
Chapter 5

Simulation Results

The TFDTLM scheme was found to have improved dispersion characteristics as
compared to the SSCN and HSCN.  This conclusion can in fact be generalized to any general
time domain TLM scheme.  The main advantage of the TFDTLM is its ability  to model
inhomogeneous as well as frequency dispersive material parameters more directly and more
accurately than existing TDTLM schemes.

For the purpose of verification, the TFDTLM was  implemented in a three dimensional
TLM node .  The scattering matrix was derived, as was shown in chapter 2, in terms of the
normalized characteristic impedance of the link lines.  The connection procedure was
implemented  as shown in equations (3.19) and (3.20).  

5.1 Simulation of a resonant cavity

A cavity of  size 5 cm x 5 cm x 5 cm was simulated with a uniform grid of ten cells in
each coordinate direction.  A comparison with the type II  time domain HSCN is performed in
two cases.  In the first case, the cavity was filled was a lossless dielectric with a relative
dielectric constant of 5.  The resonance frequencies were calculated in the TFDTLM approach
and the HSCN  and compared to the actual or theoretical values.  In the second case, some
losses are introduced to the dielectric filling of the cavity and the quality factor is calculated for
the HSCN and the TFDTLM approach and compared with the theoretical values.
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The filter coefficients in the TFDTLM were optimized up to a frequency where the
maximum cell dimension is in the order of  0.18 times the wavelength in a medium with εr = 5.
This range is guaranteed to cover the frequency range over which the TLM is always operated
for a given cell dimension.  Usually the cell dimension in a TLM node would be chosen to be
less than 0.1 times the  corresponding wavelength at the maximum frequency  of interest. 

Figure (5.1a-b) compare the simulation results of type II HSCN and the TFDTLM in
modeling  a lossless cavity with εr = 5.  From the Figure, it appears that the behavior of type II
HSCN and that of the TFDTLM with a first order filter approximation are almost identical in
the low frequency range, up to 3 GHz and are very close to the theoretical values.  As the
frequency increases, the resonance frequencies obtained from the HSCN start to shift from the
actual values whereas the TFDTLM almost maintains the same order of accuracy. The Figure
also shows that the resonances provided by the  TFDTLM  are sharper and much more
pronounced  than those given by the  HSCN at higher frequencies.  

Figure (5.2a-b) show a comparison between  the accuracy of the type II HSCN and the
TFDTLM in simulating the resonances of a lossy cavity with σ = 0.025 S/m and εr = 5.  Table
5.1 shows the quality factors calculated from both schemes as compared to the actual values.
The results in table 5.1 shows that the TFDTLM can provide improved accuracy in calculating
the quality factor and consequently in modeling the losses in the medium.  Both the TFDTLM  
and the HSCN  have acceptable order of accuracy in the low frequency, although the
TFDTLM is still better.  As the frequency increases, the HSCN significantly degrades whereas
the TFDTLM maintains almost the same order of accuracy with very slight degradation. 

Figure (5.3a-b) show similar results to those in (5.2a-b) but with higher loss tangent or
more losses.  In this simulation, the conductivity was increased to 0.05 s/m and the dielectric
constant is maintained.  Table 5.2 compares the error in estimating the quality factor in both 
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Figure 5.1a  Resonance of  a 5 cm x 5 cm x  cm cavity in the frequency range 0 to 3.5 GHz
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Figure 5.1 b  Resonance of  a 5 cm x 5 cm x  cm cavity in the frequency range 4 to 5.6 GHz
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Figure 5.2 Simulation of a lossy cavity with both type II HSCN and FDTLM
εr = 5 σ  = 0.025 s/m    a-  Ex in dB           b- Hy  in dB
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A Lossy  Cav ity  w ith  εε r  =5 σσ  = 0.05 s/m
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Figure 5.3 Simulation of a lossy cavity with both type II HSCN and FDTLM
 εr = 5 σ = 0.05 s/m    a-  Ex  in dB           b- Hy  in dB
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Table 5.1 comparison of the percentage error in the Q factor estimation obtained from the HSCN and
TFDTLM   for εεr = 5 σσ  = 0.025 s/m 

fo actual fo HSCN II fo TFDTLM Q HSCN II  Q TFDTLM errorHSCN

HSCN

error TFDTLM

1.8974 1.8902 1.8902 21.5 20.79 2.4 %  -0.98 %

3 2.9854 2.9854 34.77 33.02 4.8 %  -0.43 %

4.2426 4.26 4.23 52.77 46.4 11.5 %  -1.25 %

4.8374 4.756 4.786 61.7 53.13 16 % -0.1 %

5.5317 5.6 5.51 75.4 59.2 21 %  -3 %

Table 5.2 Comparison of the percentage error in the Q factor estimation obtained from the HSCN
and TFDTLM   for εεr = 5 σσ  = 0.05 s/m 

fo actual fo HSCN II fo TFDTLM Q HSCN II  Q TFDTLM errorHSCN

HSCN

error TFDTLM

1.8974 1.8826 1.8976 10.7 10.42 2.4 %  -0.98 %

3 2.9852 2.9852 17.57 16.58 6.1 %  -0.1 %

4.2426 4.237 4.2005 26.7 24.19 13 %  3.4 %

4.8374 4.748 4.78 31.5 27.9 21 % -5.3 %

5.5317 5.6 5.52 38 29.3 22 %  -3 %

the HSCN and the TFDTLM.  The table shows that for twice as much losses, the HSCN
is significantly degraded even in the low frequency range.  The TFDTLM on the other hand,
has maintained almost the same order of  accuracy in the relatively low frequency range with
slight degradation in the high frequency range.

From the results in tables 5.1 and 5.2, it appears that the traditional time domain TLM
overestimates the quality factor or in other words underestimates the losses in the medium.
This can also be concluded by observing the time domain response in the time domain TLM.
Figures (5.4a-b) shows the time domain response of the ex field in the HSCN II as compared to
the real part of the ex field versus the number of iteration in the TFDTLM.   The Figures clearly
indicates that the response in the  TFDTLM decays much faster than the HSCN.  Figure (5.4
c-d) zoom into the iterations from 2000 to 4000 in the TFDTLM versus the time steps from
2000 to 4000 in the HSCN.  The figures shows at the 2000th iteration in the TFDTLM, the real
part of ex has dropped to a value of 10-4 relative to an initial value of around 50, it then
continues to decay rapidly to  a very small level.  In the time domain HSCN on the other hand,
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the ex field component at the 2000th time step has  a value of  about 10% of the initial value.
Furthermore, it appears that it continues to oscillate with a maximum magnitude of about 10 %
of the initial value.  It is worth mentioning that the number of time steps were even increased
to 16000 and the electric field component never dropped any further.  This explains the under
estimated losses obtained by the time domain HSCN.
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5.2 Simulation of rectangular waveguide structure

In this case, a rectangular waveguide structure is simulated.  The dominant TE10 mode is
excited and the impedance of the dominant mode is calculated from the simulation.  The
accuracy of the calculated impedance obtained using the HSCN is then compared to that
obtained using the TFDTLM for different dielectric constants.  The waveguide structure
shown in Figure (5.5) has a = b = 5 cm.  A section of the waveguide of length 10 cm is
considered.  A second order Higdon's absorbing boundary condition [26-28] is used as a
matched termination at z = 0 and z = 10 cm.  The derivation of the boundary equations is
shown in Appendix C.  In the TFDTLM method, a first order filter approximation is used.  The
filter is denoted by F1 and has the form 

                                                   (5.1)F1 = e−γ1∆l 1



a0 + a1e−γ1∆l 1

b0 + b1e−γ1∆l 1




Free space is considered the reference medium i.e. .  A uniform cell is usedγ1 = jω µ0ε0

with dx = dy = dz  = 2∆O1�=0.5 cm.  The filter coefficients are optimized in a frequency range
where the a maximum cell dimension is less than or equal to 0.125 times the corresponding
wavelength.

      O

a
b z

y

x

Figure 5.5 A rectangular waveguide structure

Figure (5.6a)  compares the magnitude of  the impedance of the dominant TE10 mode
obtained from the traditional time domain TLM to that obtained by the TFDTLM method.  the
relative dieclectric constant is 2.  Figure (5.6b) shows the error in the impedance calculation
after cutoff for both the HSCN and the TFDTLM.  A frequency range from 1.25 fc to 2.8 fc is
considered.  The Figure shows an improved order of accuracy for the TFDTLM  over the
traditional time domain TLM.  In the frequency range considered, the HSCN has an average
magnitude error of about 3.5 % corresponding to only 1.75% for the TFDTLM.  
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Figure 5.6 Comparison between  HSCN II and FDTLM in  simulating a rectangular 
waveguide  εr = 2    a-  |ZTE10/η|          b-  % error in  ZTE10/η after cutoff
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Figure 5.7 Comparison between  HSCN II and FDTLM in  simulating a rectangular 
waveguide  εr = 10    a-  |ZTE10/η|          b-  % error in  ZTE10/η after cutoff



69

-50

-30

-10

10

30

50

0 500 1000 1500 2000

number of time steps
(a)

HSCN II

e y

-50

-30

-10

10

30

50

0 500 1000 1500 2000

number of iterations
(b)

TFDTLM

R
ea

l (
e y

)

Figure 5.8      Simulation of a waveguide with εr = 10                    
                                   a - Time domain response of the ey  component in the HSCN II
                                  b - Real part of ey versus  number of iterations in the TFDTLM



Figure (5.7a-b) show similar results to those in (5.6a-b) but with εr =10.  From Figure
(5.7b), it appears that the behavior of a traditional time domain  TLM is significantly degraded
for a higher dielectric constant.  The error in the impedance calculation after cutoff can reach a
maximum of 12.5 % with an average magnitude from 1.25 fc to 2.8 fc of about 7.3 %.  On the
other hand, the error in the TFDTLM is always less than 3.5 % with an average magnitude
from 1.25 fc to 2.8 fc of about 1.2 %.  Surprisingly, the amount of error appears to be even less
than that obtained with εr = 2.  The apparent improved performance of the TFDTLM for
higher dielectric constant can be attributed to one interesting property of the TFDTLM.  It was
observed that when trying to optimize the coefficients of a first order approximation filter for a
medium with a relatively high dielectric constant,  the optimization algorithm would add a very
small artificial damping factor to the medium propagation constant.  Although this artificial
damping is very small to affect the accuracy of the approximated propagation factor, it seems
that it has  an important advantage.  This artificial damping  would help improve the stability of
the absorbing boundary condition which makes it possible to consider a larger number of
iterations and consequently higher frequency resolution and more accurate results.  The
improved stability of the absorbing boundary condition can be observed by comparing the time
domain response of the ey component obtained by the HSCN to the real part of ey  versus
iterations obtained from the TFDTLM  as shown in Figure (5.8a-b).

5.3 Simulation of waveguide bandpass filter

In this section, a waveguide bandpass filter is simulated.  The filter is formed of an
infinitely long section of a rectangular waveguide structure  loaded at specific locations with
lossless obstacles.  The obstacles considered here are assumed to be zero thickness
symmetrical inductive irises.  The structure is shown in Figure (5.9a).  The structure can be
modeled by transmission line sections of  the appropriate length, characteristic impedance
equal to the intrinsic impedance of the propagating mode ( assuming only the dominant TE10

mode is propagating) and propagation factor equal to that of the propagating mode.  The
obstacles are modeled by shunt elements.  The modal expansion method is used to obtain
formulas for the admittance values of these shunt elements.  These formulas are in the form of
integral equations  which are solved using the method of moments [29].  The derivation of the
equivalent shunt element of an inductive iris is shown in Appendix B.  Once the equivalent
shunt element is calculated, the whole structure will have a determined equivalent circuit model
shown in Figure (5.9b).  The S - parameters can be obtained from the equivalent circuit and
used as a reference.  The waveguide has  a = b =5 cm.   A second order Higdon's absorbing
boundary condition is used for the transverse planes at z = 0 and z = 10 to simulate an infinitely
extended waveguide.  The irises dimensions and locations are shown in Figure (5.9b).  The
observation point is chosen somewhere in the middle between the second iris and the absorbing
boundary.  Two cases will be considered, In the first one, the bandpass filter is assumed to be
lossless filled with some dielectric.  The S21 is then calculated from both  the HSCN II and the
TFDTLM and the results are compared to that obtained from the equivalent circuit model.  In
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Figure 5.9
      a - A waveguide bandpass filter structure               b-  Equivalent circuit model
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the second case, the waveguide is assumed to be filled with a lossy dielectric material.

5.3.1  Simulation of a lossless waveguide bandpass filter

 A lossless waveguide bandpass filter is simulated for different dielectric filling.  The S21

obtained from both the HSCN II and the TFDTLM is compared to that obtained from modal
analysis and equivalent circuit model.  In the TFDTLM,  a first order filter approximation is
used with the same assumptions in section 5.2.  The only difference is that in this case a finer
grid is used  to be able to accurately model the irises.  In all the following  waveguide bandpass
filter simulations, a uniform cell is considered with dx = dy = dz  = 2∆O1�=0.25 cm.  Again the
filter coefficients are optimized  over a frequency range where the cell dimension is less than or
equal to 0.125 times the corresponding wavelength.  

Figure (5.10) shows the S21 of the bandpass filter obtained from the HSCN versus that
obtained from modal analysis and circuit model.  Figure (5.11) shows the corresponding result
obtained from the TFDTLM.  Comparing the two figures, it becomes obvious that the
TFDTLM is able to provide better accuracy than the HSCN.  The actual bandwidth obtained
from modal analysis and equivalent circuit modal is 31.3 MHz.  The bandwidth obtained by the
HSCN was found to be 27.5 MHz with a percentage error of about 12 %.  On the other hand,

 that the bandwidth obtained by the TFDTLM was found to be 33 MHz with an error of
only 5 %.  Table 5.3 summarizes the above results

Table 5.3  Comparison of the error in bandwidth obtained from the TFDTLM, the HSCN and
equivalent circuit model  in the simulation of a waveguide bandpass filter  with ε εr  = 6

Actual Bw = 31.3 MHz  % error
HSCN 27.5 MHz -12 %

TFDTLM 33 MHz 5 %

Figure (5.12) and (5.13) show similar results to those in (5.10) and (5.11) but with a
relative dielectric constant of 10.  Figure (5.12) shows that the behavior of the HSCN II is
significantly degraded.  On  the other hand Figure (5.13) shows that the S21 obtained from the
TFDTLM is almost in perfect match with that obtained from modal analysis.  The apparent
improved accuracy of the TFDTLM can be attributed to the same reason discussed in section
5.2. 

 Another good reason for the absorbing boundary to perform  better with the TFDTLM
than with the HSCN is the following : the absorbing boundary is designed to absorb a wave in
a medium with some dielectric constant εr.  In  the HSCN, the delay along the link lines is
equal to that in free space and the extra delay is compensated through the use of stubs
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A waveguide bpf with  εε r = 6 
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Figure 5.10      S21 Obtained from the HSCN II versus that obtained from  modal analysis and 
circuit model  in the simulation of a waveguide bandpass filter  with εr = 6
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A waveguide bpf with εε r =6 
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Figure 5.11      S21 Obtained from the TFDTLM versus that obtained from  modal analysis and 
circuit model  in the simulation of a waveguide bandpass filter  with εr = 6
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A waveguide bpf with εε r =10 
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Figure 5.12      S21 Obtained from the HSCN versus that obtained from  modal analysis and 
                       circuit model  in the simulation of a waveguide bandpass filter  with εr = 10
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A waveguide bpf with εε r =10 
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Figure 5.13      S21 Obtained from the TFDTLM versus that obtained from  modal analysis and 
                    circuit model  in the simulation of a waveguide bandpass filter  with εr = 10
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concentrated at the nodes centers.  The fact that the speed of propagation along the link lines is
different from the speed of the wave the boundary is designed to absorb creates some type of
discontinuity or mismatch.  This mismatch help degrade the quality of absorption.  In the
TFDTLM, on the other hand,  although the delay or propagation factor is being approximated
by a filter,  the fact that its being distributed along the link line help get rid of the discontinuity
inherent in the HSCN.  Figure (5.14a-b) demonstrates the improved performance of the same
absorbing boundary condition with the TFDTLM than with HSCN.  Figure (5.14a) shows the
time domain response of the bandpass filter with for εr = 10 obtained by the HSCN.   Figure
(5.14b) shows  the real part of the field component ey versus the number of iterations obtained
by the TFDTLM.

5.3.2 Simulation of  a lossy  waveguide bandpass filter

 A lossy waveguide bandpass filter is simulated.   The waveguide is filled with a lossy
material having a relative dielectric constant equal to 6 .  The S21 obtained from both the
HSCN II and the TFDTLM are compared to that obtained from modal analysis and equivalent
circuit model for different conductivities of the dielectric filling.  In the TFDTLM,  a second
order filter approximation is used.  The filter is denoted by F2 and has the form 

                                  (5.2)F2 = e−γ1∆l 1



a0 + a1e−γ1∆l 1 + a2e−2γ1∆l 1

b0 + b1e−γ1∆l 1 + b2e−2γ1∆l 1




  The cell dimensions are chosen as in section 5.3.1.  Again the filter coefficients are optimized
 over a frequency range where the cell dimension is less than or equal to 0.125 times the
corresponding wavelength.  

Figure (5.15) shows the S21 of the bandpass filter obtained from the HSCN versus that
obtained from modal analysis and circuit model for a conductivity of 0.06 s/m.  Figure (5.16)
shows the corresponding result obtained from the TFDTLM.  Comparing the two figures, it
becomes obvious that the TFDTLM is able to provide better accuracy than the HSCN. The
same conclusion derived from the simulation of a lossy cavity can be observed here.  The
HSCN overestimates the quality factor of the filter which can be attributed to its inability to
accurately model the medium losses. The actual quality factor obtained from modal analysis
and equivalent circuit modal is 11.  The quality factor obtained by the HSCN was found to be
24.4 with a percentage error of over a 100 %.  On the other hand, that the quality factor
obtained by the TFDTLM was found to be 10.3 MHz with an error of only 6 %.  

Figure (5.17) and (5.18) show similar results to those in (5.15) and (5.16) but with a  
higher loss tangent, here the conductivity is taken to be 0.1 s/m .  Figure (5.17) shows that the
behavior of the HSCN II is significantly degraded.  On  the other hand Figure (5.18) shows
that the S21 obtained from the TFDTLM is in  quite good agreement with that obtained from
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A waveguide bpf with εε r = 6 and    σ σ = = 0.06 s/m 
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Figure 5.15      S21 Obtained from the HSCN versus that obtained from  modal analysis and 
                    circuit model  in the simulation of a waveguide bandpass filter  with εr = 6, σ = 0.06 s/m
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A waveguide bpf with  εε r =6 and  σσ  = 0.06 s/m 
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Figure 5.16      S21 Obtained from the TFDTLM versus that obtained from  modal analysis and 
                    circuit model  in the simulation of a waveguide bandpass filter  with εr = 6, σ = 0.06 s/m
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A waveguide bpf with εε r = 6 and    σ σ = = 0.1 s/m 
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Figure 5.17      S21 Obtained from the HSCN versus that obtained from  modal analysis and 
                    circuit model  in the simulation of a waveguide bandpass filter  with εr = 6, σ = 0.1 s/m
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A waveguide bpf with  εε r =6 and  σσ  = 0.1 s/m 
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Figure 5.18     S21 Obtained from the TFDTLM versus that obtained from  modal analysis and 
                    circuit model  in the simulation of a waveguide bandpass filter  with εr = 6, σ = 0.1 s/m



modal analysis.   

5.4  Summary

In this chapter, the TFDTLM was implemented in a three dimension mesh.  Some
structures were simulated and the ability of the TFDTLM to accurately model wave
propagation in lossy inhomogeneous media was demonstrated.  These structures included a
cavity, a waveguide and waveguide bandpass filter.  First order approximation filters were used
for lossless inhomogeneous media while second order approximation filters were used for lossy
inhomogeneous medium.

The TFDTLM was able to provide more accurate results as compared to the HSCN.
Furthermore, the behavior of the HSCN was found to be significantly degraded as the relative
dielectric constant and/or the loss tangent are increased.  The TFDTLM, on the other hand,
almost maintained the same order of accuracy with increased relative dielectric constant and/or
loss tangent.

Another important advantage of the TFDTLM that was also revealed from the simulation,
is that it can easily be interfaced with any of the  absorbing boundary conditions originally
developed for time domain TLM with the slightest modifications.  The absorbing boundary
was found to perform even better with the TFDTLM than with a time domain TLM for
reasons discussed earlier.
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