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DEVELOPMENT AND APPLICATIONS OF FINITE ELEMENTS

IN TIME DOMAIN

by

Sungho Park

Rakesh K. Kapania, Chairman

Aerospace Engineering

(ABSTRACT)

A bilinear formulation is used for developing the time finite element method (TFM) to

obtain transient responses of both linear, nonlinear, damped and undamped systems. Also

the formulation, used in the h-, p- and hp-versions, is extended and found to be readily

amenable to multi-degree-of-freedom systems. The resulting linear and nonlinear algebraic

equations for the transient response are differentiated to obtain the sensitivity of the re-

sponse with respect to various design parameters. The present developments were tested

on a series of linear and nonlinear examples and were found to yield, when compared with

other methods, excellent results for both the transient response and its sensitivity to sys-

tem parameters. Mostly, the results were obtained using the Legendre polynomials as basis

functions, though, in some cases other orthogonal polynomials namely, Hermite, Chebyshev,

and integrated Legendre polynomials were also employed (but to no great advantage). A

key advantage of TFM, and the one often overlooked in its past applications, is the ease

in which the sensitivity of the transient response with respect to various design parameters

can be obtained.

Since a considerable effort is spent in determining the sensitivity of the response with

respect to system parameters in many algorithms for parametric identification, an identi-

fication procedure based on the TFM is developed and tested for a number of nonlinear

single- and two-degree-of-freedom system problems. An advantage of the TFM is the easy

calculation of the sensitivity of the transient response with respect to various design param-

eters, a key requirement for gradient-based parameter identification schemes. The method

is simple, since one obtains the sensitivity of the response to system parameters by differ-

entiating the algebraic equations, not original differential equations. These sensitivities are

used in Levenberg-Marquardt iterative direct method to identify parameters for nonlinear



single- and two-degree-of-freedom systems. The measured response was simulated by inte-

grating the example nonlinear systems using the given values of the system parameters. To

study the influence of the measurement noise on parameter identification, random noise is

added to the simulated response. The accuracy and the efficiency of the present method is

compared to a previously available approach that employs a multistep method to integrate

nonlinear differential equations. It is seen, for the same accuracy, the present approach

requires fewer data points.

Finally, the TFM for optimal control problems based on Hamiltonian weak formulation

is proposed by adopting the p- and hp-versions as a finite element discretization process.

The p-version can be used to improve the accuracy of the solution by adding more un-

knowns to each element without refining the mesh. The usage of hierarchical type of shape

functions can lead to a significant saving in computational effort for a given accuracy. A

set of Legendre polynomials are chosen as higher order shape functions and applied to two

simple minimization problems for optimal control. The proposed formulation provides very

accurate results for these problems.
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1. INTRODUCTION

1.1 Background

When confronted with a dynamic problem, usually the structure is discretized by using

the finite element method or a modal superposition approach, for instance, hence reducing

the problem to a set of ordinary differential equations in time that can be solved with the

help of many time stepping approaches [1, 2, 3, 4, 5, 6, 7, 8]. This kind of procedure is

widely used in practice and fairly well understood.

The other possible approach dealing with that problem is the use of the time finite

element method (TFM) based on Hamilton’s Law of Varying Action (as will be detailed

later). There are several potential advantages to the time finite element formulation. First,

the TFM can be applied to both energy equation, will be seen in Chapter 5, and directly

to the equations of motion. The second advantage is the straightforward derivation of

higher order approximations in time. Usually, the TFM approximation yields an accuracy

superior to that of more conventional time stepping schemes at same computational cost.

Furthermore, the formulation is easy and convenient for computer implementation.

A formulation based on Ritz method in conjunction with an extension of Hamilton’s Law

of Varying Action will be applied to obtain numerical solutions of any time dependent prob-

lems for mechanical systems. Also, the study for the manner in which its performance might

be affected by the choice of basis functions and length of time interval will be attempted.

1.2 Literature Review

In recent years, the TFM has found increasing popularity, especially with researchers

involved with studying transient response and dynamic stability of periodic systems, such as

the aeroelastic stability of helicopter rotor blades (Borri et al. [9]; Peters and Izadpanah [10];

Achar and Gaonkar [11]) and the multi-rigid body dynamics (Borri et al. [12, 13]; Mello et al.

[14]; Atluri and Cazzani [15]). Based on these and many other efforts (to name a few: Pian

and O’Brien [16]; Gurtin [17, 18]; Sandhu and Pister [19]; Tonti [20]; Atluri [21]; Herrera and

Bielak [22]; Bailey [23, 24, 25, 26]; Reddy [27, 28]; Levinson [29]; Hitzl and Levinson [30];

Hitzl [31]; Tong and Pian [32]; Reissner [33]) dedicated to develop appropriate variational

framework for generating approximate solutions in space and time domain, it appears that

the TFM has emerged as a viable approach for studying the transient response of systems

(i.e. for solving initial value problems) also. A brief review of the key development leading
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to the current state of the finite element method as applied to initial value problems is given

below.

The TFM was first introduced by Argyris and Scharpf [34] who employed Hermite cubic

interpolation polynomials (akin to the beam finite element) to express the response over

each time finite element. The response and the velocity at any given instant were thus

obtained in terms of the displacement and the velocity at two “pivotal points”, namely the

start and the end of the time element. The method, based on the Hamilton’s principle, was

applied to a single-degree-of-freedom system but no numerical examples were considered. A

generalization of the formulation allowing for an arbitrary number (p) of pivotal points and

each pivotal point having an arbitrary number of time derivatives (a) of the response, was

also given (but, once again, without any numerical results). Fried [35], using an ‘Extended

Hamilton’s Principle’, applied this approach to study the transient response of a damped

system (nonconservative systems) and transient heat conduction in a slab whose surface

was subjected to a harmonically varying temperature. Fried used a step by step approach

in which the final conditions (for displacement and velocity) for one time element can be

considered as initial conditions for the next time finite element, as in any time-marching

technique. This was done to avoid storing and working with large matrices. Zienkiewicz

and Parekh [36], also working with problems in heat conduction, used a time finite element

approach that was based on Galerkin procedure of obtaining weighted residual equations

over a time interval. On integration, the resulting equation was given in terms of the initial

and final states.

An important development in the evolution of time finite element method was a series

of papers by Bailey [23, 24, 25, 26] in which the author pointed out the need for applying

Hamilton’s law of varying action, briefly, Hamilton’s law, not Hamilton’s principle, in solving

problems in elastodynamics. Using Hamilton’s law, Bailey used the classical Ritz method,

with simple polynomials as the basis functions, to study elastodynamic response of beams.

Baruch and Riff [37], Riff and Baruch [38] and Borri et al. [9] developed time finite element

using Hamilton’s law. Baruch and Riff [37] noted that one can use six different formulations

(each having different combinations of initial and final constraints) of the Hamilton’s law for

each degree-of-freedom. Borri et al. [12, 13], Mello et al. [14] and Atluri and Cazzani [15]

applied the primal and mixed form of Hamilton’s law to develop piecewise Lagrange-type

time finite elements to solve nonlinear equations of multi-rigid body dynamics.

Wu [39] recognizing the limitations of constrained variational principles like the extended

Hamilton’s principle to nonconservative forces, presented an unconstrained variational prin-

ciple in which the constraints were applied using the well known technique of Lagrange

multipliers. Simkins [40] presented a procedure, consisting of introducing all boundary and
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essential conditions into the ‘variational statement’ as natural boundary conditions, mak-

ing the variational statement suitable for obtaining approximate solutions for initial and

boundary value problems. It was pointed out that the proposed procedure when applied to

the Euler equations leads to a modified Hamilton’s principle as was given by Tiersten [41].

In a subsequent paper, Simkins [42] employed this variational statement to develop finite

element in time.

Commenting on the paper by Simkins [40], Smith [43] noted that what the former

calls a variational statement for solving initial value problems is really an application of

the weighted residual method to those problems. Building on this observation, Peters and

Izadpanah [10] offered a bilinear formulation of elastodynamics as an alternative source

to develop approximate methods to solve these problems. As was earlier done by Wu

[39], Peters and Izadpanah employed Lagrange multiplier method to account for various

end constraints. More specific choice and use of Lagrange multiplier to satisfy the various

constraint conditions can be seen in the works by Atluri [21], Borri et al. [12, 13], Mello

et al. [14] and Atluri and Cazzani [15]. A distinct advantage of this augmented, bilinear

formulation is the natural convergence of the end conditions. To achieve this, the natural

convergence of the end constraints is very important as the end conditions of one segment

are used as initial conditions for the next segment. Using the proposed augmented bilinear

formulation and the h-, p-, and the hp-versions, Peters and Izadpanah solved a number of

examples related to dynamic response of linear systems.

The p-version finite element method [44], initiated by Szabó and Babuška in 1970, is

similar to the Ritz method, but there is one important difference. In the p-version of the

finite element method, the domain of interest is divided into convex subdomain and the

polynomial approximates are piecewise smooth only over individual convex subdomains. In

the Ritz method, on the other hand, the solution over the entire domain is approximated

by smooth functions. This difference accounts for the greater versatility and higher rate

of convergence of the p-version of the finite element method over both the Ritz method

and the h-version of the finite element method. It has been implemented to study various

aspects of stress analysis and has shown very good results, particularly in connection with

problems which have singularities.

In addition to the transient response analysis of the dynamic systems, the study of the

transient response sensitivity of the dynamic systems are important for the optimum design

of structures. Both parametric identification and evaluation of the effect of design changes

on the dynamic response of the system are based on the knowledge of sensitivity. Addition-

ally it is easier to determine the character of the motion of the dynamic system from the

critical stability viewpoint by observing the sensitivity coefficients. A number of approaches
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are currently being used for obtaining sensitivity of the transient response, namely: direct

differentiation of the governing differential equation, adjoint variable method, finite differ-

ence method, Green’s function method, and Fourier amplitude sensitivity method. A review

of the existing methods to obtain sensitivity of the transient response is given by Adelman

and Haftka [45] and Haftka and Adelman [46]. Tomović [47] mentioned the basic concept

of sensitivity and the importance of the sensitivity analysis of modern automatic control

system. Greene and Haftka [48] developed a semi-analytical method which is the combi-

nation of analytical differentiation of the transient equation with finite difference matirx

derivatives. The method directly differentiated the equation of motion, but the derivatives

of coefficients were calculated by finite difference approximations. Hsieh and Arora [49]

proposed an expanded global matrix formulation for the design sensitivity analysis of dy-

namic response constraints. Recently Zhang et al. [50] proposed an alternative formulation

which can eliminate the computation of eigenvector derivatives for the design sensitivity

analysis based on the reduced system. Wang and Lu [51] have presented a procedure that

uses discrete Fourier transform to obtain sensitivity of the transient response of the linear

systems.

Among the current methods the direct differentiation method is straight forward and

is quite efficient when the number of design variables is small. The proposed time finite

element method based approach can be considered to be similar to the direct differentiation

approach. The key difference being that in the proposed approach differentiation of the

algebraic equations and not that of the original differential equations is performed. The

present approach is thus simpler than the direct differentiation approach.

At present, there is a considerable interest in the control of transient response of struc-

tures under external disturbances. The design of the control system is made difficult by the

fact that simple analytical models that are often used in the design phase are not adequate

for the controller design. Identification techniques are used to determine the system param-

eters to accurately determine the system model that can be used for controller design. While

a number of studies are available for the identification of linear systems, only a few such

studies are available for nonlinear systems. These include methods based on the method

of multiple scales, iterative and noniterative direct methods, and state space mappings. A

review of the nonlinear system identification used in the structural, mechanical and control

engineering is given by Natke et al. [52]. Their focus was on the detection of nonlinearities,

the formation of mathematical models and techniques for parameter identification. Some

of the identification techniques for nonlinear systems currently being used are linear system

realization theory [53, 54, 55, 56], statistical linearization and the use of extended Kalman

filter.
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Lee and Chang [57] introduced an orthogonal-function approximation technique (defined

over the complete domain), which was developed for solving nonlinear systems, to the sys-

tem identification. They used Jacobi, Ultraspherical, Chebyshev and Legendre polynomials

for the approximations but no results were presented for identification of nonlinear systems.

Batill and Bacarro [58] identified the parameters in a highly nonlinear differential equation

governing the motion of an aircraft landing gear. The identification process involved re-

lating the variation of the equations in the state variables to the corresponding equations

dealing with the initial conditions. The variation of the error function is then made to

vanish via changes in the parameters, which are treated as state variables, along with the

displacements and velocity of the system. Mook [59] developed a technique for processing

noisy state-observable, discrete time domain measurements of a nonlinear dynamic system

to estimate both the state trajectory and model error through satisfaction of a covariance

constraint. Using a number of examples, he showed that the method is capable of iden-

tifying unknown model parameters based on a least-squares formulation. Normann and

Kapania [60] presented a method that was based on single and multiple step methods of in-

tegrating nonlinear differential equations. The system parameters for a number of examples

were determined using the iterative direct method. Most recently Hamel and Jategaonkar

[61] presented a review of the the successful applications of various system identification

techniques to identify parametric models for flight vehicles. The present aircraft parame-

ter estimation is mainly categorized into three parts, namely: instrumentation and filters,

flight test techniques and analysis of flight data. The methods of data analysis used for the

aircraft parameter estimation, include: the equation error method, output error method,

filter error method and neural network-based methods. They demonstrated the successful

application of system identification methodology to a broad range of flight vehicle modeling

problems using the selected examples.

Most of the system identification methods are based on minimization of the square of

the error between the measured response and that of the identified model. This is the

classical least squared approach in which the error is minimized by treating the problem as

an unconstrained optimization problem. Solving for unconstrained optimization problems

may require sensitivity of the response with respect to various system parameters. These

sensitivities are often obtained using either finite difference or by solving a large set of

differential equations.

1.3 Objective and Scope of the Dissertation

In search for an alternative formulation for finding the response of transient problem,

Kapania and Park [62], in a recent study, extended the bilinear formulation suggested
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by Peters and Izadpanah for linear undamped systems to linear and nonlinear, damped

and undamped systems. The bilinear formulation in the time domain benefits from the

large foundation of mathematical theorems [63] and knowledge already developed for the

p-version finite element [64] in structural problems. An advantage of the present method

over the finite difference approach, the most common way to find the sensitivity, is that

one does not need to perform a convergence study to select an appropriate step size for

obtaining the sensitivity. Also, note that the method yields an excellent approximation

by using a relatively large time step size. The method can be computationally excellent

when accurate results are needed. Moreover, the same technique can be used for solving

multi-degree-of-freedom problems, and mixed initial value and boundary value problems.

One of the objectives of this study is to evaluate the performance of the augmented bi-

linear formulation of elastodynamics in determining the transient response of damped (non-

conservative) linear and nonlinear systems. Whenever possible, the numerical results are

compared with existing results or those obtained using Runge-Kutta fourth-order method.

For all the cases studied, the results are obtained using Legendre polynomials as basis

functions [65, 66, 67]. The results were also obtained using other polynomials, namely:

Chebyshev, Hermite and integrated Legendre polynomials as basis functions, but without

any significant improvement in either accuracy or efficiency. The results obtained by using

these polynomials are thus not being presented.

In addition to the transient response calculations, the TFM approach is natural for

obtaining the sensitivity of the transient response of linear and nonlinear and damped

and undamped systems, as the sensitivity can be easily obtained by performing direct

differentiation of the nonlinear algebraic equations resulting from the application of the

proposed finite element method.

The second objective of this study is to evaluate the performance of the TFM in ob-

taining the sensitivity of the transient response of various linear and nonlinear and damped

and undamped systems. The results obtained from the present approach are compared

with those obtained with the central finite difference approach, using step sizes obtained

from a convergence study. No such convergence study is needed when the present ap-

proach, employing direct differentiation of the algebraic equations resulting from the TFM,

is employed.

The third objective of this study is to exploit the TFM for performing the parameter

identification. The TFM along with the iterative direct method [68] are applied to a number

of nonlinear single and two-degree-of-freedom systems. At first, in parameter identification,

an objective function is formulated as a quadratic functional between the measured response

of the given system and the analytic response of the mathematical model. Then the mini-
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mization of the objective function is performed to determine the system parameters. Here

we adopt the Levenberg [71] and Marquardt [72] method which involves only first partial

derivatives of the response with respect to various system parameters for the minimization

process. The noise is added to a simulated response for studying the effects of measurement

errors on the identification procedures. The numerical results are compared with those

available from a previous study by Normann and Kapania [60] and Kapania and Normann

[69].

Finally, the TFM based on a mixed form of Hamilton’s weak formulation, developed by

Hodges and Bless [77, 78], is applied to a boundary value problem [80, 82, 83]. In the finite

element formulation, unlike Hodges and Bless who used linear type shape functions, higher

order shape functions in p-version are applied and tested for solving two simple optimal

control problems.

In summary, the possible use of the TFM in many transient problems is tested. We

found that there must be a high potential benefit when the method is used for obtaining

transient response of linear and nonlinear systems.
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2. TRANSIENT RESPONSE AND ITS SENSITIVITY

USING FINITE ELEMENTS IN TIME

2.1 Overview

In its application to the solution of engineering problems, the finite element discretization

has been implemented almost to the spatial problems. For dynamic or time dependent

problems whose solutions as functions of time are of interest, a step by step procedure of

finite difference is usually employed.

In recent years, the time finite element method, in which the time is discretized in a

number of finite elements and the response history over each element is expressed in terms

of basis functions in the time co-ordinate, has had great success and popularity, especially

with researchers studying transient response and dynamic stability of periodic systems.

In seeking for an alternative variational formulation which treats initial value prob-

lems, the bilinear formulation by using the Lagrange multipliers as suggested by Peters and

Izadpanah [10] is extended to obtain the transient response and the response sensitivity

of non-conservative damped linear and nonlinear systems. The numerical results are com-

pared with existing results or those obtained using Runge-Kutta and Newmark β = 1/4

methods. The results were obtained using one of Chebyshev, Hermite, integrated Legendre

and Legendre polynomials as basis functions, but without any significant improvement in

either accuracy or efficiency.

Also the time finite element formulations are given here for obtaining the sensitivity of

the transient response of various linear, nonlinear and damped, undamped systems. The

numerical results obtained from the proposed approach are compared with those obtained

with the central finite difference approximation by using step sizes obtained from a conver-

gence study. The technique which makes this extension possible is described below.

2.2 Mathematical Formulation for Single-Degree-of-Freedom Systems

2.2.1 Bilinear Form for Damped Linear Systems

Consider a simple one-degree-of-freedom spring-mass-damper system given as

Mü(t) + Cu̇(t) +Ku(t) = F (t) T0 < t ≤ Tf

u(0) = u0 u̇(0) = u1
(2.1)
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Here M,C, and K are respectively the mass, damping and stiffness coefficients, and F (t)

is the externally applied dynamic load.

Multiplying Eq. (2.1) with a test function (or weight function) v(t) and integrating with

respect to time gives ∫ Tf

T0
v · (Mü+Cu̇+Ku− F ) dt = 0 (2.2)

Integrating the first term in Eq. (2.2) by parts, we get

[
Mvu̇

]Tf
T0

+

∫ Tf

T0
(Kvu+ Cvu̇−Mv̇u̇− vF ) dt = 0 (2.3)

For the correct formulation of Eq. (2.3), we need to investigate the possible constraints

on the initial and end conditions of the system. Many previous works offered various

ideas. Especially Baruch and Riff [37] suggested six different formulations for each degree

of freedom. Peters and Izadpanah [10] suggested that v(Tf ) in Eq. (2.3) has to be zero to

eliminate the unknown final momentum Mu̇(Tf ) but v(t) must not be allowed to vanish

at T0 to insure a natural convergence of the initial momentum Mu̇(T0). The variational

formulation based on Hamilton’s law gives the following form

δ

∫ Tf

T0
(T−V) dt+

∫ Tf

T0
Qiδsidt− ∂T

∂ṡi
δsi

∣∣∣∣Tf
T0

= 0 (2.4)

and included the displacement variations at T0 and Tf . Baruch and Riff [37] demonstrated

that Hamilton’s law with a constraint of δsi(Tf ) = 0 showed the best convergence. In this

thesis, we follow the formulation suggested by Peters and Izadpanah [10]. The trial function

u(t) can be expressed as

u(t) =
N∑
j=1

qjφj(t) (2.5)

where φj are the basis functions in the form of Legendre polynomials, though same results

were also obtained using Hermite, Chebyshev, and integrated Legendre polynomials.

Substituting Eq. (2.5) into Eq. (2.3), we get a equation of the form (Zienkiewicz and

wood [84]):

N∑
j=1

qj

{∫ Tf

T0

(
Kvφj + Cvφ̇j −Mv̇φ̇j

)
dt

}
=

∫ Tf

T0
Fvdt−Mv(Tf )u̇(Tf ) +Mv(T0)u̇(T0) (2.6)

Let v(t) = δqiψi(t), 1 ≤ i ≤ N , where ψi(t) are the admissible functions chosen from the

same set of polynomials for trial functions. The test functions may or may not be same as
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the trial functions. Then for each ψi(t), Eq. (2.6) becomes

Bq = a (2.7)

where

Bij =

∫ Tf

T0

(
Kψiφj + Cψiφ̇j −Mψ̇iφ̇j

)
dt

ai = Mψi(T0)u̇(T0)−Mψi(Tf )u̇(Tf ) +

∫ Tf

T0
Fψidt

We impose the initial condition, u(T0) = u0 in the form of a constraint. This is done by

augmenting Eq. (2.7) with an additional Eq. (2.8).

u0 =
N∑
j=1

qjφj(T0) (2.8)

v(Tf ) = δqiψi(Tf ) = 0 (2.9)

The second constraint Eq. (2.9) was suggested by Peters and Izadpanah [10] and can be

included by using the method of Lagrange multiplier, by multiplying an arbitrary Lagrange

multiplier λ to Eq. (2.9) and adding the product to the left hand side of Eq. (2.7).

N∑
j=1

Bijqj + λMψi(Tf ) = ai
∗ (2.10)

where

ai
∗ =Mψi(T0)u̇(T0) +

∫ Tf

T0
Fψidt

The Mψi(Tf )u̇(Tf ) term in ai has been eliminated due to the constraint Eq. (2.9). Equa-

tions (2.7) and (2.10) can be written in the matrix form:


 B {Mψi(Tf )}
〈φj(T0)〉 0




 qj

λ


 =


 a∗

[u(t)]t=T0


 (2.11)

where

B =

∫ Tf

T0

(
Kψiφj +Cψiφ̇j −Mψ̇iφ̇j

)
dt

a∗ = Mψi(T0)u̇(T0) +

∫ Tf

T0
Fψidt

λ = [u̇(t)]t=Tf

and i, j are row and column index, respectively. In the case of multiple elements, u(t)

and λ at end point for a particular element should be used as the initial conditions for the

following element.
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2.2.2 Transient Response Sensitivity of Linear Systems

The transient sensitivity calculation is equivalent to the mathematical problem of ob-

taining the derivatives of the solutions with respect to the independent variables. The

straightforward differentiation of Eq. (2.11) with respect to the design parameter dk, allows

us to write the following sensitivity equation.


 B {Mψi(Tf )}
〈φj(T0)〉 0






∂qj
∂dk
∂λ

∂dk


+



∂B

∂dk

{
∂M

∂dk
ψi(Tf )

}
0 0




 qj

λ


 =




∂a∗

∂dk
∂u(T0)

∂dk




(2.12)

where

∂B

∂dk
=

∫ Tf

T0

(
∂K

∂dk
ψiφj +

∂C

∂dk
ψiφ̇j − ∂M

∂dk
ψiφ̇j

)
dt

∂a∗

∂dk
=

∂M

∂dk
ψi(T0) [u̇(t)]t=T0 +Mψi(T0)

[
∂u̇(t)

∂dk

]
t=T0

For the first element, we have

∂a∗

∂dk
=
∂M

∂dk
ψi(T0) [u̇(t)]t=T0

2.2.3 Transient Response of Nonlinear Systems

While the solution of a linear equation system can be accomplished without difficulty in

a manner described above, this is not possible for nonlinear systems. Analytical procedures

for the treatment of nonlinear differential equations are difficult and require extensive math-

ematical study. The differential equation describing a nonlinear oscillatory system over a

given length of time, T0 < t ≤ Tf , may have a general form:

g(u, u̇, ü, t,d) = 0 (2.13)

where g may be nonlinear functions of u and u̇.

The bilinear formulation of Eq. (2.13) gives us a general form:

g̃(q,d) = 0 (2.14)

where dk, k = 1, 2, ...,K are the K design parameters and the vector q denotes the gener-

alized coordinates.

Equation (2.14), at times, may also be written as

g̃ = a−Bq = 0 (2.15)

TRANSIENT RESPONSE AND ITS SENSITIVITY 11



where a is the load vector and B is the nonlinear “stiffness” matrix and a function of

generalized coordinates q. The most obvious and direct way to solve Eq. (2.14) is by an

iterative method (Burden and Faires [85]). The iteration is terminated when an ’error’, i.e.,

e = q(n) − q(n−1) (2.16)

becomes sufficiently small. Usually some norm of the error is determined and iteration

continues until this norm is sufficiently small. For this research, the stopping criterion is to

iterate until
‖e(k) − e(k−1)‖∞

‖e(k)‖∞
≤ ε(= 5.0 × 10−5) (2.17)

2.2.4 Transient Response Sensitivity of Nonlinear Systems

The sensitivity of the transient response of a nonlinear system can be obtained by taking

the derivative of both sides of Eq. (2.14) with respect to dk. This gives

∂g̃i
∂dk

+
N∑
j=1

∂g̃i
∂qj

∂qj
∂dk

= 0 (2.18)

Note that from Eq. (2.18) it is clear that the design sensitivity equation is linear even

though the analysis problem is nonlinear. ∂g̃i/∂qj is called Jacobian or the “tangent”

stiffness matrix. Since the vector of generalized coordinates qj is already available from the

transient response analysis, the first derivatives of the generalized coordinates ∂qj/∂dk can

be easily calculated by solving Eq. (2.18).

∂qj
∂dk

= −
[
∂g̃i
∂qj

]−1
∂g̃i
∂dk

(2.19)

In matrix form, the sensitivity equation can be obtained by taking the derivatives of Eq.

(2.15) with respect to dk.

∂ai
∂dk

−
N∑
j=1

∂Bij

∂dk
qj −

N∑
m=1


 N∑
j=1

Bij
∂qj
∂qm

+
N∑
j=1

∂Bij

∂qm
qj


 ∂qm
∂dk

= 0 (2.20)

This equation may be written symbolically as

[
Bij

] { ∂qj
∂dk

}
+

[
∂Bij

∂dk

] {
qj
}
=

{
∂ai
∂dk

}
−



N∑
j=1

(
N∑

m=1

∂Bim

∂qj
qm

)
∂qj
∂dk


 (2.21)

This reduces to [
B∗ij

]{ ∂qj
∂dk

}
+

[
∂Bij

∂dk

] {
qj
}
=

{
∂ai
∂dk

}
(2.22)
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where

B∗ij = Bij +
N∑

m=1

∂Bim

∂qj
qm (2.23)

For illustration purpose, consider a damped oscillation of a mass and a nonlinear spring,

over a given length of time T0 < t ≤ Tf . The governing equation is given by

Mü(t) + Cu̇(t) +Ku(t) + µu(t)3 = F (t)

u(0) = u0 u̇(0) = u1
(2.24)

where F (t) is an applied external load and M,C,K are mass, damping and stiffness coef-

ficients, respectively. When µ = 0, the frequency of oscillation is that of the linear system.

So the frequency of the nonlinear oscillation will depend on the amplitude of oscillation as

well as on µ. The bilinear formulation of Eq. (2.24) in a matrix form yields


 B {Mψi(Tf )}
〈φj(T0)〉 0




 qj

λ


 =


 a∗

[u(t)]t=T0


 (2.25)

where

B =

∫ Tf

T0

(
Kψiφj + Cψiφ̇j −Mψ̇iφ̇j

)
dt

a∗ = Mψi(T0)u̇(T0) +

∫ Tf

T0


Fψi − µψi

(
N∑
l=1

qlφl

)3

 dt

It is noted here that both sides include the unknown generalized coordinates ql in the above

formulation. By differentiating Eq. (2.25) with respect to the design parameter dk, we

obtain


 B∗ {Mψi(Tf )}
〈φj(T0)〉 0






∂qj
∂dk
∂λ

∂dk


+



∂B

∂dk

{
∂M

∂dk
ψi(Tf )

}
0 0




 qj

λ


 =




∂a∗∗

∂dk
∂u(T0)

∂dk




(2.26)

where

B∗ =

∫ Tf

T0


Kψiφj + Cψiφ̇j −Mψ̇iφ̇j + 3µψiφj

(
N∑
l=1

qlφl

)2

 dt

∂B

∂dk
=

∫ Tf

T0

(
∂K

∂dk
ψiφj +

∂C

∂dk
ψiφ̇j − ∂M

∂dk
ψ̇iφ̇j

)
dt

∂a∗∗

∂dk
=

∂M

∂dk
ψi(T0) [u̇(t)]t=T0 +Mψi(T0)

[
∂u̇(t)

∂dk

]
t=T0

−
∫ Tf

T0

∂µ

∂dk
ψi

(
N∑
l=1

qlφl

)3

dt
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Here ql are known values since they were calculated in the transient response analysis.

2.3 Mathematical Formulation for Multidegree-of-Freedom Systems

2.3.1 Transient Response of Linear Two-Degree-of-Freedom Systems

Consider a linear two-degree-of-freedom system given by

Mü(t) +Cu̇(t) +Ku(t) = F(t) (2.27)

where

M =

[
m11 m12

m21 m22

]
,C =

[
c11 c12
c21 c22

]
,K =

[
k11 k12
k21 k22

]

with initial conditions

u1(0) = u10 u2(0) = u20 u̇1(0) = v10 u̇2(0) = v20

Here mij , cij and kij are respectively mass, damping and stiffness coefficients of the system.

Multiplying Eq. (2.27) with test functions (or weight functions) v(t) and integrating

with respect to time for the bilinear formulation results in∫ Tf

T0
v1

(
m11ü1 +m12ü2 + c11u̇1 + c12u̇2 + k11u1 + k12u2 − f1

)
dt = 0 (2.28)

∫ Tf

T0
v2

(
m21ü1 +m22ü2 + c21u̇1 + c22u̇2 + k21u1 + k22u2 − f2

)
dt = 0 (2.29)

Integrating Eqs. (2.28) and (2.29) by parts yields[
m11v1u̇1

]Tf
T0

+

[
m12v1u̇2

]Tf
T0

+

∫ Tf

T0

(
k11v1u1 + k12v1u2 + c11v1u̇1 + c12v1u̇2 −m11v̇1u̇1 −m12v̇1u̇2 − v1f1

)
dt

= 0 (2.30)

[
m21v2u̇1

]Tf
T0

+

[
m22v2u̇2

]Tf
T0

+

∫ Tf

T0

(
k21v2u1 + k22v2u2 + c21v2u̇1 + c22v2u̇2 −m21v̇2u̇1 −m22v̇2u̇2 − v2f2

)
dt

= 0 (2.31)

Let trial functions be

u1(t) =
N∑
j=1

pjφj(t) (2.32)

u2(t) =
N∑
j=1

qjφj(t) (2.33)

TRANSIENT RESPONSE AND ITS SENSITIVITY 14



where pj and qj are generalized coordinates.

By substituting Eqs. (2.32) and (2.33) into Eqs. (2.30) and (2.31) respectively, we

obtain ∫ Tf

T0

{
k11v1

( N∑
j=1

pjφj

)
+ k12v1

( N∑
j=1

qjφj

)
+ c11v1

( N∑
j=1

pj φ̇j

)
+

c12v1

( N∑
j=1

qjφ̇j

)
−m11v̇1

( N∑
j=1

pjφ̇j

)
−m12v̇1

( N∑
j=1

qjφ̇j

)}
dt

= m11v1(T0)u̇1(T0)−m11v1(Tf )u̇1(Tf ) +m12v1(T0)u̇2(T0)−
m12v1(Tf )u̇2(Tf ) +

∫ Tf

T0
v1f1dt (2.34)

∫ Tf

T0

{
k21v2

( N∑
j=1

pjφj

)
+ k22v2

( N∑
j=1

qjφj

)
+ c21v2

( N∑
j=1

pjφ̇j

)
+

c22v2

( N∑
j=1

qjφ̇j

)
−m21v̇2

( N∑
j=1

pjφ̇j

)
−m22v̇2

( N∑
j=1

qjφ̇j

)}
dt

= m21v2(T0)u̇1(T0)−m21v2(Tf )u̇1(Tf ) +m22v2(T0)u̇2(T0)−
m22v2(Tf )u̇2(Tf ) +

∫ Tf

T0
v2f2dt (2.35)

Let test functions be

v1(t) = δpiψi(t), 1 ≤ i ≤M (2.36)

v2(t) = δqiψi(t), 1 ≤ i ≤M (2.37)

Then for each δpj and δqj , equations (2.34) and (2.35) become

∫ Tf

T0

{
k11ψi

( N∑
j=1

pjφj

)
+ k12ψi

( N∑
j=1

qjφj

)
+ c11ψi

( N∑
j=1

pj φ̇j

)
+

c12ψi

( N∑
j=1

qjφ̇j

)
−m11ψ̇i

( N∑
j=1

pjφ̇j

)
−m12ψ̇i

( N∑
j=1

qjφ̇j

)}
dt

= m11ψi(T0)u̇1(T0)−m11ψ(Tf )u̇1(Tf ) +m12ψi(T0)u̇2(T0)−

m12ψi(Tf )u̇2(Tf ) +

∫ Tf

T0
ψif1dt (2.38)

∫ Tf

T0

{
k21ψi

( N∑
j=1

pjφj

)
+ k22ψi

( N∑
j=1

qjφj

)
+ c21ψi

( N∑
j=1

pj φ̇j

)
+

c22ψi

( N∑
j=1

qjφ̇j

)
−m21ψ̇i

( N∑
j=1

pjφ̇j

)
−m22ψ̇i

( N∑
j=1

qjφ̇j

)}
dt
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= m21ψi(T0)u̇1(T0)−m21ψi(Tf )u̇1(Tf ) +m22ψi(T0)u̇2(T0)−
m22ψi(Tf )u̇2(Tf ) +

∫ Tf

T0
ψif2dt (2.39)

Rearranging Eqs. (2.38) and (2.39) yields

N∑
j=1

(
Bij

(11)pj +Bij
(12)qj

)
= ai

(1) (2.40)

N∑
j=1

(
Bij

(21)pj +Bij
(22)qj

)
= ai

(2) (2.41)

where

Bij
(11) =

∫ Tf

T0

(
k11ψiφj + c11ψiφ̇j −m11ψ̇iφ̇j

)
dt

Bij
(12) =

∫ Tf

T0

(
k12ψiφj + c12ψiφ̇j −m12ψ̇iφ̇j

)
dt

Bij
(21) =

∫ Tf

T0

(
k21ψiφj + c21ψiφ̇j −m21ψ̇iφ̇j

)
dt

Bij
(22) =

∫ Tf

T0

(
k22ψiφj + c22ψiφ̇j −m22ψ̇iφ̇j

)
dt

and

ai
(1) = m11ψi(T0)u̇1(T0)−m11ψi(Tf )u̇1(Tf ) +m12ψi(T0)u̇2(T0)−

m12ψi(Tf )u̇2(Tf ) +

∫ Tf

T0
ψif1dt

ai
(2) = m21ψi(T0)u̇1(T0)−m21ψi(Tf )u̇1(Tf ) +m22ψi(T0)u̇2(T0)−

m22ψi(Tf )u̇2(Tf ) +

∫ Tf

T0
ψif2dt

Imposition of initial conditions, ui(T0), i = 1, 2, can be done by augmenting Eqs. (2.40)

and (2.41) with additional equations. Thus,

N∑
j=1

{(
Bij

(11)pj +Bij
(12)qj

)
+ φj(T0)pj

}
= ai

(1) (2.42)

N∑
j=1

{(
Bij

(21)pj +Bij
(22)qj

)
+ φj(T0)qj

}
= ai

(2) (2.43)

For the natural convergence of the end condition, a constraint ψi(Tf ) = 0 can be included

by using Lagrange multipliers. Now,

N∑
j=1

{(
Bij

(11)pj +Bij
(12)qj

)
+ φj(T0)pj

}
+
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λ1m11ψi(Tf ) + λ2m12ψi(Tf ) = ai
∗(1) (2.44)

N∑
j=1

{(
Bij

(21)pj +Bij
(22)qj

)
+ φj(T0)qj

}
+

λ1m21ψi(Tf ) + λ2m22ψi(Tf ) = ai
∗(2) (2.45)

where

ai
∗(1) = m11ψi(T0)u̇1(T0) +m12ψi(T0)u̇2(T0) +

∫ Tf

T0
ψif1dt

ai
∗(2) = m21ψi(T0)u̇1(T0) +m22ψi(T0)u̇2(T0) +

∫ Tf

T0
ψif2dt

Combinig Eqs. (2.44) and (2.45) and putting into a matrix form, the transient response

equation for a linear two-degree-of-freedom system becomes




B(11) B(12) {m11ψi(Tf )} {m12ψi(Tf )}
B(21) B(22) {m21ψi(Tf )} {m22ψi(Tf )}

< φj(T0) > 0 0 0

0 < φj(T0) > 0 0







p

q

λ1

λ2



=




a∗(1)

a∗(2)

u1(0)

u2(0)




(2.46)

where i and j are row and column index, respectively. The final displacements, uk(Tf ) and

the final velocities, λk for one segment should be used as initial conditions for the following

segment in multiple elements.

2.3.2 Transient response sensitivity with respect to design parameter dk

The differentiation of Eq. (2.46) with respect to design parameter dk gives the following

sensitivity equation, similar to those of single-degree-of-freedom cases.




B(11) B(12) {m11ψi(Tf )} {m12ψi(Tf )}
B(21) B(22) {m21ψi(Tf )} {m22ψi(Tf )}

< φj(T0) > 0 0 0

0 < φj(T0) > 0 0







∂p

∂dk
∂q

∂dk
∂λ1
∂dk
∂λ2
∂dk



+




∂B(11)

∂dk

∂B(12)

∂dk

{
∂m11

∂dk
ψi(Tf )

} {
∂m12

∂dk
ψi(Tf )

}
∂B(21)

∂dk

∂B(22)

∂dk

{
∂m21

∂dk
ψi(Tf )

} {
∂m22

∂dk
ψi(Tf )

}
0 0 0 0

0 0 0 0







p

q

λ1

λ2



=




∂a∗(1)

∂dk
∂a∗(2)

∂dk
∂u1(T0)

∂dk
∂u2(T0)

∂dk




(2.47)
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where

∂Bij
(11)

∂dk
=

∫ Tf

T0

(
∂k11
∂dk

ψiφj +
∂c11
∂dk

ψiφ̇j − ∂m11

∂dk
ψ̇iφ̇j

)
dt

∂Bij
(12)

∂dk
=

∫ Tf

T0

(
∂k12
∂dk

ψiφj +
∂c12
∂dk

ψiφ̇j − ∂m12

∂dk
ψ̇iφ̇j

)
dt

∂Bij
(21)

∂dk
=

∫ Tf

T0

(
∂k21
∂dk

ψiφj +
∂c21
∂dk

ψiφ̇j − ∂m21

∂dk
ψ̇iφ̇j

)
dt

∂Bij
(22)

∂dk
=

∫ Tf

T0

(
∂k22
∂dk

ψiφj +
∂c22
∂dk

ψiφ̇j − ∂m22

∂dk
ψ̇iφ̇j

)
dt

and

∂a
∗(1)
i

∂dk
=

∂m11

∂dk
ψi(T0)u̇1(T0) +m11ψi(T0)

∂u̇1(T0)

∂dk
+

∂m12

∂dk
ψi(T0)u̇2(T0) +m12ψi(T0)

∂u̇2(T0)

∂dk

∂a
∗(2)
i

∂dk
=

∂m21

∂dk
ψi(T0)u̇1(T0) +m21ψi(T0)

∂u̇1(T0)

∂dk
+

∂m22

∂dk
ψi(T0)u̇2(T0) +m22ψi(T0)

∂u̇2(T0)

∂dk

The numerical examples in references (Wang and Lu [51]; Thomson [86]; Humar and

Xia [87]) was chosen to show the exploitation of the present method. The results were com-

pared with those obtained using the Newmark β = 1/4 method and the central difference

approximation.

2.3.3 Newmark β = 1
4 Method

The Newmark time stepping algorithm (Newmark [7, 88]; Craig [89]) was introduced

in 1959, a step-by-step solution using time steps ∆ti, can be now considered for the two

degrees-of-freedom system.

The equations of motion to be integrated are
 m1 0

0 m2




 ü1(t)

ü2(t)


+


 c11 c12

c21 c22




 u̇1(t)

u̇2(t)


+


 k11 k12

k21 k22




 u1(t)

u2(t)


 =


 f1(t)

f2(t)


 (2.48)
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with initial conditions

u1(0) = u10 u2(0) = u20 u̇1(0) = v10 u̇2(0) = v20

The initial accelerations, ü1(0) and ü2(0), can now be obtained from Eq. (2.48). Those

are

ü1(0) =
1

m1

(
f1(0)− c11u̇1(0)− c12u̇2(0)− k11u1(0) − k12u2(0)

)

ü2(0) =
1

m2

(
f2(0)− c21u̇1(0)− c22u̇2(0)− k21u1(0) − k22u2(0)

) (2.49)

The acceleration in the time interval ti to ti+1 is taken to be the average of the initial

and final values of acceleration. This idea is embodied in the following equations.

u̇i+1 = u̇i +
∆ti
2

(üi + üi+1)

ui+1 = ui + u̇i∆ti +

(
1

2
− β

)
üi (∆ti)

2 + βüi+1 (∆ti)
2

(2.50)

Putting β = 1
4 into Eq. (2.50), the incremental quantities, ∆üi and ∆u̇i, become

∆üi = üi+1 − üi =
4

∆ti
2 (∆ui − u̇i∆ti)− 2üi

∆u̇i = u̇i+1 − u̇i =
2

∆ti
∆ui − 2u̇i

(2.51)

Since Eq. (2.48) is satisfied at both ti and ti+1, we can rewrite Eq. (2.48) as
 m1 0

0 m2




 ∆ü1i(t)

∆ü2i(t)


+


 c11 c12

c21 c22




 ∆u̇1i(t)

∆u̇2i(t)


+


 k11 k12

k21 k22




 ∆u1i(t)

∆u2i(t)


 =


 ∆f1i(t)

∆f2i(t)


 (2.52)

Substituting Eq. (2.51) into Eq. (2.52) results in

m1

{
4

∆ti
2 (∆u1i − u̇1i∆ti)− 2ü1i

}
+ c11

{
2

∆ti
∆u1i − 2u̇1i

}
+

c12

{
2

∆ti
∆u2i − 2u̇2i

}
+ k11∆u1i + k12∆u2i = ∆f1i (2.53)

m2

{
4

∆ti
2 (∆u2i − u̇2i∆ti)− 2ü2i

}
+ c21

{
2

∆ti
∆u1i − 2u̇1i

}
+

c22

{
2

∆ti
∆u2i − 2u̇2i

}
+ k21∆u1i + k22∆u2i = ∆f2i (2.54)
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Rearranging Eqs. (2.53) and (2.54) and putting those into a matrix form yields


4m1

∆ti2
+
2c11
∆ti

+ k11
2c12
∆ti

+ k12

2c21
∆ti

+ k21
4m2

∆ti2
+
2c22
∆ti

+ k22




 ∆u1i

∆u2i




=




∆f1i +
4m1

∆ti
+ 2c11u̇1i + 2c12u̇2i + 2m1ü1i

∆f2i +
4m2

∆ti
+ 2c21u̇1i + 2c22u̇2i + 2m2ü2i


 (2.55)

Solving for ∆u1i, ∆u2i and the updated values of u1i and u2i determined from

u1(i+1) = u1i +∆u1i

u2(i+1) = u2i +∆u2i
(2.56)

Equation (2.55) can be solved by the Newton-Raphson method (Tillerson et al. [91]) which

is one of the most popular methods for the solution of systems of nonlinear algebraic equa-

tions.

2.3.4 Transient Response and Sensitivity of Nonlinear Two-Degree-of-Freedom Systems

As we have seen in the case of single-degree-of-system, obtaining the response and sen-

sitivity with respect to design parameter of the nonlinear system depends strongly on the

problem under consideration. The validity and accuracy of the proposed method is demon-

strated with a nonlinear two-degree-of-freedom system having cubic nonlinearities problem.

ü1 + ω1
2u1 + 2µ1u̇1 + α1u1

3 + α2u1
2u2 + α3u1u2

2 + α4u2
3 = 0

ü2 + ω2
2u2 + 2µ2u̇2 + α5u1

3 + α6u1
2u2 + α7u1u2

2 + α8u2
3 = 0

(2.57)

with initial conditions

u1(0) = 1.5, u̇1(0) = 0.0, u2(0) = −1.0, u̇2(0) = 0.0

Based on the formulation of the linear two-degree-of-freedom system, Appendix A.1 and

A.2 describes the detailed derivation for the transient response and the response sensitivity

with respect to design parameters.
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2.4 Numerical Examples

2.4.1 Linear System

First consider a single degree-of-freedom spring-mass system (Wang and Lu [51]) with

viscous damping:

ü(t) + 4u̇(t) + 400u(t) = δ(t), 0 < t ≤ 5 (2.58)

where δ is Dirac’s delta function.

The response for the undamped case shown in Fig. 2.1 is obtained by the proposed

method using Legendre polynomials of the third degree and fifty line elements of equal

time step of ∆t = 0.1. The response obtained using the present approach along with the

exact response is presented in Fig. 2.1. Figure 2.2 represents the sensitivity with respect

to the mass and the results are compared with the exact solution. Figure 2.3 shows the

sensitivity of the response with respect to the stiffness parameter as obtained using the

proposed method and the results are compared with the exact solution. Since damping is

not considered, it is seen in Figs. 2.2 and 2.3 that the sensitivities are diverging with time.

On the basis of observing the two sensitivity curves, we can conclude that “the original

system will be unstable, or at best will have oscillations of steady amplitude” (Tomović

[47]). The time history of response obtained using the proposed method and that from

the exact solution are shown in Fig. 2.4 for the damped system. The sensitivities with

respect to mass, damping, and stiffness are presented in Figs. 2.5-2.7, respectively. The

exact results are also plotted in these figures and it can be seen that, for this linear damped

system, the sensitivity results obtained from the proposed method are in good agreement

with those obtained from the exact solutions.

2.4.2 Nonlinear Softening System

Consider a softening spring-mass system (Chen et al. [92]) without viscous damping:

ü(t) + 100 tanh(u(t)) = 0 0 < t ≤ 5

u(0) = 0.0 u̇(0) = 25.0
(2.59)

The domain with a range of time 0 < t ≤ 5 is divided into twenty five elements of equal

time steps of ∆t = 0.2 and, unless mentioned otherwise, Legendre polynomials of the sixth

degree are used as basis functions in the calculation. Figure 2.8 represents the responses of

the undamped case. For comparison, the Runge-Kutta fourth-order method (Burden and

Faires [85]) for the second-order system is used to approximate the solutions using ∆t =
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0.1 and 0.01. To verify the results for the response sensitivities, the second-order central

difference approximation is used to calculate the response sensitivities with respect to the

design parameters.

Given a function u(dk), the central difference approximations
∆u
∆dk

to the sensitivity du
dk

of u with respect to a design parameter dk is given as

∆u

∆dk
∼= u (dk +∆dk)− u (dk −∆dk)

2∆dk
(2.60)

It is possible to employ higher-order finite difference approximations, but they are rarely

used because of the high computational cost. Figure 2.9a shows the sensitivities with respect

to mass as obtained using the present approach and the central difference approach. The

values of the central difference approximation with ∆M = 0.01 and 0.005 are presented along

with the result of the proposed method. Figure 2.9b presents the effect of the step size,

∆dk, on the response sensitivity. As can be seen from this figure, as expected (Haftka and

Gürdal [93]), step size plays an important role in the calculations of the response sensitivity.

A step size of 0.01 appears to yield good results. The advantage of the proposed method is

that there is no need to perform a convergence study as is the case in the finite difference

method. Figure 2.10 shows the sensitivity of the transient response with respect to the

stiffness parameter for the undamped softening system. The approximate sensitivities as

obtained from the central difference method using, ∆K=1.0 and 0.1, are also presented in

that figure. The step size appears to have limited effect on the sensitivity of the response

with respect to the stiffness parameter. Figure 2.11 shows the comparison of the transient

responses for the damped nonlinear system as obtained using the Runge-Kutta fourth-

order method and the proposed method. Twenty five time finite elements of equal length

and Legendre polynomials of the third degree are used in the present calculation. Figures

2.12-2.14 present the response sensitivities with respect to mass, damping and stiffness,

respectively.

2.4.3 Nonlinear Van der Pol Equation

As a second example, consider a nonlinear Van der Pol equation (Shampine [94]; Jordan

and Smith [95]) of the form:

ü(t) + ε
(
u(t)2 − 1

)
u̇(t) + u(t) = 0 0 < t ≤ 20

u(0) = 2.0 u̇(0) = 0.0
(2.61)

For ε > 0, all non-trivial solutions converge to a limit cycle, a periodic solution. So

the exact solution must oscillate between -2.0 and 2.0 in this example. Figure 2.15 shows
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the approximate solution in the case of ε=5.0 with time steps of 0.025, 0.0167 and 0.005

in the interval (0,20). The Legendre polynomials of the fourth degree are used as basis

functions. The accuracy of the solutions can be improved significantly by reducing the

step size from ∆t=0.025 to ∆t=0.005. Results from the Runge-Kutta fourth-order method

with a step size of 0.005 is also presented for comparison purpose. Figure 2.16a shows the

response sensitivity with respect to ε along with the system response. In Fig. 2.16b, the

sensitivity results obtained from the present analytic approach are compared with those

obtained using the central difference scheme. The result indicates that the peak values of

the response sensitivity increases with time.

2.4.4 Nonlinear Oscillator

As a third example, we studied nonlinear oscillators of the form:

ü(t) + αu(t) + µu(t)3 = 0 (2.62)

where α and µ are given constants. Here we consider a special case by setting the values of

α and µ as 0 and 1, respectively. The given initial conditions are

u(0) = β u̇(0) = 0.0 (2.63)

where β is a constant. The transient responses are found for the system with β=1.0, 2.0

and 3.0. They are shown and compared in Fig. 2.17. The domain with a range of time

0 < t ≤ 15 is divided equally with a time step of ∆t = 0.2. The Legendre polynomials of

the third degree are used as basis functions for the calculation of the transient response.

For comparison, corresponding results are also obtained by using the Runge-Kutta fourth-

order method with ∆t = 0.05 and an excellent agreement is seen. Figure 2.18 shows the

response sensitivities with respect to parameter µ. An initial displacement β=2.0 is used

in the sensitivity calculations. The results obtained from the proposed method are in a

good agreement with those obtained from using a central difference approximation with

∆µ=0.01.

2.4.5 Nonlinear Hardening System

A cubic spring-mass model with viscous damping is represented by the following non-

linear equation:

ü(t) + 4u̇(t) + 400u(t) + u(t)3 = 0 0 < t ≤ 5

u(0) = 1.0, u̇(0) = 0.0
(2.64)
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The domain with a range of time 0 < t ≤ 5 is divided into twenty five elements of

equal time steps of ∆t = 0.2 and Legendre polynomials of the fifth degree are used as basis

functions in the calculation. Figure 2.19 represents the transient response. The sensitivities

with respect to mass, damping and stiffness are calculated and shown in Figs. 2.20-2.22,

respectively.

2.4.6 Linear Two-Degree-of-Freedom Systems having simple forces

Consider the solution of the equation of motion of a two-degree-of-freedom system

(Thomson [86]). Let m1 = 100Kg, m2 = 25Kg, k1 = 36KN/m, k2 = 36KN/m and

the system is subjected to a single force, f2 = 4000N .

The equations of motion of the system become
 100 0

0 25




 ü1(t)

ü2(t)


+


 72000 −36000
−36000 36000




 u1(t)

u2(t)


 =


 0

4000


 (2.65)

with initial conditions

u1(0) = 0 u2(0) = 0 u̇1(0) = 0 u̇2(0) = 0

The domain with a range of time 0 < t ≤ 1 is divided into twenty elements of equal

time steps of ∆t = 0.05 and Legendre polynomials of the second degree are used as basis

functions in the calculation. Figure 2.23 shows the transient responses, u1 and u2, and

compared with those obtained by using the Newmark β = 1/4 method with ∆t = 0.01.

2.4.7 Linear Two-Degree-of-Freedom System with the Ground Acceleration

Consider a linear damped two-degree-of-freedom system subjected to a base acceleration

input (Humar and Xia [87]). Let m1 = 2, m2 = 1, k1 = 128, k2 = 64, c1 = 3.3941,

c2 = 1.1314 and the ground acceleration is a rectangular pulse of magnitude −10 and

duration 2 seconds.

The equations of motion of the system can be expressed as
 2 0

0 1




 ü1(t)

ü2(t)


+


 4.5255 −1.1314
−1.1314 1.1314




 u̇1(t)

u̇2(t)


+


 192 −64
−64 64




 u1(t)

u2(t)


 =


 −m1üg

−m2üg


 (2.66)

with initial conditions

u1(0) = 0 u2(0) = 0 u̇1(0) = 0 u̇2(0) = 0
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Here üg denotes the ground acceleration expressed as the rectangular pulse. The transient

responses, u1 and u2, and the response sensitivities with respect to k1 are presented re-

spectively in Figs. 2.24 and 2.25. The results are compared with those of the Newmark

β = 1/4 method with a time step of ∆t = 0.05 and the central difference approximations.

The domain with a range of time 0 < t ≤ 3 is divided into sixty elements of equal time steps

of ∆t = 0.05 and Legendre polynomials of the second degree are used as basis functions in

the calculation.

2.4.8 Nonlinear Two-Degree-of-Freedom System having cubic Nonlinearities

Governing equations with cubic nonlinearities (Nayfeh and Mook [76]), associated with

the vibration of strings, beams and plates, are considered

ü1 + ω1
2u1 + 2µ1u̇1 + α1u1

3 + α2u1
2u2 + α3u1u2

2 + α4u2
3 = 0

ü2 + ω2
2u2 + 2µ2u̇2 + α5u1

3 + α6u1
2u2 + α7u1u2

2 + α8u2
3 = 0

(2.67)

with initial conditions

u1(0) = 1.5, u̇1(0) = 0.0, u2(0) = −1.0, u̇2(0) = 0.0

for the following values of the system parameters

ω1
2 = 25.0, µ1 = 0.35, α1 = 5.0, α2 = 0.5, α3 = 0.25, α4 = 3.0

ω2
2 = 17.0, µ2 = 0.25, α5 = 2.5, α6 = 0.75, α7 = 0.2, α8 = 5.0

The domain with a range of time, 0 < t ≤ 10, is divided into one hundred elements of

equal time steps. Figures 2.26, 2.27 and 2.28 show respectively the transient response of

the system and the response sensitivity with respect to design parameter µ1 and µ2. The

results obtained using ∆t = 0.1 are compared with those of Newmark β = 1/4 method with

∆t = 0.01 for the case of transient response. The response sensitivities are compared with

those from central difference approximations.
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Fig. 2.1 Transient response of a linear undamped system (ü+ 400u = δ(t))
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Fig. 2.2 Sensitivity of the response with respect to mass (ü+ 400u = δ(t))
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Fig. 2.3 Sensitivity of response with respect to stiffness (ü+ 400u = δ(t))
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Fig. 2.4 Transient response of a linear damped system (ü+ 4u̇+ 400u = δ(t))
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Fig. 2.5 Sensitivity of the response with respect to mass (ü+ 4u̇+ 400u = δ(t))
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Fig. 2.6 Sensitivity of the response with respect to damping (ü+ 4u̇+ 400u = δ(t))
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Fig. 2.7 Sensitivity of the response with respect to stiffness (ü+ 4u̇+ 400u = δ(t))
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Fig. 2.8 Transient response of a nonlinear system without damping (ü+ 100tanh(u) = 0)
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Fig. 2.9a Sensitivity of the response with respect to mass
(ü+ 100tanh(u) = 0)
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Fig. 2.9b Effect of step size on the response sensitivity with respect to mass
(ü+ 100tanh(u) = 0)
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Fig. 2.10 Sensitivity of the response with respect to stiffness (ü+ 100tanh(u) = 0)
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Fig. 2.11 Transient response of a nonlinear system with damping
(ü+ 2u̇+ 100tanh(u) = 0)
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Fig. 2.12 Sensitivity of the response with respect to mass (ü+ 2u̇+ 100tanh(u) = 0)
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Fig. 2.13 Sensitivity of the response with respect to damping (ü+ 2u̇+ 100tanh(u) = 0)
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Fig. 2.14 Sensitivity of the response with respect to stiffness (ü+ 2u̇+ 100tanh(u) = 0)
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Fig. 2.15 Transient responses of the Van der Pol equation
(ü+ ε(u2 − 1.0)u̇+ u = 0, ε = 5.0)
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Fig. 2.16a Sensitivity of the response with respect to ε (ü+ ε(u2− 1.0)u̇+u = 0, ε = 5.0)
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Fig. 2.16b Comparison of the sensitivities with respect to ε between time finite elements
method and central difference approximations (ü+ ε(u2 − 1.0)u̇+ u = 0, ε =
5.0)
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Fig. 2.17 Transient responses of the nonlinear oscillator with various values of β
(ü+ µu3 = 0, µ = 1.0, u(0) = β, u̇(0) = 0.0)
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Fig. 2.18 Comparison of the sensitivities with respect to µ between time finite element
method and central difference approximations (ü+µu3 = 0, u(0) = 2.0, u̇(0) =
0.0)
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Fig. 2.19 Transient response of a hardening system with damping
(ü(t) + 4u̇(t) + 400u(t) + u(t)3 = 0)
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Fig. 2.20 Sensitivity of the response with respect to mass
(ü(t) + 4u̇(t) + 400u(t) + u(t)3 = 0)
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Fig. 2.21 Sensitivity of the response with respect to damping
(ü(t) + 4u̇(t) + 400u(t) + u(t)3 = 0)
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Fig. 2.22 Sensitivity of the response with respect to stiffness
(ü(t) + 4u̇(t) + 400u(t) + u(t)3 = 0)
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Fig. 2.23 Transient responses of linear 2DOF system having simple forces
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Fig. 2.24 Transient responses of linear 2DOF system with the ground acceleration
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Fig. 2.25 Sensitivity of the responses with respect to k1 for linear 2DOF system with the
ground acceleration
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Fig. 2.26 Transient response of nonlinear 2DOF system having cubic nonlinearities
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Fig. 2.27 Sensitivity of the response with respect to µ1 for nonlinear 2DOF system having
cubic nonlinearities
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Fig. 2.28 Sensitivity of the response with respect to µ2 for nonlinear 2DOF system having
cubic nonlinearities
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3. COMPARISON OF VARIOUS ORTHOGONAL POLYNOMIALS

IN THE hp-VERSION FINITE ELEMENT METHOD

3.1 Overview

Four sets of orthogonal polynomials, Legendre, Chebyshev, Hermite and Integrated Leg-

endre polynomials are evaluated as basis functions to solve initial value problems governed

by second order differential equations using finite elements in time (Kapania and Park [62]).

Problems treated are the transient response and the response sensitivity of van der Pol’s

oscillator, mass on a hardening and a softening spring system and a two-degree-of-freedom

system having cubic nonlinearities. The results obtained using four different polynomial

basis functions were found to be almost identical. The objective of this study is to find

better conditioned systems for the problems under consideration. Condition numbers of

the augmented stiffness matrix for the selected problems are estimated by increasing the

number of polynomial terms in the expansion. Results for the CPU time and the estimated

condition numbers, using IMSL subroutine DLFCRG [96], for each of four basis functions

are presented. The present research shows that integrated Legendre polynomials are well

suited to be used as the basis function in the time finite element method for solving nonlinear

initial value problems.

3.2 Mathematical Formulations

3.2.1 Bilinear Formulation for a Nonlinear System

Consider the following mathematical model of the dynamic system:

F (ü, u̇, u, t, dk) = 0 (3.1)

where the vector dk denotes the design parameters of the system.

Applying the bilinear formulation to Eq. (3.1) results in

[
Bij (qj)

] {
qj
}
=
{
Ai

}
(3.2)

which is the transient response of a nonlinear system.

Taking the derivative of Eq. (3.2) with respect to design parameter dk yields

[
B∗ij

]{ ∂qj
∂dk

}
+

[
∂Bij

∂dk

] {
qj
}
=

{
∂ai
∂dk

}
(3.3)
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where

B∗ij = Bij +
N∑

m=1

∂Bim

∂qj
qm (3.4)

3.2.2 Augmented Stiffness Matrix for Single-Degree-of-Freedom System

As shown section 3.2.1, the nonlinear stiffness matrices B and B∗ are not generally equal
in the nonlinear system. By adding an initial condition and imposing a constraint in the

form of Lagrange multipliers, the augmented stiffness matrix B for the transient response

may be expressed in the matrix form as

B =


 B {ψi(Tf )}
< φj(T0) > 0


 (3.5)

while the augmented stiffness matrix B
∗
for the response sensitivity may be expressed as

B
∗
=


 B∗ {ψi(Tf )}
< φj(T0) > 0


 (3.6)

where ψi(t) and φj(t) are polynomial basis functions for test and trial functions respectively.

In the matrix, { } denotes the column vector and < > denotes the row vector.

3.2.3 Augmented Stiffness Matrix for Two-Degree-of-Freedom System

In the case of two-degree-of-freedom systems, the augmented stiffness matrix Bij , de-

rived for the first time here, for the transient response may be expressed as

B =




B(1) 0 {ψi(Tf )} 0

0 B(2) 0 {ψi(Tf )}
< φj(T0) > 0 0 0

0 < φj(T0) > 0 0


 (3.7)

while the augmented stiffness matrix B
∗
ij for the response sensitivity takes the form:

B
∗
=




B∗(11) B∗(12) {ψi(Tf )} 0

B∗(21) B∗(22) 0 {ψi(Tf )}
< φj(T0) > 0 0 0

0 < φj(T0) > 0 0


 (3.8)

here i and j respectively denote the row and the column index in the matrix.
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3.3 Basis Functions

Since one goal of the computational method is the computational simplicity, one choice

for the basis function is polynomials. Basically the orthogonal polynomials (Szegö [65];

Sansonne [66]; Hochstrasser [67]) are selected in order to have simplicity in the computation

of the stiffness matrix. The orthogonality has less effect on the computation due to the

nature of the formulation. Four sets of orthogonal polynomials, Legendre, Chebyshev,

Hermite and Integrated Legendre polynomials are selected as basis functions, each defined

over the range −1 < t ≤ 1. In Integrated Legendre polynomials, the first and second terms

are linear combinations of the first two integrals of Legendre polynomials.

I1(t) =
(1− t)

2
I2(t) =

(1 + t)

2
(3.9)

The rest of the polynomials In(t) are found using the following relationship (Szabó and

Babuška [64]):

In(t) =
1√

2(2n − 3)
(Pn−1(t)− Pn−3(t)) n ≥ 3 (3.10)

where Pn(t) denotes Legendre polynomials.

3.4 Numerical Results

Condition numbers [97] of the augmented stiffness matrix for the selected problems

are estimated by increasing the number of polynomial terms in the expansion. Gaussian

quadrature [98] is used for the integration process in the calculation of the transient response

and the response sensitivity. Results for the CPU time and the estimated condition numbers

for each of four basis functions are presented. The CPU time for the selected problems

required only one to two seconds (except in the case of van der Pol’s oscillator). Those

results are not presented here. To estimate the condition numbers, the IMSL subroutine

DLFCRG was used. All the computations were performed on an IBM3090-300E mainframe

computer. The detailed derivations of the used nonlinear stiffness matrices for the following

four examples are given in Chapter 2. For completeness, the final equations are given in

Appendix A.3.

3.4.1 van der Pol’s Oscillator

Consider a nonlinear van der Pol’s equation (Shampine [94]) with a large parameter ε

given by

ü(t) + ε
(
u(t)2 − 1

)
u̇(t) + u(t) = 0, ε = 5.0, 0 < t ≤ 20 (3.11)

with initial conditions

u(0) = 2.0, u̇(0) = 0.0
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The response of the van der Pol’s equation for a large parameter ε shows a slow build-
up followed by a sudden discharge, repeated periodically. Figures 3.1a and 3.1b show
respectively the limit cycle and the corresponding response for the problem using the time
finite element method. The results shown in Figs. 3.1a and 3.1b were obtained using
Legendre polynomials of degree four as basis functions with varying time steps of ∆t =
0.005 to 0.000625. Condition numbers of the augmented stiffness matrix were estimated by
varying the order of polynomials from 3 to 8 with fixed time steps of ∆t = 0.005.

Table 3.1a CPU time for calculating transient response and response sensitivity:
van der Pol’s oscillator

N∗ Legendre Chebyshev Hermite Int. Legendre

3 6.0(9.0) 5.0(8.0) 6.0(8.0) 7.0(12.0)
4 6.0(12.0) 6.0(11.0) 6.0(11.0) 8.0(17.0)
5 7.0(17.0) 7.0(14.0) 7.0(15.0) 9.0(24.0)
6 9.0(23.0) 8.0(19.0) 8.0(21.0) 12.0(33.0)
7 11.0(30.0) 9.0(25.0) 10.0(27.0) 14.0(44.0)
8 13.0(39.0) 11.0(32.0) 12.0(36.0) 17.0(57.0)

* order of polynomials

Table 3.1a presents the required CPU time for calculating the transient response and the

response sensitivity (in parentheses) of the given system. Note that the computation time

is increasing as the order of polynomials increases. The Integrated Legendre polynomials

require more computation time as compared to the other polynomials. This is expected

since an integration process is needed for generating Integrated Legendre polynomials while

others are generated by appropriate recurrence procedures.

Results of the estimated condition numbers are presented in Table 3.1b (also in Fig. 3.2).

The columns in Table 3.1b present condition numbers of the augmented stiffness matrix for

the transient response and the response sensitivity (in parentheses) cases. In both cases,

condition numbers are generally increasing along with the order of polynomials except for

the case of Integrated Legendre polynomials. For the latter case, they are independent of

the polynomial order.

Condition numbers obtained using Hermite polynomials of degree 6, 7, and 8 show ex-

tremely high values compared with the condition numbers obtained for other polynomials.

This is due to the fact that the numerical values of diagonal terms are getting real big when-

ever a polynomial term is added in the expansion for the basis function (see Appendix A.3).

The condition numbers for the case of Integrated Legendre polynomials consistently have

far smaller values. This is due to the fact that the values in the “stiffness matrix” remained

same even after additional polynomial terms are added to the basis function expansion (see
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Appendix A.3). Condition numbers obtained using Legendre and Chebyshev polynomials

show a similar behavior but with a little higher values for the Legendre polynomials. Note

that the augmented stiffness matrix using Chebyshev polynomials is not sparse as is the

case for Legendre polynomials. This is due to nonuniform weights being used for Chebyshev

polynomials.

3.4.2 Mass on a Nonlinear Hardening Spring

Consider a damped oscillation of a mass on a nonlinear hardening spring over a given

length of time, 0 < t ≤ 5, which is defined by

Mü(t) + Cu̇(t) +Ku(t) + µu(t)3 = 0.0 (3.12)

with initial conditions

u(0) = 1.0 u̇(0) = 0.0

for the following values of system parameters:

M = 1.0, C = 4.0, K = 400.0, µ = 1.0

The domain, 0 < t ≤ 5, is divided into fifty elements of equal time steps. Condition

numbers were estimated by varying the order of polynomials from 3 to 8. Results for

the estimated condition numbers for transient response and the response sensitivity (in

parentheses) are given in Table 3.2 (also in Fig. 3.3).

We failed to estimate condition numbers for Hermite polynomials of degree 6, 7 and 8.

Again the Integrated Legendre case shows smallest condition numbers and the condition

number is independent of the order of the polynomial being used.

3.4.3 Mass on a Nonlinear Softening Spring

A damped oscillation of a mass on a nonlinear softening spring model with a time length,

0 < t ≤ 5, is represented by

Mü(t) + Cu̇(t) + α tanh(u(t)) = 0 (3.13)

with initial conditions

u(0) = 0, u̇(0) = 25.0

for the following values of system parameters:

M = 1.0, C = 1.0, α = 100.0
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In order to estimate condition numbers, the domain was divided into fifty elements of

equal time steps and the order of polynomials were again increased from 3 to 8. Table

3.3 (also in Fig. 3.4) presents condition numbers of the augmented stiffness matrix for the

transient response and the response sensitivity (in parentheses).

We noted that the Integrated Legendre case again shows smallest values for the condition

number and the condition number remains unchanged as the number of terms is increased.

The Hermite case shows extremely high condition numbers as the order of the polynomial

is increased.

3.4.4 Two-Degree-of-Freedom System having Cubic Nonlinearities

As a fourth example, a two-degree-of-freedom system governed by differential equations

having cubic nonlinearities of Chapter 2 will be examined

ü1 + ω1
2u1 + 2µ1u̇1 + α1u1

3 + α2u1
2u2 + α3u1u2

2 + α4u2
3 = 0

ü2 + ω2
2u2 + 2µ2u̇2 + α5u1

3 + α6u1
2u2 + α7u1u2

2 + α8u2
3 = 0

(3.14)

with initial conditions

u1(0) = 1.5, u̇1(0) = 0.0, u2(0) = −1.0, u̇2(0) = 0.0

for the following values of the system parameters

ω1
2 = 25.0, µ1 = 0.35, α1 = 5.0, α2 = 0.5, α3 = 0.25, α4 = 3.0

ω2
2 = 17.0, µ2 = 0.25, α5 = 2.5, α6 = 0.75, α7 = 0.2, α8 = 5.0

The estimated condition numbers of the augmented stiffness matrix for the transient

response and the response sensitivity (in parentheses) is given in Table 3.4 (also in Fig. 3.5).

Condition numbers for the response sensitivity are almost same as those for the transient

response case. The results show very similar trend as those for the case of single-degree-of-

freedom systems.

In the case of Hermite polynomials, again we failed to estimate the condition numbers

when higher order polynomials (5, 6, 7 and 8) were used. The Integrated Legendre case

shows the lowest numbers among all the polynomials.
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Fig. 3.1a Limit cycles of van der Pol’s equation with ε = 5.0
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Fig. 3.1b Response curves corresponding to limit cycles with various time step sizes
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Table 3.1b Condition numbers of augmented stiffness matrix: van der Pol’s oscillator

N∗ Legendre Chebyshev Hermite Int. Legendre

3 5.74E+3(5.65E+3) 1.21E+4(1.20E+4) 6.15E+4 (6.08E+4) 823(822)
4 1.07E+4(1.05E+4) 2.55E+4(2.51E+4) 1.11E+6 (1.09E+6) 823(823)
5 1.80E+4(1.78E+4) 4.58E+4(4.51E+4) 9.29E+6 (9.14E+6) 823(823)
6 2.79E+4(2.74E+4) 7.43E+4(7.32E+4) 1.13E+8 (1.13E+8) 823(823)
7 4.10E+4(4.03E+4) 1.12E+5(1.11E+5) 3.52E+9 (3.53E+9) 823(823)
8 5.74E+4(5.65E+4) 1.61E+5(1.59E+5) 5.61E+11(5.62E+11) 823(823)

* order of polynomials
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Fig. 3.2 Condition numbers of augmented stiffness matrix: van der Pol’s oscillator
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Table 3.2 Condition numbers of augmented stiffness matrix: hardening spring model

N∗ Legendre Chebyshev Hermite Int. Legendre

3 2.26E+3(5.40E+3) 4.65E+3(1.13E+4) 6.10E+3(3.92E+4) 117(630)
4 4.34E+3(1.01E+4) 1.01E+4(2.40E+4) 2.75E+5(9.39E+5) 116(630)
5 7.54E+3(1.72E+4) 1.85E+4(4.33E+4) 2.43E+6(7.95E+6) 118(630)
6 1.17E+4(2.66E+4) 3.02E+4(7.05E+4) ** 118(630)
7 1.73E+4(3.92E+4) 4.59E+4(1.06E+5) ** 118(630)
8 2.43E+4(5.49E+4) 6.60E+4(1.53E+5) ** 118(630)

* order of polynomials ** not available
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Fig. 3.3 Condition numbers of augmented stiffness matrix: hardening spring model
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Table 3.3 Condition numbers of the augmented stiffness matrix: softening spring model

N∗ Legendre Chebyshev Hermite Int. Legendre

3 1.55E+2(2.82E+3) 3.27E+2(5.95E+3) 1.61E+3(3.02E+4) 22(402)
4 2.87E+2(5.23E+3) 6.85E+2(1.25E+3) 2.89E+4(5.43E+4) 22(402)
5 4.85E+2(8.84E+3) 1.23E+3(2.24E+4) 2.43E+5(4.57E+6) 22(402)
6 7.49E+2(1.37E+4) 2.00E+3(3.64E+4) 1.34E+7(5.98E+7) 22(402)
7 1.10E+3(2.01E+4) 3.02E+3(5.51E+4) 3.52E+9(3.52E+10) 22(402)
8 1.54E+3(2.81E+4) 4.33E+3(7.91E+4) 5.60E+11(5.60E+12) 22(402)

* order of polynomials
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Fig. 3.4 Condition numbers of augmented stiffness matrix: softening spring model
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Table 3.4 Condition numbers of augmented stiffness matrix for transient response:
two-degree-of-freedom system with cubic nonlinearities

N∗ Legendre Chebyshev Hermite Int. Legendre

2 4.04E+2(4.19E+2) 7.17E+2(7.43E+2) 2.81E+3(2.91E+3) 88(91)
3 9.41E+2(9.75E+2) 1.98E+3(2.06E+3) 9.84E+3(1.02E+4) 88(91)
4 1.75E+3(1.81E+3) 4.17E+3(4.32E+3) 1.78E+5(1.84E+5) 88(91)
5 2.95E+3(3.06E+3) 7.48E+3(7.75E+3) ** 88(91)
6 4.56E+3(4.73E+3) 1.21E+4(1.26E+4) ** 88(91)
7 6.71E+3(6.95E+3) 1.84E+4(1.90E+4) ** 88(91)
8 9.39E+3(9.73E+3) 2.63E+4(2.73E+4) ** 88(91)

* order of polynomials ** not available
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Fig. 3.5 Condition numbers of augmented stiffness matrix for transient response: two-
degree-of-freedom system with cubic nonlinearities
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4. PARAMETRIC IDENTIFICATION OF NONLINEAR

STRUCTURAL DYNAMIC SYSTEMS

4.1 Overview

At present, most of the system identification methods are based on minimization of the

square of the error between the measured response and that of the identified model. This is

the classical least squared approach in which the error is minimized by treating the problem

as an unconstrained optimization problem. Most of the algorithms for solving unconstrained

optimization problems require sensitivity of the response with respect to various system

parameters. These sensitivities are often obtained using either finite difference or by solving

a large set of differential equations. In this thesis, an alternative approach, based on the

TFM is employed to identify a series of single-degree-of-freedom and a two-degree-of-freedom

nonlinear systems.

An advantage of the present method over the finite difference approach, the most com-

mon way to find the sensitivity, is that one does not need to perform a convergence study

to select an appropriate step size for obtaining the sensitivities. Also, the method can

be applied as a step by step procedure, thereby avoiding the need for dealing with large

matrices.

The TFM along with the iterative direct method [60, 68, 69] are applied to a number

of damped single- and two-degree-of-freedom nonlinear systems. Considering all the advan-

tages and the numerical results, it is clear that the TFM is very much suitable for system

identification.

4.2 Transient Response and Its Sensitivity of a Nonlinear System

The sensitivity of the transient response of a nonlinear system can be obtained by taking

the derivative of Eq. (2.11) with respect to dk in Chapter 2. Applications of the afore-

mentioned equations for determining sensitivity of transient responses of a large number of

linear and nonlinear problems are given in chapter 2.
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4.3 Parameter Identification

4.3.1 Iterative Direct Method

As a first step, in parameter identification, an objective function is formulated as a

quadratic functional between the measured response of the given system and an analytic

response of the mathematical model. Then the system parameters can be determined using

the method presented by Levenberg [71] and Marquardt [72] for minimizing the objective

function. To avoid large computational costs involved with obtaining second order partial

derivatives with respect to the design parameters, the method involves only first partial

derivatives of the response with respect to various system parameters .

4.3.2 Objective Function Formulation

The objective function for a single-degree-of-freedom system is given as

L(d) =

∫ T

0
(ua − um)

2 dt (4.1)

and the same for a two-degree-of-freedom-system is given as

L(d) =

∫ T

0

{
(u1a − u1m)

2 + (u2a − u2m)
2
}
dt (4.2)

where ua and um, respectively, denote the time series of the analytical and measured dis-

placement, velocity or acceleration response, T is the record length of the measured response

and d is the parameter vector to be determined. The time series ua is an analytic solution

of the assumed model for the given system. The measured data um was simulated by ob-

taining the response of the system using given parameters. Effect of random noise on the

identification of the parameters is also studied by corrupting the analytical solution with

random noise with varying rms values. The objective function is minimized by setting the

partial derivatives of L with respect to various system parameters equal to zero.

The vector of first derivatives of L(d) with respect to design parameter dk, for the

single-degree-of-freedom system, yields

∂ (L(d))

∂dk
=

∫ T

0
2 (ua − um)

(
∂ua
∂dk

)
dt (4.3)

Similarly the vector of first derivatives of L(d) with respect to dk, for the two-degree-

of-freedom-system, can be expressed as

∂ (L(d))

∂dk
=

∫ T

0
2

{
(u1a − u1m)

(
∂u1a
∂dk

)
+ (u2a − u2m)

(
∂u2a
∂dk

)}
dt (4.4)
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Hence ∂ua/∂dk for all k are the first-order sensitivity of ua with respect to kth system

parameter. Note that using the time finite element method, these sensitivities are obtained

by simply solving the set of linear algebraic equations and not by solving a large set of

ordinary differential equations as was done in the past studies. These sensitivities are

obtained by solving the sensitivity equations formulated in Eq. (2.22) in Chapter 2.

The time series for ua and ∂ua/∂dk are then used to minimize the objective function

L(d).

4.3.3 Objective Function Minimization by Levenberg-Marquardt Method

Minimization of the objective function L(d) is accomplished by Newton’s method [70,

85]. If d(i) denotes the trial values of d after ith iteration, then d(i+1) is obtained as

d(i+1) = d(i) + h(i)∆d (4.5)

where ∆d is the correction vector and h(i) is the step size which is set equal to one. In

order to calculate the correction vector such that, at each iteration, the value of objective

function L(d) will decrease most rapidly, a steepest-descent type procedure is adopted. In

general, the steepest-descent direction is the negative gradient of the function with respect

to the design parameters dk and takes the form:

g = −
{
∂L

∂d1
,
∂L

∂d2
, . . .

∂L

∂dk

}t
(4.6)

where ∂L/∂dk is the rate of change of L with respect to the design parameters dk. The

Hessian H of the objective function is of the form:

H =
∂

∂dk

(
∂L

∂dl

)
(4.7)

Therefore, the equation for correction vector ∆d takes the form:

H∆d = −g (4.8)

At each iteration, the gradient and Hessian are calculated, then a new vector d(i+1) is found.

The iteration is terminated when a predefined convergence criterion is met. The gradient

of the objective function L for the single-degree-of-freedom system takes the form:

g = 2

∫ T

0

(
∂ua
∂dk

)
(ua − um) dt (4.9)

and the gradient of the two-degree-of-freedom system can be written as

g = 2

∫ T

0

{(
∂u1a
∂dk

)
(u1a − u1m) +

(
∂u2a
∂dk

)
(u2a − u2m)

}
dt (4.10)
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Also the Hessian for the single-degree-of-freedom system is given by

H = 2

∫ T

0

[(
∂ua
∂dk

)(
∂ua
∂dl

)
+

∂

∂dk

(
∂ua
∂dl

)
(ua − um)

]
dt (4.11)

while the Hessian for the two-degree-of-freedom system is expressed as

H = 2

∫ T

0

[(
∂u1a
∂dk

)(
∂u1a
∂dl

)
+

∂

∂dk

(
∂u1a
∂dl

)
(u1a − u1m)

+

(
∂u2a
∂dk

)(
∂u2a
∂dl

)
+

∂

∂dk

(
∂u2a
∂dl

)
(u2a − u2m)

]
dt (4.12)

where k, l are row and column indices, respectively. Equations (4.11) and (4.12) require sec-

ond derivatives for the calculation of Hessian. Usually the calculation of second derivatives

requires large computational costs. In order to avoid this second derivatives calculations,

the Levenberg-Marquardt method is used. In this method, the correction vector is obtained

by solving the following set of algebraic equations. Specifically, the equation at the ith

iteration has the form: [
N∗(i) + λ(i)I

]
∆d∗(i) = g∗(i) (4.13)

where

gk
∗(i) =

gk
(i)√

Nkk
(i)
, Nkl

∗(i) =
Nkl

(i)√
Nkk

(i)Nll
(i)

∆dk
∗(i) = ∆dk

√
Nkk

(i) (4.14)

and for the single-degree-of-freedom system:

gk
(i) = 2

∫ T

0

(
∂ua

(i)

∂dk

)
(ua

(i) − um)dt

Nkl
(i) = 2

∫ T

0

(
∂ua

(i)

∂dk

)(
∂ua

(i)

∂dl

)
dt

(4.15)

and for the two-degree-of-freedom system:

gk
(i) = 2

∫ T

0

{(
∂u1a

(i)

∂dk

)
(u1a

(i) − u1m) +

(
∂u2a

(i)

∂dk

)
(u2a

(i) − u2m)

}
dt

Nkl
(i) = 2

∫ T

0

[(
∂u1a

(i)

∂dk

)(
∂u1a

(i)

∂dl

)
+

(
∂u2a

(i)

∂dk

)(
∂u2a

(i)

∂dl

)]
dt

(4.16)

where λ is a scaling factor, chosen to increase the size of the correction vector compo-

nents if the objective function value has been found to decrease in the preceding step. The
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value of λ is set as 0.01 initially and changed by a factor of ten during successive iterations

according to the objective function values. To obtain λ(i+1), λ(i) is multiplied by ten if the

objective function has increased and divided by ten if the objective function has decreased.

After the system is solved for ∆d∗,

∆dk =
∆dk

∗(i)√
Nkk

(i)
(4.17)

each component of the scaled version of the correction vector has to be scaled back using

Eq. (4.17).

For one of the examples studied here, the conjugate gradient method [73, 74], was also

applied to minimize the objective function.

4.3.4 Objective Function Minimization by Conjugate Gradient Method

The conjugate gradient method [73, 74], combining the advantages of both first- and

second-order gradient algorithms, is attractive to try to associate conjugacy properties

with the steepest descent method in an attempt to achieve both efficiency and reliabil-

ity. Basically the method is built around two key ideas. First, a sequence of directions,

s1, s2, . . . , sn is generated which has the orthogonality or conjugacy property with respect

to Ldd
(
= ∂2L/∂d2

)
; that is, [

stiLddsj
]
= 0, i 6= j (4.18)

Second, a sequence of one-dimensional searches is made along each of the conjugate direc-

tions to find the optimum in that direction.

s(i+1) = −r(i+1) + α(i)s(i) (4.19)

where

r(i+1) = r(p(i+1))

α(i) =
r(i+1)tr(i+1)

r(i)tr(i)

(4.20)

Initially, the algorithm behaves like a first-order gradient method but, as iteration pro-

ceeds, it behaves more like a second-order gradient method. In this paper, the minimization

technique developed by Fletcher and Reeves [74] was used for the calculation.
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4.4 NUMERICAL RESULTS

The performance of the proposed time finite element method (TFM) based approach was

evaluated by identifying parameters for a number of single and two-degree-of-freedom sys-

tems. The parameters were identified from the impulse response (to simulate the measured

response) of the example systems, obtained by using the TFM to integrate the nonlinear

system equations with given system parameters. For computational ease, the impulse exci-

tation was simulated by imposing initial velocity conditions. For all the examples studied,

all the data points were used to determine the system parameters. However, for one exam-

ple, results were also obtained using fewer (50) data points than those available (100 and

200). This (the use of two different meshes, a finer one for response generation and a coarser

one for parameter identification) is often done in inverse problems to simulate the fact that

the results from a finer mesh will be more representative (will contain higher-frequency

components) of the physical system and using fewer data points for identification one can

evaluate the robustness of the algorithm.

To simulate noise measurement, random noises with different r.m.s. (5%, 10% and 20%)

values were generated and added to the simulated response. The corresponding simulated

corrupted data um [75] is given by

um = um(1 + r) (4.21)

where r is a uniformly distributed random number, generated by IMSL subroutine DRNUN,

that is scaled and shifted to a range of (−α,α) by using subroutines DSCAL and DADD.

In this study, α was chosen as 0.05 and 0.1 for 10% and 20% noises, respectively. All

computations were performed on IBM 3090-300E mainframe computer.

4.4.1 System with Nonlinear Damping and Cubic Nonlinearity

Consider a nonlinear single-degree-of-freedom [75] system given by

ü(t) + a1u(t) + a2u(t)
3 + a3u̇(t) + a4u̇(t)

3 = 0, 0 < t ≤ 5

u(0+) = 0.0 u̇(0+) = 5.0
(4.22)

with the following given values of the system parameters:

a1 = 25.0, a2 = 2.5, a3 = 1.0, a4 = 0.1 (4.23)

Parameters to be identified are: a1, a2, a3, a4 and a5, the initial velocity u̇(0+). In the

simulation, the record length of 5 seconds was divided into 25 and 50 data points. Initial
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values of the parameters were chosen arbitrary, a1 = 22.5, a2 = 1.0, a3 = 0.5, a4 = 0.3 and

a5 = 3.5.

Table 4.1 presents the results of the identified system using 25 points and 50 points of

the simulated response. The results using noise-free measured data converged to the exact

(given) values of parameters in both cases. The results have been rounded to two decimal

points. For data with 20% noise, parameter a2 is 50.8% in error when 25 data points were

used. The error, however, decreases dramatically (to 4.8%) when 50 data points were used.

Figure 4.1 shows identified response and the simulated uncorrupted data. Figures 4.2-4.3

present results obtained using 50 data points and simulated data corrupted with 10% and

20% noise respectively. Figures 4.4-4.5 show the identified response sensitivities with respect

to parameters a2 and a4, respectively. Note that the convergence rate of the parameter a4

is much faster than that of the parameter a2. This may be due to the fact that the transient

response is significantly more sensitive to a4 (see Fig. 4.5) than to a2 (see Fig. 4.4).

4.4.2 System with combined Quadratic and Cubic Nonlinearities

As a second example, a single-degree-of-freedom system with combined quadratic and

cubic nonlinearity and with viscous damping [60] was considered

ü(t) + a1u̇(t) + a2u(t) + a3u(t)
2 + a4u(t)

3 = 0, 0 < t ≤ 5

u(0+) = 0.0 u̇(0+) = 5.0
(4.24)

for the following two cases of numerical values of the system parameters:

Case (1)

a1 = 1.0, a2 = 25.0, a3 = 0.1, a4 = 0.5 (4.25)

Case (2)

a1 = 1.0, a2 = 25.0, a3 = 2.5, a4 = 5.0 (4.26)

For Case (1), initial values were chosen arbitrarily as, a1 = 0.7, a2 = 22.5, a3 = 0.5, a4 = 1.0

and a5 = 3.5, and for Case (2), the same were chosen as a1 = 0.7, a2 = 22.5, a3 = 1.0,

a4 = 2.5 and a5 = 3.5.

Tables 4.2-4.3 present the numerical results for both cases as compared with those given

by Normann and Kapania [60]. Record length was taken to be 5 seconds and was divided

into 25 and 50 data points. In Case (1), the identified parameter a4 shows the worst accuracy

when 25 data points of the 20% simulated corrupted data were used. The accuracy for a4

improved by 70% when 50 data points were taken. The results for Case (2) show a similar
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trend. For Case (1), Figs. 4.6-4.8 present, respectively, the identified responses and the

simulated data corrupted with 0 %, 10% and 20% r.m.s. values. Figures 4.9-4.10 show

the sensitivities of the identified response with respect to system parameters a1 and a3,

respectively. It was observed that the parameter a3 converges much slower than the other

parameters. This is, again, due to the fact that the response is relatively insensitive to a3 as

compared to other parameters (see Figs. 4.9 and 4.10). Note that Normann and Kapania

used the record length as 5 seconds and 335 data points for representing the measured data.

For comparison purposes, the parameters for this example (Case (2)) were also identified

using a conjugate gradient method. Table 4.4a presents results from this comparison using

50 data points. These 50 points were selected from population sizes of 50, 100 and 200 data

points. The results show that Levenberg-Marquardt method is more accurate than the

conjugate gradient method in this case. For noise-free case, the results were not influenced

by the population size. But the results for 10% and 20 % simulated corrupted data were.

The inaccuracy of identified parameters for nonlinear terms was increased with an increase in

the population size. Table 4.4b presents the results using 100 data points in the simulation.

The 100 data points in the simulation were chosen from population sizes of 100 and 200

data points. The results show a similar trend as the 50 data points case.

4.4.3 System with Linear and Quadratic Damping

Consider a single-degree-of-freedom system with linear and quadratic damping [60]:

ü(t) + a1u̇(t) + a2u(t) + a3u̇(t) |u̇(t)| = 0, 0 < t ≤ 5

u(0+) = 0.0 u̇(0+) = 5.0
(4.27)

for the following two cases of numerical values of the system parameters:

Case (1)

a1 = 1.0, a2 = 25.0, a3 = 0.5 (4.28)

Case (2)

a1 = 1.0, a2 = 25.0, a3 = 2.5 (4.29)

As initial values, a1 = 0.7, a2 = 22.5, a3 = 1.0 and a4 = 3.5 were chosen for Case (1), and

a1 = 0.7, a2 = 22.5, a3 = 1.5 and a4 = 3.5 for Case (2).

Tables 4.5-4.6 present the numerical results for both cases as compared to those given

by Normann and Kapania. For Case (1), 25 and 50 data points were used and for Case (2),

50 and 100 data points were used. Also we used Integrated Legendre polynomials as basis
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functions which gave a better conditioned system of equations. For Case (1), the present

approach using 50 points gives results which are more accurate than those given by Normann

and Kapania. In Case (2), the results using 100 data points show good accuracy. Figures

4.11-4.12 present respectively the identified responses and the simulated data corrupted

with 10% and 20% noise respectively for Case (2).

4.4.4 Two-Degree-of-Freedom System having Cubic Nonlinearities

Consider a two-degree-of-freedom system having cubic nonlinearities [69, 76]:

ü1 = −ω12u1 − 2µ1u̇1 − α1u1
3 − α2u1

2u2 − α3u1u2
2 − α4u2

3

ü2 = −ω22u2 − 2µ2u̇2 − α5u1
3 − α6u1

2u2 − α7u1u2
2 − α8u2

3
(4.30)

with initial conditions:

u1(0) = 1.5, u̇1(0) = 0.0, u2(0) = −1.0, u̇2(0) = 0.0 (4.31)

for the following values of system parameters:

ω21 = 25.0, µ1 = 0.35, α1 = 5.0, α2 = 0.5, α3 = 0.25, α4 = 3.0

ω22 = 17.0, µ2 = 0.25, α5 = 2.5, α6 = 0.75, α7 = 0.2, α8 = 5.0
(4.32)

This type of systems are associated with many physical systems such as the vibration

of strings, beams and plates.

One-Step Identification Procedure: The domain (0 < t ≤ 10) is divided into 100 ele-

ments of equal time steps. Legendre polynomials of the second degree are used as basis

functions for the time finite element method. For simplicity, initial velocities have not been

treated as unknown parameters. The parameters to be identified are {ω21 , µ1, α1, α2, α3, α4,
ω22, µ2, α5, α6, α7, α8}. The initial trial values of system parameters were chosen as

ω21 = 20.0, µ1 = 0.50, α1 = 3.0, α2 = 0.20, α3 = 0.15, α4 = 4.0

ω22 = 14.0, µ2 = 0.55, α5 = 4.5, α6 = 0.35, α7 = 0.35, α8 = 2.0
(4.33)

The results, Table 4.7, show that the method after 1000 iterations did not converge to any

values, the parameters for nonlinear terms, {α1, α2, α3, α4, α5, α6, α7, α8}, were particularly
unreasonable.

Two-Step Identification Procedure: A two step procedure was then adopted for the

direct iterative method. First the parameters for the linear terms, {ω21 , µ1, ω22 , µ2}, were
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identified, then those for the nonlinear terms. For linear terms, the simulated data were

generated using very small initial displacements (u1(0) = 0.05, u2(0) = −0.03). Since the

original system, Eq. (4.33), behaves almost linearly when subjected to very small initial

conditions, identification was performed assuming the system to be linear:

ü1 = −ω12u1 − 2µ1u̇1 u1(0) = 0.05, u̇1(0) = 0.0

ü2 = −ω22u2 − 2µ2u̇2 u2(0) = −0.03, u̇2(0) = 0.0
(4.34)

The simulated data, however, was obtained by integrating the actual nonlinear system.

Next, the parameters for nonlinear terms were identified by keeping the parameters cor-

responding to linear terms {ω12, µ1, ω22, µ2} as fixed. Identification was performed on the

following system.

ü1 = −ω12u1 − 2µ1u̇1 − α1u1
3 − α2u1

2u2 − α3u1u2
2 − α4u2

3

ü2 = −ω22u2 − 2µ2u̇2 − α5u1
3 − α6u1

2u2 − α7u1u2
2 − α8u2

3
(4.35)

with initial conditions:

u1(0) = 1.5, u̇1(0) = 0.0, u2(0) = −1.0, u̇2(0) = 0.0 (4.36)

Table 4.8 presents the numerical results of the identified system using 100 points of

the simulated data. The results using noise-free simulated data easily converged to the

given values of system parameters. Also results using data corrupted by 5%, 10% and

20% random noise show reasonably accurate values of system parameters. Figures 4.13-

4.14 present respectively the identified responses for u1 and u2 with the simulated data

corrupted by 20% random noise.
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Table 4.1 Numerical results for the system with nonlinear damping and cubic nonlinearity

Parameters a1 a2 a3 a4 a5
Initial values 22.5 1.0 0.5 0.3 3.5
25 data points
Identified (0%) 25.00 2.50 1.00 0.10 5.00
Identified (10%) 24.87 3.17 1.00 0.10 5.09
Identified (20%) 24.74 3.77 1.00 0.11 5.21
55 data points
Identified (0%) 25.00 2.50 1.00 0.10 5.00
Identified (10%) 24.98 2.57 1.00 0.10 5.01
Identified (20%) 24.96 2.62 1.00 0.10 5.03
Exact values 25.0 2.5 1.0 0.1 5.0

Table 4.2 Numerical results for the system with combined quadratic and cubic nonlinearities, Case (1)

Parameters a1 a2 a3 a4 a5
Initial values 0.7 22.5 0.5 1.0 3.5
25 data points
Identified (0%) 1.00 25.00 0.10 0.50 5.00
Identified (10%) 1.01 24.87 0.25 0.90 5.04
Identified (20%) 1.03 24.74 0.41 1.29 5.08
50 data points
Identified (0%) 1.00 25.0 0.10 0.50 5.00
Identified (10%) 1.00 24.99 0.22 0.47 5.00
Identified (20%) 1.00 24.97 0.34 0.45 5.00
335 data pointsa

Identified (0%) 1.00 25.0 0.10 0.50 5.00
Identified (10%) 0.98 25.05 0.12 0.31 4.97
Identified (20%) 0.98 25.10 0.13 0.12 4.94
Exact values 1.0 25.0 0.1 0.5 5.0

aResults from Normann and Kapania, 1990
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Table 4.3 Numerical results for the system with combined quadratic and cubic nonlinearities, Case (2)

Parameters a1 a2 a3 a4 a5
Initial values 0.7 22.5 1.0 2.5 3.5
25 data points
Identified (0%) 1.00 25.00 2.50 5.00 5.00
Identified (10%) 0.99 24.99 2.32 5.28 4.91
Identified (20%) 0.97 24.96 2.11 5.61 4.81
50 data points
Identified (0%) 1.00 25.00 2.50 5.00 5.00
Identified (10%) 1.00 25.01 2.61 4.92 5.00
Identified (20%) 1.01 25.03 2.73 4.80 4.99
335 data pointsa

Identified (0%) 1.00 25.00 2.50 5.00 5.00
Identified (10%) 0.98 25.04 2.56 4.79 4.96
Identified (20%) 0.98 25.10 2.62 4.58 4.93
Exact values 1.0 25.0 2.5 5.0 5.0

aResults from Normann and Kapania, 1990

Table 4.4a Comparison of numerical results obtained from Levenberg-Marquardt and Conjugate Gradient
methods for the system with combined quadratic and cubic nonlinearities, Case (2), 50 data
points

Noise
0% 10% 20%

50 data points selected from population sizes of:
50 100 200 50 100 200 50 100 200

Levenberg-Marquardt Method

1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98 1.00
25.00 25.00 25.00 24.96 24.98 25.01 24.92 24.96 25.02
2.50 2.50 2.50 2.56 2.17 2.96 2.61 1.82 3.42
5.00 5.00 5.00 5.06 5.23 4.90 5.12 5.48 4.80
5.00 5.00 5.00 5.00 4.94 5.02 5.01 4.88 5.05

Conjugate Gradient Method

1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98 1.01
25.00 25.00 25.00 24.95 24.97 25.00 24.92 24.95 25.01
2.50 2.53 2.53 2.60 2.19 3.01 2.67 1.82 3.47
5.00 5.28 5.28 5.34 5.53 5.16 5.34 5.79 5.06
5.00 5.01 5.01 5.01 4.95 5.03 5.01 4.89 5.05
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Table 4.4b Comparison of numerical results obtained from Levenberg-Marquardt and Conjugate Gradient
methods for the system with combined quadratic and cubic nonlinearities, Case (2), 100 data
points

Noise
0% 10% 20%

100 data points selected from population sizes of:
100 200 100 200 100 200

Levenberg-Marquardt Method

1.00 1.00 0.99 0.99 0.99 0.99
25.00 25.00 25.00 24.99 25.01 24.99
2.50 2.50 2.18 2.89 1.85 3.28
5.00 5.00 5.03 4.92 5.07 4.84
5.00 5.00 4.97 4.99 4.94 4.98

Conjugate Gradient Method

1.00 1.00 0.99 0.99 0.99 0.99
25.00 25.00 25.00 24.99 25.01 24.99
2.51 2.50 2.18 2.90 1.85 3.30
5.07 5.07 5.10 4.98 5.15 4.90
5.00 5.00 4.97 4.99 4.94 4.98

Table 4.5 Numerical results for the system with quadratic damping, Case (1)

Parameters a1 a2 a3 a4
Initial values 0.7 22.5 0.5 3.5
25 data points
Identified (0%) 1.00 25.00 0.50 5.00
Identified (10%) 0.99 25.04 0.51 5.04
Identified (20%) 0.97 25.09 0.53 5.08
50 data points
Identified (0%) 1.00 25.00 0.50 5.00
Identified (10%) 1.00 25.00 0.50 5.00
Identified (20%) 1.00 25.01 0.50 5.00
335 data pointsa

Identified (0%) 1.00 25.00 0.50 5.00
Identified (10%) 1.00 24.99 0.48 4.92
Identified (20%) 1.00 24.97 0.46 4.84
Exact 1.00 25.00 0.50 5.0

aResults from Normann and Kapania, 1990
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Table 4.6 Numerical results for the system with quadratic damping, Case (2)

Parameters a1 a2 a3 a4
Initial values 0.7 22.5 1.5 3.5
25 data points
Identified (0%) 1.00 25.00 2.50 5.00
Identified (10%) 1.05 25.00 2.40 4.86
Identified (20%) 1.08 24.99 2.34 4.78
100 data points
Identified (0%) 1.00 25.00 2.50 5.00
Identified (10%) 1.00 24.97 2.49 5.00
Identified (20%) 0.99 24.94 2.52 5.04
335 data pointsa

Identified (0%) 1.00 25.00 2.50 5.00
Identified (10%) 0.96 24.96 2.49 4.92
Identified (20%) 0.94 24.92 2.49 4.84
Exact values 1.00 25.00 2.50 5.0

aResults from Normann and Kapania, 1990

Table 4.7 Numerical results for the two-degree-of-freedom system using one-step procedure and no noise

Parameters Initial
Identified

Exact
0% noise

ω2
1 20.0 26.07 25.00

µ1 0.5 0.48 0.35
α1 3.0 3.60 5.00
α2 0.2 2.32 0.50
α3 0.15 1.54 0.25
α4 4.0 -0.96 3.00
ω2
2 14.0 18.38 17.00

µ2 0.55 0.31 0.25
α5 4.5 1.85 2.50
α6 0.35 -4.08 0.75
α7 0.35 -3.95 0.20
α8 2.0 3.63 5.00
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Table 4.8 Numerical results for the two-degree-of-freedom system using two-step procedure

Parameters Initial
Noise

Exact
0% 5% 10% 20%

ω2
1 20.0 25.00(25.00) 25.00(24.58) 25.01(24.23) 25.01(23.72) 25.00
µ1 0.5 0.35(0.35) 0.35(0.34) 0.35(0.34) 0.35(0.35) 0.35
α1 3.0 5.00(5.00) 5.24(5.97) 5.49(6.76) 6.01(7.77) 5.00
α2 0.2 0.49(0.50) 0.86(1.72) 1.25(2.72) 2.04(4.07) 0.50
α3 0.15 0.25(0.25) 0.10(0.77) -0.07(1.23) -0.42(1.99) 0.25
α4 4.0 3.00(3.00) 2.85(2.92) 2.68(2.79) 2.35(2.44) 3.00
ω2
2 14.0 17.00(17.00) 17.00(17.11) 17.00(17.27) 16.99(17.75) 17.00
µ2 0.55 0.25(0.25) 0.25(0.26) 0.25(0.26) 0.25(0.27) 0.25
α5 4.5 2.50(2.50) 2.53(2.73) 2.56(2.93) 2.64(3.21) 2.50
α6 0.35 0.75(0.75) 0.91(0.61) 1.10(0.34) 1.48(-0.56) 0.75
α7 0.35 0.20(0.20) 0.32(-0.30) 0.45(-0.91) 0.69(-2.40) 0.20
α8 2.0 5.00(5.00) 4.95(4.75) 4.89(4.40) 4.76(3.46) 5.00

( ); Results from Normann and Kapania, 1990, using 335 data points, unfiltered data,

using same initial guess values
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Fig. 4.1 Identified/Simulated response of the system with nonlinear damping and cubic
nonlinearity.
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Fig. 4.2 Identified/Simulated response of the system with nonlinear damping and cubic
nonlinearity.
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Fig. 4.3 Identified/Simulated response of the system with nonlinear damping and cubic
nonlinearity.
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Fig. 4.4 Sensitivity of the identified response with respect to a2 for the system having
nonlinear damping and cubic nonlinearity.
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Fig. 4.5 Sensitivity of the identified response with respect to a4 for the system having
nonlinear damping and cubic nonlinearity.
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Fig. 4.6 Identified/Simulated response of the system with combined quadratic and cubic
nonlinearity, Case (1).
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Fig. 4.7 Identified/Simulated response of the system with combined quadratic and cubic
nonlinearity, Case (1).

PARAMETRIC IDENTIFICATION 89



Time(sec)

0 1 2 3 4 5

R
es

po
ns

e 
(u

)

-1.0

-0.5

0.0

0.5

1.0

Identified response 
20% simulated corrupted data
(50 data points)

Fig. 4.8 Identified/Simulated response of the system with combined quadratic and cubic
nonlinearity, Case (1).
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Fig. 4.9 Sensitivity of the identified response with respect to a1 for the system having
combined quadratic and cubic nonlinearity, Case (1).
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Fig. 4.10 Sensitivity of the identified response with respect to a3 for the system having
combined quadratic and cubic nonlinearity, Case (1).
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Fig. 4.11 Identified/Simulated response of the system with linear and quadratic damping,
Case (2).

PARAMETRIC IDENTIFICATION 93



Time(sec)

0 1 2 3 4 5

R
es

po
ns

e 
(u

)

-0.25

0.00

0.25

0.50

Identified response  
20% simulated corrupted data 
(100 data points)

Fig. 4.12 Identified/Simulated response of the system with linear and quadratic damping,
Case (2).
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Fig. 4.13 Identified/Simulated response of two-degree-of-freedom system having cubic
nonlinearities, u1.
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Fig. 4.14 Identified/Simulated response of two-degree-of-freedom system having cubic
nonlinearities, u2.
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5. TIME FINITE ELEMENT FOR OPTIMAL CONTROL

5.1 Overview

Many dynamic systems - such as aerospace systems - are nonlinear and/or time-varying,

and the techniques for analysis and design of linear, time-invariant systems are, in general,

not applicable to these more complicated systems. In many instances, it became clear that a

more systematic approach was desirable. This led to a renewed interest in the application of

calculus of variations to study those systems. The weak variational formulation for optimal

control problems by Hodges and Bless [77, 78, 79] is reviewed and possibility was checked

for the development of the finite element method using higher order polynomial functions.

To evaluate the proposed method, the approach is applied to two simple optimal problems.

Solutions for state, costate and control are obtained using both one and multiple elements

with various order of polynomials. The results show the accuracy is excellent with a fewer

number of elements than those used by other researchers.

5.2 Weak Hamiltonian Formulation

5.2.1 Hamilton’s Weak Principle

In recent years, the use of Hamilton’s classical principle [23, 24, 25, 26, 37, 38] to obtain

numerical solutions of initial and boundary value problems for mechanical systems has

seen a renewed interest. The variational formulation, known as Hamilton’s Weak Principle

(HWP) [9], described the real motion at any time between T0 and Tf .

∫ Tf

T0
δLdt+

∫ Tf

T0
δqtQdt = δqtp

∣∣∣∣Tf
T0

(5.1)

where L and Q, respectively denote the Lagrangian of the system and the nonconservative

generalized forces applied to the system, p is the generalized momenta, q is the generalized

coordinates and T0 and Tf are initial and final time respectively.

Equation (5.1) can be derived by combining D’Alembert’s principle for the inertia force

and the principle of virtual work for the static equilibrium of a system. The term “weak”

is used since the given system differential equation is represented in an equivalent integral

form of a functional with dependent variables. This formulation can be a basis for the TFM

to develop consistent and efficient approximations for the determination of the response
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of mechanical systems. Research based on HWP is very active in the areas of periodic

solutions for autonomous systems [99] and multibody dynamics [13, 14]. The following

section explains the weak form by Hodges and Bless [77] based on the variation of the

performance index for the optimal control.

5.2.2 Weak Formulation for Optimal Control

Consider a system defined over a time interval from T0 to Tf by a set of n states x

and a set of m controls u. Here x is piecewise smooth, u is piecewise continuous, and f is

continuous on Rn×Rm×R1. The states of the system are governed by a set of differential

equations. Consider a performance index J of the form

J =

∫ Tf

T0
L(x, u, t)dt+ φ(x(Tf ), Tf ) (5.2)

subject to the system equations

ẋ(t) = f(x(t), u(t), t), x(T0) given, T0 ≤ t ≤ Tf (5.3)

with the terminal constraints

ψ[x(Tf ), Tf ] = 0 (5.4)

where ψ are q vector functions of the state variables and time specified at unspecified

terminal time.

To derive an optimality system for this problem, the terminal constraints ψ(x, t) are

adjoined to J with Lagrange multipliers ν as follows

J =

∫ Tf

T0
L(x, u, t)dt+

[
φ(x, t) + νtψ(x, t)

]Tf
T0

(5.5)

The new performance index J adjoined by the system differential equations with Lagrange

multiplier functions λ(t) can be written as

J =

∫ Tf

T0

[
L(x, u, t) + λt(t)(f − ẋ)

]
dt+Φ

∣∣∣∣Tf
T0

(5.6)

where Φ = φ(x, t) + νtψ(x, t). Here λ(t), also called as influence functions, will be referred

to as costates.

In order to transform all strong boundary conditions into natural boundary conditions,

a constraint equation for continuity at T0 and Tf is adjoined to the performance index.

Introducing

x

∣∣∣∣
T0

4
= lim

t→t+0

x(t) x

∣∣∣∣
Tf

4
= lim

t→t−
f

x(t) (5.7)

x̂

∣∣∣∣
T0

4
= x(T0) x̂

∣∣∣∣
Tf

4
= x(Tf ) (5.8)
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The continuity at T0 and Tf are enforced weakly to the performance index by using a set

of discrete undetermined multipliers, α, defined at T0 and Tf as follows

J̄ =

∫ Tf

T0

[
L(x, u, t) + λt(f − ẋ)

]
dt+Φ

∣∣∣∣Tf
T0

+ αt (x− x̂)

∣∣∣∣Tf
T0

(5.9)

This allows the final weak formulation to have only natural(weak) boundary conditions and

the shape functions to be chosen from a less restricted class of functions.

As a next step for the weak formulation, the first variation of J̄ , the necessary condition

for finding an extremal of J̄ , has to be zero. After performing several integrations by parts

and enforcing the continuity conditions (For more detailed formulation, see Ref.[77].), the

final form of the weak formulation for optimal control by Hodges and Bless [77] can be

written as

δJ̄ =

∫ Tf

T0

{
δλ̇tx− δẋtλ+ δxt

[(
∂L

∂x

)t
+

(
∂f

∂x

)t
λ

]
+ δλtf

+ δut
[(

∂L

∂u

)t
+

(
∂f

∂u

)t
λ

]}
dt+ δTf

[
L+ λt(f − ẋ) +

∂Φ

∂x

]
Tf

+ δνtψ

∣∣∣∣Tf
T0

+ δxtλ̂

∣∣∣∣Tf
T0

− δλtx̂

∣∣∣∣Tf
T0

= 0 (5.10)

5.3 Finite Element Discretization using Higher Order Shape Functions

For the finite element discretization process, we may choose linear shape functions [77]

for the variables in Eq. (5.10). But we now turn our attention to obtain p-version shape

functions using hierarchical polynomials [100] such as Legendre, Chebyshev, Hermite poly-

nomials. These shape functions are suitable for obtaining highly accurate solutions.

5.3.1 Coordinate Transformation

First consider the transformation [101] from the global (or problem) coordinate system t

to a local coordinate system ξ which has the origin at the center of the element and is scaled

such that ξ = −1 at the left end node and ξ = 1 at the right end node. The transformation

is achieved by the linear “stretch” transformation given by

ξ =
2t

∆T
− (T0 + Tf )

∆T
(5.11)

where ∆T equals to Tf − T0. The transformation Eq. (5.11) transforms the coordinate

t (T0 ≤ t ≤ Tf ) to a nondimensional time ξ (−1 ≤ ξ ≤ 1). Rewriting Eq. (5.10) using this

transformation, one then obtains

δJ̄ =

∫ 1

−1

〈
δλ′tx− δx′tλ+

∆T

2

{
δxt
[(

∂L

∂x

)t
+

(
∂f

∂x

)t
λ

]
+ δλtf
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+ δut
[(

∂L

∂u

)t
+

(
∂f

∂u

)t
λ

]}〉
dξ + δξ

[
L+ λt(f − ẋ) +

∂Φ

∂x

]
ξ=1

+ δνtψ

∣∣∣∣1−1 + δxtλ̂

∣∣∣∣1−1 − δλtx̂

∣∣∣∣1−1 (5.12)

where prime denotes the differentiation with respect to ξ. C0 type shape functions [102, 103]

may be used to represent δx, δλ and δu. These functions are chosen to be hierarchical

“bubble” functions.

δx =
(1− ξ)

2
δx0 +

(1 + ξ)

2
δx1 +

n−2∑
i=1

δxi
∗Ni+1(ξ) − 1 ≤ ξ ≤ 1

δλ =
(1− ξ)

2
δλ0 +

(1 + ξ)

2
δλ1 +

n−2∑
i=1

δλ∗iNi+1(ξ) − 1 ≤ ξ ≤ 1 (5.13)

δu =
(1− ξ)

2
δu0 +

(1 + ξ)

2
δu1 +

n−2∑
i=1

δui
∗Ni+1(ξ) − 1 ≤ ξ ≤ 1

Then the derivatives of δx and δλ with respect to ξ can be written as

δx′ =
1

2
(δx1 − δx0) +

n−2∑
i=1

δxi
∗N ′

i+1(ξ) − 1 ≤ ξ ≤ 1

δλ′ =
1

2
(δλ1 − δλ0) +

n−2∑
i=1

δλ∗iN
′
i+1(ξ) − 1 ≤ ξ ≤ 1

(5.14)

Also the approximate values of x and λ are taken as continuous functions on the element

interior while for distinct, discrete values on the element boundaries. Thus,

x =
n−1∑
j=1

x̄jMj(ξ) λ =
n−1∑
j=1

λ̄jMj(ξ) − 1 < ξ < 1

x = x̂0 λ = λ̂0 ξ = −1 (5.15)

x = x̂1 λ = λ̂1 ξ = 1

Here x̂0 and λ̂0 denote discrete values of x and λ at the left node of the element, x̂1 and λ̂1

denote discrete values of x and λ at the right node of the element. Also the approximation

for u can be written as

u =
n−1∑
j=1

ūjMj(ξ) − 1 ≤ ξ ≤ 1 (5.16)
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5.4 Numerical Examples

5.4.1 A Simple Optimal Control Problem I using One Element

Consider the following optimal control problem [78] where x, λ and u are scalars.

J =
1

2
x(1)2 +

∫ 1

0

1

2
u2dt 0 < t < 1

ẋ = tu x(0) = 4

(5.17)

With L = 1
2u

2, f = tu and a given initial condition, the final form of the weak formula-

tion of Eq. (5.12) for this problem takes form of

δJ̄ =

∫ Tf

T0

{
δλ̇tx− δẋtλ+ δλtf + δut

[(
∂L

∂u

)t
+

(
∂f

∂u

)t
λ

]}
dt

+ δxtλ̂

∣∣∣∣Tf
T0

− δλtx̂

∣∣∣∣Tf
T0

(5.18)

and boundary conditions are x̂(0) = 4 and x̂(Tf ) = λ̂(Tf ). Rewriting Eq. (5.18) by use of

transformation Eq. (5.11) yields

δJ̄ =

∫ 1

−1

〈
δλ′tx− δx′tλ+

∆T

2

{
δλtf + δut

[(
∂L

∂u

)t
+

(
∂f

∂u

)t
λ

]}〉
dξ

+ δxtλ̂

∣∣∣∣1−1 − δλtx̂

∣∣∣∣1−1 (5.19)

Substituting Eq. (5.13) into the first two terms in the integrand and the trailing terms in

Eq. (5.19) results in

∫ 1

−1
δλ′txdξ − δλtx̂

∣∣∣∣1−1 = δλAx

−
∫ 1

−1
δx′tλdξ + δxtλ̂

∣∣∣∣1−1 = −δxAλ
(5.20)

where

δλ =
{
δλ0, δλ1, δλ∗1, δλ∗2

}

δx =
{
δx0, δx1, δx∗1, δx∗2

} (5.21)

and
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A =




1 0 −1

2

∫ 1

−1

M1(ξ)dξ −1

2

∫ 1

−1

M2(ξ)dξ −1

2

∫ 1

−1

M3(ξ)dξ

0 −1 1

2

∫ 1

−1

M1(ξ)dξ
1

2

∫ 1

−1

M2(ξ)dξ
1

2

∫ 1

−1

M3(ξ)dξ

N2(−1) −N2(1)

∫ 1

−1

N ′
2(ξ)M1(ξ)dξ

∫ 1

−1

N ′
2(ξ)M2(ξ)dξ

∫ 1

−1

N ′
2(ξ)M3(ξ)dξ

N3(−1) −N3(1)

∫ 1

−1

N ′
3(ξ)M1(ξ)dξ

∫ 1

−1

N ′
3(ξ)M2(ξ)dξ

∫ 1

−1

N ′
3(ξ)M3(ξ)dξ




(5.22)

where A is n× (n+ 1) matrix and

x =
{
x̂0, x̂1, x̄1, x̄2, x̄3

}t
λ =

{
λ̂0, λ̂1, λ̄1, λ̄2, λ̄3

}t (5.23)

Substituting Eq. (5.13) into the third term in the integrand in Eq. (5.19) yields

∆T

2

∫ 1

−1
δλtfdξ = δλDu (5.24)

where

u =
{
û0, û1, ū1, ū2, ū3

}t
(5.25)

and

D =




0 0
∆T

2

∫ 1

−1

t
(1 − ξ)

2
M1(ξ)dξ

∆T

2

∫ 1

−1

t
(1 − ξ)

2
M2(ξ)dξ

∆T

2

∫ 1

−1

t
(1 − ξ)

2
M3(ξ)dξ

0 0
∆T

2

∫ 1

−1

t
(1 + ξ)

2
M1(ξ)dξ

∆T

2

∫ 1

−1

t
(1 + ξ)

2
M2(ξ)dξ

∆T

2

∫ 1

−1

t
(1 + ξ)

2
M3(ξ)dξ

0 0
∆T

2

∫ 1

−1

tN2(ξ)M1(ξ)dξ
∆T

2

∫ 1

−1

tN2(ξ)M2(ξ)dξ
∆T

2

∫ 1

−1

tN2(ξ)M3(ξ)dξ

0 0
∆T

2

∫ 1

−1

tN3(ξ)M1(ξ)dξ
∆T

2

∫ 1

−1

tN3(ξ)M2(ξ)dξ
∆T

2

∫ 1

−1

tN3(ξ)M3(ξ)dξ




(5.26)

where D is n× (n + 1) matrix and t = ∆T
2 (1 + ξ) in the matrix.

Substituting Eq. (5.13) into the fourth term in the integrand in Eq. (5.19) yields

∆T

2

∫ 1

−1
δut
{(

∂L

∂u

)t
+

(
∂f

∂u

)t
λ

}
dξ = δuCu+ δuDλ (5.27)

where

δu =
{
δu0, δu1, δu∗1, δu∗2

}
(5.28)
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and

C =




0 0
∆T

2

∫ 1

−1

(1− ξ)

2
M1(ξ)dξ

∆T

2

∫ 1

−1

(1− ξ)

2
M2(ξ)dξ

∆T

2

∫ 1

−1

(1− ξ)

2
M3(ξ)dξ

0 0
∆T

2

∫ 1

−1

(1 + ξ)

2
M1(ξ)dξ

∆T

2

∫ 1

−1

(1 + ξ)

2
M2(ξ)dξ

∆T

2

∫ 1

−1

(1 + ξ)

2
M3(ξ)dξ

0 0
∆T

2

∫ 1

−1

N2(ξ)M1(ξ)dξ
∆T

2

∫ 1

−1

N2(ξ)M2(ξ)dξ
∆T

2

∫ 1

−1

N2(ξ)M3(ξ)dξ

0 0
∆T

2

∫ 1

−1

N3(ξ)M1(ξ)dξ
∆T

2

∫ 1

−1

N3(ξ)M2(ξ)dξ
∆T

2

∫ 1

−1

N3(ξ)M3(ξ)dξ




(5.29)

where C is n× (n+1) matirx. Combining all four matrix equations leads to a matrix form

of equations,



δλ

δx

δu






A 0 D

0 B 0

0 D C






x

λ

u


 =




0

0

0


 (5.30)

Since δλ, δx and δu are arbitrary, Eq. (5.30) leads directly to the final matrix equation to

be solved,



A 0 D

0 B 0

0 D C






x

λ

u


 =




0

0

0


 (5.31)

Figures 5.1-5.3 respectively show the state, costate and control for the system. The results

were obtained using one element with various order of Legendre polynomials. In the case

of states (see Fig. 1), the exact solution was obtained using the third order of Legendre

polynomials. The exact solution was obtained in the case of control (see Fig. 3) using the

first order Legendre polynomials.

5.4.2 Optimal Control Problem II using Multiple Elements

The problem [80, 81] is to minimize

J =
1

2
x(T )2 +

∫ 1

0

1

2
u2dt 0 < t < T

ẋ = h(t)u, h(t) = 1 + t− 3

17
t2

(5.32)

where T = 3sec, x and u are scalars, and the initial condition is x(0) = −5355692/268515.
The difference between this problem and the problem I is the system equation. So Eq.

(5.18) can be also used as a governing equation for this problem. In the formulation, we

may put L = 1
2u

2 and f = (1 + t− 3/17t2)u.
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In this example, the derivation of the assembly of element equations in matrix forms is

shown. For illustration purpose, the derivation is restricted to the matrix A which is a part

of the element equation in a matrix form (see Eq. (5.31)). Suppose that the domain of the

problem is divided into two elements of equal time lengths with the value of n = 5. Then

the assembled global matrix has the form of




A
(1)
11 A

(1)
12 0 A

(1)
13 A

(1)
14 0 0 . . .

A
(1)
21 A

(1)
22 +A

(2)
11 A

(2)
12 A

(1)
23 A

(1)
24 A

(2)
13 A

(2)
14 . . .

0 A
(2)
21 A

(2)
22 0 0 A

(2)
23 A

(2)
24 . . .

A
(1)
31 A

(1)
32 0 A

(1)
33 A

(1)
34 0 0 . . .

0 A
(2)
31 A

(2)
32 0 0 A

(2)
33 A

(2)
34 . . .

...
...

...
...

...
...

...
. . .







X̂1

X̂2

X̂3

x̄
(1)
1

x̄
(1)
2

x̄
(2)
1

x̄
(2)
2
...




=




0

0

0

0

0

0

0
...




(5.33)

The assembly of the rest element matrices, C and D, is same as above.

We label the values of x at the global nodes with X̂i(i = 1, 2, ..., N) where N is the total

number of global nodes. Then we have the following correspondence, so called interelement

continuity conditions, between the local nodal values and the global nodal values.

x̂
(1)
0 = X̂1, x̂

(1)
1 = X̂2 = x̂

(2)
0 , x̂

(2)
1 = X̂3 (5.34)

Figures 5.4-5.5 respectively show state and control of the system. The results were

obtained using three element with various order of Legendre polynomials.
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Fig. 5.1 State vs time for example problem I using one element.
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Fig. 5.2 Costate vs time for example problem I using one element.
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Fig. 5.3 Control vs time for example problem I using one element.
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Fig. 5.4 State vs time for example problem II using three elements.
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Fig. 5.5 Control vs time for example problem II using three elements.
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6. CONCLUSION AND FUTURE WORK

6.1 Summary and Conclusion

In Chapter 2, the bilinear formulation, proposed earlier by Peters and Izadpanah for

linear systems, is extended to solve nonlinear transient problems. This method is easily

extended to the time finite element formulation for the initial value problems by adopting a

constraint on the test functions, v(T0) 6= 0 and v(Tf ) = 0. The bilinear formulation can be

proved to be a convergent method, provided that the formulation has appropriate constraint

on the test functions. The use of a Lagrange multiplier method for applying the constraint

v(Tf ) = 0 eliminates various numerical difficulties faced in earlier implementation of the

method. Throughout this paper, Legendre polynomials are used as basis functions. The

results, in some cases, were also obtained using other polynomials such as Chebyshev, Her-

mite, and Integral form of Legendre polynomials and were found to be almost identical to

those obtained using Legendre polynomials. An advantage of the use of the orthogonal func-

tions as basis functions is that the resulting “stiffness matrix” is numerically well behaved.

Also, it is convenient to use hierarchical form of basis functions since it allows additional

higher order basis functions within elements without changing the mesh and without re-

moving basis functions that are already in use. As a result, one need not calculate the

entire matrix anew when higher-order basis functions are added to improve the accuracy of

the approximation. The present approach is thus ideal for adaptive schemes. By using a

time finite element formulation, not only the transient responses but also sensitivities of the

transient response are calculated easily (by performing a direct differentiation of the result-

ing algebraic equations). An advantage of the present approach over the central difference

approach is that one does not need to perform a convergence study to select an appropriate

step size for obtaining the sensitivities. The numerical results for the presented examples

show very good agreement between the results obtained using the present approach and

those available either exactly or obtained from central difference approximations. Based on

the results presented here, the proposed method appears to be a good choice for calculating

both the transient response and its sensitivity with respect to various system parameters

for linear and nonlinear, damped and undamped systems.

In Chapter 3, in order to find the best suitable polynomials for the proposed method,

the basis function in hp-version of the TFM for solving initial value problems were examined

by using four cases of nonlinear second order systems. Four different types of orthogonal
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polynomials, namely: Chebyshev, Hermite, Legendre and Integrated Legendre are evalu-

ated. Condition numbers of the resulting augmented stiffness matrices are obtained as a

function of number of terms used in the expansion. For all the four examples, the Integrated

Legendre polynomials show the best performance. The choice of Hermite polynomials is

not recommended based on the results presented here. Compared to the other polynomials,

Integrated Legendre polynomials require large CPU times.

In Chapter 4, the time finite element based iterative direct method is found to be very

effective for the identification of parameters in the nonlinear examples studied. Especially

for the two-degree-of-freedom nonlinear system, a two-step approach in which parameters

corresponding to linear and nonlinear terms were identified separately was necessary for

the convergence of the process. Comparing with the results from Normann and Kapania’s

study, the proposed method uses fewer number of data points for getting the same accuracy.

Good results were obtained for both single- and two-degree-of-freedom system examples.

Based on the results presented here, the proposed method appears to be a good choice for

performing parametric identification of nonlinear systems.

In chapter 5, p- and hp- version TFM is proposed based on the weak formulation for

optimal control by Hodges and Bless. The proposed formulation showed the time finite

element method can be used to the solution of the optimal control problems. The numerical

results of two simple optimal control problems are compared with the analytic solutions.

The accuracy along with the order of polynomials is of particular interest in the study.

When highly accurate solutions are required, the method will be a good choice to use.

6.2 Future Work

Finally, as a future work, it is proposed that the present approach be used in:

• Extending the formulation in time domain to space-time domain.

• Deriving formulation for the second order sensitivity.

• Deriving for the p- and hp- version TFM:

– with state-control inequality constraints.

– for discontinuities in the states and/or discontinuities in the system equations.
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[47]. Tomović, R., “Sensitivity Analysis of Dynamic Systems,” McGraw-Hill Book, New
York, 1963.

[48]. Greene, W. H., and Haftka, R. T., “Computational Aspects of Sensitivity Calcula-
tions in Transient Structural Analysis,” Computers and Structures, Vol. 32, No. 2,
1989, pp. 433-443.

[49]. Hsieh, C. C., and Arora, J. S., “Structural Design Sensitivity Analysis with Gen-
eral Boundary Conditions: Dynamic Problem,” International Journal for Numerical
Methods in Engineering, Vol. 21, 1985, pp. 267-283.

[50]. Zhang, Y., Nguyen, D. T., and Hou, J. W., “An Alternative Formulation for De-
sign Sensitivity Analysis of Linear Structural Dynamic Systems,” Computers and
Structures, Vol. 44, No. 3, 1992, pp. 689-692.

[51]. Wang, B. P., and Lu, C. M., “A New Method for Transient Response Sensitivity
Analysis in Structural Dynamics,” 34th AIAA /ASME /ASCE /AHS /ASC Struc-
tures, Structural Dynamics and Materials Conference, La Jolla, California, April
19-22, 1993.

[52]. Natke, H. G., Juang, J. N., and Gawronski, W., “A Brief Review on the Identifica-
tion of Nonlinear Mechanical Systems,” Proceedings of the 6th International Modal
Analysis Conference, SEM, Kissimmee, Vol. II, 1988, pp. 1569-1574.

[53]. Juang, J. N., and Pappa, R. S., “An Eigen System Realization Algorithm for Modal
Parameter Identification and Model Reduction,” Journal of Guidance, Control and
Dynamics, Vol. 8, No. 5, 1985, pp. 620-627.

REFERENCES 115



[54]. Juang, J. N., “Mathematical Correlation of Modal-Parameter-Identification Methods
via System Realization Theory,” International Journal of Analytical and Experimen-
tal Modal Analysis, Vol. 2, No. 1, 1987, pp. 1-18.

[55]. Wagie, D. A., and Skelton, R. E., “A Projection Approach to Covariance Equivalent
Realizations of Discrete Systems,” IEEE Transactions on Automatic Control, Vol.
31, No. 12, 1986, pp. 1114.

[56]. Alvin, K. F., and Park, K. C., “Second-Order Structural Identification Procedure
via State-Space-Based System Identification,” AIAA Journal, Vol. 32, No. 2, 1994,
pp. 397-406.

[57]. Lee, T. T., and Chang, Y. F., “Analysis, Parameter Estimation and Optimal Con-
trol of Nonlinear Systems via Generalized Orthogonal Polynomials,” International
Journal of Control, Vol. 44, No. 4, 1986, pp. 1089-1102.

[58]. Batill, S. M., and Bacarro, J. M., “Modelling and Identification of Nonlinear Dynamic
Systems with Application to Aircraft Landing Gear,” AIAA paper 88-2315, 1988.

[59]. Mook, D. J., “Estimation and Identification of Nonlinear Dynamic Systems,” AIAA
Journal, Vol. 27, No. 7, 1989, pp. 968-974.

[60]. Normann, J. B., and Kapania, R. K., “Parametric Identification of Nonlinear Struc-
tural Dynamic Systems,” AIAA paper 90-1232, 1990.

[61]. Hamel, P. G., and Jategaonkar, R. V., “Evolution of Flight Vehicle System Identifi-
cation,” Journal of Aircraft, Vol. 33, No. 1, 1996, pp. 9-28.

[62]. Kapania, R. K., and Park, S., “Nonlinear Transient Response and its Sensitivity
using Finite Elements in Time,” Computational Mechanics, Vol. 17, No. 5, 1996,
pp. 306-317.

[63]. Rektorys, K., “Variational Methods in Mathematics, Science and Engineering,” D.
Reidel Publishing, Boston, 1980.
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APPENDIX A

A.1 Transient Response of a Two-Degree-of-Freedom System having Cubic

Nonlinearities

The bilinear formulation is derived for a two-degree-of-freedom system having cubic

nonlinearities (Nayfeh and Mook [76]) governed by

ü1 + ω1
2u1 + 2µ1u̇1 + α1u1

3 + α2u1
2u2 + α3u1u2

2 + α4u2
3 = 0 (A.1)

ü2 + ω2
2u2 + 2µ2u̇2 + α5u1

3 + α6u1
2u2 + α7u1u2

2 + α8u2
3 = 0 (A.2)

with initial conditions

u1(0) = u10 u2(0) = u20 u̇1(0) = v10 u̇2(0) = v20

where ω1, ω2 are natural frequencies, and µ1, µ2 are linear viscous damping of the systems.

Also αi, i = 1, 2..8, are arbitrary constants.

Multiplying governing Eqs. (A.1) and (A.2) with test functions (or weight functions)

v(t) and integrating with respect to time, we obtain∫ Tf

T0
v1 ·

(
ü1 + ω1

2u1 + 2µ1u̇1 + α1u1
3 + α2u1

2u2 + α3u1u2
2 + α4u2

3
)
dt = 0(A.3)

∫ Tf

T0
v2 ·

(
ü2 + ω2

2u2 + 2µ2u̇2 + α5u1
3 + α6u1

2u2 + α7u1u2
2 + α8u2

3
)
dt = 0(A.4)

Integrating Eqs. (A.3) and (A.4) by parts results in

[v1u̇1]
Tf
T0

+

∫ Tf

T0

(
ω1

2v1u1 + 2µ1v1u̇1 + α1v1u1
3 + α2v1u1

2u2

+ α3v1u1u2
2 + α4v1u2

3 − v̇1u̇1
)
dt = 0 (A.5)

[v2u̇2]
Tf
T0

+

∫ Tf

T0

(
ω2

2v2u2 + 2µ2v2u̇2 + α5v2u1
3 + α6v2u1

2u2

+ α7v2u1u2
2 + α8v2u2

3 − v̇2u̇2
)
dt = 0 (A.6)

Let trial functions be

u1(t) =
N∑
j=1

pjφj(t) (A.7)

u2(t) =
N∑
j=1

qjφj(t) (A.8)
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where pj and qj are generalized coordinates and φj are basis functions.

Substituting Eqs. (A.7) and (A.8) into Eqs. (A.5) and (A.6) respectively yields

∫ Tf

T0


ω12v1


 N∑
j=1

pjφj


+ 2µ1v1


 N∑
j=1

pjφ̇j


− v̇1


 N∑
j=1

pj φ̇j




 dt

= v1(T0)u̇1(T0)− v1(Tf )u̇1(Tf )−
∫ Tf

T0


α1v1


 N∑
j=1

pjφj



3

+ α2v1


 N∑
j=1

pjφj



2
 N∑
j=1

qjφj


+ α3v1


 N∑
j=1

pjφj




 N∑
j=1

qjφj



2

+ α4v1


 N∑
j=1

qjφj



3

 dt (A.9)

∫ Tf

T0


ω22v2


 N∑
j=1

qjφj


+ 2µ2v2


 N∑
j=1

qjφ̇j


− v̇2


 N∑
j=1

qjφ̇j




 dt

= v2(T0)u̇2(T0)− v2(Tf )u̇2(Tf )−
∫ Tf

T0


α5v2


 N∑
j=1

pjφj



3

+ α6v2


 N∑
j=1

pjφj



2
 N∑
j=1

qjφj


+ α7v2


 N∑
j=1

pjφj




 N∑
j=1

qjφj



2

+ α8v2


 N∑
j=1

qjφj



3

 dt (A.10)

Assuming test functions, v(t), as variations of trial functions yields

v1(t) = δpiψi(t), 1 ≤ i ≤M (A.11)

v2(t) = δqiψi(t), 1 ≤ i ≤M (A.12)

Then for each δpi and δqi, equations (A.9) and (A.10) become

N∑
j=1

pj

{∫ Tf

T0

(
ω1

2ψiφj + 2µ1ψiφ̇j − ψ̇iφ̇j
)
dt

}

= ψi(T0)u̇1(T0)− ψi(Tf )u̇1(Tf )−
∫ Tf

T0
ψi


α1

(
N∑
l=1

plφl

)3

+ α2

(
N∑
l=1

plφl

)2 ( N∑
l=1

qlφl

)
+ α3

(
N∑
l=1

plφl

)(
N∑
l=1

qlφl

)2
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+ α4

(
N∑
l=1

qlφl

)3

 dt (A.13)

N∑
j=1

qj

{∫ Tf

T0

(
ω2

2ψiφj + 2µ2ψiφ̇j − ψ̇iφ̇j
)
dt

}

= ψi(T0)u̇2(T0)− ψi(Tf )u̇2(Tf )−
∫ Tf

T0
ψi


α5

(
N∑
l=1

plφl

)3

+ α6

(
N∑
l=1

plφl

)2 ( N∑
l=1

qlφl

)
+ α7

(
N∑
l=1

plφl

)(
N∑
l=1

qlφl

)2

+ α8

(
N∑
l=1

qlφl

)3

 dt (A.14)

Rearranging and simplifying Eqs. (A.13) and (A.14) yields

N∑
j=1

Bij
(1)pj = Ai

(1) (A.15)

N∑
j=1

Bij
(2)qj = Ai

(2) (A.16)

where

Bij
(1) =

∫ Tf

T0

(
ω1

2ψiφj + 2µ1ψiφ̇j − ψ̇iφ̇j
)
dt

Bij
(2) =

∫ Tf

T0

(
ω2

2ψiφj + 2µ2ψiφ̇j − ψ̇iφ̇j
)
dt

and

Ai
(1) = ψi(T0)u̇1(T0)− ψi(Tf )u̇1(Tf )−

∫ Tf

T0
ψi


α1

(
N∑
l=1

plφl

)3

+ α2

(
N∑
l=1

plφl

)2 ( N∑
l=1

qlφl

)
+ α3

(
N∑
l=1

plφl

)(
N∑
l=1

qlφl

)2

+ α4

(
N∑
l=1

qlφl

)3

 dt

Ai
(2) = ψi(T0)u̇2(T0)− ψi(Tf )u̇2(Tf )−

∫ Tf

T0
ψi


α5

(
N∑
l=1

plφl

)3
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+ α6

(
N∑
l=1

plφl

)2 ( N∑
l=1

qlφl

)
+ α7

(
N∑
l=1

plφl

)(
N∑
l=1

qlφl

)2

+ α8

(
N∑
l=1

qlφl

)3

 dt

Imposition of initial conditions ui(T0) = ui(0), i = 1, 2, can be done by augmenting Eqs.

(A.15) and (A.16) with additional equations. Thus,

N∑
j=1

(
Bij

(1) + φj(T0)
)
pj = Ai

(1) (A.17)

N∑
j=1

(
Bij

(2) + φj(T0)
)
qj = Ai

(2) (A.18)

For the natural convergence of the end condition, a constraint ψi(Tf ) = 0, which was

suggested by Peters and Izadpanah, can be included by using Lagrange multipliers.

N∑
j=1

(
Bij

(1) + ψj(T0)
)
pj + λ1ψi(Tf ) = Ai

∗(1) (A.19)

N∑
j=1

(
Bij

(2) + ψj(T0)
)
qj + λ2ψi(Tf ) = Ai

∗(2) (A.20)

where

Ai
∗(1) = ψi(T0)u̇1(T0)−

∫ Tf

T0
ψi


α1

(
N∑
l=1

plφl

)3

+ α2

(
N∑
l=1

plφl

)2( N∑
l=1

qlφl

)
+ α3

(
N∑
l=1

plφl

)(
N∑
l=1

qlφl

)2

+ α4

(
N∑
l=1

qlφl

)3

 dt

Ai
∗(2) = ψi(T0)u̇2(T0)−

∫ Tf

T0
ψi


α5

(
N∑
l=1

plφl

)3

+ α6

(
N∑
l=1

plφl

)2( N∑
l=1

qlφl

)
+ α7

(
N∑
l=1

plφl

)(
N∑
l=1

qlφl

)2

+ α8

(
N∑
l=1

qlφl

)3

 dt

For the expression of Ai
∗(1) and Ai

∗(2), the second terms in equations Ai
(1) and Ai

(2) are

eliminated due to the use of Lagrange multipliers.
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Combining Eqs. (A.19) and (A.20) and putting into a matrix form, the transient re-

sponse equation can be expressed as




B(1) 0 {ψi(Tf )} 0

0 B(2) 0 {ψi(Tf )}
< φj(T0) > 0 0 0

0 < φj(T0) > 0 0







p

q

λ1

λ2



=




A∗(1)

A∗(2)

u1(T0)

u2(T0)




(A.21)

A.2 Response Sensitivity with respect to various Design Parameters dk

The straightforward differentiation of Eq. (A.21) with respect to dk gives the following

sensitivity equation. Thus,




B∗(11) B∗(12) {ψi(Tf )} 0

B∗(21) B∗(22) 0 {ψi(Tf )}
< φj(T0) > 0 0 0

0 < φj(T0) > 0 0







∂p
∂dk
∂q
∂dk
∂λ1
∂dk
∂λ2
∂dk




+




∂B(1)

∂dk
0 0 0

0 ∂B(2)

∂dk
0 0

0 0 0 0

0 0 0 0







p

q

λ1

λ2



=




∂A∗∗(1)
∂dk

∂A∗∗(2)
∂dk

∂u1(T0)
∂dk

∂u2(T0)
∂dk




(A.22)

where

Bij
∗(11) = Bij

(1) +

∫ Tf

T0
ψiφj


2α2

(
N∑
l=1

plφl

)(
N∑
l=1

qlφl

)
+ α3

(
N∑
l=1

qlφl

)2

+ 3α1

(
N∑
l=1

plφl

)2

 dt

Bij
∗(12) =

∫ Tf

T0
ψiφj


α2

(
N∑
l=1

plφl

)2

+ 2α3

(
N∑
l=1

plφl

)(
N∑
l=1

qlφl

)
+ 3α4

(
N∑
l=1

qlφl

)2

 dt

Bij
∗(21) =

∫ Tf

T0
ψiφj


3α5

(
N∑
l=1

plφl

)2

+ 2α6

(
N∑
l=1

plφl

)(
N∑
l=1

qlφl

)
+ α7

(
N∑
l=1

qlφl

)2

 dt

Bij
∗(22) = Bij

(2) +

∫ Tf

T0
ψiφj


2α7

(
N∑
l=1

plφl

)(
N∑
l=1

qlφl

)
+ α6

(
N∑
l=1

plφl

)2

+ 3α8

(
N∑
l=1

qlφl

)2

 dt
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and

∂Bij
(1)

∂dk
=

∫ Tf

T0

(
∂ω1

2

∂dk
ψiφj + 2

∂µ1
∂dk

ψiφ̇j

)
dt

∂Bij
(2)

∂dk
=

∫ Tf

T0

(
∂ω2

2

∂dk
ψiφj + 2

∂µ2
∂dk

ψiφ̇j

)
dt

∂A
∗∗(1)
i

∂dk
= ψi(T0)

∂u̇1(T0)

∂dk

∂A
∗∗(2)
i

∂dk
= ψi(T0)

∂u̇2(T0)

∂dk

A.3 Nonlinear Stiffness Matrices

A.3.1 van der Pol’s Oscillator

The nonlinear stiffness matrices, B and B∗, for the van der Pol’s oscillator take the

following forms

Bij =

∫ Tf

T0


ψiφj + εψiφ̇j



(

N∑
l=1

qlφl

)2

− 1


 − ψ̇iφ̇j


 dt (A.23)

B∗ij = Bij +

∫ Tf

T0
2εψiφj

(
N∑
l=1

qlφl

)(
N∑

m=1

qmφ̇m

)
dt (A.24)

A.3.2 Mass on a Nonlinear Hardening Spring

The stiffness matrix Bij for the transient response has the following form

Bij =

∫ Tf

T0

(
Kψiφj + Cψiφ̇j −Mψ̇iφ̇j

)
dt (A.25)

while the nonlinear stiffness matrix B∗ij for the response sensitivity takes the following form

B∗ij = Bij +

∫ Tf

T0
3µψiφj

(
N∑
l=1

qlφl

)2

dt (A.26)

A.3.3 Mass on a Nonlinear Softening Spring

The stiffness matrix Bij for the transient response takes the form

Bij =

∫ Tf

T0

(
Cψiφ̇j −Mψ̇iφ̇j

)
dt (A.27)

while the nonlinear stiffness matrix B∗ij for the response sensitivity takes the following form

B∗ij = Bij +

∫ Tf

T0

Kψiφj

cosh2
(∑N

l=1 qlφl
)dt (A.28)
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A.4 Augmented Stiffness Matrix for van der Pol’s Oscillator

Numerical values of the augmented matrix for the transient response case in the van

der Pol’s oscillator are presented. The values were generated using Hermite and Integrated

Legendre polynomials of degree seven as basis functions. The values for the response sen-

sitivity case are similar.

Two-digit rounding values of the matrix B using Hermite polynomials are reported as


−.50e− 2 .31e + 2 −.33e − 2 −.63e + 2 −.40e− 2 −.13e+ 3 .10e + 1
.00e + 0 −.32e+ 4 .84e + 2 .64e + 4 −.60e+ 3 .13e+ 5 .20e + 1

−.33e− 2 −.21e+ 2 −.17e+ 5 .18e + 3 .12e+ 6 −.18e+ 4 .20e + 1
.00e + 0 .64e + 4 −.30e + 3 −.54e+ 5 .24e+ 4 .56e+ 6 −.40e+ 1

−.40e− 2 −.25e+ 2 .12e + 6 −.11e + 4 −.96e+ 6 .17e+ 5 −.20e+ 2
.00e + 0 .13e + 5 .16e + 4 .56e + 6 −.14e+ 5 −.85e+ 7 −.80e+ 1
.10e + 1 −.20e+ 1 .20e + 1 .40e + 1 −.20e+ 2 .80e+ 1 .00e + 0




Two-digit rounding values of the matrix B using Integrated Legendre polynomials are
reported as


−.20e+ 3 .20e+ 3 .10e + 1 .33e + 0 −.16e + 0 .00e + 0 .00e + 0
.20e+ 3 −.20e+ 3 −.11e+ 1 .31e + 0 .16e + 0 .00e + 0 .10e + 1

−.13e+ 1 .13e+ 1 −.40e+ 3 −.96e+ 0 −.49e − 2 .10e + 1 .00e + 0
−.36e− 2 .36e− 2 .74e + 0 −.40e+ 3 −.56e + 0 −.32e − 2 .00e + 0
.54e− 1 −.54e− 1 .31e − 2 .51e + 0 −.40e+ 3 −.41e + 0 .00e + 0
.00e+ 0 .00e+ 0 −.50e− 1 .23e − 2 .38e + 0 −.40e+ 3 .00e + 0
.10e+ 1 .00e+ 0 .00e + 0 .00e + 0 .00e + 0 .00e + 0 .00e + 0



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