
Chapter 2

Review of Time Domain TLM 

In 1971, Johns and Beurl introduced a novel numerical technique for solving 2-D
scattering problems.  The technique was originally based on Huygen's model of wave
propagation and inspired by earlier network simulation techniques.  

According to Huygen's principle, a wave front consists of a number of secondary
radiators that give rise to spherical wavelets.  The envelope of these wavelets forms a new
wavefront  which in turns give rise to spherical wavelets and so on.

In order to discretize Huygen's principle in  a 2-D space, both space and time are
represented in terms of finite elementary units ∆O�and  ∆t.  The 2-D space is modeled by  a
cartesian matrix of points or nodes separated by  a mesh spacing ∆O, the time ∆t is the time it
takes the pulse to travel form one node to the next.  Assuming an impulse incident upon one
of the nodes as shown in Figure  (2.1a) and the energy of the impulse is unity.  According to
Huygen's principle, the energy will be isotropically scattered in all directions, each direction
should carry one fourth of the energy, or in terms of field quantities each should be 1/2 in
magnitude.  To insure field continuity, the reflected pulse at port one should have a reflection
coefficient of -1/2.  The 2 dimensional model can be represented in terms of a network model
that can be thought of as a mesh of orthogonal transmission lines interconnected at the nodes
shown in Figure (2.1b).  Assuming an incident pulse of 1 volt, the pulse will be partially
reflected and partially transmitted according to the transmission line theory.  If all the lines
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have the same characteristic impedance Z, then the equivalent impedance seen by the incident
pulse will be Z/3, the corresponding reflection coefficient  Γ will be -1/2 and the transmission
coefficient τ will be 1/2.  Therefore the scattered pulse at ports 2,3 and 4 will be 1/2 and that
at port 1 will be 1/2.  The scattered pulses continue to propagate to be incident on adjacent
nodes and so on.

Incidence Scattering
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Figure 2.1 

a- Discretized Huygen's principle          b- Equivalent transmission line model 

2.1  The series TLM node

The series TLM node is suitable for solving 2-D problems with only three nonzero field
components, one magnetic field component Hz and two electric field components Ex and Hy.
The series TLM node also assumes no field variations along the z direction.  The circuit
structure of the series node is shown in Figure (2.2).  From the above assumptions, the
associated Maxwell's equations will be 
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                                                         (2.1a)
∂Hz

∂y
= ε∂Ex

∂t

                                                         (2.1b)−∂Hz

∂x
= ε

∂Ey

∂t

                                                      (2.1c)
∂Ey

∂x
− ∂Ex

∂y
= −µ∂Hz

∂t

The relation between circuit quantities and field quantities are derived in [4] and are
given by

                                                           (2.2a)Hz = I z
∆z

                                                         (2.2b)Ey = −
Vy

∆y

                                                 (2.2c)Ex = −Vx
∆x

Scattering in a series node can be easily derived by from the Thevenin's equivalent circuit
model.  Each transmission line is replaced by its Thevenin's equivalent which is an equivalent
impedance equal to the intrinsic impedance of the line and an equivalent open circuited
voltage equal to twice the incident voltage.  The Thevenin's equivalent circuit is shown in
Figure (2.3).

The loop current Ik can be obtained from the Thevenin's equivalent as 

                                       (2.3)I k =
2kV1

i + 2kV4
i − 2kV3

i − 2kV2
i

4Z

The reflected voltages can then be obtained as

                                  (2.4)kV1
r =k V1−k V1

i = 2kV1
i − I kZ−k V1

i

substituting for Ik from equation (2.3) yields

                                       (2.5)kV1
r = 1

2
( kV1

i + kV2
i + kV3

i − kV4
i )

Similar expressions for the scattered voltages at other ports can be obtained in the same way.
 The resulting scattering matrix will have the form 
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Figure 2.2  

a - The series TLM node          b- Equivalent transmission line model 
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Figure 2.3 Thevenin's equivalent circuit model for the series node 
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Following the scattering procedure is the connection procedure where the reflected
voltage at each port becomes incident on the neighboring port at the next time step.  The
connection procedure can be expressed as

                                         (2.7a)k+1V1
i (x, y) =k V3

r (x, y− 1)

                                         (2.7b)k+1V2
i (x, y) =k V4

r (x − 1, y)

                                          (2.7c)k+1V3
i (x, y) =k V1

r (x, y+ 1)

                                         (2.7d)k+1V4
i (x, y) =k V2

r (x + 1, y)

In a series TLM node, the link line impedances are chosen to be the same and equal to
the intrinsic impedance of free space.  In order to model a medium of  permeability different
from that of free space, a short circuited series stub of length ∆O�2 and characteristic
impedance Z is used to compensate for the deficiency in inductance.  A matched  series stub
can also  be used to account for magnetic losses [4].  The scattering matrix of a series node
with open circuited and matched stubs can simply be derived by adding the corresponding
elements to the Thevenin's equivalent circuit in Figure 2.3 and using the same exact procedure
as with the stubless series node.

2.2  The shunt TLM node

The shunt node is capable of modeling wave propagation in a 2-D space.  It is suitable
for problems with only three nonzero field components which are one electric field component
Ez and two magnetic field components Hx and Hy (TM modes).  The Maxwell's equations
corresponding to a TM mode are 

                                                  (2.8a)
∂Ez

∂y
= −µ∂Hx

∂t

                                                  (2.8b)
∂Ez

∂x
= −µ

∂Hy

∂t
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                                                                                          (2.8c)
∂Hy

∂x
− ∂Hx

∂y
= −ε∂Ez

∂t

The transmission line model  of the shunt node and the equivalent Thevenin's circuit
model is shown in Figure (2.4)

The scattering matrix of the shunt node can be obtained using the The Thevenin's
equivalent circuit model and a similar procedure to that used in the series node.  In the shunt
node, all link line impedances are chosen to be the same equal to the intrinsic impedance of
free space.  To model a medium of relative permeability different from free space, shunt open
circuited stubs are added to compensate the deficiency in capacitance.  Shunt matched stubs
can also be used to model electric losses.  

It is worth mentioning that from the principle of duality, both the shunt and series nodes
can be used to simulate either TE or TM modes by making the appropriate analogy between
field and circuit quantities.

2.3  The Expanded node

  The series and shunt nodes discussed above are capable of simulating wave propagation
in a 3-D space.  However, because most problems encountered in engineering applications are
3-D, it became essential to extend the TLM to 3-D space to form a network that can model
three electric and three magnetic field components.

The first 3-D node introduced was the expanded node [5].  The expanded node was
obtained by the appropriate combination of the series and shunt nodes as shown in Figure
(2.5).   A series node on the x-z plane connected to two shunt nodes in the y-z and x-y plane
and a shunt node in the x-z plane connected to series nodes on the y-z and x-y plane.  The
disadvantage of this node lies mainly in its complexity.  Also, when making the analogy
between circuit and field components, it was found that different field components with
different polarization were calculated at points that were physically separated which made it
difficult to apply boundary conditions.
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 a- The shunt TLM node          b- Thevenin's equivalent circuit model 
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Figure 2.5  The expanded  node

2.4  The Symmetrical condensed node (SCN)

The symmetrical condensed node consists of 12 ports to represent two polarization in
each coordinate direction as demonstrated in Figure 2.6.  The voltage pulses corresponding to
two polarizations are carried on transmission line pairs.  The correspondence between the
electromagnetic field components and the voltages and currents on the transmission lines as
given by [6] can be written as 
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Figure 2.6  The Symmetrical condensed  node



                                 (2.9)Ex = −Vx
∆x

, Ey = −
Vy

∆y
, Ez = −Vz

∆z
,

                                   (2.10)Hx = I x
∆x

, Hy =
I y

∆y
, Hz = I z

∆z

   For a medium with permitivity ε  and permeability µ  simulated by a mesh of cell dimensions
 ∆x, ∆y, and ∆z, the overall capacitance in the x, y and z directions associated with an Ex, Ey

and Ez polarization, respectively, are  given by 

                                                                          
Cx = ε∆y∆z

∆x
Cy = ε∆x∆z

∆y
Cz = ε∆y∆x

∆z

  (2.11)

Similarly, the overall inductances in the x, y, and z direction are given by 

                             (2.12)Lx = µ∆y∆z
∆x

Ly = µ∆x∆z
∆y

Lz = µ∆y∆x
∆z

2.4.1  The SCN in an inhomogeneous medium

In the symmetrical condensed node, all the link line impedances are chosen to be the
same and equal to the intrinsic impedance of free space Z0 .  Consequently, the capacitance
and inductance of each link line are given by 

                                                (2.13)C = ∆t/2
Z0

, L = ∆t
2

Z0

where ∆t is the time step on the mesh or the delay along a transmission line section of length
∆O (the size of the mesh).  If the overall capacitances and inductances of the link lines do not
exactly model the local material parameters, the capacitance and/or inductance deficiency are
compensated for through the use of open circuited and/or short circuited stubs, respectively.
In order to exactly model the medium parameters ε and µ, the following set of equations have
to be satisfied for the link line capacitance and inductance 

                                        (2.14.a)Lx = µ∆y∆z
∆x

= Ldyz∆y + Ldzy∆z

                                      (2.14.b)Ly = µ∆x∆z
∆y

= Ldxz∆x + Ldzx∆z

                                     (2.14.c)Lz = µ∆y∆x
∆z

= Ldyx∆y + Ldxy∆x

13



                                     (2.14.d)Cx = ε∆y∆z
∆x

= Cdyx∆y + Ldzx∆z

                                     (2.14.e)Cy = ε∆z∆x
∆y

= Cdxy∆x + Ldzy∆z

                                     (2.14.f)Cz = ε∆y∆x
∆z

= Cdyz∆y + Cdxz∆x

where the first subscript d indicates normalized quantities per unit length, the second subscript
indicates line direction and the third for polarization.  Substituting for every link line
inductance and capacitance in terms of the link line impedance and delay from equation (2.13),
the above set of equations can be written as 

                                                 (2.15.a)µSx = ∆t(Zyz + Zzy)

                                              (2.15.b)µSy = ∆t(Zxz + Zzx)

                                              (2.15.c)µSz = ∆t(Zyx + Zxy)

                                             (2.15.d)εSx = ∆t(Yyx + Yzx)

                                              (2.15.e)εSy = ∆t(Yxy + Yzy)

                                              (2.15.f)εSz = ∆t(Yxz + Yyz)

         where Sx = ∆y∆z
∆x

Sy = ∆x∆z
∆y

Sz = ∆y∆x
∆z

and        Zrq = 1
Yrq

r, q can be x, y or z

For the SCN,  , therefore, from equations (2.14a) andZxy = Zyx = Zyz = Zzy = Zzx = Zxz = Z0
(2.15a), the deficiency in inductance in the x direction is given by 

                                                  (2.16)Lx
s = µSx − 4(∆t

2
)Z0

the deficiency in inductance in the x direction is compensated by a short circuit stub of
characteristic impedance given by 

                               (2.17)Zx
s = Lx

s

∆t/2
= 2µSx

∆t
− 4Z0 ⇒ Zx

s = Zx
s

Z0
=

2µrSx

c0∆t
− 4 , c0 = 1

µ0ε0
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Similarly, the normalized impedance of the short circuited stubs used to compensate for
inductance deficiency in the y and z directions are given by 

                                                (2.18)Zy
s =

Zy
s

Z0
=

2µrSy

c0∆t
− 4

                                                (2.19)Zz
s = Zz

s

Z0
=

2µrSz

c0∆t
− 4

The deficiency of the capacitance in the x direction can be calculated as 

                                                (2.20)Cx
s = εSx − 4(∆t

2
)Y0

and the admittance of  the open circuited stub used to compensate for the deficiency in the x
directed capacitance is given by 

                                    (2.21)Yx
s = Cx

s

∆t/2
, Yx

s = Yx
s

Y0
= 2εrSx

c0∆t
− 4

similarly, those in the y and z direction have normalized admittances given by 

                                              (2.22)Yy
s =

Yy
s

Y0
=

2εrSy

c0∆t
− 4

                                               (2.23)Yz
s = Yz

s

Y0
= 2εrSz

c0∆t
− 4

2.4.2  Time step in the symmetrical condensed node 

In order to guarantee the stability of a  TLM mesh,  all stub impedances or admittances
must be  positive.  Unfortunately, this sets a hard limit on the maximum permissible time step
for the mesh.  For a generally graded mesh, and from equation (2.17) to (2.23), the maximum
permissible time step is given by 

                        ( 2.24)∆tmax = min(εrSx

2c0
,

εrSy

2c0
,

εrSz

2c0
,

µrSx

2c0
,

µrSy

2c0
,

µrSz

2c0
)

2.5  The Hybrid Symmetrical Condensed node (HSCN)

In the SCN discussed in the previous section, stability conditions sets a constraint on the
maximum permissible time step on the mesh.  From equation (2.24), it appears that this
constraint is determined by the ratio between the largest and the smallest grid dimension.  This
implies that, in large problems, where large ratios are used to minimize storage, the time step
can  become very small resulting in long computational runs.  In the HSCN [7,8], the
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condition that all link lines should have the same impedance is relaxed.  The characteristic
impedance of the lines are varied to account for various mesh grading and to model some of
the medium parameters.  As a result, the number of stubs required  is reduced than in the SCN
which directly implies improved  dispersive properties over the stub loaded SCN.  The HSCN
may also have larger  time step as compared to the SCN in some instants and thus reducing
the overall computational time.  The HSCN was first introduced by Scaramuzza and Lowery
[7] where the characteristic impedance of all link lines are chosen to model the right
inductance required by the medium.  The capacitance of the lines are then chosen to maintain
synchronism in the three coordinate directions.  Deficiency in capacitance are then accounted
for through the use of open circuited stubs with the appropriate characteristic admittance.
This node was later referred to as type I HSCN.   In 1994, a complementary HSCN was
introduced by Berini and Wu [8 ] referred to as type II HSCN.  In this node the link line
admittance are chosen to model all the required capacitance by the medium and the inductance
are chosen to achieve synchronism.  The deficiency in inductance is then accounted for
through the use of short circuited stubs with the appropriate characteristic impedance.

2.5.1  Type I HSCN 

In type I HSCN, equations (2.14.a - c) are exactly satisfied by choosing the characteristic
impedance of all link lines  associated with the same current to be the same.  From equations
(2.14.a) and (2.13), the above condition implies

                                          (2.25.a)Lyz = Ldzy∆z = Ldyz∆y = µSx

2

similarly

                                          (2.25.b)Lzx = Ldxz∆x = Ldzx∆z = µ
Sy

2

                                          (2.25.c)Lyx = Ldxy∆x = Ldyx∆y = µSz

2

The link line impedances are then given by 

                                                ( 2.26.a)Zyz = Zzy = Zx = µ Sx

2∆t

                                                 (2.26.b)Zxz = Zzx = Zy = µ
Sy

2∆t

                                                 (2.26.c)Zyx = Zxy = Zz = µ Sz

2∆t

The capacitance are chosen to maintain synchronism  and are given by 
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                                              ( 2.27.a)Czy = Cyz = ∆t
Zx

= 2∆t2

µSx

                                               (2.27.b)Czx = Cxz = ∆t
Zy

= 2∆t2

µSy

                                               (2.27.c)Czy = Cyz = ∆t
Zx

= 2∆t2

µSx

The deficiency of capacitance in the x direction is given by 

                                 (2.28)Cx
s = εSx − Cyx − Czx = εSx − 2∆t2

µ (Sz + Sy)

The normalized admittance of the open circuited stub in the x direction is given by

                             (2.29.a)Yox
s = 1

ε0
µ0

Cx
s

∆t/2
= 2

ε0
µ0


εSx

∆t
− 2∆t

µ (Sy + Sz)


Similarly in the y and z direction 

                                     ( 2.29.b)Yoy
s = 2

ε0
µ0


ε

Sy

∆t
− 2∆t

µ (Sx + Sz)


                                      (2.29.c)
Yoz

s = 2
ε0
µ0


εSz

∆t
− 2∆t

µ (Sx + Sy)


Again, to guarantee stability of the TLM mesh, all stub admittances must be positive
which consequently implies an upper limit on the time step for the HSCN.  The limit is given
by 

                        (2.30)∆tmax
2 = min


µε Sx

Sy + Sz
, µε

Sy

Sx + Sz
, µε Sz

Sy + Sx




2.5.2  Type II HSCN 

Type II HSCN is exactly the complement of type I HSCN where equations (2.14.e - f)
are exactly satisfied by choosing the characteristic admittance of all link lines associated with
the same electric field to be the same.  The inductances are chosen to achieve synchronism.
Deficiency in inductance is then compensated through the use of short circuited stubs.  From
equations (2.14 e -f) and (2.13), the link line admittances can be written as 

                                      (2.31a)Yyx = Yzx = Yx = ε


Sx

2∆t
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                                              (2.31b)Yxy = Yzy = Yy = ε


Sy

2∆t



                                              (2.31c)Yxz = Yyz = Yz = 
ε Sz

2∆t



By analogy with type I HSCN, the normalized impedances of the short circuited stubs in the x,
y and z directions can be expressed as

                                        (2.32a)Zox
s = 2

µ0
ε0

(µSx
∆t

− 2∆t
ε (Sy + Sz)

                                       (2.32b)
Zoy

s = 2
µ0
ε0

(µ
Sy

∆t
− 2∆t

ε (Sx + Sz)

                                        (2.32c)
Zoz

s = 2
µ0
ε0

(µSz
∆t

− 2∆t
ε (Sy + Sx)

The same constraint for the maximum allowable time step for the type I HSCN still
applies for type II HSCN.

2.6  The Symmetrical Super Condensed node SSCN

In the HSCN, it was found that by allowing the characteristic impedance of the link lines
to be different ( three different link line impedances were used), the number of stubs can be
reduced from six to three thus enhancing the computational efficiency and reducing the
numerical dispersion.  In the SSCN, all stubs are removed by allowing all six link line
impedances to be different [9-10]. 

In the SSCN, the set of equations (2.15.a - f) are solved for the six link line impedances
Zxy, Zxz, Zyx, Zyz, Zzx, Zzy.  The maximum allowable time step which guarantees all link line
impedances are positive can be obtained by solving a third order inequality in  ∆t given by 

                              (2.33)2( ∆t
µε

)3 − ( ∆t
µε

)2(Sx + Sy + Sz) − SxSySz = 0

The SSCN has shown substantial improvement in storage, efficiency and maximum
allowable time step.
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2.7  Scattering in a 3-D TLM node 

An elegant and simple method for deriving the scattering matrix of a  very general TLM
node was described in [14] and derived in Appendix A.  The method is based on enforcing
continuity of the electric and magnetic fields and conservation of charge and magnetic flux.   
Three equations are derived for the nodal voltages Vx , Vy, and Vz and another three for the
loop currents Ix, Iy and Iz.  From the set of six equations, all the scattered voltages can be
obtained .  The node voltage in the x direction can be expressed as

                               (2.34)Vx =
2Yyx(Vynx

i + Vypx
i ) + 2Yzx(Vzpx

i + Vznx
i ) + Yox

i Vox
i

2Yyx + 2Yzx + Yox + Gx

where the first subscript indicates the direction of propagation and the last indicates
polarization, the middle (p or n), if any,  indicates a line segment along the positive or negative
axis. Gx , Gy and Gz are the shunt conductances for electric losses in the x, y and z directions
respectively.  Yox, Yoy and Yoz  are the characteristic admittances for the shunt open circuited
stubs in the x,y and z directions, respectively.   Similar expressions for the node voltages in the
y and z directions can also be obtained and are given by

                                                        (2.35)
Vy =

2Yxy(Vxny
i + Vxpy

i ) + 2Yzy(Vzpy
i + Vzny

i ) + Yoy
i Voy

i

2Yxy + 2Yzy + Yoy + Gy

                                                                                                                                                

                                                   (2.36)Vz =
2Yxz(Vxnz

i + Vxpz
i ) + 2Yyz(Vypz

i + Vynz
i ) + Yoz

i Voz
i

2Yxz + 2Yyz + Yoz + Gz

The three loop currents Ix ,Iy and   Iz   are expressed as          

                                                                    (2.37)
I x =

2(Vypz − Vynz
i + Vzny

i − Vzpy
i − Vsx

i )
2Zyz + 2Zzy + Zsx + Rx

                                                                               (2.38)
I y =

2(Vxnz − Vxpz
i + Vzpx

i − Vznx
i − Vsy

i )
2Zxz + 2Zzx + Zsy + Ry

                                                                          (2.39)

I z =
2(Vynx − Vypx

i + Vxpy
i − Vxny

i − Vsz
i )

2Zxy + 2Zyx + Zsz + Rz

 where Rx , Ry, and Rz are the series resistances for magnetic losses in the x, y and z directions
respectively.  Zsx, Zsy, and Zsz  are the characteristic impedances for the series short circuited
stubs in the x,y and z directions, respectively.  The scattered voltages at each node can be
obtained by writing expressions in the form 
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                                                  Vipj = Vj − I kZij − Vinj Vinj = Vj + IkZij − Vipj if j ∧ k = i

(2.40)

                    (2.41)Vipj = Vj + I kZij − Vinj Vinj = Vj − IkZij − Vipj if j ∧ k = −i

where any of the  subscripts i, j and k can be x, y or z.

2.8  Boundary conditions in TLM

2.8.1  The expanded node

          Positioning of electric walls

In the expanded node, short circuits can either be placed half way between two nodes
by imposing  -1 reflection coefficient or directly through shunt nodes by adding a shunt stub of
infinite characteristic admittance to the node .  Each shunt node in some plane is responsible
for an electric field component perpendicular to the plane.  Consequently, to position an
electric wall parallel to the xy plane, which implies all electric field components parallel to that
plane must be zero, all the shunt nodes that lie in planes at right angles to the xy plane must be
short circuited.

Positioning of walls of symmetry (magnetic walls)

walls of symmetry or magnetic walls are always introduced to reduce computational
effort.  In order to maintain the symmetry of a 3-D TLM node, such walls must run across
series nodes.  This is achieved by adding a series open circuited stub to all the nodes that lie in
planes at right angles to the magnetic wall.

Positioning of dielectric interfaces

In modeling different media with different constitutive parameters, shunt  open circuited
stubs are added to shunt nodes or series short circuited stubs are added to series nodes to
model each media constitutive parameters, respectively.  At the nodes exactly at the interface,
the most suitable choice for the stub admittance or impedance is to choose a value that is the
average of those used in the two media.  However it was found that this choice would
considerably increase the storage requirement and hence becomes undesirable from the
computational point of view.  However, it was found that the error introduced by either stub
values from either media is relatively small and acceptable especially when the dielectric are
several ∆O thick, where  ∆O is the cell dimension.
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2.8.2  Symmetrical condensed nodes

In symmetrical condensed nodes, the boundaries are always placed have way between
two adjacent nodes.  The link line impedances, open circuited and short circuited stubs are
chosen to model the constitutive parameters of the media on both sides of the boundary.
Consider two adjacent cells  a and b with a boundary placed exactly half way between the two
cells.  The incident voltage at node b at time step n+1 can be expressed in terms of the
reflected voltages at nodes a and b in the previous time step as follows 

                                                     (2.42)n+1Vb
i = ρba

nVb
r + τba

nV

where       ρba = Za − Zb

Za + Zb
and τba = 1 − ρb

Za and Zb are the link line impedances in medium a and medium b respectively.   In the
symmetrical condensed node, all link line impedances are chosen to be the same. The
constitutive parameters of the medium are modeled by the appropriate choice of the
characteristic impedance or admittance of the short circuited or the open circuited stubs,
respectively.  Consequently  there will be no special treatment for the cells at the boundary.  In
the HSCN and SSCN on the other hand,  the link line impedances will be different for
different media and hence care must be taken for reflections at the interface by applying
equation (2.42) for calculating the reflected voltage in the neighborhood of an interface
between two different media.

2.9  Absorbing boundary conditions in TLM 

In modeling problems that involve wave propagation in an open space such as radiation
and scattering problems,  a basic difficulty arises in TLM method .  This is due to the fact that
for this kind problems, the domain in which the field is required to be calculated is unbounded
which would consequently require an unlimited data storage.  To overcome this problem,  The
computational domain is truncated by introducing an artificial boundary.  The artificial
boundary is enforced to truncate the solution while creating the numerical illusion of an
infinite space.  Mathematically,  absorbing boundaries  should be constructed in such a way
that they absorb all the electromagnetic waves incident upon them.  This is implemented inside
a TLM  mesh in the form of an algorithm which predict or update the outgoing field
components at absorbing boundaries.  In a TLM formulation, it should predict the reflected
impulses from the absorbing boundary.  In the following discussion, some of the absorbing
boundary conditions that has been employed by either FDTD or TLM  or both are reviewed.
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2.9.1  Bench mark solutions

In this approach, conventional boundaries are used and are placed far away from the
source and observation points.  The computation is stopped before reflections from the far
end reach the observation points.  This can be used for either TLM or FDTD.  Although, the
results are satisfactory, the method is impractical for most application as it requires large
amount of memory and very long computational time.

2.9.2  Extrapolation methods

The basic idea behind extrapolation methods is to be able to predict field values at the
absorbing boundaries from known field values inside the computation domain at previous time
steps.  The relationship between these values has to satisfy the governing wave equation while
minimizing the reflected waves as much as possible.   Knowing that the waves have to be only
outgoing at the absorbing boundary, the appropriate formulas can be constructed to model the
absorbing boundary.   Two types of extrapolation method will be discussed.

2.9.2 a   Integral equation approach

In this approach, the time domain boundary integral equations, electric field integral
equations and magnetic field integral equations are discretized  and used to extract the field
values at the boundary in terms of field values inside the computational domain at previous
time steps.  The  disadvantage of this method is the fact that the computation involves all the
nodes on the contour enclosing the computational domain and hence requires extensive
computations.  The method has been applied to FDTD and was proven to be able to provide
good absorption.   The method, up to my knowledge, has not been applied to TLM.  However
from the equivalence between TLM and FDTD, generally any approach applied to either of
TLM or FDTD can be reformulated to fit the other.

2.9.2 b  One way equations

The one way equation is a differential equation that allows the wave to propagate in only
certain directions.  The procedure can be summarized as follows, the wave equation in three
dimension can be written as [15]

                                                                                                                                     LU = 0

(2.43) 

where L is the wave operator and U can be any field component in FDTD or a voltage wave
in a TLM mesh.  The operator L can be decomposed as follows 

                                                         (2.44)L +L −U = 0
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where L+ U at the boundary allows the wave traveling inward, L-U at the boundary exactly
absorbs the wave traveling outwards at the boundary surface.   Different approximations of
the one way wave equation L- U = 0 result in different absorbing boundary conditions with
different quality of absorption.  However any of these formulations can be always written in
the form

                            (2.45)U(0, y, z, t) = Σ
i

Σ
j

Σ
k

Σ
n

ai,j,k,nU(x − i, y ± j, z ± k, t − n)

In the above expression, the computational domain was assumed to lie in x<0, the truncated
domain is x>0 and the absorbing boundary condition is placed at x = 0.  Two approaches to
the simplification of the one way wave equation are the Taylor expansion and the Higdon's
absorbing boundary conditions.  The two approaches have the advantage of being simple and
having good absorption quality [15].

Taylor Expansion 

Assuming that the wave propagates along the positive x direction, the wave function U
(x,y,z,t) can be expanded along the plane x-ct = constant.  The coefficients are then obtained
by replacing the differential expressions with finite difference expressions.  The approximation
resulted in small amount of reflection for angle of incidence below 55o [15].  It was also
observed that the quality of absorption was not improved for orders higher than 3.  For this
reason, 2nd and 3rd order boundary conditions are always sufficient for either TLM or FDTD

Higdon's absorbing boundary condition 

The general expression for the Higdon's absorbing boundary condition is in the form       

                                (2.46)Π
i=1

N 


∂
∂x

+
cos(ϕ i)

c + α i

 U(x, y, z, t) = 0

where φi  and αi are parameters representing angle of incidence and wave attenuation
respectively.  An Nth order boundary condition consists of N first order boundary operator
each having its own parameters φi  and αi

 .  The attenuation constant and the angle of
incidence might be frequency dependent.  In this case, if N pairs of (φi  and αi) can be selected
at appropriate frequencies, it is possible to have the Higdon's absorbing  boundary condition
perform well over a wide range of frequencies.  The main advantage of the Higdon's boundary
condition is that it does not only absorb propagating waves but evanescent waves as well.
This is done by choosing some of the operator parameters (φi  and αi) to absorb propagating
waves, while others to absorb evanescent modes.  For this reason, the Higdon's absorbing
boundary condition was claimed to be the most general and optimum representation among
absorbing boundary conditions.  The only draw back of the Higdon's absorbing boundary
condition is that the choice of the boundary parameters are mode and geometry dependent.
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The Higdon's absorbing boundary condition has been applied to both TLM and FDTD
and was found to give good quality absorption.  The coefficients  modeling the boundary
condition can be obtained  using finite difference approximation for the differential equations .

2.9.3  Discrete Green's function approach (Johns Matrix)

The concept of discrete Green's function was first introduced by P. B. Johns and further
enhanced by Hoefer [16].  The John's matrix is the response of the TLM mesh to a unit
impulse excitation at selected input points.  The response of the mesh to an arbitrary
excitation can be obtained by convolving the excitation with the John's matrix.  The technique
can be applied to model absorbing boundaries, especially in guided wave structures.   The
John's matrix of an absorbing boundary for a wave guide structure can be obtained by
simulating  a waveguide section which is long enough to guarantee that reflections from the
far end cannot return to the input reference plane before the computation is stopped.  In order
 to reduce computational time and storage, gradually increasing losses can be introduced to
the waveguide section to gradually attenuate the wave as it propagates into the waveguide
section.  The length and loss profile are optimized to keep the reflections as small as possible
in the frequency range of interest [15].  Once the John's matrix of the lossy region is
calculated, it can be used for matched termination in further simulations.  The Johns matrix
approach has been originally developed for TLM application.

2.9.4  Dissipation techniques and perfectly matched layers

In this approach,  a narrow region is constructed just outside the computation domain.
In this region, gradual dissipation is introduced in such a way that waves incident on such a
boundary are damped on their way in, reflected by a conventional boundary condition and
then damped further in their way back. 

The technique was first explored in a TLM  In [17], a matched termination for a
waveguide structure was implemented with a waveguide section with gradually increasing
losses.  The loss tangent profile and the length of the lossy section were optimized to
guarantee minimum reflections in the frequency range of interest.  This was done with the aid
of  Touchstone CAD software.  A return loss of less that -32 dB was observed.

Recently, a new concept for designing a perfectly matched layer PML has been proposed
for FDTD [18].  The PML has both magnetic and electric loss components.  By properly
associating different electric or magnetic conductivities to different field components, it was
shown that the PML theoretically would not cause any reflection at an interface with free
space for incident fields at any frequency and any angle of incidence.  The conductivities are
chosen to vary continuously with space in order to minimize numerical reflections.  In [19], it
was shown that the PML is very effective in absorbing TEM and quasi TEM waves as well as
non TEM waves above their cutoff frequencies.  However for evanescent waves, it cannot
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provide any more attenuation and hence become ineffective in absorbing these kind of  waves.
For this reason, special care must be taken in placing PML away from any discontinuity where
evanescent modes are most likely to exist.

2.10  Summary

This chapter included a review of the time domain TLM.  The two dimensional series
and shunt nodes were analyzed.  The development of three dimensional nodes was then
discussed, starting from the expanded node to improved condensed nodes that were able to
overcome the difficulties associated with the expanded node.  This included the SCN, a pair of
HSCN and the SSCN.  The choice of the link line impedances/admittances of each of these
nodes was discussed.  The characteristic impedances or admittances of the compensating short
circuit or open circuited stubs were also derived for each of these nodes.  Scattering in a
general symmetical condensed node was also derived.   In this chapter the boundary treatment
in a TLM mesh was discussed.  This included different kind of boundaries as well absorbing
boundary conditions.
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