
Chapter 6

Summary and Conclusions

In this work, a new frequency domain TLM approach  was introduced which combines
the superior features of both  the time domain and the frequency domain TLM.  The  approach
is based on a steady state analysis in the frequency domain using transient analysis techniques
and hence was referred to as TFDTLM.  In this approach, the link line impedances are derived
in the frequency domain and are chosen to model the frequency dispersive material parameters.
The impedances and propagation constants are allowed to be complex and consequently
provide more accurate modeling  for wave propagation in a frequency dispersive medium.  At
the same time, the TFDTLM has the advantage of being able to  extract all the frequency
domain information in the frequency range of interest from only one simulation.  This special
feature of the TFDTLM makes it computationally more efficient as compared  to any other
frequency domain TLM.

The new approach in addition to being computationally efficient as compared to other
frequency domain TLM methods, was found to have superior dispersion behavior in modeling
lossy inhomogeneous media as compared to time domain TLM .  A first order approximation
filter was able to model inhomogeneous media with a relatively high dielectric constant and /or
relative permeability.  A  second order filter was able to provide enough accuracy in modeling
a lossy inhomogeneous medium with a relatively high loss tangent.  It is also worth mentioning
that one important advantage of the approximation filter is that it can approximate a general
frequency dispersive constitutive parameter, a feature that can not provided by a traditional
time domain TLM scheme with open circuited, short circuited and lossy stubs.

84



Another important advantage of the TFDTLM, is that it can easily be interfaced with any
time domain TLM method.  Therefore in lossless regions with relatively low relative dielectric
constants and/or permeabilities, a traditional time domain TLM technique can be used.   The
only drawback is that even in regions using the time domain TLM, all the computations must
be complex.  However, no approximation filter will be used in these regions which would
consequently save a lot of computations and help improve the overall computational efficiency
of the TFDTLM.

The TFDTLM can also be easily interfaced with any of the  absorbing boundary
conditions originally developed for time domain TLM with the slightest modifications.  The
absorbing boundary was found to perform even better with the TFDTLM than with a time
domain TLM for reasons discussed in chapter 5.

For the purpose of verification, the TFDTLM was implemented in a three dimensional
mesh.  Some structure were simulated and the ability of the TFDTLM to accurately model
wave propagation in lossy inhomogeneous media was demonstrated.

On The Computational Efficiency of the TFDTLM

It has been mentioned earlier that as compared to a frequency domain TLM scheme,
where the intensity of computation per frequency is approximately of the same order, the
TFDTLM would be computationally more efficient.  The reason is that in  the TFDTLM , all
the frequency domain information in the entire frequency range of interest can be extracted
from only one simulation.  In a traditional frequency domain TLM on the other hand, the
simulation has to repeated at every frequency point.

As compared to a time domain TLM scheme, the TFDTLM may be less efficient.  The
reason is that in a TFDTLM, all the computations must be complex.  Also, more complex
computations are used for the implementation of the approximation filter.  In what follows, the
number of multiplications and additions in the TFDTLM will be compared to that required in a
time domain TLM.  The storage requirement will be compared as well.  The following
calculations for a time domain TLM will be based on  a general node having six different link
line impedances for different coordinate directions and polarizations, three lossy stubs and
three inductive or capacitive stubs.  For the TFDTLM, six different link line impedances are
considered with no lossy, inductive or capacitive stubs.  For  the TFDTLM, all the filter
coefficients are normalized to b0 i.e. b0 is taken to be unity.  The following table compares the
number of multiplications and additions required by a TFDTLM node and the time domain
TLM node.
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Table 6.1 Comparison of the number of multiplication and additions in a first and second order

TFDTLM and a  time domain TLM

TD  TLM TFDTLM 1 st order TFDTLM 2 nd order

complex multiplications/divisions - 66 78

real multiplications/divisions 57 - -

complex additions/subtractions - 48 60

real additions/subtractions 57 - -

Equivalent total number of  real
multiplications / divisions

57 264 312

Equivalent total number of  real
additions/subtractions 

57 294 354

From the above table, it appears that the number of multiplications in the TFDTLM is
approximately 4.5 times that required by a time domain TLM for a first order filter
approximation and is about 5.5 times for a second order filter approximation.   It is important
to note that in the above calculations every complex multiplication is converted to 4 equivalent
real multiplications and three equivalent real additions.  In order to improve that efficiency of
the TFDTLM, it was important to notice that part of the multiplications involved in the
TFDTLM are not full complex i.e. are not multiplication of two complex numbers but rather
multiplication of a real and a complex number.   Multiplication of a real and a complex number
is equivalent to two real multiplications.  The complex class developed in C++ could actually
differentiate between these two types of multiplications and consequently save a lot of
computations.  The following table summarizes the total number of multiplications and
additions for a first and second order efficiently coded TFDTLM as compared to a time
domain TLM.

Table 6.2 Comparison of the number of multiplication and additions in a first and second order

efficiently coded TFDTLM

TD  TLM TFDTLM 1 st order TFDTLM 2 nd order

Equivalent total number of  real
multiplications / divisions

57 168 216

Equivalent total number of  real
additions/subtractions 

57 150 210

From the above table, it appears that by only differentiating between multiplication of two
complex numbers and multiplication of complex number by a real number in a TFDTLM code,
the efficiency of the TFDTLM can be  significantly improved.  In this case, the number of
multiplication  in a first order TFDTLM is 3 times that required by a time domain TLM .  For a
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second order TFDTLM the number of multiplications becomes approximately 3.6 times that
required by a time domain TLM.

It is also important to note that,  in the region which is treated as a reference medium in a
TFDTLM,  the connection procedure does not involve any approximation filter.  This would
drop the equivalent number of real multiplication in this region to 98 and the number of
equivalent real additions to 72.  Consequently, the overall number of multiplications and
additions will be reduced.

Concerning the memory storage requirement of a TFDTLM, a first order TFDTLM will
require 24 complex memory locations per node as opposed to 15 real memory locations in time
domain TLM with three stubs.  A second order TFDTLM on the other hand will require 36
complex memory locations per node.

Actual CPU times were calculated for some of the results obtained using the HSCN and
first and second order TFDTLM.   All simulations were performed on an IBM Scalable Parallel
Processor (SP2) system at Virginia Tech.   In the simulation of the rectangular waveguide
structure with 10 cells along the x and y directions and 20 cells along the z direction, the
simulation was run for 4000 iterations.   The average execution time per node per iteration is
calculated by dividing the overall execution time by the total number of nodes and by the total
number of iterations.  The average execution time per node per iteration for the HSCN was
found to be 22.1 µs, 120 µs for a first order TFDTLM and 155 µs for a second order
TFDTLM.  These results indicate that the first order TFDTLM required about 5.4 times the
time required by the HSCN whereas the second order TFDTLM required about 7 times the
time required by the HSCN.  In the simulation of the rectangular waveguide bandpass filter
with 20 cells in the x and y directions and 40 cells along the z direction for 4000 iterations,  the
average execution time per node per iteration for the HSCN was 40 µs, 131 µs for a first order
TFDTLM and 169 µs for a second order TFDTLM.   It is important to note that for this
simulation, the structure became more complicated, the average execution time per node per
iteration for the HSCN was almost doubled.  This can be attributed to the fact that in the
presence of  a lot of discontinuities represented in this case by the inductive irises, the time
spent in verifying the existence of a discontinuity and applying the appropriate boundary
condition became much larger than that required for scattering in a region with no
discontinuities.  On the other hand, for the TFDTLM, the average execution time per node per
iteration was increased by the presence of more discontinuities but only slightly.  The reason is
that the execution time even in a region free from discontinuities in a TFDTLM  was much
larger than that in the HSCN.  Consequently, the presence of discontinuities did not
significantly affect the average execution time.  In this case, the first order TFDTLM required
about 3.3 times the time required by the HSCN whereas the second order TFDTLM required
about 4.2 times the time required by the HSCN

87


