Chapter 4

Dispersion Analysis

As with any numerical method, the discretization of space and time introduces
undesirable dispersion behavior in the numerical results. The other main source of numerical
dispersion in a TLM mesh is the use of stubs which usually arise in trying to model anisotropic
and inhomogeneous media and sometimes to guarantee synchronization in the three coordinate
directions in a TLM mesh [21].

The dispersion relation is an implicit function of the mesh propagation constant in the
three coordinate directions, the cell dimensions, the operating frequency and the constitutive
parameters of the medium. The derivation of the dispersion relation of a generally graded
TLM mesh with stubs will follow the general approach in [22-23].

Let's consider two nodes a and b. a is some arbitrary node in a generally graded TLM
mesh which in general has twelve transmission lines and six stub ports. b is some hypothetical
node which is formed by the transmission lines that can be reached atftirbg the pulses
scattered from node a at time t. The scattered voltages at node a can be written in terms of the
incident voltages as

V=SV, (4.1)

where S is the scattering matrix. If the propagation constant along the link linethisrkihe
incident voltage at a can be written in terms of the scattered voltage at B as
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_ (4.2)
Va=TVy

where T is the connection matrix which is an 18 x 18 diagonal matrix whose nonzero elements
areT;; =e¥XoAl fori=1to i =15 anT; =-e Ko for =16, 17 and 18. The negative sign
comes from the fact that these entries in the T matrix correspond to the short circuited stubs
which have negative reflection coefficients. From Floquet's theorem or the monochromatic
wave condition

Vi =PVa (4.3)

where P is a nondiagonal matrix whose nonzero coefficients are

P112= P57 =Ky&Y Ppg=Psg=elK#?
P3,11= Pg 10 = &Kx P75=P1p 1=K
Pg 4 = Pg o = ez P10,6= P11,3= €K& (4.4)
Substituting from (4.1) and (4.2) into (4.3) gives
Vi =PSTV, which implies defl -PST =0 (4.5)

The above condition is the dispersion relation. In this work, simplified versions of equation
(4.5) are usually derived and solved numerically. Simplification is usually done by assuming
propagation in a 2-D space and considering only either modes comprjsigg tand E or

those comprising E H, , and H. Only the nodes that are responsible for the field components

of interest are used in solving (4.5). In the following discussion, the dispersion error will refer
to the error between the simulated or mesh propagation constant obtained by solving equation
(4.5) and the actual propagation constant of the medium.

4.1 The Dispersion behavior of the SCN, HSCN and SSCN

In this section, results are given for the dispersion properties of the SCN as compared to
the SSCN and the type Il HSCN. The dispersion behavior is derived from the eigenvalue
equation given in equation (4.5) for the modes comprising i, and E assuming 2-D
propagation in the x-y plane.

Figure (4.1) shows the resulting family of dispersion curves for the SCN, the HSCN and
the SSCN. The TLM mesh is assumed to be nonuniform having dx = 0.2 cm, dy = dz =0.1 cm
modeling a medium of, = p,=1. The dispersion error is plotted versus the angle from the x
axis @). The maximum time steft is given relative to the time step in a uniform mesh with
size 0.1 cm referred to a&t,. The maximum allowable time step for the SCN and the HSCN
are the same and equalAty, whereas that provided by the SSCN is aboutM 2 When the
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dispersion behavior was evaluated at the maximum allowable time step for each node, the
HSCN was found to have the best dispersion properties as compared to the SCN and the
SSCN, while the SCN has the worst dispersion behavior and the SSCN lies between the two.
However, the SSCN has the advantage of being able to operate at a larger time step without
the loss of stability which implies fewer number of iterations. When the dispersion properties
of the SSCN were evaluated with a time step equaltfp the dispersion error was
tremendously improved even over the HSCN. Figure (4.2) shows a comparison of the
dispersion characteristic of the three nodes in a uniform mesh modeling a medig)m 6f

n=1. For this case, the HSCN has the most superior performance over the SCN and the
SSCN. It is worth mentioning, however, that the SSCN as reported in [10] has the advantage
of having a unique and unilateral dispersion irrespective of the propagating mode. All other
stub loaded nodes will experience different dispersion errors for different propagating modes
[24]. This phenomenon may be attributed to the fact that open circuited stubs would directly
affect the corresponding electric field components whereas short circuited stubs would affect
the corresponding magnetic field components. As a result, depending on the values of these
stubs in different coordinate directions, different modes associated with different field
components will be treated differently. The fact that the SSCN has a unique dispersion
relation makes it easier to correct for the dispersion error.

4.2 Dispersion in TFDTLM

The dispersion behavior of the TFDTLM scheme can be analyzed in the same way as in
the time domain TLM, where the dispersion characteristic of a general TLM mesh can be
derived by solving an eigenvalue equation in (4.5)

The matrix P has a similar form to that in time domain TLM except for the fact that
propagation constants or wavenumbers along the three coordinate directions can be complex
for alossy medium. These propagation constants are writign\gandy, for the x, y, and z
directions, respectivelyThe matrix T is a diagonal matrix with nonzero elements equt'to e
wherey is the approximated propagation constant of the medium. To simplify the analysis,
equation (4.5) is solved numerically for a 2-D propagation case in the xy plane and only for
the modes associated with the three field compongnts, tnd E .
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Figure 4.1 Comparison between the dispersion properties of the SCN, the HSCN

and the SSCN for a nonuniform cell
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4.3 Comparison with Dispersion ina TD HSCN

The dispersion relation of a stub loaded HSCN can be derived from the general condition
in equation (4.5). The dispersion equation is solved numerically for both the proposed
TFDTLM and the HSCN with the simplifying assumptions in section 4.1 and the error in the
propagation vector is compared. A uniform mesh is considerede, # 1 for a lossless

medium in one case and then a lossy medium in another case. The dispersion error is
calculated at a frequency where the cell dimension is 0.15 times the corresponding wavelength.
The dispersion error refers to the error between the mesh propagation constant k and the
actual propagation constant of the mediym k

4.3.1 Dispersion in lossless inhomogeneous medium

In this section, the dispersion error of the TFDTLM in a lossless inhomogeneous medium
is compared to thatin HSCN Il. The cell is assumed to be uniform having dx = dy =Mdz = 2
= 0.5 cm. In the TEDTLM, a first order approximation filter is used. The filter coefficients are
optimized in a frequency range where the maximum cell dimension is less than or equal to
0.125 times the corresponding wavelength. The filter has the {ayiveR by

Oag +a;e7v181 0

Fp= Vifh
Chg +bevid1 0

(4.6)

Figure (4.3) compares the percentage dispersion error calculated for a type Il HSCN and
the TFDTLM in a lossless medium wi¢gh= 5. From Figure (4.3), it appears that dispersion
error of the TFDTLM is always positive with a minimum of 0 and a maximum of 0.88% and an
average of 0.4%, whereas that of the type Il HSCN is always negative with a minimum
magnitude of 0.5 % and maximum magnitude of 1.2% and an average of 0.9 %. Hence it
appears that even for a lossless medium, the TFDTLM scheme still showed some improvement
over type Il HSCN. It is worth mentioning that in the results predicted in Figure (4.3), the
bilateral dispersion has not been taken into consideration. The bilateral dispersion reported in
[24] results from the fact that for stub loaded TLM nodes, there exist both negative and
positive dispersion errors, or stated otherwise, different modes of propagation will be
associated with different dispersion error. For the case considered, we have looked into the
three field components EE, and H and because type Il HSCN employs short circuited stubs
which directly affect the H fields, it is expected, that for the three field components chosen, the
error associated with this node should be at a minimum. On the other hand, for the modes
associated with E H and H, the error should be at a maximum. Hence the average error
should be higher than that shown in Figure (4.3). On the other hand, because the TFDTLM in
the above analysis didn't employ any stubs, it did not experience any bilateral dispersion and
the dispersion error is unique irrespective of the mode of propagation. This property as in the
SSCN would make it easier to correct for the dispersion error [10].
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Figure 4.3 Comparison between the dispersion properties of the TFDTLM and HSCN Il
for uniform cell withe =5
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Table 4.1 Comparison between the dispersion properties the TFDTLM and HSCN II
for uniform cell with € =5

€ =5 minimum error maximum error average | error |
HSCN I -0.5% -1.2 % 0.9%
1* order TFDTLM 0 0.88 % 0.4 %

Figure (4.4) shows similar results to those in (4.3) but &ith20. The same first order

filter approximation is used with the TFDTLM The Figure shows that the behavior of the
HSCN continues to degrade by increasing the relative dielectric constant. The TFDTLM on
the other hand, almost maintains the same order of accuracy. It is worth noting that even for
such a relatively high relative dielectric constant, a first order approximation filter in the
TFDTLM can still provide almost the same order of accuracy as with lower relative dielectric
constants. This conclusion can have a significant effect on improving the computational
efficiency of the TFDTLM

4.3.2 Dispersion in lossy inhomogeneous medium

In this section, the dispersion behavior of the TFDTLM in a lossy inhomogeneous
medium is analyzed. First and second order approximation filters are used. The filters have
are denoted Fand F, respectively

Cag +ae7V1f1 [ Oag +ae 141 + gre181 [

= “YviAl = VAl
F1 1801 bo + eV F2 14811 (g + by e 21801 1 b, 2¥ili1 [ 4.7)
The reference medium is considered free space vyi =jw [Ho€o . The filter

coefficients are optimized in a frequency range where the maximum cell dimension is less than
0.125 times the corresponding wavelength. The cell is assumed uniform with dx = dy = dz =
0.5 cm. The dispersion characteristics of the TFDTLM will be compared to both the HSCN
and the SSCN.

Figure (4.5) shows a comparison of the dispersion characteristics of the SSCN the HSCN
Il and first and second order TFDTLM in a lossy medium gith5 ando = 0.1 s/m ( a loss
tangent of about 0.1 at the considered frequency). The Figure shows that the SSCN has a
relatively poor dispersion characteristics for a lossy inhomogeneous medium, a behavior
already observed in Figure (4.2). The first order TFDTLM provides significant improvement
over the SSCN, however the HSCN 1l is still better. A second order TFDTLM on the other
hand has a superior performance over both the SSCN and the HSCN Il. Table 4.2 compares
the minimum, maximum, and average magnitude error in the SSCN, the HSCN Il and first and
second order TFDTLM.

48



----- TFDTLM 1st order

aem Tl HSCN I

_1.5 T T T T A
0.0 0.3 0.6 0.9 1.2 1.5

0 in radians

Figure 4.4 Comparison between the dispersion properties of the TFDTLM and HSCN I
for uniform cell withe, = 20
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Table 4.2 Comparison between the dispersion properties of the TFDTLM, HSCN and the SSCN for
in a lossy inhomogeneous medium wit) =5 ando =0.1s/m for a uniform cell

£€=50=0.1 minimum | error | | maximum |error| average | erfor|
SSCN 2.98 % 3.94% 3.45%
HSCN Il 0.54 % 1.35 % 0.98 %
1* order TFDTLM 1.27 1.49 % 1.4 %
2" order TFDTLM 0 % 0.89 % 0.43%

Figure (4.6) shows a comparison of the dispersion behavior of the HSCN Il and a second
order TFDTLM for higher loss tangent. The relative dielectric constant is chosen to be 8 with
a conductivityo of 1 s/m, a loss tangent of about 0.2. The Figure shows that the behavior of
the HSCN is significantly degraded for such a relatively high loss tangent. The TFDTLM on
the other hand almost maintains the same order of accuracy as in a lossless homogeneous
medium with a very slight degradation. Table 4.3 summarizes the minimum, maximum and
average dispersion error in both the HSCN Il and the second order TFDTLM.

Table 4.3 Comparison between the dispersion properties of a second order TFDTLM and the
HSCN Il in a lossy inhomogeneous medium witf =8 ando =1s/m for uniform cell

€=80=1 minimum | error | maximum |errof| average | efror|
HSCN I 2.13% 4.55 % 3.44 %
2" order TFDTLM 0.1% 0.85 % 0.43 %

Another important conclusion can also be derived from the results in Figure (4.6). It has
been shown that a second order approximation filter can provide an acceptable order of
accuracy even for a lossy inhomogeneous medium with a relatively high loss tangent. This
conclusion can help improve the computational efficiency of the TFDTLM significantly.

4.3.3 Dispersion in lossy inhomogeneous medium with a nonuniform cell

This section will discuss dispersion of the TFDTLM for a lossy inhomogeneous medium
and a nonuniform cell. The dispersion behavior of the TFDTLM will be compared to that of
the SSCN and the HSCN. The TFDTLM can handle the situation of a nonuniform cell in a
simple and direct way. The set of equations in (3.15) are function of the normalized link line
impedances (normalized by the complex intrinsic impedance of the medium) and the equivalent

cell dimensionA¢. In order to account for nonuniform cells, the set of equations are solved
simultaneously as in the SSCN for the normalized link line impedances and the equivalent cell
dimensionA¢. The reason they are chosen to be solved the same way as in the SSCN is that
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Figure 4.5 Comparison between the dispersion properties of the TFDTLM and HSCN Il in a lossy
inhomogeneous mediugn= 5,0 = 0.1 s/m for a uniform cell
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Figure 4.6 Comparison between the dispersion properties of the TFDTLM and HSCN Il in a lossy
inhomogeneous mediugn= 8,0 = 1 s/m for a uniform cell
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the SSCN proved to have superior dispersion characteristics in a homogenous lossless medium
with nonuniform cell [10]. The set of equations can in general be solved as in a general
symmetrical condensed node (GSCN) as illustrated in [25] for optimum dispersion behavior in

a nonuniform cell. The solution of equation (3.15) implicitly assumes that the propagation
delay along any cell dimension is equal to the propagation delay in the medium. The role of
the TFDTLM becomes significant in approximating the propagation delay in different media
with different frequency dependent material parameters in terms of the propagation constant
of some reference medium.

Figure (4.7) compares the dispersion behavior of a second order TFDTLM, the SSCN
and the HSCN in a lossy inhomogeneous medium hayimd ando = 0.1 s/m. The cell is
assumed to be nonuniform having dx = 2dy = 2dz = 1cm. In the TFDTLM, the link line
impedances are chosen to account for the nonuniform cell dimension by solving the set of
equations in (3.15). A second order approximation filter is then used to approximate the
medium propagation factor in terms of that of the reference medium. The reference medium is
taken to be free space. The filter coefficients are optimized in a frequency range where the
maximum cell dimension is less than 0.125 times the corresponding wavelength. Figure (4.7)
shows that the maximum dispersion is along the maximum cell dimension. In the SSCN, the
link line impedances are chosen to account for the nonuniform cell and satisfy the medium
dielectric constant. Lossy stubs are added to account for losses. The SSCN, as shown in
Figure (4.7) has the worst dispersion behavior. The TFDTLM and the HSCN have almost the
same amount of dispersion when both are operating at the maximum permissible equivalent cell
dimension, the maximum equivalent cell dimension that would guarantee all normalized link
line impedances are positive. The maximum permissible equivalent cell dimension in the
HSCN is simply the maximum permissible time step multiplied by the speed of light in air.
Although the dispersion behavior of both the HSCN and the TFDTLM are very close for the
maximum permissible equivalent cell dimension, it is worth mentioning that the maximum
permissible equivalent cell dimension in the TFDTLM is equal to almost 1.2 times that required
by the HSCN, i.e. the number of iterations required by the TFDTLM is less than 85% that
required by the HSCN. When the equivalent cell dimension is dropped to 0.25 dx which is
equal to that required by the HSCN, the Figure shows that the dispersion of the TFDTLM is
significantly improved over the HSCN.

Figure (4.8) shows results similar to those in Figure (4.7) but with higher relative
dielectric constant, larger loss tangent and larger cell emi®.taken to be 8 and = 1 s/m
with dx = 2dy =2 dz = 2 cm. The Figure shows that the behavior of the HSCN is significantly
degraded and so is the behavior of the SSCN. The TFDTLM on the other hand operating at
equivalent cell dimension equal to the maximum permissible equivalent cell dimension required
by the HSCN is able to provide significantly less amount of error.
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Figure 4.7 Comparison between the dispersion properties of the TFDTLM the SSCN and HSCN Il in a
lossy inhomogeneous mediwF 5,0 = 0.1 s/m for a non uniform cell
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Figure 4.8 Comparison between the dispersion properties of the TFDTLM, the SSCN and HSCN Il in a
lossy inhomogeneous mediwF 8,0 = 1 s/m for a nonuniform cell
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4.4 Summary

In this chapter, the dispersion behavior of the SCN, the HSCN, and the SSCN were
analyzed. The dispersion characteristics of the TFDTLM was also derived. The dispersion
behavior of the TFDTLM was then compared to that of the HSCN and the SSCN. It was
found that the TFDTLM has less dispersion error than the HSCN and the SSCN in modeling a
lossless inhomogeneous medium. Furthermore, the dispersion error of the HSCN and the
SSCN were significantly degraded as the relative dielectric constant increased. For the
TFDTLM on the other hand, and even for a relatively high relative dielectric constant, a first
order approximation filter was able to provide almost the same order of accuracy as with lower
relative dielectric constants. The TFDTLM also proved to have superior dispersion
characteristics as compared to the HSCN and the SSCN in modeling lossy inhomogeneous
medium with uniform cells as well as with nonuniform cells. It has been shown that a second
order approximation filter can provide an acceptable order of accuracy even for a lossy
inhomogeneous medium with a relatively high loss tangent
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