
Appendix C

The Higdon's absorbing boundary
condition

This Appendix will derive expressions to predict field values at the absorbing boundaries
from known field values inside the computation domain at previous time steps using one of the
one wave equation techniques, namely the Higdon's absorbing boundary condition.  The
derivation will follow the exact notation in [27] .

Consider the wave equation
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The boundary condition proposed by Higdon for an outgoing wave in the x direction is given
by
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where B is the boundary operator.  This operator can perfectly absorb any linear combination
of plane waves traveling at incidence angles  θ1,  θ2 ,....... θp .  εi is a damping factor to absorb
D.C and low frequency components.  Writing equation (C.2) in finite difference notation, one
term in the operator can be written as
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       (C.3)Bi = I − D−1
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where the coefficients a and b are weighted time and space averages of the space and time
differences, respectively.  I, D and K are shift operators defined by 

(C.4)IEn(i, j, k) = En(i, j, k), DEn(i, j, k) = En(i + 1, j, k), KEn(i, j, k) = En+1(i, j, k)

The operator in (C.3) can be written as

                          (C.5)Bi = I − α iK−1 −− β iD−1 − γ iD−1K−1

where

                                                    α i =
(a− gi(1− b))

(a− 1− gi (1 − b) − ε i∆l)

                                                                      β i = (a− 1+ gib)
(a− 1− gi (1 − b) − ε i∆l)

                                                                                      (C.6)γ i =
(−a− gib)

(a− 1− gi (1 − b) − ε i∆l)

the parameter gi is                  

                                                    (C.7)gi = cosθ i
c
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For a first order boundary (p = 1), the field E at the mth space step and the nth time step can
be expressed in terms of  its neighbors along the normal to the boundary as

         (C.8)En(m, j, k) = α1En−1(m, j, k) + β1En(m− 1, j, k) + γ1En−1(m− 1, j, k)

For a second order boundary, the boundary operator becomes

                                                                 B = B1B2

                            (C.9)=

I − (α1 + α2)K−1 + α1α2K−2 − (β1 + β2)D−1

+(α1β2 + α2β1 − γ1 − γ2)D−1K−1

+(α1γ2 + α2γ1)D−1K−2 + β1β2D−2

+(β1γ2 + β2γ1)D−2K−1 + γ1γ2D−2K−2

applying the discrete operator to the electric field gives 
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(C.10)En(m, j, k) =

(α1 + α2)En−1(m, j, k) + α1α2En−2(m, j, k) − (β1 + β2)En(m− 1, j, k)
+(α1β2 + α2β1 − γ1 − γ2)En−1(m− 1, j, k)

+(α1γ2 + α2γ1)En−2(m− 1, j, k) + β1β2En(m− 2, j, k)
+(β1γ2 + β2γ1)En−1(m− 2, j, k) + γ1γ2En−2(m− 2, j, k)

It is important to note that in a TLM mesh, the voltage impulses incident on the absorbing
boundary planes are function of both the tangential to the boundary electric and magnetic
fields.  Since both the tangential electric and magnetic fields satisfy the wave equation,  the
absorbing boundary conditions presented above can be applied to either of them or to a linear
combination of them.  Consequently, the absorbing boundary equations in (C.8) and (C.10) can
directly be applied to the TLM voltage pulses.  
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