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Second–Order Relative Motion Equations

Christopher D. Karlgaard

(ABSTRACT)

This thesis presents an approximate solution of second order relative motion equations. The
equations of motion for a Keplerian orbit in spherical coordinates are expanded in Taylor series
form using reference conditions consistent with that of a circular orbit. Only terms that are
linear or quadratic in state variables are kept in the expansion. A perturbation method is
employed to obtain an approximate solution of the resulting nonlinear differential equations.
This new solution is compared with the previously known solution of the linear case to show
improvement, and with numerical integration of the quadratic differential equation to understand
the error incurred by the approximation. In all cases, the comparison is made by computing the
difference of the approximate state (analytical or numerical) from numerical integration of the
full nonlinear Keplerian equations of motion.
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Chapter 1

Introduction

1.1 Problem Statement

The traditional development of relative motion equations results from a linearized model of
orbital mechanics. It is the purpose of this thesis to develop relative motion equations that
result from nonlinear theory. Relative motion equations are used very often in the field of
orbital mechanics because an explicit dependence on time can be obtained, whereas the exact
theory contains a transcendental relationship between the position and velocity of the satellite to
time. There are other ways to obtain approximations that lead to this explicit time dependence,
but a relative motion approach is arguably the most conceptually straightforward of these.

Figure (1.1) shows the geometry of the relative motion problem. The goal is to find the
position vector, R, from a reference point on a known orbit, r0, to a satellite, r, as an explicit
function of time. The relative velocity, V, must also be known in order to completely solve the
problem. Note that it is possible for the reference point to be occupied by another satellite.

Assuming the magnitude of R and V to be small compared with that of position and velocity
of the reference orbit allows for the governing equations of motion to be approximated by using
a truncated series expansion. Often this series is truncated after only the first term, resulting
in a linear expression of the dynamics. There have been several attempts at developing relative
motion equations that take into account nonlinear dynamics. While these solutions are much
more accurate than the solutions resulting from the linearized model, they are limited to only
small time periods where the solution will be valid. This thesis will develop nonlinear relative
motion equations that do not have these problems.

The nonlinear relative motion equations will be found by applying a standard analytical
technique used for examining nonlinear ordinary differential equations and determining approx-
imate solutions of these equations. This technique can be applied to any system of equations
that contain a small nonlinearity, and it seeks to construct a series solution that builds upon
the solution of the linear form of the governing equations. The method is based on the method
of variation of parameters, where constants of integration that result from the linear solution

1
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Figure 1.1: Geometry of the Relative Motion Problem

are instead allowed to be functions of time.

The accuracy of the new nonlinear relative motion equations is evaluated and compared
against the linear solution using numerical integration of the full nonlinear equations of motion
as truth. Comparison of the new equations is also made with numerical integration of the
nonlinear equations that formed the basis for the new result, in order to understand the error
induced by applying the approximation techniques.

1.2 Applications

Relative motion equations have seen several different application areas in the history of orbital
mechanics. The first use was by Hill [1] in the late 19th century who was studying the motion
of the Moon. His goal was to construct a more mathematically sound means of developing
tables of lunar motion, which, at the time, were based on “practical astronomy rather than of
mathematics” in his words.

The first aerospace applications were in the area of intercept and rendezvous mechanics
during the late 1950’s and continuing today. The intercept problem is one in which a chase
vehicle is forced in such a way that its path intersects the path of a target point (which may be
occupied by another vehicle) at a specified time. The rendezvous problem further insists that
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the relative velocity of the two spacecraft be driven to zero at the time of intersection so that
a docking procedure or other such activities may be conducted. This problem was studied by
Clohessy and Wiltshire [2] in the interest of developing a guidance scheme for the rendezvous
problem assuming that the target vehicle was in a circular orbit. This target satellite was to
be a control center issuing relative position and velocity data to the slave satellites, which then
used an on-board propulsion system to carry out the rendezvous and docking maneuver.

Anthony and Sasaki [3] further studied the rendezvous problem after developing a higher
order approximation of the relative motion equations. Using these new equations, the velocity
impulse requirements for the rendezvous maneuver were developed and an analysis of the miss
distance due to the approximation was conducted.

Werlwas [4], using a new set of relative motion equations, developed an optimal two impulse
approach to the intercept and rendezvous problem. This approach minimized the fuel consumed
in the process. A comparison was also made with the solution resulting from the new relative
motion equations and those of reference [2]

Jezewski and Donaldson [5] also considered a fuel-optimal approach to the rendezvous prob-
lem using the equations of reference [2]. A transformation of variables is introduced into the
problem which leads to a closed form expression for the optimal thrust times. The problem
is also constrained in such a way that the exhaust plume of the spacecraft’s thrusters do not
interfere with its payload.

Kelly [6] developed an optimal solution to the two impulse rendezvous problem using relative
motion equations and also includes the effects of eccentric orbits and gravity perturbations. A
nonlinear model of relative motion was also given, but an analytical solution was not developed
and so required numerical integration to solve the problem.

Lutze [7] used relative motion equations to generate intercept and rendezvous charts for
use by untethered space shuttle astronauts with maneuvering units, so that this astronaut can
determine the thrust magnitude and direction in order to return to the shuttle. Furthermore,
charts are also developed which instruct the astronaut on how to null the relative velocity at the
time of intercept in order to rendezvous safely. Analyses are also presented to quantify errors
due to the possibility of either incorrect relative position and velocity determination or improper
application of the thrust.

More recent applications of relative motion concepts are in the area of satellite formations.
Satellite formations are of great interest, because it is thought that large numbers of simple, low
efficiency satellites working in a cohesive fashion can produce better results than a single, high
performance satellite. Such formations can also achieve a greater cost effectiveness, chance of
mission success and flexibility. Satellite formations are useful for Earth observing missions, where
distributed groups of low resolution instruments, operating in conjunction with one another, can
provide a higher overall data quality than a single, high resolution instrument.

Relative motion equations have been useful in the design and optimization of satellite forma-
tion geometry, as well as for developing control algorithms to maintain these formations. Sabol
et al [8], [9] determined the orbit parameters of a formation type given the desired motion of
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that formation as determined from relative motion equations. In-plane, in-track, circular and
projected circular formation types are analyzed. Furthermore, these formations are propagated
forward in time in order to understand how the formation evolves as well as to estimate the fuel
usage required to maintain the formation. The circular and projected circular formations were
found to be extremely costly in this regard.

Chao et al [10] considered a similar problem, but developed formation geometry based on
relative orbit parameters and then uses the linearized relative motion equations to visualize and
further examine the relative orbits of the formation. A perturbation study was also conducted
to examine the long term behavior of the formation. Based on these results, a formation keeping
strategy developed from the linearized dynamics was also suggested.

Hughes [11] and Hughes and Hall [12] developed performance measures for satellite forma-
tions. Diamond formations and rotating formations (variations of the circular and projected
circular formations of [8]) are considered. These performance measures are evaluated using a
numerical integration scheme, but approximate analytical results are also obtained using the
linearized relative motion equations. A good agreement was found between the two methods.

Badesha et al [13] used the equations of [2] modified to include atmospheric drag forces to
investigate the deployment and initialization of a cluster of six satellites in an in-track forma-
tion. The investigation focused on determining possible collision scenarios between the satellites
during the deployment phase, and the effects of error in the deployment velocity as well as error
in the time spacing between subsequent deployments. No study was conducted to determine
the effect of error in the deployment direction. A procedure was outlined for determining the
amount of fuel needed to initialize the formation.

Chichka [14] used a relative motion solution to characterize the relative orbits of satellite
formations that appear to have a constant distribution from an observer located on the planetary
surface. A more detailed study was then conducted in order to ascertain the error made in the
linearized study.

Another technique for controlling satellite formations, based on relative motion equations,
is found in [15]. This technique used the relative motion equations to design periodic relative
orbits of a deputy with respect to a chief. A control was then developed in order to cancel
a simple gravity perturbation model in such a way that the average fuel consumption of each
satellite is minimized.

1.3 Previous Work

Hill [1] developed a set of relative motion equations in the context of the 3-body problem in order
to develop a mathematical basis for the motion of the moon in the Sun-Earth-moon system. A
rotating rectangular coordinate system was used to develop these equations by using Lagrange’s
equations and Jacobi’s integral. It was assumed that each body had a perfect inverse square
gravitational field and that the mass of the moon was small compared with that of the Earth
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and Sun. Hill did not linearize the equations of motion, but rather studied the properties of
the nonlinear equations. A solution of the motion was given in terms of a power series in time.
The solution was not completely analytical because interpolation and numerical integration was
required to determine the coefficients of the power series. This solution diverges and therefore
can only be valid for short time intervals. Solutions that exhibit this type of behavior are said to
contain secular terms. A definition of secular terms will be given later, but for now it suffices to
say that these terms exhibit unbounded growth in time. This unbounded growth of position and
velocity of the satellite does not satisfy certain principles such as conservation of momentum and
energy. The accuracy of this solution is also limited by the number of terms kept in the series.
Hill’s solution to this problem only includes motion within the plane of the Sun-Earth-moon
system.

Clohessy and Wiltshire [2] took the differential equations examined in [1] and further as-
sumed that the satellite was moving under the influence of a linear gravity field of just one body.
This linearization produced a system of constant coefficient ordinary differential equations that
allowed for a simple closed form solution. The origin of the coordinate system used was a point
in a circular orbit around the body. The equations that describe the motion of the satellite in
the same plane as the reference circular orbit were found to de-couple from the motion perpen-
dicular to this plane under the assumption of a linear gravity field. De-coupling is an advantage
in the sense that it led to a simple solution, but is truly a disadvantage because a coupling of
motion does in fact exist.

London [16] carried the work of [2] to the next level and assumed that the satellite was
influenced by a quadratic gravity field. The same coordinate system of [2] was used. The
assumption of a quadratic gravity field led to a re-coupling of motion in the plane and out of
the plane of the reference orbit. A straightforward expansion (defined in detail in chapter (2))
was used to obtain an approximate solution of the nonlinear differential equations, as an exact
solution cannot be found. This method is referred to as the method of successive approximations
in many sources. The solution of the linear problem determined in [2] was used as the foundation
for this approximation. The resulting solution was found to be very accurate compared with
the linear solution over a period of two revolutions of the reference orbit. The solution does
contain secular terms which limits the time interval over which the solution is valid, much like
the solution given in [1]. Another problem with this solution is that it contains a constant offset
term in the equation describing the motion out of the plane of the reference orbit. It will be
shown in chapter (2) that this behavior also does not satisfy the basic physics of the problem.

De Vries [17] considered the problem of relative motion in an elliptical orbit. The equations of
motion are linear and expressed using the true anomaly of the reference orbit as the independent
variable. A straightforward technique is used to approximate these equations to first order in
eccentricity. Secular terms result as well as the constant offset in the out of plane motion.
This constant offset does vanish for the case of a circular orbit. This solution still requires
a numerical procedure to evaluate the solution as a function of time, which is a disadvantage
for most applications of relative motion equations. No plots are given to demonstrate the
performance of the solution.
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Anthony and Sasaki [3] built upon the work of London by referencing the equations of motion
to a slightly elliptical orbit rather than a circular orbit. It was assumed that the gravity field of
the primary body was quadratic, and that eccentric effects beyond first order were negligible.
These assumptions lead to a time varying system of nonlinear differential equations, which was
also solved with a straightforward expansion. The solution is also limited in its validity range by
the presence of secular terms similar to those found in previous studies. A constant offset term
in the out of plane motion also appears. It was also found that there is a difference between
the new solution and that developed in [16] in the case where the reference orbit is circular.
The new solution was shown to improve on the equations given in [2] for two revolutions of the
reference orbit.

Euler and Shulman [18] considered the motion of a satellite with respect to an arbitrary
elliptical orbit keeping quadratic terms in the equations of motion. True anomaly was used as
the independent variable. A straightforward expansion was employed to obtain a solution of
this problem, but the result cannot be expressed analytically as numerical integration was still
required. Dependence on numerical integration, combined with the fact that a numerical scheme
was required to evaluate the solution as a function of time, severely limits the usefulness of the
solution. The solution is not given, and hence it is not clear if secular terms or the constant
offset in the out-of-plane motion appear. Several plots were given which show improvement over
a linear solution, although it is not clear which linear solution this is. These plots are only given
for the out-of-plane motion, and the new solution is found to be valid for approximately one
half of the period of the reference orbit while the linear solution is valid for only one quarter of
the period for the example given.

Lancaster [19] gave a numerical scheme for determining the relative motion of two orbits
in terms of the eccentric anomaly. Although it is shown for one example that the method is
very accurate, a numerical procedure looses much of the convenience that is possible from an
analytical solution.

Werlwas [4] develoed a new solution of the relative motion problem by placing the origin
of the reference frame on the satellite itself rather than a point on a reference orbit. The
equations of motion were linearized with respect to this configuration. This formulation lead to
a complicated, although accurate solution. A limitation of the solution was that there can be
no initial out of plane displacement, although an initial velocity out of plane is allowable. The
form of the solution also depends on the initial conditions, which is a disadvantage as well.

Berreen and Crisp [20] developed a new linear solution for the relative motion of a satellite
with respect to an elliptical reference orbit using true anomaly as the independent variable.
The solution requires that these two orbits be coplanar. It is true that all Keplerian motion is
restricted to a single plane, so for a given set of initial position and velocity its motion can be
determined relative to a any orbit in the same plane. Since the properties of the reference orbit
are known, this motion can then be determined in any other coordinate system by a series of
simple transformations. However, most applications of interest, such as intercept or rendezvous,
will in general have two vehicles in non-coplanar orbits, so this restriction is a disadvantage
when considering practical problems. The authors also pointed out that the accuracy of the
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original linear solution given in [2] can be improved by essentially transforming the solution to
cylindrical coordinates.

Szebehely [21] presented three transformations between various anomalies and time that
can be used to improve the accuracy of determining the relative motion of two particles when
evaluated numerically. No restrictions are placed on the eccentricity of the orbits or the size
of their relative displacements. Such a scheme could be employed to further improve upon the
work of Lancaster or Euler and Shulman.

Kelly [6] reformulated the problem by including the effects of a non-spherical gravity per-
turbation. The motion of a satellite under this perturbed gravity field is referenced to a point
on an arbitrary un-perturbed orbit. The equations of motion are developed in a non-orthogonal
coordinate system with time-varying coefficients. A straightforward perturbation technique was
used to obtain an approximate solution of this system of equations. The actual solution was not
presented, although it was mentioned that it does contain secular terms. It was not mentioned
if the solution contains the constant offset in the out-of-plane solution.

Garrison et al [22] gave the solution of a linear set of relative motion equations referenced
to an elliptical orbit. This solution again uses true anomaly as the independent variable and
therefore still requires a numerical procedure for determining the solution as a function of time.
The results are plotted for several sets of initial conditions and are found to be accurate for up
to two revolutions of the reference orbit, although for very large initial separations the results
were be not as good. A study was also conducted to understand the error induced by the linear
representation of the dynamics as well as the effects of a non-spherical central body and other
perturbations that were ignored in the model. It was determined that the error made by the
linearization is much greater than that of the perturbations over the course of two revolutions
of the reference orbit.

The most recent work on this subject is by Melton [23], [24] who developed a linear set of
relative motion equations for an elliptical orbit including second order powers of eccentricity
in the approximation. The advantage of this solution over many of the previous solutions for
the case of an elliptical reference orbit is that the equations are given explicitly in terms of
time, hence no iterative technique is required to relate anomaly to time. The solution was given
in both rectangular and cylindrical coordinates, and can include the effects of certain forms
of perturbations through a convolution integral. The cylindrical coordinate representation was
found to be more accurate than the rectangular coordinate solution. Plots were given for a set
of initial conditions which shows the error of the new solution for each order of eccentricity,
which improves as more terms are kept in the expansion. Secular terms are present which limits
the time interval over which the solution will be valid.

Note several general trends in the history of this problem. It seems that any attempt at
considering nonlinear terms in the equations of motion results in a constant offset in the out-of-
plane motion. Also, any attempt at extending the linear equations of motion about a circular
orbit to considering any combination of nonlinear or eccentric effects also results in false secular
terms. No analytic solution that improves the results of [2] has been given which does not
exhibit at least one these two false behaviors.
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1.4 Overview

The rest of this thesis continues with a review of several basic concepts from orbital mechanics
and mathematics. This review is brief and only includes what is necessary to give a complete
picture of this problem. This summary starts with an overview of orbital mechanics, the Two-
Body problem and several of its basic solutions. Next, a review of several analytical techniques
used to solve systems of nonlinear and/or nonautonomous ordinary differential equations is
presented. An example of a nonlinear oscillator is given to illustrate the application these
methods.

Chapter (3) focuses on the previously known linear model and its solutions, as it is nec-
essary to have an understanding of the linear solution before attempting to find a nonlinear
solution. These equations result from a Taylor expansion of the two body equations of motion.
This expansion is derived, and then the solution is developed in spherical coordinates. This
solution is often called Hill’s equations, or the Clohessy-Wiltshire equations. The advantages
and disadvantages of the linear model are also discussed.

Chapter (4) discusses the nonlinear model. The two body equations of motion are expanded
in Taylor series form, very much like the linear model, although now terms that contain quadratic
nonlinearities are also kept. Then the two perturbation techniques are employed to find the
solution of the resulting nonlinear differential equations.

In chapter (5) a comparison is drawn between the previously known linear solution, the new
approximate analytical solution found in chapter (4), and numerical integration of the quadratic
equations of motion. These are all compared with numerical integration of the full nonlinear
equations of motion.



Chapter 2

Preliminaries

It is the purpose of this chapter to review several basic concepts from the areas of orbital
mechanics and mathematics. This review is conducted in order to set down a notation and
language style more than anything else, so detailed proofs are not given, although they are
referenced.

2.1 Orbital Mechanics

2.1.1 The Two-Body Problem

The basic assumptions of the Two-Body problem are [25]:

1. The equations of motion are expressed in a non-inertial reference frame and the origin of
that frame coincides with the center of mass of the central body

2. The central body and satellite are both homogeneous spheres or points of equivalent mass

3. The inverse-square gravitational force between the two bodies is the only force in action

Under these assumptions, the governing equation is

r̈ = − µ

r3
r (2.1)

where r is the vector from the center of mass of the central body to the satellite in question and
µ is the gravitational parameter. The value of µ is equal to G(M +m), where G is the universal
gravitational constant, M is the mass of the central body and m is the mass of the satellite.
A further assumption that is commonly made is that the mass of the satellite, m, is extremely
small compared to the mass of the central body M . In the limit as m → 0, the center of mass
of the central body becomes an inertial reference frame.

9
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The determination of such an inertial reference frame relies on first choosing a fundamental
plane. Traditionally, the x axis of the system is chosen to be in some fundamental direction
within that plane, the y axis being perpendicular to the x axis but also within the fundamental
plane. The z axis is taken to be perpendicular to the plane in a right-handed sense. For the
Earth, the fundamental plane is the equatorial plane, the x axis is in the direction of the vernal
equinox and the z axis coincides with the axis of rotation of the Earth. This frame is commonly
called the Earth-Centered Inertial frame. In the case of the Sun, the fundamental plane is the
plane of the Earth’s orbit, the x axis is also in the direction of the vernal equinox and the z axis
in the direction normal to the orbit plane. This frame is known as the Heliocentric Coordinate
System. For both frames, the direction of the x axis is found by drawing a line from the center
of the Earth through the center of the Sun at the precise moment of the vernal equinox (the first
day of spring). This choice of x axis is traditional — there are an infinite number of other valid
choices of inertial reference frames for both of these systems. Note that these frames are not
truly inertial because they are in fact accelerating. It is a useful first approximation to assume
that they are inertial, and corrections can be made to the results of this assumption to account
for this acceleration as well as other perturbations.

Several constants of motion can be extracted from equation (2.1). First, an energy equation
can be found from the dot product of (2.1) with the velocity vector v

v · v̇ = − µ

r3
v · r

vv̇ = − µ

r3
rṙ (2.2)

Note that
d

dt

(
v2

2
− µ

r

)
= 0 (2.3)

or, that
v2

2
− µ

r
= constant (2.4)

An angular momentum equation can be found from the cross product of (2.1) with the radius
vector, r,

r× r̈ = − µ

r3
r× r = 0 (2.5)

Note that
d

dt
(r× v) = v × v + r× v̇ (2.6)

therefore, it must be true that
r× v = constant (2.7)

Equation (2.7) states that an orbit must always be restricted to a plane, and that this plane must
always contain the origin of the inertial coordinate system located at the center of mass of the
system. Figure (2.1) shows a path that contains a constant offset out of the plane of a reference
orbit as in the solution given in reference [16]. This constant offset defies the conservation
of angular momentum, since the plane of this orbit does not pass through the origin of the
coordinate system.
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Figure 2.1: Orbit with Constant Out-of-Plane Offset

2.1.2 Equations of Motion

The coordinate systems shown in figure (2.2) will be used to further develop equation (2.1).
The coordinate system described by ex, ey and ez are the unit vectors of an inertial coordinate
system (which may be any of those discussed previously) that uses the variable x, y and z to
locate a point in three dimensions. The coordinate system er, eθ and eφ are the unit vectors of
a spherical coordinate system and uses variable r, θ and φ. In inertial coordinates, the vector
from the origin to a point of interest is

r = xex + yey + zez (2.8)

The same vector in spherical coordinates is

r = rer (2.9)

The spherical coordinate system may be related to the inertial coordinate system by a series
of two simple coordinate transformations. First, the inertial frame is rotated by an angle θ
about the ez axis, to an intermediate axis system ex̃, eỹ and ez̃. This intermediate system is
then rotated about axis eỹ by an angle −φ. This operation may be expressed in matrix form



Chris Karlgaard Chapter 2. Preliminaries 12

Figure 2.2: Spherical Coordinate System

as:



er

eθ

eφ


 =




cos φ 0 sin φ
0 1 0

− sin φ 0 cos φ







cos θ sin θ 0
− sin θ cos θ 0

0 0 1







ex

ey

ez




=




cos φ cos θ cos φ sin θ sin φ
− sin θ cos θ 0

− sin φ cos θ − sin θ sin θ cos φ







ex

ey

ez


 (2.10)

Since the direction of the inertial unit vectors is fixed, the derivatives of the spherical unit
vectors are simply




ėr

ėθ

ėφ


 =



−φ̇ sin φ cos θ − θ̇ cos φ sin θ −φ̇ sin φ sin θ + θ̇ cos φ cos θ φ̇ cos φ

−θ̇ cos θ −θ̇ sin θ 0

−φ̇ cos φ cos θ + θ̇ sin φ sin θ −φ̇ cos φ sin θ − θ̇ sin φ cos θ −φ̇ sin φ







ex

ey

ez




=




0 θ̇ cos φ φ̇

−θ̇ cos φ 0 θ̇ sin φ

−φ̇ −θ̇ sin φ 0







er

eθ

eφ


 (2.11)

Therefore, the velocity of the point of interest is

ṙ = ṙer + rėr

= ṙer + rθ̇ cos φeθ + φ̇eφ (2.12)
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and the acceleration is

r̈ = r̈er + ṙėr +
(
ṙθ̇ cos φ + rθ̈ cos φ− rθ̇φ̇ sin φ

)
eθ + rθ̇ cos φėθ +

(
ṙθ̇ + rφ̈

)
eφ + rφ̇ėφ

=
(
r̈ − rθ̇2 cos2 φ− rφ̇2

)
er +

(
rθ̈ cos φ + 2ṙθ̇ cos φ− 2rθ̇φ̇ sin φ

)
eθ +

+
(
rφ̈ + 2ṙφ̇ + rθ̇2 sin φ cos φ

)
eφ (2.13)

Relating (2.13 to the expression given in (2.1), the equations of motion for a particle in spherical
coordinates are

r̈ − rθ̇2 cos2 φ− rφ̇2 +
µ

r2
= 0 (2.14)

rθ̈ cos φ + 2ṙθ̇ cos φ− 2rθ̇φ̇ sin φ = 0 (2.15)

rφ̈ + 2ṙφ̇ + rθ̇2 sin φ cos φ = 0 (2.16)

Note that (2.14 – 2.16) is a sixth order system of coupled, nonlinear ordinary differential
equations. An exact solution of these equations is not possible, hence the need to introduce
techniques that can be used to find approximate solutions.

2.2 Perturbation Methods

This section discusses several techniques that may be employed to find an approximate analytical
solution of a system of differential equations. Typically these methods are applied to problems
where the exact solution is either impossible or impractical to find by other means. Such
systems are often nonlinear and/or nonautonomous in nature. Approximation techniques exist
for both ordinary and partial differential equations, but for the purposes here only a discussion
of the techniques for nonlinear ordinary differential equations is needed. For a more detailed
description of these types of problems, see reference [26].

The analytical techniques discussed in this section require that the system be weakly non-
linear or weakly nonautonomous, meaning that those terms in the equation containing the
nonlinearity or nonautonomy are small. Alternatively, systems of this nature can be thought
of as almost linear, or quasi-linear. A consequence of almost linear systems is that the differ-
ential equations will have linear terms and small nonlinear or nonautonomous terms separated
from each other. The disturbing terms are commonly known as perturbations, and the class
of analytical techniques used to treat these systems are known as perturbation methods. These
perturbation terms are typically represented by a coefficient whose value is very small, and the
perturbation methods discussed here construct a power series solution in this small parameter.

Unfortunately, it is also quite common to encounter problems that do not contain a small
parameter. In this event, an approximation may still be found by introducing a parameter into
the problem to be used if it were small, but in the end its value set to 1. This technique is valid
when the terms rendering the differential equation quasi-linear are small in and of themselves.
Parameters introduced in this way are often called place keeping parameters.
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Next an overview of three perturbation methods is given. The discussion of each method is
motivated by a weakly nonlinear mass-spring system given by

ẍ + x = εf(x, ẋ) (2.17)

where x is a non-dimensional displacement, f(x, ẋ) is a disturbing function and ε is very small
compared with 1. It is also possible that ε is a place keeping parameter that has been introduced
into the system. Since this is a second order ordinary differential equation, two conditions must
be prescribed in order to solve for the constants of integration which will appear in the solution
process. For this discussion a set of initial conditions is assumed, where

x(0) = a (2.18)

ẋ(0) = b (2.19)

2.2.1 The Straightforward Expansion

The most straightforward technique for finding analytical solutions of almost linear systems is,
naturally, called the straightforward technique. This method seeks a power series solution of the
form

x(t, ε) = x0(t) + εx1(t) + ε2x2(t) + · · · (2.20)

where the εx1, ε2x2 and so on are small correction terms to x0. The number of such correction
terms needed depends on the size of ε and the required accuracy of the approximation.

Substituting (2.20) into (2.17) and keeping only terms of order ε leads to

ẍ0 + εẍ1 + x0 + εx1 = f(x0 + εx1, ẋ0 + εẋ1) + · · · (2.21)

The function f may be expanded in a Taylor series about the point ε = 0, leading to

f(x0 + εx1, ẋ0 + εẋ1) = f(x0, ẋ0) + εx1
∂f

∂x
(x0, ẋ0) + εẋ1

∂f

∂ẋ
(x0, ẋ0) + · · · (2.22)

Since this expansion must hold for any value of ε, it is necessary to equate the coefficients
of the successive powers of ε, which leads to the equations

ẍ0 + x0 = 0 (2.23)

ẍ1 + x1 = f(x0, ẋ0) (2.24)

Note that (2.23) is simply the unperturbed linear system, and that (2.24) is the same
system but with an input that depends on the solution of the unperturbed problem. Each of
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the differential equations may be solved independently in order to construct a series solution of
the original problem.

In this procedure, a single second order ordinary differential equation has been replaced with
a series of two second order ordinary differential equations. Each of these differential equations
will need two conditions in order to completely solve the problem. However, only two such
conditions are given in the statement of the problem. One way to deal with this requirement is
to assume that the constants of integration that arise in (2.23) and (2.24) are unknown, then
the initial conditions of the system are enforced when the full solution is assembled in (2.20)
in such a way that the constants of integration that appear in the nonlinear solution remain
defined in the same manner as the linear solution. Another method is to enforce the given initial
conditions on the solution of equation (2.23) and assume that the initial conditions of (2.24) are
zero, implying that the constants of integration depend on ε. Each of these two procedures for
dealing with initial conditions produce the same result. For the purposes of this paper, the first
of these methods will be used.

As an example of the straightforward expansion, take again the function f(x, ẋ) = −x3.
Equations (2.23) and (2.24) become

ẍ0 + x0 = 0 (2.25)

ẍ1 + x1 = −x3
0 (2.26)

The solution of (2.25) with initial conditions x(0) = a and ẋ(0) = b may be written as

x0 = c cos(t + φ) (2.27)

where

x(0) = x0(0) + εx1(0) (2.28)

ẋ(0) = ẋ0(0) + εẋ1(0) (2.29)

which means that in order for the constants of integration to remain defined in the same manner
as the linear solution, it must be true that x1(0) = 0 and ẋ1(0) = 0. Equation (2.26) becomes

ẍ1 + x1 = −c3

4
[cos(3t + 3φ) + 3 cos(t + φ)] (2.30)

which has the general solution

x1 = A cos t + B sin t + c3
[

1

32
cos(3t + 3φ)− 3

8
t sin(t + φ)

]
(2.31)

Evaluating this solution with the initial conditions gives

A = − c3

32
cos 3φ (2.32)

B =
c3

32
sin 3φ +

3c3

8
sin φ (2.33)
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Assembling the full solution in (2.20) results in

x(t) = c cos(t + φ) + εc3
[(

1

32
sin 3φ +

3

8
sin φ

)
sin t− 1

32
cos 3φ cos t+

+
1

32
cos(3t + 3φ)− 3

8
t sin(t + φ)

]
(2.34)

where

a = c cos φ (2.35)

b = −c sin φ (2.36)

Notice the appearance of the terms t sin t. This term possess an unbounded amplitude
growth over time, and at time t = 1

ε
, the relative magnitude of the correction term εx1 becomes

the same as x0. As time increases further, these terms begin to dominate the behavior of the
solution. This unbounded growth in time violates the assumption that the correction terms are
small compared with x0. Also, this example did not contain any damping terms, meaning that
the total energy is conserved. Unbounded behavior also does not satisfy these conditions. Terms
that contain an unbounded growth in time are called secular terms. If it is known from either
numerical integration or some form of physical insight that the solution should not exhibit this
unbounded growth in time, then these secular terms are called false or spurious secular terms.
A solution that contains such secular terms is often called nonuniform.

Several methods exist for dealing with these secular terms. These methods, in one form or
another, all take a variation of parameters approach to the problem, and allow the constants of
integration to now be unknown functions of time which are determined in the solution process.
In the perturbation method case, these functions are assumed to be slowly varying.

2.2.2 The Method of Multiple Scales

The method of multiple scales, described in [27], [28] and [26], seeks a solution whose behavior
depends on several time scales, each an order of magnitude in ε slower than the previous.
The method of multiple scales is a generalized form of the Lindstedt-Poincaré technique (often
called the method of strained coordinates) which is based on the observation that the frequency
of a nonlinear oscillation may depend upon its amplitude. The frequency is expanded in an
asymptotic series, and the coefficients of each term in the series are determined in such a way
the the solution is free of secular terms. In a similar fashion, the method of multiple scales
allows the solution vary on fast and slow time scales. The fast time scale corresponds with the
first (linear) order Lindstedt-Poincaré expansion, and each slow scale matches with the second
and higher terms in the expansion. The main difference is that multiple scales assumes that
the coefficients of each scale are fixed (typically equal to 1), and uses a variation-of-parameters
approach and lets the constants of integration that appear in the linear solution be functions that
vary on the slow time scale. This procedure results in systems of partial differential equations at
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each order of ε that must be solved to produce a uniform solution of the problem. The method
of multiple scales is a much more powerful tool than the Lindstedt-Poincaré technique because
the former allows for all of the ”constants” to vary on the slow time scales (so, for a second
order differential equation there are two such parameters) while the latter only introduces one
free parameter at each order of ε.

For this problem, t is the fast scale, εt a slow scale, ε2t an ever slower scale and so on. These
time scales are written as T0 = t, T1 = εt, T2 = ε2t, and in general, Tk = εkt. The dependent
variable x is then written in the series expansion

x(t) = x0(T0, T1, T2, . . .) + εx1(T0, T1, T2, . . .) + ε2x2(T0, T1, T2, . . .) + · · · (2.37)

If a solution accuracy of order εn is needed, then it is necessary to keep the time scale Tn and the
correction term εnxn in the procedure. For the case where only terms of order ε are required,

ẋ =
∂x0

∂T0

Ṫ0 +
∂x0

∂T1

Ṫ1 + ε
∂x1

∂T0

Ṫ0 + ε
∂x1

∂T1

Ṫ1 + · · ·

=
∂x0

∂T0

+ ε

(
∂x0

∂T1

+
∂x1

∂T0

)
+ · · · (2.38)

ẍ =
∂2x0

∂T 2
0

Ṫ0 +
∂2x0

∂T1∂T0

Ṫ1 + ε

(
∂2x0

∂T0∂T1

Ṫ0 +
∂2x0

∂T 2
1

Ṫ1 +
∂2x1

∂T 2
0

Ṫ0 +
∂2x1

∂T1∂T0

Ṫ1

)

=
∂2x0

∂T 2
0

+ ε

(
2

∂2x0

∂T1∂T0

+
∂2x1

∂T 2
0

)
(2.39)

Substituting equations (2.39) and (2.37) into (2.17) and grouping powers of ε yields

∂2x0

∂T 2
0

+ x0 = 0 (2.40)

∂2x1

∂T 2
0

+ x1 = f(x0, ẋ0)− 2
∂2x0

∂T1∂T0

(2.41)

Equation (2.40) is similar to a mass-spring system, although since it is now a partial differential
equation the constants of integration are instead functions of the other variables, in this case
T1. Therefore, the solution of this equation is

x0 = c(T1) cos[T0 + φ(T1)] (2.42)

which can also be written as
x0 = A(T1)e

iT0 + Ā(T1)e
−iT0 (2.43)

where A = 1
2
ceiφ, and Ā is its complex conjugate. The method of multiple scales lends itself

well to using the latter form of the solution. The initial conditions of the problem (to order ε)
are

x(0) = x0(0) + εx1(0) (2.44)

ẋ(0) =
∂x0

∂T0

(0) + ε

(
∂x0

∂T1

(0) +
∂x1

∂T0

(0)

)
(2.45)
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and therefore,

x1(0) = 0 (2.46)

∂x1

∂T0

(0) = −∂x0

∂T1

(0) (2.47)

Equation (2.41) with f(x, ẋ) = −x3 becomes

∂2x1

∂T 2
0

+ x1 = −2i
∂A

∂T1

eiT0 + 2i
∂Ā

∂T1

e−iT0 −
(
A(T1)e

iT0 + Ā(T1)e
−iT0

)3

= −
(

2i
∂A

∂T1

+ 3A2Ā

)
eiT0 +

(
2i

∂Ā

∂T1

− 3Ā2A

)
e−iT0 −

−A3e3iT0 − Ā3e−3iT0 (2.48)

which has the general solution

x1 =
1

2
i

(
2i

∂A

∂T1

+ 3A2Ā

)
T0e

iT0 +
1

2
i

(
2i

∂A

∂T1

− 3Ā2A

)
T0e

−iT0 +

+
A3

8
e3iT0 +

Ā3

8
e−3iT0 + BeiT0 + B̄e−iT0 (2.49)

In order to eliminate secular terms, it must be true that

2i
∂A

∂T1

+ 3A2Ā = 0 (2.50)

2i
∂Ā

∂T1

− 3Ā2A = 0 (2.51)

Note that (2.51) is simply the complex conjugate of (2.50), so no new information is contained
within it. Making the transformation

A =
1

2
ceiφ (2.52)

results in
∂A

∂T1

=
1

2

∂c

∂T1

eiφ +
1

2
ic

∂φ

∂T1

eiφ (2.53)

Substituting this into (2.50) and multiplying through by e−iφ yields

i
∂c

∂T1

− c
∂φ

∂T1

+
3c3

8
= 0 (2.54)

Equating real and imaginary parts,

∂c

∂T1

= 0 (2.55)

c
∂φ

∂T1

=
3c3

8
(2.56)

(2.57)
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which leads to

c = c0 (2.58)

φ =
3c3

0

8
T1 + φ0 (2.59)

Evaluating the initial conditions gives

B + B̄ = −1

8
A(0)3 − 1

8
Ā(0)3 (2.60)

B − B̄ = i
∂A

∂T1

(0) + i
∂Ā

∂T1

(0)− 3

8
A(0)3 +

3

8
Ā(0)3

= −3

2
A(0)2Ā +

3

2
Ā(0)2A(0)− 3

8
A(0)3 +

3

8
Ā(0)3 (2.61)

Making the transformation

B =
1

2
eiβ (2.62)

and the substitution

A(0) =
1

2
c0e

iφ0 (2.63)

leads to

b cos β = − 1

32
c3
0 cos 3φ0 (2.64)

b sin β = −3

8
c3
0 sin φ0 − 3

32
c3
0 sin 3φ0 (2.65)

Combining these results together with (2.49), (2.43) and (2.37) gives

x = AeiT0 + Āe−iT0 + ε

[
BeiT0 + B̄e−iT0 +

A3

8
e3iT0 +

Ā3

8
e−3iT0

]

= c cos (T0 + φ) + ε

[
c3

32
cos (3T0 + 3φ0) + b cos β cos T0 − b sin β sin T0

]
(2.66)

And therefore,

x = c0 cos

[(
1 +

3εc2
0

8

)
t + φ0

]
+ εc3

0

[
1

32
cos

[
3

(
1 +

3εc3
0

8

)
t + 3φ0

]
−

− 1

32
cos 3φ0 cos t + 3

(
1

8
sin φ0 +

1

32
sin 3φ0

)
sin t

]
(2.67)

The method of multiple scales has replaced the original ordinary differential equation with a
series of partial differential equations. The solution found by multiple scales is uniform, since it
does not contain any false secular terms. The technique constructs a uniform solution by finding
how the ”constants” of integration must vary (in a manner similar to the method of variation
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Figure 2.3: x(t) Response for ε = 0.1

of parameters) in order to eliminate secular terms. This leads to systems of partial differential
equations that describes the behavior of these parameters. These conditions, whatever the form,
are sometimes called solvability conditions.

The results of the application of this perturbation method is compared with numerical
integration of the original nonlinear ordinary differential equation in figures (2.3), (2.4) and
(2.5). The plots show the amplitude response where the numerical integration is in solid, the
straightforward expansion in dashed, and the multiple scales solution in dotted lines. All figures
also use the initial conditions x(0) = 0 and ẋ(0) = 1 for varying values of ε and a time scale
from 0 to 50 units.
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Figure 2.4: x(t) Response for ε = 0.25
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Figure 2.5: x(t) Response for ε = 1

For ε = 0.1 the numerical integration, straightforward expansion, and multiple scales solution
are essentially indistinguishable at the beginning, but as time increases the differences become
apparent. The multiple scales solution remains close to the numerical integration, while the
secular terms contained within the straightforward expansion begin to dominate at t = 1

ε
= 10

and the solution diverges. This divergence is further demonstrated in figures (2.4) and (2.5) for
larger values of ε. In these examples the straightforward expansion diverges sooner, and slight
frequency differences are apparent in the numerical integration and multiple scales solution. The
error between the multiple scales solution and numerical integration remains bounded, however,
because the motion of each is bounded on its own.

In order to apply a perturbation method to a weakly nonlinear problem, it is first necessary
to know the solution to the linear problem. The next chapter develops a linear form of the
equations of motion and the solution is found my means of Laplace transforms. This solution
will be needed in chapter (4) where a perturbation method is applied to a nonlinear form of the
equations of motion in order to find an approximate solution.



Chapter 3

Linear Model

This chapter will review the development of the linear relative motion equations. The orbital
dynamics will be approximated by a Taylor series expansion of full nonlinear equations of motion
about a circular reference orbit. This expansion is truncated after one term, leading to a system
of linear, constant coefficient, ordinary differential equations. Non-dimensional state variables
are introduced to the problem. Laplace transforms are used to solve this linear system, and the
solution is presented in several useful forms.

3.1 Equations of Motion

As derived in chapter 2, the equations of motion in spherical coordinates, but now expressed in
state variable form, are

ṙ = vr (3.1)

θ̇ = ωθ (3.2)

φ̇ = ωφ (3.3)

v̇r = rω2
φ + rω2

θ cos2 φ− µ

r2
(3.4)

ω̇θ = −2vrωθ

r
+ 2ωθωφ tan φ (3.5)

ω̇φ = −2vrωφ

r
− ω2

θ sin φ cos φ (3.6)

A linear representation of the dynamics can be found by using a Taylor expansion of equa-
tions (3.4 – 3.6) (equations (3.1 – 3.3) being already linear) with the reference conditions

rref = r0 (3.7)

φref = 0 (3.8)

23



Chris Karlgaard Chapter 3. Linear Model 24

vrref
= 0 (3.9)

ωθref
= ω0 (3.10)

ωφref
= 0 (3.11)

and only keeping the linear terms. These reference conditions are consistent with a circular
orbit in the r-θ plane of radius r0 and mean motion ω0. Note that the variable θ does not appear
in the equations of motion. Variables that have no effect upon the dynamics of a system are
often called ignorable or cyclic variables. Since θ is an ignorable variable, no reference condition
is needed to expand the equations of motion. It is necessary to introduce a new set of variables
∆r, ∆θ, ∆φ, ∆vr, ∆ωθ and ∆ωφ where

∆r = r − r0 (3.12)

∆θ = θ − θ0 (3.13)

∆φ = φ (3.14)

∆vr = vr (3.15)

∆ωθ = ωθ − ω0 (3.16)

∆ωφ = ωφ (3.17)

A Taylor expansion of equation (3.4) about these conditions, and only keeping the linear
terms results in

v̇r = [v̇r]ref + ∆r

[
∂v̇r

∂r

]

ref

+ ∆θ

[
∂v̇r

∂θ

]

ref

+ ∆φ

[
∂v̇r

∂φ

]

ref

+

+ ∆vr

[
∂v̇r

∂vr

]

ref

+ ∆ωθ

[
∂v̇r

∂ωθ

]

ref

+ ∆ωφ

[
∂v̇r

∂ωφ

]

ref

(3.18)

where

[v̇r]ref = r0ω
2
0 −

µ

r2
0

= r0ω
2
0 − r0ω

2
0

= 0 (3.19)

[
∂v̇r

∂r

]

ref

=
[
ω2

φ + ω2
θ cos2 φ + 2

µ

r3

]

ref

= 3ω2
0 (3.20)

[
∂v̇r

∂θ

]

ref

= 0 (3.21)
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[
∂v̇r

∂φ

]

ref

=
[
−2rω2

θ cos φ sin φ
]
ref

= 0 (3.22)

[
∂v̇r

∂vr

]

ref

= 0 (3.23)

[
∂v̇r

∂ωθ

]

ref

=
[
2rωθ cos2 φ

]
ref

= 2r0ω0 (3.24)

[
∂v̇r

∂ωφ

]

ref

= [2rωφ]ref

= 0 (3.25)

Similarly, expanding equation (3.5) results in

ω̇θ = [ω̇θ]ref + ∆r

[
∂ω̇θ

∂r

]

ref

+ ∆θ

[
∂ω̇θ

∂θ

]

ref

+ ∆φ

[
∂ω̇θ

∂φ

]

ref

+

+ ∆vr

[
∂ω̇θ

∂vr

]

ref

+ ∆ωθ

[
∂ω̇θ

∂ωθ

]

ref

+ ∆ωφ

[
∂ω̇θ

∂ωφ

]

ref

(3.26)

where

[ω̇θ]ref =
[
−2vrωθ

r
+ 2ωθωφ tan φ

]

ref

= 0 (3.27)

[
∂ω̇θ

∂r

]

ref

=
[
2vrωθ

r2

]

ref

= 0 (3.28)

[
∂ω̇θ

∂θ

]

ref

= 0 (3.29)

[
∂ω̇θ

∂φ

]

ref

=
[
2ωθωφ sec2 φ

]
ref

= 0 (3.30)
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[
∂ω̇θ

∂vr

]

ref

=
[
−2ωθ

r

]

= − 2ω0

r0

(3.31)

[
∂ω̇θ

∂ωθ

]

ref

=
[
−2vr

r
+ 2ωφ tan φ

]

ref

= 0 (3.32)

[
∂ω̇θ

∂ωφ

]

ref

= [2ωθ tan φ]ref

= 0 (3.33)

Lastly, the expansion of equation (3.6) is

ω̇φ = [ω̇φ]ref + ∆r

[
∂ω̇φ

∂r

]

ref

+ ∆θ

[
∂ω̇φ

∂θ

]

ref

+ ∆φ

[
∂ω̇φ

∂φ

]

ref

+

+ ∆vr

[
∂ω̇φ

∂vr

]

ref

+ ∆ωθ

[
∂ω̇φ

∂ωθ

]

ref

+ ∆ωφ

[
∂ω̇φ

∂ωφ

]

ref

(3.34)

where

[ω̇φ]ref =
[
−2vrωφ

r
− ω2

θ sin φ cos φ
]

ref

= 0 (3.35)

[
∂ω̇φ

∂r

]

ref

=
[
2vrωφ

r2

]

ref

= 0 (3.36)

[
∂ω̇φ

∂θ

]

ref

= 0 (3.37)

[
∂ω̇φ

∂φ

]

ref

=
[
−ω2

θ cos2 φ + ω2
θ sin2 φ

]
ref

= − ω2
0 (3.38)

[
∂ω̇φ

∂vr

]

ref

=
[
−2ωφ

r

]
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= 0 (3.39)

[
∂ω̇φ

∂ωθ

]

ref

= [−2ωθ sin φ cos φ]ref

= 0 (3.40)

[
∂ω̇φ

∂ωφ

]

ref

=
[
−2vr

r

]

ref

= 0 (3.41)

Assembling equations (3.18), (3.26) and (3.34) results in

∆ṙ = ∆vr (3.42)

∆θ̇ = ∆ωθ (3.43)

∆φ̇ = ∆ωφ (3.44)

∆v̇r = 3ω2
0∆r + 2r0ω0∆ωθ (3.45)

∆ω̇θ = −2ω0

r0

∆vr (3.46)

∆ω̇φ = −ω2
0∆φ (3.47)

Note that the out-of-plane variable, φ, has decoupled from the in-plane variables, r and θ.
This means that the out-of-plane motion may be examined independently of the in-plane motion.
Also, since θ is ignorable, the solution of (3.43) may be found separately from the solution of
the rest of the in plane variables in equations (3.42), (3.45) and (3.46). It is convenient to
non-dimensionalize the problem by introducing the variables

∆r̂ =
∆r

r0

(3.48)

∆θ̂ = ∆θ (3.49)

∆φ̂ = ∆φ (3.50)

and the non-dimensional time variable

τ = ω0t (3.51)

so that
d(·)
dt

= ω0
d(·)
dτ

(3.52)

Using this new differentiation rule, the non-dimensional velocity variables become

∆v̂r =
∆vr

r0ω0

(3.53)
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∆ω̂θ =
∆ωθ

ω0

(3.54)

∆ω̂φ =
∆ωφ

ω0

(3.55)

Assembling the non-dimensional equations of motion in matrix form, breaking up the un-
coupled system and using the notation (·)′ to mean differentiation with respect to the non-
dimensional time variable τ results in




∆r̂′

∆v̂r
′

∆ω̂′θ


 =




0 1 0
3 0 2
0 −2 0







∆r̂
∆v̂r

∆ω̂θ


 (3.56)

∆θ̂′ = ∆ω̂θ (3.57)(
∆φ̂′

∆ω̂′φ

)
=

[
0 1
−1 0

] (
∆φ̂
∆ω̂φ

)
(3.58)

Equations (3.56), (3.57) and (3.58) are the linearized form of the equations of motion rep-
resented in spherical coordinates. Overall, it is a sixth order system of ordinary differential
equations, but due to decoupling of motion and an ignorable coordinate, this set of equations
is reduced to a third order system, a first order system and a second order system. It is the
subject of the next section to find the solutions of these equations.

3.2 Solution

Equations (3.56) through (3.58) are easily solved by means of Laplace transforms. A detailed
description of the Laplace transform is given in reference [29]. For this process it is more
convenient to write the equations of motion as

∆r̂′′ − 3∆r̂ − 2∆θ̂′ = 0 (3.59)

∆θ̂′′ + 2∆r̂′ = 0 (3.60)

∆φ̂′′ + ∆φ̂ = 0 (3.61)

with initial conditions

∆r̂(0) = ∆r̂00 (3.62)

∆θ̂(0) = ∆θ̂00 (3.63)

∆φ̂(0) = ∆φ̂00 (3.64)

∆v̂r(0) = ∆v̂r00 (3.65)

∆ω̂θ(0) = ∆ω̂θ00 (3.66)

∆ω̂φ(0) = ∆ω̂φ00 (3.67)
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If the Laplace transform of ∆r̂ and ∆θ̂ is ∆R̂ and ∆Θ̂, respectively, then the Laplace
transform of in-plane differential equations in matrix form is

[
s2 − 3 −2s

2s s2

] (
∆R̂

∆Θ̂

)
=

(
s∆r̂00 + ∆v̂r00 − 2∆v̂r00

s∆θ̂00 + ∆ω̂θ00 + 2∆r̂00

)
(3.68)

Inverting the matrix to solve for ∆R̂ and ∆Θ̂ results in
(

∆R̂

∆Θ̂

)
=

1

s2(s2 + 1)

[
s2 2s
−2s s2 − 3

] (
s∆r̂00 + ∆v̂r00 − 2∆ω̂θ00

s∆θ̂00 + ∆ω̂θ00 + 2∆r̂00

)
(3.69)

=
1

s2(s2 + 1)

(
s3∆r̂00 + s2∆v̂r00 + 2s(∆ω̂θ00 + 2∆r̂00)

s3∆θ̂00 + s2∆ω̂θ00 + s(∆θ̂00 − 2∆v̂r00)− 3∆ω̂θ00 − 6∆r̂00

)
(3.70)

Using the notation L−1 for the inverse Laplace transform,

L−1

[
s3

s2(s2 + 1)

]
= cos τ (3.71)

L−1

[
s2

s2(s2 + 1)

]
= sin τ (3.72)

L−1

[
s

s2(s2 + 1)

]
= 1− cos τ (3.73)

L−1

[
1

s2(s2 + 1)

]
= τ − sin τ (3.74)

Substituting equations (3.71 – 3.74) into (3.70 gives the result

∆r̂(τ) = 4∆r̂00 + 2∆ω̂θ00 − (3∆r̂00 + 2∆ω̂θ00) cos τ + ∆v̂r00 sin τ (3.75)

∆θ̂(τ) = ∆θ̂00 − 2∆v̂r00 − (6∆r̂00 + 3∆ω̂θ00)τ + 2∆v̂r00 cos τ +

+(6∆v̂r00 + 4∆ω̂θ00) sin τ (3.76)

and the expression for ∆v̂r and ∆ω̂θ are simply the derivatives of equations (3.75) and (3.76):

∆v̂r(τ) = (3∆r̂00 + 2∆ω̂θ00) sin τ + ∆v̂r00 cos τ (3.77)

∆ω̂θ(τ) = −6∆r̂00 − 3∆ω̂θ00 − 2∆v̂r00 sin τ + (6∆v̂r00 + 4∆ω̂θ00) cos τ (3.78)

The out-of-plane equation is the same form as that of a linear mass-spring system with a
natural frequency of 1. The solution of this type of system is well known and takes the form

∆φ̂(τ) = ∆φ̂00 cos τ + ∆ω̂φ00 sin τ (3.79)

∆ω̂φ(τ) = −∆φ̂00 sin τ + ∆ω̂φ00 cos τ (3.80)
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The solution may also be written in several other forms which will be useful in later sections.
One is the state transition matrix form:




∆r̂

∆θ̂

∆φ̂
∆v̂r

∆ω̂θ

∆ω̂φ




=




4− 3 cos τ 0 0 sin τ 2(1− cos τ) 0
−6(τ − sin τ) 1 0 2 cos τ 4 sin τ − 3τ 0

0 0 cos τ 0 0 sin τ
3 sin τ 0 0 cos τ 2 sin τ 0

−6(1− cos τ) 0 0 −2 sin τ 4 cos τ − 3 0
0 0 − sin τ 0 0 cos τ







∆r̂00

∆θ̂00

∆φ̂00

∆v̂r00

∆ω̂θ00

∆ω̂φ00




(3.81)

Another form is

∆r̂ = a cos(τ + α) + b (3.82)

∆θ̂ = −2a sin(τ + α)− 3

2
bτ + c (3.83)

∆φ̂ = d cos(τ + δ) (3.84)

The constants a, b, c, d, α and δ may be found by expanding equations (3.82 – 3.84) with
trigonometric identities and comparing with equations (3.75), (3.76) and (3.79).

∆r̂ = a cos α cos τ − a sin α sin τ + b (3.85)

∆θ̂ = −2a cos α sin τ − 2a sin α cos τ − 3

2
bτ + c (3.86)

∆φ̂ = d cos δ cos τ − d sin δ sin τ (3.87)

which leads to

a cos α = −3∆r̂00 − 2∆ω̂θ00 (3.88)

a sin α = −∆v̂r00 (3.89)

b = 4∆r̂00 + 2∆ω̂θ00 (3.90)

c = ∆θ̂00 − 2∆v̂r00 (3.91)

d cos δ = ∆φ̂00 (3.92)

d sin δ = ∆ω̂φ00 (3.93)

Squaring and adding equations (3.88) and (3.89) as well as (3.92) and (3.93) results in

a2 = (3∆r̂00 + 2∆ω̂θ00)
2 + ∆v̂2

r00
(3.94)

d2 = ∆φ̂2
00 + ∆ω̂2

φ00
(3.95)

sin α = −∆v̂r00

a
(3.96)
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cos α = −3∆r̂00 + 2∆ω̂θ00

a
(3.97)

sin δ = −∆ω̂φ00

d
(3.98)

cos δ =
∆φ̂00

d
(3.99)

Another form of the solution may be found by introducing the complex variables

A =
1

2
aeiα (3.100)

B = b (3.101)

C = c (3.102)

D =
1

2
deiδ (3.103)

where a, b, c, d, α and δ are as found above and i =
√−1. Using these new variables, the

solution may be written as

∆r̂ = Aeiτ + Āe−iτ + B (3.104)

∆θ̂ = 2iAeiτ − 2iĀe−iτ − 3

2
Bτ + C (3.105)

∆φ̂ = Deiτ + D̄e−iτ (3.106)

where Ā and D̄ are the complex conjugates of A and D.

3.3 Relative Position and Velocity Vectors

In order to complete the problem it is necessary to express the solution in the form of relative
position and relative velocity vectors. Using the coordinate systems shown below, the non-
dimensional relative position vector, R̂, may be written as

R̂ = (1 + ∆r̂)er2 − er (3.107)

where er2 , eθ2 and eφ2 are the unit vectors of the coordinate system with er2 aligned with the
position vector of the satellite and er, eθ and eφ are the unit vectors of the coordinate system
aligned with the reference orbit. Vectors er2 , eθ2 and eφ2 may be expressed in terms of er, eθ and

eφ by a series of two simple coordinate transformations: first a rotation of angle ∆θ̂ about eφ to
align the coordinate system with an intermediate system er1 , eθ1 and eφ1 , and then a rotation of

angle −∆φ̂ about the eθ1 axis to align the intermediate system with er2 , eθ2 and eφ2 . In matrix
form this operation may be written as




er2

eθ2

eφ2


 =




cos ∆φ̂ 0 sin ∆φ̂
0 1 0

− sin ∆φ̂ 0 cos ∆φ̂







cos ∆θ̂ sin ∆θ̂ 0

− sin ∆θ̂ cos ∆θ̂ 0
0 0 1







er

eθ

eφ



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Figure 3.1: Relative Spherical Coordinate System

=




cos ∆φ̂ cos ∆θ̂ cos ∆φ̂ sin ∆θ̂ sin ∆φ̂

− sin ∆θ̂ cos ∆θ̂ 0

− sin ∆φ̂ cos ∆θ̂ − sin ∆θ̂ sin ∆θ̂ cos ∆φ̂







er

eθ

eφ


 (3.108)

Therefore, the relative position vector may be written as

R̂ =
[
(1 + ∆r̂) cos ∆φ̂ cos ∆θ̂ − 1

]
er + (1 + ∆r̂) cos ∆φ̂ sin ∆θ̂eθ + (1 + ∆r̂) sin ∆φ̂eφ (3.109)

Similarly to chapter (2), the derivatives of the unit vectors aligned with the reference orbit are

e′r = eθ (3.110)

e′θ = −er (3.111)

e′φ = 0 (3.112)

so that the relative velocity vector is

V̂ =
[
∆v̂r cos ∆φ̂ cos ∆θ̂ − (1 + ∆r̂) ∆ω̂φ sin ∆φ̂ cos ∆θ̂−
− (1 + ∆r̂) ∆ω̂θ cos ∆φ̂ sin ∆θ̂ − (1 + ∆r̂) cos ∆φ̂ sin ∆θ̂

]
er +

+
[
∆v̂r cos ∆φ̂ sin ∆θ̂ − (1 + ∆r̂) ∆ω̂φ sin ∆φ̂ sin ∆θ̂+

+ (1 + ∆r̂) ∆ω̂θ cos ∆φ̂ cos ∆θ̂ + (1 + ∆r̂) cos ∆φ̂ cos ∆θ̂ − 1
]
eθ +

+
[
∆v̂r sin ∆φ̂ + (1 + ∆r̂) ∆ω̂φ cos ∆φ̂

]
eφ (3.113)
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The absolute position and velocity of the satellite are simply

r̂ = er + R̂ (3.114)

v̂ = eθ + V̂ (3.115)

The equations developed in this chapter, regardless of the form they are expressed in, are
the solution to a linearized representation of the orbital motion. These solutions are known as
Hill’s equations or as the Clohessy-Wiltshire equations, although in spherical coordinates rather
than the more traditional rectangular form used in [1] and [2].



Chapter 4

Nonlinear Model

This chapter develops the analytical solution of nonlinear relative motion equations. A Taylor
series expansion of the orbital dynamics is used to approximate the full nonlinear equations
of motion as in the previous chapter. Here the expansion will be truncated after second–
order terms, leading to a system of nonlinear ordinary differential equations. The same non-
dimensional state variables are introduced. The method of multiple scales is used to determine
an approximate solution of the second–order equations of motion.

4.1 Equations of Motion

This section will develop a set of differential equations similar to that found in (3.59), (3.60)
and (3.61), except that now they will contain second order terms, in other words, terms with
quadratic nonlinearity. These equations will be developed in the same manner as the previous
chapter, but now the Taylor expansion will be carried on to the next order. The same reference
conditions will be used. The expansion of (3.4) is

v̇r = [v̇r]ref + ∆r

[
∂v̇r

∂r

]

ref

+ ∆θ

[
∂v̇r

∂θ

]

ref

+ ∆φ

[
∂v̇r

∂φ

]

ref

+ ∆vr

[
∂v̇r

∂vr

]

ref

+

+ ∆ωθ

[
∂v̇r

∂ωθ

]

ref

+ ∆ωφ

[
∂v̇r

∂ωφ

]

ref

+
1

2
∆r2

[
∂2v̇r

∂r2

]

ref

+ ∆θ∆r

[
∂2v̇r

∂θ∂r

]

ref

+

+∆φ∆r

[
∂2v̇r

∂φ∂r

]

ref

+ ∆vr∆r

[
∂2v̇r

∂vr∂r

]

ref

+ ∆ωθ∆r

[
∂2v̇r

∂ωθ∂r

]

ref

+

+∆ωφ∆r

[
∂2v̇r

∂ωφ∂r

]

ref

+
1

2
∆θ2

[
∂2v̇r

∂θ2

]

ref

+ ∆φ∆θ

[
∂2v̇r

∂φ∂θ

]

ref

+

+∆vr∆θ

[
∂2v̇r

∂vr∂θ

]

ref

+ ∆ωθ∆θ

[
∂2v̇r

∂ωθ∂θ

]

ref

+ ∆ωφ∆θ

[
∂2v̇r

∂ωφ∂θ

]

ref

+

34
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+
1

2
∆φ2

[
∂2v̇r

∂φ2

]

ref

+ ∆vr∆φ

[
∂2v̇r

∂vr∂φ

]

ref

+ ∆ωθ∆φ

[
∂2v̇r

∂ωθ∂φ

]

ref

+

+∆ωφ∆φ

[
∂2v̇r

∂ωφ∂φ

]

ref

+
1

2
∆v2

r

[
∂2v̇r

∂v2
r

]

ref

+ ∆ωθ∆vr

[
∂2v̇r

∂ωθ∂vr

]

ref

+

+∆ωφ∆vr

[
∂2v̇r

∂ωφ∂vr

]

ref

+
1

2
∆ω2

θ

[
∂2v̇r

∂ω2
θ

]

ref

+ ∆ωθ∆ωφ

[
∂2v̇r

∂ωφ∂ωθ

]

ref

+

+
1

2
∆ω2

φ

[
∂2v̇r

∂ω2
φ

]

ref

(4.1)

The expansion of equation (3.5) is

ω̇θ = [ω̇θ]ref + ∆r

[
∂ω̇θ

∂r

]

ref

+ ∆θ

[
∂ω̇θ

∂θ

]

ref

+ ∆φ

[
∂ω̇θ

∂φ

]

ref

+ ∆vr

[
∂ω̇θ

∂vr

]

ref

+

+ ∆ωθ

[
∂ω̇θ

∂ωθ

]

ref

+ ∆ωφ

[
∂ω̇θ

∂ωφ

]

ref

+
1

2
∆r2

[
∂2ω̇θ

∂r2

]

ref

+ ∆θ∆r

[
∂2ω̇θ

∂θ∂r

]

ref

+

+∆φ∆r

[
∂2ω̇θ

∂φ∂r

]

ref

+ ∆vr∆r

[
∂2ω̇θ

∂vr∂r

]

ref

+ ∆ωθ∆r

[
∂2ω̇θ

∂ωθ∂r

]

ref

+

+∆ωφ∆r

[
∂2ω̇θ

∂ωφ∂r

]

ref

+
1

2
∆θ2

[
∂2ω̇θ

∂θ2

]

ref

+ ∆φ∆θ

[
∂2ω̇θ

∂φ∂θ

]

ref

+

+∆vr∆θ

[
∂2ω̇θ

∂vr∂θ

]

ref

+ ∆ωθ∆θ

[
∂2ω̇θ

∂ωθ∂θ

]

ref

+ ∆ωφ∆θ

[
∂2ω̇θ

∂ωφ∂θ

]

ref

+

+
1

2
∆φ2

[
∂2ω̇θ

∂φ2

]

ref

+ ∆vr∆φ

[
∂2ω̇θ

∂vr∂φ

]

ref

+ ∆ωθ∆φ

[
∂2ω̇θ

∂ωθ∂φ

]

ref

+

+∆ωφ∆φ

[
∂2ω̇θ

∂ωφ∂φ

]

ref

+
1

2
∆v2

r

[
∂2ω̇θ

∂v2
r

]

ref

+ ∆ωθ∆vr

[
∂2ω̇θ

∂ωθ∂vr

]

ref

+

+∆ωφ∆vr

[
∂2ω̇θ

∂ωφ∂vr

]

ref

+
1

2
∆ω2

θ

[
∂2ω̇θ

∂ω2
θ

]

ref

+ ∆ωθ∆ωφ

[
∂2ω̇θ

∂ωφ∂ωθ

]

ref

+

+
1

2
∆ω2

φ

[
∂2ω̇θ

∂ω2
φ

]

ref

(4.2)

Finally, the expansion of (3.6) is

ω̇φ = [ω̇φ]ref + ∆r

[
∂ω̇φ

∂r

]

ref

+ ∆θ

[
∂ω̇φ

∂θ

]

ref

+ ∆φ

[
∂ω̇φ

∂φ

]

ref

+ ∆vr

[
∂ω̇φ

∂vr

]

ref

+

+ ∆ωθ

[
∂ω̇φ

∂ωθ

]

ref

+ ∆ωφ

[
∂ω̇φ

∂ωφ

]

ref

+
1

2
∆r2

[
∂2ω̇φ

∂r2

]

ref

+ ∆θ∆r

[
∂2ω̇φ

∂θ∂r

]

ref

+

+∆φ∆r

[
∂2ω̇φ

∂φ∂r

]

ref

+ ∆vr∆r

[
∂2ω̇φ

∂vr∂r

]

ref

+ ∆ωθ∆r

[
∂2ω̇φ

∂ωθ∂r

]

ref

+
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+∆ωφ∆r

[
∂2ω̇φ

∂ωφ∂r

]

ref

+
1

2
∆θ2

[
∂2ω̇φ

∂θ2

]

ref

+ ∆φ∆θ

[
∂2ω̇φ

∂φ∂θ

]

ref

+

+∆vr∆θ

[
∂2ω̇φ

∂vr∂θ

]

ref

+ ∆ωθ∆θ

[
∂2ω̇φ

∂ωθ∂θ

]

ref

+ ∆ωφ∆θ

[
∂2ω̇φ

∂ωφ∂θ

]

ref

+

+
1

2
∆φ2

[
∂2ω̇φ

∂φ2

]

ref

+ ∆vr∆φ

[
∂2ω̇φ

∂vr∂φ

]

ref

+ ∆ωθ∆φ

[
∂2ω̇φ

∂ωθ∂φ

]

ref

+

+∆ωφ∆φ

[
∂2ω̇φ

∂ωφ∂φ

]

ref

+
1

2
∆v2

r

[
∂2ω̇φ

∂v2
r

]

ref

+ ∆ωθ∆vr

[
∂2ω̇φ

∂ωθ∂vr

]

ref

+

+∆ωφ∆vr

[
∂2ω̇φ

∂ωφ∂vr

]

ref

+
1

2
∆ω2

θ

[
∂2ω̇φ

∂ω2
θ

]

ref

+ ∆ωθ∆ωφ

[
∂2ω̇φ

∂ωφ∂ωθ

]

ref

+

+
1

2
∆ω2

φ

[
∂2ω̇φ

∂ω2
φ

]

ref

(4.3)

The process of evaluating each of these terms is given in appendix (A). Assembling these terms
leads to

∆ṙ = ∆vr (4.4)

∆θ̇ = ∆ωθ (4.5)

∆φ̇ = ∆ωφ (4.6)

∆v̇r = 3ω2
0∆r + 2r0ω0∆ωθ − 3ω2

0

r0

∆r2 + 2ω0∆r∆ωθ −
−r0ω

2
0∆φ2 + r0∆ω2

θ + r0∆ω2
φ (4.7)

∆ω̇θ = −2ω0

r0

∆vr +
2ω0

r2
0

∆vr∆r + 2ω0∆ωφ∆φ− 2

r0

∆ωθ∆vr (4.8)

∆ω̇φ = −ω2
0∆φ− 2∆ωθ∆φ− 2

r0

∆ωφ∆vr (4.9)

Using the same non-dimensionalization as the previous chapter, and writing the equations as
coupled systems of second order differential equations rather than in state variable form leads
to

∆r̂′′ − 3∆r̂ − 2∆θ̂′ = ε
(
−3∆r̂2 + 2∆r̂∆θ̂′ −∆φ̂2 + ∆θ̂′2 + ∆φ̂′2

)
(4.10)

∆θ̂′′ + 2∆r̂′ = ε
(
2∆r̂∆r̂′ + 2∆φ̂∆φ̂′ − 2∆θ̂′∆r̂′

)
(4.11)

∆φ̂′′ + ∆φ̂ = ε
(
−2∆θ̂′∆φ̂− 2∆φ̂′∆r̂′

)
(4.12)

A place keeping parameter, ε, as described in chapter (2), has been introduced into the problem
since there is no small parameter. In order for a truncated Taylor expansion to be valid, the
variables ∆r, ∆θ and ∆φ should be small themselves. If these variables are of order ρ << 1, then
the perturbation terms will be of order ρ2 since the nonlinearity of this problem is quadratic.
Therefore, the perturbation of the linear system is of higher order by itself, validating the use
of a place keeping parameter.
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Note that the in-plane motion has re-coupled with the out-of-plane motion by expanding
the equations of motion to second order. Even without the fact that these equations represent
a better approximation of the dynamics, this re-coupling is a further advantage.

4.2 The Method of Multiple Scales

The method of multiple scales seeks an approximate solution of equations (4.10 – 4.12) by
making the expansion

∆r̂(τ) = ∆r̂0(T0, T1, T2) + ε∆r̂1(T0, T1, T2) + ε2∆r̂2(T0, T1, T2) + · · · (4.13)

∆θ̂(τ) = ∆θ̂0(T0, T1, T2) + ε∆θ̂1(T0, T1, T2) + ε2∆θ̂2(T0, T1, T2) + · · · (4.14)

∆φ̂(τ) = ∆φ̂0(T0, T1, T2) + ε∆φ̂1(T0, T1, T2) + ε2∆φ̂2(T0, T1, T2) + · · · (4.15)

where T0 = τ , T1 = ετ and T2 = ε2τ are the fast, slow and even slower time scales. Substituting
(4.13), (4.14) and (4.15) into (4.10), (4.11) and (4.12) and using the the expansion of the
differential operator given in (2.38) and (2.39) for order ε0 results in

∂2∆r̂0

∂T 2
0

− 3∆r̂0 − 2
∂∆θ̂0

∂T0

= 0 (4.16)

∂2∆θ̂0

∂T 2
0

+ 2
∂∆r̂0

∂T0

= 0 (4.17)

∂2∆φ̂0

∂T 2
0

+ ∆φ̂0 = 0 (4.18)

Grouping terms of order ε1 yields

∂2∆r̂1

∂T 2
0

− 3∆r̂1 − 2
∂∆θ̂1

∂T0

= −2
∂2∆r̂0

∂T0∂T1

+ 2
∂∆θ̂0

∂T1

− 3∆r̂2
0 + 2∆r̂0

∂∆θ̂0

∂T0

−∆φ̂2
0 +

+

(
∂∆θ̂0

∂T0

)2

+

(
∂∆φ̂0

∂T0

)2

(4.19)

∂2∆θ̂1

∂T 2
0

+ 2
∂∆r̂1

∂T0

= −2
∂2∆θ̂0

∂T0∂T1

− 2
∂∆r̂0

∂T1

+ 2∆r̂0
∂∆r̂0

∂T0

+ 2∆φ̂0
∂∆φ̂0

∂T0

−

−2
∂∆θ̂0

∂T0

∂∆r̂0

∂T0

(4.20)

∂2∆φ̂1

∂T 2
0

+ ∆φ̂1 = −2
∂2∆φ̂0

∂T0∂T1

− 2∆φ̂0
∂∆θ̂0

∂T0

− 2
∂∆φ̂0

∂T0

∂r̂0

∂T0

(4.21)

Finally, grouping terms of order ε2 leads to

∂2∆r̂2

∂T 2
0

− 3∆r̂2 − 2
∂∆θ̂2

∂T0

= −2
∂2∆r̂1

∂T0∂T1

− 2
∂2∆r̂0

∂T0∂T2

− ∂2∆r̂0

∂T 2
1

+ 2
∂∆θ̂0

∂T2

+ 2
∂∆θ̂1

∂T1

−
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− 6∆r̂0∆r̂1 + 2∆r̂1
∂∆θ̂0

∂T0

+ 2∆r̂0
∂∆θ̂0

∂T1

+ 2∆r̂0
∂∆θ̂1

∂T0

−

− 2∆φ̂0∆φ̂1 + 2
∂∆θ̂0

∂T0

∂∆θ̂0

∂T1

+ 2
∂∆θ̂0

∂T0

∂∆θ̂1

∂T0

+

+ 2
∂∆φ̂0

∂T0

∂∆φ̂0

∂T1

+ 2
∂∆φ̂0

∂T0

∂∆φ̂1

∂T0

(4.22)

∂2∆θ̂2

∂T 2
0

+ 2
∂∆r̂2

∂T0

= −2
∂2∆θ̂1

∂T0∂T1

− 2
∂2∆θ̂0

∂T0∂T2

− ∂2∆θ̂0

∂T 2
1

− 2
∂∆r̂0

∂T2

− 2
∂∆r̂1

∂T1

+

+ 2∆r̂0
∂∆r̂1

∂T0

+ 2∆r̂0
∂∆r̂0

∂T1

+ 2∆r̂1
∂∆r̂0

∂T0

+ 2∆φ̂0
∂∆φ̂1

∂T0

+

+ 2∆φ̂0
∂∆φ̂0

∂T1

+ 2∆φ̂1
∂∆φ̂0

∂T0

− 2
∂∆θ̂0

∂T0

∂∆r̂1

∂T0

−

−2
∂∆θ̂0

∂T0

∂∆r̂0

∂T1

− 2
∂∆θ̂1

∂T0

∂∆r̂0

∂T0

− 2
∂∆θ̂0

∂T1

∂∆r̂0

∂T0

(4.23)

∂2∆φ̂2

∂T 2
0

+ ∆φ̂2 = −2
∂2∆φ̂1

∂T0∂T1

− 2
∂2∆φ̂0

∂T0∂T2

− ∂2∆φ̂0

∂T 2
1

− 2∆φ̂1
∂∆θ̂0

∂T0

−

− 2∆φ̂0
∂∆θ̂1

∂T0

− 2∆φ̂0
∂∆θ̂0

∂T1

− 2
∂∆φ̂0

∂T0

∂∆r̂0

∂T1

−

− 2
∂∆φ̂0

∂T0

∂∆r̂1

∂T0

− 2
∂∆φ̂0

∂T1

∂∆r̂0

∂T0

− 2
∂∆φ̂1

∂T0

∂∆r̂0

∂T0

(4.24)

Equations (4.16), (4.17) and (4.18) are the equivalent to equations (3.59), (3.60) and (3.61)except
that they are expressed as a system of partial differential equations with respect to the indepen-
dent variable T0 rather than ordinary differential equations. This being the case, the solution
of (4.16), (4.17) and (4.18) takes the same form as (3.104), (3.105) and (3.106), but now, A, B,
C and D are functions of the slow time scales T1 and T2. The solution is then

∆r̂0 = A (T1, T2) eiT0 + Ā (T1, T2) e−iT0 + B (T1, T2) (4.25)

∆θ̂0 = 2iA (T1, T2) eiT0 − 2iĀ (T1, T2) e−iT0 − 3

2
B (T1, T2) T0 + C (T1, T2) (4.26)

∆φ̂0 = D (T1, T2) eiT0 + D̄ (T1, T2) e−iT0 (4.27)

These equations will be used as the starting point in the process of assembling the total solution
(4.13), (4.14) and (4.15).

Note that six more constants of integration will be required to solve the partial differential
equations at each order of ε. The typical approach is to set these constants to zero. This
approach leads to a re-definition of the constants of integration between the linear case and the
nonlinear case. In order to more readily compare the linear solution to the nonlinear solution,
it is desirable that the definition of the constants remains the same. Therefore, the initial
conditions of the problem may be expressed as

∆r̂(0) = ∆r̂0(0) + ε∆r̂1(0) + ε2∆r̂2(0) (4.28)
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∆θ̂(0) = ∆θ̂0(0) + ε∆θ̂1(0) + ε2∆θ̂2(0) (4.29)

∆φ̂(0) = ∆φ̂0(0) + ε∆φ̂1(0) + ε2∆φ̂2(0) (4.30)

∆v̂r(0) =
∂∆r̂0

∂T0

(0) + ε

(
∂∆r̂0

∂T1

(0) +
∂∆r̂1

∂T0

(0)

)
+

+ε2

(
∂∆r̂0

∂T2

(0) +
∂∆r̂1

∂T1

(0) +
∂∆r̂2

∂T0

(0)

)
(4.31)

∆ω̂θ(0) =
∂∆θ̂0

∂T0

(0) + ε

(
∂∆θ̂0

∂T1

(0) +
∂∆θ̂1

∂T0

(0)

)
+

+ε2

(
∂∆θ̂0

∂T2

(0) +
∂∆θ̂1

∂T1

(0) +
∂∆θ̂2

∂T0

(0)

)
(4.32)

∆ω̂φ(0) =
∂∆φ̂0

∂T0

(0) + ε

(
∂∆φ̂0

∂T1

(0) +
∂∆φ̂1

∂T0

(0)

)
+

+ε2

(
∂∆φ̂0

∂T2

(0) +
∂∆φ̂1

∂T1

+
∂∆φ̂2

∂T0

(0)

)
(4.33)

In order to enforce the initial conditions of the problem on the linear portion of the solution
alone, it must be true that

∆r̂1(0) = 0 (4.34)

∆r̂2(0) = 0 (4.35)

∆θ̂1(0) = 0 (4.36)

∆θ̂2(0) = 0 (4.37)

∆φ̂1(0) = 0 (4.38)

∆φ̂2(0) = 0 (4.39)

∂∆r̂1

∂T0

(0) = −∂∆r̂0

∂T1

(0) (4.40)

∂∆r̂2

∂T0

(0) = −∂∆r̂0

∂T2

(0)− ∂∆r̂1

∂T1

(0) (4.41)

∂∆θ̂1

∂T0

(0) = −∂∆θ̂0

∂T1

(0) (4.42)

∂∆θ̂2

∂T0

(0) = −∂∆θ̂0

∂T2

(0)− ∂∆θ̂1

∂T1

(0) (4.43)

∂∆φ̂1

∂T0

(0) = −∂∆φ̂0

∂T1

(0) (4.44)

∂∆φ̂2

∂T0

(0) = −∂∆φ̂0

∂T2

(0)− ∂∆φ̂1

∂T1

(0) (4.45)

The nonzero initial conditions on the first and second order partial differential equations will
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be defined as

∂∆r̂1

∂T0

(0) = ∆v̂r10 (4.46)

∂∆r̂2

∂T0

(0) = ∆v̂r20 (4.47)

∂∆θ̂1

∂T0

(0) = ∆ω̂θ10 (4.48)

∂∆θ̂2

∂T0

(0) = ∆ω̂θ20 (4.49)

∂∆φ̂1

∂T0

(0) = ∆ω̂φ10 (4.50)

∂∆φ̂2

∂T0

(0) = ∆ω̂φ20 (4.51)

4.2.1 First Order Solution

Evaluating the equation (4.19), (4.20) and (4.21) using the solution (4.25), (4.26) and (4.27) is
an algebraically complicated task, and is given in appendix (B). The first order (in terms of ε)
system of partial differential equations becomes

∂2∆r̂1

∂T 2
0

− 3∆r̂1 − 2
∂∆θ̂1

∂T0

=

(
2i

∂A

∂T1

− 7AB

)
eiT0 +

(
−2i

∂Ā

∂T1

− 7ĀB

)
e−iT0 +

+
(
−3A2 − 2D2

)
e2iT0 +

(
−3Ā2 − 2D̄2

)
e−2iT0 +

+2
∂C

∂T1

− 15B2

4
− 6AĀ− 3

∂B

∂T1

T0 (4.52)

∂2∆θ̂1

∂T 2
0

+ 2
∂∆r̂1

∂T0

=

(
2

∂A

∂T1

+ 5iAB

)
eiT0 +

(
2

∂Ā

∂T1

− 5iĀB

)
e−iT0 +

+
(
6iA2 + 2iD2

)
e2iT0 +

(
−6iĀ2 − 2iD̄2

)
e−2iT0 −

−2
∂B

∂T1

(4.53)

∂2∆φ̂1

∂T 2
0

+ ∆φ̂1 =

(
−2i

∂D

∂T1

+ 3DB

)
eiT0 +

(
2i

∂D̄

∂T1

+ 3D̄B

)
e−iT0 +

+6ADe2iT0 + 6ĀD̄e−2iT0 + 2ĀD + 2AD̄ (4.54)

At this stage it is convenient to introduce several intermediate variables (all functions of the
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slow time scales, T1 and T2), γr1 , γθr1
, γφ1 ηr1 , ηθ1 , ηφ1 , σr1 , σθ1 , σφ1 and λr1 defined such that

γr1 = 2i
∂A

∂T1

− 7AB (4.55)

γθ1 = 2
∂A

∂T1

+ 5iAB (4.56)

γφ1 = 3DB − 2i
∂D

∂T1

(4.57)

ηr1 = −3A2 − 2D2 (4.58)

ηθ1 = 6iA2 + 2iD2 (4.59)

ηφ1 = 6AD (4.60)

σr1 = 2
∂C

∂T1

− 15B2

4
− 6AĀ (4.61)

σθ1 = −2
∂B

∂T1

(4.62)

σφ1 = 2ĀD + 2AD̄ (4.63)

λr1 = −3
∂B

∂T1

(4.64)

Using these definitions, equations (4.52), (4.53) and (4.54) become

∂2∆r̂1

∂T 2
0

− 3∆r̂1 − 2
∂∆θ̂1

∂T0

= γr1e
iT0 + γ̄r1e

−iT0 + ηr1e
2iT0 + η̄r1e

−2iT0 + σr1 + λr1T0 (4.65)

∂2∆θ̂1

∂T 2
0

+ 2
∂∆r̂1

∂T0

= γθ1e
iT0 + γ̄θ1e

−iT0 + ηθ1e
2iT0 + η̄θ1e

−2iT0 + σθ1 (4.66)

∂2∆φ̂1

∂T 2
0

+ ∆φ̂1 = γφ1e
iT0 + γ̄φ1e

−iT0 + ηφ1e
2iT0 + η̄φ1e

−2iT0 + σφ1 (4.67)

Again, note that these equations are the same linear system of partial differential equations
found in (4.16), (4.17) and (4.18) but now there appears a forcing function for each equation.
The out-of-plane equation, (4.67), has again de-coupled from the in-plane equations, (4.65)
and (4.66). Furthermore, since these are partial differential equations in terms of T0 only, any
function that varies with respect to T1 or T2 is fixed. This condition allows for the system to
be solved by means of Laplace transforms as in chapter (3). First, the Laplace transform of the
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in-plane equation (using the initial conditions previously discussed) is

[
s2 − 3 −2s

2s s2

] (
∆R̂1

∆Θ̂1

)
=

( γr1

s−i
+

γ̄r1

s+i
+

ηr1

s−2i
+

η̄r1

s+2i
+

σr1

s
+

λr1

s2 + ∆v̂r10
γθ1

s−i
+

γ̄θ1

s+i
+

ηθ1

s−2i
+

η̄θ1

s+2i
+

σθ1

s
+ ∆ω̂φ10

)
(4.68)

Solving for ∆R̂1 and ∆Θ̂1 results in
(

∆R̂1

∆Θ̂1

)
=

1

s2(s2 + 1)

[
s2 2s
−2s s2 − 3

] ( γr1

s−i
+

γ̄r1

s+i
+

ηr1

s−2i
+

η̄r1

s+2i
+

σr1

s
+

λr1

s2 + ∆v̂r10
γθ1

s−i
+

γ̄θ1

s+i
+

ηθ1

s−2i
+

η̄θ1

s+2i
+

σθ1

s
+ ∆ω̂θ10

)
(4.69)

Or,

∆R̂1 =
γr1

(s2 + 1)(s− i)
+

γ̄r1

(s2 + 1)(s + i)
+

ηr1

(s2 + 1)(s− 2i)
+

η̄r1

(s2 + 1)(s + 2i)
+

+
λr1 + 2σθ1

s2(s2 + 1)
+

σr1

s(s2 + 1)
+

2γθ1

s(s2 + 1)(s− i)
+

2γ̄θ1

s(s2 + 1)(s + i)
+

+
2ηθ1

s(s2 + 1)(s− 2i)
+

2η̄θ1

s(s2 + 1)(s + 2i)
+

∆v̂r10

s2 + 1
+

2∆ω̂θ10

s(s2 + 1)
(4.70)

∆Θ̂1 = − 2γr1

s(s2 + 1)(s− i)
− 2γ̄r1

s(s2 + 1)(s + i)
− 2ηr1

s(s2 + 1)(s− 2i)
− 2η̄r1

s(s2 + 1)(s + 2i)
−

− 2λr1

s3(s2 + 1)
− 2σr1

s2(s2 + 1)
+

γθ1(s
2 − 3)

s2(s2 + 1)(s− i)
+

γ̄θ1(s
2 − 3)

s2(s2 + 1)(s + i)
+

+
ηθ1(s

2 − 3)

s2(s2 + 1)(s− 2i)
+

η̄θ1(s
2 − 3)

s2(s2 + 1)(s + 2i)
+

σθ1(s
2 − 3)

s3(s2 + 1)
+

(s2 − 3)∆ω̂θ10

s2(s2 + 1)
−

− 2∆v̂r10

s(s2 + 1)
(4.71)

The inverse Laplace transforms are

L−1

[
1

(s2 + 1)(s± i)

]
= ±

(
1

2
iT0e

∓iT0 +
1

4
e−iT0 − 1

4
eiT0

)
(4.72)

L−1

[
1

(s2 + 1)(s± 2i)

]
=

1

2
e∓iT0 − 1

6
e±iT0 − 1

3
e∓2iT0 (4.73)

L−1

[
1

s(s2 + 1)(s± i)

]
= −1

2
T0e

∓iT0 ∓ i
(
1− 3

4
e∓iT0 − 1

4
e±iT0

)
(4.74)

L−1

[
1

s(s2 + 1)(s± 2i)

]
= ±

(
1

2
e∓iT0 +

1

6
e±iT0 − 1

6
e∓2iT0 − 1

)
(4.75)

L−1

[
1

s2(s2 + 1)(s± i)

]
= 1− 5

4
e∓iT0 +

1

4
e±iT0 ∓ 1

2
iT0e

∓iT0 ∓ iT0 (4.76)

L−1

[
1

s2(s2 + 1)(s± 2i)

]
=

1

4
− 1

2
e∓iT0 +

1

6
e±iT0 +

1

12
e∓2iT0 ∓ 1

2
iT0 (4.77)

L−1

[
1

s(s2 + 1)

]
= 1− 1

2
eiT0 − 1

2
e−iT0 (4.78)
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L−1

[
1

s2(s2 + 1)

]
= T0 +

1

2
ieiT0 − 1

2
ie−iT0 (4.79)

L−1

[
1

s3(s2 + 1)

]
=

1

2
T 2

0 +
1

2
eiT0 +

1

2
e−iT0 − 1 (4.80)

Assembling these leads to

∆r̂1 =

(
γr1

4
+

ηr1

2
− γ̄r1

4
+

iγ̄θ1

2
− η̄r1

6
+

iη̄θ1

3
− 3iγθ1

2
− iηθ1 +

iλr1

2
− σr1

2
+ iσθ1−

−i∆v̂r10

2
−∆ω̂θ10 −

[
γθ1 +

iγr1

2

]
T0

)
eiT0 +

(
γ̄r1

4
+

η̄r1

2
− γr1

4
− iγθ1

2
− ηr1

6
− iηθ1

3
+

+
3iγ̄θ1

2
+ iη̄θ1 −

iλr1

2
− σr1

2
− iσθ1 +

i∆v̂r10

2
−∆ω̂θ10 −

[
γ̄θ1 −

iγ̄r1

2

]
T0

)
e−iT0 +

+
(

iηθ1

3
− ηr1

3

)
e2iT0 +

(
−iη̄θ1

3
− η̄r1

3

)
e−2iT0 + (λr1 + 2σθ1) T0 + 2iγθ1 − 2iγ̄θ1 +

+iηθ1 − iη̄θ1 + σr1 + 2∆ω̂θ10 (4.81)

∆θ̂1 =
(
4γθ1 + iηr1 + 2ηθ1 − λr1 − iσr1 − 2σθ1 −

iγ̄r1

2
− γ̄θ1 −

iη̄r1

3
− 2η̄θ1

3
+

3iγr1

2
+

+∆v̂r10 − 2i∆ω̂θ10 + [γr1 − 2iγθ1 ] T0) eiT0 + (4γ̄θ1 − iη̄r1 + 2η̄θ1 − λr1 + iσr1−
−2σθ1 +

iγr1

2
− γθ1 +

iηr1

3
− 2ηθ1

3
− 3iγ̄r1

2
+ ∆v̂r10 + 2i∆ω̂θ10 + [γ̄r1 + 2iγ̄θ1 ] T0

)
e−iT0 +

+
(
− iηr1

3
− 7ηθ1

12

)
e2iT0 +

(
iη̄r1

3
− 7η̄θ1

12

)
e−2iT0 +

(
3iγ̄θ1 − 3iγθ1 +

3iη̄θ1

2
− 3iηθ1

2
−

−2σr1 − 3∆ω̂θ10) T0 −
(
λr1 +

3σθ1

2

)
T 2

0 + 2iγ̄r1 − 2iγr1 − 3γ̄θ1 − 3γθ1 + iη̄r1 −

−iηr1 −
3η̄θ1

4
− 3ηθ1

4
+ 2λr1 + 4σθ1 − 2∆v̂r10 (4.82)

Elimination of secular terms requires that

λr1 + 2σθ1 = 0 (4.83)

λr1 +
3σθ1

2
= 0 (4.84)

γr1 − 2iγθ1 = 0 (4.85)

and enforcing the initial conditions of the problem gives,

3iγ̄θ1 − 3iγθ1 +
3iη̄θ1

2
− 3iηθ1

2
− 2σr1 − 3∆ω̂θ10 = 0 (4.86)

Note that equation (4.85) appears in several locations in the solution, although in an algebraically
different form which therefore contains no new information. Equations (4.83) and (4.84) imply
that

λr1 = σθ1 = 0 (4.87)
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which leads to
∂B

∂T1

= 0 (4.88)

Expanding equation (4.85),

2i
∂A

∂T1

− 7AB = 4i
∂A

∂T1

− 10AB (4.89)

2i
∂A

∂T1

= 3AB (4.90)

which results in
∂A

∂T1

= −3

2
iAB (4.91)

Equation (4.86) leads to

σr1 =
3

2
iγ̄θ1 −

3

2
iγθ1 +

3

4
iη̄θ1 −

3

4
iηθ1 −

3

4
∆ω̂θ10 (4.92)

2
∂C

∂T1

− 15

4
B2 − 6AĀ =

3

2

(
D2 + D̄2

)
+

9

2

(
A2 + Ā2

)
+ 3

(
AB + ĀB

)
− 3

2
∆ω̂θ10 (4.93)

so that

∂C

∂T1

=
15

8
B2 + 3AĀ +

3

4

(
D2 + D̄2

)
+

9

4

(
A2 + Ā2

)
+

3

2

(
AB + ĀB

)
− 3

4
∆ω̂θ10 (4.94)

Substituting equations (4.88), (4.91), (4.94) into (4.81) and (4.82) gives the result

∆r̂1 =

(
9

4
A2 +

1

2
AB +

1

4
D2 +

1

2
ĀB +

1

4
Ā2 +

1

4
D̄2 − i∆v̂r10

2
− ∆ω̂θ10

4

)
eiT0 +

+

(
9

4
Ā2 +

1

2
ĀB +

1

4
D̄2 +

1

2
AB +

1

4
A2 +

1

4
D2 +

i∆v̂r10

2
− ∆ω̂θ10

4

)
e−iT0 −

−A2e2iT0 − Ā2e−2iT0 − 3

2
A2 − 3

2
Ā2 − AB − ĀB − 1

2
D2 − 1

2
D̄2 +

∆ω̂θ10

2
(4.95)

∆θ̂1 =

(
9

2
A2 − AB +

1

2
D2 + ĀB +

1

2
Ā2 +

1

2
D̄2 − i∆v̂r10 −

∆ω̂θ10

2

)
ieiT0 +

+

(
−9Ā2

2
+ ĀB − 1

2
D̄2 − AB − 1

2
A2 − 1

2
D2 − i∆v̂r10 +

∆ω̂θ10

2

)
ie−iT0 +

+
(
−5

2
A2 − 1

2
D2

)
ie2iT0 +

(
5

2
Ā2 +

1

2
D̄2

)
ie−2iT0 +

+
(
−3

2
A2 +

3

2
Ā2 + 2AB − 2ĀB +

1

2
D2 − 1

2
D̄2 + 2i∆v̂r10

)
i (4.96)

Equations (4.95) and (4.96) are the solution of equations (4.52) and (4.53) that have been
made free of secular terms by determining conditions on the slowly varying parameters given in
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equations (4.88), (4.91) and (4.94). Next, the Laplace transform of the out-of-plane equation,
(4.54), is

∆Φ̂1 =
γφ1

(s2 + 1)(s− i)
+

γ̄φ1

(s2 + 1)(s + i)
+

ηφ1

(s2 + 1)(s− 2i)
+

η̄φ1

(s2 + 1)(s + 2i)
+

+
σφ1

s(s2 + 1)
+

∆ω̂φ10

s2 + 1
(4.97)

which has the inverse transformation

∆φ̂1 =

(
γφ1

4
+

ηφ1

2
− γ̄φ1

4
− η̄φ1

6
− σφ1

2
− i∆ω̂φ10

2
− iγφ1

2
T0

)
eiT0 +

+

(
γ̄φ1

4
+

η̄φ1

2
− γφ1

4
− ηφ1

6
− σφ1

2
+

i∆ω̂φ10

2
+

iγ̄φ1

2
T0

)
e−iT0 −

−ηφ1

3
e2iT0 − η̄φ1

3
e−2iT0 + σφ1 (4.98)

Eliminating secular terms requires that

γφ1 = 0 (4.99)

or, that
∂D

∂T1

= −3

2
iDB (4.100)

The solution of the out-of-plane equation is

∆φ̂1 =

(
3AD − ĀD − AD̄ − ĀD̄ − i∆ω̂φ10

2

)
eiT0 +

+

(
3ĀD̄ − AD̄ − ĀD − AD +

i∆ω̂φ10

2

)
e−iT0 −

−2ADe2iT0 − 2ĀD̄e−2iT0 + 2AD̄ + 2ĀD (4.101)

This section has produced equations for the variables ∆r̂1, ∆θ̂1 and ∆φ̂1 given by (4.95),
(4.96) and (4.101), respectively. These equations are the first term in the correction to the linear
approximation. Partial differential equations have been found to describe the behavior of A, B,
C and D in terms of the slow variable, T1, in such a way that the solution is free of spurious
secular terms. Next, these solutions will be used to construct the system of partial differential
equations that will give the next term in the correction series (4.13), (4.14) and (4.15), and the
goal is to find more conditions on A, B, C and D in terms of T2 in such a way that ∆r̂2, ∆θ̂2

and ∆φ̂2 will also be free of secular terms.
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4.2.2 Second Order Solution

The process of evaluating the equations (4.22), (4.23) and (4.24) using the solutions (4.25),
(4.26), (4.27), (4.95), (4.96) and (4.101) is given in appendix (B). The second order system of
partial differential equations becomes

∂2∆r̂2

∂T 2
0

− 3∆r̂2 − 2
∂∆θ̂2

∂T0

= γr2e
iT0 + γ̄r2e

−iT0 + ηr2e
2iT0 + η̄r2e

−2iT0 +

+χr2e
3iT0 + χ̄r2e

−3iT0 + σr2 + λr2T0 (4.102)

∂2∆θ̂2

∂T 2
0

+ 2
∂∆r̂2

∂T0

= γθ2e
iT0 + γ̄θ2e

−iT0 + ηθ2e
2iT0 + η̄θ2e

−2iT0 +

+χθ2e
3iT0 + χ̄θ2e

−3iT0 + σθ2 (4.103)

∂2∆φ̂2

∂T 2
0

+ ∆φ̂2 = γφ2e
iT0 + γ̄φ2e

−iT0 + ηφ2e
2iT0 + η̄φ2e

−2iT0 +

+χφ2e
3iT0 + χ̄φ2e

−3iT0 + σφ2 (4.104)

where

γr2 =
21

2
A3 +

19

4
A2B − 19AB2 +

7

2
AD2 − 1

4
BD2 − 6A2Ā +

5

2
AĀB − 5ĀB2 −

−6ĀD2 +
21

2
AĀ2 − 13

4
Ā2B − 8ADD̄ +

7

2
AD̄2 − 13

4
BD̄2 +

7

2
∆v̂r10B +

+
3

2
∆ω̂θ10A +

7

4
∆ω̂θ10B + 2i

∂A

∂T2

(4.105)

γθ2 =
(
4B2Ā− 15

2
A3 − 47

4
A2B − 35

4
AB2 − 5

2
AD2 − 1

4
BD2 − 6A2Ā− 19

2
AĀB+

+6ĀD2 − 15

2
AĀ2 +

11

4
Ā2B − 5

2
AD2 +

11

4
BD2 +

3

2
∆ω̂θA− 5

4
∆ω̂θ10B−

− 5

2
i∆v̂r10B

)
i + 2

∂A

∂T2

(4.106)

γφ2 = 2AĀD − 9

2
A2D − 33

2
ABD − 3

2
B2D − 3

2
D3 − 21

2
ĀBD − 9

2
Ā2D + 2A2D −

−3ABD̄ − 2D2D̄ − 9ĀBD̄ − 3

2
DD̄2 +

3

2
∆ω̂θ10D − 3

2
i∆ω̂φ10 − 2i

∂D

∂T2

(4.107)

ηr2 = 4ADD̄ + 4ĀD̄D − 3

2
AD̄2 − 27

2
A3 − 12A2B − 27

2
AD2 −BD2 −

−3AĀB + 4ĀD2 − 3

2
AĀ2 +

3

2
∆ω̂θ10A + 2i∆ω̂φ10D + 3i∆v̂r10A (4.108)

ηθ2 =
(
27A3 + A2B + 15AD2 + 3BD2 + 6AĀB − 4ĀD2 + 3AĀ2 − 4ADD̄−
−4ĀD̄D + 3AD̄2 − 3∆ω̂θ10A

)
i− 2∆v̂r10A + 2∆ω̂φ10D (4.109)
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ηφ2 =
63

2
A2D + 5ABD +

3

2
D3 − 6AĀD + 3ĀBD +

3

2
Ā2D − 6A2D̄ −

−6AĀD̄ +
3

2
DD̄2 − 3

2
∆ω̂θ10D − 3i∆ω̂φ10A− 3i∆v̂r10D (4.110)

χr2 = 10AD2 (4.111)

χθ2 = −
(
24A3 + 14AD2

)
i (4.112)

χφ2 = −30A2D − 2D3 (4.113)

σr2 = 2
∂C

∂T2

+
9

4
A2B − 3

2
A3 +

45

4
AB2 − 15

8
B3 − 3

2
AD2 +

27

4
BD2 − 27

2
A2Ā−

−32AĀB +
45

4
ĀB2 − 3

2
ĀD2 − 27

2
AĀ2 − 3

4
Ā2B − 3

2
Ā3 − 6BDD̄ − 3

2
AD̄2 +

+
27

4
BD̄2 − 3

2
ĀD̄2 − 3iA∆v̂r10 + 3i∆v̂r10Ā +

3

2
∆ω̂θ10A +

3

2
∆ω̂θ10Ā +

+
3

4
∆ω̂θ10B (4.114)

σθ2 =
(

3

4
A2B +

33

4
AB2 − 3

4
BD2 − 3AĀB − 33

4
ĀB2 +

9

4
Ā2B +

3

4
BD̄2

)
i +

∂B

∂T2

(4.115)

σφ2 = 4ABD − 3

2
A2D +

1

2
D3 + 4AĀD +

5

2
Ā2D +

5

2
A2D̄ + 3ABD̄ +

1

2
D2D̄ +

+4AĀD̄ + ĀBD̄ − 3

2
Ā2D̄ +

1

2
DD̄2 +

1

2
D̄3 − 1

2
∆ω̂θ10 −

1

2
∆ω̂θ10D̄ +

i∆v̂r10D − i∆v̂r10D̄ + i∆ω̂φ10A− i∆ω̂φ10Ā (4.116)

λr2 = −3
∂B

∂T2

(4.117)

In a similar manner as the first order solution, the Laplace transforms of ∆r̂2 and ∆θ̂2 are

∆R̂2 =
γr2

(s2 + 1)(s− i)
+

γ̄r2

(s2 + 1)(s + i)
+

ηr2

(s2 + 1)(s− 2i)
+

η̄r2

(s2 + 1)(s + 2i)
+

+
χr2

(s2 + 1)(s− 3i)
+

χ̄r2

(s2 + 1)(s + 3i)
+

λr2 + 2σθ2

s2(s2 + 1)
+

σr2

s(s2 + 1)
+

+
2γθ2

s(s2 + 1)(s− i)
+

2γ̄θ2

s(s2 + 1)(s + i)
+

2ηθ2

s(s2 + 1)(s− 2i)
+

+
2η̄θ2

s(s2 + 1)(s + 2i)
+

2χθ2

s(s2 + 1)(s− 3i)
+

2χ̄θ2

s(s2 + 1)(s + 3i)
+
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+
∆v̂r20

s2 + 1
+

2∆ω̂θ20

s(s2 + 1)
(4.118)

∆Θ̂2 = − 2γr2

s(s2 + 1)(s− i)
− 2γ̄r2

s(s2 + 1)(s + i)
− 2ηr2

s(s2 + 1)(s− 2i)
− 2η̄r2

s(s2 + 1)(s + 2i)
−

− 2χr2

s(s2 + 1)(s− 3i)
− 2χ̄r2

s(s2 + 1)(s + 3i)
− 2λr2

s3(s2 + 1)
− 2σr2

s2(s2 + 1)
+

+
γθ2(s

2 − 3)

s2(s2 + 1)(s− i)
+

γ̄θ2(s
2 − 3)

s2(s2 + 1)(s + i)
+

ηθ2(s
2 − 3)

s2(s2 + 1)(s− 2i)
+

+
η̄θ2(s

2 − 3)

s2(s2 + 1)(s + 2i)
+

χθ2(s
2 − 3)

s2(s2 + 1)(s− 3i)
+

χ̄θ2(s
2 − 3)

s2(s2 + 1)(s + 3i)
+

+
σθ2(s

2 − 3)

s3(s2 + 1)
+

(s2 − 3)∆ω̂θ20

s2(s2 + 1)
− 2∆v̂r20

s(s2 + 1)
(4.119)

The new inverse Laplace transforms are

L−1

[
1

(s2 + 1)(s± 3i)

]
=

1

4
e∓iT0 − 1

8
e±iT0 − 1

8
e∓3iT0 (4.120)

L−1

[
1

s(s2 + 1)(s± 3i)

]
= ±i

(
1

4
e∓iT0 +

1

8
e±iT0 − 1

24
e∓3iT0 − 1

3

)
(4.121)

L−1

[
1

s2(s2 + 1)(s± 3i)

]
=

1

9
− 1

4
e∓iT0 +

1

8
e±iT0 +

1

72
e∓3iT0 ∓ 1

3
iT0 (4.122)

which leads to

∆r̂2 =

(
γr2

4
+

ηr2

2
− γ̄r2

4
+

iγ̄θ2

2
− η̄r2

6
+

iη̄θ2

3
− 3iγθ2

2
− iηθ2 +

iλr2

2
− σr2

2
+ iσθ2−

− χ̄r2

8
+

χr2

4
− iχθ2

2
+

iχ̄θ2

4
− i∆v̂r20

2
−∆ω̂θ20 −

[
γθ2 +

iγr2

2

]
T0

)
eiT0 +

+

(
γ̄r2

4
+

η̄r2

2
− γr2

4
− iγθ2

2
− ηr2

6
− iηθ2

3
+

3iγ̄θ2

2
+ iη̄θ2 −

iλr2

2
− σr2

2
− iσθ2−

−χr2

8
+

χ̄r2

4
+

iχ̄θ2

2
− iχθ2

4
+

i∆v̂r20

2
−∆ω̂θ20 −

[
γ̄θ2 −

iγ̄r2

2

]
T0

)
e−iT0 +

+
(

iηθ2

3
− ηr2

3

)
e2iT0 +

(
−iη̄θ2

3
− η̄r2

3

)
e−2iT0 +

+
(

iχθ2

12
− χr2

8

)
e3iT0 +

(
− iχ̄θ2

12
− χ̄r2

8

)
e−3iT0 + (λr2 + 2σθ2) T0 + 2iγθ2 −

−2iγ̄θ2 + iηθ2 − iη̄θ2 + σr2 +
2iχθ2

3
− 2iχ̄θ2

3
+ 2∆ω̂θ20 (4.123)

∆θ̂2 =
(
4γθ2 + iηr2 + 2ηθ2 − λr2 − iσr2 − 2σθ2 −

iγ̄r2

2
− γ̄θ2 −

iη̄r2

3
− 2η̄θ2

3
+

3iγr2

2
+

+χθ2 −
χ̄θ2

2
+

iχr2

2
− iχ̄r2

4
+ ∆v̂r20 − 2i∆ω̂θ20 + [γr2 − 2iγθ2 ] T0

)
eiT0 +
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+
(
4γ̄θ2 − iη̄r2 + 2η̄θ2 − λr2 + iσr2 − 2σθ2 +

iγr2

2
− γθ2 +

iηr2

3
− 2ηθ2

3
− 3iγ̄r2

2
+

+χ̄θ2 −
χθ2

2
− iχ̄r2

2
+

iχr2

4
+ ∆v̂r20 + 2i∆ω̂θ20 + [γ̄r2 + 2iγ̄θ2 ] T0

)
e−iT0 +

+
(
−iηr2

3
− 7ηθ2

12

)
e2iT0 +

(
iη̄r2

3
− 7η̄θ2

12

)
e−2iT0 +

+
(
−iχr2

12
− χθ2

6

)
e3iT0 +

(
iχ̄r2

12
− χ̄θ2

6

)
e−3iT0 +

+
(
3iγ̄θ2 − 3iγθ2 +

3iη̄θ2

2
− 3iηθ2

2
− 2σr2 − iχθ2 + iχ̄θ2 − 3∆ω̂θ20

)
T0 −

−
(
λr2 +

3σθ2

2

)
T 2

0 + 2iγ̄r2 − 2iγr2 − 3γ̄θ2 − 3γθ2 + iη̄r2 − iηr2 −

−3η̄θ2

4
− 3ηθ2

4
+ 2λr2 + 4σθ2 +

2iχ̄r2

3
− 2iχ̄r2

3
− χθ2

3
− χ̄θ2

3
− 2∆v̂r20 (4.124)

Eliminating secular terms from the solution requires that

γr2 − 2iγθ2 = 0 (4.125)

λr2 + 2σθ2 = 0 (4.126)

λr2 +
3σθ2

2
= 0 (4.127)

and in order to satisfy the initial conditions it must be true that

3iγ̄θ2 − 3iγθ2 +
3iη̄θ2

2
− 3iηθ2

2
− 2σr2 − iχθ2 + iχ̄θ2 − 3∆ω̂θ20 = 0 (4.128)

Expanding equation (4.125) results in

∂A

∂T2

= i
(

9

4
A3 +

93

8
A2B +

73

4
AB2 +

3

4
AD2 +

3

8
BD2 + 9A2Ā +

33

4
AĀB−

−3

2
B2Ā− 3ĀD2 +

9

4
AĀ2 − 9

8
Ā2B + 4ADD̄ +

3

4
AD̄2 − 9

8
BD̄2−

−9

4
A∆ω̂θ10 +

3

8
B∆ω̂θ10

)
− 3

4
B∆v̂r10 (4.129)

Equation (4.128) leads to

∂C

∂T2

=
3

4
A2 +

3

4
A3 +

9

2
AB − 51

8
A2B − 15

8
AB2 +

15

16
B3 +

3

4
D2 +

3

4
AD2 −

−27

8
BD2 +

27

4
A2Ā +

9

2
ĀB + 13AĀB − 15

8
ĀB2 +

3

4
ĀD2 +

3

4
Ā2 +

+
27

4
AĀ2 − 51

8
Ā2B +

3

4
Ā3 +

3

4
D̄2 + 3BDD̄ +

3

4
AD̄2 − 27

2
BD̄2 +

+
3

4
ĀD̄2 − 27

4
A∆ω̂θ10 −

27

4
Ā∆ω̂θ10 +

9

8
B∆ω̂θ10 −

3

4
∆ω̂θ20 +

+
9

8
iB∆v̂r10 −

9

8
iB∆v̂r10 (4.130)
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Equations (4.126) and (4.127) again imply that λr2 and σθ2 must both be equal to 0. However,
expanding each of these variables results in

∂B

∂T2

= 0 (4.131)

and

∂B

∂T2

= i
(

3

4
BD2 + 3AĀB +

33

4
ĀB2 − 3

4
A2B − 33

4
AB2 − 9

4
Ā2B − 3

4
BD̄2

)
(4.132)

Equations (4.131) and (4.132) contradict each other, and therefore the method of multiple
scales cannot remove secular terms from this expansion at order ε2. Continuing on to the
out-of-plane equation for completeness gives

∆Φ̂2 =
γφ2

(s2 + 1)(s− i)
+

γ̄φ2

(s2 + 1)(s + i)
+

ηφ2

(s2 + 1)(s− 2i)
+

η̄φ2

(s2 + 1)(s + 2i)
+

+
σφ2

s(s2 + 1)
+

χφ2

(s2 + 1)(s− 3i)
+

χ̄φ2

(s2 + 1)(s + 3i)
+

∆ω̂φ20

s2 + 1
(4.133)

The inverse transformation is

∆φ̂2 =

(
γφ2

4
+

ηφ2

2
− γ̄φ2

4
− η̄φ2

6
− σφ2

2
+

χφ2

4
− χ̄φ2

8
− i∆ω̂φ20

2
− iγφ2

2
T0

)
eiT0 +

+

(
γ̄φ1

4
+

η̄φ1

2
− γφ1

4
− ηφ1

6
− σφ1

2
+

χ̄φ2

4
− χφ2

8
+

i∆ω̂φ20

2
+

iγ̄φ1

2
T0

)
e−iT0 −

−ηφ1

3
e2iT0 − η̄φ1

3
e−2iT0 − χφ2

8
e3iT0 − χ̄φ2

8
e−3iT0 + σφ1 (4.134)

In order to eliminate secular terms, it must be true that

γφ2 = 0 (4.135)

or, that

∂D

∂T2

= i
(

3

4
DD̄2 +

9

4
ĀBD̄ + D2D̄ +

3

4
ABD̄ − A2D +

9

4
Ā2D +

21

4
ĀBD+

+
3

4
D3 +

3

4
B2D +

33

4
ABD +

9

4
A2D − AĀD − 3

2
∆ω̂θ10

)
− 3

2
∆ω̂φ10 (4.136)

This section has attempted to find uniform solutions for ∆r̂2, ∆θ̂2 and ∆φ̂2 which would
normally form the second term in the approximation of (4.10), (4.11) and (4.12). Unfortunately,
the conditions placed on the variable B were contradictory, and as a result uniform solutions
can not be found, meaning that the approximate solution of (4.10), (4.11) and (4.12) is limited
to corrections of order ε only.
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4.2.3 Solvability Conditions

This section will solve the conditions placed upon variables A, B, C and D that were determined
in the previous sections such that the correction of order ε was free of secular terms. Restating
those conditions here to summarize, it was found that

∂A

∂T1

= −3

2
iAB (4.137)

∂B

∂T1

= 0 (4.138)

∂C

∂T1

=
15

8
B2 + 3AĀ +

3

4

(
D2 + D̄2

)
+

9

4

(
A2 + Ā2

)
+

3

2

(
AB + ĀB

)
− 3

2
∆ω̂θ10 (4.139)

∂D

∂T1

= −3

2
iDB (4.140)

First, equation (4.138) states that B is a constant, or

B = b0 (4.141)

Next, using the polar transformation

A =
1

2
aeiα (4.142)

and the result from (4.141) applied to equation (4.137) leads to

1

2

∂a

∂T1

eiα +
1

2
ia

∂α

∂T1

eiα = −3

4
iab0e

iα (4.143)

Multiplying through by 2e−iα leads to

∂a

∂T1

+ ia
∂α

∂T1

= −3

2
iab0 (4.144)

Equating real and imaginary parts,

∂a

∂T1

= 0 (4.145)

∂α

∂T1

= −3

2
b0 (4.146)

or, that

a = a0 (4.147)

α = −3

2
b0T1 + α0 (4.148)

Using a similar transformation on variable D,

D =
1

2
deiδ (4.149)
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on equation (4.140) leads to

1

2

∂d

∂T1

eiδ +
1

2
id

∂δ

∂T1

eiδ = −3

4
idb0e

iδ (4.150)

Multiplying through by 2e−iδ and equating real and imaginary parts gives

∂d

∂T1

= 0 (4.151)

∂δ

∂T1

= −3

2
b0 (4.152)

which leads to

d = d0 (4.153)

δ = −3

2
b0T1 + δ0 (4.154)

Substituting these results into equation (4.139) gives

∂C

∂T1

=
15

8
b2
0 +

3

4
a2

0 +
3

16
d2

0

(
e2iδ + e−2iδ

)
+

9

16
a2

0

(
e2iα + e−2iα

)
+

+
3

4
a0b0

(
eiα + e−iα

)
− 3

4
∆ω̂θ10 (4.155)

=
15

8
b2
0 +

3

4
a2

0 +
3

8
d2

0 cos 2δ +
9

8
a2

0 cos 2α +
3

2
a0b0 cos α− 3

4
∆ω̂θ10 (4.156)

=
15

8
b2
0 +

3

4
a2

0 +
3

8
d2

0 cos (2δ0 − 3b0T1) +
9

8
a2

0 cos (2α0 − 3b0T1) +

+
3

2
a0b0 cos

(
α0 − 3

2
b0T1

)
− 3

4
∆ω̂θ10 (4.157)

If b0 6= 0, then

C =
(

15

8
b2
0 +

3

4
a2

0 −
3

4
∆ω̂θ10

)
T1 − 3

8

a2
0

b0

sin (2α0 − 3b0T1)− a0 sin
(
α0− 3

2
b0T1

)
−

−1

8

d2
0

b0

sin (2δ0 − 3b0T1) + Q (4.158)

where Q is a constant of integration that can be found by

C(0) = Q− 3

8

a2
0

b0

sin 2α0 − a0 sin α0 − 1

8

d2
0

b0

sin 2δ0 (4.159)

= c0 (4.160)

which leads to

Q = c0 +
1

8

d2
0

b0

sin 2δ0 +
3

8

a2
0

b0

sin 2α0 + a0 sin α0 (4.161)
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So,

C =
(

15

8
b2
0 +

3

4
a2

0 −
3

4
∆ω̂θ10

)
T1 +

1

8

d2
0

b0

[sin (3b0T1 − 2δ0) + sin 2δ0] +

+
3

8

a2
0

b0

[sin (3b0T1 − 2α0) + sin 2α0] + a0

[
sin

(
3

2
b0T1 − α0

)
+ sin α0

]
+ c0 (4.162)

If b0 = 0, then
∂C

∂T1

=
3

4
a2

0 +
3

8
d2

0 cos 2δ0 +
9

8
a2

0 cos 2α0 − 3

4
∆ω̂θ10 (4.163)

which leads to

C =
(

3

4
a2

0 +
3

8
d2

0 cos 2δ0 +
9

8
a2

0 cos 2α0 − 3

4
∆ω̂θ10

)
T1 + c0 (4.164)

At this point, the initial conditions ∆v̂r10 , ∆ω̂φ10 and ∆ω̂θ10 can be found from equations
(4.40), (4.42) and (4.44):

∆v̂r10 = −∂∆r0

∂T1

(0)

= −
[

∂A

∂T1

eiT0 +
∂Ā

∂T1

e−iT0 +
∂B

∂T1

]
(0)

=
3

4
ia0b0

(
eiα0 − e−iα0

)

= −3

2
a0b0 sin α0 (4.165)

∆ω̂φ10 = −
[
∂D

∂T1

eiT0 +
∂D̄

∂T1

e−iT0

]
(0)

=
3

4
id0b0

(
eiδ0 − e−iδ0

)

= −3

2
d0b0 sin δ0 (4.166)

∆ω̂θ10 = −∂∆θ̂0

∂T1

(0)

= −
[
2i

∂A

∂T1

eiT0 − 2i
∂Ā

∂T1

e−iT0 +
∂C

∂T1

]
(0)

= −3

2
a0b0

(
eiα0 + e−iα0

)
− 15

8
b2
0 −

3

4
a2

0 −
9

16
a2

0

(
e2iα0 + e−2iα0

)
−

−3

4
a0b0

(
eiα0 + e−iα0

)
− 3

16
d2

0

(
e2iδ0 + e−2iδ0

)
+

3

4
∆ω̂θ10 (4.167)

so,

∆ω̂θ10 = −15

2
b2
0 − 3a2

0 − 9a0b0

(
eiα0 + e−iα0

)
− 9

4
a2

0

(
e2iα0 − e−2iα0

)
−
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−3

4
d2

0

(
e2iδ0 + e−2iδ0

)

= −15

2
b2
0 − 3a2

0 − 18a0b0 cos α0 − 9

2
a2

0 cos 2α0 − 3

2
d2

0 cos 2δ0 (4.168)

Substituting this result into the equation for C gives, for b0 6= 0 that

C =
(

15

2
b2
0 + 3a2

0 +
27

2
a0b0 cos α0 +

27

8
cos 2α0 +

9

8
cos 2δ0

)
T1 +

+
1

8

d2
0

b0

[sin (3b0T1 − 2δ0) + sin 2δ0] +
3

8

a2
0

b0

[sin (3b0T1 − 2α0) + sin 2α0] +

+a0

[
sin

(
3

2
b0T1 − α0

)
+ sin α0

]
+ c0 (4.169)

and for b0 = 0,

C =
(
3a2

0 +
3

2
d2

0 cos 2δ0 +
9

2
a2

0 cos 2α0

)
T1 + c0 (4.170)

Equations (4.141), (4.147), (4.148), (4.153), (4.154), (4.169) and (4.170) are solutions to the
conditions found in the previous sections which were found in order that ∆r̂1, ∆θ̂1 and ∆φ̂1

were free of secular terms. The result found for the variable c takes on two forms, depending on
the value of b0. It is unfortunate that the form of the solution depends on the initial conditions,
but this does not present a problem of any kind. The next section will use the results obtained
in (4.141), (4.147), (4.148), (4.153), (4.154), (4.162) and (4.164) along with (4.95), (4.96) and
(4.101) and construct the solution in terms of only real variables, as well as to substitute back
the value ε = 1 and simplify the resulting expression.

4.2.4 Overall Solution

The method of multiple scales has produced the approximate solution of equations (4.10), (4.11)
and (4.12) accurate to order ε in the form

∆r̂(τ) = ∆r̂0(T0, T1) + ε∆r̂1(T0, T1) (4.171)

∆θ̂(τ) = ∆θ̂0(T0, T1) + ε∆θ̂1(T0, T1) (4.172)

∆φ̂(τ) = ∆φ̂0(T0, T1) + ε∆φ̂1(T0, T1) (4.173)

In review, the results were

∆r̂0 = AeiT0 + Āe−iT0 + B (4.174)

∆θ̂0 = 2iAeiT0 − 2iĀe−iT0 − 3

2
BT0 + C (4.175)

∆φ̂0 = DeiT0 + D̄e−iT0 (4.176)

∆r̂1 =

(
9

4
A2 +

1

2
AB +

1

4
D2 +

1

2
ĀB +

1

4
Ā2 +

1

4
D̄2 − i∆v̂r10

2
− ∆ω̂θ10

4

)
eiT0 +
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+

(
9

4
Ā2 +

1

2
ĀB +

1

4
D̄2 +

1

2
AB +

1

4
A2 +

1

4
D2 +

i∆v̂r10

2
− ∆ω̂θ10

4

)
e−iT0 −

−A2e2iT0 − Ā2e−2iT0 − 3

2
A2 − 3

2
Ā2 − AB − ĀB − 1

2
D2 − 1

2
D̄2 +

∆ω̂θ10

2
(4.177)

∆θ̂1 =

(
9

2
A2 − AB +

1

2
D2 + ĀB +

1

2
Ā2 +

1

2
D̄2 − i∆v̂r10 −

∆ω̂θ10

2

)
ieiT0 +

+

(
−9Ā2

2
+ ĀB − 1

2
D̄2 − AB − 1

2
A2 − 1

2
D2 − i∆v̂r10 +

∆ω̂θ10

2

)
ie−iT0 +

+
(
−5

2
A2 − 1

2
D2

)
ie2iT0 +

(
5

2
Ā2 +

1

2
D̄2

)
ie−2iT0 +

+
(
−3

2
A2 +

3

2
Ā2 + 2AB − 2ĀB +

1

2
D2 − 1

2
D̄2 + 2i∆v̂r10

)
i (4.178)

∆φ̂1 =

(
3AD − ĀD − AD̄ − ĀD̄ − i∆ω̂φ10

2

)
eiT0 +

+

(
3ĀD̄ − AD̄ − ĀD − AD +

i∆ω̂φ10

2

)
e−iT0 −

−2ADe2iT0 − 2ĀD̄e−2iT0 + 2AD̄ + 2ĀD (4.179)

The derivatives of equations (4.171), (4.172) and (4.173) to order ε are

∆v̂r(τ) =
∂∆r̂0

∂T0

+ ε

(
∂∆r̂0

∂T1

+
∂∆r̂1

∂T0

)
(4.180)

∆ω̂θ(τ) =
∂∆θ̂0

∂T0

+ ε

(
∂∆θ̂0

∂T1

+
∂∆θ̂1

∂T0

)
(4.181)

∆ω̂φ(τ) =
∂∆φ̂0

∂T0

+ ε

(
∂∆φ̂0

∂T1

+
∂∆φ̂1

∂T0

)
(4.182)

Evaluating the partial derivatives leads to

∂∆r̂0

∂T0

= iAeiT0 − iĀe−iT0 (4.183)

∂∆r̂0

∂T1

=
∂A

∂T1

eiT0 +
∂Ā

∂T1

e−iT0 +
∂B

∂T1

= −3

2
iABeiT0 +

3

2
iĀBe−iT0 (4.184)

∂∆r̂1

∂T0

= i

(
9

4
A2 +

1

2
AB +

1

4
D2 +

1

2
ĀB +

1

4
Ā2 +

1

4
D̄2 − i∆v̂r10

2
− ∆ω̂θ10

4

)
eiT0 −

−i

(
9

4
Ā2 +

1

2
ĀB +

1

4
D̄2 +

1

2
AB +

1

4
A2 +

1

4
D2 +

i∆v̂r10

2
− ∆ω̂θ10

4

)
e−iT0 −

−2iA2e2iT0 + 2iĀ2e−2iT0 (4.185)

∂∆θ̂0

∂T0

= −2AeiT0 − 2Āe−iT0 − 3

2
B (4.186)
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∂∆θ̂0

∂T1

= 2i
∂A

∂T1

eiT0 − 2i
∂Ā

∂T1

e−iT0 − 3

2

∂B

∂T1

T0 +
∂C

∂T1

= 3ABeiT0 + 3ĀBe−iT0 +
15

8
B2 + 3AĀ +

+
3

4

(
D2 + D̄2

)
+

9

4

(
A2 + Ā2

)
+

3

2

(
AB + ĀB

)
− 3

4
∆ω̂θ10 (4.187)

∂∆θ̂1

∂T0

= −
(

9

2
A2 − AB +

1

2
D2 + ĀB +

1

2
Ā2 +

1

2
D̄2 − i∆v̂r10 −

∆ω̂θ10

2

)
eiT0 +

+

(
−9Ā2

2
+ ĀB − 1

2
D̄2 − AB − 1

2
A2 − 1

2
D2 − i∆v̂r10 +

∆ω̂θ10

2

)
e−iT0 +

+
(
5A2 + D2

)
e2iT0 +

(
5Ā2 + D̄2

)
e−2iT0 (4.188)

∂∆φ̂0

∂T0

= iDeiT0 − iD̄e−iT0 (4.189)

∂∆φ̂0

∂T1

=
∂D

∂T1

eiT0 +
∂D̄

∂T1

e−iT0

= −3

2
iDBeiT0 +

3

2
iD̄Be−iT0 (4.190)

∂∆φ̂1

∂T0

= i

(
3AD − ĀD − AD̄ − ĀD̄ − i∆ω̂φ10

2

)
eiT0 −

−i

(
3ĀD̄ − AD̄ − ĀD − AD +

i∆ω̂φ10

2

)
e−iT0 −

−4iADe2iT0 + 4iĀD̄e−2iT0 (4.191)

Substituting these results into equations (4.171), (4.172), (4.173), (4.180), (4.181) and (4.182)
gives

∆r̂(τ) = AeiT0 + Āe−iT0 + B +

+ε

[(
9

4
A2 +

1

2
AB +

1

4
D2 +

1

2
ĀB +

1

4
Ā2 +

1

4
D̄2 − i∆v̂r10

2
− ∆ω̂θ10

4

)
eiT0+

+

(
9

4
Ā2 +

1

2
ĀB +

1

4
D̄2 +

1

2
AB +

1

4
A2 +

1

4
D2 +

i∆v̂r10

2
− ∆ω̂θ10

4

)
e−iT0−

−A2e2iT0 − Ā2e−2iT0 − 3

2
A2 − 3

2
Ā2 − AB − ĀB − 1

2
D2 − 1

2
D̄2 +

∆ω̂θ10

2

]
(4.192)

∆θ̂(τ) = 2iAeiT0 − 2iĀe−iT0 − 3

2
BT0 + C +

+ε

[(
9

2
A2 − AB +

1

2
D2 + ĀB +

1

2
Ā2 +

1

2
D̄2 − i∆v̂r10 −

∆ω̂θ10

2

)
ieiT0+

+

(
−9Ā2

2
+ ĀB − 1

2
D̄2 − AB − 1

2
A2 − 1

2
D2 − i∆v̂r10 +

∆ω̂θ10

2

)
ie−iT0+
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+
(
−5

2
A2 − 1

2
D2

)
ie2iT0 +

(
5

2
Ā2 +

1

2
D̄2

)
ie−2iT0+

+
(
−3

2
A2 +

3

2
Ā2 + 2AB − 2ĀB +

1

2
D2 − 1

2
D̄2 + 2i∆v̂r10

)
i
]

(4.193)

∆φ̂(τ) = DeiT0 + D̄e−iT0 + ε

[(
3AD − ĀD − AD̄ − ĀD̄ − i∆ω̂φ10

2

)
eiT0+

+

(
3ĀD̄ − AD̄ − ĀD − AD +

i∆ω̂φ10

2

)
e−iT0−

−2ADe2iT0 − 2ĀD̄e−2iT0 + 2AD̄ + 2ĀD
]

(4.194)

∆v̂r(τ) = iAeiT0 − iĀe−iT0 +

+ε

[
i

(
9

4
A2 − AB +

1

4
D2 +

1

2
ĀB +

1

4
Ā2 +

1

4
D̄2 − i∆v̂r10

2
− ∆ω̂θ10

4

)
eiT0−

−i

(
9

4
Ā2 − ĀB +

1

4
D̄2 +

1

2
AB +

1

4
A2 +

1

4
D2 +

i∆v̂r10

2
− ∆ω̂θ10

4

)
e−iT0−

−2iA2e2iT0 + 2iĀ2e−2iT0

]
(4.195)

∆ω̂θ(τ) = −2AeiT0 − 2Āe−iT0 − 3

2
B +

+ε

[
−

(
9

2
A2 − 4AB +

1

2
D2 + ĀB +

1

2
Ā2 +

1

2
D̄2 − i∆v̂r10 −

∆ω̂θ10

2

)
eiT0+

+

(
−9Ā2

2
+ 4ĀB − 1

2
D̄2 − AB − 1

2
A2 − 1

2
D2 − i∆v̂r10 +

∆ω̂θ10

2

)
e−iT0+

(
5A2 + D2

)
e2iT0 +

(
5Ā2 + D̄2

)
e−2iT0 +

15

8
B2 + 3AĀ+

+
3

4

(
D2 + D̄2

)
+

9

4

(
A2 + Ā2

)
+

3

2

(
AB + ĀB − 3

4
∆ω̂θ10

)]
(4.196)

∆ω̂φ(τ) = iDeiT0 − iD̄e−iT0 + ε

[
i

(
3AD − ĀD − AD̄ − ĀD̄ − 3

2
DB − i∆ω̂φ10

2

)
eiT0−

−i

(
3ĀD̄ − AD̄ − ĀD − AD +

3

2
D̄B +

i∆ω̂φ10

2

)
e−iT0−

−4iADe2iT0 + 4iĀD̄e−2iT0

]
(4.197)

Where A, B and D are given by

A =
1

2
a0e

i(α0− 3
2
b0)T1 (4.198)

B = b0 (4.199)

D =
1

2
d0e

i(δ0− 3
2
b0)T1 (4.200)

and C takes two forms. If b0 = 0, then

C =
(
3a2

0 +
3

2
d2

0 cos 2δ0 +
9

2
a2

0 cos 2α0

)
T1 + c0 (4.201)
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or, if b0 6= 0, then

C =
(

15

2
b2
0 + 3a2

0 +
27

2
a0b0 cos α0 +

27

8
cos 2α0 +

9

8
cos 2δ0

)
T1 +

+
1

8

d2
0

b0

[sin (3b0T1 − 2δ0) + sin 2δ0] +
3

8

a2
0

b0

[sin (3b0T1 − 2α0) + sin 2α0] +

+a0

[
sin

(
3

2
b0T1 − α0

)
+ sin α0

]
+ c0 (4.202)

Also, ∆v̂r10 , ∆ω̂θ10 and ∆ω̂φ10 were found to be

∆v̂r10 = −3

2
a0b0 sin α0 (4.203)

∆ω̂θ10 = −15

2
b2
0 − 3a2

0 − 18a0b0 cos α0 − 9

2
a2

0 cos 2α0 − 3

2
d2

0 cos 2δ0 (4.204)

∆ω̂φ10 =
3

2
d0b0 sin δ0 (4.205)

Substituting these relations into equations (4.192 – 4.197) and setting ε = 1, which also implies
that T1 = T0 = τ , gives the result

∆r̂(τ) = a0 cos
[(

1− 3

2
b0

)
τ + α0

]
+ b0 +

1

4
sin

(
τ

2

) [
sin

(
τ

2

) (
8a2

0 cos [2α0 + (1− 3b0) τ ]−
−2a2

0 cos (2α0 − 3b0τ)− 2d2
0 cos (2δ0 − 3b0τ)− 18a2

0 cos 2α0 − 6d2
0 cos 2δ0 − 12a2

0

)
+

+2a0b0

[
15 sin

(
α0 − 1

2
τ
)
− 21 sin

(
α0 +

1

2
τ
)
− 4 sin

(
1

2
τ
)

cos
(
α0 − 3

2
b0τ

)]
−

−30b2
0 sin

(
τ

2

)]
(4.206)

∆θ̂(τ) = −2a0 sin
[(

1− 3

2
b0

)
τ + α0

]
− 3

2
b0τ + C(τ)− 1

2
sin

(
τ

2

) [
9a2

0 cos
(
2α0 − 1

2
τ
)

+

+3d2
0 cos

(
2δ0 − 1

2
τ
)

+ 12a2
0 cos

(
τ

2

)
+ 9a2

0 cos
(
2α0 +

1

2
τ
)

+

+3d2
0 cos

(
2δ0 +

1

2
τ
)

+ 4a2
0 cos

[
2α0 +

(
1

2
− 3b0

)
τ
]
+

+a2
0 cos

[
2α0 −

(
1

2
+ 3b0

)
τ
]

+ d2
0 cos

[
2δ0 −

(
1

2
+ 3b0

)
τ
]
−

−5a2
0 cos

[
2α0 +

(
3

2
− 3b0

)
τ
]
− d2

0 cos
[
2δ0 +

(
3

2
− 3b0

)
τ
]
+

+2a0b0

[
15 cos

(
α0 − 1

2
τ
)

+ 21 cos
(
α0 +

1

2
τ
)

+ 4 sin
(

τ

2

)
sin

(
α0 − 3

2
b0τ

)]
+

+30b2
0 cos

(
τ

2

)]
(4.207)

∆φ̂(τ) = d0 cos
[(

1− 3

2
b0 )τ + δ0] +

1

2
d0

[
4a0 sin2

(
τ

2

)[
cos (α0 − δ0) +

+ cos (α0 + δ0 − 3b0τ) + 2 cos [α0 + δ0 + (1− 3b0) τ ]]− 3b0 sin δ0 sin τ ] (4.208)
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∆v̂r(τ) = −a0 sin
[(

1− 3

2
b0

)
τ + α0

]
+

1

8

[
9a2

0 sin (2α0 − τ) + 3d2
0 sin (2δ0 − τ)−

−9a2
0 sin (2α0 + τ)− 3d2

0 sin (2δ0 + τ) + a2
0 sin [2α0 + (1 + 3b0) τ ] +

+d2
0 sin [2δ0 − (1 + 3b0) τ ]− 9a2

0 sin [2α0 + (1− 3b0) τ ]− 12a2
0 sin τ−

−d2
0 sin [2δ0 + (1− 3b0) τ ] + 8a2

0 sin [2α0 + (2− 3b0) τ ] +

+2a0b0

[
15 sin (α0 − τ)− 21 sin (α0 + τ) + 2 sin

[
α0 −

(
1 +

3

2
b0

)
τ
]
+

+4 sin
[
α0 +

(
1− 3

2
b0

)
τ
]]
− 30b2

0 sin τ
]

(4.209)

∆ω̂θ(τ) = −2a0 cos
[(

1− 3

2
b0

)
τ + α0

]
− 3

2
b0 +

1

8

[
24a2

0 + 27a2
0 cos 2α0 + 9d2

0 cos 2δ0−
−18a2

0 cos (2α0 − τ)− 6d2
0 cos (2δ0 − τ)− 24a2

0 cos τ−
−18a2

0 cos (2α0 + τ)− 6d2
0 cos (2δ0 + τ) + 9a2

0 cos (2α0 − 3b0τ) +

+3d2
0 cos (2δ0 − 3b0τ)− 2a2

0 cos [2α0 − (1− 3b0) τ ]− 2d2
0 cos [2δ0 − (1 + 3b0) τ ]−

−18a2
0 cos [2α0 + (1− 3b0) τ ]− 2d2

0 cos [2δ0 + (1− 3b0) τ ] +

+20a2
0 cos [2α0 + (2− 3b0) τ ] + 4d2

0 cos [2δ0 + (2− 3b0) τ ] +

+4a0b0

[
27 cos α0 − 15 cos (α0 − τ)− 21 cos (α0 + τ) + 3 cos

(
α0 − 3

2
b0τ

)
−

−2 cos
[
α0 −

(
1 +

3

2
b0

)
τ
]

+ 8 cos
[
α0 +

(
1− 3

2
b0

)
τ
]]
− 60b2

0 (cos τ − 1)
]

(4.210)

∆ω̂φ(τ) = −d0 sin
[(

1− 3

2
b0

)
τ + δ0

]
+

1

2
d0 [2a0 cos (α0 − δ0) sin τ−

−2a0 cos (α0 + δ0 − 3b0τ) sin τ − 4a0 sin (α0 + δ0 − 3b0τ) cos τ+

+4a0 sin [α0 + δ0 + (2− 3b0) τ ]− 3b0 sin δ0 cos τ + 3b0 sin
[
δ0 +

(
1− 3

2

)
τ
]]

(4.211)

where

C(τ) =
(
3a2

0 +
3

2
d2

0 cos 2δ0 +
9

2
a2

0 cos 2α0

)
τ + c0 (4.212)

if b0 = 0 and

C(τ) =
(

15

2
b2
0 + 3a2

0 +
27

2
a0b0 cos α0 +

27

8
cos 2α0 +

9

8
cos 2δ0

)
τ +

+
1

8

d2
0

b0

[sin (3b0τ − 2δ0) + sin 2δ0] +
3

8

a2
0

b0

[sin (3b0τ − 2α0) + sin 2α0] +

+a0

[
sin

(
3

2
b0τ − α0

)
+ sin α0

]
+ c0 (4.213)

if b0 6= 0. The parameters a0, α0, b0, c0, d0 and δ0 are calculated from

a2
0 = (3∆r̂00 + 2∆ω̂θ00)

2 + ∆v̂2
r00

(4.214)

d2
0 = ∆φ̂2

00 + ∆ω̂2
φ00

(4.215)

sin α0 = −∆v̂r00

a
(4.216)
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cos α0 = −3∆r̂00 + 2∆ω̂θ00

a
(4.217)

sin δ0 = −∆ω̂φ00

d
(4.218)

cos δ0 =
∆φ̂00

d
(4.219)

b0 = 4∆r̂00 + 2∆ω̂θ00 (4.220)

c0 = ∆θ̂00 − 2∆v̂r00 (4.221)

(4.222)

and the relative position and velocity vectors are given by

R̂ =
[
(1 + ∆r̂) cos ∆φ̂ cos ∆θ̂ − 1

]
er + (1 + ∆r̂) cos ∆φ̂ sin ∆θ̂eθ + (1 + ∆r̂) sin ∆φ̂eφ (4.223)

and

V̂ =
[
∆v̂r cos ∆φ̂ cos ∆θ̂ − (1 + ∆r̂) ∆ω̂φ sin ∆φ̂ cos ∆θ̂−
− (1 + ∆r̂) ∆ω̂θ cos ∆φ̂ sin ∆θ̂ − (1 + ∆r̂) cos ∆φ̂ sin ∆θ̂

]
er +

+
[
∆v̂r cos ∆φ̂ sin ∆θ̂ − (1 + ∆r̂) ∆ω̂φ sin ∆φ̂ sin ∆θ̂+

+ (1 + ∆r̂) ∆ω̂θ cos ∆φ̂ cos ∆θ̂ + (1 + ∆r̂) cos ∆φ̂ cos ∆θ̂ − 1
]
eθ +

+
[
∆v̂r sin ∆φ̂ + (1 + ∆r̂) ∆ω̂φ cos ∆φ̂

]
eφ (4.224)

4.3 Summary

This chapter has given the solution of relative motion equations which contain quadratic nonlin-
earity. Using the linear solution as a starting point, the method of multiple scales was employed
to obtain a uniform approximation to the solution of the nonlinear relative motion equations.
The expansion produced here is valid for only one correction term to the linear solution, as
secular terms cannot be eliminated when a second correction term (and its corresponding slow
time scale, T2) are introduced to the problem.

The next chapter compares the new second order relative motion equations that are de-
rived in this chapter against the first order relative motion equations derived in chapter (3) to
understand what improvements have been made.



Chapter 5

Results

This chapter compares the new, nonlinear, relative motion equations found in (4.206) through
(4.211) against the previous, linear, relative motions equations found in (3.81). A comparison is
also made by comparing the approximate analytical solution of equation (4.10) through (4.12)
against a numerical solution to understand how closely the analytical approximation follows the
numerical solution. This comparison is made using the following procedure:

1. Specify initial conditions ∆r̂(0), ∆θ̂(0), ∆φ̂(0), ∆v̂r(0), ∆ω̂θ(0) and ∆ω̂φ(0)

2. Numerically integrate the full, nonlinear equations of motion given in (2.14), (2.15) and
(2.16)

3. Numerically integrate the quadratic equations of relative motion given in (4.10), (4.11)
and (4.12)

4. Calculate the analytical solution of the quadratic equations found in (4.206) through
(4.211)

5. Calculate the solution of the linear relative motion equations found in (3.81)

6. For each of the above cases, calculate the relative position and velocity vectors using
equations (3.109) and (3.113)

7. Define a state error to be the approximate solution (found by either an analytical technique
or numerical integration of approximate equations) minus the numerical integration of the
full nonlinear equations of motion

8. Define relative position and velocity errors to the relative position and velocity computed
from an approximation minus the numerical integration of the full nonlinear equations of
motion

9. Plot the state errors and magnitude of relative position and velocity errors versus time for
two periods of the reference orbit
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The results of this comparison are in appendix (C). The first line of each plot shows what
the initial conditions of the problem, with everything not mentioned assumed to be zero. The
first series of plots, (C.1) through (C.15), shows the response due to one nonzero initial state
at a time. Figures (C.16) through (C.33) shows the results from a combination of in-plane and
out-of-plane initial conditions. The value for each nonzero initial condition is 0.001, which, for
the case of a radial separation, would be roughly 7 kilometers for a low Earth orbit.

A significant improvement has been made with the new nonlinear relative motion equations
over the linear relative motion equations. For most cases, the linear solution begins to depart
from the numerical integration after roughly 1

4
of the period of the reference orbit, while the

nonlinear equations show a much smaller variation - in many cases the solution appears exact
on the scale shown (in all cases this scaling depends on the error of the linear equations). The
approximate analytical solution of equations (4.10), (4.11) and (4.12) also follows the numerical
approximation quite well, and only small deviations are visible toward the end of the time scale
shown.

Note that for only in-plane initial conditions there is no out-of-plane motion, therefore the
error for ∆φ̂ and ∆ω̂φ in each of these cases is identically zero. Also note that in many cases the
error amplitude is growing in time, such as that shown in (C.1). It should be made clear that
this amplitude results from a difference in the frequency of oscillation, and remains bounded in
time. This is also true for the plots of the magnitude of relative position and velocity - since
the solutions contain no false secular terms these errors must be bounded.

For cases of just out-of-plane initial separations, such as shown in figure (C.13), the new
solution captures the in-plane coupling quite well, but the out-of-plane motion reverts back to
the linear solution. Note, however, that the scale of the out-of-plane error is quite a bit smaller
than the scale of the in-plane error, so this approximation is still relatively good.



Chapter 6

Conclusions

The purpose of this thesis was to develop a solution of the relative motion problem which results
from a higher order expansion of the equations of motion (2.1). A further requirement was that
the solution be uniform in the sense described in chapter (2). This solution was developed using
the method of multiple scales, which made use of the solution to the first order expansion of the
equations of motion. The new solution has several advantages when compared with the linear
solution:

• Improved accuracy

• Re-coupling of motion in the plane and out of the plane of the reference orbit

• Better estimate of the drift rate between orbits of differing periods

The new solution does have the disadvantage that it is rather bulky and contains many terms,
although this ceases to be a problem if the solution is implemented on a computer.

As always, there is more work that could be done on this problem. First, one may wish
to re-formulate the problem slightly by expanding the equations of motion about an slightly
eccentric orbit in a manner similar to the work of [3] or [24]. This would lead to a system of
differential equations that is both nonlinear as well as nonautonomous, therefore it may not be
possible to obtain a uniform expansion using the method of multiple scales. The only way to
know for sure is to try it.

Another possibility is to consider gravitational perturbations that are caused by a non-
spherical primary body. The first step would be to consider the so-called J2 perturbation - the
first in a series expansion of the primary body’s gravitational potential. The J2 perturbation
leads to what is called ”nodal regression”, where the plane of the orbit regresses around the
primary body (see reference [25]). Therefore, one would expect to see secular terms arise in the
solution for the out-of-plane motion. This secular motion can be subtracted out of the solution
using other analytical results for the regression rate in order to yield motion relative to an orbit
that is also regressing in response to the gravitational perturbation.
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The new solution may also be applied to the applications discussed in chapter (1). A
classic problem would be the optimal two-impulse rendezvous maneuver studied in several of
the references. A comparison can also be made here between the linear solution and the nonlinear
solution by examining miss distances and the total fuel requirements among other things.

Another use for the new solution is in the area of satellite formations. There are several
areas for further study in this area. For a given formation geometry, a higher order estimate
of the drift rate between the satellites is found in the new solution. This drift rate may be
used to determine the amount of fuel required for station keeping, for example. The reverse
of this problem is to use the new estimate of the drift rate to design the formation geometry
such that this rate is zero, so that (at second order) the satellites would remain in formation.
This would require a numerical study to understand the unmodeled third order effects and other
perturbations.

An unresolved problem with this solution is the presence of the constant offset term in
the equation for ∆φ̂. The constant term does not satisfy conservation of angular momentum,
although it seems to appear on every occasion that nonlinear terms are kept in the expansion
of equation (2.1). Further work should also be focused on removing this constant from the
solution.



Appendix A

Nonlinear Model

The quadratic expansion of the radial equation was

v̇r = [v̇r]ref + ∆r

[
∂v̇r

∂r

]

ref

+ ∆θ

[
∂v̇r

∂θ

]

ref
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(A.1)

Evaluating the coefficients of the nonlinear terms (keeping in mind that all derivatives with
respect to θ will be zero since it is a cyclic variable) leads to
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=
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= −6ω2
0

r0

(A.2)
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The quadratic expansion of the transverse equation was
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(A.19)

where the coefficients of the nonlinear terms are
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The quadratic expansion of the out-of-plane equation was
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where
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Appendix B

Method of Multiple Scales

B.1 Evaluation of the First Order PDE

The first order (in ε) radial equation was

∂2∆r̂1
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+
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(B.1)

Expanding each term,
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∂T0∂T1
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∂Ā
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∆r̂2
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(
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∂T0

)2

=
(
−2AeiT0 − 2Āe−iT0 − 3
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B2 + 8AĀ (B.7)

(
∂∆φ̂0

∂T0

)2

=
(
iDeiT0 − iD̄e−iT0

)2

= −D2e2iT0 − D̄2e−2iT0 + 2DD̄ (B.8)

Collecting each of these together leads to
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The first order transverse equation was
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Expanding each term results in
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Gathering terms together,
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The first order out of plane equation was
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Expanding terms,
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B.2 Evaluation of the Second Order PDE

The second order radial equation was
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∂∆θ̂1

∂T0

−
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− 2∆φ̂0∆φ̂1 + 2
∂∆θ̂0

∂T0

∂∆θ̂0

∂T1

+ 2
∂∆θ̂0

∂T0

∂∆θ̂1

∂T0

+

+ 2
∂∆φ̂0

∂T0

∂∆φ̂0

∂T1

+ 2
∂∆φ̂0

∂T0

∂∆φ̂1

∂T0

(B.23)

Expanding each term,

∂2∆r̂1

∂T0∂T1

=
(

27

4
A2B +

3

4
AB2 +

3

4
BD2 − 3

4
ĀB2 − 3

4
Ā2B − 3

4
BD̄2

)
eiT0 +

+
(

27

4
Ā2B +

3

4
ĀB2 +

3

4
BD̄2 − 3

4
A2B − 3

4
AB2 − 3

4
BD2

)
e−iT0 −

−6A2Be2iT0 − 6Ā2Be−2iT0 (B.24)

∂2∆r̂0

∂T0∂T2

= i
∂A

∂T2

eiT0 − i
∂Ā

∂T2

(B.25)

∂2∆r̂0

∂T 2
1

=
9

4
AB2eiT0 +

9

4
ĀB2e−iT0 (B.26)

∂∆θ̂0

∂T2

= 2i
∂A

∂T2

eiT0 − 2i
∂Ā

∂T2

e−iT0 − 3

2

∂B

∂T2

T0 +
∂C

∂T2

(B.27)

∂∆θ̂1

∂T1

=
(

27

2
A2B − 3

2
AB2 +

3

2
BD2 − 3

2
B2Ā− 3

2
Ā2B − 3

2
BD̄2

)
eiT0 +

+
(

27

2
Ā2B +

3

2
BD̄2 − 3

2
A2B − 3

2
AB2 − 3

2
BD2 − 3

2
ĀB2

)
e−iT0 +

+
(
−15

2
A2B − 3

2
BD2

)
e2iT0 +

(
−15

2
Ā2B − 3

2
BD̄2

)
e−2iT0 +

+3AB2 + 3ĀB2 − 9

2
A2B − 9

2
Ā2B +

3

2
BD2 +

3

2
BD̄2 (B.28)

∆r̂0∆r̂1 =
(

5

4
A2B +

1

2
AB2 − 3

2
A3 − 1

2
AD2 +

1

4
BD2 − A2Ā− AĀB +

1

2
B2Ā−

−3

2
AĀ2 +

1

4
Ā2B − 1

2
AD̄2 +

1

4
BD̄2 − iB∆v̂r10

2
− B∆ω̂θ10

4

)
eiT0 +

+
(

1

4
A2B +

1

2
AB2 +

1

4
BD2 − 3

2
A2Ā− AĀB +

1

2
B2Ā− 1

2
D2Ā−

−AĀ2 +
5

4
BĀ2 − 3

2
Ā3 +

1

4
BD̄2 − 1

2
ĀD̄2 +

iB∆v̂r10

2
− B∆ω̂θ10

4

)
e−iT0 +

+
(

9

4
A3 − 1

2
A2B +

1

4
AD2 +

1

2
AĀB +

1

4
AĀ2 +

1

4
AD̄2−

−iA∆v̂r10

2
− A∆ω̂θ10

4

)
e2iT0 +
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+
(

1

4
A2Ā +

1

2
AĀB +

1

4
ĀD2 − 1

2
Ā2B +

9

4
Ā3 +

1

4
ĀD̄2+

+
iĀ∆v̂r10

2
− Ā∆ω̂θ10

4

)
e−2iT0 −

−A3e3iT0 − Ā3e−3iT0 +
1

4
A3 +

1

4
Ā3 − A2B − Ā2B − AB2 − ĀB2 +

+
1

4
AD2 +

1

4
ĀD̄2 − 1

2
BD2 − 1

2
BD̄2 +

1

4
AD̄2 +

1

4
ĀD2 +

9

4
A2Ā +

9

4
Ā2A +

+AĀB +
1

2
iA∆v̂r10 −

1

2
iĀ∆v̂r10 −

1

4
A∆ω̂θ10 −

1

4
Ā∆ω̂θ10 (B.29)

∆r̂1
∂∆θ̂0

∂T0

=
(
3A3 − 11

8
A2B − 3

4
AB2 + AD2 − 3

8
BD2 + 2A2Ā + 2AĀB−

−3

4
ĀB2 + 3AĀ2 − 3

8
Ā2B + AD̄2 − 3

8
BD̄2 +

3

4
iB∆v̂r10 +

3

8
B∆ω̂θ10

)
eiT0 +

+
(
3A2Ā + 2AĀB − 3

8
A2B − 3

4
AB2 − 3

8
BD2 − 3

4
B2Ā + ĀD2 + 2AĀ−

−11

8
BĀ2 + 3Ā3 − 3

8
BD̄2 + ĀD̄2 − 3

4
iB∆v̂r10 +

3

8
B∆ω̂θ10

)
e−iT0 +

+
(

1

2
A2B − 9

2
A3 − 1

2
AD2 − AĀB − 1

2
AĀ2 − 1

2
AD̄2 + iA∆v̂r10+

+
1

2
A∆ω̂θ10

)
e2iT0 +

+
(

1

2
Ā2B − 9

2
Ā3 − 1

2
ĀD̄2 − 1

2
A2Ā− AĀB − 1

2
ĀD2 − iĀ∆v̂r10+

+
1

2
Ā∆ω̂θ10

)
e−2iT0 +

+2A3e3iT0 + 2Ā3e−3iT0 − 1

2
A3 +

5

4
A2B +

3

2
AB2 − 1

2
AD2 +

3

4
BD2 −

−9

2
A2Ā− 2AĀB +

3

2
B2Ā− 1

2
ĀD2 − 9

2
AĀ2 +

5

4
BĀ2 − 1

2
Ā3 − 1

2
AD̄2 +

+
3

4
BD̄2 − 1

2
ĀD̄2 − iA∆v̂r10 +

1

2
A∆ω̂θ10 + iA∆v̂r10 +

1

2
Ā∆ω̂θ10 (B.30)

∆r̂0
∂∆θ̂0

∂T1

=
(

9

4
A3 +

3

2
A2B +

39

8
AB2 +

3

4
AD2 + 3A2Ā +

3

2
AĀB +

9

4
AĀ2+

+
3

4
AD̄2 − 3

4
A∆ω̂θ10

)
eiT0 +

+
(

9

4
A2Ā +

3

2
AĀB +

39

8
B2Ā +

3

4
ĀD2 + 3AĀ2 +

3

2
BĀ2 +

9

4
Ā3+

+
3

4
ĀD̄2 − 3

4
Ā∆ω̂θ10

)
e−iT0 + 3A2Be2iT0 + 3Ā2Be−2iT0 +

9

4
A2B +

+
3

2
AB2 +

15

8
B3 +

3

4
BD2 + 9AĀB +

3

2
B2Ā +

9

4
BĀ2 +

3

4
BD̄2 (B.31)
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∆φ̂0∆φ̂1 = 2ĀD2eiT0 + 2AD̄2e−iT0 +

+
(
3AD2 − ĀD2 − ADD̄ −DĀD̄ − 1

2
iD∆ω̂φ10

)
e2iT0 +

+
(
3ĀD̄2 − ADD̄ −DĀD̄ − AD̄2 +

1

2
iD̄∆ω̂θ10

)
e−2iT0 −

−2AD2e3iT0 − 2ĀD̄2e−3iT0 − AD2 − ĀD2 + 2DĀD̄ − AD̄2 −
−ĀD̄2 +

1

2
iD∆φ̂θ10 −

1

2
iD̄∆ω̂φ10 (B.32)

∂∆θ̂0

∂T0

∂∆θ̂0

∂T1

=
(

3

2
A∆ω̂θ10 −

9

2
A3 − 3A2B − 33

4
AB2 − 3

2
AD2 − 6A2Ā− 3AĀB−

−9

2
AĀ2 − 3

2
AD̄2

)
eiT0 +

(
3

2
Ā∆ω̂θ10 −

9

2
A2Ā− 3AĀB − 33

4
B2Ā−

−3

2
D2Ā− 6AĀ2 − 3BĀ2 − 9

4
Ā3 − 3

2
ĀD̄2

)
e−iT0 − 6A2Be2iT0 −

−6Ā2Be−2iT0 − 27

8
A2B − 9

4
AB2 − 45

16
B3 − 9

8
BD2 − 33

2
AĀB −

−9

4
B2Ā− 27

8
BĀ2 − 9

8
BD̄2 +

9

8
B∆ω̂θ10 (B.33)

∂∆θ̂0

∂T0

∂∆θ̂1

∂T0

=
(

27

4
A2B − 3

2
AB2 +

3

4
BD2 − 10A2Ā +

3

2
B2Ā− 2ĀD2 +

3

4
Ā2B+

+
3

4
BD̄2 − 3

2
iB∆v̂r10 −

3

4
B∆ω̂θ10

)
eiT0 +

(
3

4
A2B +

15

4
AB2 +

3

4
BD2−

−15

4
ĀB2 − 10AĀ2 +

27

4
BĀ2 − 2AD̄2 +

3

4
BD̄2 +

3

2
iB∆v̂r10−

−3

4
B∆ω̂θ10

)
e−iT0 +

(
9A3 − 19

2
A2B + AD2 − 3

2
BD2 + 2AĀB+

+AĀ2 + AD̄2 − 2iA∆v̂r10 − A∆ω̂θ10

)
e2iT0 +

(
A2Ā + 5AĀB + ĀD2−

−25

2
BĀ2 + 9Ā3 − 3

2
BD̄2 + ĀD̄2 + 2iĀ∆v̂r10 − Ā∆ω̂θ10

)
e−2iT0 +

+
(
−10A3 − 2AD2

)
e3iT0 +

(
−10Ā3 − 2ĀD̄2

)
e−3iT0 +

+A3 + 5A2B + AD2 + 9A2barA− 7AĀB + ĀD2 + 9AĀ2 + 2BĀ2 +

+Ā3 + AD̄2 + ĀD̄2 + 2iA∆v̂r10 − 2iĀ∆v̂r10 − A∆ω̂θ10 − Ā∆ω̂θ10 (B.34)

∂∆φ̂0

∂T0

∂∆φ̂0

∂T1

=
3

2
BD2e2iT0 +

3

2
BD̄2e−2iT0 − 3BDD̄ (B.35)

∂∆φ̂0

∂T0

∂∆φ̂1

∂T0

= −4ADD̄eiT0 − 4ĀDD̄e−iT0 +
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+
(
ĀD2 + ADD̄ + DĀD̄ − 3AD2 +

1

2
iD∆ω̂φ10

)
e2iT0 +

+
(
ADĀ + DĀD̄ + AD̄2 − 3ĀD̄2 − 1

2
iD̄∆ω̂θ10

)
e−2iT0 +

+4AD2e3iT0 + 4ĀD̄2e−3iT0 − AD2 −D2Ā + 2ADD̄ + 2DĀD̄ −
−AD̄2 − ĀD̄2 +

1

2
iD∆ω̂φ10 −

1

2
iD̄∆ω̂φ10 (B.36)

Collecting these results leads to the definitions for γr2 , ηr2 , χr2 and σr2 given in chapter (4).
The second order transverse equation was

∂2∆θ̂2

∂T 2
0

+ 2
∂∆r̂2

∂T0

= −2
∂2∆θ̂1

∂T0∂T1

− 2
∂2∆θ̂0

∂T0∂T2

− ∂2∆θ̂0

∂T 2
1

− 2
∂∆r̂0

∂T2

− 2
∂∆r̂1

∂T1

+

+ 2∆r̂0
∂∆r̂1

∂T0

+ 2∆r̂0
∂∆r̂0

∂T1

+ 2∆r̂1
∂∆r̂0

∂T0

+ 2∆φ̂0
∂∆φ̂1

∂T0

+

+ 2∆φ̂0
∂∆φ̂0

∂T1

+ 2∆φ̂1
∂∆φ̂0

∂T0

− 2
∂∆θ̂0

∂T0

∂∆r̂1

∂T0

−

−2
∂∆θ̂0

∂T0

∂∆r̂0

∂T1

− 2
∂∆θ̂1

∂T0

∂∆r̂0

∂T0

− 2
∂∆θ̂0

∂T1

∂∆r̂0

∂T0

(B.37)

Expanding terms

∂2∆θ̂1

∂T0∂T1

=
(

3

2
AB2 − 27

2
A2B − 3

2
BD2 +

3

2
B2Ā +

3

2
BĀ2 +

3

2
BD̄2

)
ieiT0 +

+
(

3

2
A2B +

3

2
AB2 +

3

2
BD2 +

3

2
B2Ā− 27

2
BĀ2 − 3

2
BD̄2

)
ie−iT0 +

+
(
−15A2B − 3BD2

)
ie2iT0 +

(
15Ā2B + 3BD̄2

)
ie−2iT0 (B.38)

∂2∆θ̂0

∂T0∂T2

= −2
∂A

∂T1

eiT0 − 2
∂Ā

∂T1

e−iT0 − 3

2

∂B

∂T2

(B.39)

∂2∆θ̂0

∂T 2
1

=
9

2
iAB2eiT0 − 9

2
iĀBe−iT0 +

27

4
iBĀ2 − 27

4
iA2B −

−45

4
iAB2 +

45

4
iB2Ā− 9

4
iBD2 +

9

4
iBD̄2 (B.40)

∂∆r̂0

∂T2

=
∂A

∂T2

eiT0 +
∂Ā

∂T2

e−iT0 +
∂B

∂T2

(B.41)

∂∆r̂1

∂T1

=
(

3

4
B2Ā +

3

4
BĀ2 +

3

4
BD̄2 − 27

4
A2B − 3

4
AB2 − 3

4
BD2

)
ieiT0 +

+
(

3

4
B2Ā +

27

4
BĀ2 +

3

4
BD̄2 − 3

4
A2B − 3

4
AB2 − 3

4
BD2

)
ie−iT0 +

+3iA2Be2iT0 − 3iĀ2Be−2iT0 +
9

2
iA2B − 9

2
iĀ2B +

3

2
iAB2 +
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+
3

2
iBD2 − 3

2
iB2Ā− 3

2
iBD̄2 (B.42)

∆r̂0
∂∆r̂1

∂T0

=
(

9

4
A2B +

1

2
AB2 +

1

4
BD2 − 2A2Ā +

1

2
B2Ā +

1

4
BĀ2 +

1

4
BD̄2−

−i
1

2
B∆v̂r10 −

1

4
B∆ω̂θ10

)
ieiT0 +

(
2AĀ2 − 9

4
AĀ2 − 1

4
BD̄2−

−1

4
A2B − 1

2
AB2 − 1

4
BD2 − 1

2
B2Ā− i

1

2
B∆v̂r10 +

1

4
B∆ω̂θ10

)
ie−iT0 +

+
(

9

4
A3 − 3

2
A2B +

1

4
AD2 +

1

2
ABĀ +

1

4
AĀ2 +

1

4
AD̄2 − i

1

2
A∆v̂r10−

−1

4
A∆ω̂θ10

)
ie2iT0 +

(
3

2
BĀ2 − 9

4
Ā3 − 1

4
ĀD̄2 − 1

4
A2Ā− 1

2
AĀB − 1

4
D2Ā−

−1

2
iĀ∆v̂r10 +

1

4
Ā∆ω̂θ10

)
ie−2iT0 − 2iA3e3iT0 + 2iĀ3e−3iT0 +

+
(

9

4
A2Ā +

1

4
D2Ā +

1

2
BĀ2 +

1

4
Ā3 − 1

4
A3 − 1

2
A2B − 1

4
AD2 − 9

4
AĀ2−

−1

4
AD̄2 +

1

4
ĀD̄2 +

1

4
A∆ω̂θ10 −

1

4
∆ω̂θ10

)
i +

1

2
A∆v̂r10 +

1

2
Ā∆v̂r10 (B.43)

∆r̂0
∂∆r̂0

∂T1

= −3

2
iAB2eiT0 +

3

2
iĀB2e−iT0 − 3

2
iA2Be2iT0 +

3

2
iĀ2Be−2iT0 (B.44)

∆r̂1
∂∆r̂0

∂T0

=
(
A2Ā− 3

2
A3 − A2B − 1

2
AD2 − AĀB − 3

2
AĀ2 − 1

2
AD̄2

)
ieiT0 +

+
(

3

2
A2Ā + AĀB +

1

2
ĀD2 − AĀ2 + BĀ2 +

3

2
Ā3 +

1

2
ĀD̄2

)
ie−iT0 +

+
(

9

4
A3 +

1

2
A2B +

1

4
AD2 +

1

2
AĀB +

1

4
AĀ2 +

1

4
AD̄2 − i

1

2
A∆v̂r10−

−1

4
A∆ω̂θ10

)
ie2iT0 +

(
1

4
Ā∆ω̂θ10 −

1

2
iĀ∆v̂r10 −

1

4
A2Ā− 1

2
AĀB−

−1

4
ĀD2 − 1

2
BĀ2 − 9

4
Ā3 − 1

4
ĀD̄2

)
e−2iT0 − iA3e3iT0 + iĀ3e−3iT0 +

+
(

1

4
A3 +

1

2
A2B +

1

4
AD2 − 9

4
A2Ā− 1

4
D2Ā +

9

4
AĀ2 − 1

2
BĀ2 − 1

4
Ā3+

+
1

4
D̄2A− 1

4
ĀD̄2 − 1

4
A∆ω̂θ10 +

1

4
Ā∆ω̂θ10

)
i− 1

2
A∆v̂r10 −

1

2
Ā∆v̂r10 (B.45)

∆φ̂0
∂∆φ̂1

∂T0

= 4iADD̄eiT0 − 4iĀD̄De−iT0 +

+
(
3AD2 −D2Ā− ADD̄ − ĀDD̄ +

1

2
D∆ω̂φ10

)
ie2iT0 +

+
(
ĀDD̄ + ADD̄ + AD̄2 − 3ĀD̄2 +

1

2
D̄∆ω̂φ10

)
ie−2iT0 −

−4iAD2e3iT0 + 4iĀD̄2e−3iT0 +
(
AD2 + ĀD2 + 4ADD̄−
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−4ĀD̄D − AD̄2 − ĀD̄2
)

+
1

2
D∆ω̂φ10 +

1

2
D̄∆ω̂φ10 (B.46)

∆φ̂0
∂∆φ̂0

∂T1

= −3

2
iBD2e2iT0 +

3

2
iBD̄2e−2iT0 (B.47)

∆φ̂1
∂∆φ̂0

∂T0

=
(
2D2Ā + 4ADD̄

)
ieiT0 −

(
4DAD̄ + 2AD̄2

)
ie−iT0 +

+
(
3AD2 −D2Ā− ADD̄ −DĀD̄ +

1

2
D∆ω̂φ10

)
ie2iT0 +

+
(
ADD̄ + DĀD̄ + AD̄2 − 3ĀD̄2 +

1

2
D̄∆ω̂φ10

)
e−2iT0 −

−2iAD2e3iT0 + 2iĀD̄2e−3iT0 +
(
4DD̄Ā + AD̄2 + ĀD̄2 − AD2−

−D2Ā− 4ADD̄
)
i− 1

2
D∆ω̂φ10 −

1

2
D̄∆ω̂φ10 (B.48)

∂∆θ̂0

∂T0

∂∆r̂0

∂T1

=
(
4A2Ā− 27

8
A2B − 3

4
AB2 − 3

8
BD2 − 3

4
B2Ā− 3

8
BĀ2−

−3

8
BD̄2 +

3

4
iB∆v̂r10 +

3

8
B∆ω̂θ10

)
ieiT0 +

(
3

8
A2B +

3

4
AB2 +

3

8
BD2+

+
3

4
B2Ā− 4AĀ2 +

27

8
BĀ2 +

3

8
BD̄2 +

3

4
iB∆v̂r10 −

3

8
B∆ω̂θ10

)
ie−iT0 +

+
(
2A2B − 9

2
A3 − 1

2
AD2 + iA∆v̂r10 +

1

2
A∆ω̂θ10 − AĀB − 1

2
AĀ2−

−1

2
AD̄2

)
e2iT0 +

(
1

2
A2Ā + AĀB +

1

2
D2Ā− 1

2
ĀD̄2 +

9

2
Ā3 + iĀ∆v̂r10−

−1

2
Ā∆ω̂θ10 − 2BĀ2

)
e−2iT0 + 4iA3e3iT0 − 4iĀ3e−3iT0 +

(
1

2
A3 + A2B+

+
1

2
AD2 − 9

2
A2Ā− 1

2
D2Ā +

9
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)
ie−3iT0 +



Chris Karlgaard Appendix B. Method of Multiple Scales 81

+
(

9

2
A2Ā− 1
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D2Ā− 9

2
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∂∆θ̂0

∂T1

∂∆r̂0

∂T0

=
(

9

4
A3 +

3

2
A2B +

15

8
AB2 +

3

4
AD2 + 3A2Ā +
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A2Ā− 3

2
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Which results in the definitions for γθ2 , ηθ2 , χθ2 and σθ2 found in chapter (4). The second order
out of plane equation was
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(B.53)

Expanding terms,
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)
e−2iT0 +
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+2AĀD̄ +
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Collecting these terms together leads to the result for γφ2 , ηφ2 , χφ2 and σφ2 in chapter (4).
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Figure C.1: Error of Position Variables for ∆r̂(0) = 0.001
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Figure C.2: Error of Velocity Variables for ∆r̂(0) = 0.001
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Figure C.3: Magnitude of Relative Position and Velocity Error for ∆r̂(0) = 0.001
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Figure C.4: Error of Position Variables for ∆φ̂(0) = 0.001
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Figure C.5: Error of Velocity Variables for ∆φ̂(0) = 0.001
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Figure C.6: Magnitude of Relative Position and Velocity Error for ∆φ̂(0) = 0.001



Chris Karlgaard Appendix C. Plots 91

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−6

−4

−2

0

2
x 10

−6 ∆ v
r
(0) = 0.001

∆r
 E

rr
or

Revolutions of Reference Orbit

2nd order numerical 
2nd order analytical
1st order exact     

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

0

2

4
x 10

−5

∆θ
 E

rr
or

Revolutions of Reference Orbit

2nd order numerical 
2nd order analytical
1st order exact     

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

∆φ
 E

rr
or

Revolutions of Reference Orbit

2nd order numerical 
2nd order analytical
1st order exact     

Figure C.7: Error of Position Variables for ∆v̂r(0) = 0.001
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Figure C.8: Error of Velocity Variables for ∆v̂r(0) = 0.001
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Figure C.9: Magnitude of Relative Position and Velocity Error for ∆v̂r(0) = 0.001
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Figure C.10: Error of Position Variables for ∆ω̂θ(0) = 0.001
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Figure C.11: Error of Velocity Variables for ∆ω̂θ(0) = 0.001
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Figure C.12: Magnitude of Relative Position and Velocity Error for ∆ω̂θ(0) = 0.001
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Figure C.13: Error of Position Variables for ∆ω̂φ(0) = 0.001
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Figure C.14: Error of Velocity Variables for ∆ω̂φ(0) = 0.001
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Figure C.15: Magnitude of Relative Position and Velocity Error for ∆ω̂φ(0) = 0.001
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Figure C.16: Error of Position Variables for ∆r̂(0) = 0.001, ∆φ̂(0) = 0.001
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Figure C.17: Error of Velocity Variables for ∆r̂(0) = 0.001, ∆φ̂(0) = 0.001
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Figure C.18: Magnitude of Relative Position and Velocity Error for ∆r̂(0) = 0.001, ∆φ̂(0) =
0.001
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Figure C.19: Error of Position Variables for ∆v̂r(0) = 0.001, ∆φ̂(0) = 0.001
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Figure C.20: Error of Velocity Variables for ∆v̂r(0) = 0.001, ∆φ̂(0) = 0.001
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Figure C.21: Magnitude of Relative Position and Velocity Error for ∆v̂r(0) = 0.001, ∆φ̂(0) =
0.001
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Figure C.22: Error of Position Variables for ∆ω̂θ(0) = 0.001, ∆φ̂(0) = 0.001
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Figure C.23: Error of Velocity Variables for ∆ω̂θ(0) = 0.001, ∆φ̂(0) = 0.001
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Figure C.24: Magnitude of Relative Position and Velocity Error for ∆ω̂θ(0) = 0.001, ∆φ̂(0) =
0.001
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Figure C.25: Error of Position Variables for ∆r̂(0) = 0.001, ∆ω̂φ(0) = 0.001
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Figure C.26: Error of Velocity Variables for ∆r̂(0) = 0.001, ∆ω̂φ(0) = 0.001
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Figure C.27: Magnitude of Relative Position and Velocity Error for ∆r̂(0) = 0.001, ∆ω̂φ(0) =
0.001
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Figure C.28: Error of Position Variables for ∆v̂r(0) = 0.001, ∆ω̂φ(0) = 0.001
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Figure C.29: Error of Velocity Variables for ∆v̂r(0) = 0.001, ∆ω̂φ(0) = 0.001
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Figure C.30: Magnitude of Relative Position and Velocity Error for ∆v̂r(0) = 0.001, ∆ω̂φ(0) =
0.001
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Figure C.31: Error of Position Variables for ∆ω̂θ(0) = 0.001, ∆ω̂φ(0) = 0.001
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Figure C.32: Error of Velocity Variables for ∆ω̂θ(0) = 0.001, ∆ω̂φ(0) = 0.001
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Figure C.33: Magnitude of Relative Position and Velocity Error for ∆ω̂θ(0) = 0.001, ∆ω̂φ(0) =
0.001
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