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Fixed-Point Implementation of a Multistage Receiver

Rick A. Cameron

(ABSTRACT)

This dissertation provides a study of synchronization and quantization issues in implement-
ing a multistage receiver in fixed-point Digital Signal Processing (DSP) hardware. Current
multistage receiver analysis has neglected the effects of synchronization and quantization;
however, these effects can degrade system performance and therefore decrease overall sys-
tem capacity.

The first objective is to analyze and simulate various effects of synchronization in a multi-
stage system. These effects include the effect of unsynchronized users on the bit error rate
(BER) of synchronized users, and determining whether interference cancellation can be
used to improve the synchronization time. This information is used to determine whether
synchronization will limit overall system capacity. Both analytical and simulation tech-
niques are presented.

The second objective is to study the effects of quantization on the performance of the
multistage receiver. A DSP implementation of a practical receiver will require a DSP
chip with a fewer number of bits than the computer chips typically used in simulation
of receiver performance. Therefore, the DSP implementation performs poorer than the
simulation results predict. In addition, a fixed-point implementation is often favored over
a floating-point implementation, due to the high processing requirements necessitated by
the high chip rate. This further degrades performance because of the limited dynamic range
available with fixed-point arithmetic. The performance of the receiver using a fixed-point
implementation is analyzed and simulated.

We also relate these topics to other important issues in the hardware implementation of
multistage receivers, including the effects of frequency offsets at the receiver and developing
a multiuser air protocol interface (API). This dissertation represents a contribution to the
ongoing hardware development effort in multistage receivers at Virginia Tech.

This work was supported by the Defense Advanced Research Projects Agency (DARPA)
and the MPRG Industrial Affiliates Foundation.
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Chapter 1

Introduction

A Code Division Multiple Access (CDMA) cellular system has been proposed for use as
a next-generation cellular telephone system [1]. The underlying goal is to improve overall
system capacity while achieving additional benefits of digital systems such as improved
privacy and error correction. One of the main drawbacks to CDMA is that traditional
receivers such as the correlation and Rake receivers are susceptible to the near-far problem,
which occurs when one received signal is much stronger than another. Tight power control
algorithms have been proposed in an attempt to overcome this problem, but even these
techniques are still vulnerable [2, 3].

A great deal of research has focused on developing receiver structures that are near-far
resistant. The various approaches can be divided into two general classes: single user
receivers and multiuser receivers. In receivers where only a single user is demodulated
(such as a mobile receiver in a cellular system), techniques based on adaptive filtering [4]
can be used to combat interference and the near-far problem.

In a multiuser receiver, all of the desired users are demodulated at the same location such
as the base station in a cellular system. A multiuser receiver can use all of the information
about the received signals from all users to combat interference and the near-far problem.
In [5], an optimum multiuser receiver for the Additive White Gaussian Noise (AWGN)
channel was proposed that is ideally near-far resistant (a near-far resistance of unity). The
optimum receiver structure is hopelessly complex [6], precluding the possibility of a phys-
ical implementation; however, this work did show the performance improvement which
is possible with a multiuser receiver structure and spawned a considerable amount of re-
search aimed at finding sub-optimal approaches that would retain much of the performance
improvement possible with the optimum receiver, but at a greatly reduced complexity.

Two classes of sub-optimal multiuser receivers that have received a great deal of research
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interest are decorrelators and interference cancellers. The decorrelators [7, 8, 9] are based
upon multiplying the vector of received decision variables by the inverse of the matrix of
code sequence cross-correlations, thus removing the effect of the interfering users. The
interference cancellers can cancel interference either successively [10] or in parallel using
multiple stages [11, 12, 13]. Other approaches exist, including hybrid approaches [14] and
modifications to the receivers mentioned above [15, 16, 17]. A multistage receiver has been
chosen for this work, in part because the design can be implemented in hardware due to its
relatively low computational requirements and the inherent simplicity of the computational
algorithms [18].

This thesis discusses research into issues that must be addressed when implementing a
multistage receiver in Digital Signal Processing (DSP) hardware. A baseband multistage
receiver prototype using a DSP testbed is being developed in support of an ongoing project
at Virginia Tech1. There are two key issues that must be addressed for the physical imple-
mentation that have not been addressed in existing research: synchronization and quantiza-
tion. The effects of synchronization and quantization have not been adequately addressed
to date. Practical effects such as synchronization and quantization will diminish the ability
of the receiver to cancel interference and thus determining the actual level of degradation
is of great interest when building a receiver. In this thesis, we attempt to address these
issues, as well as several other significant implementation issues.

1.1 Outline of Dissertation

There is a brief review of CDMA principles in Chapter 2. Chapter 3 provides a review
of multiuser receivers. Research into multistage receivers has concentrated on analytical
techniques to determine the theoretical performance of these receiver architectures. Per-
formance was first addressed in [11, 14] and closed-form BER expressions are given in
[19]. Multipath channels are addressed in [12, 20] and selective cancelation is addressed in
[13, 19]. The effect of phase and timing errors has been addressed in [21].

Chapter 4 reviews spread spectrum synchronization techniques. Chapter 5 studies the syn-
chronization process in a multistage receiver. Existing research assumes that synchroniza-
tion can be achieved and that there is no unsynchronized interference. Because interferers
cannot be canceled before synchronization is attained, this interference is likely to domi-
nate the overall system interference and thus diminish the theoretical performance increase
provided by the receiver. The effect of unsynchronized users on the BER of synchronized
users is analyzed using an improved Gaussian approximation for all multiple access inter-
ference (MAI). The effect of the power level of the unsynchronized user is also studied,

1the DARPA sponsored Glomo project, formerly known as the Wamis project
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as the extent to which this interference becomes dominant is related to the interfering
power levels. The mean and variance of acquisition time are also studied using an im-
proved Gaussian approximation for MAI. The multistage architecture can be used in the
synchronization process, since the residual signals will be less noisy than the initial received
signal. There is an associated delay with each stage, however, so the improvement must
be enough to offset the increased delay. The improvement in acquisition time related to
increasing the power in the unsynchronized user’s signal is also studied. These issues have
been studied both through analysis and simulation. A multistage receiver model has been
constructed in SPW, a block diagram simulator that is based upon hardware modeling.
Modeling the receiver in this fashion eases the transition to an actual hardware model. In
addition, this model is digital so functions such as correlation must be done discretely and
not continuously as is often done in analysis.

Chapter 6 reviews quantization analysis techniques. Chapter 7 examines the performance
degradation in the multistage receiver due to quantization in a fixed-point implementa-
tion. Quantization analysis has historically proceeded along two fronts, examining the
quantization deterministically and modeling the quantizer stochastically as a noise source.
Although the quantizer is a deterministic process, it is a nonlinear process and difficult to
analyze. Therefore, the stochastic approach is the most common. Uniform quantization
noise sources are often modeled as uncorrelated uniform noise sources, and an analytic
model is developed using the improved Gaussian approximation based on this assump-
tion. While the individual quantization sources can be accurately modeled with a uniform
distribution, the various noise sources are not necessarily uncorrelated. Furthermore, the
uniform model can cause errors in the decision statistic that would not occur if the quan-
tization was modeled deterministically. The overall analytic results are optimistic when
compared to the simulation results. A semi-analytic technique is proposed which improves
on the accuracy of the analytic model but without requiring all of the long simulation runs
of the simulation model. It is shown that the multistage receiver performs well in a fixed-
point implementation, assuming that the input signal has a constrained dynamic range (as
would occur if power control is used).

Chapter 8 discusses the framework of the hardware development effort. System specifica-
tions and computational complexity are discussed, as well as hardware issues. The effects
of frequency offsets in the oscillators of each user’s transmitter are also discussed, along
with a maximum likelihood phase estimator that attempts to track the frequency offsets
and random phase. Since each mobile will have a different transmitting oscillator with
some tolerance, the actual modulation frequency may be slightly different from those of
the other users. We desire to use a single RF front-end at the multistage receiver, so the
effects of frequency offsets must be accounted for. A simulation model is developed which
accounts for these offsets. Chapter 9 summarizes and concludes this report.



Chapter 2

CDMA Principles

2.1 Introduction

The past decade has seen great interest in using Code Division Multiple Access (CDMA)
systems for wireless systems. In [1], a CDMA system was proposed for use as the next-
generation cellular telephone system. CDMA systems are also being proposed for PCS
and many other wireless services [22, 23]. A key benefit of CDMA technology over more
traditional multiple access techniques is the increase in total system capacity. Additional
benefits include low probability of signal detection, protection against hostile and unin-
tentional jamming, resistance to multipath fading, and graceful performance degradation
in the presence of multiple access interference. Rake receivers can be used to exploit the
information in multipath signals if the relative time delay of the multipath components is
great enough.

There are two major spread-spectrum techniques for achieving CDMA, known as direct-
sequence and frequency hopping [1, 24, 25, 26, 27, 28, 29, 30, 31, 32]. The commercial
CDMA technique used in the IS-95 standard [33] is based on direct-sequence spread spec-
trum. In this dissertation, we will focus exclusively on the direct-sequence technique.

2.2 CDMA Characteristics

In CDMA, each user is assigned a unique pseudonoise (PN) code, a signature sequence, that
is used to distinguish that user’s transmission from all other users. Pseudonoise implies
that the receiver knows the PN code of the desired user, but to all other users the signal will
appear to be a random sequence of bits. To distinguish the bits in the PN code from the
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bits of the data signal, the PN code bits are called chips. The PN code has a data rate that
is much higher than the data signal. The bit and chip durations are T and Tc, respectively.
The processing gain N is given by the ratio N = T/Tc. A simple block diagram of a binary
phase shift keyed (BPSK) CDMA transmitter and correlation receiver are given in Fig. 2.1.
We will denote the desired user as user 1 and assume that there are no time or phase delays
for this particular user. At the transmitter, the information signal b1(t) is multiplied by
the PN code a1(t). By multiplying the two signals together, the result is spread over a wide
bandwidth. The result is modulated by multiplication with

√
2Pcos(ωct), where P is the

transmitted power and ωc is the carrier frequency. The resulting transmitted signal s1(t)
for user 1 is given by

s1(t) =
√
2Pb1(t)a1(t) cos(ωct) (2.1)

All users transmit over the same frequency band and at the same time, so that the received
signal r(t) is given by

r(t) = n(t) +
K∑
k=1

sk(t− τk), (2.2)

where n(t) is noise added by the channel, k is the user index, there areK active transmitters,
and τk is the time delay of each user k. A correlation receiver then multiplies the received
signal r(t) by a locally generated PN code replica a1(t), which despreads the desired signal
and leaves interfering signals as wideband noise. The result is then demodulated and
integrated over the bit period T , which gives the decision statistic Z,

Z =
∫ T

0
r(t)a1(t) cos(ωct)dt (2.3)

The bit estimate is made from the decision statistic; if Z is greater than 1, the bit estimate
is a 1; otherwise, the estimate is a 0.

Many of the benefits of CDMA are derived from the properties of the PN codes. The
code should have low auto-correlation values when the codes are not aligned, both to aid
in synchronization and to reduce the correlation with multipath components. The code
should have low cross-correlation with the other codes used in the system, to reduce the
effects of the multiple access interference (MAI) [34].

Consider, for purposes of illustration, that we wish to send the bit sequence {1, 0, 0, 1}
using BPSK, N = 10, and the PN code is {1, 1, 0, 1, 0, 1, 1, 0, 1, 0} which repeats at
the bit rate. In BPSK, a 1 is transmitted with amplitude +1 and a 0 is transmitted with
amplitude -1. The data waveform b(t) is shown in Fig. 2.2a. The spreading signal a(t) is
shown in Fig. 2.2b. The spread signal c(t) is shown in Fig. 2.2c. Note that the signal to
be transmitted now has the same data rate as the spreading signal, which in this case is
10 times higher than the original data rate.
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b t( )

a t( ) 2P ωct( )cos

s t( )

r t( )

a t( ) ωct( )cos

(a) CDMA Transmitter

0

T

∫
> 0 Decide +1

< 0 Decide 0

(b) Correlation Receiver

Figure 2.1: CDMA Transmitter and Correlation Receiver

Now assume that more than one user shares the communication channel. Assume that
a second user simultaneously transmits a 1, and that user 2’s PN code is given by {1,
0, 1, 0, 1, 0, 1, 0, 1, 0}. Finally, assume that we are trying to decode user 1’s signal
using a correlation receiver and that the channel is noiseless. The receiver will correlate
the received signal with user 1’s signature sequence over the bit period T , or over all 10
chips. The discrete correlation between the two sequences is given by summing the results
of multiplying the individual chip values. The correlation with the part of the received
signal due to user 1 is 10, since each multiplication will result in +1 and 10 multiplications
are being summed. The discrete correlation with the desired component will always be
given by N if a 1 is transmitted and by −N if a 0 is transmitted. The correlation with the
received signal of user 2 is 0. Therefore the total decision statistic Z is given by Z = 0+10.
In this case, since Z > 0, we correctly decide that a 1 was sent. In this simple example,
the sequences were orthogonal since user 2 did not add any multiple access interference. In
practice, this is often not possible for asynchronous systems.
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Table 2.1: Capacity Loss for Eb/No = 12 dB and BER = 10−3

Worst Case Best Case
Capacity Capacityσ2 (dB) Kmax
Loss (%)

Kmax
Loss (%)

0 25 - 30 -
1 21 16 27 10
2 17 32 22 27
4 11 56 13 57

2.3 Power Control

A key requirement of the capacity improvement possible with CDMA systems, if conven-
tional correlation receivers are used, is that the received signals of all users should have
identical power levels. Disparate power levels can give rise to the near/far problem, as
shown in Fig. 2.3. On the reverse channel, the increased distance of mobile 1 from the base
station will cause the received signal to have a lower power than the signal from mobile 2.
While mobile 2 can be received properly, the large amount of interference from mobile 2
can overcome the processing gain and cause the BER of mobile 1 to increase significantly.
Other factors such as shadowing and multipath fading can cause the received power levels
to vary dramatically, so power control algorithms have been proposed that attempt to ad-
just the transmitted power levels so that all signals are received at the same level [1, 32, 35].
An example of ideal power control is shown in Fig. 2.4, where the transmitted power is
adjusted to match any fading in the channel. This cannot be done perfectly in practice,
however, and even systems employing tight power control can suffer a significant capacity
loss over the ideal case. Upper and lower bounds on the probability of error for systems
employing imperfect power control are given in [2, 36]. A summary of the capacity loss
is given in Table 2.1 based on the upper and lower bounds on the BER, where Eb/No is
the signal-to-noise ratio of the desired user, σ2 is the variance of the received power levels,
and Kmax is the capacity for a BER of 10−3. The upper bound on the potential capacity
loss from the case of ideal power control is shown in Fig. 2.5 for received power variances
of 1, 2 and 4 dB if the desired user has Eb/No = 12 dB. Practical CDMA power control
algorithms have been shown in field trials to have a variance of 1 to 2 dB [32]. Since ca-
pacity increase is one of the reasons for using a CDMA system, this suggests that alternate
receiver structures will be required to achieve high capacity levels.
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2.4 Rake Receivers

A Rake receiver weights the decision statistics of a bank of correlation receivers (fingers),
each of which is matched to a multipath component of the desired user’s signal [37]. A block
diagram of a Rake receiver is shown in Fig. 2.6. Maximal ratio combining is typically used,
which maximizes the signal-to-noise ratio (SNR) of the overall decision statistic Z. This
can be closely approximated by weighting the decision statistic from finger m, Zm, in direct
proportion to its magnitude. For an M finger Rake receiver, maximal ratio combining can
be achieved by computing Z using

Z =
M∑
m=1

|Zm|Zm. (2.4)
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The bit estimate is made from the overall decision statistic. In so doing, the Rake can
combat multipath fading if the multipath components can be coherently resolved and thus
used in the decision process. Analytic results [38, 36] show that the Rake receiver can
significantly improve performance in a multipath environment, although the greatest im-
provement comes as Eb/No rises. In a low Eb/No environment, noise dominates the system
performance and the large amount of noise in each Zm will lead to a large amount of noise
in Z. The analysis uses a channel based on measurement data, and an example of the
performance improvement possible with a Rake receiver is shown in Fig. 2.7 for a partic-
ular Rayleigh fading environment. The Rake structure performed at least as well as the
correlation receivers for all values of Eb/No. The Rake receiver is useful for combating
multipath interference, but cannot combat Gaussian noise or multiple access interference.

2.5 Other Benefits and Implications of CDMA

Although high system capacity is one of the reasons that CDMA has become attractive
for commercial systems, there are additional benefits provided by CDMA systems. Some
of these are most beneficial to cellular telephony, whereas others are applicable to CDMA
systems in general. In a cellular telephone system, one desirable feature is the reduced
reliance on frequency planning. Although out-of-cell interference will keep the same cell
frequencies from being used in every cell, the cellular CDMA system is not nearly as
dependent upon frequency planning as is the current analog system.

Another benefit for cellular systems is the use of a soft-handoff technique, where a mobile
can be simultaneously tracked by two or more base stations when it is approaching a cell
boundary. In the analog system, a handoff is accomplished via a ”break-before-make”
technique, where once it is determined that a mobile should be handed off to another cell,
the original cell stops decoding the mobile and the new cell acquires it. This can lead to
dropped calls or ping-ponging, in which the mobile is handed back and forth between two
cell sites. In soft-handoff, a ”make-before-break” technique is used, where both cell sites
decode the mobile until the mobile is clearly being received more strongly by one of the
cell sites.

Another benefit when using CDMA for cellular telephony is the use of the voice activity
factor. Silence occupies a significant portion of the telephone call. In a CDMA system, if the
silence is detected, the power in the transmitter can be reduced, which reduces the overall
interference to the system and thus allows for a higher overall system capacity. While this
technique can also be used in other multiple-access schemes provided that new channels
can be allocated quickly enough, it can be readily accomplished in a CDMA system.

A benefit that is more applicable to military systems is the lower probability of detection,
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since the low power, wide bandwidth signal is relatively more difficult to detect than a
high power, narrow bandwidth signal. Another benefit is multipath performance. Even
if a Rake receiver is not used, the low auto-correlation achieved when the PN codes are
not aligned implies that multipath signals that are separated by more than 1 chip will not
be coherently combined, and thus this form of fading can be reduced. In the unlicensed
frequency bands, using a CDMA system can provide some protection against narrowband
interferers. For most civilian systems, the interferers are not intentional but authorized
users in the unlicensed bands (microwave links are one example of such an interferer).

Finally, the use of CDMA provides an inherent degree of security or privacy to the trans-
mitted signal. In order to decode a CDMA signal, the receiver must know the PN code.
Since these codes are chosen from a large set of possible codes, it would be difficult to
simply ’guess’ the appropriate PN code in an attempt to intercept a transmission. This
degree of privacy is not on the same level of an encryption scheme, as the transmitted
information is never encrypted and can be intercepted by anyone with knowledge of the
PN codes being employed. It does discourage the casual eavesdropping that can occur with
basic receiver designs in the current analog system.

2.6 Conclusions

CDMA systems can provide significant capacity improvements over more traditional mul-
tiple access schemes. However, if correlation receivers are used, this capacity improvement
can be significantly degraded if all received power levels are not identical. While power
control algorithms have been proposed to attempt to maintain identical power levels, this
cannot be perfectly accomplished and thus there is a capacity drop. This suggests the need
for alternative receiver structures to maximize the capacity in a practical CDMA system.
Rake receivers can be employed to help combat multipath fading.



Chapter 3

Multiuser Receivers

3.1 Introduction

The vulnerability to the near-far problem is not inherent to all CDMA systems, but is
dependent upon the receivers used, which has motivated the search for receiver structures
that can maintain a system high capacity even in the presence of disparate received power
levels. A popular approach for base station receivers is the multiuser receiver, which uses
information about all received signals to improve performance.

This chapter first provides a survey of the proposed multiuser receiver structures to date.
Since multiuser receivers require information about all (or many) of the received signals,
they are inappropriate for scenarios where single-user receivers are required, such as on the
forward link (base-to-mobile) of a cellular system. On the reverse link (mobile-to-base), the
base station will be receiving all users within its cell, and therefore information from other
users will be available when demodulating any particular user. This improved performance
is especially important on this link, which is usually considered to be the harsher of the
two links in a cellular environment. There are many reasons for this, including the limited
power available at the mobile, the asynchronous nature of the transmissions (the spreading
codes will not therefore be orthogonal), and since each user will be transmitting over a
different channel, each received power level will be different.

3.2 Multiuser Receivers

The purpose of all multiuser receivers is to overcome the near-far problem and offer perfor-
mance which approaches that of a single user system. The near-far resistance as defined in

14



15

[5, 9] is based on the asymptotic efficiency ηk, which is the limit as σ → 0 of the ratio of the
effective SNR to the actual SNR of a multiuser system (where σ is the standard deviation
of the AWGN). The effective SNR is the SNR required by a single user system to achieve
the same asymptotic BER as a multiuser system. The near-far resistance, then, is the
minimum ηk considered over all possible interfering bit energies. The minimum allowable
value of near-far resistance is zero, which implies that to achieve the BER of a single user
system, the multiuser system would require an infinite SNR. The conventional correlation
receiver has an efficiency of zero. The maximum allowable value of near-far resistance is
one, which implies that the multiuser system is performing as well as the single user system
(it cannot outperform the single user system, since completely removing all multiple access
interference is equivalent to a single user system). Thus the optimum multiuser receiver will
have a near-far resistance of one. A good summary of several multiuser receiver approaches
is given in [39].

3.2.1 Optimum Receivers

Horwood and Gagliardi [40] analyzed a multiuser receiver for the case when all transmis-
sions are synchronous and are passed through an encoder before transmission over the
channel. An expression for the average BER was developed based on choosing an appro-
priate encoding function that minimizes the MAI. Van Etten [41] proposed a multiuser
receiver using either a Viterbi or Ungerboeck decoding algorithm for asynchronous systems
and some form of interchannel interference.

In [5], Verdú proposed an optimum multiuser receiver for asynchronous Gaussian multiple-
access channels based on maximum-likelihood detection. The receiver is optimal in the
sense that the performance in the absence of Gaussian noise approaches that of a single-
user system. Using the near-far resistance definition given in [8], this yields a near-far
resistance of one, the optimal value. In the traditional multiuser receiver, there is no
interaction between the single-user receivers [5]. The optimum single-user receiver can be
modeled as a bank of single-user matched filters, each of which is followed by a threshold
detector. A block diagram of such a receiver is shown in Fig. 3.1, where r(t) is the received
signal, K is the total number of users, k is the user index and ranges from 1 ≤ k ≤ K,
Zk is the decision statistic for user k, j is the bit index, and b̂k(j) is the estimate of bit
j for user k. Verdú’s proposed receiver has a bank of single-user matched filters followed
by a Viterbi decision algorithm, as shown in Fig. 3.2. Although the decision based on
individual statistics may not be optimal, it is shown in [5] that the set of all decision
statistics is a sufficient statistic for optimally estimating the set of data bits. In comparing
the receiver structures, in can be seen that the optimal multiuser receiver is an extension
of the traditional receiver. Using maximum-likelihood detection, the detector selects the
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sequence that maximizes

P [{rt, t ∈ <}|b] = Cexp(Ω(b)/2σ2), (3.1)

where rt is the received signal, C is a positive scalar, < is the set of real numbers, b is the
vector of all K user’s transmitted symbols, σ is the standard deviation of the noise, and
Ω(b) is given by

Ω(b) = 2
∫ ∞

−∞
St(b)drt −

∫ ∞

−∞
S2
t (b)dt. (3.2)

The term St(b) is given by

St(b) =
M∑

i=−M

K∑
k=1

bk(i)sk(t− iT − τk). (3.3)

This detection process chooses the sequence which minimizes the noise energy.

The optimal multiuser receiver architecture requires knowledge of all users being received
by the multiuser receiver. In addition, the entire received waveform over all time must be
known, since in an asynchronous system each data bit overlaps two adjacent bits from each
interfering user. Any technique that only takes into account the received signal during the
detection interval is inherently suboptimal. The Viterbi algorithm has 2K−1 states and thus
a time complexity for each bit decision of O(2K). Verdú developed tight approximations
to the bit error rate that, even though the complexity of the receiver structure precludes a
practical implementation, demonstrated the significant performance improvements of the
optimal multiuser receiver over more conventional receiver structures.

3.2.2 Suboptimum Receivers

The next stage in multiuser receiver development was to search for suboptimal techniques
that approached the performance of the optimum technique, but with a much lower com-
putational complexity and therefore were more practically implementable. There are two
main classes of suboptimum receivers, linear receivers (those which implement a linear
transformation of the set of decision statistics) which are largely based on decorrelation,
and nonlinear receivers which are based on interference cancellation. There are two main
subclasses of the interference canceler, successive cancellation and multistage cancellation.
A general study of suboptimum detectors based on linear transformations is given in [42]. A
simulation study of a variety of multiuser receivers is given in [18] for a variety of channels
and conditions.
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3.2.3 Decorrelators

A decorrelating receiver was initially proposed in [7], but estimates for the probability of
bit error were not determined due to the complexity of the analysis. Expressions for the
SNR of the decorrelator were presented in [43]. The decorrelator was extensively analyzed
in [8] for the synchronous AWGN channel and in [9] for the asynchronous AWGN channel,
where BER expressions were obtained. This receiver architecture computes a generalized
inverse of the signal crosscorrelation matrix and uses the result to linearly transform the
matched filter outputs. The resulting complexity per demodulated bit grows linearly, as
opposed to the exponential growth of the optimum receiver. An advantage of this scheme
over other suboptimal receivers is that the BER is independent of the received power levels,
and thus estimates of the received power levels are not required.

The output of the matched filter is given by the vector

y = RWb + n, (3.4)

where R is the cross-correlation matrix for an equivalent synchronous problem, W is a
diagonal matrix with the received signal energies from each user on the diaganol, b is the
information sequence, and n is white Gaussian noise. The elements of R are given by

Rkj(l) =
∫ ∞

−∞
ãk(t− τk)ãj(t+ lT − τj)dt, (3.5)

where ãk(t) is the pseudonoise (PN) sequence of user k, τk is the time delay of user k, and
T is the bit period.

For any linear detector, the bit estimate of user k’s ith bit can be found from

b̂k(i) = sgnvTy, (3.6)

where v characterizes the detector. For a decorrelating receiver, this is given by

v = R−1. (3.7)

It is shown in [9] that this detector approaches the near-far resistance of the optimum
detector in an AWGN channel. As can be seen from (3.5), the cross-correlation matrix is
independent of signal energies and thus the decorrelator does not need information about
received signal energies, which is a significant benefit.

One of the major drawbacks of this technique is that numerical instability can always
be a problem when calculating a matrix inverse. This can be a problem even on a high-
precision floating point processor, and is much more likely to be problematic on a fixed-point
implementation such as those likely to be used in a practical implementation. In addition,
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as can be seen from (3.5), R must be calculated (and therefore R−1) every time the delays
τk change, which will occur often in a mobile environment. This must also be calculated
every time any user enters or leaves the system. In addition, if the PN sequence does
not repeat at the bit period, R must be recomputed for each new bit period. Due to the
nature of the matrix inverse, the entire R−1 matrix must be recalculated even if only a few
elements of R change. If numerical instability does occur and the receiver cannot decode
the received signals, a generalized [44] (or pseudoinverse) can be calculated, but this will
introduce errors and the ability to decorrelate the interference will be degraded.

Performance in the Presence of Timing, Carrier Phase, and Carrier Frequency
Errors

The effects of errors in timing, carrier phase, and carrier frequency upon the performance of
the decorrelator are considered in [45]. Performance is determined both in terms of the bit
error rate and the near-far resistance of the receiver. The authors classify all three errors
as synchronization errors, since the errors result from the imperfect estimates supplied by
the synchronization routine. Performance was compared with the conventional correlation
receiver.

The authors found that the decorrelator performed well in the presence of these parameter
estimation errors provided that the errors were not too large. For the carrier frequency
error, which is principally caused by variations in the mobile transmitters’ oscillators and
by Doppler shift, the authors assumed that the magnitude of this error will usually be less
than 100 Hz for practical mobile communications systems. The authors do not mention
what carrier frequency they assumed, as tolerances in the oscillator’s carrier frequency are
usually specified in parts per million, and thus are dependent upon the carrier frequency.
This may be severely underestimating the magnitude of the typical carrier frequency offset
(the effects of carrier frequency offsets on the multistage receiver are discussed in more
detail in Section 8.3) and [46]. Assuming that the frequency offset is less than 100 Hz, the
authors found that the effect on the performance of the decorrelator was negligible.

For the carrier phase error, the authors found that its effect was negligible on system
performance as long as its magnitude stayed less than π/30. However, if coherent detection
is assumed and the carrier phase must be estimated at the receiver in the presence of
multiple access interference, the estimate of the carrier phase may well differ from the true
carrier phase by more than this amount. The authors make no mention of how the carrier
phase is estimated (nor do they discuss this procedure for any other parameter estimation).

For the time delay error, the authors also determined that this error had a tolerable effect
on system performance for most practical applications. However, in the numerical example
the authors provided, the error in estimating the true time delay was only 0.05Tc, where
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Tc is the chip period. Actual errors in estimation may yield significantly higher errors.
Consider, for example, a digital receiver where the received signal r(t) is oversampled by
Ns samples per chip. To properly align the signature sequences with a maximum error of
0.05Tc, this would imply that the maximum spacing between samples could be 0.1Tc, which
would require Ns = 10, or that the received signal be oversampled ten times.

The overall determination was that the decorrelator was very robust in the presence of
these three estimation errors. However, the numerical examples may not in fact have been
calculated using a worst case scenario, and that in fact the maximum error values assumed
may be well below those of practical importance. The decorrelator’s performance is not
surprising given the small maximum errors that were allowed in the simulation, and thus
the performance needs to be tested under more difficult conditions. This is not to imply
that the decorrelator will not perform admirably in these situations as well, but simply
that the results in [45] may not give an accurate accounting of the types of errors that can
be expected from practical parameter estimation techniques.

In [18], the decorrelator is compared with the multistage receiver in the presence of timing
errors and it is shown that, if perfect power control is assumed, then the multistage re-
ceiver is somewhat more tolerant of timing error than is the decorrelator. The decorrelator
performed better with small timing errors when flat fading was assumed. Performance was
nearly identical in near/far channels.

MMSE Detectors

A variation on the decorrelator is presented in [42], where a linear transformation is still
used but it is now based upon minimizing the mean square error. It is shown in [42, 47, 48]
that the transformation that minimizes this error is given by

v =
(
R+

No

2W2

)−1
. (3.8)

A disadvantage of this technique is that we now require either knowledge of or estimates
of the signal energies contained in W. The estimate of b, b̂, is given by

b̂ =
(
R+

No

2W2

)−1
y. (3.9)

Decision Feedback Detectors

To improve the performance of the decorrelator when decoding weaker users, a decorrelating
decision-feedback (DF) detector was introduced in [16] for a synchronous CDMA system in
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an AWGN channel. The receiver ranks users in order of decreasing received power, and now
the decisions of previous (stronger) users are used in the decision process. Thus knowledge
of stronger users is used to improve the performance of the weaker users. This structure
is similar to the successive interference cancellers discussed in Section 3.2.5, although the
emphasis is on optimizing the receiver filter structures. This structure outperforms the
decorrelator in every case, although the gains are most significant for the weakest users. A
significant drawback is that estimates of each user’s power level are now strictly required by
the DF process. The DF approach is extended to synchronous CDMA systems in multipath
fading channels in [17] in the form of an adaptive decorrelating Rake receiver.

3.2.4 Interference Cancellers

A different approach to a suboptimal multiuser receiver is the interference canceler (IC).
The idea is to subtract the interference from the received signal, thereby leaving the residual
signal as essentially a single user signal in the presence of channel noise. Intuitively, if all of
the multiple access interference can be perfectly canceled, the performance of the receiver
will be identical to that of a conventional receiver in a single user system and the receiver
will have a near-far resistance of one. In practice, the interference cannot be canceled
perfectly and the efficiency will be somewhat less than one. A major drawback to these
techniques is that the performance improvement is dependent upon being able to accurately
estimate each user’s received power level. There are two main approaches to interference
cancellation: successive cancellers and parallel cancellers.

3.2.5 Successive Interference Cancellers

A successive interference cancellation architecture was proposed by Viterbi in [49] for coded
systems. Patel and Holtzman developed BER expressions for uncoded systems in [10]. The
motivation behind the proposed receiver is minimizing complexity, as even some suboptimal
techniques in asynchronous systems have such a high complexity that a practical imple-
mentation is difficult or impossible. All successive (serial) cancellation schemes operate by
subtracting users in descending order based on received power levels. This scheme achieves
the power ranking by ranking the outputs of the individual correlation receivers. For asyn-
chronous systems, this ranking occurs after averaging the correlations over n bits (the value
of n must be set according to the channel to ensure that the received power ranking does
not change over those n bits). A block diagram of this approach is illustrated in Fig. 3.3.
The receiver lowers the BER over the conventional receiver in all cases, but performs best
when there is some degree of variance in the received power levels. The BER decreases as
the variance rises from zero (perfect power control), and then begins increasing again after
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the powers vary to a greater degree. This suggests that some variation in power levels is
beneficial for this receiver architecture, as it allows the stronger users to be decoded well
(because of the reduced MAI from the weaker users) and therefore allows their signals to
be canceled effectively. If the power levels become too disparate, however, the weak users
cannot be estimated properly due to noise from imperfect cancellation.

Serial Cancellation Using Walsh Transforms

A modification to the serial cancellation technique is to base the cancellation process upon
Walsh transforms [15, 50, 51, 52], such as those used in the IS-95 cellular CDMA system [33].
The idea is still to successively cancel interferers from the strongest to the weakest, but the
cancellation is now accomplished via the use of Walsh transforms. A given user is canceled
by taking the Walsh Transform, nulling out the corresponding bin in the Walsh spectrum,
and then taking the Inverse Walsh Transform. Walsh transforms have an additional benefit
in that hardware implementations operate quickly [53], which is particularly important in a
successive cancellation scheme where, for real time demodulation, all users must be canceled
during a bit period.

Practical considerations for the Walsh serial cancellation technique were addressed in [54].
Fast Walsh Transforms were studied, since the decrease in computational complexity is
significant (analogous to the decrease in moving from a Discrete Fourier Transform to a
Fast Fourier Transform). Quantization was also addressed by analyzing scaling and overflow
and determining accumulator lengths. A rough approximation to the level of quantization
noise due to rounding is introduced based on the number of quantization bits used. A plot
of the signal-to-noise ratio against the number of quantization bits is given in Fig. 3.4,
where it is seen that the SNR in dB increases linearly with the number of bits used. It is
shown that by choosing an appropriate number of bits to quantize the input, overflow is not
a major concern with this receiver architecture. This is important, as overflow can occur
for similar reasons in the multistage receiver, which suggests that the multistage receiver
may be resistant to overflow as well.
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3.2.6 Parallel Interference Cancellers

An alternative to the serial cancellation schemes is parallel cancellation, in which estimates
are made simultaneously for all interferers, and then subtracted from the received signal.
This is repeated in multiple stages to gain better estimates of the interference, giving rise
to the term multistage receiver. One technique was proposed by Varanasi and Aazhang in
[11] using correlation receivers, where an expression for the BER of a two-stage receiver was
also obtained. An alternative approach is presented by Kohno et al in [55] using adaptive
filters, where a BER expression is obtained when the filters are in steady state (although
simulations showed that for noisy, time-varying channels, stable convergence of the filter
tap coefficients was difficult to obtain). The receiver used for this research is based upon
the structure proposed in [11]. A block diagram of a two-stage receiver is shown in Fig. 3.5.
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The first stage is essentially the traditional multiuser receiver, which is just a bank of single-
user receivers. The only difference is that a bit decision is not made at this point. At the
beginning of the second stage, an estimate is made of each user’s received signal. These
estimates are then subtracted from the received signal. The desired user’s signal is then
added to this residual signal, and the signal is again passed to a single-user receiver. The
complexity per demodulated symbol is shown to be linear with respect to the total number
of users K while maintaining a performance comparable to the optimum multiuser receiver
for most practical cases.

3.2.7 Multistage Rake Receiver

In [12, 20], the concepts of a Rake receiver and a multistage receiver are combined. By
replacing the bank of correlation receivers with a bank of Rake receivers, the multistage
architecture can be used to combat fading and MAI in a multipath environment. Closed
form expressions are presented for BER using the Gaussian approximation for MAI in
[56, 19], which for any user k in an AWGN channel, if all received power levels are the
same, is for stage s + 1

P
(s+1)
b = Q



[

1

2(PT/No)

(
1− (K−1

3N
)s+1

1− (K−1
3N

)

)
+
(
K − 1

3N

)s+1]−1/2
 , (3.10)

where there areK total active users in the system, P is the power level of the received signal
from user k, T is the bit period, the Gaussian noise has two-sided power spectral density
No/2, and N is the processing gain of the CDMA system. A plot of improvement possible
with the multistage receiver is shown in Fig 3.6 for an AWGN with identical receiver power
levels, N = 128, and K = 32. This simple estimate becomes optimistic at low BER and
more elaborate BER estimation techniques have been developed [57]. There is a significant
performance improvement when going from a one stage to two stages, and a somewhat
smaller improvement when moving to three stages. There is little improvement in going
to a four stage receiver for this channel, and therefore much of performance improvement
can be gained with a small number of stages. The largest improvement comes as Eb/No,
as better estimates can be obtained with less noise and thus the cancellation improves,
resulting in lower BER. Cancellation will be beneficial if the Eb/No is given by

Eb/No >
1

2
(
1− K−1

3N

) (3.11)

and if (K − 1)/3N < 1. A plot of the minimum Eb/No required for the cancellation to be
beneficial is shown in Fig. 3.7.
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Near-Far Resistance of the Multistage Receiver

Using the closed-form expression for the BER, we can determine the near-far resistance of
an infinite stage multistage receiver. If the received power levels are not identical, the BER
(assuming we are decoding user 1) of a finite stage receiver is given by [56]

P
(s+1)
b = Q

{[
1

2(P1T/No)

(
1− (K−1

3N
)s+1

1− (K−1
3N

)

)
+
(

1

3N

)s+1
(3.12)

(
(K − 1)s−1 − (−1)s+1

K

(∑K
k=2 Pk
P1

+ 1

)
+ (−1)s+1

)]−1/2
 ,

where Pk is the received power of user k’s signal. For a receiver with infinite stages (s =∞),
if (K − 1)/3N < 1, this reduces to

lim
s→∞P

(s+1)
b = Q

{[
2(P1T/No)

(
1−

(
K − 1

3N

))]1/2}
. (3.13)

Using the near-far definition given in [5, 9], we must first compute the asymptotic efficiency
ηk, which is the limit as σ → 0 of the ratio of the effective SNR to the actual SNR of a
multiuser system. The effective SNR is the SNR required by a single user system to achieve
the same asymptotic BER as a multiuser system. The near-far resistance is the minimum
ηk considered over all possible interfering bit energies. The single user equivalent for the
system considered here is a simple BPSK system, in which the asymptotic BER is given
by [58]

Pb = Q

(√
2Eb
No

)
. (3.14)

Therefore, the effective Eb/No will be the Eb/No of (3.14) required to give an identical
BER for (3.13) under the limit as No → 0. By equating (3.13) and (3.14), we find that the
effective Eb/No is given by

(
Eb
No

)
eff

= (Eb/No)
[
1−

(
K − 1

3N

)]
. (3.15)

The asymptotic efficiency can then be found via

ηk = lim
No→0

(Eb/No)eff
Eb/No

(3.16)

= 1−
(
K − 1

3N

)
.
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Since this is independent of the interfering bit energies, we have shown that the near-far
resistance ηk of an infinite stage multistage receiver is given by

ηk = 1−
(
K − 1

3N

)
. (3.17)

By a parallel analysis, it can be shown that the near-far resistance of a finite stage multistage
receiver is ηk = 0. This implies the Eb/No of a multiuser system would have to be infinite
to match the BER of a single user system. This occurs because there will always be some
residual signal that cannot be canceled in a finite number of stages, and this residual signal
will cause some degradation in the BER of the multistage receiver. Thus, at high Eb/No,
a finite stage multistage receiver cannot achieve exactly the BER of a single user system,
although as shown in Fig. 3.6, it can come close. This implies that, even though it has a
near-far resistance of zero according to the above definition, the finite stage receiver is still
quite useful at combatting the near-far problem.

The Improved Gaussian Approximation

The Gaussian approximation is known to be optimistic under certain conditions [59], par-
ticularly for low BER and low number of users. The Gaussian approximation also assumes
that no particular variable dominates the performance of the overall system. If one in-
terferer is not canceled effectively in a multistage system, that user may dominate the
interference and the Gaussian approximation may be increasingly less accurate. An im-
proved form of the Gaussian approximation was first introduced in [59], and a further
simplified (but still accurate) approximation in [60]. This was further modified by Liberti
in [61] to allow for disparate received power levels (whether random or constant). Buehrer
[21] applied this form of the improved Gaussian approximation to develop a more accurate
expression for BER in a multistage receiver.

Selective Cancellation

The cancellation process can actually increase the noise in the multiple access interference
if a user’s received power falls below a certain threshold [13, 19]. This occurs because an
accurate estimate of the received signal cannot be obtained and the ineffective cancelation
increases the overall noise. The technique of selective cancellation has been introduced to
only cancel users whose received powers are above a set threshold. For the AWGN channel,
it is only beneficial to cancel the interference from user k if the received power Pk is given
by

Pk >
No

2T
+

1

3N

K∑
j=1,j 6=k

Pj. (3.18)
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In a cellular CDMA system, a large amount of MAI comes from out-of-cell interference
[62, 63]. These interfering users are often received with low powers due to the longer
distances from the base station. While attempting to cancel all users improves the BER
over using traditional receivers, even lower BER can be achieved by selectively canceling
the interferers. It is shown in [63] that averaging the received power estimate over several
bit periods can improve the estimate if the power does not change significantly during that
time.

Parameter Estimation

The preceding analysis of the multistage analysis has assumed that we can perfectly es-
timate the carrier phase and the time delay of each user k’s received signal. In practice,
however, the receiver will have to estimate these parameters and then use these parameter
estimates when calculating the interference estimates. The fact that we are using estimates
and not the actual parameters will introduce noise into the cancellation process and thus
degrade the overall bit error rate performance. A study of how the receiver performs in the
presence of this additional noise is given in [18].

The use of averaging to reduce the variance in the parameters is also studied [18]. The
average is taken using the traditional sample average over Nb bits, given by

Âk =
1

Nb

Nb∑
n=1

Âk,i, (3.19)

where Âk,i is the parameter estimate of user k during bit interval i and Âk is the average
of that estimate over Nb bits. This technique can be used to decrease the variance of the
estimates provided that the estimate does not vary significantly during the Nb bits used
in the averaging process. Results show that averaging over a small number of bits can
reduce the variance in the estimates in both static and time-varying channels. Methods of
estimating the amplitude, time delay, and carrier phase are provided.

Numerical results were generated for varying levels of phase estimation and time delay
estimation (the amplitude estimation errors are already accounted for in the multistage
model) [18]. It was shown that the multistage receiver still outperforms the conventional
receiver for reasonable levels of estimation (although there is noticeable degradation as the
estimation error increases), and furthermore that the receiver is more sensitive to timing
errors than to phase errors.
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3.2.8 Other Approaches

There are other approaches to multiuser receivers, including hybrid combinations. In [14],
Varanasi and Aazhang note that the first stage which determines the initial bit estimate
need not be a bank of correlation receivers, but can instead be any receiver structure. One
possibility suggested in [14] is to use the decorrelating receivers proposed by Lupas and
Verdú. The complexity remains linear with respect to the number of users K, but the
multistage architecture now allows for bit estimates to be formed on less noisy signals.
A drawback of this approach is that the use of decorrelators implies that this hybrid
receiver will still be vulnerable to numerical instabilities caused by computing the inverse
of the correlation matrix. The computational complexity has also increased over a receiver
employing conventional receivers.

Another approach combines the interference canceler with adaptive antenna arrays [64]. An
adaptive array attempts to combat interference by nulling out signals that do not arrive at
the same angle of arrival as the desired signal. Drawbacks to using the arrays by themselves
is that interference with the same angle of arrival cannot be nulled, and the degree to which
interference can be nulled is restricted by the number of elements used in the array, as this
determines what type of antenna pattern can be generated. By using an adaptive array
in conjunction with interference cancellation, the array can be used to limit the number of
users that must be cancelled (and thereby limit the complexity of the required interference
canceler), and the interference canceler can combat the interference that cannot be reduced
by the array alone. Information from the IC process can be used in updating the taps of
the array. In the cancellation process, the algorithm must know which interferers arrived
at the same angle of arrival, since only these interferers will be canceled. This technique
observes the correlator outputs, and assumes that strong outputs indicate same angle of
arrival, since the array will null to some degree the other interferers. The reduction in
complexity of the IC scheme is therefore dependent upon the number of interferers that
can be adequately nulled by the array, which is in turn dependent upon the number of
elements in the array.

3.3 Conclusions

In this chapter, we have summarized the various approaches that have been taken in mul-
tiuser receiver design. The optimum receiver in the AWGN channel is too complex for
practical implementation, and so sub-optimum techniques have been developed that retain
much of the optimum receiver’s performance but at a linear complexity. The two main
classes are the linear receivers based on decorrelation, and the non-linear receivers based
on interference cancellation. Cancellation can be performed either in serial or parallel.
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Parallel cancellation has been shown through analysis and simulation to provide an attrac-
tive combination of performance robustness and complexity [65]. So we will pursue parallel
cancellation in this thesis. We will address some practical considerations of multistage
performance. First, we will address synchronization, with a discussion of spread spectrum
synchronization techniques in Chapter 4 and an examination of synchronization effects in
the multistage receiver in Chapter 5. First, we consider the effect the unsynchronized users
will have upon the BER of synchronized users. This can be significant since we cannot
cancel the unsynchronized users. Next, we will use the multistage architecture to improve
the acquisition time. An analytic and simulation model is presented in each case.

The next topic that we address is quantization, with a discussion of quantization analysis
technique in Chapter 6 and an examination of the effects of quantization in the multi-
stage receiver in Chapter 7. The hardware prototype that is being developed requires a
fixed-point implementation because of cost and speed considerations. Fixed-point systems
have limited dynamic range, and we investigate the performance degradation caused by
quantization noise. An analytic, simulation, and semi-analytic model is presented.

Finally, carrier phase offsets and phase estimation are considered in Chapter 8, along with
the computational complexity and other issues related to the hardware prototype being
developed. Each mobile will have a carrier frequency slightly different from the other’s due
to tolerances in the oscillators. Many conventional phase tracking techniques are closed-
loop approaches, but the cancellation process requires open-loop approaches. A simulation
model of a maximum likelihood phase estimator is presented.



Chapter 4

Synchronization Techniques for
CDMA

4.1 Introduction

In this chapter, a survey of the various synchronization schemes for CDMA systems is
presented. Many early spread spectrum systems did not require multiple access and there-
fore not all of the spread spectrum synchronization techniques are suitable for a CDMA
environment. Synchronization is critical when using multiuser receivers for several reasons.
First, as in all CDMA systems, it is important to synchronize as quickly as possible so that
a user may begin transmitting with little noticeable delay. Second, in a multiuser receiver,
since the unsynchronized user’s signal is unknown, that signal cannot be used to combat
the interference due to that user and thus it will increase the BER of all other users.

4.2 Synchronization

In order for a spread spectrum signal to be despread, the locally generated replica of
the spreading sequence at the receiver must be aligned with the desired user’s spreading
sequence in the received signal. Various synchronization schemes have been proposed to
accomplish this. Synchronization generally occurs in two stages, acquisition and tracking.
In acquisition, an attempt is made to align the sequences within some degree of tolerance,
typically a chip period [66]. Once it is determined that the sequences have been aligned
properly, tracking mode is entered, which maintains the alignment with the received signal.
Acquisition is often considered the most difficult aspect of synchronization, and as such

32
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has received the greatest amount of research interest. Only acquisition is considered in this
thesis.

The metric used to compare synchronization techniques varies with the intended use of
the spread spectrum system. Two important criteria are the probability of false alarm and
the probability of detection. These terms are sometimes defined in two different ways, so
care must be taken to ensure that the proper definition is used for the case being studied.
Historically, the probability of false alarm is the probability that synchronization is detected
when the desired signal is not actually present [67, 68]. The probability of detection is the
probability that synchronization is detected when the desired signal is present. This was
applicable to early spread spectrum systems like range finding systems, where the receiver
was trying to detect a pulse, not decode any information. The important criteria in such
a system is whether the signal is present or not.

For continuous communication systems where the signal is continuously transmitted until
the signal is acquired and the message completed, the desired signal is always present,
although the code phase is unknown. Since the signal is present, it makes little sense to
calculate the probability that synchronization is detected when it is not present. Instead,
the probability of false alarm is defined as the probability that synchronization is detected
when the two PN codes are not properly aligned [69]. The probability of detection is
the probability that synchronization will be detected when the codes are properly aligned.
Since the spread spectrum communication systems considered here, including the cellular
CDMA system, are continuously transmitting systems, this definition is used throughout
this thesis.

Regardless of how they are defined, the probabilities of false alarm and detection are most
useful as a measure of performance in bursty communications, where the transmitter sends a
short signal and then is silent for a longer period of time [70]. For continuously transmitting
systems, a more useful measure of system performance is acquisition time. The acquisition
time is a random variable because of the random components of the received signal, and
therefore must be characterized according to its probability distribution. Since this is very
difficult to achieve for any case of practical interest, the mean and variance of acquisition
time are usually derived instead [69].

4.2.1 Matched Filters

The first serial synchronization technique was proposed by Sage [67] using matched filters
and threshold detection in a single user spread spectrum system operating in Gaussian
noise. Matched filters have the benefit of being straightforward to implement and rapid ac-
quisition, although they are often impractical for long chip sequences [71]. Passive matched
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Figure 4.1: Single Dwell Time System Model

filters are often constructed using a tapped delay line [72]. Since the tap structure in the
tapped delay line changes as the signature sequences change, this structure must be adapt-
able if decoding more than one possible signature sequence is required [71].

4.2.2 Active Correlators

Single Dwell Time Acquisition

In [69], the single dwell time acquisition technique is presented, which derives its name
from the fact that a single integration time is used in determining whether synchronization
has been achieved for a particular code alignment. The model assumes a single spread
spectrum user in Gaussian noise and a receiver using noncoherent detection. The received
signal is multiplied by the locally generated PN code and then passed through a bandpass
filter (BPF). The output is then passed through a square-law detector (an envelope detector
followed by a square-law device). The output is then integrated and passed to a threshold
device, whereupon tracking mode is entered if the output crossed the threshold, and the PN
code replica is shifted in phase if not. A block diagram of this system is shown in Fig. 4.1.
Expressions for the mean and variance of acquisition time are presented (assuming no
Doppler shift). First approximations to the mean and variance of acquisition time are
presented if Doppler shift is present. In [73], an expression for the probability of successful
synchronization is given for single dwell time systems.

Double Dwell Time Acquisition

A double dwell time technique is also presented in [69], in which two integration times
are used. In the initial search, a short integration time is used to try and quickly find
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the correct code phase. If the threshold is crossed after the shorter integration, a longer
integration takes place and the result is compared to a second threshold. If this threshold is
crossed, the output is passed to the tracking routine, otherwise the code phase is updated
and the process begins again (using the shorter integration period). Approximations to
the mean and variance of acquisition time are given for both the case of no Doppler shift
and the case of Doppler shift. Analysis of multiple dwell time techniques is presented in
[74], where it is shown that double dwell time techniques show a significant improvement
over single dwell time techniques, and that further improvement can be obtained using
multiple dwell times but that the improvement is marginal. The enhancement possible in
acquisition time is particularly noticeable as the penalty time increases.

Variable Dwell Time Acquisition

Variable dwell time schemes also exist, which are based on the sequential analysis presented
in [75]. The output of the integrator is continuously compared to a variable threshold, and
if at any time the output falls below this threshold, then the code phase is updated and the
search begins again. In this fashion, a given code phase does not have to be searched for
a long time if it is readily apparent that the integrator output is well below the expected
level. Determining appropriate values for the variable threshold are critical in maintaining
acceptable levels for the probabilities of detection and false alarm.

Expanding Window Search Strategy

An expanding window strategy is applied to fixed and variable dwell time schemes in [76],
where an approximation is introduced for the cumulative probability distribution of the
acquisition time. In some cases, the code phase will not be uniform over the dwell time,
but will have some other probability distribution. This is the case when some a priori
knowledge is known of the code phase. This can occur, for example, if synchronization has
just been lost and is trying to be re-established or if the code phase is based on the time of
day and some information is known about the distance of the transmitter from the receiver.
Since the phase is known to most likely be within some subset of the total uncertainty
region, an expanding window strategy begins by searching that most likely region, and, if
synchronization is not achieved, gradually expands the search until eventually the whole
uncertainty region is swept.
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4.2.3 Sequential Estimation

An alternative to the active correlation approach is sequential estimation, in which a small
number of bits are examined and the state of the received PN code is estimated [77]. A
locally generated PN code is still used, although instead of multiplying the received signal
by the PN code, the local PN code is set to the state of the estimated received signal. A
statistical decision is then made to determine if the codes are in alignment. This process
can greatly reduce the acquisition time compared to the serial search techniques, but has
significant limitations. First, the technique performs well only in the presence of Gaussian
noise. If other forms of interference are present, the algorithm performs very poorly and
therefore is not applicable to systems where multiple access is desired or where severe
jamming is expected. In addition, the algorithm assumes that the received PN signal is at
baseband, which implies that some form of coherent demodulation must be done prior to
PN code acquisition.

4.2.4 Acquisition using Interference Cancellation

Acquisition in an interference cancellation receiver has been studied in [78]. Two methods
are studied, based essentially on a serial and parallel cancellation approach. The model
assumes that the receiver is attempting to acquire K users in an AWGN channel. In the
first approach, the assumption is made that users will synchronize according to their power
ranking (strongest to weakest). As soon as a user synchronizes, the received signal from that
user is estimated and subtracted from the signal. This process repeats until the weakest user
is synchronized. In the second approach, a bank of matched filters attempts to acquire all
users at once. As each user is synchronized, an estimate is made of the corresponding
received signal and subtracted from the overall received signal. Unsynchronized users
continue attempting to synchronize on the residual signal until all users are synchronized.
The approach assumes a Gaussian approximation for all correlator outputs and develops an
expression for the probability of detection. The acquisition method is known as automatic
threshold control and is discussed in [79]. While extensive results were not given, the
parallel scheme was observed to synchronize all users faster than the serial approach, at
the cost of increased hardware complexity.

The results of [78] do not address the effects of the unsynchronized users on the bit error
rates of the synchronized users, nor the mean or variance of acquisition time. The results
best describe the case of when a system is being initialized and all users are unsynchronized.
The results then stress which of the cancellation techniques will acquire all K users the
fastest. This approach does not attempt to analyze a system that is already operating with
some number of synchronized users already present. In addition, no attempt is made to
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characterize the performance of each user with respect to acquisition; the techniques are
judged solely on how long it would take to acquire all K users. Finally, the multiple access
is always modeled using a Gaussian approximation, which is known to be optimistic under
certain conditions [30].

4.2.5 Other Techniques

Hybrid acquisition schemes are also possible. For example, a hybrid scheme is proposed
in [80] which uses both matched filters and active correlators. This scheme was mainly
proposed to counteract jamming, not multiple access interference. At the beginning of each
transmission, a short prefix is attached which is detected by the matched filter architecture.
The shortness of the prefix (which is repeated a set number of times) allows for a matched
filter with a reduced complexity. If the output of the matched filters exceeds some threshold,
an active correlation scheme is begun to attempt to reliably acquire the full signal. If the
output of the correlator exceeds a different threshold, then acquisition is assumed. This
scheme attempts to combine the rapid search capabilities of the matched filters with the
reliable detection of long sequences with active correlators.

A verification mode may follow the main acquisition mode and precede the tracking mode
[72]. In verification mode, if the acquisition loop detects acquisition when the correlator
output crosses the set threshold, the signal is passed to a coincidence detector. Here, the
locally generated and received PN sequences are correlated in a series of independent trials,
and the results are compared to a threshold. If a certain majority of the correlator outputs
do not exceed the threshold, the estimated code phase is incremented by one interval and
acquisition begins again. If that majority does cross the threshold, the tracking mode is
entered where a fine alignment is maintained between the two PN sequences. Such systems
are sometimes referred to as two-dwell systems. Verification is used to reduce the likelihood
of a false alarm and the associated penalty time before the acquisition process can begin
anew. The penalty for using a verification mode is that the mean acquisition time is
increased due to the increased time spent in verifying the code phase.

A modification of the straight serial search of the single dwell time approach is the Z
search [66, 72]. Using this technique, the region of code phase uncertainty is searched. If
the search is unsuccessful, the estimate of the code phase is reset and the search begins
again. Resetting the code phase takes a set period of time known as the reset time. An
alternative to resetting the code phase is to begin the search in the opposite direction of
the previous search, so that the code phase sweep will proceed backwards from the previous
sweep. There is no associated reset time with this technique.

A way of greatly reducing the mean acquisition time is to use a parallel architecture, where
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Figure 4.2: Parallel Acquisition Model

multiple code phases are searched at the same time as shown in Fig. 4.2. In the extreme
case, an acquisition loop can be used for every code phase uncertainty. Alternatively, a
subset of the phase uncertainties can be searched at any given time. The obvious drawback
to this technique is the increase in hardware required to achieve the parallel architecture.
These structures are very useful when acquisition time must be kept to an absolute min-
imum. A comparison of several parallel schemes in conjunction with verification is given
in [81]. Parallel schemes have also been analyzed in Rayleigh fading [82], nonselective and
frequency-selective Rician fading [83], and non-fading channels [82].

4.2.6 Conclusions

A wide variety of techniques are available for acquiring a signal in an interference cancel-
lation receiver. The initial synchronization results presented in the next chapter are for
the single dwell technique system with coherent demodulation. This is a widely applicable
technique that can operate in the presence of interference. The matched filter approach is
not adopted because it can only be used in systems with short spreading codes. Estimation
techniques are not used because they perform poorly in the presence of interference, and
multiple access interference is an inherent part of multiuser systems. Methods to improve
acquisition time such as using special PN codes or preambles are not used because they
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add significantly to the complexity of the analysis, and it is expected that the benefits
provided by these techniques will provide a similar level of performance improvement in a
multistage receiver as they do in single user receivers.



Chapter 5

Synchronization Issues for the
Multistage Receiver

The purpose of synchronization in a spread spectrum system is to align the spreading
code of the received signal with the locally generated replica of the spreading code at
the receiver [70]. The synchronization routine attempts to resolve the uncertainty in the
received timing and phase information. Synchronization is usually accomplished in two
stages: acquisition and tracking. Acquisition is used to initially acquire a signal within
some degree of tolerance. Tracking is used to maintain the alignment between the spreading
codes after the signal has been acquired. Uncertainty in timing and phase will occur after
initial acquisition due to effects such as clock misalignment, multipath, and Doppler shift.
This chapter deals only with acquisition. The effect on performance of timing errors and
phase jitter in the course of normal tracking is dealt with in [18].

There are two main effects of synchronization that we wish to study. The first is the effect
of unsynchronized users on the BER of synchronized users. The second is the improvement
in the mean acquisition time when using the multistage architecture in the synchronization
process.

5.1 Analyzing the Effect of Unsynchronized Users on

Synchronized Users

Any CDMA system will have a mix of synchronized and unsynchronized users. Both
user types will act as multiple access interference (MAI) to the desired user. For one
stage receivers (no interference cancellation), there will be no difference in the effect of

40
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interference caused by unsynchronized and synchronized users. However, for stages 2 and
beyond, interference cancellation can be performed upon the synchronized users, but not
the unsynchronized users. The unsynchronized interference will affect the BER in two ways.
First, the uncancelled interference will appear directly at the output of the last stage of
the receiver, and will likely dominate if the power is significantly greater than the residual
power of the synchronized users after cancellation. The unsynchronized interference will
also appear at each decision stage in the receiver, degrading the estimation of synchronized
interference. This will increase the noise in the cancellation process and increase the BER
at the output.

A closed form expression for BER for any arbitrary number of stages and any number of
synchronized users is given in [13, 19]. This analysis relies upon the Gaussian approximation
to model the MAI. The approximation, when compared to simulation results, is shown to
be valid for BER above 10−3. The Gaussian approximation cannot be used to model the
unsynchronized users, however. These users, particularly when they have power levels
that are greater than the synchronized users, will dominate system performance since their
interference cannot be canceled. The Gaussian approximation assumes that no residual
interference source dominates. Since a fundamental assumption of the approximation has
been violated, we must look for a more accurate technique to model the MAI.

In [59], Morrow and Lehnert presented an improved Gaussian approximation for modeling
multiple access interference when using the conventional correlation receiver. This tech-
nique closely models the exact interference levels, although the complexity is much greater
than that of the standard Gaussian approximation. Holtzman presented a modification to
the improved Gaussian approximation in [60], which has a high degree of accuracy but now
with a computational simplicity approaching that of the standard approximation. Liberti
then extended this technique [61] to allow the power of the received signal from each user
to be modeled independently of all others, either as a constant or a random variable.

This form for the improved Gaussian approximation has been extended to the multistage
receiver structure by Buehrer [21, 18]. This model assumes that all users are synchronized,
so the following analysis extends the model to allow MAI due to unsynchronized users as
well. Since the MAI is not affected by the method of synchronization used, this analysis
may be applied regardless of how synchronization is actually achieved.

5.2 System Model

We consider a DS/SS multiple access system with binary phase shift keyed (BPSK) sig-
naling and a multistage receiver. Since the multistage receiver requires knowledge of all
synchronized users’ spreading codes, and since only the base station will have access to
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these codes, the reverse link (mobile to base station) is modeled. There are K1 synchro-
nized users and K2 unsynchronized users in the system, with a total of K = K1+K2 users.
Any arbitrary user k’s received signal is represented by

sk(t) =
√
2Pkbk(t− τk)ak(t− τk) cos {ωc(t− τk) + φk} (5.1)

where k is the number of the user, Pk is the power of the signal, bk(t− τk) represents the
data signal, ak(t− τk) represents the spreading signal, and cos {ωc(t− τk) + φk} represents
the modulating waveform. The random phase φk is uniformly distributed over [0, 2π),
while the random delay τk is uniformly distributed over [0, T ), where T is the bit period.
We assume that Pk is independent for each user and also independent of the phase φk and
the delay τk. We assume, without loss of generality, that the phases and delays of user k
are relative to the desired user d, so that φd = 0 and τd = 0.

The data signal bk(t) is given by

bk(t) =
∞∑

i=−∞
bk,ipT (t− iT ), (5.2)

where bk,i ∈ {+1,−1} is an infinite sequence of data bits and pT (t) is a rectangular pulse
with unity amplitude and duration T . The spreading code ak(t) is given by

ak(t) =
∞∑

i=−∞
ak,ipTc(t− iTc), (5.3)

where the chip values are given by ak,i ∈ {+1,−1} and Tc is the chip duration. The total
number of chips per bit, N , is given by T = NTc. When a single propagation path is
present, the received signal at the base station is given by

r(t) = n(t) +
K∑
k=1

sk(t− τk), (5.4)

where n(t) is additive white Gaussian noise (AWGN) with two-sided power spectral density
No/2.

The first stage of the multistage receiver is a bank of correlation receivers, as shown in Fig
3.5. Each of these receivers recovers the transmitted data bit by correlating the received
signal r(t) with the signature sequence of user k, ak(t), to form a decision statistic Z

(1)
k,i ,

given by

Z
(1)
k,i =

∫ (i+1)T+τk

iT+τk

r(t)ak(t− τk) cos (ωct+ φk)dt. (5.5)
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The next step, for each stage s + 1, is to make an estimate ŝ
(s+1)
k (t) of each synchronized

user k’s received signal sk(t) given by

ŝ
(s+1)
k (t) =

√
2P̂k b̂k(t− τ̂k)ak(t− τ̂k) cos (ωct+ φ̂k). (5.6)

We will assume that the estimates of the delay and phase, τ̂k and φ̂k, can be obtained
perfectly from the synchronization routine. Therefore, for any data bit i, the only remaining

unknown portion of (5.6) is given by
√
P̂kb̂k,i. We can obtain this estimate by weighting

the decision statistic from the previous stage, using

√
P̂kb̂k,i =

√
2

T
Z
(s)
k,i . (5.7)

By substituting (5.2) and (5.7) into (5.6), we obtain

ŝ
(s+1)
k (t) =

2

T
ak(t− τk) cos (ωct + φk)

∞∑
i=−∞

Z
(s)
k,i pT (t− iT ). (5.8)

Now that we have constructed estimates of each synchronized user’s received signal, we
perform interference cancellation by subtracting all synchronized interfering signals from
the desired user’s signal. It is computationally more efficient to accomplish this by first
subtracting all estimates from the received signal, and then adding back the desired user
before detection by the next receiver stage. This process is illustrated in Fig. 3.5.

By subtracting out the interference estimates, we form a new received signal r
(s)
j (t) at each

stage s for each user j, 1 ≤ j ≤ K1, given by

r
(s)
j (t) = r(t)−

K1∑
k=1,k 6=j

ŝ
(s)
k (t− τk)

= n(t) + sj(t) +
K1∑

k=1,k 6=j
[sk(t− τk)− ŝ

(s)
k (t− τk)] +

K2∑
k=K1+1

sk(t− τk). (5.9)

The first term is the Gaussian noise, the second term is the desired user’s signal, the third
term is the residual after the interference estimates have been subtracted out, and the final
term is the MAI due to the unsynchronized users.

The received signal for each user j given by (5.9) is then passed to the next bank of
correlation receivers, as shown in Fig. 3.5. A new decision statistic is formed at stage s
during bit i by correlating r

(s)
j (t) with user j’s spreading code,

Z
(s)
j,i =

∫ (i+1)T+τj

iT+τj
r
(s)
j (t)ak(t− τj) cos (ωct + φj)dt. (5.10)
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This decision statistic is then passed on to the next stage until the final stage of the receiver
has been reached. At the last stage, an estimate is made of the desired user d’s transmitted
bit. The estimate of data bit i from user d, b̂d,i, is determined from Z

(s)
d,i by

b̂d,i =


 1, Z

(s)
d,i ≥ 0

−1, Z
(s)
d,i < 0

. (5.11)

5.3 Analysis Using an Improved Gaussian Approxi-

mation

This section develops an expression for the BER based on the decision statistic given in
(5.10). The improved Gaussian approximation uses the mean and variance of the vari-
ance of MAI to determine BER [60], so we must determine these variables based on the
characteristics of the interference. The analysis of [18] will be extended to allow for unsyn-
chronized users, since the characteristics of the MAI at stages s = 2 and above will differ
for synchronized and unsynchronized interferers.

Analysis for the First Stage

To obtain an expression for the decision statistic that is dependent upon the MAI, we
substitute (5.9) into (5.10) and obtain

Z
(s)
j,i = η +

√
Pj
2
Tbj,i +

K∑
k=1,k 6=j

I
(s)
k,j , (5.12)

where η is a zero mean Gaussian random variable with variance NoT/4 representing the

correlated noise, the second term represents the desired component, and I
(s)
k,j is the residual

after interference cancellation for the total MAI (the unsynchronized interference cannot
be cancelled and so this term will reflect the total interference from that user).

In [59], it is shown that the MAI terms of the first stage, I
(1)
k,j , are conditionally independent

given B, the number of zero crossings during a bit interval in the spreading code. We define
a random variable, Ψ, to be the conditional variance of the total multiple access interference
as [59]

Ψ = E




 K∑
k=1,k 6=d

I
(1)
k,d



2

| {φk}, {τk}, {Pk}, B

 . (5.13)
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To compute the BER directly using Ψ, the probability density function of Ψ must be com-
puted. Since this greatly increases the computational complexity of the analysis, Holtzman
introduced the improved Gaussian approximation [60], which only requires the mean and
variance of Ψ to compute BER. This derivation relies on using a Taylor series expansion
based on differences instead of derivatives. Allowing for random power levels as given in
[61], it is shown that the mean of Ψ, µΨ, is given by

µΨ =
T 2
cN

6

K∑
k=1,k 6=d

µPk, (5.14)

where µPk is the mean of the received power Pk of user k. The variance of Ψ, σ
2
Ψ, is given

by

σ2Ψ =
T 4
c

4


23N2 + 18N − 18

360

K∑
k=1,k 6=d

µ2Pk +
7N2 + 2N − 2

40

K∑
k=1,k 6=d

σ2Pk

+
N − 1

36

K∑
k=1,k 6=d

K∑
j=1,j 6=k 6=d

µPkµPj


 , (5.15)

where σ2Pk is the variance of the received power of user k. If constant received powers are
desired, the mean is set to the desired power level for user k and the variance is set to zero.
An accurate approximation for the probability of error for user d can then be determined
using [61]

P
(1)
b,d ≈ 2

3
Q



√√√√ PdT 2

2
(
µΨ + NoT

4

)

+

1

6
Q



√√√√ PdT 2

2
(
µΨ +

√
3σΨ + NoT

4

)



+
1

6
Q



√√√√ PdT 2

2
(
µΨ −

√
3σΨ + NoT

4

)

 , (5.16)

where Q(·) is the standard Q function defined by

Q(x) =
1√
2π

∫ ∞

x
e−

u2

2 du. (5.17)

Analysis for Stages 2 and Above

The above results apply only to the first stage of the receiver, which is identical to a bank
of correlation receivers. It is shown in [18] that if we define an effective power at each stage
s of the receiver, we can derive an expression for the mean and variance of this effective
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power, µ
(s)
Pk

and (σ
(s)
Pk
)2. We can then use µ

(s)
Pk

and (σ
(s)
Pk
)2 instead of µPk and σ2Pk when

computing the mean and variance of the total conditional MAI Ψ given by (5.14) and

(5.15). The goal is to develop expressions for µ
(s)
Pk

and (σ
(s)
Pk
)2 based on the effective power

in the interference at each stage of the receiver. Since interference cancellation can only be
performed on synchronized users, we must develop separate expressions for µ

(s)
Pk

and (σ
(s)
Pk
)2

based on whether user k is synchronized or not.

5.3.1 First Stage Multiple Access Interference

The interference characteristics of the MAI due to synchronized and unsynchronized users
will be the same at the first stage, since there has been no interference cancellation at this
point. Since cancellation is not performed on unsynchronized interference at later stages,
the unsynchronized interference at future stages will be the same as at stage 1.

Using (5.10) and (5.12), we can solve for the interference caused by user k (1 ≤ k ≤ K) to
user j (1 ≤ j ≤ K1) during the bit interval i as

I
(1)
k,j =

√
Pk
2
cos(φk − φj)

∫ (i+1)T+τj

iT+τj
bk(t− τk)ak(t− τk)aj(t− τj)dt. (5.18)

Since users k and j will in general not be bit-aligned, the integral of (5.18) can be rewritten
in terms of the two bits of user k (bit i− 1 and bit i) that overlap bit i of user j as

I
(1)
k,j =

√
Pk
2
cos(φk − φj)

{∫ iT+τk

iT+τj
bk,i−1ak(t− τk)aj(t− τj)dt

+
∫ (i+1)T+τj

iT+τk

bk,iak(t− τk)aj(t− τj)dt

}
. (5.19)

In [60], it is shown that this can be reduced to

I
(1)
k,j = Tc

√
Pk
2
cos(φk − φj)Wk, (5.20)

where Wk is defined in [60] and it is shown that E[Wk] = 0 and E[W 2
k ] = 2N/3.

To compute the total multiple access interference, we need to know the mean and variance
of the power of the interference, µ

(1)
Pk

and (σ
(1)
Pk
)2, respectively. Since there has been no

interference cancellation at this point, these are simply the mean and variance of each
individual power level Pk. Using (5.14) and (5.15), µΨ and σΨ can be computed and used
to compute the BER via (5.16).
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5.3.2 Synchronized MAI for Stages 2 and Higher

While the MAI due to unsynchronized users remains constant throughout the multistage
receiver, the MAI of synchronized users will change due to interference cancellation. We
can write the interference for a synchronized user j caused by synchronized user k at stages
2 and higher by

I
(s+1)
k,j = I

(1)
k,j − Î

(s+1)
k,j , (5.21)

where Î
(s+1)
k,j represents the MAI caused by the estimates ŝ

(s+1)
k (t). Therefore, the MAI at

stage s + 1 is given by the original MAI minus the estimate of the original MAI, so that
I
(s+1)
k,j represents the residual MAI after interference cancellation. Using (5.6), (5.7), and

(5.10), we can write Î
(s+1)
k,j as

Î
(s+1)
k,j =

1

T
cos(φk − φj)

{∫ iT+τk

iT+τj
Z
(s)
k,i−1ak(t− τk)aj(t− τj)dt

+
∫ (i+1)T+τj

iT+τk
Z
(s)
k,i ak(t− τk)aj(t− τj)dt

}
. (5.22)

We can further simplify this expression for the interference estimate provided that we make
the assumption that the decision statistic Z

(s)
k,i can be pulled outside of the integral, which

the definition of (5.10) will not strictly allow. Much of the prior research into multistage
receivers has simply assumed that this could be done. However, doing so in effect ignores
any portion of Z

(s)
k,i that is correlated with user j’s PN code. Since the interference of user

j to user k is embedded in Z
(s)
k,i , there will be some correlation present. It is this term

that makes the expected value of the interference estimates non-zero and introduces a bias
(non-zero mean) into the decision statistic of user j, as will be discussed in more detail in
Section 5.4.6.

For now, however, we will assume that the decision statistic can be pulled out of the integral
without repercussion. In that case, the expression for the interference estimate reduces to

Î
(s+1)
k,j =

1

T
cos(φk − φj)

{
Z
(s)
k,i−1

∫ iT+τk

iT+τj
ak(t− τk)aj(t− τj)dt

+Z
(s)
k,i

∫ (i+1)T+τj

iT+τk

ak(t− τk)aj(t− τj)dt

}
. (5.23)

By substituting (5.19) and (5.23) into (5.21), we obtain

I
(s+1)
k,j = cos(φk − φj)





√
Pk
2
bk,i−1 −

Z
(s)
k,i−1
T


 ∫ iT+τk

iT+τj
ak(t− τk)aj(t− τj)dt
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+



√
Pk
2
bk,i −

Z
(s)
k,i

T


 ∫ (i+1)T+τj

iT+τk
ak(t− τk)aj(t− τj)dt


 . (5.24)

To put (5.24) into the form of (5.19), we define ν
(s+1)
k,i to be

ν
(s+1)
k,i = 2



√
Pk
2
bk,i −

Z
(s)
k,i

T



2

= Pk −
√
8Pkbk,i

Z
(s)
k,i

T
+ 2


Z(s)

k,i

T



2

. (5.25)

Thus ν
(s+1)
k,i can be interpreted as the effective power in the interference from synchronized

user k during bit interval i after s + 1 stages. We can now rewrite (5.24) in the form of
(5.20) as

I
(s+1)
k,j = Tc

√√√√ν
(s+1)
k,i

2
cos(φk − φj)Wk. (5.26)

The overall MAI at stage s + 1, Ψ(s+1), can be found by modifying (5.13) to account for
the interference cancellation process,

Ψ(s+1) = E




 K∑
k=1,k 6=j

I
(s+1)
k,j



2

| {φk}, {τk}, {Pk}, B

 . (5.27)

Since all K users contribute to Ψ(s+1), the terms I
(s+1)
k,j must be defined appropriately based

on whether the interfering user k is synchronized or not. For synchronized users, (5.26)
should be used. For unsynchronized users, the interference will not change from stage to
stage and (5.20) should be used.

5.3.3 Derivation of Mean of Effective Signal Power

In this section, we calculate the mean of the effective signal power ν
(s+1)
k,i . The mean can

be found directly from (5.25) by taking the expectation as

µ
(s+1)
Pk

= E[ν
(s+1)
k,i ] = E


Pk −√

8Pkbk,i
Z
(s)
k,i

T
+ 2


Z(s)

k,i

T



2

 . (5.28)
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Using the expression for the decision statistic given by (5.12), the mean can be rewritten
as

µ
(s+1)
Pk

= E


Pk −√

8Pk
bk,i
T


η +

√
Pk
2
Tbk,i +

K∑
l=1,l 6=k

I
(s)
l,k




+
2

T 2


η +

√
Pk
2
Tbk,i +

K∑
l=1,l 6=k

I
(s)
l,k



2



= 2E

[(
η

T

)2]
+

2

T 2
E




 K∑
l=1,l 6=k

I
(s)
l,k



2

 , (5.29)

using E[η] = 0 and assuming that E[I
(s)
l,k ] ≈ 0. Again, the mean is not identically zero due

to the correlated terms in the decision statistic. The true value of E[I
(s)
l,k ] is discussed in

more detail in Section 5.4.6. We may often assume it has zero mean, particularly if the
system is not heavily loaded (a large number of active users) or if there are other significant
factors contributing to the noise in the decision statistic (this can be channel noise, fading,
quantization noise, interference from unsynchronized users or other uncanceled components,
etc.) For this analysis we will assume E[I

(s)
l,k ] = 0. Since we are assuming that the terms

I
(s)
l,k are uncorrelated, we have

E




 K∑
l=1,l 6=k

I
(s)
l,k



2

 = E


 K∑
l=1,l 6=k

(
I
(s)
l,k

)2 . (5.30)

We can then solve for the variance of the multiple access interference from the previous
stage s as

1

T 2
E


 K∑
l=1,l 6=k

(
I
(s)
l,k

)2 =
1

T 2
E


 K∑
l=1,l 6=k

T 2
c cos

2(φl − φk)
ν
(s)
l,i

2
W 2
k




=
1

6N

K∑
l=1,l 6=k

µ
(s)
Pk
, (5.31)

where we have used E[cos2(φl− φk)] = 1/2. Using E = [(η/T )2] = No/(4T ) and (5.31), we
can solve (5.29) to be

µ
(s+1)
Pk

=
No

2T
+

1

3N

K∑
l=1,l 6=k

µ
(s)
Pl
, 1 ≤ k ≤ K1. (5.32)

We now have a recursive definition for the mean of the effective interference power.
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5.3.4 Variance of Effective Signal Power

In this section, we develop a definition for the variance of the effective interference power,
(σ

(s+1)
Pk

)2. The variance by definition is given by

(σ
(s+1)
Pk

)2 = E
[(
ν
(s+1)
k

)2]− (
µ
(s+1)
Pk

)2
. (5.33)

Since we found µ
(s+1)
Pk

in Section 5.3.3, we need to find an expression for E[(ν
(s+1)
k )2].

Because of the mathematical nature of the derivation, the explicit derivation is given in
Appendix A. The expression for the variance of the effective interference power at stage
s+ 1 caused by user k, 1 ≤ k ≤ K1, is shown to be

(σ
(s+1)
Pk

)2 =
N2
o

2T 2
+
4No

T 3
µ
(s)
ψ − 4

T 4

(
µ
(s)
Ψ

)2
+
9(4N2 − 3N)

40N4

K∑
l=1,l 6=k

[
(σ

(s)
Pl
)2 +

(
µ
(s)
Pl

)2]

+
4N2 − 9N + 13

12N4

K∑
l=1,l 6=k

K∑
m=1,m6=l 6=k

µ
(s)
Pl
µ
(s)
Pl
. (5.34)

5.3.5 Calculating BER for Stages 2 and Beyond

Once the mean and variance of the effective interference power is known, calculating the
BER is a straightforward process. First, we must find the mean and variance of the overall
MAI at stage s. The mean is given by (A.15), and the variance is a straightforward
extension of (5.15) given by

(
σ
(s)
Ψ

)2
=

T 4
c

4


23N2 + 18N − 18

360

K∑
k=1,k 6=j

(
µ
(s)
Pk

)2
+
7N2 + 2N − 2

40

K∑
k=1,k 6=j

(
σ
(s)
Pk

)2

+
N − 1

36

K∑
k=1,k 6=j

K∑
l=1,l 6=k 6=j

µ
(s)
Pk
µ
(s)
Pj


 . (5.35)

The appropriate expressions for µ
(s)
Pk

and σ
(s)
Pk

must be used, depending on whether the
interfering user is synchronized or not. For synchronized users, 1 ≤ k ≤ K1, equations
(5.32) and (5.34) should be used. For unsynchronized users, K1+1 ≤ k ≤ K2, these values
will always be the mean and standard deviation of the received power Pk.

The improved Gaussian approximation to the BER can then be calculated by modifying
(5.16) to account for the multiple receiver stages,

P
(s)
b,d ≈ 2

3
Q



√√√√ PdT 2

2
(
µ
(s)
Ψ + NoT

4

)

+

1

6
Q



√√√√ PdT 2

2
(
µ
(s)
Ψ +

√
3σ

(s)
Ψ + NoT

4

)


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+
1

6
Q



√√√√ PdT 2

2
(
µ
(s)
Ψ −√3σ(s)Ψ + NoT

4

)

 . (5.36)

5.3.6 Numerical Results

This section discusses numerical results based on the analytical model presented in the
previous section. The analytical model has been verified through simulation, which is
discussed in detail in Section 5.4.

A spreading code length of N = 128 is used. A constant signal-to-noise ratio is maintained
with respect to the desired user, where Eb/No = 12 dB is used. The bit energy is given
by Eb = PT , and the noise power is defined in the system model of Section 5.2. The
synchronized users are assumed to have constant power with Pk = 1 and Eb/No is measured
with respect to this power level. There is a single unsynchronized user (K2 = 1) whose
power level varies about the synchronized user’s power.

The first set of plots compares the BER vs. capacity for a multistage receiver (with be-
tween 1 and 4 stages) with a given unsynchronized interference level. Capacity refers to
the number of synchronized users (K1). In Fig. 5.1, there is no unsynchronized interfer-
ence. In Fig. 5.2, the unsynchronized interferer is 6 dB below the synchronized users (the
unsynchronized user has Eb/No = 6 dB). In Fig. 5.3, the unsynchronized user has the same
power level as the other users (Eb/No = 12 dB). In Fig. 5.4, the unsynchronized user is 6
dB above the other users (Eb/No = 18 dB). These plots show the improvement possible by
adding stages to the multistage receiver to overcome the effects of the interference.

The second set of plots compares the BER vs. capacity with varying levels of unsynchro-
nized interference power for a given stage in the receiver. These plots show the increase
in BER caused by a single unsynchronized user as his received power increases. Plots are
shown for 1, 2, 3, and 4 stage receivers in Figs. 5.5, 5.6, 5.7, and 5.8 respectively. For a
small number of users, increasing the power in the unsynchronized interferer has a stronger
influence than if there are a large number of synchronized users. The results make intuitive
sense, as the large number of users will cause the synchronized MAI to dominate instead
of the MAI due to the unsynchronized user.

These results have two key implications. The first is that some form of power control is
still necessary, to ensure that when a user first begins transmitting, the power is set as low
as possible to still allow for a rapid acquisition. The second is that the acquisition process
needs to be as short as possible, to minimize the amount of time that the MAI of that user
cannot be canceled.
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Figure 5.1: BER for No Unsynchronized Interference and Synchronized Users with Eb/No =
12 dB

1 Stage 

2 Stages

3 Stages

4 Stages

0 50 100 150 200 250 300 350 400
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Capacity (# of users)

B
E

R

Figure 5.2: BER for Unsynchronized Interferer with Eb/No = 6 dB and Synchronized Users
with Eb/No = 12 dB
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Figure 5.3: BER for Unsynchronized Interferer with Eb/No = 12 dB and Synchronized
Users with Eb/No = 12 dB
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Figure 5.4: BER for Unsynchronized Interferer with Eb/No = 18 dB and Synchronized
Users with Eb/No = 12 dB
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Figure 5.5: BER for Unsynchronized Interference and 1 Stage Receiver
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Figure 5.6: BER for Unsynchronized Interference and 2 Stage Receiver
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Figure 5.7: BER for Unsynchronized Interference and 3 Stage Receiver
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Figure 5.8: BER for Unsynchronized Interference and 4 Stage Receiver
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5.4 Simulation Model with Unsynchronized Interfer-

ence

A simulation model was constructed using the Signal Processing Workstation (SPW) 3.1 to
verify the analytical results obtained in the previous section. SPW is a block diagram editor
for communications systems, with the models typically based on hardware implementations.
This emphasis on hardware-based modeling (as opposed to mathematically-based models)
makes the transition from software model to DSP testbed more straightforward. The DSP
testbed approach is discussed in more detail in Chapter 8. The nature of SPW requires
that many issues such as timing and component interaction be explicitly defined.

5.4.1 System Model

A multistage receiver using one or two stages has been modeled in SPW for an AWGN
channel. The filenames are synch1a1 and synch1a2 for systems employing the one and two
stage receivers, respectively. The SPW block diagrams are shown in Figs. 5.9 and 5.10.
There are 7 synchronized users (K1 = 7) in each CDMA system, with one unsynchronized
user (K2 = 1). The spreading code has 31 chips per bit (N = 31) and the codes are
generated randomly and do not repeat. The data rate is 9600 bps and the number of
samples per chip, Ns, is 4. For the one stage system, the bank of transmitters is on the
left side of the diagram, including the desired and unsynchronized interfering users. Each
transmitted signal is passed through the channel, and then the desired user (user 1) is
recovered at the receiver. For the two stage system, the received signal is passed to a bank
of correlation receivers, then estimates of the interference are made and subtracted out,
then user 1 is recovered. There are signal sinks at various places in the system model so
that key signals can be plotted in SPW’s Signal Calculator, if so desired.

5.4.2 Transmitter Model

The transmitter model is called ss tx iq and is shown in Fig. 5.11. The random time delay
for each transmitter is modeled at the system level, not in the transmitter block itself.
User 1 is considered the desired user and has τ1 = 0 and a random phase that is uniform
over [0, 2π) and changes after every bit period. All other users have a discrete delay that
is uniform over [0, NNs − 1] samples, which changes at each bit transition. The discrete
phase at the transmitter is generated randomly from a uniform distribution over [0, 2π).
The phase is also allowed to change once per bit at the bit transition period. All users have
the same amplitude. Since the simulation uses a baseband model of a bandpass system,
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Figure 5.9: SPW One Stage Receiver
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Figure 5.10: SPW Two Stage Receiver
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in-phase (I) and quadrature (Q) channels are maintained at each point in the simulation.
There are no filters at the transmitter. The PN code is generated randomly and does not
repeat. The I and Q channels are formed by multiplying the data bit by cos(φk) and sin(φk)
respectively, then multiplying each by the PN code. The transmitted power level can be
adjusted by changing the amplitude block.

5.4.3 Channel Model

The channel is part of the system block diagrams and consists of summing all of the users
together, to provide the multiple access interference, and the addition of AWGN. The
amount of noise injected is dependent upon the desired ratio of bit energy to noise energy,
Eb/No, which is a parameter that is set before simulation begins. The noise is calculated
using a Gaussian noise source with

σ2 =
Nofs
2

. (5.37)

5.4.4 Receiver Model

The receiver itself is part of the system block diagram, but some of the subsystems are
individual blocks. The receiver can have one or two stages. The one stage receiver consists
of a single correlation receiver, to decode user 1. In an actual implementation, there will
be K1 = 7 receivers to recover the bits of all synchronized users. For the results needed
from the simulation, however, only the desired user’s BER is required, and so only that
receiver is modeled to keep simulation runtime to a minimum. The first stage correlation
receiver block is called corr rcvr a and is shown in Fig. 5.12. The receiver is passed the time
and phase delay information, as it is assumed that a synchronization routine is perfectly
estimating the delay and phase of that user’s desired signal. The I and Q versions of the
locally generated PN code replica are created by multiplying the PN code by cos(φk) and
sin(φk) respectively, then delaying the result by τk. This is then correlated with the received
signal and a bit estimate is made, which is passed to the BER calculator.

The first stage of the two stage receiver is a bank of K1 = 7 correlation receivers, which
have a decision statistic at the output that is used to determine the estimate of the power
level. The signal estimate is then formed by attempting to reconstruct the received signal
of user k, r

(s)
k (t). The estimation block is called estimator and is shown in Fig. 5.13. A

replica of user k’s spreading code is delayed by the amount user k’s transmitted signal has
been delayed, τk, plus the delay caused by the initial correlation process, NNs − 1. This
delay occurs because each correlation requires NNs samples, so after the initial sample



60

Figure 5.11: SPW CDMA Transmitter
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Figure 5.12: SPW Correlation Receiver (Stage 1)
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arrives, the correlation process is not completed until the other NNs − 1 samples arrive.
This delayed PN replica is then multiplied by the data estimate for bit i at stage 2, b

(2)
k,i .

This product is then multiplied by the estimate of the power level during bit interval i,
which can be found from

P̂
(2)
k =

|Z(2)
k,i |

NNs
. (5.38)

This estimate is then multiplied by cos(φk) and sin(φk) to form I and Q estimates respec-
tively, which form the output of the block.

At the system block level, all estimates are then subtracted from a delayed version of
the received signal (it must be delayed to keep the resulting signal time aligned with the
estimates, which are delayed due to the inherent delay of the correlation process). Since
user 1 is again the desired user, the estimate of user 1’s signal is then added back to the
residual signal and this is passed to a second stage correlation receiver, which makes the
bit decision. The second stage correlation receiver block is called corr rx 2 and is shown in
Fig. 5.14. The only difference between the first and second stage correlation receivers is that
an additional delay of NNs − 1 samples is required in the second stage when constructing
the locally generated PN code, to account for the delay in the residual signal caused by the
initial correlation process. The bit estimate is made, which is passed to the BER calculator.

5.4.5 Comparison with Analytical Results

A plot of BER vs. Eb/No is given in Fig 5.15 for both analytical and simulation results,
which was also published in [3]. The results are shown to be in close agreement for all
values of Eb/No considered. The match is particularly close for the case of the single
stage receiver, while there is some small deviation at lower BER for the two stage receiver.
Therefore, the analytical results presented for the improved Gaussian approximation to
BER for a multistage receiver with unsynchronized interference present have been validated
by simulation results.

5.4.6 The Bias in the Decision Statistic

As noted in Section 5.4.5, there is some deviation in the analytic and simulation results
for the two stage receiver. As discussed in [18], this occurs because we have assumed that

E[I
(s)
l,k ] ≈ 0, when in fact this may not always be a valid approximation. We know that

E[I
(1)
l,k ] = 0, but the mean of the interference estimates Î

(s)
l,k may not be zero (although

it has been assumed by most previous researchers to be zero). There is actually a mean
that increases as the number of synchronized (and thus canceled) users K1 increases, and
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Figure 5.13: SPW Estimation Block
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Figure 5.14: SPW Correlation Receiver (Stage 2)
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Figure 5.15: Analysis and Simulation Comparison

therefore this mean (bias) will be most evident when the number of active users is large,
and when this bias forms a significant portion of the noise in the decision statistic (which
in turn implies that it will significantly affect the overall BER of the receiver).

To see how this bias occurs, we need to look at the definition of the interference estimate
Î
(s)
k,j given in (5.24) (for now, we will assume that there are no unsynchronized users and
that the total number of users is given by K). By substituting in the value of the decision
statistic given in (5.12), we can rewrite (5.23) as

Î
(s+1)
k,j = cos(φk − φj)



∫ iT+τk

iT+τj


η +

√
Pk
2
Tbk,i−1 +

∑K
l=1,l 6=k I

(s)
k,l

T




·ak(t− τk)aj(t− τj)dt+
∫ (i+1)T+τj

iT+τk


η +

√
Pk
2
Tbk,i +

∑K
l=1,l 6=k I

(s)
k,l

T




·ak(t− τk)aj(t− τj)dt} . (5.39)
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Note that the term due to the decision statistic is not pulled out of the integral. We can
not automatically do this since embedded in the estimates at stage s, Î

(s)
k,j , are the decision

statistics from stage s − 1, Z
(s−1)
l,i , which are in turn dependent upon the estimates from

that stage, Î
(s−1)
k,j . These estimates are in turn dependent upon the decision statistics from

the previous stage s− 2, Z
(s−2)
k,i , and so forth until we reach the decision statistic at stage

s = 1 and the first interference estimates at stage s = 2. Therefore, for any arbitrary
stage s, the interference estimate is related in this complex fashion to all of the preceding
interference estimates and decision statistics. When we consider the additional complexity
caused by sources such as channel noise, unsynchronized interference, quantization noise
(as we shall see in Chapter 7), and other sources of degradation to the decision statistic,
calculating the expected value (mean) of this term for any arbitrary stage is extremely
difficult, and no closed-form expression exists due to this recursive nature.

To gain some insight into the nature of this bias, however, we shall simplify the problem
and only consider the expected value of the first stage of interference estimates, Î

(2)
k,j , or the

estimates that we make in stage 2 of the receiver. These estimates are given by

Î
(2)
k,j =

cos(φk − φj)

T



∫ iT+τk

iT+τj


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√
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Tbk,i−1 +

K∑
l=1,l 6=k
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(1)
k,l




·ak(t− τk)aj(t− τj)dt+
∫ (i+1)T+τj

iT+τk


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√
Pk
2
Tbk,i +

K∑
l=1,l 6=k

I
(1)
k,l




·ak(t− τk)aj(t− τj)dt} . (5.40)

If we take the mathematical expectation of this estimate, we get

E
[
Î
(2)
k,j

]
= E


cos(φk − φj)

T



∫ iT+τk

iT+τj



√
Pk
2
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K∑
l=1,l 6=k

I
(1)
k,l


 ak(t− τk)aj(t− τj)dt

+
∫ (i+1)T+τj

iT+τk



√
Pk
2
Tbk,i +

K∑
l=1,l 6=k

I
(1)
k,l


 ak(t− τk)aj(t− τj)dt




 , (5.41)

where we have used E[η] = 0.

By looking at the expectation of the interference estimates at stage 2 as given in (5.42), we
can see where the bias comes from. The estimate of user k’s interference to user j, since
it is based on the decision statistic from stage 1, is itself based on the actual interference
from user j in stage 1. Thus, when we are calculating the residual interference estimate
from user k’s to user l, there is a component of this residual interference which is correlated
with j. The rest of the terms in the summation will have a mean of zero. Therefore, (5.42)
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reduces to

E
[
Î
(2)
k,j

]
= E


cos(φk − φj)

T


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√
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2
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(1)
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 ak(t− τk)aj(t− τj)dt

+
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

√
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2
Tbk,i + I

(1)
k,j


 ak(t− τk)aj(t− τj)dt




 . (5.42)

The term involving Pk is simply the interference from user k to user j, or I
(1)
k,j . This term is

known to have E[I
(1)
k,j ] = 0, so we are left with only the term related to I

(1)
k,j , which is what

will introduce the bias into the decision statistic. Therefore, (5.42) reduces to

E
[
Î
(2)
k,j

]
= E

[
cos(φk − φj)

T

∫ (i+1)T+τj

iT+τj
I
(1)
k,jak(t− τk)aj(t− τj)dt

]
. (5.43)

We know from (5.19) the definition of I
(1)
k,j , so we can evaluate (5.43) by direct substitution,

E
[
Î
(2)
k,j

]
= E



√
Pk
2

cos2(φk − φj)

T

∫ (i+1)T+τj

iT+τj

{∫ iT+τk

iT+τj
bk,i−1ak(t− τk)aj(t− τj)dt

+
∫ (i+1)T+τj

iT+τk
bk,iak(t− τk)aj(t− τj)dt

}
ak(t− τk)aj(t− τj)dt

]
, (5.44)

which reduces to [18]

E
[
Î
(2)
k,j

]
= −2

3

T

N

√
2Pk. (5.45)

If we assume that the interference estimates are independent, then the total bias in the
sum of the K − 1 interference estimates is just K − 1 times this value, or

E


 K∑
k=1,k 6=j

Î
(2)
j,k


 = −2

3

(K − 1)T

N

√
2Pk. (5.46)

There is a negative mean to the interference estimates that is directly proportional to K
and inversely proportional to N . Thus we would expect the bias to be most significant
when K is large and N is relatively small, and when this negative mean will cause enough
errors to be a relatively dominant source of errors in the receiver.

5.4.7 Using a Backoff Factor

The use of a backoff factor has been proposed [18] as a means of reducing the negative
effects of the non-zero mean of the interference estimates. Instead of attempting to cancel
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the interference based on the entire interference estimate, we instead only cancel a portion
of that estimate. The decision statistic is now given by

Z
(s)
j,i = η +

√
Pj
2
Tbj,i +

K∑
k=1,k 6=j

I
(1)
k,j − cÎ

(s)
k,j , (5.47)

where c is the backoff factor and is defined over the range [0, 1]. The backoff factor as
presented in [18, 65] is used to reduce the mean of the interference estimates, and a per-
formance evaluation in [18] shows that the backoff factor can indeed improve performance
in heavily loaded systems. This improvement is attributed to the reduction of this mean.
The performance improvement is in fact only partially due to the reduction of the mean,
as the backoff factor is accomplishing more than a simple mean reduction.

Basic stochastic theory states that if we multiply a random variable x by a constant c,
then the result cx will have a mean of cµx and a standard deviation of cσx, where µx and
σx are the mean and standard deviation of x, respectively. Therefore, when we multiply
the interference estimates by c, we are not only reducing the mean by a factor of c, but we
are also reducing the standard deviation as well. This has several key implications for the
performance of the multistage receiver.

First, some of the performance improvement observed when using a backoff factor is due to
reducing the standard deviation, not just the mean. Reducing the mean of the estimates
implies that we will reduce the amount which the estimates bias the decision statistic away
from the desired value. Reducing the standard deviation implies that we are reducing the
spread of the noise values about the mean. Thus we are less likely to have, if the decision
statistic should be positive, a large noise component that will cause it to be negative.

Second, the use of a backoff factor is desirable even if there is no mean present in the
interference estimates. Even if the receiver could perfectly compensate for the mean of the
estimates by adding back in the appropriate offset, using a backoff factor will still reduce
the standard deviation and thus can improve BER performance.

Third, all bit errors in the cancelation process do not have the same effect. In a traditional
receiver, if the decision statistic is supposed to be positive, it does not matter if the receiver
determines a decision statistic of -0.0001 or -1000. In either case, an error will be made and
it will have the same effect on the BER. In a multistage receiver, however, that decision
statistic will be used to compute the interference estimate in the next stage. Since we
are making the wrong bit decision, we are not subtracting interference but in fact adding
it. In this case, if the decision statistic is -0.0001, the amplitude of the estimate will be
correspondingly small and we will not add much interference. If the decision statistic is
-1000, the estimate will have a large amplitude and we will add a significant amount of
interference. Thus we have made it more difficult for all of the other users to make the
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proper bit estimate. It is therefore most important that we not only reduce the probability
of making the wrong bit estimate, but reducing the probability that, given that the bit
estimate is in fact wrong, that we are confident that the bit estimate is correct.

Finally, it implies that the backoff factor can be used to compensate for any degradation in
the interference estimates, whether the problem is due to the mean of the interference esti-
mates, unsynchronized interference, quantization noise, fading, power control, or any other
factor. There is an optimum value of the backoff factor that will allow the receiver to sub-
tract as much interference as possible without actually adding any interference. Research
in [18] focused on determining a backoff factor for a given system loading (an appropriate
assumption in that case since the only source of degradation considered was the heavy
system loading). From a practical standpoint, however, it does not matter what causes
the degradation in the decision statistic and therefore the interference estimates. The key
parameters that determine the appropriate backoff factor are the moments of the interfer-
ence estimates. These moments will not be available to a practical receiver; however, an
estimate of the BER can be gained by a quality indicator in the receiver. The mobiles will
transmit a known pattern with some regularity, and the receiver can decode those patterns
and compare them to their true values and make an estimate of the BER. This quality
indicator can then be used as an estimate of the confidence in the interference estimates
at the next stage of the receiver, so that we can base the backoff factor on the overall
noise in the interference estimates. This is not an entirely satisfactory solution since there
are factors degrading the decision statistic other than the interference estimates; however,
whatever degrades the decision statistic inherently degrades the interference estimates, so
we would expect that determining the backoff factor in this manner should provide a rea-
sonable value. In addition, this allows the backoff factor to be dynamic and change as the
decision statistic degrades and improves over time. Finally, it allows a backoff factor to be
chosen for each user, so that we can cancel any particular user based on our confidence in
the interference estimate for that user. In this fashion, the use of the backoff factor can
be thought of as an extension of selective cancellation, where instead of simply allowing
c ∈ {0, 1}, we allow c to range anywhere from [0, 1].

In conclusion, we have seen that the backoff factor is in fact not simply reducing the mean
of the interference estimates, but reducing the standard deviation as well. Thus the backoff
factor is a means of expressing our confidence in the interference estimates. Using a backoff
factor is appropriate as long as there is any significant degradation in the decision statistic,
regardless of the cause. Because the degradation is not simply caused by system loading,
the backoff factor should be based on the overall noise in the decision statistic, not the
ratio of users to spreading code length. This also allows the backoff factor to vary over
time and to be assigned differently for each user.
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5.5 Analysis of Single Dwell Acquisition

A metric must be chosen to evaluate a given synchronization technique. One commonly
used for systems that continuously transmit data is the mean time of acquisition, which is
the average time required to successfully search the region of uncertainty and acquire the
signal [70]. For bursty transmissions where acquisition is not a necessary requirement, a
comparison of detection probability against false alarm probability is a more suitable metric.
Since the mobile communication systems considered here use continuously operating links,
mean acquisition time will be studied. Expressions for the probabilities of detection and
false alarm must still be derived as they are parameters of the mean acquisition time.

5.5.1 Single Dwell System Model

One common form of acquisition is the single dwell time system [69], where a single inte-
gration is used in the search process. The single dwell technique operates by searching q
cells, where q is some integer multiple of the PN code length. If the code acquisition loop
is updated in quarter chip increments, then there will be q = 4N cells to be searched. If
the output of the integration crosses some set threshold, then a verification mode is en-
tered (in which either a longer dwell time is used in the integration process, or the code
tracking mode is entered). If a false alarm occurs, when the routine detects a signal when
the desired signal is not present, there will be some penalty time KpτD seconds that must
pass before the routine can attempt to acquire the true signal. The acquisition time is
a random variable, although explicitly determining its probability distribution function is
quite difficult in practice. Therefore, the mean and variance are usually determined.

The search algorithm of the single dwell technique can be well understood in terms of a
flow diagram [69]. For notational simplicity, the standard unit of time will be the dwell
time, τD, and all delays will be in units of dwell time. If we determine that acquisition has
been achieved for a given cell, this is referred to as a hit. Consider the flow graph shown in
Fig. 5.16. The probability that the two PN codes are properly phase aligned, P1, is given
by

P1 =
1

q
(5.48)

since there are q cells to be searched and it is equally probable that the true code phase
could lie in any of the q cells. For any node i, 1 ≤ i ≤ q, if we have not discovered the
correct cell, the probability that the true code phase is in cell i is given by

Pi =
1

q + 1− i
. (5.49)
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Figure 5.16: Flow Diagram for Single Dwell Time Acquisition

If we begin at node 1, then there are two possible transitions. Either the two PN codes are
properly aligned with probability P1, or they are not with probability 1−P1. First, assume
that the correct cell is not being searched. This occurs with probability 1 − P1 and we
transition to node 1a. There is no delay associated with this transition, since this is solely
a probabilistic decision. At node 1a, two events can occur. First, we can falsely determine
that we have found the correct cell (a false alarm). This occurs with probability PFA and we
advance to node 1a1. Since it will take one dwell time to (incorrectly) determine that the
correct code phase has been achieved, there is a unit delay associated with this transition.
Since there is a penalty time associated with each false alarm, the transition from node
1a1 to node 2a takes Kp units of time (KpτD seconds). If we correctly determine that the
correct cell is not being searched, we transition directly from node 1a1 to node 2a with
probability 1 − PFA. Since a dwell time is required for this determination, there is a unit
delay associated with this transition. At node 2a, the search begins anew with the next
cell.

Now assume that the correct cell is being searched at node 1. This occurs with probability
P1 and we transition to node 1b. As before, since this is a probabilistic decision only,
there is no associated delay. At node 1b, one of two events can occur: either the correct
code phase is chosen and the search ends (a hit), or if a hit does not occur, q cells must be
searched before the correct cell can be searched again. A hit will occur with probability PD,
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the probability of detection, and we advance to the final node, node F . Since it will take
one dwell time to determine that this is the correct node, there is a unit delay associated
with this transition. At this point, acquisition is finished and either verification or tracking
mode is entered. If the correct code phase is not chosen at node 1b, which occurs with
probability 1 − PD, we advance to node 2b, where we will have to search through q cells
before returning to node 1b, the correct cell location. At each of the q cells between nodes
2b and 1b, the same transitions can occur as at node 1a: either a false alarm (with a unit
delay and then the penalty time) or a miss (with unit delay). Obviously, there is a large
delay if we reach node 2b, since we must perform a long search with many possibilities of
false alarm before being allowed to search the correct cell again.

5.5.2 Determining the Mean and Variance of Acquisition

Based on the flow graphs [69], the mean acquisition time (in seconds) is then found to be

µa =
2 + (2− PD)(q − 1)(1 +KpPFA)

2PD
τD. (5.50)

This can be approximated, if the number of cells to be searched q is much greater than 1,
as

µa =
(2− PD)(1 +KpPFA)

2PD
qτD. (5.51)

While this approximation does not provide a great deal of computational simplicity com-
pared to the explicit calculation, it does aid in the determination of the variance of acqui-
sition time.

The variance of the acquisition time, σ2a, can be found from the generating function defined
in [69]. For the case of q >> 1, the variance is given by

σ2a = τ 2D

{
(1 +KpPFA)

2q2
(
1

12
− 1

PD
+

1

P 2
D

)
+ 6q[Kp(Kp + 1)PFA(2PD − P 2

D)

+ (1 +KpPFA)(4− 2PD − P 2
D)] +

1− PD
P 2
D

}
. (5.52)

If we further stipulate that Kp << q, the variance can be approximated by

σ2a = τ 2D(1 +KpPFA)
2q2

(
1

12
− 1

PD
+

1

P 2
D

)
. (5.53)

We now must solve for PFA and PD. These terms are dependent upon the receiver type
being used. In [68], PFA and PD are found for a single user system using noncoherent
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detection. In this case, the probability of false alarm assumes that the desired signal is not
present. The received signal is multiplied by the locally generated PN sequence, passed
through a bandpass filter, passed through a square law detector, and then integrated and
passed to a threshold device. A block diagram of this system is shown in Fig. 4.1. These
results do not hold for multiple access systems, and in particular for multiuser receivers.

If we assume that the phase φd of user d is known, then we can perform coherent demodula-
tion. While the reverse link in a CDMA system will often require noncoherent demodulation
due to the lack of a transmitted reference, more complicated detection schemes can be used
to perform the acquisition. To gain insight into how the multiuser receiver can improve
the acquisition process, we will assume that the received signal can be coherently demod-
ulated, and therefore the results of the preceding sections can be applied in finding PFA
and PD for the multistage receiver. Since we are modeling a continuously transmitting
communications system, we will assume that when calculating PFA that the desired signal
is present, but that the correct code phase is not being searched.

5.5.3 Numerical Analysis of Probabilities of False Alarm and
Detection

Probability of False Alarm

The probability of false alarm is the probability that the acquisition routine acquires the
signal when in fact the correct code phase has not been chosen. This will occur when, based
on the partial correlation and the values of the noise and interference, the magnitude of the
decision statistic crosses a set threshold. Therefore, we need to develop an expression for the
MAI when the local replica of the PN sequence of the desired user d is not properly aligned
with the received signal of user d. For simplicity, we will model the partial correlation
from the non-aligned sequences as though it were the MAI from another unsynchronized
user and that there is no desired signal component. The partial correlation levels for the
most part will resemble levels of interference from another user. This model can break
down near the peak of the autocorrelation function, where there will be some finite rise
time from the noise level to the peak correlation level. If enough samples are used in the
acquisition process, it is possible that several samples will fall on the curve above the noise
level. This possibility is not taken into account in the following analysis. If this were to
occur in practice, the verification mode might be able to determine that the correct phase
is nearly chosen and let the tracking mode actually determine the exact phase.

If we add an additional unsynchronized user to the system to model the self-interference
from user d, we now have K2+1 unsynchronized users, where user K2 (the self-interference)
has power Pd and user K2+1 (the desired component) has a power of zero. Therefore, the
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decision statistic in the acquisition loop after s stages of cancellation and for bit i is given
by

Z
(s)
d,i = η +

K+1∑
k=1,k 6=d

I
(s)
k,d. (5.54)

The decision statistic consists of the Gaussian noise, the residue of the interference from
the synchronized users, and the interference from the other unsynchronized users. There
is no desired component. The variance of η is known to be NoT/4 and the conditional
variance of the MAI, ψ, is given in (5.13). Both the noise and the variance have a mean
of zero. If we denote the threshold as ηT , then the probability that the decision statistic
exceeds this threshold is given by

PFA = Q


 ηT√

ψ + NoT
4


 . (5.55)

If we apply Holtzman’s improved Gaussian approximation, we find that PFA is approxi-
mately given by

PFA ≈ 2

3
Q


 ηT√

µψ +
NoT
4
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1

6
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6
Q


 ηT√

µψ −
√
3σψ +

NoT
4


 . (5.56)

Probability of Detection

Now we need to develop an expression for the probability of detection, PD. This is simply
the probability that the decision statistic exceeds the threshold when user d’s signal is
present and the correct code phase has been chosen. In this case, we have the original
system model of K1 synchronized users and K2 unsynchronized users. By applying (5.10),
we find that the decision statistic for user d after s stages of interference cancellation and
during bit i is given by

Z
(s)
d,i = η +

√
Pd
2
Tbd,i +

K∑
k=1,k 6=d

I
(s)
k,d. (5.57)

Therefore, using the improved Gaussian approximation, we can approximate the probability
that the decision statistic is greater than the threshold by

PD ≈ 2

3
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2
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
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NoT
4


 . (5.58)

We now have all of the terms necessary to solve for the mean and variance of acquisition
time given in (5.50) and (5.52) respectively.

5.5.4 Numerical Results

Numerical results have been calculated for N = 128 with the number of samples per chip
Ns = 4. Up to 4 stages are considered. The data rate is assumed to be 9600 bps. The Eb/No

of all synchronized users is 12 dB with power Pk = 1. There is a single unsynchronized
user, whose power varies with respect to the synchronized users’ power. The number of
synchronized users varies from 1 ≤ K1 ≤ 400. The threshold is set at

ηT =
100

124

√
Pd
2
T. (5.59)

This is equivalent to having a threshold of 100 in a discrete system where an ideal correlation
would yield NNs = 124. A penalty time of Kp = 3 is used for all cases.

In Figs. 5.17-5.19, the probability of detection is plotted against the system capacity (in
terms of synchronized users). The unsynchronized user’s power level is -6, 0, and +6
dB with respect to the synchronized users in Figs. 5.17, 5.18, and 5.19 respectively. As
expected, the probability of detection decreases as more users are added, since the power
in the interference is increased. Here, as in all of the cases below, there is a noticeable
improvement when adding an additional stage to the receiver. The difference is largest
when going from 1 to 2 stages, although there is still a noticeable difference between 3 and
4 stages if the system is heavily loaded.

In Figs. 5.20-5.22, the probability of false alarm is plotted against the system capacity.
The unsynchronized user’s power level is -6, 0, and +6 dB with respect to the synchronized
users in Figs. 5.20, 5.21, and 5.22 respectively. The probability of false alarm rises as the
number of users increases as expected.

In Figs. 5.23-5.25, the mean acquisition time is plotted against the system capacity. The
unsynchronized user’s power level is -6, 0, and +6 dB with respect to the synchronized
users in Figs. 5.23, 5.24, and 5.25 respectively. The mean acquisition time rises as users
are added to the system, which is a direct result of PD falling and PFA increasing. These
graphs do not reflect, however, the inherent delay due to the processing in each stage.
This is directly determined by how fast the DSP hardware can perform the estimation and
cancellation, and thus will be specific to each hardware design. Therefore, it will only be
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Figure 5.17: Detection Probability for Unsynchronized Eb/No = 6 dB and Synchronized
Eb/No = 12 dB
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Figure 5.18: Detection Probability for Unsynchronized Eb/No = 12 dB and Synchronized
Eb/No = 12 dB
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Figure 5.19: Detection Probability for Unsynchronized Eb/No = 18 dB and Synchronized
Eb/No = 12 dB
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Figure 5.20: False Alarm Probability for Unsynchronized Eb/No = 6 dB and Synchronized
Eb/No = 12 dB



78

1 Stage 

2 Stages

3 Stages

4 Stages

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

Capacity (# of users)

P
ro

ba
bi

lit
y 

of
 F

al
se

 A
la

rm

Figure 5.21: False Alarm Probability for Unsynchronized Eb/No = 12 dB and Synchronized
Eb/No = 12 dB
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Figure 5.22: False Alarm Probability for Unsynchronized Eb/No = 18 dB and Synchronized
Eb/No = 12 dB
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worthwhile to add an extra stage if the extra processing delay is less than the decrease in
acquisition time.

In Figs. 5.26-5.28, the variance of acquisition time is plotted against the system capacity.
The unsynchronized user’s power level is -6, 0, and +6 dB with respect to the synchronized
users in Figs. 5.26, 5.27, and 5.28 respectively. The variance of acquisition time rises as
users are added to the system, which is also a direct result of PD falling and PFA increasing.

Next, the power in the unsynchronized user is held constant at Eb/No = 12 dB for all users
and the threshold is allowed to vary. In Fig. 5.29, the original penalty time remains the
same at Kp = 3. In Fig. 5.30, the penalty time is increased to Kp = 10, which implies
that false alarms will have a greater impact and increase µa. Regardless of Kp, for this
value of Eb/No, moving to two stages provides a dramatic decrease in µa. The values of ηT
that optimize µa are nearly the same for all stages when Kp = 3, although there is a slight
increase as the stages increase. For Kp = 10, however, there is a dramatic drop in the
optimum threshold (particularly from stage 1 to stage 2), which implies that not only does
using the multistage architecture in the acquisition process allow for faster synchronization,
but it also allows for a lower threshold to be set, which implies that weaker signals can
be acquired than if conventional receivers were used. This is of great importance in a
multistage receiver system, since this allows users to use less power when attempting to
synchronize, which will lower the unsynchronized interference to the existing synchronized
users. This is a major benefit, since we have already seen that unsynchronized interference
can dominate system performance, particularly as the interference levels rise.

5.6 Acquisition Simulation Model

The simulation model for acquisition is based on the SPW model presented earlier. Here,
though, there are only 6 synchronized users (K1 = 6) and one unsynchronized user, the user
we are trying to acquire. The one stage model is called synch2a and the two stage model
is called synch2a2. Acquisition is accomplished via the synchbox block, which replaces the
correlation receiver in synch1a1 and synch1a2. All users have the same power level and
Eb/No = 12 dB. The threshold settings were 100 and 115. While the synchronized users had
random delays and phases that changed with the bit period, the unsynchronized user had
a constant delay but a randomly changing phase. To model the randomness of the delay,
9 uniformly spaced values were chosen for simulation purposes (delays of 1, 15, 31, 46, 62,
78, 93, 108, and 123 samples). Ideally, all 124 possible delays should have been tested, but
this was not done in the interests of time. Since the acquisition time is a random variable
even with a constant delay, multiple simulation runs for a single delay were required to
obtain an average acquisition time for that delay value. The number of runs was typically
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Figure 5.23: Mean Acquisition Time for Unsynchronized Eb/No = 6 dB and Synchronized
Eb/No = 12 dB
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Figure 5.24: Mean Acquisition Time for Unsynchronized Eb/No = 12 dB and Synchronized
Eb/No = 12 dB
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Figure 5.25: Mean Acquisition Time for Unsynchronized Eb/No = 18 dB and Synchronized
Eb/No = 12 dB
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Figure 5.26: Acquisition Time Variance for Unsynchronized Eb/No = 6 dB and Synchro-
nized Eb/No = 12 dB
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Figure 5.27: Acquisition Time Variance for Unsynchronized Eb/No = 12 dB and Synchro-
nized Eb/No = 12 dB
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Figure 5.28: Acquisition Time Variance for Unsynchronized Eb/No = 18 dB and Synchro-
nized Eb/No = 12 dB
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Figure 5.29: Mean Acquisition Time for Kp = 3

between 20 and 40. The acquisition times for these select delay values were then averaged
to determine an overall mean acquisition time.

The acquisition block synchbox is shown in Fig. 5.31. The routine starts with a delay esti-
mate of 0 and increments this by 1 sample regardless of whether acquisition is detected or
not. This avoids designing a feedback loop to increment the delay estimate only if synchro-
nization was not detected. SPW requires a delay in the feedback loop, so this simplified the
design considerably. The parameter update determines when acquisition is accomplished,
as this will have value 1 whenever the correlation output crosses the threshold; it will be 0
otherwise. Thus, if update goes high, acquisition has been detected. By observing update
and the delay estimate parameter delay est in the Signal Calculator, it can be determined
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Figure 5.30: Mean Acquisition Time for Kp = 10

if the acquisition determination was correct. If not, a penalty time can be added to the
true acquisition time for each false alarm. This allows a single set of simulation runs to
be used for multiple penalty times. This relies on the noise being uniformly distributed
across the samples, so that the probabilities of false alarm and detection do not change if
a penalty time is physically inserted into the simulation or not.

A summary of the simulation results are given in Table 5.1 and compared with the analytical
prediction. In all cases, the simulated time was worse than the analytical time. There are
several possible reasons for this. First, as noted in Sec. 5.4.5, the simulation model had
a slightly higher BER than the analytical model, suggesting a slightly higher noise level.
The simulated acquisition times are heavily dependent not only on the false alarms, but
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Table 5.1: Analytical and Simulated Mean Acquisition Times (ms)

ηT = 100 ηT = 115
One Stage Two Stage One Stage Two Stage

Analytical 11.4 9 15.6 13.6
Simulated 15.6 11.6 18.2 17.9

especially upon misses when the correct phase is being searched, due to the length of time
before the correct phase is searched again. Although the routine usually acquired on the
first or second try, occasionally the correct code phase was missed on multiple consecutive
attempts; these multiple misses produced lengthy acquisition times which significantly
increased the overall average time. There were occasional times when the correct phase
was missed on multiple occasions, which tended to skew the average even if the routine
usually acquires on the first or second try. Therefore, if there is destructive interference
that is causing misses in the acquisition routine, this will cause the overall mean acquisition
time to rise. It is also possible that more delay values are necessary to get a reasonable
profile of the individual acquisition times, or that more simulation runs are required for a
particular delay value to ensure that the result is accurate. The model was initially tested
by removing all noise and interference, with the result that the routine acquired the signal
perfectly every time and with the ideal correlation value.

Despite the differences in analysis and simulation, the pattern of results is the same. The
second stage generally allowed for faster synchronization. Based on the simulation results,
this is partially due to the increase in hits on the first or second try, and due to the decrease
in false alarms caused by the decrease in interference levels. Therefore, the improvement
in acquisition time will become more dramatic as the penalty time increases.

5.7 Conclusions

The synchronization performance of multistage receivers has been analyzed and simulated.
We have studied two key issues: what effect the unsynchronized users have on synchro-
nized users, and how the multistage receiver itself can be used to allow for a more rapid
acquisition.

Unsynchronized interference increases the BER of synchronized users, and can drastically
decrease performance when the interference levels are strong. The multistage receiver
provides no near-far resistance against these unsynchronized users, and thus some form of
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power control is recommended to try and limit the transmit power of unsynchronized users
as low as possible and still allow for rapid acquisition. The system provider will have to
provide a trade-off between allowing the unsynchronized user a higher transmit power in
an attempt to acquire faster, but limiting the power to reduce the substantial interference
that user can cause to the synchronized users. If a substantial number of users are trying
to acquire at once, this could limit the system capacity since the multistage receiver cannot
cancel this interference.

We have also shown how the multistage architecture can be used both to reduce the ac-
quisition time and to allow for lower threshold settings as the penalty time increases. We
can accomplish this by acquiring the residual received signal instead of the initial received
signal. Because the residual signal will have reduced levels of multiple access interference,
this will reduce the probability of false alarm and increase the probability of detection,
which will in turn decrease the mean acquisition time. In addition, we have shown that the
optimum threshold setting may decrease as the number of stages increases. This will allow
unsynchronized users to transmit at lower power levels and thus decrease the amount of
interference to the synchronized users.

A flexible simulation model has been developed in SPW that models both the effect of
unsynchronized interference and the single dwell time acquisition scheme. The simulation
results verify the analytical results.
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Figure 5.31: SPW Single Dwell Time Acquisition Model



Chapter 6

Quantization Effects

6.1 Introduction

When performing a theoretical analysis, numbers can be represented as real or complex
numbers with infinite precision. In a computer or DSP chip, a number must be represented
with some finite numerical precision [84]. The process of converting a continuous amplitude
signal into a discrete amplitude signal is known as quantization. In the process of quantizing
any given number, there are two main effects that determine the precision with which
that number can be discretely represented: the number of bits used for quantization and
whether fixed or floating point representation is used. There are additional techniques that
can be used to improve the accuracy with which a signal is quantized over time, including
companding (compression and expansion) and non-uniform quantization. These techniques
are useful if the probability distribution of the signal waveform is non-uniform.

The use of quantized signals can cause additional errors in a DSP system. In a mathematical
operation such as addition or multiplication, it is possible for the result to be larger than
either of the inputs. Since the result must be quantized to the number of bits used in the
rest of the system, the result must be either truncated or rounded-off to the nearest level.
Finally, if the magnitude of the result of a mathematical operation becomes too large,
overflow (or underflow) will result. This can cause serious errors, and scaling is sometimes
used to ensure that this condition does not occur.

In this chapter, we will first discuss the nature of quantization and fixed-point represen-
tations. We will then discuss the uniform quantization model. We will then focus on the
efforts of past researchers on studying the effects of quantization. The operation of the uni-
form quantizer is straightforward and deterministic. The analysis of this device can prove
complex however, due to the nonlinearity of the quantization process. There have been two

88
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main thrusts of research in this area: a deterministic examination of the output based on a
deterministic input [85, 86], and approximating the quantizer with a uniform noise source
based upon a stochastic description of the input signal [87]. The fact that the noise model
is dependent upon the input implies that, when studying the effects of quantization in a
given receiver design, a model designed for one set of input constraints may not accurately
model the same receiver design with a different set of inputs. The difficulty in accurately
modeling quantization has led many researchers to use the uniform noise model without
first determining whether or not it is appropriate [88], even though conditions for applying
the model were specified in the initial analysis by Bennett [87].

6.1.1 Fixed-Point Representation

We can represent any number using base a (also known as radix a) by [89]

(. . . b2b1b0.b−1b−2 . . .)a = . . .+ b2a
2 + b1a+ b0 + b−1a−1 + b−2a−2 + . . . , (6.1)

where the b’s are referred to as digits. For a binary (base 2) system, these are usually
referred to as bits. If i > j, then digit ai is more significant than digit aj . The digit with
the highest index for a given representation is the most significant bit; the bit with the
lowest index is the least significant bit. The period between b0 and b−1 is the radix point,
which in base 10 is usually called the decimal point and in base 2, the binary point.

Since the mathematical operations in most DSP chips are based on the binary number
system, a number is generally represented as being quantized in binary form [84]. While
there are a number of ways to represent a binary number, the most common form is known
as two’s complement, which will be the method used here. The difference in representations
is the way in which negative numbers are represented. In signed magnitude, the leftmost bit
position is used to indicate the sign (a 0 for a positive number, a 1 for a negative number)
[90]. An advantage of this technique is that it is symmetric, so that the largest number that
can be represented, for n bits, is 2n−1 − 1 and the most negative number is −(2n−1 − 1).
Thus, changing the sign of the number cannot result in overflow. A disadvantage is that
the number 0 can be represented as +0 and -0, even though they are the same. Another
problem is that when two numbers of opposite sign are added, the magnitudes of each must
be compared to determine the sign of the result. In one’s complement, negative numbers
are represented by taking the magnitude of the number, representing it binary, and then
complementing each bit (changing 1’s to 0’s and vice versa). Thus, for n = 3, we would
represent -2 by taking the representation for 2, 010, and inverting each bit, or 101. There
is still a dual representation for 0 in one’s complement, which is why two’s complement is
often used. In two’s complement, a negative number is represented by adding 1 to the one’s
complement representation. Therefore, -2 would be represented as 110. There is only one
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representation for zero, since the one’s complement representation of 0 is 111, and adding 1
will give 000. Addition and subtraction are also straightforward since, even if the numbers
have different signs, the result will always be the correct representation. The drawback is
that the range is from −2n−1 to 2n−1 − 1, so that if the sign changes on the most negative
number, overflow will occur.

Using an infinite number of bits, a real number x can be perfectly represented using frac-
tional two’s complement notation as

x = Xm

(
−b0 +

∞∑
i=1

bi2
−i
)
, (6.2)

where Xm is a scaling factor and bi ∈ {0, 1}. If b0 = 0, then x is positive; otherwise, x is
negative. If we quantize x using B + 1 bits, then the quantized version of x, x̂, is given by

x̂ = Xm

(
−b0 +

B∑
i=1

bi2
−i
)
= Xmx̂B. (6.3)

There are B bits used to represent x̂B and 1 bit for the sign bit b0. Since the scaling factor
determines the maximum magnitude of x, the range of x is given by −Xm ≤ x ≤ Xm. In
hardware implementations, Xm is usually represented in the form

Xm = 2c, (6.4)

where c is called the characteristic. The fractional part of x, x̂B, is known as the mantissa.
If Xm > 1, then x can be greater than 1.

There are two ways of definingXm in a hardware system, either using fixed-point or floating-
point representation. In fixed-point, c is fixed and need not be explicitly represented in the
hardware architecture. Since c cannot change, it is possible that very large numbers cannot
be represented in the set range, and that very small numbers will be quantized to zero. In
floating-point, c can vary with x and therefore must be explicitly represented in hardware.
Since c can increase (and decrease) as the magnitude of x increases (and decreases), very
small numbers can be represented with a great deal of precision, and very large numbers
can be represented without increasing the number of bits. While floating-point is desirable
for its numerical accuracy, the hardware tends to be slower and more expensive due to the
requirement that c be represented in binary form in the hardware.

A comparison of fixed-point fractional, fixed-point integer, and floating-point implemen-
tations is given in Table 6.1. Floating-point is desirable due to its high dynamic range,
low possibility of overflow, and limited roundoff noise. The major drawback in terms of
the multistage DSP implementation is the relative slow speed when compared to the fixed
point implementations.
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Table 6.1: Comparison of Binary Implementations

Fixed-Point Fixed-Point
Feature Fractional Integer Floating Point

overflow, addition yes yes unlikely
overflow, multiplication no yes unlikely
roundoff error, addition no no yes

roundoff error, multiplication yes no yes
dynamic range modest modest high

hardware implementation simple simple difficult, slow

6.1.2 Quantization Error

The most basic quantizer is shown in Fig. 6.1, where x is the input, xε is the quantized
output, and there are 8 possible bins (quantization levels) [88]. Although the quantizer
shown here is centered about zero, this need not be the case [91]. The only requirement
for a uniform quantizer is that the bin width ∆ be uniform (the same) for all bins. In this
manner, no part of the input signal is quantized more accurately than another part of the
signal. This is appropriate when no a priori knowledge is known of the input signal. For
signals such as voice, where the signal may be known to be more likely to be in a certain
region, a non-uniform quantizer will allow more bins to be concentrated in the areas where
the signal is most likely to appear [87].

The quantization error is given by

e = q(x) = xε − x. (6.5)

If we use uniform quantization (uniform spacing of quantization levels) and B + 1 bits,
then the minimum spacing between levels is given by

∆ = Xm2
−B. (6.6)

Another common (and equivalent representation) is to calculate the bin width ∆ based on
the number of bits and the quantization range. If we assume the range is given by [Ll, Lu],
then the bin width is given by

∆ =
Lu − Ll
2B

. (6.7)

The characterization of e depends upon whether rounding or truncation is used. In round-
ing, a number is rounded off to the nearest quantization level. In truncation, any portion
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Figure 6.1: Uniform Quantizer

of x̂B that requires greater than B bits is simply truncated. Regardless of the technique,
however, quantization is a nonlinear memoryless operation. The range of the error is
−∆/2 ≤ e ≤ ∆/2 for rounding and −∆ ≤ e ≤ 0 for truncation.

Overflow can occur if a number to be quantized is larger than the scaling factor Xm (un-
derflow if the number is less than −Xm). This error can be a serious one, as illustrated
by the following example. In 5 bit two’s compliment notation, the number 15 would be
represented as 01111. If we add 1 to this (00001), the result is 10000, or -16. In this
case, a simple addition caused a severe error. One method of counteracting this problem,
which is often used in analog-to-digital converters, is to clip the result so that when we add
anything to 15, we still get 15 (the maximum representable positive number). A benefit of
using two’s complement notation is that, if two numbers when added together do not cause
overflow, then the result is correct even if an intermediate sum caused overflow. This can
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easily be illustrated by an example. First, assume that n = 4. Next assume that we want
to add 4 + 4 = 8 to −2 − 2 = −4 to get 8− 4 = 4. In two’s complement notation we add
0010+0010 = 1000 (overflow) to 1110+1110 = 1100 to get 1000+1100 = 0100, or 4. Thus
the result is correct, even though overflow occurred at the first addition. This property
will not hold if clipping has occurred. A method of combating overflow is scaling, which is
discussed in more detail in Section 6.3.3.

Some form of quantization is also necessary when multiplying two numbers. If two B + 1
bit numbers are multiplied together, the result will be a 2B + 1 number that must be
either truncated or rounded back to B + 1 bits. Overflow is quite possible if the numbers
being multiplied are greater than one. For example, the multiplication of 4x5=20 would
cause overflow in a 5 bit system, where the largest number that can be represented without
overflow is 15.

Analyzing quantization error exactly is difficult due to the nonlinear operation of the quan-
tizer, the possibility of overflow, and the numerous points that rounding or truncation can
occur. Since the exact nature of the error is dependent upon the input, it is impossible in
general to quantify the exact nature of the error. Modeling quantization using linear noise
sources does provide a reasonable approximation; if exact results are needed, simulation is
required. The linear model has been shown to provide accurate predictions of statistical
averages when the input is a widely varying signal (such as speech) [84].

Modeling quantization with a linear noise source e[n] relies on several key assumptions [84]:

1. The noise has a uniform distribution of amplitudes over one quantization period

2. The noise source is a wide-sense stationary white-noise process

3. There is no correlation between the noise source and the input to the quantizer, all
other quantization noise sources, and the system input.

A block diagram of a linear noise model is shown in Fig. 6.2. Since the noise amplitude is
modeled as uniform over the allowable range, the mean and variance for rounding are

µe = 0

σ2e =
∆2

12
(6.8)

and for truncation are

µe = −∆

2

σ2e =
∆2

12
. (6.9)
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The nonlinearity of the quantization process can lead to zero-input limit cycles, which
are oscillations at the output even when there is no input to the system. Quantization
(particularly if it exists in a feedback loop) and overflow can both lead to limit cycles. This
is a strictly nonlinear process that cannot be modeled using linear noise sources.

6.2 Deterministic Analysis

Although Bennett’s stochastic approach [87] has been the approach followed by most re-
searchers, the first research done in uniform quantization (equivalent to Pulse Count Mod-
ulation, or PCM) was actually that of Clavier, Panter, and Grieg [85, 86] in 1947. Although
often overlooked by modern researchers, these authors were the first to show the effect of
quantizing the amplitude to a discrete number of levels. The authors considered the case
of single frequency input, two frequency input, and continuous frequency input.

For the simpler cases such as the sinusoidal tones, the effects of the resulting distortion
caused by quantization are studied through the use of the Fourier series representation. A
periodic input is represented as a Fourier series and then compared with the Fourier series
representation of the output (which can be determined exactly due to the deterministic
operation of the quantizer, assuming the number of quantization levels and the dynamic
range of the input is known).

For more complicated inputs where the signal has a continuous frequency spectrum, the
Fourier series approach is quite complicated and a Fourier transform approach is adopted
instead. Here, the Fourier transform of the input is taken and then multiplied by the
transform of the pulse spectrum, and then the inverse transform could be taken on the
result. The motivation of this research was to investigate the properties of crosstalk in a
PCM system, not to characterize the quantization process as a noise source.

This analysis is only applicable for a single, deterministic input, and does not provide a

+

e n[ ]

x n[ ] x̂ n[ ]

Figure 6.2: Linear Quantization Noise Model
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way of analyzing systems where the input can be defined stochastically but not determin-
istically (since the operation of the quantizer is dependent upon the input, the Fourier
transform of the quantizer cannot be determined unless the input is known). In analyzing
communication systems, we would like to have a quantizer model that is not dependent
upon the input and can thus be applied to a wide range of inputs. This will also allow for
noise sources to be used in analyzing communication systems, where calculating Fourier
transforms may be exceedingly complicated.

6.3 Stochastic Analysis

Bennett’s paper in 1948 [87] was the first paper to examine the uniform quantizer from
a stochastic perspective. Bennett began by noticing that, if no overflow occurred (or
equivalently, there were an infinite number of steps), and if there were a large number of
small steps, then the error signal (the difference between the quantized version of a signal
and the original version) is composed of a series of very nearly straight lines with varying
slope. Bennett based his analysis upon a staircase transducer, a physical device which
operates as a quantizer. Thus his results are based upon the step size in voltage Eo instead
of the bin width ∆ as used in Chapter 7.

If we analyze the error signal and assume that the individual sections are indeed straight
lines, than the error voltage ε is given by

ε = sl, −Eo
2s

< l <
Eo
2s
, (6.10)

where s is the slope of the line and l is time referenced to the midpoint of the interval (such
that the midpoint then becomes the origin). The mean square error of the error voltage
can then by found via

ε2 =
s

Eo

∫ Eo/2s

−Eo/2s
ε2dl

=
E2
o

12
. (6.11)

Bennett also notes that the output signal-to-noise ratio D can be determined when the
input is a test tone, and that a simple expression results for D based on the number of bits.
If we assume that the input tone has a maximum amplitude of E (and thus mean square
value of E2/2), then the total quantizer range must be 2E to ensure that overflow does not
occur (since the input tone will swing from −E to E). The ratio of the mean square value



96

Table 6.2: Signal-to-noise Ratio vs. No. of Quantization Bits

Number of Number of Signal-to-Noise
Bits N Bins r Ratio D

3 8 21
4 16 27
5 32 33
6 64 39
3 128 45
3 256 51

of the input tone voltage to the mean square value of the quantizing noise voltage is given
by

E2/2

E2
o/12

=
3r2

2
, (6.12)

where r is the ratio of the total quantizer range to the bin width given by 2E/Eo. The
ratio r is by definition the number of bins used in the uniform quantizer. If we assume
that the sampling frequency is fs, then the bandwidth required would be rectangular to
fs/2. However, a practical system cannot have a perfectly rectangular shape, because
some transition period is necessary between the passband corner frequency and the cutoff
frequency. Thus a factor κ is introduced which is the ratio of the equivalent rectangular
noise band to fs/2. Since the noise power gets multiplied by κ, D (in dB) is given by

D = 10 log10
3r2

2κ
dB. (6.13)

Bennett found a value of κ = 3/4 to be a good practical result, which simplifies (6.13) to

D = 20 log10 r + 3 dB. (6.14)

Results for the signal-to-noise ratio D are given in Table 6.2 for several values of the number
of bits N (where r = 2N) if we assume that κ = 3/4. The signal-to-noise ratio increases by
about 6 dB with the addition of each bit.

Bennett also notes that uniform quantization is not optimum for some signals such as speech
and discusses methods of analyzing systems using non-uniform quantizers (no single noise
model can be given since it will vary as the non-uniform spacing varies).
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6.3.1 The Quantization Theorem

Widrow provided a thorough stochastic examination of the uniform quantizer in 1956 [91].
He determined a measure of determining when the uniform model was appropriate for a
given input; this rule came to be known as the Quantization Theorem. This model is most
useful when the probability distribution function of the input signal x can be determined,
and is not as useful when analyzing complex systems such as the multistage receiver.

The One-Dimensional Quantization Theorem

Widrow’s theorem is based on the use of characteristic functions and assumes that the
input signal to be quantized can be modeled as a random variable. If a continuous random
variable x has a probability density function fx(X), then its corresponding characteristic
function φx(ω) is given by

φx(ω) = E
[
ejωx

]
, (6.15)

where j =
√−1 and E[·] denotes the expectation given by

E[y] =
∫ ∞

−∞
Y fy(Y )dY. (6.16)

We can rewrite (6.15) as

φx(ω) =
∫ ∞

−∞
fx(X)ejωXdX. (6.17)

Note that this is nearly identical to the expression for the Fourier Transform of x, with
the exception that there is no negative sign in the exponent. If we define the quantization
error ε as

ε = xq − x (6.18)

where xq is the quantized version of x, then the Quantization Theorem then states that
the distribution of the quantization error e will be uniform over [−∆/2,∆/2] if

φx(ω) = 0 for all |ω| ≥ 2π

∆
. (6.19)

Thus if the characteristic function is band-limited in this fashion, the quantization noise
will have a uniform distribution over time.

The Two-Dimensional Quantization Theorem

To examine the second-order statistics of the quantization noise, the two-dimensional Quan-
tization Theorem may be used. If we define two random variables x1 and x2 which occur
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at time instants n and m respectively, then a two-dimensional form of the quantization
theorem may be developed [91].

6.3.2 A Necessary and Sufficient Condition for Uniform Noise

Although Widrow [91] provided conditions under which the uniform noise model was appro-
priate, his conditions were sufficient but not necessary (meeting those conditions guaranteed
the appropriateness of the uniform noise model, but did not imply that only these situa-
tions were appropriate). Sripad and Snyder presented a paper which provided a necessary
and sufficient condition for modeling quantization noise with a uniform noise model [92].

The Extended Quantization Theorem

Sripad and Snyder also provided a means of determining the probability density function
of the quantization error even if the uniform model was not appropriate, which therefore
provides a means of determining how much the true distribution varies from the uniform
distribution and how much error will be introduced if the uniform model is used.

The probability density function of the quantization error is shown to be

fε(E) =

{
1
∆
+ 1

∆

∑
n 6=0 φx

(
2πn
∆

)
exp

(−j2πnE
∆

)
, −∆/2 ≤ E < ∆/2

0, otherwise
. (6.20)

It can also be shown that

φx(2πn/∆) = 0 for all n 6= 0 (6.21)

holds if and only if the probability density function of the quantization error is uniform, or

fε(E) =

{
1
∆
, −∆/2 ≤ E < ∆/2
0, otherwise

. (6.22)

By comparing (6.19) and (6.21), we see that (6.19) is a specific case of (6.21). Thus (6.21)
is an expanded form of the Quantization Theorem which expands the class of input signals
whose quantization error will have a uniform distribution.

Consider an example of a signal which meets (6.21) but not (6.19), yet does have a quanti-
zation error that is uniform. If the signal x itself is uniform, it will have probability density
function

fx(X) =

{
1
∆
, −∆/2 ≤ X < ∆/2
0, otherwise

(6.23)
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and characteristic function

φx(ω) =
sin(∆ω/2)

∆ω/2
. (6.24)

This characteristic function is not appropriately band-limited and thus does not satisfy the
conditions of (6.19) but does satisfy (6.21) since

φx

(
2πn

∆

)
=

sin πn

πn
= 0 for all n 6= 0. (6.25)

Thus for this case, the quantization error associated with the uniform random variable x is
uniform. If we compare the probability density function of the quantization error in (6.20)
with the uniform density function of (6.22), we see that the error that will be introduced
if the true density function is not uniform is given by

fe(E) =
1

∆

∑
n 6=0

φx

(
2πn

∆

)
exp

(−j2πnE
∆

)
, −∆/2 ≤ E < ∆/2. (6.26)

If we wish to use the uniform model even though the quantization noise is not strictly
uniform, we can use this term to determine how significant the difference will be between
the true density function and the uniform density function.

The Two-Dimensional Extended Quantization Theorem

In a similar fashion, we can extend the two-dimensional Quantization Theorem of [91]
to account for the necessary and sufficient condition given in (6.21) [92]. This form is
useful when determining the appropriateness of the uniform noise model as it relates to the
second-order statistics of the quantization noise.

Gaussian Input Signals

Finally, Sripad and Snyder consider the case when the input signal to be quantized is
Gaussian, since this covers a large range of signals of practical interest. If x is a zero-mean
Gaussian random variable, its probability density function is given by

fx(X) =
1√
2πσx

e−X
2/2σ2x , (6.27)

where σx is the standard deviation of x. The corresponding characteristic function is given
by

φx(ω) = e−ω
2σ2x/2. (6.28)
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This characteristic function does not meet the restrictions of (6.21) and thus the density
function of the quantization error will not be strictly uniform. The actual density function
of the quantization error can be shown to be

fε(E) =

{
1
∆

[
1 + 2

∑
n 6=0 cos

(
2πnE
∆

)
exp

(
−2π2n2σ2x

∆2

)]
, −∆/2 ≤ E < ∆/2

0, otherwise
. (6.29)

We can use the density function of (6.29) to determine how well the quantization error
can be approximated with a uniform error source. It can be shown that the mean µε and
variance σ2ε of the quantization error is given by

µε = 0 (6.30)

σ2ε =
∆2

12

[
1 +

12

π2

∞∑
n=1

(−1)n
n2

exp

(
−2π2n2σ2x

∆2

)]
. (6.31)

Both the uniform mean and the true mean are zero, so the means match exactly. The
variance of the uniform distribution is ∆2/12, so the true variance deviates from this by a
summation term which is dependent upon the ratio σx/∆. Thus the accuracy of the uniform
noise model will depend upon the ratio of the variance of the input Gaussian signal to the
bin width of the uniform quantizer. As this ratio increases, the overall summation term
decreases and thus the difference between the true and uniform densities decreases. Sripad
and Snyder found that if ∆ = 1, the uniform model provides a close match for σx ≥ 1. If
∆ 6= 1, then the uncorrelated uniform model is generally appropriate if σx > ∆.

Sripad and Snyder also discuss the second order properties of the quantization noise result-
ing from a Gaussian input using the two-dimensional extended Quantization Theorem, but
the results are not so easily classified as in the one-dimensional case and thus the results
are not discussed here.

6.3.3 Scaling

To avoid the large errors overflow can create in a fixed-point system, scaling can be used to
reduce or eliminate the possibility of overflow [93]. Scaling implies that, before quantization,
a signal is scaled by some factor sL that reduces the signal energy and thus reduces the
possibility of overflow. A block diagram of the effect upon SNR is shown in Fig. 6.3, where
x(n) is the input, sL is the scale factor, and SNR is the signal-to-noise ratio at the output.
The downside to scaling is that the output SNR is reduced by s2L (for scaling, sL < 1). This
occurs because the scaling occurs on the input (reducing its energy) before quantization,
and thus before the quantization noise is added. Thus the signal is reduced while the noise
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Figure 6.3: Scaling Model

is not. There are three common approaches to this problem: sum scaling, L2 scaling, or
L∞ scaling.

The first technique is the most conservative and guarantees no overflow, the second is the
least conservative, and the third is moderately conservative. An alternative is to design s
based on allowing overflow to occur a certain percentage of the time. Since precise scaling
can only be done if the impulse response h[n] is known, it is especially useful for digital
filter design. For complex systems such as the digital multistage receiver where a single-
input single-output impulse response cannot be derived, an exact scaling technique cannot
be developed. The alternative is to set the quantization range [Ll, Lu] so that overflow
is minimized based on a typical signal level (which may be most easily observed through
simulation).

In sum (or L1) scaling, sL is set to ensure that overflow cannot occur at some node k. If
we define wk(n) as the kth node variable and hk(n) as the impulse response between x(n)
and wk(n), then wk(n) is given by

wk(n) =
∞∑

m=−∞
x(n−m)h(m). (6.32)

A limit on the magnitude of wk(n) can be found via

|wk(n)| = |
∞∑

m=−∞
x(n−m)hk(m)|

< xmax
∞∑

m=−∞
|hk(m)|, (6.33)

since xmax is the maximum possible value of x(n) and a sum’s magnitude is bounded by
the sum of the individual magnitudes. To ensure that no overflow occurs, we must ensure
that |wk(n)| < 1, therefore

xmax <
1∑∞

m=−∞ |hk(m)|
. (6.34)

If we assume a fractional representation that xmax < 1 (Xm can still be greater that one so
that the overall quantized number can be greater than one), then to ensure that overflow
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does not occur, we must scale the input by

sL =
1

maxk
[∑∞

m=−∞ |hk(m)|
] . (6.35)

so that sLxmax < 1 and no overflow occurs. Ensuring no overflow is as conservative a
scaling technique as possible. The major drawback to this approach is that, because it is
reduced by s2L, the output SNR may be degraded beyond acceptable limits.

The second approach, L2 scaling, is the least conservative approach. This approach sets
the scale factor to ensure that the energy in wk(n) is less than or equal to the energy of
the input x(n). If we assume that the energy of the input signal is bounded (which it will
be for a physically realizable system), the magnitude of wk(n) is bounded by

|wk(n)| ≤
√√√√ ∞∑
n=−∞

|hk(n)|2
∞∑

n=−∞
|x(n)|2. (6.36)

Since the energy of the input signal x(n) is bounded, we know that

∞∑
n=−∞

|x(n)|2 ≤ 1 (6.37)

and therefore we can choose our scaling factor s as

sL =
1√∑∞

n=−∞ |hk(n)|2
. (6.38)

This form is commonly used and degrades SNR the least of the three proposals.

The third technique, L∞ scaling, only ensures that there will be no overflow if a sine wave
is applied to the input. This scaling factor is derived from the frequency response of the
impulse response, Hk(e

jω), where ω is the frequency in rad/s. To ensure that the frequency
response of wk(n) does not exceed 1 given a sinusoidal input, we can set sL to be

sL =
1

maxk |Hk(ejw)| . (6.39)

An alternative to these approaches is to allow overflow to occur a given percentage of the
time, and to set sL so that the output SNR is maximized given this overflow percentage.
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Figure 6.4: Roundoff Noise Model

6.3.4 Roundoff Error

In [94], Barnes et al. analyze the statistics of roundoff error, which is similar to but some-
what different from the error from quantizing a continuous amplitude signal. The roundoff
error model is shown in Fig. 6.4, where x is a discrete input, a is the multiplicative constant,
and Q(·) is the quantization function. The roundoff error e is given by e = Q(ax) − ax.
This paper examines the conditions under which the uncorrelated white noise model is ap-
propriate for roundoff error, and the statistical behavior of the noise when the conditions
are not met.

The difference between roundoff error and the quantization error studied previously is that
the input signal x is discrete in amplitude, not continuous (it has already been quantized),
and the multiplicative constant a is discrete (there was no multiplication in the previous
model). The result of the multiplication, ax, is then quantized. While a similar process
to the quantization of a continuous-amplitude signal, the requirements for the white noise
model are somewhat different. The term roundoff error is universally used regardless of
whether the quantizer performs rounding or truncation.

We begin by assuming that x has been quantized uniformly with bin width ∆ and can
thus be represented in the form x = n∆. Furthermore, we assume that the multiplication
output ax will also be quantized uniformly with bin width ∆ [94]. As with the previous
case of quantization, the error produced by roundoff is a deterministic process. This implies
that if x is deterministic, then the roundoff error e will be deterministic as well. However,
to aid in the analysis of communication systems, we will make a similar assumption as
in our previous model and allow x to be a random variable, so that the error e will be
random as well. Barnes assumes that x is a discrete, zero-mean Gaussian random variable
with standard deviation σx. All of the following results regarding the appropriateness and
characterization of the roundoff noise model are based on this assumption and will not
apply in general if x has a different distribution.

The remaining assumption involves the constant a. We will assume that a can be expressed
by a = N/M , where N is some integer, M is a positive integral power of two, and that
their ratio N/M is irreducible [94]. Since N/M is irreducible and M is a power of two,
this implies that N must be an odd integer (although it may be positive or negative).
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While this implies that the constant a is rational, the constraints on the noise model are
dependent upon M and thus it is assumed that most constants of practical interest can be
represented in this fashion. What we seek, then, is to examine the statistics of the roundoff
error based on a (in the form of N/M), and on the ratio of the input standard deviation
to the bin width σx/∆, which provides a measure of the dynamic range if x is random.

Since x is a discrete random variable, we represent it with the probability mass function
px(n∆), where [95]

px(n∆) = Pr[x = n∆] (6.40)

where n is some integer. The characteristic function of x, φx(ω), is given by [94]

φx(ω) =
∑
n

exp(jωn∆)px(n∆). (6.41)

Probability Mass Function of Roundoff Error

We know that, since x has been quantized uniformly with bin spacing ∆, that it can be
represented in the form [94]

x = n∆ (6.42)

where n is an integer. It is shown in [94] that if the approximation

φx

(
2πm

M∆

)
≈ 0, m 6≡ 0 mod M, (6.43)

holds, then the density function of the roundoff error is approximately

pe

(
l∆

M

)
≈ 1

M
,−M

2
< l ≤ M

2
. (6.44)

In general, the uniform noise model is a valid approximation if

σx ≥ M∆

2
(6.45)

(note that for the original quantization case, the uniform noise model was a valid approxi-
mation if σx ≥ ∆/2).

Roundoff Error Statistics

We now wish to, in general, stochastically characterize the roundoff error by solving for
its mean and variance [94]. It is shown via a Discrete Fourier Transform analysis that, for
signals with large dynamic range, we can approximate φx as

φx(2πk/M∆) ≈ 0, k 6≡ 0 mod M. (6.46)
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For this specific case, we can approximate the mean and variance of the roundoff error
sequence as

µe ≈ ∆

2M
(6.47)

and

σ2e ≈
∆2

12

(
1− 1

M2

)
. (6.48)

In this case, the roundoff error sequence can be modeled as uniformly distributed white
noise.

Numerical Examples

Barnes et al. then proceed to consider a number of numerical examples, including the case
when the discrete random variable x is modeled with a Gaussian probability mass function
[94]. The conclusions of these results are that the uniform model is appropriate for roundoff
noise if the input signal has a large dynamic range and bandwidth. In general, however, the
stochastic characterization of the roundoff error is a function of the multiplicative constant
a and of the discrete input x (in terms of its dynamic range and bandwidth). The roundoff
error will differ most from the uniform noise model when the input signal is narrowband
and a low-noise environment is being considered.

6.3.5 Roundoff Error for Continuous Amplitude Multiplier Co-

efficients

The work of Barnes et al. [94] was extended by Tokaji and Barnes [96] to allow the multiplier
coefficient a to be a continuous random variable (in the earlier analysis, a had to be discrete
and put in the form a = N/M , where N was an odd integer, M was a power of two, and
the ratio N/M was irreducible). For this case, if a is rational and in the form of a = N/M ,
the only restriction on N and M is that their ratio N/M be irreducible, which implies that
the greatest common divisor of N and M is 1, or

GCD(N,M) = 1. (6.49)

This considerably complicates the analysis over the previous discussion.

If a is rational and the characteristic function of the input x is approximately given by

φx

(
2πm

M

)
≈ 0, m = 1, 2, · · · ,M − 1 (6.50)
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then the characteristic function of the roundoff error is approximately given by

φe(ω,N/M) ≈ φ0(ω) (6.51)

where φ0(ω) is the characteristic function of the roundoff error if it is uniformly distributed,
or

φ0(ω) =
1

M

∑
m∈I

exp(jωm/M), (6.52)

where I is given by

I = {−(M − 1)/2,−(M − 3)/2, · · · , (M − 1)/2} (6.53)

if M is even and by
I = {−M/2 + 1,−M/2 + 2, · · · ,M/2} (6.54)

if M is odd. The probability density function of the roundoff error is approximately given
by

pe(m/M) ≈ p0(m/M). (6.55)

where p0(m/M) is the probability mass function of a uniform discrete variable given by

p0(m/M) =

{
1
M
, m ∈ I

0, m 6∈ I . (6.56)

Thus if (6.50) holds, then the roundoff error can be approximated with a uniform noise
model.

Tokaji and Barnes then proceed to develop expressions for the first, second, and joint
moments associated with the roundoff error. These expressions are dependent upon using
a Fourier series representation and specific to each case studied. After examining a number
of numerical cases and showing that the distribution of the roundoff error may not be
uniform in some cases, the authors conclude that the true error distribution will vary
from the uniform distribution the most when the input signal levels are low and when the
multiplier coefficient a is either in the neighborhood of an integer or if it is rational and
the denominator M is relatively small. Thus, as with the other types of errors that have
been studied, we see that the uniform model is an accurate way to model the distribution
of the quantization error for a wide variety of cases of practical interest, but that there are
significant cases where the model is not accurate.

6.3.6 Roundoff Error for Continuous Amplitude Multiplier Co-

efficients and Continuous Input Signals

Wong introduced a model in 1990 [97] in which both the input signal x and the multipli-
cation coefficient a are continuous. While the analysis is considerably more complex than
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in previous cases and thus is not discussed here, the reader is referred to Wong’s paper
if more detail is required. Wong presents conditions upon which the uniform, white, and
uncorrelated noise model is appropriate for the quantization and roundoff error (based on
the first and second order moments of the noise). There are now two noise sources here,
first for the quantization of x and then the roundoff error after x is multiplied by a. Thus
the overall quantization noise e is defined to be

e = q(aq(x))− ax, (6.57)

where q(·) is the uniform quantization operation. The noise from quantizing x is now itself
quantized after being multiplied by a.

The limits placed on a assume that it is either an integer or that it is a rational number
(the case of a being an integer is treated separately from other rational numbers because
different assumptions may be used). Although irrational forms of a are not considered, it is
not expected that irrational coefficients will be used in most fixed-point systems and thus
this case is not of as much practical importance.

Wong also considers the case when the input x has a Gaussian distribution and the con-
ditions are not met for using the uniform noise model. As in previous cases, the uniform
model does in fact provide a very good approximation to the actual noise distribution if
the ratio of the standard deviation of the input x is large when compared with the bin
width of the uniform quantizer, ∆. Wong also considers the effects of dithering.

6.3.7 Quantization Noise in Analog-to-Digital Converters

Gray provided a broad survey of analytic techniques for the uniform quantizer in 1990
[88], and specifically applied the results of these efforts to oversampled analog-to-digital
converters (ADC’s) such as Sigma-Delta modulators (a thorough treatment of the operation
of Delta modulators was provided by Slepian in 1972 [98]). The difficulty in modeling the
effects of quantization noise in oversampled ADC’s is that the quantization noise exists
in feedback loops. These ADC’s operate by using low-rate quantizers in feedback loops
and filtering, and in doing so attempt to mimic the performance of ADC’s using a much
higher rate (higher resolution) quantizer. The goal behind this technique is to use the
much cheaper low-rate quantizers and use better timing circuits to achieve a low-cost ADC
with the performance of its more expensive brethren (these types of ADC’s are common
in the industry today and have become standard in modern compact disc players). The
exact nature of the ADC can vary significantly, but the most common variants are Sigma-
Delta modulation, dithered Sigma-Delta modulation, two-stage Sigma-Delta modulation,
and second-order Sigma-Delta modulation. These modulators can be cascaded to form
even higher order modulators.
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In the study of these complex systems (and other complex systems), it can be difficult to use
the analysis of the preceding sections to determine whether or not the uniform noise model
is appropriate. Simply characterizing the signal to be quantized stochastically, and then
determining if the associated characteristic function meets the requirements of the extended
Quantization Theorem can be a daunting if not outright impossible task, particularly when
the systems are non-linear. Simulation can be a valuable tool in determining the validity of
various noise models in these cases. While some researchers have simply used the uniform
noise models because of their simplicity, without first applying any criterion for determining
the validity of those models, it is important (as has been noted in several of the preceding
sections) to ensure that the noise model being used is appropriate, because there are a
number of instances in which the uncorrelated uniform noise model may not be appropriate.
This is particularly true of ADC’s employing low-rate quantizers in feedback loops, since
there are not many quantization levels and the bin width is relatively large.

One approach taken by modern authors in analyzing cases such as these particular ADC’s
where the uniform model is not appropriate is to combine the deterministic and stochastic
approaches in one unified model. The deterministic approach is commonly referred to
as describing function analysis, a term borrowed from control theory. In this approach,
the performance of the quantizer is examined for a specific input such as a DC signal
or a sinusoid (as used in the 1947 paper by Clavier et al. [85, 86]. However, instead of
actually applying the quantization process as did Clavier, in describing function analysis the
quantizer is replaced by a linear gain so that the output is a weighted version of the input.
The gain is determined by minimizing the mean-squared error between this sinusoidal
output and the true output of the quantizer. In the unified approach, the describing
function analysis is used to generate the fundamental component of the quantizer noise,
and then an additive white noise process is added to that component to account for the
stochastic behavior. This noise must also be determined in a least squares sense since it
is no longer the same as the noise sources used in purely white noise approaches. This
approach is more difficult than either of the two separate approaches and thus is typically
used to analyze common ADC structures.

6.3.8 Minimizing the Quantization Error

Max showed in 1960 that if we either know the input to a quantizer or know the distribution
of the input, we can optimize the levels of the quantizer in such a way as to minimize the
error caused by quantization by minimizing the mean-square error [99]. Lloyd further
refined this technique in 1982 [100], and the resulting algorithm has come to be known
as the Lloyd-Max algorithm [101] and is used to set the optimum quantization levels for
a given quantizer (again, we are assuming a priori knowledge of the input signal). The
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algorithm is iterative and thus requires a numerical solution, so the optimum levels are
typically generated on computer when the number of quantization bins is significant. The
Lloyd-Max algorithm is not used in this research because the signal to be quantized at the
input to the digital receiver, r(t), does not have a known distribution. Similarly, we do not
know the distribution of the amplitudes of the interference estimates that will be quantized.
Finally, we assume for simplicity that the same type of quantizer is being used both for
the received signal and the interference estimates, and thus a quantizer that is optimized
in the Lloyd-Max sense for the received signal will not be optimized for the interference
estimates. Thus, we simply use uniformly spaced levels in all of the quantizers.

6.3.9 Dithering

Although it is not germane to the research presented in this report, it is worthwhile to
make mention of the use of dithering in the quantization process. The use of a dither
signal is an old technique that can be used to make the output of the quantizer white even
if it would not be so otherwise [102]. This is a common approach in systems such as voice
telephony where the human listener will be making a subjective judgment on the quantized
signal. Since the human mind prefers the sounds of white noise to periodic or noise with
abrupt spikes, it is desirable to have the quantizer output white quantization noise at all
times, regardless of what the input signal is. Thus, even if the input is a DC tone, the
dither signal can be added to the tone before quantization and the resulting output will
have white quantization noise (instead of a constant quantization error). Thus if we have
an input signal x and a dither signal d, the summed signal that will be quantized is given
by

y = x+ d. (6.58)

The dither signal d is itself a random, independent and identically distributed random
process that is also independent of the input signal x. This is an important property, since
if x and d are correlated, the quantization noise will not necessarily be white. It should be
stressed that dithering is used to improve the subjective quality of the noise, not to diminish
it. Since we will be evaluating the performance of the multistage receiver based on the bit
error rate (an objective measure), there is no need for dithering in our approach.

6.4 Conclusions

The noise caused by uniform quantization is often modeled stochastically as a uniform noise
source. The Quantization Theorem has been developed to determine when this model may
be strictly applied, and to determine the error if the conditions are not met. Models
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have been developed both for quantizing a continuous amplitude signal and for multiplying
a discrete amplitude signal by a constant coefficient. These methods assume that the
probability distribution function of the input is known, and provide a characterization of
the error at the output of the quantizer.

Part of the difficulty in quantization analysis lies not just in modeling the noise at the
output of the quantizer, but in modeling how this noise interacts with the rest of the
system. We will study the effect of quantization in the multistage receiver in the next
chapter. Here, we will be most interested in the characteristics of the quantization noise
not at the output of the quantizer, but after it has been correlated with the desired PN
code in the correlation receiver. In addition, since there are multiple quantization sources
in the receiver, we shall see that modeling all of the sources as being uncorrelated may lead
to an underrepresentation of the overall quantization noise, which in this case will lead to
an optimistic bit error rate prediction.

Simulation is often used to verify the accuracy of the quantization model, and we will use
a sample simulation run to characterize the correlated quantization noise. Next, we will
model all of the quantization noise as a lumped noise source, which inherently accounts for
the correlation amongst the various quantization noise sources. Finally, we will turn to a
semi-analytic technique in which the power in the quantization noise is set to match the
BER curves of the simulation and semi-analytic models. Using a semi-analytic approach
will also allow for compensation of other inaccuracies in the analytic model, such as the
unaccounted for mean in the interference estimates.



Chapter 7

Quantization In the Multistage
Receiver

7.1 Introduction

The prototype multistage receiver being developed at Virginia Tech is a completely digital
design. Given the nature of the specifications (which are discussed, along with the asso-
ciated computational complexity, in Chapter 8), this places extreme demands upon the
computational abilities of the microprocessors being used. Regardless of whether we are
developing the receiver based on a traditional DSP architecture or using the new recon-
figurable computing platform, the high computational demands and high operating speeds
imply that we will need to use fixed-point arithmetic with as few bits as possible. Thus
we need to determine how the use of fixed-point arithmetic will affect the ability of the
multistage receiver to cancel interference. As we shall see later, spread spectrum systems
employing correlation receivers enjoy an inherent advantage over more traditional designs
in regards to quantization noise, since this noise is passed through the correlator and thus
some processing gain is achieved on this noise as well as the interference and channel noise.

The rest of the chapter is organized in the following manner. First, the modeling of the
quantization noise sources is discussed. Next, an analytical framework for evaluating the
BER is developed based on the improved Gaussian approximation. Numerical case studies
are then presented and compared with simulation results. A semi-analytic technique is then
presented which improves upon the accuracy of the analytic model, which is pessimistic
under certain conditions. Finally, conclusions are presented.

111
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7.2 Quantization Errors in a Multistage Receiver

It is assumed that, for reasons of implementation, the speed and low cost of a fixed-point
implementation will be desirable for a DSP implementation of a multistage receiver. The
simplicity of the algorithms in the multistage architecture allows a close examination of
where potential quantization problems are likely to occur. Fixed-point quantization can
then be simulated in SPW through the addition of quantization blocks and compared to the
original SPW simulations, which are themselves calculated using the 32 bit floating-point
notation of the SUN Sparc platform. The SPW system model is shown in Fig. 7.1 and
discussed in detail in section 7.5.

The received signal at the input of the receiver, r(t), must be quantized, so there will be an
associated quantization error. Overflow is also possible, so care must be taken in choosing
Xm so that overflow does not occur at the input. From this stage forward, every number
will be quantized with B + 1 bits, since the rest of the receiver architecture is digital.

The received signal is then passed to the correlation receiver, where various additions
and multiplications take place, so each operation must be analyzed to determine where
errors will most likely be introduced. If we ignore the effects of the coherent demodulation
(multiplication of the received signal by the cosine and sine of the known phase), the first
multiplication takes place during the discrete correlation process, which is given by

Z
(s)
k,i =

NNs∑
i=1

r
(s)
k,iak,ipTs(t− iTs), (7.1)

where r
(s)
k,i is the sampled version of r

(s)
k (t) at sample i and ak,i is the chip value of user k’s PN

sequence during sample i. Since ak,i ∈ {1,−1}, the multiplications in the correlation process
amount to a possible sign change of the received signal sample, and thus no overflow is
possible and no truncation or rounding is required. There is, therefore, no noise introduced
at this point. There is a possibility of overflow in the summation term, although the result is
not likely to significantly exceed the desired threshold value, and so an appropriate scaling
term can be chosen. In addition, overflow is not a concern in the intermediate additions
because two’s complement notation is being used. Since the correlation value will be used
both in determining the bit value and the estimate of the received power level, if overflow
does occur, clipping is probably the best approach to ensure that the result remains as
close to the original value as possible.

The next stage where quantization errors can occur is in the estimation stage. The initial
multiplication is of the data bit estimate b̂k,i with a locally generated PN sequence replica.

This is a trivial multiplication in that b̂k,i ∈ {−1, 1}, and so the result is a possible sign
change of the chip values. Since there is no possible overflow and truncation or rounding
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Figure 7.1: SPW Fixed-Point Multistage Receiver Model
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is not necessary, no noise is introduced at this point. The next step is to multiply by
the magnitude of the decision statistic. Since the chip values are in the set {−1, 1}, this
multiplication can also only be a sign change and no noise is introduced. The next step is
the multiplication by the constant term 1/(NNs), which must be quantized and therefore
there will be accompanying quantization noise. Since this is a known term, the amount of
noise will be known (and constant over time). The multiplication will not result in overflow
since this constant is less than one. Truncation or rounding will be necessary so noise may
be introduced here as well. The next step is to multiply this result by the cosine and sine
of the phase term φk. Since each of these terms is less than one, overflow is not a concern,
but truncation or rounding will be necessary. At this point, the I and Q portion of the
reconstructed signal ŝ

(s)
k are completed.

Next, all signal estimates are summed together as shown in Fig. 7.1. Overflow is theoret-
ically possible at this point, although this summation should have a magnitude near that
of the original received signal, and therefore if the initial received signal did not overflow,
the reconstructed estimate should not as well. As before, overflow is not a concern for the
intermediate additions because of the use of two’s complement notation. Each of these
summations will require truncation or rounding. The next step is to subtract the recon-
structed estimates from the received signal itself. Overflow (and underflow) is not likely to
be a problem since the two terms have similar magnitudes. Truncation or rounding will
be necessary since this residual signal should ideally be close to zero. The next stage is
to add back in the estimate of the desired user’s signal, which has already been truncated
or rounded when the estimates were originally summed. This signal is passed to the next
correlation receiver, which has been discussed in a preceding paragraph.

This concludes the preliminary analysis of sources of error in the multistage receiver. Over-
flow is not likely to be a problem as long as the initial received signal values can be quantized
without overflow. There are a number of areas where noise due to truncation or rounding is
introduced. Scaling may help to minimize the noise at certain points, since the approximate
range of values of the resulting summation may be known.

7.3 System Model

The system model is based upon the improved Gaussian approximation model presented
in Chapter 4, but with modifications to account for the effects of quantization. The trans-
mitted system model is the same (with the exception that all K users are now assumed
to be synchronized), but the receiver model differs both because the received signal r(t) is
quantized at the input to the digital receiver and because the amplitudes of the interference
estimates will be quantized.
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The received signal r(t) is quantized at the input to the digital receiver withB bits, resulting
in the quantized signal

rε(t) = nc(t) + er(t) +
K∑
k=1

sk(t− τk), (7.2)

where nc(t) represents the AWGN channel noise (this was just n(t) in the synchronization
model) and er(t) represents the quantization noise. The decision statistics in the first stage
of receivers are made based on this quantized form of the received signal. For a user k
during bit interval i, this decision statistic is given by

Z
(1)
k,i =

∫ (i+1)T+τk

iT+τk

rε(t)ak(t− τk) cos(ωct + φk)dt. (7.3)

The next step is to form the interference estimates, but the amplitude estimates will have
to be quantized before they can be used in the digital receiver. We will be quantizing the
amplitude estimate 2Z

(s)
k,i /T , so the estimate of user k’s received signal is given by

ŝ
(s+1)
k (t) = ak(t− τk) cos(ωct + φk)

∞∑
i=−∞

{
2

T
Z
(s)
k,i + e

(s)
k (t)

}
pT (t− iT ), (7.4)

where e
(s)
k (t) is the quantization error for user k’s estimate at stage s. Because the linear

noise model assumes that there is no correlation of this error from user to user and from
stage to stage, and because the stochastic representation of the model will not change from
user to user or from stage to stage, we will denote this error as es and assume that it is the
same for each user k at each stage s.

We now form the new received signal r
(s)
j,ε (t) at each state s for each user j, 1 ≤ j ≤ K, by

subtracting out the interference estimates, yielding

r
(s)
j,ε (t) = rε(t)−

K∑
k=1,k 6=j

ŝ
(s)
k (t− τk)

= nc(t) + er(t) + sj(t) +
K∑

k=1,k 6=j

[
sk(t− τk)− ŝ

(s)
k (t− τk)

]
. (7.5)

The first term is the Gaussian channel noise, the second term is the quantization noise due
to quantizing the received signal, the third term is the desired user’s signal, and the final
term is the residual multiple-access interference. This received signal is then passed to the
next bank of correlation receivers. At each stage s, a new decision statistic Z

(s)
j,i is obtained

during bit interval i by correlating r
(s)
j,ε (t) with user j’s spreading code,

Z
(s)
j,i =

∫ (i+1)T+τj

iT+τj
r
(s)
j,ε (t)aj(t− τj) cos(ωct+ φj)dt. (7.6)
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The decision statistic is then passed onto the next stage for use in interference estimation
until the final stage of the receiver has been reached. At the final stage, the estimate of bit
i from user d, b̂d,i, is determined from Z

(s)
d,i by

b̂d,i =


 1, Z

(s)
d,i ≥ 0

−1, Z
(s)
d,i < 0

. (7.7)

Note that although the decision statistic itself may need to be quantized in the digital
receiver before the bit decision is made, the quantization process itself cannot change the
sign of the decision statistic, and thus it does not add any noise to the bit estimation
process. Therefore, we do not need to account for the quantization of Z

(s)
j,i before the bit

estimation in the bit error rate calculation.

7.4 Analysis Using an Improved Gaussian Approxi-

mation

As in the previous chapter, we wish to model the multiple access interference using an
improved Gaussian approximation. The key difference here is that the ability to cancel
interference is degraded by the effects of quantization and not by unsynchronized interfer-
ence. We begin with an expression for the decision statistic Z

(s)
j,i by substituting (7.5) into

(7.6) to obtain

Z
(s)
j,i = ηc + εr +

√
Pj
2
Tbj,i +

K∑
k=1,k 6=j

I
(s)
k,j , (7.8)

where ηc is a zero mean Gaussian random variable with variance NoT/4 representing the
correlated channel noise, εr is the correlated noise associated with quantizing the input
signal r(t), the third term represents the desired component, and the final term is the
residual MAI after interference cancellation (the quantization noise due to the quantization
of the interference estimates is embedded in this term).

Analyzing the Correlated Quantization Noise

While er is uniform over [−∆/2,∆/2], we do not know the distribution of the correlated
version εr. For any random variable X, we can find the distribution of the random variable
Y where Y = g(X) via [103]

fY (y) =
k∑
i=1

fX(x
(i))

|g′(x(i))| , (7.9)
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where g′(x) is the first-order derivative of g(x) with respect to x and i represents the k
roots of g(x). Thus to solve for the distribution of the correlated quantization noise εr, we
need to analyze εr = g(er), which is, at the output of user k’s correlation receiver,

εr =
∫ (i+1)T+τk

iT+τk

er(t)ak(t− τk) cos(ωct + φk)dt. (7.10)

This presents a distinct problem, since the derivative of this function (a definite integral)
is not defined. This implies that we cannot explicitly solve for the distribution of εr using
analytical techniques.

In the simulation section, we shall see that we can approximate the distribution of εr quite
well using a zero-mean Gaussian random variable whose standard deviation can be obtained
from a short simulation run. This standard deviation will be appropriate for a specified
number of bits B and a given quantizer range.

Analyzing the Conditional Variance of the Total MAI

As before, we wish to analyze the distribution of the conditional variance of the total MAI,
Ψ, which is given by

Ψ = E




 K∑
k=1,k 6=d

I
(1)
k,d



2

| {φk}, {τk}, {Pk}, B

 . (7.11)

There is no change in the way µΨ and σΨ are defined based on the mean and the variance
of the effective signal powers,

µ
(s)
Ψ =

T 2
cN

6

K∑
k=1,k 6=d

µ
(s)
Pk
, (7.12)

and

(
σ
(s)
Ψ

)2
=

T 4
c

4


23N2 + 18N − 18

360

K∑
k=1,k 6=d

(
µ
(s)
Pk

)2
+
7N2 + 2N − 2

40

K∑
k=1,k 6=d

(
σ
(s)
Pk

)2

+
N − 1

36

K∑
k=1,k 6=d

K∑
j=1,j 6=k 6=d

µ
(s)
Pk
µ
(s)
Pj


 . (7.13)

Determining the Probability of Bit Error

The form of the improved Gaussian approximation for the probability of bit error has
changed due to the addition of the error source εr in the decision statistic of (7.8), since



118

Z
(s)
k,i is not necessarily a Gaussian random variable (if we do not assume that εr has a

Gaussian distribution). We can envision this decision statistic as the sum of two random
variables, the decision statistic we used previously plus the correlated quantization noise
εr. In general, the probability distribution function of Z where z = g(x, y) is given by [95]

FZ(z) =
∫
(x,y)∈Cz

∫
fXY (x, y)dxdy, (7.14)

where Cz is the point set determined from g(x, y) ≤ z and fXY (x, y) is the joint density
function of x and y. For the case where z = x+ y, the density function pZ(z) is given by

fZ(z) =
∫ ∞

−∞
fXY (z − y, y)dy. (7.15)

If x and y are independent random variables, then (7.15) can be shown to be

fZ(z) =
∫ ∞

−∞
fX(z − y)fY (y)dy (7.16)

=
∫ ∞

−∞
fX(x)fY (z − x)dx. (7.17)

Thus the new density function is the convolution of the two individual density functions,
or

fZ(z) = fX(x) ∗ fY (y) = fY (y) ∗ fX(x). (7.18)

We can use (7.16) or (7.17) to solve for the probability of error, based on the density
function of the decision statistic. Once we have this density function, we can calculate the
probability that Z

(s)
k,i < 0 given that the bit sent during interval i is a 1.

If we model εr as a Gaussian random variable (as discussed in Section 7.6.1), then the
resulting expression for the probability of bit error simplifies to a form similar to that of
the case when quantization is not used. Using the improved Gaussian approximation, the
bit error probability can be closely approximated by

P
(1)
b,d ≈ 2

3
Q



√√√√ PdT 2

2
(
µ
(s)
Ψ + NoT

4
+ σ2εr

)

+

1

6
Q



√√√√ PdT 2

2
(
µ
(s)
Ψ +

√
3σ

(s)
Ψ + NoT

4
+ σ2εr

)



+
1

6
Q



√√√√ PdT 2

2
(
µ
(s)
Ψ −√3σ(s)Ψ + NoT

4
+ σ2εr

)

 , (7.19)

where σεr is the standard deviation of the correlated quantization noise source εr.

The next step is to determine µ
(s)
Ψ and σ

(s)
Ψ at each stage s so that we can properly char-

acterize the multiple access interference. As before, we must do this separately for stage
1 and for stages 2 and beyond, since there is no interference cancellation in stage 1. This
also implies that there is no interference estimation in stage 1, and thus no quantization
noise due to the quantization of the interference estimate.
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7.4.1 First Stage Multiple Access Interference

Since there is no interference cancellation in the first stage of the multistage receiver, there is
no interference estimation and thus no quantization of the interference estimate. Therefore,
there is no change in the way we characterize the first stage multiple access interference,
and the interference caused by user k to user j is still given by

I
(1)
k,j =

√
Pk
2
cos(φk − φj)

{∫ iT+τk

iT+τj
bk,i−1ak(t− τk)aj(t− τj)dt

+
∫ (i+1)T+τj

iT+τk

bk,iak(t− τk)aj(t− τj)dt

}
. (7.20)

As before, this can be reduced to

I
(1)
k,j = Tc

√
Pk
2
cos(φk − φj)Wk, (7.21)

where Wk is defined in [60] and it is shown that E[Wk] = 0 and E[W 2
k ] = 2N/3.

7.4.2 MAI For Stages 2 and Higher

The residual interference at stage s from user k to user j is still given by

I
(s+1)
k,j = I

(1)
k,j − Î

(s+1)
k,j , (7.22)

but now the interference estimate Î
(s+1)
k,j contains the quantization noise caused by quan-

tizing the estimate 2Z
(s)
k,i /T . By applying (7.4) and (7.6), we obtain

Î
(s+1)
k,j = cos(φk − φj)



∫ iT+τk

iT+τj


Z(s)

k,i−1
T

+
es
2


 ak(t− τk)aj(t− τj)dt

+
∫ (i+1)T+τj

iT+τk


Z(s)

k,i

T
+
es
2


 ak(t− τk)aj(t− τj)dt


 . (7.23)

As in Chapter 5, we can further simplify this expression for the interference estimate
provided that we make the assumption that the decision statistic Z

(s)
k,i can be pulled outside

of the integral, which the definition of (7.6) will not strictly allow. This in effect ignores

any portion of Z
(s)
k,i that is correlated with user j’s PN code. However, since the interference

of user j to user k is embedded in Z
(s)
k,i , there will be some correlation present. It is this
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term that makes the expected value of the interference estimates non-zero and introduces
a bias into the decision statistic of user j, as was discussed in detail in Section 5.4.6.

For now, however, we will make the assumption that Z
(s)
k,i can be pulled outside the integral,

so that the interference estimate can be rewritten as

Î
(s+1)
k,j = cos(φk − φj)




Z(s)

k,i−1
T

+
εs
2


 ∫ iT+τk

iT+τj
ak(t− τk)aj(t− τj)dt

+


Z(s)

k,i

T
+
εs
2


 ∫ (i+1)T+τj

iT+τk

ak(t− τk)aj(t− τj)dt


 , (7.24)

where εs is the quantization noise es when correlated with the PN sequence of user j. By
substituting (7.20) and (7.24) into (7.22), we obtain

I
(s+1)
k,j = cos(φk − φj)





√
Pk
2
bk,i−1 −


Z(s)

k,i−1
T

+
εs
2




 ∫ iT+τk

iT+τj
ak(t− τk)aj(t− τj)dt

+



√
Pk
2
bk,i −


Z(s)

k,i

T
+
εs
2




 ∫ (i+1)T+τj

iT+τk

ak(t− τk)aj(t− τj)dt


 . (7.25)

To put (7.25) into the form of (7.20), we define ν
(s+1)
k,i to be

ν
(s+1)
k,i = 2



√
Pk
2
bk,i −


Z(s)

k,i

T
+
εs
2





2

= Pk −
√
8Pkbk,i


Z(s)

k,i

T
+
εs
2


+ 2


Z(s)

k,i

T
+
εs
2



2

. (7.26)

Thus, as before, ν
(s+1)
k,i can be interpreted as the effective power in the interference from

user k during bit interval i after s + 1 stages, but with the key difference in that now
noise has been added to the cancellation process due to the quantization of the amplitude
estimate. We can now rewrite (7.25) in the form of (7.21) as

I
(s+1)
k,j = Tc

√√√√ν
(s+1)
k,i

2
cos(φk − φj)Wk, (7.27)

which is the same form as before since the quantization noise is embedded in the effective
power ν

(s+1)
k,i .

The next step is to determine expressions for the mean and variance of this effective power
so that we may use (7.12) and (7.13) to solve for the mean and variance of the conditional
variance of the MAI, Ψ. Once these two parameters are known, we can solve for the
probability of bit error using (7.19).
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7.4.3 Derivation of Mean of Effective Signal Power

In this section, we calculate the mean of the effective signal power ν
(s+1)
k,i . The mean can

be found directly from (7.26) by taking the expectation as

µ
(s+1)
Pk

= E[ν
(s+1)
k,i ] = E


Pk −√

8Pkbk,i


Z(s)

k,i

T
+
εs
2


+ 2


Z(s)

k,i

T
+
εs
2



2

 . (7.28)

Using the expression for the decision statistic given by (7.8), the mean can be rewritten as

µ
(s+1)
Pk

= E


Pk −√

8Pkbk,i


 1

T


ηc + εr +

√
Pk
2
Tbk,i +

K∑
l=1,l 6=k

I
(s)
l,k


+

εs
2




+
2

T


 1

T


ηc + εr +

√
Pk
2
Tbk,i +

K∑
l=1,l 6=k

I
(s)
l,k


+

εs
2



2



= 2E

[(
ηc
T

)2]
+

2

T 2
E[ε2r ] +

1

2
E[ε2s] +

2

T 2
E




 K∑
l=1,l 6=k

I
(s)
l,k



2

 , (7.29)

using E[ηc] = 0, E[εr] = 0, and where we have assumed that E[I
(s)
l,k ] = 0 (we are ignoring

the bias term that is discussed in Section 5.4.6), and we have assumed that all of the

random variables are uncorrelated. Since the terms I
(s)
l,k are still uncorrelated, we have

E




 K∑
l=1,l 6=k

I
(s)
l,k



2

 = E


 K∑
l=1,l 6=k

(
I
(s)
l,k

)2 . (7.30)

Because the quantization noise from the estimation process is embedded in the I
(s)
l,k terms,

we still have that

1

T 2
E


 K∑
l=1,l 6=k

(
I
(s)
l,k

)2 =
1

T 2
E


 K∑
l=1,l 6=k

T 2
c cos

2(φl − φk)
ν
(s)
l,i

2
W 2
k




=
1

6N

K∑
l=1,l 6=k

µ
(s)
Pk
, (7.31)

where we have used E[cos2(φl − φk)] = 1/2. Using E = [(ηc/T )
2] = No/(4T ) and (7.31),

we can solve (7.29) to be

µ
(s+1)
Pk

=
No

2T
+

2

T 2
E[ε2r ] +

1

2
E[ε2s] +

1

3N

K∑
l=1,l 6=k

µ
(s)
Pl
, (7.32)
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for 1 ≤ k ≤ K. It is worthwhile noting where the effects of quantization appear in the
mean of the effective powers: the εr term is due to the initial quantization of the received
signal r(t), the εs term is due to the quantization of the amplitude estimate of user k for
stage s + 1, and the quantization noise from the other users is embedded in the mean of
the effective powers of those users, which is accounted for in the summation term.

Therefore we now have a recursive definition for the mean of the effective interference power
that accounts for the quantization that occurs at the input of the digital receiver and during
the amplitude estimation process for each stage and for each user.

7.4.4 Variance of Effective Signal Power

In this section, we develop a definition for the variance of the effective interference power,
(σ

(s+1)
Pk

)2. The variance by definition is given by

(σ
(s+1)
Pk

)2 = E
[(
ν
(s+1)
k

)2]− (µ(s+1)Pk

)2
, (7.33)

where both ν
(s+1)
k and µ

(s+1)
Pk

contain quantization noise. Since we found µ
(s+1)
Pk

in Section

7.4.3, we need to find an expression for E[(ν
(s+1)
k )2]. Because of the mathematical nature

of the derivation, the explicit derivation is given in Appendix B. The expression for the
variance of the effective interference power at stage s+ 1 caused by user k, 1 ≤ k ≤ K, is
shown to be

(σ
(s+1)
Pk

)2 =
N2
o

2T 2
+ 4

E[ε4r]

T 4
+
E[ε4s]

4
+
NoE[ε

2
s]

T
+ 4

E[ε2r ]E[ε
2
s]

T 2
+ 4

NoE[ε
2
r ]

T 3

+

(
4No

T 3
+ 16

E[ε2r]

T 4
+ 4

E[ε2s]

T 4

)
µ
(s)
ψ − 4

E2[ε2r ]

T 4
− E2[ε2s]

4

− 4

T 4

(
µ
(s)
Ψ

)2
+
9(4N − 3)

40N3

K∑
l=1,l 6=k

[
(σ

(s)
Pl
)2 +

(
µ
(s)
Pl

)2]

+
4N2 − 9N + 13

12N4

K∑
l=1,l 6=k

K∑
m=1,m6=l 6=k

µ
(s)
Pl
µ
(s)
Pm. (7.34)

We now have the required terms to calculate the probability of bit error as expressed in
(7.19), where we are assuming that the distribution of the correlated quantization noise
sources εr and εs are Gaussian and that the sample standard deviations can be obtained
via a sample simulation run or by some either means.
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Figure 7.2: The System and Simulation Parameters

7.5 The Simulation Model

The SPW system model is shown in Fig. 7.1 and is stored as filename glomo q. The
multistage receiver has a total of three stages (two stages of cancellation), and 10 users are
modeled. Additive white Gaussian noise (AWGN) is the only degradation caused by the
channel. The phase and delay at each transmitter are random and uniformly distributed
over [0, 2π) and [0, NNs − 1] respectively, where N is the number of chips per bit and
Ns is the number of samples per chip. Bit error rates are calculated at each stage of the
receiver. Because it is difficult to view particular parts of the system as shown in Fig. 7.1,
the various pieces of the design are discussed in more detail with magnified figures in the
following sections.

7.5.1 System Parameters

The system and simulation parameters are set in glomo q as shown in Fig. 7.2. The param-
eters used for these fixed-point simulations are based upon the current hardware prototype
specifications as they existed when the simulations were begun, although these specifica-
tions are subject to change and discussed in more detail in Chapter 8. The bit rate is
set at rb = 128 kbps and the number of chips per bit is N = 15, yielding an overall chip
rate of rc = 1.92 Mcps. With Ns = 4 samples per bit, this gives an overall sample rate
of rs = 7.68 Msps. The value of Eb/No is allowed to vary, and the typical range for these
simulations is 0 to 10 dB. The number of quantization bits ranges from 4 to 12 and the
typical quantization range is [−20, 20], although [−15, 15] is also used.
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Figure 7.3: Quantizing the Received Signal

7.5.2 Quantizing the Received Signal

One of the primary differences between the fixed-point model and the SPW model used
in previous sections is that the received signal r(t) is now quantized as shown in Fig. 7.3.
On the left are three of the transmitters, including the desired users. Next all 10 users are
summed together (the other 7 transmitters are not shown here), and the AWGN is added
to simulate the channel. In previous simulations, this constituted the received signal that
the multistage receiver processed. Here, this signal is split into its I and Q portions, and
then each of these channels is quantized using a uniform quantizer with the number of bits
and the quantization range being taken from the system parameters. The signal is then
re-combined into a single complex, baseband signal that models the quantized received
signal rε(t).

7.5.3 Quantizing the Interference Estimates

The other significant feature that has been added to the fixed-point SPW model is the
quantization of the amplitudes of the interference estimates. In Fig. 7.4, the correlation
receiver used in the first stage and the interference estimator used in the second stage
are shown. This particular plot shows the blocks for user 10. The correlation receiver
is identical to the one used previously; its outputs are the decision statistic and the bit
estimate. The block that calculates the interference estimate is different, however, as it
quantizes the calculated interference estimate. The block is stored as estimator q and its
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block diagram is shown in Fig. 7.5.

The inputs to the estimation block are the decision statistic, the bit estimate, the PN
sequence of that particular user, the time delay, and the phase delay. It is assumed that the
time delay has been provided by a synchronization routine and that the phase is provided
either through a coherent source or through a phase estimation routine (one method for
estimating the phase is discussed in Chapter 8). The decision statistic is normalized and
then quantized with a uniform quantizer. This quantized result is the new amplitude
estimate and it is multiplied by the bit estimate (with the appropriate phase and delay).
The output is the overall interference estimate, which is a complex signal.

The interference estimates are then summed and subtracted from the quantized received
signal rε(t), not the actual received signal. The rest of the receiver proceeds along similar
lines, the estimate of the desired user is added to the residual signal and then this signal
is passed to the correlation receiver. In stage 3, another quantized interference estimate is
generated, the estimates are summed and subtracted from the quantized received signal,
and then the results are passed to the final bank of correlation receivers.

7.5.4 Miscellaneous Files

The final portion of the system block diagram is the bit error rate calculation as shown
in Fig. 7.6. Since all three stages are being simulated at once, we must calculate three
separate bit error rates. Each bit error rate calculator is supplied a delayed version of the
original data stream (each must be delayed by a different amount) and the bit estimate
from the appropriate bank of correlation receivers. Both the bit error rate and the number
of errors are saved in separate data files.

The system block int q calc2 is similar to glomo q, but it is used to calculate the mean
and variance of the quantization noise from the summed quantized interference estimates
for use in the analytical model (the mean and variance of the quantization noise from the
quantized received signal are calculated using glomo q. The key differences are that the
received signal is not quantized here (to eliminate the quantization noise it causes) and
that there are now two parallel calculations, one where the estimates are quantized and
one where they are not. This allows for a comparison between quantized and unquantized
versions so that the noise may be analyzed. The block diagram is not shown here because
of its similarity to the previous system model.
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Figure 7.4: Quantizing the Interference Estimates

Figure 7.5: Fixed-Point Interference Estimation
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Figure 7.6: Calculating the Bit Error Rate

7.6 Numerical Results

Simulation results have been generated and compared to the analytical model for 12, 8,
6, and 4 bits, a quantization range from -20 to 20, and a range on Eb/No from 0 to
10 dB. Overflow occurred rarely between values of Eb/No of 0 to 4 dB, but never at higher
signal levels. Before discussing the overall results, however, we first need to examine the
characteristics of the quantization noise.
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7.6.1 Examining the Quantization of the Received Signal

The input signal to the multistage receiver r(t) is quantized at the input to the digital
multistage receiver, resulting in the addition of the quantization error signal er(t). An
example of the difference between the true received signal r(t) and its quantized equivalent
rε(t) is shown in Fig. 7.7 for the I channel, where 60 samples (1 bit of data) are shown
and 4 bits were used in the quantization process. In the analytical model, the error sig-
nal er(t) = rε(t) − r(t) is modeled as a random variable with a uniform distribution over
[−∆/2,∆/2], which has zero mean and variance of ∆2/12. At the output of the correlator,
this quantization noise has a new distribution and is represented by the random variable
εr. As discussed in Section (7.4), there is no direct analytical solution to the new distri-
bution. Therefore we turn to simulation to provide a semi-analytic solution to the input
quantization noise source.

Quantization Noise er

A plot of 60 samples (1 bit) of the quantization noise er resulting from quantizing the I
portion (of the I and Q portions) of the received signal r(t) is shown in Fig. 7.8, where the
simulation run length was 100,000 samples, and the simulation parameters were set for 8
quantization bits, quantization range of [-20, 20], and Eb/No = 5 dB. A histogram of er is
shown in Fig. 7.9 for the same simulation run. It is clear that the distribution is uniform
as predicted. The uniform quantizer in the SPW simulation model uses truncation and not
rounding, which is why the range of sample values is from [−∆, 0] instead of [−∆/2,∆/2].
The predicted characterization of a uniform noise source when using truncation is given in
Sec. 6.1.2 as

µe = −∆

2

σ2e =
∆2

12
. (7.35)

Using 8 bits over the range [-20, 20] yields ∆ = 0.15625. Thus the uniform noise model
would predict a mean of -0.07813 and a standard deviation of 0.04511. For the sample
run above, the sample mean was -0.07817 and the sample standard deviation was 0.04504.
These results are tabulated in Table 7.1. Clearly, the distribution of the quantization noise
is well matched to a uniform noise model, although it is important to again note that the
quantization noise is not a random variable but deterministic, and that a uniform model
does not predict the noise for a given sample (i.e., a given input), but instead accounts for
the distribution of the noise over time.
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Figure 7.7: Received Signal (Actual and Quantized Versions) When Using 4 Bits

Correlated Quantization Noise εr

We now turn our attention to the correlated version of er, εr, since we cannot readily derive
an analytic model to represent it. A plot of 60 samples (1 bit of data) of εr is shown in
Fig. 7.10 when using 8 bits in the quantization process, a quantization range of [-20, 20],
an Eb/No of 5 dB, and a simulation run length of 100,000 samples. A histogram of the
correlated noise is plotted in Fig. 7.11 for the same simulation run. The sample mean is
-0.009875 and the sample standard deviation is 1.2321. The distribution is clearly no longer
uniform, and looks roughly Gaussian. A normal probability plot is shown in Fig. 7.12, where
the pdf of the sample data is compared to the pdf of a Gaussian (normal) distribution. If
the sample data were truly Gaussian in nature, the plot would be linear and follow that
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Figure 7.8: Quantization Noise er When Using 8 Bits
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Table 7.1: Characterization of er

Predicted Simulation
µer -0.07813 -0.07817
σer 0.04511 0.04504

Table 7.2: Sample Mean and Standard Deviation of εr

# of Bits µεr σεr
4 -0.1080 19.6732
6 -0.0356 4.9120
8 -0.009875 1.2321
12 -0.001103 0.07721

of the dashed line. Any deviation from this linear ideal indicates that the sample data is
not strictly Gaussian for that range of data. From the plot, it is clear that the sample
data is reasonably Gaussian, with a very close match in the center of the data range and
some divergence at the tails of the distribution. From a modeling standpoint, if there is
to be some divergence from a true Gaussian distribution, we would prefer that it be in the
tails since these data values will occur with the lowest probability. Thus we would expect
that, given the close match for the most common data values, that the correlated input
quantization noise source can be modeled with a Gaussian distribution with zero mean and
standard deviation based on the sample standard deviation taken from a representative
simulation run.

The sample mean and standard deviation of εr is tabulated in Table 7.2 for bit levels of
4, 6, 8, and 12. The simulation parameters used Eb/No of 5 dB and a 100,000 sample
run length. The values follow the expected pattern, with the variance in the noise rapidly
decreasing as we increase the number of bits in the quantization process (and thus more
accurately quantize the amplitude of the estimate). These results were used in developing
the semi-analytic model for εr used in the analytical results. The validity of this model is
borne out by the close match between the analytic and simulation models for the 1 stage
receiver, where εr is the only quantization noise source.

It is worth remembering that the reason that εr has a different distribution than the uniform
distribution of er is entirely a result of the correlation properties of the correlation receiver,
and thus this will hold for any spread spectrum system that employs correlation receivers.
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Figure 7.10: Correlated Quantization Noise εr
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Figure 7.12: Normal Probability Plot for Correlated Quantization Noise εr

The processing gain of the system applies to the quantization noise of the received signal
as well as to the channel noise and interference, as this quantization noise goes through the
correlation process as well. Thus the noise that appears in the decision statistic has been
processed by the correlator and is less severe than at the output of the uniform quantizer.
The practical result of this is that a lower number of bits may be required for quantization
than in a similar non-spread system receiver. Thus all spread spectrum systems benefit
from the use of the correlator, not just systems employing multistage receivers.

Using this sample standard deviation and assuming a Gaussian distribution allows us to use
a very practical semi-analytic technique in which the analytic model developed previously
can still be used, but with the noise source εr being characterized based on parameters
taken from simulation. To see how well this technique holds, we can look at the receiver
performance for just the first stage, where no interference cancellation has taken place and
the only quantization source is εr. By looking at Figs. 7.18-7.23, we see that the semi-
analytic and simulation results match very closely for the first stage, implying that this
Gaussian model for εr is indeed appropriate and accurate.
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Table 7.3: Characterization of es

Predicted Simulation Stage 2 Simulation Stage 3
µεs -0.07813 -0.07824 -0.07825
σεs 0.04511 0.04484 0.04501

7.6.2 Examining the Quantization of the Interference Estimates

We now turn our attention to examining the characteristics of the noise from quantizing the
interference estimates, es. An example of the quantization process is shown in Fig. 7.13 for
the estimate of user 1’s signal in stage 3 over a single bit period, where the first plot is of the
original (unquantized) estimate of user 1’s signal, the second plot is the quantized version
of that estimate, and the third plot is the actual quantization noise signal. There are 8 bits
used for quantization and the Eb/No was 5 dB. Because the decision statistic estimate is
constant over a bit period, the quantization error will have a constant magnitude as well.
The error signal is essentially this magnitude modulated by the signature sequence. This is
notably different from the quantization noise signal er, which varies from sample to sample
due to the nature of the received signal r(t).

The distribution of a simulation run of 100,000 samples is shown in Fig. 7.14, where the
quantizer in question is from user 2’s estimation block in stage 2 of the receiver and 8 bits
are used in the quantization process. While still approximately uniform, the pdf is not
nearly as flat as it was for the quantization of the received signal. This is to be expected,
since we are now accumulating samples that have been modulated by a signature sequence,
and thus the magnitude of the error will not change over a bit period (here, 60 samples).
It will thus take more samples for the overall noise distribution to appear uniform. The
sample mean was -0.07824 and the sample standard deviation was 0.04484. A comparison
of the sample simulation values of the mean and standard deviation for stages 2 and 3 with
the predicted values for a uniform noise source is tabulated in Table 7.3. Thus the first
and second moments are still near the predicted values for each stage, and so we expect
that, since the sample pdf fairly closely follows the uniform pdf, the uniform noise source
should be a good model for the quantization of the interference estimates. The histogram
of the quantization noise at stage 3 for user 2 is shown in Fig. 7.15. The sample mean was
-0.07825 and the sample standard deviation was 0.04501. As at stage 2, the quantization
noise is fairly uniform.
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Table 7.4: Sample Mean and Standard Deviation of εs

# of Bits µεr σεr
4 -0.1080 19.6732
6 -0.0275 3.8417
8 -0.008604 0.9509
12 -0.0003261 0.0587

7.6.3 Examining the Correlated Quantization Noise of the In-
terference Estimates

Although the distribution of es is uniform, the distribution of the correlated noise εs will not
be. As is the case with er and εr, there is no exact analytic expression for the distribution
of εs. We again turn to simulation to parameterize the stochastic model for εs.

A histogram of the correlated noise from stage 2 is plotted in Fig. 7.16 for the same
simulation run. The sample mean is -0.008604 and the sample standard deviation is 0.9509.
The distribution is clearly no longer uniform, and looks roughly Gaussian. A normal
probability plot is shown in Fig. 7.17. From the plot, it is clear that the sample data is
reasonably Gaussian, with a very close match in the center of the data range and some
divergence in the tails. Again, it is most important that we accurately model the central
portion of the distribution since these events occur with the highest probability. Thus
we would expect that, given the close match for the most common data values, that the
correlated input quantization noise source can be modeled with a Gaussian distribution
with zero mean and standard deviation based on the sample standard deviation taken from
a representative simulation run. The same parameters are used for stages 2 and 3. The
sample parameters are summarized in Table 7.4 for the various number of bits used in the
quantizer.

7.6.4 Examining the Bit Error Rate Performance

Now that we have verified the accuracy of each quantization noise source, we examine the
bit error rate curves and both compare the analytic and simulation results and examine
the degradation as fewer bits are used in the quantization process. A summary of the bin
widths when using 12, 8, 6, and 4 bits is given in Table 7.5, where it is assumed that the
quantization range is over [-20, 20].
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Table 7.5: Quantization Bin Width ∆

# of Bits # of Levels Bin Width Maximum Error
12 4096 0.009765625 0.0048828125
8 256 0.15625 0.078125
6 64 0.625 0.3125
4 16 2.5 1.25

Comparing the Analytic and Simulation Results

In Figs. 7.18-7.23, the BER is plotted against Eb/No for quantization bit levels of 12, 8,
6, and 4 bits. Several key observations can be made from these BER curves by comparing
the accuracy of the analytic model with the simulation model.

First, consider the case of 12 bits (Fig. 7.18). As noted in Section 7.6.1, the analytic and
simulation models are in close agreement for stage 1 for the entire range of Eb/No. The
analytic results for the stages employing interference cancellation get optimistic (lower BER
than simulation) as Eb/No increases, which is due to the bias inherent in the estimation
process discussed in Section 5.4.6. A comparison of the performance of receivers employing
no quantization and quantization levels of 12, 8, 6, and 4 bits are shown in Fig. 7.19 and
Fig. 7.20 for a 1 stage and 3 stage receiver, respectively. The results for 12 bits are nearly
identical to the case when quantization is not used, which is not surprising. Using 12 bits
means that we are quantizing with 212 = 4096 levels. Since our range is from -20 to 20,
this implies that each bin has width

∆12 =
20− (−20)

4096
= 0.009765625. (7.36)

Therefore the maximum error that can occur due to quantization is ∆/2 = 0.0048828125.
This fine bin spacing yields an ability to accurately quantize each interference estimate, as
well as the initial received signal. Thus we expect to see almost no noticeable degradation
over the case when quantization is not used, and this is indeed the case.

Next, consider the case of 8 bits (Fig. 7.21). As before, the stage 1 results are accurate across
the range of Eb/No. For stages 2 and 3, however, the analysis again becomes optimistic
(predicts too low of a BER) as Eb/No increases above 5 dB. Again, this is due to the bias
in the decision statistic, as the quantization noise is still not significant enough to degrade
performance notably over the ideal case. The simulation results show that there is almost
no noticeable degradation when using 8 bits over the non-quantized case. The bin width
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Figure 7.18: BER vs. Eb/No for 12 bits and Limit=20
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Figure 7.20: 3 Stage RX Comparison with Varying Levels of Quantization

for this case is no longer nearly as fine as the case for 12 bits, and is given by

∆8 =
20− (−20)

256
= 0.15625. (7.37)

The maximum error due to quantization is thus ∆/2 = 0.078125. Since the amplitude of
each user’s transmitted signal is 1, this still provides a suitable degree of accuracy and,
as can be seen from the comparisons in Figs. 7.19 and 7.20, there is almost no noticeable
degradation from the ideal case. Thus the performance of the receiver is nearly the same
regardless of whether 8 or 12 bits is used (there is some degradation when going to 8 bits,
but it is not significant for the case studied here).

Next, consider the case of 6 bits (Fig. 7.22). Again, using the Gaussian noise model for the
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Figure 7.21: BER vs. Eb/No for 8 bits and Limit=20

correlated quantization noise εr, the stage 1 results are accurate across the range of Eb/No.
For stages 2 and 3, however, the analysis becomes more optimistic than before (predicts too
low of a BER) for values of Eb/No above 5 dB. This optimism cannot be entirely explained
by the bias in the decision statistic. The bin width for this case is given by

∆6 =
20− (−20)

64
= 0.625. (7.38)

The maximum error due to quantization is thus ∆/2 = 0.3125. Since the amplitude of each
user’s transmitted signal is 1, the maximum error can now be an appreciable portion of the
estimate. We know from simulation that we are accurately modeling the performance of a
single quantization source, which implies that the optimistic results are partially a result
of modeling the quantization noise sources as independent, when in fact they become less
independent as the bin width increases. This effect is discussed in more detail in Section
7.6.5.

As can be seen from the comparisons in Figs. 7.19 and 7.20, there is noticeable degradation
when performing interference cancellation, but the performance of the first stage remains
similar to the cases of 8 and 12 bits. This is because the maximum error is not nearly
as significant compared to the maximum value of the received signal as compared to the
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interference estimates, which have a much smaller amplitude. The degradation visible at
stage 3 may be acceptable as a tradeoff in the lower number of bits that are required,
depending on whether higher capacity (or alternatively a lower BER) is more important
than a smaller number of bits.

Finally, we examine the case when only 4 bits are used in the quantization process (Fig. 7.23).
As in the previous cases, the analytic and simulation models yield nearly identical results
for the one stage receiver. For stages 2 and 3, the analysis is again severely optimistic,
predicting that the two stages perform significantly better than the one stage receiver. The
simulation results show that attempting to cancel the interference with such a low degree of
numerical precision degrades performance to the point that stages 2 and 3 actually perform
worse than stage 1. The wide disparity between the predicted and simulated results again
implies that the bias is not accounting for all of the optimism in the predicted BER. The
non-independence of the quantization sources is again the culprit, as demonstrated and
explained in Section 7.6.5.

The bin width for this case is given by

∆4 =
20− (−20)

16
= 2.5. (7.39)

The maximum error due to quantization is thus ∆/2 = 1.25. Since the amplitude of each
user’s transmitted signal is 1, the maximum error can now be an appreciable portion of
the estimate. All stages show a severe degradation from the non-quantized case, indicating
that using 4 bits will not provide acceptable performance in any circumstance.

7.6.5 Sources of Error in the Analytic Model

As we have seen, the accuracy of the analytic model degrades as the number of bits de-
creases, and can degrade as Eb/No increases. There are two main factors that are con-
tributing to the pessimistic predictions of the BER.

Stochastic Modeling of a Deterministic Process

First, the uniform noise model allows for noise to be added to the signal in ways that it
would not be added in the actual receiver. For example, consider the decision statistic.
The receiver makes a bit estimate as to whether a +1 or -1 was sent based on whether
the decision statistic is greater than or less than zero. Quantization will not affect this
decision; if the signal is greater than zero before quantization, then the quantized version
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Figure 7.22: BER vs. Eb/No for 6 bits and Limit=20
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Figure 7.23: BER vs. Eb/No for 4 bits and Limit=20
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will also be greater than zero. In a similar fashion, if the decision statistic is less than zero,
the quantized result will also be less than zero. The uniform noise model does not make
this distinction however, since it is independent of the input to the quantizer.

Consider the case when the decision statistic is within half a bin’s width of zero as shown
in Fig. 7.24. The uniform noise model would suggest that the quantized result could be
±∆/2 about the true value. If an error occurs in possible error region # 1, the model will
allow the quantized result to be less than zero even though in reality it would be quantized
above zero. The wrong bit estimate will be made in the analysis, whereas an error would
not have been made in an actual system. Conversely, there may be cases where the decision
statistic is slightly less than zero (possible error region #2) when a +1 has been set, and the
uniform noise model will incorrectly allow the quantized result to be greater than zero. In
this case, the analytic model will not predict an error when the actual system would make
the incorrect bit estimate. Since the probability is greater that, given a +1 was sent, the
decision statistic will be in region #1 rather than region #2, analysis based on the uniform
noise model will overestimate the number of errors being made and lead to a pessimistic
bit error rate estimation. However, this effect may be very small in many cases and as
we have seen previously, the analysis is actually optimistic and thus this effect has little
overall impact on the BER determination. However, it is important in that it shows how
modeling the deterministic quantization error with a random process can lead to errors.

This effect will be more noticeable as the number of quantization bits decreases. Consider
the case of 12 bits. The area where the analytic model will allow errors to occur where
they should not, 0 ≤ Z

(s)
k,i ≤ ∆/2, is between 0 and 0.0048828125. The probability that

Z
(s)
k,i will be in this region is very small, and thus we do not expect it to significantly impact

the overall BER. Next, at 8 bits, the possible error region is between 0 and 0.078125. The
probability that we will be in this region is still small, but greater than before. Thus we
would expect that its effect will only be noticeable when the power in the channel noise
decreases and overall errors are more infrequent, and this is also seen. Next, at 6 bits,
the possible error region is from 0 to 0.3125, and the probability that we will be in this
region is much higher. At 4 bits, the region grows to 0 to 1.25, allowing for significant
overestimation of the BER. There is no simple or practical way to accurately model this
phenomenon, however, since we wish to avoid modeling the quantization noise based on
the input to the quantizer.

Non-independence of Quantization Noise Sources

A second source of error in our assumptions is that all of the K quantization noise sources
in any stage s are independent, and further that the quantization noise sources associated
with user k are independent from stage s to stage s + 1. Both of these situations can be
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Figure 7.24: Inaccuracies in the Uniform Noise Model

violated under certain conditions in the multistage receiver. As the number of quantization
bits decreases, we increase the probability that the two interference estimation routines for
users k and k + 1 will be quantizing to the same level. If the users have the same power
levels, then we would expect the decision statistic to be at roughly the same level since the
difference will be in that they are correlating with different signature sequences and that
each will have attempted to cancel the other’s interference. If each estimate is similar in
amplitude, then the overall correlation should be similar in amplitude. As the bin spacing
gets coarser, they become more likely to be quantized identically and thus are no longer
independent in the error they produce. This implies that we cannot simply convolve their
distributions together and expect the Central Limit Theorem to hold.

A similar effect holds when comparing the quantization noise from stage s to stage s+1 for
user k. As the bin spacing gets larger, the probability increases that the same quantization
level will be chosen at stages s and s+ 1. If the same level is chosen, the error will be the
same at each stage and thus the noise sources are not independent in any sense, but in fact
identical.

The net effect of assuming independence of noise sources is that we ignore the cross-
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Table 7.6: Lumped Estimation Quantization Noise

# of Bits Stage 2 µ Stage 2 σ Stage 3 µ Stage 3 σ
4 -1.3878 44.2960 -0.2470 31.1220
6 -0.2601 11.2362 -0.2056 9.0660
8 -0.1111 2.8302 -0.0036 2.1325
12 -0.0051 0.1763 -0.0013 0.1423

product terms that must be accounted for when computing the overall noise distribution.
Simply ignoring these terms leaves out a significant portion of the noise term when the
bin spacings are large, and so the net effect is to underestimate the effect of the noise
and subsequently underestimate the corresponding bit error rate. As we have seen, this
optimism in predicting the BER is quite severe when the bin spacing is large.

Determining how the noise sources are correlated is a non-trivial task and best accomplished
by simulation. Here, we simply determine the total noise caused by all of the quantizers in
the estimation blocks, and then use this lumped noise source to represent the degradation
in the decision statistic. This lumped source inherently accounts for any non-independence
of noise sources, but has the drawback in that it is only strictly valid for the number of
users used in the simulation and thus is not as widely applicable as our previous model.
However, as seen in Fig. 7.31, using such a model for the case of 4 quantization bits
provides a close match between simulation and predicted BER performance. The lumped
parameters are summarized in Table 7.6 for bits 4 through 12 when there are 10 active
users and Eb/No = 5 dB.

The Degradation in BER Due to Quantization

Summarizing the results from the previous section, we see from Figs. 7.19 and 7.20 that
there is little to no degradation in performance when using 8 or 12 bits for quantization,
there is some dropoff for the interference cancellers when using 6 bits, and performance is
unacceptable in all cases when using 4 bits. We can draw several conclusions from these
results.

First, the fact that, for the case considered here, the receiver is performing well even
with only 8 bits (and possibly acceptably well with 6 bits) implies that the multistage
architecture is well-adapted to a fixed-point implementation, provided that the received
signal r(t) has a limited dynamic range. The results presented above assume that all
users are received with the same power level, and thus the possible range of values for
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the magnitude of r(t) is fairly limited. This is important, because one of the principal
drawbacks to a fixed-point implementation is that signals with a wide dynamic range cannot
be represented accurately. If all users are being received with the same power level, this
implies that power control is being employed. We saw in Chapter 4 that open-loop power
control techniques are useful in minimizing the interference from unsynchronized users and
thus improving acquisition time. Here, we see that stringent power control techniques (in
other words, closed-loop techniques) can limit the dynamic range of the received signal and
thus improve the performance of the multistage receiver when implemented with fixed-point
arithmetic.

Next, it becomes clear that changing the number of quantization bits by only 1 or 2 bits can
have a significant impact on system performance. This can occur because the number of
bins used for quantization is exponentially related to the number of bits. This exponential
relationship implies that the performance degradation when using fewer bits will not be
linear. Thus, we would expect that going from 6 to 4 bits will have a much more significant
impact than going from 12 to 10 bits, and the results clearly support this. As evidenced
by the comparisons, the falloff is rather rapid when below 8 bits, implying that care needs
to be taken when choosing the minimum number of bits to be used.

7.6.6 Alternative Quantization Strategies

There are different quantization strategies that can be employed in an effort to improve
the system performance. First, a smaller quantization range can be chosen, and thus, for
the same number of bits, the bin width will decrease. The drawback is that overflow may
be more likely to occur, and the system designer will have to tradeoff the increase in BER
due to overflow against the decrease in BER because of the increased ability to accurately
quantize the interference estimates. A second strategy would be to employ non-uniform
quantizers in an attempt to take advantage of the signal characteristics. Finally, different
quantizers can be employed at different stages of the receiver, so that one quantizer (with a
given range and number of bits) could be used to quantize the received signal and another
quantizer (with a different range and/or number of bits) could be used when quantizing the
interference estimates. This type of flexibility is particularly amenable to the reconfigurable
computing architecture being employed for the prototype multistage receiver (the hardware
platform and system specifications are discussed in more detail in Chapter 8).

Decreasing the Quantization Range

First, we consider the case where we decrease the quantization range, allowing more over-
flow in the hope that the increased resolution in the quantization of the interference esti-
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Figure 7.25: BER vs. Eb/No for 6 bits and Limit=15

mates will yield an overall decrease in BER. We must turn to simulation to examine the
performance difference, since all analytical techniques are based on the assumption that
overflow does not occur, and thus they cannot account for the case when overflow occurs.
In Fig. 7.25, the simulated BER vs. Eb/No is shown when 6 quantization bits are used, but
the quantization range is now from -15 to 15 instead of from -20 to 20. The performance is
compared to the original case when 6 bits were used over the range of [-20, 20]. Overflow
occurred for every value of Eb/No. As can be seen from this graph, the net effect is a slight
decrease in the BER when interference cancellation is employed (stages 2 and 3). The bin
width for this case is given by

∆6 =
15− (−15)

64
= 0.46875. (7.40)

The maximum error due to quantization is thus ∆/2 = 0.2344 (it was 0.3125 for the larger
range).

In Fig. 7.26, the BER vs. Eb/No for a 3 stage receiver is shown, where three cases are
compared: six bits with a range of [-20,20], six bits with a range of [-15,15], and eight bits
with a range of [-20,20]. Using six bits with a range of [-15,15] falls between the other two
cases, so we see that by using this smaller range we can gain back much of the degradation
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caused by going from 8 bits to 6 bits. In Fig. 7.27, a 2 stage receiver is shown for the same
bit levels and quantization ranges. A similar effect is seen, although there is more of a
difference between the 6 bit, [-15, 15] case and the 8 bit, [-20, 20] case at higher values of
Eb/No.

Non-uniform Quantization

Another alternative would be to use non-uniform quantization when computing the interfer-
ence estimates. Non-uniform quantization allows the bins to be non-uniformly distributed
across the quantization range. Thus if we have some a priori knowledge of the signal charac-
teristics, we can design the quantizer to maximize system performance. For the multistage
receiver, there are two key types of signals we need to be able to quantize: the received
signal and the interference estimates. The received signal is fairly strong and random, so
we expect that a uniform quantizer is most appropriate here. The interference estimates,
however, are constant over a bit period and expected to be in the neighborhood of a single
user’s signal’s amplitude. Therefore, using a non-uniform quantizer here, we could con-
centrate bins at the smaller signal levels and thus more accurately model the individual
interference estimates. The problem here is that once we begin summing the estimates to
perform interference cancellation, the resulting sum will increase its dynamic range and
thus require a different quantization strategy. After all K estimates have been summed,
the result will have approximately the same dynamic range as the received signal r(t) and
therefore should be quantized in the same way. The drawback to this technique is that
the non-uniform quantization will have to match the strength of each estimate, and over-
flow in any intermediate sums may cause overflow in the final result since we are changing
quantization strategies with each sum. Since the appropriate pattern for the non-uniform
bin distribution will depend upon the amplitude of the estimate, the pattern will also have
to be dynamic and able to change over time. In general, the uniform quantizer may well
provide a much more reasonable and practical solution from an implementation standpoint.

Using Different Quantizers At Different Points

In a similar fashion to employing non-uniform quantizers at the interference estimates, we
could use uniform quantizers but with a much smaller range or a higher number of bits,
thus decreasing the bin width and increasing the overall resolution of the quantizer. The
reconfigurable computing platform will allow a great deal of flexibility in using different
quantization types at different places. As before, however, the difficulty with this technique
is that when the interference estimates are summed, the resulting signal has a similar
dynamic range to the received signal, and will require a similar quantization range and
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Figure 7.26: BER vs. Eb/No for 3 Stage Receiver
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Figure 7.27: BER vs. Eb/No for 2 Stage Receiver
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number of bits. For the cases studied here, such a complex technique is not required. If
a different system was being studied with a higher spreading coefficient N and a higher
number of users (and thus increased dynamic range of r(t)), using these different strategies
may be more beneficial.

7.6.7 A Semi-Analytic Approach

We have seen that the analysis can be optimistic, and that this effect can be quite severe
as the number of quantization bits decreases. This suggests that simulation must be used
to determine an accurate representation of the BER performance in some cases. However,
simulation runs take much longer than the analysis (for the typical BER graph above,
running on a Sparc 20, the analysis takes a few seconds, whereas the simulations take two
or three days). We would like a technique which has the accuracy of the simulations but
with the speed of the analysis. A semi-analytic model could provide the answer, where
we use the analytic model developed previously but now calibrate our noise sources based
on simulation results. This technique will also try to compensate for the effects of the
bias, although we will be assuming that our noise sources have zero means and the only
parameter we will be adjusting is the variance of the decision statistic.

We can adjust the variance of the noise so that the resulting BER calculation more closely
follows the BER of the simulation results. In so doing, we can select several simulation
points and calibrate the variance of the noise in the semi-analytic model to yield a close
match in BER. We thus only require a few simulation runs, greatly reducing the amount
of time it takes to determine the BER performance. In addition, once calibrated, the
noise sources can be used in analyzing other similar situations without requiring any new
simulation runs.

In Figs. 7.28-7.31, we see the performance of the semi-analytic model compared to the
simulation results. The standard deviations used for each of the estimation noise sources
are summarized in Table 7.7 and compared with the analytic values. These values are
then used in the variance calculation of 7.34. These values were chosen to give a good
match across the entire range of Eb/No and for all stages. The system designer may wish
to optimize the values to match only a specified range or a specified stage (or both).
A least-squares linear regression technique could also be employed to obtain the values.
It is assumed that these noise sources are Gaussian (and not uniform as before), so the
fourth moment is given by 3σ2. Clearly, these semi-analytic curves follow the simulation
curves much more closely than did the analytic curves. There are still some places where
some deviation is noted, but it has been greatly reduced and thus this approach can be
a useful tool for predicting the performance of the multistage receiver when fixed-point
implementation is used. The values used for 4 bits are simply the values derived from the
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Table 7.7: Semi-Analytic Characterization of εs

Semi-Analytic σεs Semi-Analytic σεs
Quantization Bits Stage 2 Stage 3

12 15 12
8 15 12
6 20 15
4 44.2960 31.1220

lumped parameters, there was no need to develop them based on comparisons with BER
curves (this is due to the negligible effect the bias has at this quantization level).

7.7 Conclusions

We have presented an analytic, semi-analytic, and simulation model for the multistage
receiver when implemented using fixed-point arithmetic. Gaussian noise sources based on
simulation results are used to model all correlated quantization noise. When compared
with simulation results, the analytic model can be optimistic, and quite severely optimistic
in certain circumstances. Semi-analytic models were then developed that retain much of
the accuracy of the simulation model but with much of the speed of the analytic model.

The BER curves show that, as long as the dynamic range of the input signal is constrained,
the multistage receiver performs quite well when using fixed-point arithmetic. Almost no
degradation is noticed when 8 bits are used and overflow is allowed only rarely at low Eb/No,
and only small degradation is noticed when 6 bits are used and overflow is allowed more
frequently. Since these bit levels are easily achievable in practice, the multistage receiver
can be implemented in hardware using fixed-point arithmetic and still retain nearly all of
the performance of the receiver when quantization is not used.
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Figure 7.28: BER Using Semi-analytic Model for 12 bits
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Figure 7.29: BER Using Semi-analytic Model for 8 bits
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Figure 7.30: BER Using Semi-analytic Model for 6 bits
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Figure 7.31: BER Using Semi-analytic Model for 4 bits



Chapter 8

Hardware Implementation

The prototype hardware implementation of the multistage receiver is one portion of an
ongoing multiple year project1 and involves four key research areas that will eventually be
integrated into a single unified system: adaptive antennas, adaptive filtering, multistage
receivers, and a reconfigurable DSP computing platform.

This chapter is organized as follows. First, the original proposed air interface is discussed.
Next, a rough draft of the air protocol interface (API) that is currently being developed
is discussed. Next, the problem of phase estimation is discussed, including a maximum
likelihood phase estimator that attempts to estimate the phase of the received signal from
each user. Finally, the hardware prototype is discussed with a focus on eventual integration
of the four principal technologies.

8.1 Original Air Interface Standard

In the first year of the project, a basic air interface was jointly specified by the researchers.
The goal of the project is to show how these various technologies can be used together
to provide a high-capacity, high data rate, bandwidth-efficient wireless communications
system. In support of those goals, the following parameters were specified:

• Binary Phase Shift Keying (BPSK) Modulation

• Data rate of rb = 128 kbps

1the DARPA sponsored Glomo project, of which Virginia Tech is one of a group of universities pursuing
mobile communications projects

156
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• Spreading code length of N = 15

• 4 samples per chip on the reverse link

• RF carrier frequency near 2 GHz

The data rate was chosen to provide a higher data rate than typically seen in cellular
telephony (data rates in the neighborhood of 10 kbps [33]). This would allow for a variety
of different information sources to be transmitted, including ISDN channels, low-bandwidth
video, computer data files such as MPEG movie clips, etc. The number of samples per chip
on the reverse link was set to 4 to ensure that the PN codes could be aligned with enough
precision to allow for accurate interference cancelation (Mike Buehrer studied the effects
of timing offsets in [18]). The short spreading code length was chosen both to demonstrate
and showcase the capabilities of the mobile and base station receivers, and also to keep
the overall sample rate as low as possible given the high data rate. Based on the above
parameters, the overall chipping rate is 1.92 Mcps and the overall sample rate is 7.68 Msps.

The carrier frequency was chosen not only because the research group has an experimental
license in this range, but also to showcase the RF technology near the new unlicensed PCS
band near 2.4 GHz. The RF hardware at 2.4 GHz is significantly more expensive than at
2.0 GHz, and so the decision was made to go with the lower frequency. This still provides
a higher carrier frequency than the 900 MHz unlicensed band (the ISM band) and the
current cellular telephony frequencies.

The synchronization analysis of Chapter 5 is not based on these system specifications, but
instead uses a data rate of 9600 bps and a spreading code length of 31. The number of
samples per chip is the same at 4. This approach was taken to generalize the synchroniza-
tion results, since an active correlation approach is analyzed. The short spreading code
length of the hardware prototype allows a simple matched filter technique to be used. The
quantization results in Chapter 7 are based on these proposed system specifications.

While not specifically specified as such, the multistage research to date has assumed that
the receiver will have knowledge of the carrier phase. This information could either be
provided by a coherent phase reference (such as a pilot tone used in the forward link of the
IS-95 standard [33]) or by a phase estimation technique. Phase estimation is discussed in
more detail in Section 8.3.

8.2 The Multiuser API

The project team is beginning to design a multiuser air protocol interface (API) that can
be used by other researchers. It is hoped that this API will be general enough that it will
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contribute to the eventual common API that is being developed in conjunction with the
various research teams in the entire project effort2. The API is a work-in-progress and
the air interface is being modified somewhat from the original specifications to account for
limitations of the RF hardware and to aid in the development time. A rough draft of the
API has been fleshed out and tabulated in Table 8.1, although it must be stressed that this
is a work-in-progress and the result of some preliminary discussions only. The API is being
designed to be general enough to encompass all multiple user systems, not just multistage
implementations.

The modulation format has been selected as differential BPSK to allow for noncoherent
demodulation. BPSK cannot be noncoherently demodulated (although it can be nonco-
herently acquired). It is not practical to have the mobiles transmit pilot signals to provide
a coherent phase reference. Estimation techniques are also not a robust solution to the
problem as discussed in Section 8.3. Therefore, using a differential scheme will allow the
use of a noncoherent approach such as that discussed in [18].

Frequency division duplexing (FDD) will be used to accommodate the transmit (TX) and
receive (RX) channels. This will require separate RF bandwidths for the TX and RX
channels, although the exact bandwidth allocations have not been specified pending further
research. The other alternative would have been time division duplexing (TDD), which
would have utilized the same RF front end for TX and RX, and switched in time to
accommodate TX and RX. This would require more system overhead, and so the familiar
FDD approach has been taken.

The data and channel rates are the most notable components that have been downgraded
from the initial specifications. The nominal rates are 33.33 kbps and 500 kcps for the data
and channel (chipping) rates, respectively. The maximum values are 66.66 kbps and 1 Mcps.
The filters used in the current RF design were a direct motivation for reducing the bit rate.
This also has the added benefit of reducing the overall computational load on the DSP
processors, which will be particularly beneficial during the phase in which the prototype is
being developed using traditional DSP processors. The reconfigurable implementation will
allow for higher computational loads, and will also allow for computations to be computed
in parallel pipelines whenever possible.

The issues of forward error correction (FEC) and interleaving warrant further study and
so their exact parameters have not yet been specified. The use of error correction in the
multistage receiver is a particularly interesting problem [104]. Typically, error correction

2DARPA is attempting to develop a common Glomo API that can be used by all of the research teams
in the Glomo effort. Some research teams are contributing individual API’s that stress what features are
important to their particular system. It is hoped that eventually a common API can be developed that will
resolve the differences in the various systems, although it has not been determined at this stage exactly
how this will be accomplished.
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Table 8.1: Multiuser API (Draft)

Multiuser Adaptive Adaptive
Receiver Array Receiver

Modulation DBPSK DBPSK DBPSK
Multiplexing FDD FDD FDD
RF Band TBD TBD TBD
TX Power 10mw-1W 10mw-1W 10mw-1W
TX Power Step 1 dB 1 dB 1 dB
RX Sensitivity -100 to -90 dBm -100 to -90 dBm -100 to -90 dBm
Channel Rate 500 kcps (nom) 500 kcps (nom) 500 kcps (nom)

1 Mcps (max) 1 Mcps (max) 1 Mcps (max)
Info Rate 33.33 kbps (nom) 33.33 kbps (nom) 33.33 kbps (nom)

66.66 kbps (max) 66.66 kbps (max) 66.66 kbps (max)
Proc. Gain 15 (variable) 15 (variable) 15 (variable)
FEC TBD TBD TBD
Control RSSI Available RSSI Available RSSI Available

Power Control Power Control Power Control
Antenna Div. Switched Beam Array Selection
Multipath 2 Finger Rake 2D-Rake -
Modes of Active TX, RX Active TX, RX Active TX, RX
Operation Parallel TX Parallel TX Parallel TX

Sleep Sleep Sleep
Standby Standby Standby
Jamming Jamming Jamming
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is used to allow a system to operate with a lower Eb/No for an equivalent BER. In the
multistage receiver, however, if we do not perform error correction after each stage, then
operating at a lower Eb/No has simply increased the noise in the estimates and thus the
performance of the receiver will be degraded. For maximum performance, error correc-
tion must be performed after each stage. However, this increases both the computational
complexity and the time delay before a bit estimate can be made.

If error correction is only to be performed once, it then becomes imperative to determine
after which stage the decoding should be performed. Perhaps the most obvious location
is after the last stage, where error correction is used in making the actual bit estimate.
Another approach would be to use error correction after the first stage, in order to get as
strong an estimate as possible early on in the receiver and thus cancel as much interference
as quickly as possible. In this case error correction is not used before making the actual
bit estimate at the final stage.

A Rake receiver is chosen to combat multipath fading. Because of the relatively low band-
width of the spread signal, at 500 kcps multipath components must be 2 µs apart for the
receiver to be able to resolve them. This will only happen in some outdoor scenarios.
Only 2 fingers are proposed for the Rake to minimize the overall computational complexity
(Qualcomm’s cellular system uses 3 or 4 fingers [33]).

8.3 Estimating the Phase

Most of the research that has been performed on multistage receivers has assumed that the
receiver has knowledge of the coherent phase of each user. This presumes that either the
mobile unit is providing a coherent phase reference (such as a pilot tone) or that the receiver
is either able to track or estimate the phase of each user’s received signal at the receiver.
Tracking or estimating the phase is particularly difficult in the multistage receiver, because
we must know each user’s phase relative to all of the other users. Many techniques which
track the phase use a closed-loop approach such as some variant of the phase locked loop,
in which a local carrier replica is adjusted until an error is minimized when compared with
the received signal. This closed loop cannot provide relative phase information, however,
since each loop requires a separate oscillator, and each oscillator will have its own phase
ambiguity.
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8.3.1 The Source of Phase Error

We would like to use a single RF front end at the receiver and downconvert all of the user’s
signals with a single oscillator. If we do not compensate for the frequency offset in each
carrier frequency, then the actual phase of the signal will drift over time from the expected
value. When attempting to reconstruct the interference estimates in their I and Q form,
we will be using the wrong phase. In addition, the wrong phase will be used in the complex
correlation in the correlation receiver. Therefore, we need to be able to compensate for this
frequency offset at the receiver.

While the carrier frequency may be nominally at 2.0 GHz, each of the oscillators will have
some tolerance within which the actual frequency will fall. Manufacturers usually specify
this tolerance in parts per million. For example, for the case considered here, a tolerance
of +/- 2.5 parts per million is assumed, which is the tolerance allowed in oscillators for the
TDMA cellular standard. At 2.0 GHz, this allows a deviation of +/- 5 kHz. Therefore,
each of the oscillators in the mobile units will be slightly different based on this frequency
offset. For each modulator, instead of modulating by cos(ωct), we are instead modulating
by cos[(ωc + 2π∆k)t], where ∆k is the frequency offset in Hz for user k.

Doppler shift will also cause some phase ambiguity if the mobile is moving relative to the
base station. Doppler effects are likely to be much smaller in magnitude than the phase
offsets due to the oscillator variations, and so they are not considered directly here. The
amount of the Doppler shift will vary with time, however, whereas the oscillator drift will
tend to be constant as long as the operating temperature does not vary significantly.

The channel will also introduce a phase ambiguity. This is typically modeled as being a
uniform random variable over the range [0, 2π]. This will change over time as the channel
changes and the mobiles move relative to each other and the base station. This can be
particularly problematic if we use interleaving in an attempt to randomize burst errors (this
is important when using decoders for forward error correction such as Viterbi decoders). If
we have a block of bits at the transmitter that all have a similar phase due to the frequency
offset, then interleave them and transmit them over the channel, we have to deinterleave
before we can estimate the phase. However, if the phase of the channel has changed, it is
quite possible that the bits that have the most similar phase due to the frequency offset
will have very different phase offsets due to the channel. This suggests that if the dynamic
phase of the channel is corrupting the interleaved bits differently, the estimation routine
will best track either the frequency offset or the channel phase offset, but not both.
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8.3.2 Determining the Phase

The most straightforward way of obtaining the phase is to use a pilot signal like that of
the forward link of the IS-95 system [33]. The pilot signal will be affected by the channel
in the same fashion as the data signal, and thus provides a coherent phase reference. The
use of a pilot tone is simply not practical on the reverse link. This would require that each
mobile transmit two signals, one of which is not conveying any information but is simply
a drain on battery power and occupies bandwidth. Qualcomm’s cellular system does not
use pilot signals on the reverse link but instead performs non-coherent demodulation. In
addition, for the interference canceler, the phases will not be obtained relative to some
common reference and thus will not be useful for cancelation purposes.

If a coherent phase reference cannot be provided, the next alternative is to attempt to
estimate the received signal. Since the received signal can be broken down into its I and Q
components, where the I channel is weighted by cosφ and the Q by sinφ, we can make an
estimate of the phase by use of the inverse tangent. Buehrer shows how the phase can be
estimated in this fashion in [18], and in particular that averaging can be used to decrease
the variance of the noise in this estimate. It was assumed, however, that the receiver knew
the correct bit information, which allows the receiver to resolve the ambiguity of π in the
signal.

Another approach is the maximum likelihood estimator [105, 106]. This detector was
designed for a land mobile satellite system employing differential PSK (DPSK). The dif-
ferential nature of the modulation allows for the phase output to be limited between -π/2
and π/2. Since the original goal for the hardware prototype was to estimate the phase for
a coherent phase system, the actual phase is needed without any phase ambiguity and over
the full range from 0 to 2π. A block diagram of the SPW model is shown in Fig. 8.1, and
the file is stored as phase est.

An example of the operation of the maximum likelihood phase estimator is shown in Fig. 8.2,
where no noise or interference is added to the received signal. The top plot is the actual
phase, based on a frequency offset of 5 kHz and a random phase which is allowed to change
in the simulation every 20 bits and is uniform over [0, 2π]. The middle plot is the estimated
phase based on the technique of Divsalar and Simon [106] without any compensation for the
phase ambiguity. The output is constrained by the estimator between -90 and 90 degrees.
The bottom plot is the estimated phase with the phase ambiguity removed; it estimates
the phase almost perfectly.

The performance of the estimator begins to degrade when noise is added, particularly in
resolving the phase ambiguity. This implies that pilot symbols would have to be sent
more frequently to keep the estimator predicting the correct phase. The ambiguity of π
in the phase particularly degrades the bit error rate performance when the output of the
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Figure 8.1: SPW Model of Maximum Likelihood Phase Estimator
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Figure 8.2: Example of Phase Estimation (No Noise or Interference)

correlator is strong, as it is the confusion over the phase ambiguity causing the wrong
bit decision to be made and so a significant amount of interference will be added when
we attempt to cancel the interference. The receiver will continue adding this interference
until it encounters another phase change that puts the estimated phase back in the same
half-plane as the true phase. The addition of interference degrades the estimation process
even further. Therefore, it is recommended that differential modulation be used and that
the receiver be based on a noncoherent scheme, so that the phase need not be estimated.
Although a non-coherent scheme has poorer performance than a coherent scheme, the
error in the phase estimate will degrade the coherent performance to the point that the
noncoherent scheme may be preferable. In addition, this is a simpler implementation that
will allow the associated computing cycles to be used elsewhere in the receiver design.



165

8.4 Computational Complexity

One of the factors that determines what DSP chips must be chosen is the computational
complexity of the proposed multistage architecture. This discussion will concentrate on a
fairly high level description of the computations required, as the specific number of clock
cycles required to compute these instructions varies from platform to platform. The rated
performance figures of the chip are typically peak figures which cannot be maintained due to
communication requirements. The true operational performance can be as low as half of the
peak figures. Another important consideration is how parallelizable the algorithm is. This
is particularly important for the reconfigurable platform, where the ability to compute in
parallel is an important feature of the architecture. The GloMo specifications are designed
with the reconfigurable architecture in mind, since this will be the DSP architecture used
for the final prototype. The DSP testbed, which will be used in the intermediate stages,
should come as close as possible to being able to support the project specifications.

An advantage of the multistage receiver is that there are no complex algorithms that must
be computed: the main operations are addition, subtraction and multiplication. Many of
the multiplies are trivial, requiring at most a possible sign change. Most of this discussion
will assume baseband operation and determines the number of operations required to make
a bit decision, and is therefore a conservative estimation of the number of operations per
bit.

The first major operation is the correlation of the received signal with the locally generated
PN code replica. This will require NNs multiplications, although the PN code chip values
are +1 or -1 and therefore the multiplications are trivial. The accumulation process will
require NNs − 1 additions. This must be done for the I and the Q channels, so the overall
requirement is 2NNs multiplications and 2NNs − 1 additions per correlator. Each of the I
and Q correlations can be done in parallel, and if the NNs values of the received sequence
are stored in memory, the multiplications may be done in parallel as well, and many of
the additions. The decision statistic is then compared to the threshold and passed to the
estimation routine. Since there are LK correlation receivers, where L is the number of
fingers in the Rake receiver, the total number of operations for this stage are 2LKNNs

multiplications (all +1 or -1 multiplies) and 2LKNNs − LK additions.

In the estimation stage, the first operation is the multiplication of the PN replica with the
data bit estimate. Since the estimate will be +1 or -1, this amounts to, at most, flipping
the bit of every sample in the PN code. This yields a possibility of NNs multiplies, all
trivial. The next stage is the multiplication of these chip values by the weighting factor,
which is the decision statistic divided by NNs. This is a non-trivial multiplication and
requires NNs multiplies to reconstruct the bit. To reconstruct the I and Q channels, this
product is then multiplied by the cosine and sine of the phase estimate, for a total of 2NNs
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non-trivial multiplies. The I and Q estimates can obviously be computed in parallel. The
cosine and sine of the phase will also have to be calculated, although this will only need to
be recalculated as the phase changes. The received estimate has now been reconstructed
using 4NNs multiplies, NNs of which are trivial. Since this must be done for K users and
L Rake fingers, this requires a total of 4LKNNs multiplies to construct all users’ estimates.

The next stage is the interference cancellation process, in which all users’ estimates are
subtracted from a delayed version of the received signal. Many of these cancellations
can be done in parallel. The first two estimates will require NNs additions, with each
additional estimate adding an additional NNs additions, for a total of (LK − 1)NNs

additions. This must be subtracted from the received signal, so obtaining the residual
signal will require an additional NNs subtractions, for a total of (LK − 1)NNs additions
and NNs subtractions. At the input to the next receiver stage, each user’s estimate is
added back to the residual signal, which will require KLNNs additions to do this for all K
users and L Rake fingers. Therefore the total estimation process requires (2LK − 1)NNs

additions and NNs subtractions. Since this must be done for the I and Q channels, the
operations double to (4LK − 2)NNs additions and 2NNs subtractions.

The next correlation process will use 2LKNNs multiplies and 2LKNNs − LK additions,
as mentioned above. Therefore, the total stage requires the sum of the operations for the
estimation, cancellation, and the correlation process, or (6LK − 2)NNs − LK additions,
2NNs subtractions, and 6LKNNs multiplies. Assuming that all of these operations can
be accomplished in an identical number of clock cycles, typically one, this is a total of
12LKNNs − LK operations. There will be some final addition at the last stage of the
receiver, where the L decision statistics in the Rake receiver are weighted and summed,
which will require LK multiplications and LK − 1 additions. The LK terms are much
smaller than the LKNNs terms, however, and can be neglected. Therefore, each stage
that performs cancellation will require on the order of 12LKNNs operations per bit period.
The last stage of the receiver only performs a correlation and thus only requires on the
order of 4LKNNs operations per bit. Therefore, for an s stage receiver, the total number
of operations required per bit is on the order of 12LK(s− 1)NNs + 4LKNNs.

Even though some of these operations are trivial multiplies, this is still a large number
of operations per second. To illustrate this, the numbers from the proposed GloMo air
interface can be used. The total number of users K is not part of the air interface, but
K = 10 can be used for purposes of illustration. If we assume there are L = 2 fingers
in the Rake receiver (the cellular CDMA system uses 3 on the forward channel and 2 on
the reverse channel) and 2 stages in the receiver, then using N = 15 and Ns = 4, the
total number of operations per bit is 19,200 operations per bit. For a data rate of 128
kbps, each bit takes 7.8125 µs, or a total of 2.4576 ∗ 109 operations per second, which is an
extremely high number. As mentioned previously, this number is not quite as extreme as
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it might seem, since there is a good deal of parallel operations and some of the operations
are trivial. In addition, this decodes all users in the system, so we effectively require
0.24576 ∗ 109 operations per second per user. This suggests that a DSP testbed can be
constructed using off-the-shelf hardware for a small number of active transmitters, perhaps
with some reduction in the sampling rate.

8.4.1 Choosing the DSP Chips

These high computational requirements meant that the DSP chip chosen as the basis for
the DSP testbed would have to be state of the art chips. Another PhD student supporting
the multistage portion of this project, Mike Buehrer, studied the available options in the
industry today and settled on the Analog Devices 2106x (SHARC) chip [18]. Analog
Devices and Bittware offer a plug-in board for a single chip that can be integrated into an
IBM compatible personal computer (PC). In addition, Bittware offers expansion modules
that allow a multiple processor configuration using either board. LSI is creating boards
using the SHARC chip, but they are not currently available. The SHARC chips can be
programmed using either assembly or C language. Hyperception, Inc. has a program that
programs the chip using a block diagram editor approach. The multiprocessing capability
will allow higher throughput if additional modules are purchased.

8.5 Developing the Hardware Prototype

The hardware development of the multistage receiver is currently being developed by other
members of the multistage receiver team. At this stage in the project, the receiver is being
built using the traditional Analog Devices DSP chips, with the eventual goal being to port
the design to the reconfigurable computing platform when it is available. The RF portion
is being developed in conjunction with the entire project team because of the similarities
in requirements and design. At this point, it is not envisioned that the adaptive antenna
array will be used in conjunction with the multistage receiver. Due to the low spreading
code length, it is not expected that the system will support enough users to make the use
of both technologies at the base station a viable concept.

8.6 Conclusion

A multiuser API is being developed that is a modification of the original proposed air
interface for the entire hardware prototype. The API is being developed to apply to all
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multiuser systems, not just the system being developed for this project. The hardware
prototype is currently in development using traditional DSP processors and will eventually
be ported to the reconfigurable computing platform.

The hardware version of the multiuser receiver will not have knowledge of the coherent
phase of each user, and it is impractical to obtain a coherent reference from the mobile.
Therefore, a maximum likelihood phase estimator has been investigated that could provide
relative phase estimates for each user. However, it is seen that the estimator performance
degrades in the presence of heavy interference, and frequent pilot symbols will be required
to resolve the phase ambiguity which can arise. It is recommended that a noncoherent
scheme such as that discussed in [18] be pursued instead for use in the hardware prototype.



Chapter 9

Conclusions

9.1 Contributions

In this report, we have described the research supporting the development of a baseband
multistage receiver in DSP hardware. The following contributions have been made:

• survey of multiuser receiver designs, spread spectrum synchronization techniques, and
quantization analysis

• derivation of near-far resistance of multistage receiver

• analysis and discussion of the mean of interference estimates and the use of a backoff
factor to improve system performance when the estimates are noisy. In situations
where the predominant source of errors is caused by heavy system loading, the non-
zero mean of the interference estimates can cause a signficant number of errors. The
use of a backoff factor can be used any time the interference estimates are noisy, as
multiplying the estimates by this factor reduces both the mean and standard deviation
of the estimates by the backoff factor is well. This allows for conservative interference
cancellation when the accuracy of the estimate is questionable.

• analysis and simulation of bit error rate in presence of both cancelled and uncancelled
interference components. Unsynchronized users cannot be canceled, and thus the
multistage receiver provides no near-far resistance against the interference they cause.
If the power in these users is significant relative to the power in the residual signal
after cancellation, then even a small number of unsynchronized users can dominate
and greatly increase the BER of synchronized users. For a spreading gain of N = 128
and a four stage receiver, even one unsynchronized user that had a 6 dB increase in
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power over the synchronized users caused over a 10% drop in capacity at a BER of
10−3.

• analysis and simulation of mean acquisition time for single dwell time synchronization.
The less noisy residual received signal can be acquired more quickly, although there
is an inherent time delay associated with each stage. Furthermore, the optimum
threshold setting may decrease as the number of stages increases, although this is
dependent upon the penalty time.

• development of SPW simulation model for multistage receiver. The SPW block dia-
gram approach produces a basic multistage receiver design similar to that of a physical
system. Here, the model was adapted for synchronization, quantization, and phase
estimation.

• analysis and simulation of quantization effects. Due to the limited dynamic range of
an input signal in a tightly power controlled environment, a fixed-point implementa-
tion can be used with a relatively low number of bits and still not show signficant
performance degradation from the ideal case. If the allowable level of overflow is
increased, even smaller number of bits may be used. The multistage receiver is well-
suited to a fixed-point implementation. For the parameters studied here, there was
no noticeable dropoff in performance with 8 bits, and little with 6 bits if overflow is
allowed.

• simulation of frequency offsets and a maximum likelihood phase estimator to estimate
the phase of each user. Each user’s transmitter will have a unique phase offset. If
a coherent phase reference cannot be provided (as is usually the case on the reverse
link), an estimate of the phase can be generated. For this case, a maximum likelihood
estimator was simulated, although performance was poor due to the high inteference
levels. A phase ambiguity could cause the receiver to choose the opposite of the
correct bit.

9.2 Future Work

This thesis has provided several contributions towards the multistage hardware effort at
Virginia Tech. There are still issues that remain to be solved however. Some examples
include:

• A more detailed study of error correction in the multistage receiver to build on the
work of [104]. In particular, the effect of performing error correction at differing
stages needs to be investigated.
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• An extension of the semi-analytic model and analytic model presented in this thesis
to allow directly for a non-zero mean in the interference estimates. The model as it
has been developed for zero-mean random variables only. This would allow the mean
of the interference estimates to be modeled more precisely, with parameters based on
simulation results to overcome the difficulty in obtaining a value analytically.

• An investigation into practical methods of determing an appropriate backoff factor
at a given time and channel condition. Current research has focused on choosing a
backoff factor in the AWGN channel based on system loading, but practical systems
will need to determine this factor in a variety of channels and loading conditions.

• A thorough performance evaluation of a non-coherent multistage receiver. Most mul-
tistage receiver research to date has focused on the coherent implementation; reverse
links will often need to be non-coherent, as the mobile cannot be expected to transmit
pilot tones, and because phase estimation can be problematic in mobile communica-
tions systems.

• An optimization of the multistage DSP implementation to take advantage of the
highly parallel nature of the reconfigurable computing platform.

• Consideration of system-to-chip design, to maximize efficiency of a hardware imple-
mentation.

• Consideration of network level issues, including further development and refinement
of the API and network performance under loading conditions.
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Derivation of Variance of Effective
Signal Power

In this section, we develop a definition for the variance of the effective interference power,
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In [21], it is shown that if we take the expectation conditioned on Pk, we can solve this to
be
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The first term is constant, and therefore we only need to derive expressions for the second
and third terms. From [21], these terms can be derived to be
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It is shown in [21] that
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The second term of (A.5) can be evaluated by
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Using (5.26), this can be shown to reduce to
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Therefore, we have now derived all the terms necessary to explicitly solve (A.3). Using
(A.4), (A.11), and (A.13), we find
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Next, we note that by modifying (5.14) for stages 2 and beyond as
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and combining it with (5.32), we get that for 1 ≤ k ≤ K1,
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Finally, by substituting (A.14) and (A.16) into (A.1), the expression for the variance of the
effective interference power at stage s+ 1 caused by user k, 1 ≤ k ≤ K1, is given by
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Appendix B

Effective Signal Power Variance for
Quantization

In this section, we develop a definition for the variance of the effective interference power,
(σ
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)2, when fixed-point quantization is used as discussed in Chapter 7. The variance by
definition is given by
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We can take the expectation on Pk to solve the parenthetical terms:
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We therefore need to derive the first through fourth moments of both Z
(s)
k and εs.

B.0.1 Moments of Z
(s)
k

From the definition of Z
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k given in Chapter 8, we can expand these terms as follows:
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B.0.2 Moments of εs

We now need to develop the first through fourth moments of the uniform quantizer noise
source εs. We know that εs has a uniform distribution between [−∆/2,∆/2]. We can find
the moments from the characteristic function Ψεs(ω) which is given by [103]

Ψεs(ω) = E[exp(jωεs)] (B.11)

=
∫ ∞

−∞
fεs(εs)exp(jωεs)dεs. (B.12)

where j =
√−1. If we solve this in general for a continuous uniform random variable x

that is uniform over the interval [a, b], then the characteristic function is given by

Ψεs(ω) =
ejωb − ejωa

jω(b− a)
. (B.13)

We can then find the kth moment by taking the kth derivative of ΨX(ω) and evaluating
the result at ω = 0, or

E
[
Xk
]
=

1

jk

[
dkΨX(ω)

dωk

]
at ω = 0. (B.14)

Since we need the first four moments of εs, we need to find the first four derivatives of the
uniform characteristic function, which can be shown to be
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Although we now have the four expressions we need, when we set ω = 0 as specified
in (B.14), all four terms reduce to the indeterminate form of 0/0. Thus we must apply
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L’Hôpital’s rule to find the derivatives when evaluated at this point. L’Hôpital’s rule states
that [107]

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)
g′(x)

, (B.19)

provided that both f(x) and g(x) are differentiable over an open interval (x1, x2) that
contains point c (although they need not be differentiable at c itself). By applying this
rule once to each of the four derivatives, we find that these expressions, when evaluated at
ω = 0 and multiplied by 1/jk as specified in (B.14), are given by
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Finally, we can apply these expressions to our specific case where εs is uniformly distributed
over [∆/2,∆/2]. These moments then reduce to

E [X] = 0 (B.24)
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We now have the terms we need to proceed to evaluate the expressions in (B.3) - (B.6).

B.0.3 Evaluating the Variance

By direct substitution of these moments into B.2, it can be shown that if we take the
expectation conditioned on Pk, we can solve this to be
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The first six terms are constant, and therefore we only need to derive expressions for the
final two terms. From [21], these terms can be derived to be
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and

EPk


E




 K∑
l=1,l 6=k

I
(s)
l,k



4

| Pk



 = E


 K∑
l=1,l 6=k

(
I
(s)
l,k

)4

+3
K∑

l=1,l 6=k

K∑
m=1,m6=l 6=k

(
I
(s)
l,k

)2 (
I
(s)
m,k

)2 . (B.30)

The first term of (B.30) can be evaluated by
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We can solve for E[(ν
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l )2] from (B.1) as
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and by definition
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Therefore, (B.31) reduces to
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It is shown in [21] that
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Therefore, we can finally reduce (B.34) to
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The second term of (B.30) can be evaluated using (5.26) and can be shown to reduce to
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Therefore, we have now derived all the terms necessary to explicitly solve (B.28). Using
(B.29), (B.36), and (B.37), we find
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Next, we note that by modifying (5.14) for stages 2 and beyond as
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and combining it with (5.32), we get that for 1 ≤ k ≤ K,
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Finally, by substituting (B.38) and (B.40) into (B.1), the expression for the variance of the
effective interference power at stage s+ 1 caused by user k, 1 ≤ k ≤ K, is given by
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Appendix D

SPW Models

The SPW design and system files are stored under the library name camlib. All signal files
are stored under the library name camsigs.

D.1 Multiuser Receiver

The basic multiuser receiver system in an AWGN channel is stored in gauss71, gauss72,
gauss73 for 7 users and 1, 2, and 3 stage receivers, respectively. In gauss103, all 3 stages
are modeled concurrently and 10 users are modeled. These files assume a spreading code
length of 31 and a data rate of 9600 bps. The system file glomo is based on the original
air interface and has a spreading code length of 15 and a data rate of 128 kbps. These can
be changed by simply changing the appropriate parameter. There are 10 users and up to
3 stages in the receiver.

The basic transmitter block is ss tx iq. This produces the random transmitter phase, the
PN code (a random sequence of chips), the information bits, and the complex (I and
Q) spread signal. The block cplx dlay unif adds the complex uniform time delay to the
transmitted signal.

The block corr rcvr is the correlation receiver used in the first stage of the receiver. The
block estimator is used in stages 2 and above to estimate the received signal from each
user. The block corr rx 2a is the correlation receiver used in stages 2 and above (it requires
additional delays not needed in the first stage).
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D.2 Synchronization

The system files used to determine the BER of synchronized users in the presence of an
unsynched interferer are synch1a1 and synch1a2 for a 1 and 2 stage receiver, respectively.
There are 6 synched users and 1 unsynched interferer.

For analyzing acquisition time, the files synch2a and synch2a2 are used for a 1 and 2 stage
receiver, respectively. The files synchbox and synchbox2 are used to model the single dwell
time acquisition technique for the 1 and 2 stage receiver, respectively. They replace the
correlation receiver in the desired user’s stage.

D.3 Quantization

The effects of uniform quantization are modeled in glomo q. The system parameters are
based upon the original air interface for the hardware prototype. The systems int q calc and
int q calc2 are used to compute the parameters of the correlated quantization noise sources
of the estimates in the analytic model. The parameters for the correlated quantization
noise source from the received signal is computed in glomo g itself.

The quantized estimates are calculated in estimator q.

D.4 Frequency Offsets

The effects of frequency offset and the maximum likelihood phase estimator are modeled
in glomo foff2. The transmitters are modeled in ss tx foff. This block takes as an input
the desired frequency offset for that user. It can be constant or it can vary with time. The
estimate of the phase is calculated via phase est.

The correlation receiver used in the first stage is corr rx foff. The estimator used in stage
2 is estimator foff. No attempt is made to compensate for the frequency offsets in the
receivers in stages 2 and 3 due to the poor performance of the phase estimator.
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