

plies with all fibers orientated in the same direction. The local flexibility approach based on 
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linear fracture mechanics is used to model the crack and a local compliance matrix at the 

crack location is derived. Changes in natural frequencies and mode shapes of the cracked 

beam in clamped-free boundary conditions are investigated. The spectrum of the natural 

frequency reduction, along with observations on the mode shape changes indicated by this 

model, may be used to detect both the crack location and its magnitude for on-line structural 

health monitoring. Detailed observations include: 

 

1) The dimensionless coefficients of the flexibility matrix exhibit double symmetry 

with respect to the fiber angle and fiber volume fraction. 

2) The decrease of natural frequencies depends not only on the crack location and its 

magnitude, but also on the material properties. However, for a cracked composite 

beam with coupled bending-torsion, the largest frequency reduction no longer 

coincides with the case that crack is located at either the largest bending or torsion 

curvatures. 

3) Frequency variation with respect to either the crack ratio or its location usually 

experiences a different pattern when the bending-torsion coupling is “strong” or 

“weak.” The variation previously controlled mainly by the bending mode can be 

controlled by the torsional mode with a change of fiber orientation, and vice versa. 

4) When the fiber angle is 0 or ≤90±, bending and torsion are essentially decoupled if 

there is no crack. The edge crack introduces coupling to the initially uncoupled 

bending and torsion. The pattern of frequency variation is predominantly controlled 

by either bending or torsional mode, but not both. 

 

Next, the aeroelastic characteristics of an unswept composite wing with an edge crack 

are investigated. The cracked composite wing is modeled by a cracked composite cantilever 

with inertia coupling terms included in the model. The governing equation of the cracked 

wing is then different from that of the cracked composite beam in which no inertia coupling 

is involved, although the additional boundary conditions at the crack location do not change 

in either case. An approximate solution on critical flutter and divergence speeds is obtained 

by Galerkin’s method in which the fundamental mode shapes of the cracked wing model in 

free vibration are used. The mode shapes satisfy all boundary conditions including those at 
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the crack location and thus carry most of the information of the cracked wing. Both steady 

and quasi-steady aerodynamic forces are considered in the analysis. Compared to that of an 

isotropic wing, the anisotropy of a composite wing introduces many completely different 

phenomena in aeroelastic instabilities. Some observations include: 

 

1) The critical divergence/flutter speed is affected by the elastic axis location, the 

inertia axis location, fiber angles, and the crack ratio and location. Considering that 

the elastic axis is fixed in the leading half chord with the inertia axis aft, the 

divergence/flutter speed is more sensitive to the stiffness orientation than to the 

crack itself. 

2) The presence of a crack does not necessarily decrease the flutter or divergence 

speed of a composite wing. The flutter speed tends to increase as the crack ratio 

increases at certain fiber angles. However, in most situations the flutter speed 

decreases with increasing crack ratio, especially for that predicted by the quasi-

steady aerodynamic model. The rate of change is higher with smaller fiber angles. 

As to a crack of fixed magnitude, the lowest flutter speed is observed when the 

crack approaches the root of the composite wing with smaller fiber angles. 

3) Although both the flutter and divergence speeds experience variation with different 

crack locations, the magnitude of variation with respect to the crack location is 

relatively small, compared to the variation with the crack ratio. 

 

Moreover, model-based crack detection (size and location) by changes in natural 

frequencies is addressed. The cracked beam model developed in Chapter 3 is used as the 

reference, and the size and location of the crack are determined by the Cawley-Adams 

criterion. With measurement errors considered, it is demonstrated that increasing the number 

of frequencies in the algorithm does not necessarily improve the accuracy in crack detection. 

In other words, all frequencies are not equally significant in the sensitivity based approach. A 

new strategy in grouping frequencies is then proposed such that the frequency with a larger 

percentage reduction has the higher selection priority. Numerical testing is conducted and the 

results indicate that the proposed strategy is less sensitive to measurement errors than the 

conventional approach of consecutively increasing the number of frequencies from the 
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lowest to the highest order. It is also demonstrated that both the size and location of the crack 

can be determined by the Cawley-Adams criterion in the presence of measurement errors. It 

is relatively more accurate to locate the crack than to determine the size. The numerical 

testing also indicates that the measurement error threshold – the maximum percentage error 

allowed for accurate crack detection – is affected by the crack location and its size, as well as 

the fiber orientation. 

 

Finally, sensitivity of natural frequencies to model parameter uncertainties is 

investigated. Uncertainties are modeled by info-gap theory. In particular the info-gap models 

are represented with a collection of nested sets. With reference frequencies obtained from the 

cracked beam model, the frequency sensitivities to uncertainties in five model parameters are 

compared in terms of two immunity functions – opportunity and robustness functions. At a 

certain range of fiber orientation resulting in a “strong” bending-torsion coupling, the first, 

second and fourth natural frequencies are more sensitive to uncertainties in the coupling term, 

while the third natural frequency is more sensitive to uncertainty in the torsional stiffness 

parameter. On the other hand, when the bending-torsion coupling is “weak” due to a change 

of fiber orientation, the same group of frequencies is more sensitive to uncertainties in the 

bending stiffness parameter, while the third frequency is more sensitive to uncertainties in the 

torsional stiffness parameter. At a specific uncertainty level, the parameter that is more 

robust in model performance is likely the one that has less chance to bring the best possible 

performance, and vice versa. 

 

Contributions to the literature 
 

The following lists contributions of this research to the literature on vibration analysis 

of cracked composite beams, aeroelastic analysis of composite wings with an open crack, 

crack detection on composite beams by changes in natural frequencies, and analysis of model 

parameter uncertainties: 

 

• An analytical model of cracked composite beams vibrating in coupled bending and 

torsion is developed. The model developed here is new, and no analytical model of 

cracked composite beams vibrating in coupled bending-torsion exists in the 
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literature prior to this research. The effects of the crack in conjunction of the 

material anisotropy to the modal parameters are investigated. Modal characteristics 

of a cracked composite cantilever beam are illustrated. 

• The local flexibility concept is extended in the cracked composite beam model. 

One new coefficient (tearing mode by torsional moment) in the local flexibility 

matrix is calculated from linear fracture mechanics and classical theory of elasticity. 

The final 3×3 flexibility matrix is obtained including the bending-torsion coupling 

term in the off-diagonal position. The local flexibility matrix given in this 

dissertation can be easily applied to a composite bending-torsion beam with 

multiple cracks. 

• An analytical model of cracked composite wings including both elastic and inertia 

couplings between bending and torsion is developed. It is again the first time in the 

literature that an analytical model is introduced for the important topic on 

composite wing structures modeled by beam theory. Free vibration of a cracked 

composite wing is analyzed with the model. 

• Aeroelastic characteristics of an unswept composite wing with an edge crack are 

investigated. Changes in flutter and divergence speeds due to the presence of the 

crack and under the condition of varying stiffness orientation are studied. The 

primary study of the crack induced changes in aeroelastic stabilities may also be 

used to develop a damage prognosis tool for future composite wing structures. 

• It is demonstrated that the model-based approach by using the Cawley-Adams 

criterion can be used to detect both the size and location of the crack on a 

composite beam. A new strategy is proposed in selecting natural frequencies for 

crack detection, which is much less sensitive to measurement errors than the 

conventional idea that frequencies are selected consecutively from the lowest order 

to the highest. Results from numerical testing indicate that the measurement error 

threshold is affected not only by the crack size and location, but also by how strong 

the bending-torsion coupling is due to the fiber orientation. 

• Info-gap decision theory is implemented to investigate parameter uncertainties of 

the cracked composite beam model. Model performance in terms of natural 

frequency sensitivities is evaluated as well as compared for several uncertain 
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parameters, considering the situation that the bending-torsion coupling is strong or 

weak. The analysis provides guidance to crack detection by changes in natural 

frequencies. 

 

7.2 Publication Resulting from the Dissertation 
 

The following manuscripts are resulted from the research presented in this dissertation: 

 

• Wang, K., Inman, D. J. and Farrar, C. R., “Crack induced changes in divergence 

and flutter of cantilevered composite panels,” accepted to Structural Health 

Monitoring: An International Journal. 

 

• Wang, K., Inman, D. J. and Farrar, C. R., “Modeling and analysis of a cracked 

composite cantilever beam vibrating in coupled bending and torsion,” Journal of 

Sound and Vibration, in press. 

 

• Wang, K. and Inman, D. J., “Modal models of cracked composite beams,” 

Proceedings of the 2004 International Conference on Noise and Vibration 

Engineering (ISMA 2004), Leuven, Belgium, September 20-22, 2004, 1171-1183. 

 

• Wang, K. and Inman, D. J., “Crack induced changes in flutter speed as a damage 

prognosis tool,” Proceedings of the second European Workshop on Structural 

Health Monitoring, Munich, Germany, July 7-9, 2004, 1027-1034. 

 

• Wang, K. and Inman, D. J., “Coupling of bending and torsion of a cracked 

composite beam,” Proceedings of the 22nd SEM International Modal Analysis 

Conference, Dearborn, Michigan, January 26-29, 2004, #283 
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7.3 Proposed Future Work 
 

The following lists some topics for further research: 

• Conduct an experiment to validate as well as calibrate the cracked composite beam 

model developed in this research. 

• Develop a finite element or spectrum element of the cracked composite beam 

vibrating in coupled bending-torsion in an effort to add a new element to the 

element library, based on the analytical model presented here. 

• Conduct an experiment to validate the aeroelastic characteristics of a cracked 

composite wing predicted by the analytical model developed in Chapter 4. 

• Compare other model-based approaches for crack detection with the one by 

sensitivity of natural frequencies, such as wave propagation. 

• Investigate a damaged composite beam with delamination, closing cracks, or a 

mixture of matrix and fiber cracking. 

• Extend the current cracked composite beam model for a cracked composite beam 

with asymmetric layouts of plies. 
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Appendix A 
 

Material Properties of a Single Ply 
 

 

The complex constants m1, m2 in equation (3.4) are roots of the characteristic equation 

(Sih and Chen, 1981): 
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with θθ sin,cos == nm , and q being the angle between the geometric axes of the beam (x-y) 

and the material principle axes (1-2) as shown in Figure 3.2. The roots are either complex or 

purely imaginary, and can not be real. The constants m1 and m2 correspond to those with 

positive imaginary parts. 
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Constants 66122211 ,,, AAAA are compliance elements of the composite along the principle 

axes and directly relate to the mechanical constants of the material (Vinson and Sierakowski, 

1991). Under the plane strain condition, 
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Under the plane stress condition, 
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To study the third crack mode, other compliances for both the plane strain and plane stress 

can be found to be 
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The mechanical properties of the composite, ρνν ,,,,,, 231223122211 GGEE , can be found 

(Vinson and Sierakowski, 1991) to be 
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where subscript m stands for matrix and f for fiber; V is the fiber volume fraction. 

 

Also based on the mechanical properties determined above as well as the ply orientation, the 

transformed reduced stiffnesses ijQ relate to the reduced stiffnesses ijQ by 

 4 4 2 2
11 11 22 12 662( 2 )Q Q m Q n Q Q m n= + + +  

 4 4 2 2
22 11 22 12 662( 2 )Q Q n Q m Q Q m n= + + +  

 2 2 4 4
12 11 22 66 12( 4 ) ( )Q Q Q Q m n Q m n= + − + +  (A.6) 

 2 2 2 2
16 11 22 12 66[ ( 2 )( )]Q mn Q m Q n Q Q m n= − − + −  

 2 2 2 2
26 11 22 12 66[ ( 2 )( )]Q mn Q n Q m Q Q m n= − + + −  

 2 2 2 2 2
66 11 22 12 66( 2 ) ( )Q Q Q Q m n Q m n= + − + −  

where 

 11 22
11 22 12 11 21 22 12 66 12

12 21 12 21
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ν ν ν ν
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− −

. 

The bending stiffnesses Dij of the beam laminated with N plies can then be determined by 

 3 3
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1 ( ) ( )
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N

ij ij k k k
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D Q z z −
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where (zk, zk-1) defines the thickness of the kth ply in the z-direction. 



154 

 

 

 

 

Appendix B 
 

Closed Form Solution of the Auxiliary 
Equation 
 

 

The governing equation of motion of the composite beam, equation (3.20) or (4.2), can 

be written in the non-dimensional form: 

 6 4 2( ) 0D aD bD abc W+ − − =  (B.1) 

where ( ) /D d dξ= ⋅ , and a, b, c are positive constants. Substituting the trial solution 
pW e ξ= to equation (B.1) yields 

 6 4 2 0p ap bp abc+ − − =  (B.2) 

Let 2pλ = . Equation (B.2) can be rewritten in the form 

 3 0x qx r− − =  (B.3) 

where 

/ 3x aλ= +  
2 / 3q b a= +  

2( / 3 2 / 27)r a bc b a= − −  

Let 2 327 4r qδ = − . If δ < 0, all three roots of equation (B.3) are real, with one root positive 

and the other two negative, as given by Pipes and Harvill (1971): 

1 2 / 3 cos( / 3)x q φ=  

 2 2 / 3 cos[( ) / 3]x q π φ= − −  (B.4) 
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3 2 / 3 cos[( ) / 3]x q π φ= − +  

with cos 3 3/ /(2 )r q qφ = . 

Substitution of r and q in equation (B.3) for δ yields the following expression (Banerjee, 

2001): 

 2 3 2 2 2 4 3 2 2 2 2 227 4 4 ( ) 4 (1 ) (1 ) 18 (1 )r q b a c b a bc c a b c a b c cδ = − = − − − − − − − −  (B.5) 

Since c is always less than 1, it is obvious that δ < 0 and the solution given by (B.4) is 

justified. Then six roots in equation (B.2), corresponding to three roots given by (B.4), 

consist of one pair of real roots (α, -α) and two pair of pure imaginary roots (iβ, - iβ; iγ, - iγ): 
2 2 / 3 cos( / 3) / 3q aα φ= −  

 2 2 / 3 cos[( ) / 3] / 3q aβ π φ= − +  (B.6) 

2 2 / 3 cos[( ) / 3] / 3q aγ π φ= + +  

where α , β and γ are all real and positive, and q and φ are given in equations (B.3) and (B.4). 

 

Finally, the solution of the differential equation can be written as 

 1 2 3 4 5 6( ) cosh sinh cos sin cos sinW C C C C C Cξ αξ αξ βξ βξ γξ γξ= + + + + +  (B.7) 

where C1 to C6 are constants to be determined by boundary conditions. 
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