
CU2CL: A CUDA-to-OpenCL Translator for
Multi- and Many-Core Architectures

Gabriel E. Martinez Arroyo

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science and Applications

Wu-chun Feng, Chair
Mark K. Gardner

Adrian Sandu

July 14th, 2011
Blacksburg, Virginia

Keywords: Source Translation, Clang, CUDA, OpenCL,
GPU, Compilers

c© Copyright 2011, Gabriel E. Martinez Arroyo

CU2CL: A CUDA-to-OpenCL Translator for
Multi- and Many-Core Architectures

Gabriel E. Martinez Arroyo

ABSTRACT

The use of graphics processing units (GPUs) in high-performance parallel computing contin-
ues to steadily become more prevalent, often as part of a heterogeneous system. For years,
CUDA has been the de facto programming environment for nearly all general-purpose GPU
(GPGPU) applications. In spite of this, the framework is available only on NVIDIA GPUs,
traditionally requiring reimplementation in other frameworks in order to utilize additional
multi- or many-core devices. On the other hand, OpenCL provides an open and vendor-
neutral programming environment and run-time system. With implementations available
for CPUs, GPUs, and other types of accelerators, OpenCL therefore holds the promise of a
“write once, run anywhere” ecosystem for heterogeneous computing.

Given the many similarities between CUDA and OpenCL, manually porting a CUDA appli-
cation to OpenCL is almost straightforward, albeit tedious and error-prone. In response to
this issue, we created CU2CL, an automated CUDA-to-OpenCL source-to-source translator
that possesses a novel design and clever reuse of the Clang compiler framework. Currently,
the CU2CL translator covers the primary constructs found in the CUDA Runtime API,
and we have successfully translated several applications from the CUDA SDK and Rodinia
benchmark suite. CU2CL’s translation times are reasonable, allowing for many applications
to be translated at once. The number of manual changes required after executing our trans-
lator on CUDA source is minimal, with some compiling and working with no changes at
all. The performance of our automatically translated applications via CU2CL is on par with
their manually ported counterparts.

This work was supported in part by NSF grant IIP-0804155 and an AMD Research Faculty
Fellowship Award.

Acknowledgments

Getting to this stage in my life has been a long and difficult journey, all of which would
not have been possible without the aid of several people. First, I would like to thank my
parents for not only providing for my physical needs, but also for encouraging my interests
and curiosity.

I would also like to thank Wu and Mark for providing so much direction and feedback
through the years. There were always plenty of opportunities available, which both of them
encouraged and (usually) gently pushed me to take advantage of.

And last, but certainly not least, I would like to thank all of the friends I have made
throughout my years at Virginia Tech. Without them, I would not be who I am today.

iii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Related Work . 5

1.3 Contributions . 7

1.4 Document Organization . 9

2 Overview of GPGPU Frameworks 11

2.1 CUDA . 12

2.2 OpenCL . 15

3 Source-to-Source Translation 19

3.1 CUDA Data Structures . 21

3.2 CUDA Device Memory . 22

3.3 Runtime API Procedures . 23

3.3.1 Thread Management . 24

3.3.2 Device Management . 24

3.3.3 Stream Management . 26

3.3.4 Event Management . 27

3.3.5 Memory Management . 28

3.4 Device Procedures . 30

3.5 Kernel Calls . 33

3.6 OpenCL Limitations . 34

iv

4 The Design and Implementation of CU2CL 36

4.1 Approach . 36

4.2 Architecture . 38

4.3 AST-Based, String-Based Rewriting . 40

4.3.1 Common Patterns . 41

4.3.2 Recursively Rewriting Expression . 43

4.3.3 Rewriting Includes . 44

4.4 Challenges . 47

5 Evaluation 49

5.1 Performance of the CU2CL Translator . 49

5.2 Performance of CU2CL-Translated Applications 51

5.3 Coverage of the CU2CL Translator . 55

6 Conclusion 58

6.1 Summary . 58

6.2 Future Work . 59

Bibliography 62

v

List of Figures

1.1 Overview of CU2CL’s translation process . 8

2.1 Overview of the CUDA and OpenCL programming models. Items with multi-
ple labels present the CUDA terminology, followed by the OpenCL terminology. 13

2.2 Overview of the CUDA and OpenCL memory models. Items with multiple
labels present the CUDA terminology, followed by the OpenCL terminology. 14

2.3 OpenCL code to initialize a GPU device and compile the kernel code that is
to be executed, neither of which is required when using the CUDA runtime API 18

3.1 Example of a translating a CUDA kernel call. 34

3.2 Example of a struct with nested device pointers. 35

4.1 Diagram of the Clang libraries and their dependencies. 38

4.2 High-level view of CU2CL’s architecture as a Clang plug-in. 39

4.3 Example of rewriting a CUDA API call which expects a pointer to an OpenCL
call which does not. 43

4.4 Example of rewriting an expression and its subexpressions. 44

4.5 Algorithm detailing how expressions are recursively rewritten. 45

4.6 Example of rewriting an #include directive. 46

5.1 Total time for CU2CL to translate an application, including the time for Clang
to parse the source and generate the AST, versus the number of preprocessed
lines in the original CUDA source. 51

5.2 Time spent in CU2CL translating an application versus the number of lines
in the original CUDA source. 52

vi

List of Tables

3.1 Common CUDA data structures and their OpenCL equivalents 21

3.2 CUDA API modules and their OpenCL equivalents. 23

3.3 CUDA attribute qualifiers and their OpenCL equivalents 32

3.4 Common CUDA kernel built-in functions and variables and their equivalents
in OpenCL . 32

5.1 CU2CL’s translation times for applications from the CUDA SDK and Rodinia
and their original lines of code. 50

5.2 Run times of the four CUDA applications and both OpenCL ports (including
percent differences with respect to the CUDA times) on an NVIDIA GTX 280. 54

5.3 Top 15 CUDA calls in the CUDA 3.2 SDK. 56

5.4 Top 15 CUDA calls in the Rodinia benchmark suite. 56

5.5 CU2CL’s automatic translation coverage of a range of applications. 57

vii

Chapter 1

Introduction

Until recently, graphics processing units (GPUs) were used exclusively for graphics work-

loads, such as those found in the computer gaming and visualization markets. In the past

decade, though, the scientific community discovered that some of their large computations

could take advantage of the powerful and highly-parallel capabilities of commodity GPUs.

The first applications that used GPUs in this manner were forced to map their data and al-

gorithms to the models in graphics APIs (e.g. OpenGL, DirectX), as they provided the only

method of executing code on GPUs [24]. NVIDIA released the CUDA (Compute Unified

Device Architecture) toolkit [21], a proprietary framework for executing general GPU appli-

cations written in a C-like programming language. Inevitably, this opened the floodgates of

general-purpose GPU (GPGPU) computing; now even those inexperienced with GPUs and

graphics programming can harness the power of GPUs.

1

Gabriel E. Martinez Arroyo Chapter 1. Introduction 2

1.1 Motivation

Since its release, CUDA has only been available on NVIDIA GPUs, requiring the use of

other platform-specific frameworks when programming AMD GPUs and other multi-core

compute devices. This led Apple, who wished to write GPU-accelerated applications once

and yet execute them on several kinds of GPUs, to create OpenCL. OpenCL is a platform-

agnostic framework for executing single instruction, multiple data (SIMD) tasks along with

more general parallel workloads on accelerators, including GPUs, CPUs, or any other device

with an OpenCL implementation. The OpenCL specification [12], now maintained by the

Khronos Group, provides a C API for querying, allocating memory, and executing kernels on

OpenCL-capable devices. Furthermore, it defines a variant of C99 for writing device code.

As an open standard, OpenCL fosters a vendor-neutral environment wherein multiple het-

erogeneous devices may be used at once from the same application using the same language

and framework.

Though still a relatively new language, OpenCL already has several of implementations

available from Intel (x86 CPUs), AMD (x86 CPUs and AMD GPUs), NVIDIA (NVIDIA

GPUs), and even IBM (IBM POWER line, including Cell processor). As a result, developers

can write platform-independent applications that can to take advantage of any of these

compute devices. This is of particular importance to scientists who often want to simply

write an application once and not have to port it when moving to another compute platform.

OpenCL enables such a scenario.

Gabriel E. Martinez Arroyo Chapter 1. Introduction 3

Both CUDA and OpenCL are seeing use in several computing applications, even outside

of scientific and high-performance ones. Many programming languages have bindings to

both languages. Native support for CUDA and OpenCL can be found in some mathemat-

ical software, like Mathematica. Video games have been using these compute frameworks

for performing real-time physics through engines such as PhysX and Bullet. Even several

benchmark suites now provide CUDA implementations of their applications—the Rodinia

benchmark suite [5], the Parboil benchmark suite [3], and the Scalable HeterOgeneous Com-

puting suite (SHOC) [8], to name a few. Unlike the Rodinia and Parboil benchmarks, SHOC,

from Oak Ridge National Lab, also provides benchmarks in OpenCL. It is one of the first

works among a few others [11, 14] that have started using OpenCL for evaluating GPUs.

Even so, the adoption of OpenCL has been slow so far.

There are issues that have hindered the wide use of OpenCL in applications. First, OpenCL

provides a lower-level API than commonly used CUDA API, requiring more time and effort

in order to learn how to set up a device and execute kernels on it. Of greater impact,

however, has been CUDA’s established presence in the GPGPU market, which has made it

the de facto GPGPU programming environment. Not surprisingly, there are a much greater

number of CUDA applications available than those implemented in OpenCL. In order to

drive adoption of OpenCL, applications can be ported from CUDA, a task that is mostly

straightforward given OpenCL’s GPU origins. Nevertheless, performing the process by hand

can be tedious and is often error-prone. Although there has been some work to alleviate

Gabriel E. Martinez Arroyo Chapter 1. Introduction 4

the issue [13], only recently was there an effort [19] to automate the process in order to free

developers from the burden of the more mechanical portions of translation.

We believe that an effective translation can be automatically achieved by means of a source-

to-source translator from CUDA to OpenCL. Such a translator would insert OpenCL code

to initialize an appropriate CUDA-like environment. In addition, a translator based on

a powerful source-to-source translation framework, could handle the splitting of CUDA C’s

host and device code, which do not normally reside in the same source file in OpenCL. Finally,

given that the OpenCL standard is much newer and meant to support many types of compute

devices, there are several of CUDA’s GPU-centric features that are not yet supported. A

source-to-source translator should be able to notify the user when it cannot handle these

aspects of a CUDA program, much like how a traditional compiler emits warnings, allowing

the user to focus manual translation efforts on the most interesting parts of the code.

Of particular importance to this work is seeing the results of this project actively adopted and

used by the CUDA and OpenCL communities. Therefore, after exploring several possible

options, we have decided to base our source-to-source translator’s implementation on the

Clang framework [1]. The reasoning behind our decision will be discussed in greater detail

in Chapter 4.

Gabriel E. Martinez Arroyo Chapter 1. Introduction 5

1.2 Related Work

The most relevant related work in this area has been a recent source-to-source translator,

introduced in the last two months. CUDAtoOpenCL [19] is a translator based on the Cetus

source-to-source framework [18]—a Java-based framework that provides a class hierarchy

that represents a program’s abstract syntax tree (AST), allowing for easy traversal and

modification of the program. The tool was developed as part of a Master’s thesis. CUDA-

toOpenCL’s code has not been released yet, so we have not been able to perform an analysis

of the translator. The authors state that CUDAtoOpenCL supports the basic features found

in CUDA: allocating and copying device memory, making use of constant device memory,

and executing kernels. They also point out advanced features in their translator, such as

the ability to propagate the change of a device pointer type to an OpenCL device memory

structure throughout a program via control flow analysis. However, it appears that support

for other, more advanced, parts of CUDA, like the Stream and Event modules, is lacking.

Two other previous source-to-source translators which translate to or from CUDA have also

been based on the Cetus framework. The first is OpenMP to GPGPU [17], that allows

programmers to use the simpler and well-known OpenMP annotations for CPU framework

to program GPUPUs with CUDA. The focus of the work was to determine the portions

of an OpenMP application that could be offloaded to the GPU, generating CUDA code,

and then performing back end optimizations to allow for better performance. The other

work MCUDA [23], which instead goes from OpenMP to GPGPU, is another source-to-

source translator that instead translates CUDA to multi-threaded CPU code. The authors

Gabriel E. Martinez Arroyo Chapter 1. Introduction 6

sought to make use of the CUDA programming model to make it easier to write SIMD CPU

programs. In doing so, they created a CUDA parser for Cetus, which the CUDAtoOpenCL

translator also leveraged.

Closer to our goal than the previous two works, Swan [13] is a tool made to ease the transition

between OpenCL and CUDA. Note, however, that Swan is not actually a source-to-source

translator like the above tools; instead it provides a higher-level library that abstracts both

the CUDA and OpenCL APIs. In this way an application makes calls to Swan and allows the

library to take care of the details in mapping them to CUDA or OpenCL. Unfortunately, the

Swan API is currently quite limited, as it only abstracts a few features in common between

CUDA and OpenCL. In addition, it requires applications to be ported to use its API, leaving

developers to do most of the porting work. On the other hand, it does provide a simple Perl

script that can automatically translate some kernel code by essentially performing a regular

expression-based “search and replace” operation on the source.

Another project of interest is Ocelot [9]. It provides a PTX-to-LLVM translator along with

a run-time system that can decide whether to execute the PTX [4] on a GPU or on a CPU

after just-in-time (JIT) compilation to LLVM [16]. In this regard it is similar to MCUDA

as it allows for CUDA kernels to be run on CPUs, but it takes the approach of performing

translations on lower-level bytecodes. This is a typical approach for modern compilers,

converting a higher-level language to some intermediate representation and then compiling

that to the target architecture. In the case of GPGPUs and other OpenCL-capable devices,

there are multiple intermediate languages that can be targeted, such as NVIDIA PTX,

Gabriel E. Martinez Arroyo Chapter 1. Introduction 7

AMD IL, and LLVM, to name a few. This works against Ocelot as separate back ends must

be implemented in order to execute CUDA applications on other devices. This is seen in

more recent work titled Caracal [10], which implements the PTX to IL back end. A CUDA

to OpenCL translator can instead rely on the vendor-specific OpenCL implementations to

simply handle compiling the code to the proper bytecode. As a result, CUDA applications,

once successfully ported, will be automatically available on several architectures.

A recent source-to-source translator [28], based on the Cetus framework, as the others have

been, focuses on optimizing CUDA source codes. The optimizing compiler attempts to

generate new code based on the original that has better memory access patterns as well as

the best-performing thread and block configuration for kernels. It accomplishes these via

thread and thread-block merging, alongside generating and testing multiple variations of the

same program. This GPGPU optimizing compiler is of particular interest for our future

work, wherein we wish to generate OpenCL code optimized for specific device architectures.

1.3 Contributions

In this thesis, we propose CU2CL, an automated CUDA-to-OpenCL source-to-source transla-

tor. As shown in the high-level diagram in Figure 1.1, CU2CL takes as input an application’s

CUDA source files and rewrites them into semantically-equivalent OpenCL host and kernel

files. In this process, it handles adding all OpenCL “boilerplate” code necessary to set up

the compute environment—platforms, devices, contexts, command queues, etc. Currently

Gabriel E. Martinez Arroyo Chapter 1. Introduction 8

Clang
Driver

CU2CL

Traverse Identify Rewrite

Clang
Framework

CUDA §
Source
Files

AST *

OpenCL †
Kernel
Files

AST
Lex,
RewriteAST

Libraries Used

* Abstract Syntax Tree
§ Compute Unified Device Architecture
† Open Computing Language

OpenCL †
Host
Files

Figure 1.1: Overview of CU2CL’s translation process

the most-used features in CUDA are automatically translated, with a framework in place to

handle larger subsets of CUDA in the future. The eventual goal of this work is to provide a

robust translator that will automatically handle a large majority of CUDA applications and

generate maintainable OpenCL code with little to no manual porting effort. Additionally,

we hope to leverage the results to create a framework that will allow for (possibly user-

supplied) optimization passes that can transform CUDA kernels into efficient OpenCL for

different compute devices. As previously shown [2, 7], OpenCL kernels must be optimized

for the different device architectures. CU2CL is simply the first step in this process.

We have implemented CU2CL as a Clang [1] plug-in, allowing us to take advantage of

a powerful, production-quality compiler framework. Although a recent project with only a

few years of work behind it, Clang can already compile C, C++, Objective-C, and Objective-

C++ into the LLVM [16] intermediate language; as a result, the compiler is already seeing

production use at Apple. More importantly, Clang provides several libraries for performing

Gabriel E. Martinez Arroyo Chapter 1. Introduction 9

source-level transformations. By leveraging these tools, we have created a robust CUDA-to-

OpenCL translator in less than 2000 source lines of code (SLOC).

This paper makes the following contributions:

• We present a framework for the automatic translation from CUDA to OpenCL. We

also include an in-depth procedure of how to transform CUDA to OpenCL.

• In creating a source-to-source translator based on the Clang framework, we demon-

strate general insights that may be used when designing source-level tools within the

framework (which likely also apply outside of Clang). Included are (1) common patterns

that arise when performing the translations, (2) a technique for recursively rewriting

expressions, and (3) a process for rewriting #includes.

• We have evaluated a prototype of CU2CL with respect to translation speed, perfor-

mance of translated applications compared to the original CUDA and manually ported

codes, and coverage of sample CUDA applications from the CUDA SDK and Rodinia

benchmark suite.

1.4 Document Organization

The remainder of this thesis is organized as follows: Chapter 2 gives an overview of the

CUDA and OpenCL frameworks, focusing on how their similarities and differences influence

the translation effort. Chapter 3 presents an in-depth look into the details of the CUDA to

Gabriel E. Martinez Arroyo Chapter 1. Introduction 10

OpenCL translation process. In Chapter 4 we discuss CU2CL’s general design and implemen-

tation as a Clang-based source-to-source translator. There we also present general strategies

we have identified that may be used by other source-to-source translators, In Chapter 5, an

evaluation of CU2CL’s performance during translation is given, along with the performance

of a few automatically translated applications. We wrap the chapter up by discussing the

CUDA code coverage of our translator. Lastly, we summarize our work and present possible

future work in Chapter 6.

Chapter 2

Overview of GPGPU Frameworks

CUDA and OpenCL are both frameworks designed for general-purpose GPU computation.

Furthermore, NVIDIA initially contributed a lot of CUDA’s GPU features to OpenCL. As a

result, the two are very similar—though OpenCL is now more general. Both have the notion

of kernels that run on compute devices, threads that run in parallel within them, specifying

a kernel’s execution configuration at launch time, and managing device memory. However,

as CUDA’s compute devices are strictly GPUs, it includes many GPU-centric features in

its APIs that are not found in OpenCL. OpenCL, on the other hand, provides a platform-

agnostic framework. While, it supports a wider variety of compute devices, it requires extra

work to initialize and utilize them. Given these circumstances, OpenCL applications will

generally require more explicit device management.

11

Gabriel E. Martinez Arroyo Chapter 2. Overview of GPGPU Frameworks 12

In this chapter, we first examine version 3.2 of the CUDA APIs, the latest stable release.

Next, we discuss the OpenCL 1.0 standard.1 Our focus is on the differences and similarities

between the two and how an automatic translator may map CUDA to OpenCL.

2.1 CUDA

CUDA (Compute Unified Device Architecture) is a programming model and environment

that enables data-parallel, single instruction, multiple data (SIMD) computations to be

offloaded onto a GPU. Users write device code in a C-like language which is run on the

streaming multiprocessors of NVIDIA GPUs. Kernels functions, SIMD procedures launched

from the host, are executed across a possibly multi-dimensional grid of blocks. In turn, each

block contains numerous threads in another possibly multi-dimensional configuration. These

configurations are specified by the host during a kernel invocation. Figure 2.1 illustrates the

CUDA programming model.

CUDA’s memory model has three separate general-use memory spaces: global memory, which

resides off-chip and can be accessed by all threads in all blocks; shared memory, which is

on-chip and available to threads in a block; and registers, which can only be accessed by the

owning thread. In addition to these, there are two special-use memory spaces that provide

faster memory operations: constant memory and texture memory. Constant memory is

meant to be cached for fast reads, but is limited in size and does not support writes, as

1NVIDIA’s OpenCL 1.1 implementation is not yet released so we restrict our attention to OpenCL 1.0
in order to execute on NVIDIA and AMD GPUs.

Gabriel E. Martinez Arroyo Chapter 2. Overview of GPGPU Frameworks 13

Grid/NDRange

Block/Work-Group (x,y)

Thread/	

Work-­‐Item	

(1,n)	

Thread/	

Work-­‐Item	

(1,1)	

Thread/	

Work-­‐Item	

(n,1)	

Thread/	

Work-­‐Item	

(n,n)	

…

…

…

…
 …

Figure 2.1: Overview of the CUDA and OpenCL programming models. Items with multiple
labels present the CUDA terminology, followed by the OpenCL terminology.

its name implies. Texture memory allows for fast reads as well as fast writes, but is also

rather limited in size. Furthermore, kernels must use special built-in functions in order to

access data residing in the region. In general, device memory must be explicitly allocated

through CUDA API calls on the host and is typically initialized by copying data over from

host memory. Figure 2.2 shows how the general memory spaces are laid out in CUDA.

CUDA provides two different APIs that may be used, a low-level driver API and a high-level

runtime API. The driver API is CUDA’s lower-level API for programming GPGPUs. Similar

to OpenCL (as detailed in Section 2.2), it requires that a GPU context be created for each

GPU that is to be used, as nothing is implicitly done behind the scenes for the developer.

Setting up and executing kernels requires several API calls to set arguments and to set the

Gabriel E. Martinez Arroyo Chapter 2. Overview of GPGPU Frameworks 14

Global	
 Memory	

Grid/NDRange

Shared/Local	
 Memory	

Registers/	

Private	
 Memory	

Thread/	

Work-­‐Item	

Thread/	

Work-­‐Item	

Registers/	

Private	
 Memory	

Shared/Local	
 Memory	

Registers/	

Private	
 Memory	

Thread/	

Work-­‐Item	

Thread/	

Work-­‐Item	

Registers/	

Private	
 Memory	

Constant	
 Memory	

Texture/Image	
 Memory	

Block/Work-Group Block/Work-Group

Figure 2.2: Overview of the CUDA and OpenCL memory models. Items with multiple labels
present the CUDA terminology, followed by the OpenCL terminology.

dimensions and execution configuration of blocks and threads. On the other hand, the driver

API allows for much finer control over GPU devices, and thus it is a requirement when using

multiple devices. The API includes methods to explicitly load pre-compiled kernel modules

at run time, which are the typical way that kernels are launched when using the driver API.

These modules are pre-compiled, again using the NVIDIA compiler.

The CUDA runtime API is a higher-level API which abstracts many of the lower-level details

found in the driver API, while simultaneously making reasonable assumptions behind the

scenes. For example, the runtime will perform initialization of a GPU device on the first

call to any CUDA runtime API method. If no particular GPU device is specified by the

programmer, the runtime will simply choose the first GPU it finds on the system. Like the

Gabriel E. Martinez Arroyo Chapter 2. Overview of GPGPU Frameworks 15

driver API, the runtime API has methods for setting up and launching kernels, though they

are not utilized often.

Both APIs may be used in applications written in standard C or in CUDA C, an extension

to C that allows for the mixing of kernel code and host code in the same files. In CUDA

C, device code and memory are distinguished by adding CUDA-specific function or variable

qualifiers, respectively, to their declarations. In addition to these qualifiers, CUDA C extends

the C language by introducing a special notation for launching kernels, effectively replacing

multiple driver API calls to configure a kernel’s arguments and launch configuration with one

method invocation. In order to take advantage of these extensions, applications written using

CUDA C must be compiled with NVIDIA’s compiler, nvcc, which handles the C extensions

and properly sorts host and kernel declarations.

Looking at code samples [5, 20], it is evident that many applications opt to use CUDA C

along with the runtime API. Therefore, we have initially focused CU2CL’s source-to-source

translation on that combination.

2.2 OpenCL

The OpenCL standard is an open, vendor-neutral programming model and environment for

executing general-purpose computations. Originally very much like CUDA given NVIDIA’s

contributions, it is now more general than CUDA, allowing for the use of arbitrary compute

devices. Rather than targeting specific hardware, OpenCL provides abstract compute and

Gabriel E. Martinez Arroyo Chapter 2. Overview of GPGPU Frameworks 16

memory models that are mapped to real hardware through vendor-provided implementations.

Like CUDA, OpenCL allows users to execute SIMD computations on GPUs, along with other

compute devices supporting them. In addition, it provides the ability to run more general

parallel workloads on traditional multi-core CPU devices. OpenCL expects kernel code to be

written in a variant of C99. This code is typically dynamically compiled by a vendor-provided

compiler through an OpenCL API call. Kernels are broken down into work-groups—similar

to CUDA’s blocks—each of which consist of work-items—akin to threads in CUDA. Figure

2.1 also shows OpenCL’s programming model which is nearly identical to CUDA’s although

with different terminology.

Another similarity to CUDA can be seen in OpenCL’s memory model in Figure 2.2. There

are also three memory spaces that correspond to a memory space from CUDA: global mem-

ory, equivalent to CUDA’s global memory, local memory, which resembles shared memory,

and private memory, analogous to registers in CUDA. Support for constant and image mem-

ory—like CUDA’s texture memory—also exists. These have similar limitations to CUDA’s

constant and texture memories, which we will cover in more depth in Chapter 3.

The OpenCL standard defines only one API, which is very similar to CUDA’s driver API.

Therefore, users have be aware of the low-level concerns and write some of the code that

the CUDA runtime API handles automatically2. Furthermore, OpenCL adds the concept

of OpenCL platforms—an abstraction of the set of installed vendor implementations—and

device command queues (similar to CUDA streams) for sending commands to a particular

2OpenCL 1.1 defines C++ classes that abstract away several of the low-level issues.

Gabriel E. Martinez Arroyo Chapter 2. Overview of GPGPU Frameworks 17

device, on top of everything that the driver API has. On the other hand, kernels in OpenCL

are very similar to kernels in CUDA, containing constructs that map almost one-to-one to

the CUDA equivalents. Noteworthy exceptions are found in how image memory is accessed

and the lack of some synchronization functions.

Figure 2.3 provides a simple example of what must be done in OpenCL to set up a device

before executing code on it. It demonstrates OpenCL’s low-level and verbose nature, as the

CUDA runtime API implicitly performs this set up and thus gets by without any such code.

In the example, the first two statements get the first compute device from the first available

OpenCL platform. Then, a context and command queue are created for the retrieved device.

Next, the kernel source code stored in the file kernel.cl is read into a string. The kernel

source string is used to build a new OpenCL program using the OpenCL platform’s run time

compiler. Finally, the kernels are created allowing for device code to be executed.

Gabriel E. Martinez Arroyo Chapter 2. Overview of GPGPU Frameworks 18

//Get the first GPU device and create a context

clGetPlatformIDs(1, &clPlatform, NULL);

clGetDeviceIDs(clPlatform, CL_DEVICE_TYPE_GPU, 1, &clDevice, NULL);

clContext = clCreateContext(NULL, 1, &clDevice, NULL, NULL, &errcode);

clCommands = clCreateCommandQueue(clContext, clDevice, 0, &errcode);

//Load OpenCL program source file

kernelFile = fopen("kernel.cl" , "r");

fseek(kernelFile, 0, SEEK_END);

kernelLength = (size_t) ftell(kernelFile);

kernelSource = (char *) malloc(sizeof(char)*kernelLength);

rewind(kernelFile);

fread((void *) kernelSource, kernelLength, 1, kernelFile);

fclose(kernelFile);

//Build OpenCL program and create kernels

clProgram = clCreateProgramWithSource(clContext, 1,

&kernelSource,

&kernelLength,

&errcode);

free(kernelSource);

clBuildProgram(clProgram, 1, &clDevice, NULL, NULL, NULL);

clKernel1 = clCreateKernel(clProgram, "kernel1" , &errcode);

clKernel2 = clCreateKernel(clProgram, "kernel2" , &errcode);

Figure 2.3: OpenCL code to initialize a GPU device and compile the kernel code that is to
be executed, neither of which is required when using the CUDA runtime API

Chapter 3

Source-to-Source Translation

In this chapter, we outline the general strategy used to translate from CUDA to OpenCL.

As mentioned in the previous chapter, the CUDA runtime API is the most common API

found in CUDA applications. Therefore we have chosen to focus our work to target it as

the initial source of CUDA applications. Additionally, we decided to support CUDA C by

default, as it is also very common and adds only a few extensions to standard C. For the

time being CU2CL does not support the CUDA driver API. However, due to its low-level

nature and similarity to the OpenCL API—many of its constructs have direct equivalents.

The CUDA Runtime API contains four primary constructs:

• Data structures – are the types and structs that are defined in CUDA and used by

several of the runtime API procedures. They range from dim3s, which specify kernel

configurations in three dimensions, to textureReferences, which are responsible for

storing information about texture memory.

19

Gabriel E. Martinez Arroyo Chapter 3. Source-to-Source Translation 20

• Device memory – pointers may either be annotated with variable qualifiers or simply

acquired through multiple API procedures. In the CUDA runtime API they are treated

as normal pointers (e.g., float *).

• Runtime API calls – are the host-side CUDA runtime API procedure calls. Their

main use is to set up and manage memory and code execution on GPU devices. They

are broken up into several modules, of which we focus on the ones supporting general,

non-graphical operations (e.g., cudaMalloc).

• Device procedures – also known as kernels, these are the procedures to be run on

GPU devices. They are distinguished by the use of the CUDA function qualifiers

global or device .

• Kernel calls – in CUDA C are similar to host method invocations, but differ in that

they also provide the kernel execution configuration through a CUDA C extension

(e.g., kernel<<<blocks, threads>>>(args, ...)).

In order to properly translate CUDA to OpenCL, each of these must in turn be translated

into a semantically-equivalent construct—or set of constructs—in OpenCL. For the rest of

this chapter, we will discuss how the automatic translations are performed for the currently

supported subset of the CUDA runtime API.

Gabriel E. Martinez Arroyo Chapter 3. Source-to-Source Translation 21

3.1 CUDA Data Structures

The CUDA runtime API introduces a number of data structures. We list some commonly

used ones in Table 3.1 along with their equivalent structures in OpenCL, if any.

Currently we have chosen to support dim3s and cudaDeviceProps, given they are some of

the most often used data structures in CUDA applications. In addition, we support cuda-

Stream t and cudaEvent t. Of these, only cudaDeviceProps lack an equivalent structure

in OpenCL. This structure’s fields are a GPU device’s properties. For the sake of simplicity

in translation, we opt to create an equivalent structure with the same fields. In OpenCL,

then, multiple calls to clGetDeviceInfo may be used to fill the structure.

CUDA OpenCL
Device pointers (e.g. float * created
through cudaMalloc)

cl mem created through clCreateBuffer

dim3 size t[3]

cudaDeviceProp No direct equivalent
cudaStream t cl command queue

cudaEvent t cl event

textureReference cl mem created through clCreateImage

cudaChannelFormatDesc cl image format

surfaceReference No direct equivalent

Table 3.1: Common CUDA data structures and their OpenCL equivalents

Notably missing from the discussion so far are the vector types defined in the CUDA runtime

API. The list is rather large, and direct equivalents in OpenCL exist for nearly all of them

in both host and device code—the types have the same names save for the “cl ” prefix on

the host vector types. The biggest exception in OpenCL 1.0 is the lack of vectors with three

fields (e.g. float3).

Gabriel E. Martinez Arroyo Chapter 3. Source-to-Source Translation 22

3.2 CUDA Device Memory

Device memory in CUDA is separated into different regions, corresponding to the type of

GPU memory. As our focus is on the non-graphical portions, we look at global, shared,

and constant memory. In general, all of these are stored in traditional pointers in CUDA,

therefore they will be translated into cl mems in OpenCL. Each type of memory has certain

traits and limitations, which must be taken into account during the translation process.

Global memory is allocated through standard allocation procedures in CUDA. Unlike the

other types of memory, pointers to it do not have to be qualified with the global or

device attributes, making them a bit more difficult to identify and transform. The

general strategy is to look for calls to global memory allocation procedures, such as cuda-

Malloc, and identify the pointer variable passed in as a pointer to global memory.

Constant memory arrays may only be declared at the top level in CUDA. Furthermore, they

must either be given an initial size or an initial value; no dynamic allocation of constant

memory is allowed. In OpenCL, constant memory is instead allocated as normal device

memory is. It is marked as constant when passed in as a kernel parameter that has the

constant attribute. Finally, as they reside at the file level, CUDA device code assumes

global access to them. Thus in OpenCL all pointers to constant memory must be passed in

as arguments to kernel calls so that device code has access to them.

Shared memory in CUDA can be declared at the top level or within device code. In the first

case, pointers to it can be treated in similar fashion to constant memory by passing them in

Gabriel E. Martinez Arroyo Chapter 3. Source-to-Source Translation 23

as arguments. In the latter case, the variable qualifier marking them as shared in CUDA

can simply be rewritten to local in OpenCL. One final case exists where shared memory

is declared to be extern. In CUDA, this means that the memory is allocated dynamically

when a kernel is invoked. In OpenCL, this can be emulated by allocating the device memory

just before a kernel is executed and freeing it just after, making sure to pass in the device

memory as an argument.

3.3 Runtime API Procedures

The CUDA runtime API is broken down into several modules, which provide the specific

functionality of the CUDA framework. Table 3.2 shows the modules we are interested in,

along with replacements found in the OpenCL API. The majority of the porting effort from

CUDA to OpenCL occurs in rewriting these API calls to their OpenCL equivalents. As a

result, proper automatic translation of the majority of the CUDA runtime API calls will

greatly reduce any manual translation that must be done.

CUDA Module Sample Call OpenCL Structure
Thread cudaThreadSynchronize Contexts & Command Queues
Device cudaSetDevice Platforms & Devices
Stream cudaStreamSynchronize Command Queues
Event cudaEventRecord Events
Memory cudaMalloc Memory Objects

Table 3.2: CUDA API modules and their OpenCL equivalents.

Gabriel E. Martinez Arroyo Chapter 3. Source-to-Source Translation 24

3.3.1 Thread Management

The thread management API provides high-level methods to the underlying CUDA context.

The most commonly used procedures are cudaThreadExit and cudaThreadSynchronize.

The first asks the runtime to clean up the CUDA context, which translates to releasing the

OpenCL context through clReleaseContext. As for the second function, it tells the runtime

to block until all previously queued work on the current GPU device has been completed.

In OpenCL, this is equivalent to invoking the clFinish method on global command queue

that was created.

The CUDA runtime API also defines a few other procedures that allow a user to set and

get resource limits and the host thread’s cache configuration. The OpenCL API, though,

does not provide any methods with similar functionality to these. Hence, CU2CL does not

currently support the rest of this API, emitting a warning when an unsupported call is

encountered.

3.3.2 Device Management

In the CUDA runtime API, set up and tear down of CUDA devices is done automatically.

The user has little need to explicitly manage devices, but a direct consequence is that they

also do not have as much control. By default, the first GPU device found on a system is

used by the CUDA runtime API. Keeping with this assumption, OpenCL code to initialize a

GPU device can be inserted at the start of an application’s main method. This initialization

Gabriel E. Martinez Arroyo Chapter 3. Source-to-Source Translation 25

includes querying the system for an OpenCL platform, finding a GPU device in the platform,

and then creating a context and command queue associated with the device. At the end

of the same procedure, code is added to clean up the OpenCL constructs—specifically, the

device’s command queue and context are released. Several OpenCL API procedures require

information about the system, such as a platform ID, device ID, context, or command queue,

to be passed as parameters. In the CUDA runtime API, these are not made explicit, but are

available globally to the underlying implementation. Since CUDA API calls may reside in

many different locations in an application, we must declare the OpenCL constructs at the

global level so as to be visible throughout the source file. The names of these global variables

may clash with user-defined names, so we prepend “ cu2cl ” to each one.

There are a few CUDA runtime API calls that allow an application to query the available

devices and to set the GPU device the current thread will use. Of these, the most commonly

used are cudaGetDevice, cudaGetDeviceCount, cudaGetDeviceProperties, and cudaSet-

Device. cudaGetDevice returns the ID of the device currently in use, therefore the call will

be translated into a reference to CU2CL’s global device ID. As the OpenCL device ID,

context, and command queue are available globally, a call to cudaGetDevice will return the

device ID currently in use. cudaSetDevice is replaced by OpenCL calls that release the

current context, set the new device ID, and create a new context and command queue for

the given device. cudaGetDeviceCount becomes a call to clQueryPlatformInfo, to get the

number of devices from the OpenCL platform.

Gabriel E. Martinez Arroyo Chapter 3. Source-to-Source Translation 26

cudaGetDeviceProperties requires more work to translate. As mentioned earlier, there is

no OpenCL equivalent of a cudaDeviceProp, hence we add in code that defines a similar

struct. This newly defined data structure is populated by replacing calls to cudaGet-

DeviceProperties with calls to a new procedure we define that makes the necessary calls

to clGetDeviceInfo. Not all the properties found in a cudaDeviceProp can be queried in

OpenCL. If the CUDA source uses one of these properties, CU2CL must notify the user that

the code will have to be translated by hand; currently this is done by emitting a warning

during translation.

3.3.3 Stream Management

CUDA streams provide a mechanism for performing GPU operations asynchronous to other

operations that may be executing. As a result, they function in a fashion very similar to

command queues in OpenCL. In general, CUDA streams are turned into command queues,

and the associated CUDA API calls are translated into equivalent OpenCL calls operating

on command queues.

cudaStreamCreate creates a new CUDA stream, therefore it can simply be replaced by

clCreateCommandQueue, while cudaStreamDestroy will become clReleaseCommandQueue.

cudaStreamSynchronize forces the calling thread to block until the stream passed in has

completed all previous operations. In OpenCL, this is equivalent to a clFinish. Likewise,

cudaStreamWaitEvent becomes a call to clEnqueueWaitForEvents. The tougher one in

this API is cudaStreamQuery. This function call queries the current status of the stream,

Gabriel E. Martinez Arroyo Chapter 3. Source-to-Source Translation 27

i.e. whether or not the stream has completed its work. In order to preserve the semantics

of the call, several OpenCL API calls must be used, which is done by creating a procedure

that does the following steps: First, a clEnqueueMarker is done, so as to get the event

associated with the call. Next, the event created is queried for completion using a call to

clGetEventInfo. We are only interested in the event’s status, thus the event is released and

the status returned.

3.3.4 Event Management

CUDA events provide a platform-independent way to perform time measurements. The API

has methods to create and destroy events, in addition to methods that record an event—

store the current time in the event—or that synchronizes on an event. While the API’s

primary facilities are to record times and compare them, it may also be used to synchronize

by blocking until the work in a recorded stream has been finished.

OpenCL also has the concept of an event, which has similar goals. The way the two event

mechanisms function are dissimilar enough that at first glance an automatic translation

from CUDA events to OpenCL events appears difficult. This stems from the fact that

CUDA events are explicitly created by the user through API calls, whereas OpenCL events

are created anytime that an enqueue operation is performed on a command queue. How-

ever, OpenCL provides mechanisms that can bridge the disparity between the two, allowing

OpenCL events to function as CUDA events do. By using the OpenCL API call clEnqueue-

Marker on a command queue, a new event will be made such that the call emulates a call to

Gabriel E. Martinez Arroyo Chapter 3. Source-to-Source Translation 28

cudaEventRecord. As a result, OpenCL events can be used as CUDA events are, to perform

platform-independent timing. The event record call simply records the time after all the

previous operations in the given CUDA stream have finished. Assuming time profiling has

been enabled on the given command queue, the OpenCL event will also store the time.

Since OpenCL events are not explicitly created, calls to cudaEventCreate and cudaEvent-

CreateWithFlags are simply removed during their translation to OpenCL. However, calls

to cudaEventDestroy are not removed, but instead replaced with clReleaseEvent.

The final three procedures in the CUDA event API are cudaEventQuery, cudaEvent-

Synchronize, and cudaEventElapsedTime. The first call, cudaEventQuery, requests the

current status of the given event. This is equivalent to a call to clGetEventInfo for request-

ing the current status of the event. cudaEventSynchronize, which makes the caller wait for

the given event to complete, can be replaced by a call to clWaitForEvents. Finally, when

two events are compared using a cudaEventElapsedTime, one can compare the time between

the end of the two OpenCL events to acquire an equivalent measurement. In CU2CL we have

implemented this as a method that mimics cudaEventElapsedTime’s function signature in

order to simplify the translation process.

3.3.5 Memory Management

There are dozens of procedures in the CUDA runtime API used for managing device and

pinned host memory. These include various methods of allocating device memory and also

copying memory to and from the different memory spaces on the device. We choose to

Gabriel E. Martinez Arroyo Chapter 3. Source-to-Source Translation 29

support the most prevalent and general of these API calls: cudaMalloc, cudaFree, cuda-

Memcpy, and cudaMemset. In the case of cudaMalloc, cudaFree, and cudaMemcpy, there

are direct equivalents in OpenCL, namely clCreateBuffer, clReleaseMemObject, and cl-

EnqueueWriteBuffer and clEnqueueReadBuffer (for two different cases of cudaMemcpy).

OpenCL lacks an equivalent of cudaMemset, requiring one of two possible workarounds. The

first approach is to simply allocate host memory of the desired size and memory layout and

then to copy it over to the given portion of device memory. This is far from ideal as it

allocates unnecessary memory on the host and requires an extra copy to device memory,

which becomes very expensive when transferring a large amount of data. Instead, we create

a “memset” kernel that takes a cl mem, a size, and an integer value for parameters—as

expected in cudaMemset—and explicitly sets the memory region. There is a trade off, of

course, as this method requires several OpenCL API calls to set up and execute a kernel.

On the other hand, it does not use extra memory like the first and the cost of one kernel

launch is small compared to a large copy operation.

Beyond translating CUDA API procedures, the main challenge in translating the device

memory management API arises in identifying which declared variables correspond to device

memory. In the CUDA runtime API, device memory addresses acquired from cudaMalloc

are stored in traditional pointers. In OpenCL, however, device pointers are abstracted into

cl mem structs. Therefore, device pointer variables must be recognized when passed in

as arguments to cudaMalloc and then their references tracked throughout an application’s

source code. The original declaration’s type must be changed from a pointer of a specific type

Gabriel E. Martinez Arroyo Chapter 3. Source-to-Source Translation 30

(e.g. float *) to a cl mem. In addition, procedures expecting a device pointer, identified

through their use of one of these device pointer variables, must also have their parameter list

modified so as to expect cl mems instead. The exception are kernels, since the OpenCL run-

time ensures that the device pointers are unwrapped and made directly available in device

code.

3.4 Device Procedures

Device procedures, or kernels, in CUDA are annotated with either the global or device

function qualifiers. This makes identifying kernel functions a relatively easy task. Along the

same line, converting CUDA kernels to OpenCL is a simpler task than translating host

code; most built-in functions and variables in the kernels have direct mappings in OpenCL

and, consequently, could be mainly handled through a simple search and replace operation.

However, CUDA kernels often present a few quirks that complicate the procedure.

In particular, as already mentioned, CUDA C allows for both host and kernel code to be

mixed together in the same source file. From this emerge several complications when trans-

lating, since OpenCL kernels must be compiled separately from host code. Compilation of

device code is done at run-time from a string, therefore the kernel sources can either be

strings in host code files or read into strings from separate kernel files. We choose to do the

latter in CU2CL, primarily because some C compilers can only handle strings of a certain

length.

Gabriel E. Martinez Arroyo Chapter 3. Source-to-Source Translation 31

Another common problem, also supported by CU2CL, occurs when variables declared outside

of a kernel function in CUDA are referenced from within the kernels. This is perfectly fine

in CUDA, but in OpenCL kernels may only access their local variables and parameters. The

typical approach CU2CL takes is to pass in these external variables as arguments to the

kernels.

The basic translation of kernels (i.e., device code) requires the rewriting of several CUDA

constructs. First, the function and memory space qualifiers are rewritten as specified in

Table 3.3. One thing to note during this is that parameters of pointer types which lack a

memory address space qualifier are assumed to be in global memory in CUDA. In OpenCL,

the pointers must be explicitly tagged as residing in global memory and are prepended with

the global qualifier. Next, CUDA kernel built-ins, such as gridDim and syncthreads(),

must be translated to their OpenCL equivalents. Table 3.4 details the transformations of

the most common CUDA kernel built-ins. There are many more built-in functions, including

arithmetic functions and functions for retrieving data from special memory spaces like texture

memory. Most of the mathematical functions also have direct OpenCL equivalents, though

the applications we tested did not use them and thus, for the sake of brevity, we exclude

listing them here.

Because the CUDA C language allows for the intermingling of host and device code, we

split the input source files into their host code and OpenCL device code during translation.

In order to handle this, two output files are created for each main input file and included

CUDA header files: one for the host code and one for the kernels. By filtering on the

Gabriel E. Martinez Arroyo Chapter 3. Source-to-Source Translation 32

CUDA OpenCL

Function Qualifiers
device Not required in device code
global kernel

host Not required in host code

Variable Qualifiers
device Not required in device code
constant constant

shared local

Table 3.3: CUDA attribute qualifiers and their OpenCL equivalents

CUDA OpenCL
gridDim.{x,y,z} get num groups({0,1,2})
blockIdx.{x,y,z} get group id({0,1,2})
blockDim.{x,y,z} get local size({0,1,2})
threadIdx.{x,y,z} get local id({0,1,2})
warpSize No direct equivalent
threadfence block() mem fence(CLK LOCAL MEM FENCE | CLK GLOBAL MEM FENCE)

threadfence() No direct equivalent
syncthreads() barrier(CLK LOCAL MEM FENCE | CLK GLOBAL MEM FENCE)

Table 3.4: Common CUDA kernel built-in functions and variables and their equivalents in
OpenCL

function qualifiers, the declarations in the original file can be copied to the correct output

file. An exception occurs when a kernel function is annotated with the host qualifier,

meaning that the function is callable by both device code and host code. In this case, the

function is included in both the host file and the kernel file so that it will be available in

both environments.

Finally, if a CUDA kernel references a variable declared outside of its local environment, then

the function must be changed to expect a new parameter for that declaration, effectively

making the variable local. The host code must also be modified to set the new kernel

argument when the kernel function is launched.

Gabriel E. Martinez Arroyo Chapter 3. Source-to-Source Translation 33

3.5 Kernel Calls

The CUDA runtime API provides a syntactic extension to C that allows for concise kernel

invocations. This is done by using the <<<...,...>>> notation before the parenthesized

list of arguments, wherein the kernel launch configuration can be set all in one call to the

kernel function. Inside of the angle brackets, the first slot holds grid size while the second

contains the block size, each of type dim3. OpenCL, on the other hand, simply provides a

C API and thus requires several API calls in place of the one CUDA runtime API kernel

launch—similar to what is done in the CUDA driver API. The kernel arguments must be

set, one at a time, using the clSetKernelArg function and the launch bounds are specified

when the kernel is launched via the clEnqueueNDRangeKernel call. The dim3s in CUDA

must be translated to size t[3] arrays and pointers to them are passed to the clEnqueue-

NDRangeKernel procedure. Furthermore, OpenCL expects to be passed the global work size,

equivalent to the number of blocks multiplied by the number of threads for each dimension,

and the local work size, equivalent to the number of threads per dimension. In order to do

this, we create two global size t[3] arrays which correspond to the global work size and

the local work size. These values are always passed to the clEnqueueNDRangeKernel call.

We copy the grid and block size values specified in the CUDA kernel call into the size t[3]

arrays. The local work size is first set to the block size dim3 and then the global work size

is set to the grid size dim3 multiplied by the local work size. This is done for all dimensions.

In case of a constant integer expression or variable—values that are not dim3s—is passed in

as the grid or block size, we set the first dimension of the global or local work size to that

Gabriel E. Martinez Arroyo Chapter 3. Source-to-Source Translation 34

//CUDA

kernel<<<16, 16>>>(globalArrPtr, num);

//OpenCL

clSetKernelArg(clKernel_kernel, 0, sizeof(cl_mem), &globalArrPtr);

clSetKernelArg(clKernel_kernel, 1, sizeof(int), &num);

localWorkSize[0] = 16;

globalWorkSize[0] = 16*localWorkSize[0];

clEnqueueNDRangeKernel(clCommandQueue, clKernel_kernel, 1, NULL,

globalWorkSize, localWorkSize, 0, NULL, NULL);

Figure 3.1: Example of a translating a CUDA kernel call.

value and set the other dimensions to one. If both parameters meet this criteria, then we

can make use of OpenCL’s ability to launch kernels of lower dimensions and simply set the

number of dimensions one, as seen in Figure 3.1.

3.6 OpenCL Limitations

The OpenCL framework currently has a number of limitations that prevent the translation

of several of CUDA’s features. The most difficult to resolve at this time is OpenCL’s lack of

support for C++ device code, as the standard defines device code to be based on C99 (with

a few extensions). Another particularly difficult issue to resolve stems from OpenCL’s use of

cl mems on the host for abstracting pointers to device memory. In CUDA, device memory

is handled in both host and device code through direct pointers. This allows applications

to allocate space in device memory for structs that have pointers to device memory nested

within them. Figure 3.2 shows such a scenario, wherein a nested struct is to be allocated

Gabriel E. Martinez Arroyo Chapter 3. Source-to-Source Translation 35

//CUDA

typedef struct {

float *d_mem1;

float *d_mem2;

} nested;

//Legal

//OpenCL

typedef struct {

cl_mem d_mem1;

cl_mem d_mem2;

} nested;

//Illegal!

Figure 3.2: Example of a struct with nested device pointers.

on the GPU. As OpenCL’s cl mems are translated to pointers only when passed in as kernel

arguments, there is no way to nest device pointers as in CUDA. Currently, such nested

pointers will be detected and warnings emitted.

Chapter 4

The Design and Implementation of

CU2CL

In this chapter, we outline the general design and implementation of CU2CL’s source-to-

source translator.

4.1 Approach

Several mechanisms for source-to-source translation are in common use—from simple tools

that utilize regular expressions to find and replace strings in a program’s source to more

complex ones that leverage a full framework and parse a language into an abstract syntax

tree (AST) and perform transformations at that level. In the related work, we discussed

two source-to-source translators that go to or from CUDA, both of which opt for the latter

36

Gabriel E. Martinez Arroyo Chapter 4. The Design and Implementation of CU2CL 37

option and base their tools on the Cetus framework, a research-oriented, non-production

framework.

Our project seeks to produce a useful tool that can be rapidly adopted by the CUDA and

OpenCL communities. As such, while numerous frameworks and tools for source-to-source

translation exist [6, 22, 27], we chose to explore a number of production-quality and widely-

used, open-source compilers (e.g. gcc, Clang, Open64) to base CU2CL on. Of those, gcc

and Clang have the largest communities behind them. We chose Clang [1], primarily for

the following three reasons. First, though relatively young, Clang has a large and active

community, with many new features and better quality every day (Apple even uses Clang

as a production compiler in OS X). Second is Clang’s design: instead of being a monolithic

compiler binary like gcc, the Clang driver has been created from a set of compiler libraries

in the Clang framework. The libraries, which provide lexical analysis, parsing, semantic

analysis, and much more (see Figure 4.1), may be used independently to create other source-

level tools. Finally, initial support for parsing the CUDA C extensions has been recently

added to clang, thus we did not have to implement the functionality. Therefore, basing

CU2CL on Clang should help it be accepted quicker.

As implicitly noted in Figure 4.2, CU2CL is a Clang plug-in that ties into the main driver,

allowing Clang to handle parsing and AST generation, as during normal compilation. Af-

terwards, CU2CL takes over and walks the generated AST to perform the rewrites. Of

particular interest in designing CU2CL were the AST, Basic, Frontend, Lex, Parse, and

Rewrite libraries. These facilitate file management (Basic), AST traversal and retrieval of

Gabriel E. Martinez Arroyo Chapter 4. The Design and Implementation of CU2CL 38

Figure 4.1: Diagram of the Clang libraries and their dependencies.

information from AST nodes (AST), plug-in interface and access to the compiler instance

(Frontend), preprocessor access and token utilities (Lex), and the actual rewriting mecha-

nism (Rewrite). By composing the libraries and classes included within each, we have created

a robust prototype CUDA-to-OpenCL translator all in under 2000 source lines of code.

4.2 Architecture

In the Clang driver, once the AST has been created, an AST consumer is responsible for

producing something from the AST. As a Clang plug-in, CU2CL provides an AST consumer

Gabriel E. Martinez Arroyo Chapter 4. The Design and Implementation of CU2CL 39

Clang
Driver

CU2CL

Traverse Identify Rewrite

Clang
Framework

CUDA §
Source
Files

AST *

OpenCL †
Kernel
Files

AST
Lex,
RewriteAST

Libraries Used

* Abstract Syntax Tree
§ Compute Unified Device Architecture
† Open Computing Language

OpenCL †
Host
Files

Figure 4.2: High-level view of CU2CL’s architecture as a Clang plug-in.

that traverses the AST, searching for nodes of interest. While Clang’s AST library provides

several simple methods of traversing the tree, we have opted to manually traverse the AST

in order to perform more complex translations. This traversal is done in a recursive descent

fashion, using AST node iterators to recurse into each node’s children. Figure 4.2 gives an

overview of CU2CL’s translation procedure: it traverses the AST for both host and device

code, locates nodes of interest, and rewrites them.

The actual rewriting is done primarily through the use of Clang’s Rewrite library. This

library provides methods to insert, remove, and replace text in the original source files. It

also has methods to retrieve the rewritten file by combining the original with the rewritten

portions. While many traditional source-to-source translators build an AST, modify it, and

then walk the new AST to produce the rewritten file, CU2CL uses the AST of the original

source only to walk the program. Rewrites are done through strings; therefore, we say that

our approach is AST-driven and string-based.

Gabriel E. Martinez Arroyo Chapter 4. The Design and Implementation of CU2CL 40

This approach is quite useful when translating CUDA to OpenCL as the two languages

are based on C. This common ground between the two means that only the CUDA-specific

constructs have to be translated to OpenCL. Given the size of typical applications that make

use of CUDA, the scope [26] of our translations are very small. One of CU2CL’s goals is

to translate CUDA to OpenCL such that further development may continue in OpenCL.

As a document’s structure and comments are of vital importance to developers [25], leaving

them intact is a requirement in CU2CL. By rewriting only the parts of interest and leaving

everything else in the original source as it was we can retain most of the original structure

and comments.

4.3 AST-Based, String-Based Rewriting

There are three areas of novelty in CU2CL’s design as an AST-driven, string-based transla-

tor. First, we have identified common patterns that occur when performing source-to-source

translation within the Clang framework. These are based around common structures in

CUDA C and how to handle the task of identifying AST nodes of interest, as well as han-

dling the rewriting of the original source that they represent. Second, we present a method

for recursively rewriting expressions using Clang’s Rewrite library. Being able to properly

rewrite expressions and their subexpressions is not a trivial task with this string-based ap-

proach, thus we discuss our solution. Finally, we demonstrate how to locate and rewrite

#includes by leveraging a powerful preprocessor, such as the one found in Clang’s Lex li-

Gabriel E. Martinez Arroyo Chapter 4. The Design and Implementation of CU2CL 41

brary. All three of the above insights should aid future work in source-to-source translation

based on the Clang framework, if not in more general uses.

4.3.1 Common Patterns

In translating CUDA constructs to OpenCL, some patterns are found to occur multiple

times. CU2CL’s design takes into account two primary patterns: rewriting CUDA types

and processing CUDA API calls and their arguments. CUDA types may be found in many

declarations and expressions, but the rules to identify and rewrite them are uniform with a

few exceptions. The CUDA API functions share similar patterns in their arguments—what

types are expected and how they are laid out—and also in their return types, as they all

return an enumerated CUDA error value.

There are several places that CUDA-specific type declarations may occur. These include

variable declarations, parameter declarations, type casts, and calls to sizeof, all of which

may occur in both host and device code. Rewriting such types, as previously covered,

can be generalized for both CUDA host code and device code. In the Clang framework,

variable declarations carry with them information about what their full type is (including

type qualifiers) as well as the source location of each part. The base type can be derived

from the full type, which may then be inspected and rewritten accordingly. Types may

be rewritten differently depending on where the type declaration occurred (e.g. host code,

device code, kernel parameters, etc.). The generalizations to type rewriting can be applied

in locations where there is overlap. For example, CUDA vector types (Appendix B.3 in

Gabriel E. Martinez Arroyo Chapter 4. The Design and Implementation of CU2CL 42

the CUDA C Programming Guide) may be found in any of those areas. OpenCL vector

types have slightly different names depending on where they are found—i.e. float4 versus

cl float4—but, for the most part, rewriting vector types can be combined. This pattern

also extends to other CUDA types, like dim3s, which may declared anywhere in a CUDA C

application.

For the purposes of CU2CL’s source-to-source translation, it is preferable to generalize as

much of the rewriting as possible. The most important pattern in CUDA API function calls

occurs when a pointer to a data structure that is to be filled is passed in as an argument. The

equivalent OpenCL API procedures instead return a new structure, as shown in Figure 4.3,

therefore the dereferenced pointer must be retrieved from the argument expression. This

can be done by traversing the expression and checking the types until the proper one is

found. Then the subexpression with this evaluated type may be pulled out and used in

the replacement OpenCL call. For the time being, CU2CL simply dereferences the pointer

argument expression. The uniform enumerated CUDA error return type used by all the

CUDA API calls can be used in rewriting the call’s parent expressions. While CU2CL does

not currently support rewriting the CUDA error type, knowledge of a CUDA call’s possible

returned error values in comparison to the equivalent OpenCL procedure will help in properly

rewriting parent that use the returned error.

Gabriel E. Martinez Arroyo Chapter 4. The Design and Implementation of CU2CL 43

float *newDevPtr;

...

cudaMalloc((void **)&newDevPtr, size);

//Becomes

cl_mem newDevPtr;

...

newDevPtr = clCreateBuffer(clContext, CL_MEM_READ_WRITE, size, NULL, NULL);

Figure 4.3: Example of rewriting a CUDA API call which expects a pointer to an OpenCL
call which does not.

4.3.2 Recursively Rewriting Expression

In performing string-based rewriting using Clang, several complications arise. Of these, be-

ing able to properly rewrite expressions and their subexpressions is of great importance. For

example, when rewriting a kernel, one may encounter an expression such as the one in Fig-

ure 4.4. In order for the outer expression, powf, to be rewritten, the argument expressions

should be processed first. In the example, the arguments are rewritten by replacing refer-

ences to the CUDA built-in variables with calls to OpenCL built-in functions. Then, the

new strings are used in rewriting the top-level expression as a whole. Rewriting expressions

in this recursive manner allows for nearly all expressions in CUDA to be rewritten without

the need for special cases.

Using the Clang framework, we accomplish recursive expression rewriting through the Rewrite

library. With each expression that is being rewritten, we associate a Rewriter object to fa-

cilitate easy string-based rewriting. Expressions are associated with the source range of text

that it represents. Pseudocode for the algorithm is given in Figure 4.5. When an expres-

sion that is not interesting—one containing no CUDA constructs—is encountered, CU2CL

Gabriel E. Martinez Arroyo Chapter 4. The Design and Implementation of CU2CL 44

__powf(x[threadIdx.x], y[threadIdx.y])

x[threadIdx.x] y[threadIdx.y]

x[get_local_id(0)] y[get_local_id(1)]

native_pow(x[get_local_id(0)], y[get_local_id(1)])

Figure 4.4: Example of rewriting an expression and its subexpressions.

recurses down into its child subexpressions in a depth-first manner, invoking the recursive

expression rewriting mechanism. If a subexpression is rewritten, the function will return a

new string which is used to replace the text in the child’s original source range. After all

children have been processed in this manner, the associated Rewriter is used to retrieve the

range of text for the current expression, including all rewrites that took place when in the

subexpressions.

4.3.3 Rewriting Includes

In order to provide a seamless translation experience, some #include preprocessor directives

in the original CUDA source must be removed or rewritten. As #includes are not resident

in the AST we transform, this rewriting has been implemented using the Clang driver’s

preprocessor, as shown in Figure 4.6. CU2CL registers a callback with the preprocessor that

Gabriel E. Martinez Arroyo Chapter 4. The Design and Implementation of CU2CL 45

1: procedure RewriteExpression(expr)
2: type← Type(expr)
3: if type is interesting then
4: return RewriteType(expr)
5: else
6: r ← SourceRange(expr)
7: for all subexpr in SubExpressions(expr) do
8: s← RewriteExpression(subexpr)
9: if rewrite occurred then

10: subr ← SourceRange(subexpr)
11: ReplaceSource(subr, s)
12: end if
13: end for
14: return GetSourceWithRewrites(r)
15: end if
16: end procedure

Figure 4.5: Algorithm detailing how expressions are recursively rewritten.

is invoked upon a new #include being processed. As the preprocessor expands the include

directive, it has all the information necessary to decide whether CU2CL should rewrite the

directive. In particular, CU2CL needs the current file that is being parsed, the name of

the file that is to be included, and whether or not it is a system header. Finally, if the

directive is to be rewritten the source range associated with the #include is passed to

Clang’s rewriting mechanism along with any new text. By tying into Clang’s preprocessor,

CU2CL can avoid the task of locating these directives manually. This adds robustness and

efficiency to CU2CL’s #include rewriting.

The #include rewrites fall into two categories: removing #includes pointing to CUDA and

system header files and rewriting includes to CUDA files that CU2CL has rewritten.

In the first case, CU2CL removes includes to cuda.h and cuda runtime api.h found in any

rewritten files, both host and kernel files. It also removes system header files (e.g. stdio.h)

Gabriel E. Martinez Arroyo Chapter 4. The Design and Implementation of CU2CL 46

Includer.cu

Includer-cl.cpp

Includer-cl.cl

Clang
Preprocessor

CU2CL
#include \

 "CudaFile-cl.cl"

...

#include \

 "CudaFile-cl.h"

...
...

#include \

 "CudaFile.cuh"

...

Figure 4.6: Example of rewriting an #include directive.

from the OpenCL kernel files, as they cannot be used in device code. In Clang, these header

files are identified as those included using the angle bracket notation as opposed to double

quotes.

In the second case, CU2CL rewrites includes to files that have been rewritten. The original

included CUDA source files will be split into two new files, one for the host and one for

device code (e.g. cudaFile.cu will become cudaFile-cl.h and cudaFile-cl.cl). Therefore,

CU2CL rewrites the original #includes so that they point to the new OpenCL files. Figure

4.6 shows an example of how an #include pointing to a CUDA file may be rewritten in a

new host code file. The kernel file will be used during run time compilation of device code,

so it is not #included.

Gabriel E. Martinez Arroyo Chapter 4. The Design and Implementation of CU2CL 47

4.4 Challenges

There are some cases in automatically translating CUDA to OpenCL that make generating

maintainable code difficult. For instance, CUDA is based on C and can therefore make use

of a preprocessor to generate code at compile time. Consequently, while an abstract syntax

tree (AST) representation of the source may be fine for compilation, the resulting translated

code may look very different from the original. In Clang, macros are represented as a series

of tokens, thus, while its libraries provide access to the tokens, they are simply raw and

unparsed. Therefore, the process of rewriting macros would require at least partial parsing

of the tokens contained within. This is a complex task, beyond the current scope of CU2CL.

Another wrinkle in automatic translation occurs when CUDA applications make use of

closed-source libraries built on top of CUDA, such the as CUBLAS or CUFFT libraries

in the CUDA toolkit. A pure CUDA translator like CU2CL cannot fully translate these

applications, since the libraries will continue to contain CUDA constructs. As a result, users

will have to either reimplement the libraries from scratch in OpenCL or find other libraries

written in OpenCL that provide the same functionalities. On the other hand, if a CUDA

library’s source code is available, it could be translated using CU2CL, resolving the problem.

The same issue is seen with user functions expecting CUDA constructs or results from CUDA

calls as arguments, which cannot be handled entirely without rewriting the functions first.

This is typical of utility functions like those found in the CUDA SDK’s cutil library, as well

as common CUDA code shared between several applications like in the SHOC benchmark

suite [8].

Gabriel E. Martinez Arroyo Chapter 4. The Design and Implementation of CU2CL 48

The largest unresolved issue in CU2CL’s translation of CUDA lies in translating applications

with several files that are separately compiled. CU2CL currently expects the main source file

to be a full CUDA application, including all kernels functions and the main method. While

most complications of separate translation could be resolved, generating code to initialize

and build kernel functions without knowledge of where they come from is very difficult. This

could be mitigated by passing CU2CL a path to the kernel files, but this has not yet been

implemented.

Chapter 5

Evaluation

We evaluate CU2CL along three metrics: the translator’s performance, the performance of

translated applications, and the amount of CUDA covered.

5.1 Performance of the CU2CL Translator

While CU2CL will ideally be run once on a given CUDA application, we do not wish to

simply ignore the time to translate the source to OpenCL. This is particularly important if

the end user wishes to convert multiple CUDA applications from the well-established CUDA

ecosystem. Thus, we have evaluated CU2CL’s speed of translation on several applications

from the CUDA SDK and Rodinia benchmark suite. For each application we averaged the

time to translate the code from CUDA to OpenCL over ten runs. Two times are reported:

49

Gabriel E. Martinez Arroyo Chapter 5. Evaluation 50

Source Application Total
Translation
Time (s)

CU2CL
Time
(ms)

CUDA
Lines

Preprocessed
Lines

CUDA SDK

asyncAPI 0.331 3.35 136 13743
bandwidthTest 0.623 7.98 891 34766
BlackScholes 0.606 5.24 347 34222
matrixMul 0.607 5.47 351 34209
scalarProd 0.327 3.75 171 13835
vectorAdd 0.287 3.11 147 11605

Rodinia

Back
Propagation

0.300 4.46 313 12765

Breadth-First
Search

0.301 4.51 306 12594

Hotspot 0.297 4.90 328 11810
Needleman-
Wunsch

0.303 5.46 418 12815

SRAD 0.303 6.56 541 12778

Table 5.1: CU2CL’s translation times for applications from the CUDA SDK and Rodinia
and their original lines of code.

the total time, including the time for the Clang driver to parse and perform semantic anal-

ysis of the program, and the time CU2CL takes to translate a CUDA application. Table 5.1

summarizes our results. The table shows that, for these applications, all translation times

are under a second. Furthermore, note that CU2CL’s translation time is two orders of mag-

nitude smaller than the total translation time. Thus, Clang’s parsing and AST generation

dominates the total time and CU2CL’s overhead is nearly negligible. This implies that larger

applications should be translated in at most the time Clang takes to compile them.

The test applications vary in length from a couple hundred to nearly a thousand lines of

code. We see in Figure 5.1, however, that the total translation time is dependent on the

total number of lines of code, after running the preprocessor. Figure 5.2 shows that CU2CL’s

Gabriel E. Martinez Arroyo Chapter 5. Evaluation 51

translation time is instead dependent on the number of CUDA lines found in the original

source code. This is expected, as it does not traverse parts of the AST that come from

non-CUDA files.

0.0000	

0.1000	

0.2000	

0.3000	

0.4000	

0.5000	

0.6000	

0.7000	

0	
 5000	
 10000	
 15000	
 20000	
 25000	
 30000	
 35000	
 40000	

Tr
an

sl
a'

on
	
 T
im

e	

(s
)	

Lines	
 (Preprocessed)	

asyncAPI	
 bandwidthTest	
 BlackScholes	
 matrixMul	

scalarProd	
 vectorAdd	
 BackPropagaHon	
 Breadth-­‐First	
 Search	

Hotspot	
 Needleman-­‐Wunsch	
 SRAD	

Figure 5.1: Total time for CU2CL to translate an application, including the time for Clang
to parse the source and generate the AST, versus the number of preprocessed lines in the
original CUDA source.

5.2 Performance of CU2CL-Translated Applications

We evaluated the performance of one application from the CUDA SDK, vectorAdd, and three

from the Rodinia benchmark suite, Hotspot, Needleman-Wunsch, SRAD. Each application

was only modified to add code to measure the run time of the program.

Gabriel E. Martinez Arroyo Chapter 5. Evaluation 52

0.0000	

1.0000	

2.0000	

3.0000	

4.0000	

5.0000	

6.0000	

7.0000	

8.0000	

9.0000	

0	
 100	
 200	
 300	
 400	
 500	
 600	
 700	
 800	
 900	
 1000	

Tr
an

sl
a'

on
	
 T
im

e	

(m

s)
	

CUDA	
 Lines	

asyncAPI	
 bandwidthTest	
 BlackScholes	
 matrixMul	

scalarProd	
 vectorAdd	
 BackPropagaJon	
 Breadth-­‐First	
 Search	

Hotspot	
 Needleman-­‐Wunsch	
 SRAD	

Figure 5.2: Time spent in CU2CL translating an application versus the number of lines in
the original CUDA source.

vectorAdd is a very simple application that generates two random vectors in host memory

and copies them over to the GPU’s global memory. The kernel performs the addition and

stores them in a third vector allocated in global memory. The resulting vector is then copied

back to host memory.

Hotspot is a physics simulation that can estimate the temperature of a processor given its

architectural floor plan and some power measurements. As the simulation runs, a series

of differential equations is solved, outputting the average temperature in each part of the

processor.

Gabriel E. Martinez Arroyo Chapter 5. Evaluation 53

Needleman-Wunsch is a global sequence alignment application commonly used in the field

of bioinformatics for the analysis of DNA sequences. Two character sequences are compared

and a two dimensional matrix is filled with scores—calculated using a predetermined scoring

chart—showing how good the match between the two is. The last step is to trace-back

through the matrix and find the aligned sequence, including any insertions or deletions.

Typical implementations would launch a kernel per anti-diagonal in the matrix, but this

implementation breaks the matrix into blocks of which multiple can be computed at once.

This reduces the number of kernel launches, resulting in better performance.

SRAD (Speckle Reducing Anisotropic Diffusion), is a computational method of removing

noise from images produced by ultrasonic or radar imagery applications. The goal is to

do this without losing any of the important features present in the pictures. In the SRAD

implementation, two kernels are launched per iteration of the main loop and memory copies

to and from the GPU are done.

For all of the experiments, we compiled and ran the applications on a commodity desktop

computer with two 2.0-GHz Intel Xeon E5405 quad-core CPUs and 4 GB of RAM. The GPU

device used is an NVIDIA GTX 280, which has 30 streaming multiprocessors (240 total cores)

clocked at 1.3 GHz along with 1 GB of graphics memory. The compute capability, as defined

by NVIDIA, is 1.2.

In running each application, the run time is taken to be the time starting from the first

data copy to GPU device memory from the host and ending after the last copy back to

host memory. For all of these applications, this includes all of the time spent launching and

Gabriel E. Martinez Arroyo Chapter 5. Evaluation 54

Application CUDA
Automatic OpenCL Manual OpenCL

Time % Change Time % Change
vectorAdd 0.0499s 0.0516s +3.33% 0.0521s +4.32%
Hotspot 0.0177s 0.0565s +219.06% 0.0561s +217.14%
Needleman-Wunsch 6.65s 8.77s +31.87% 8.77s +31.86%
SRAD 1.25s 1.55s +24.30% 1.54s +23.47%

Table 5.2: Run times of the four CUDA applications and both OpenCL ports (including
percent differences with respect to the CUDA times) on an NVIDIA GTX 280.

executing kernels. The reason behind not timing the whole application was to get a more

accurate comparison of the CUDA and OpenCL codes; we did not wish to add the time

OpenCL spends compiling the kernels. Each program was executed a total of ten times and

their run times were averaged over those to get the reported numbers.

Table 5.2 summarizes the performance comparisons between the original CUDA code, CU2CL’s

automatically-generated OpenCL, and our manually-ported OpenCL. As can be seen, the

OpenCL vectorAdd performs nearly as well as CUDA for both cases. This is not the case

for the real-world Rodinia applications. SRAD’s OpenCL performance is roughly 25% worse

than its CUDA. The OpenCL Needleman-Wunsch code performs about 30% worse than the

CUDA version. The worst is Hotspot, however, which performs several times worse than the

original CUDA. These results are typical as the NVIDIA OpenCL implementation is known

to not perform as many optimizations as CUDA does [11,15].

In all applications, the automatically-translated OpenCL performs just as well as the manually-

ported OpenCL code. This is to be expected as the differences between the two versions for

each application are minor, and would not be expected to have much performance impact

at all.

Gabriel E. Martinez Arroyo Chapter 5. Evaluation 55

5.3 Coverage of the CU2CL Translator

We have stated that CU2CL can handle the majority of CUDA constructs found in most

applications. In order to justify this claim, we studied the top CUDA calls in the CUDA

SDK and Rodinia benchmark suite, summarized in Tables 5.3 and 5.4. In each, the fifteen

most used calls are given, alongside the number of times they were found, a running count

of the total percentage those calls cover, and how many files they were used in. As can be

seen from the tables, the top three CUDA runtime API calls, by the number of times called,

are cudaFree, cudaMalloc, and cudaFree, the most basic device memory operations. This

is expected, as doing any useful work on the GPU will require device memory allocation and

copying to and from host memory—again shown in the number of files they are found in.

CU2CL already supports these CUDA calls among several others, as detailed in Chapter 3.

In supporting just the top five calls in the CUDA SDK—though it can translate many more

than that—CU2CL covers 51.5% of the total CUDA runtime API calls found. In supporting

five of the top calls in Rodinia, it covers 73.0% of the total calls.

While these theoretical results initially led the decision of which CUDA API calls to support

first, they do not provide much insight into how many real applications are covered by

CU2CL. For more concrete results, we noted the number of lines that had to be manually

ported when translating applications from the CUDA SDK and Rodinia. This study shows

how successful our translator already is.

CU2CL supports a large majority of the CUDA runtime API. In particular, it can auto-

matically translate API calls from the major CUDA modules: Thread Management, Device

Gabriel E. Martinez Arroyo Chapter 5. Evaluation 56

CUDA Call Times Called Running %
of Total

Files Used In

cudaFree 222 12.69 81
cudaMalloc 220 25.27 80
cudaMemcpy 207 37.11 68
cudaThreadExit 126 44.31 70
cudaThreadSynchronize 126 51.52 57
cudaGetErrorString 58 54.83 14
cudaGetDeviceProperties 57 58.09 54
cudaSetDevice 53 61.12 52
cudaEventRecord 50 63.98 11
cudaEventDestroy 29 65.64 11
cudaBindTextureToArray 26 67.12 17
cudaEventCreate 25 68.55 10
cudaGraphicsUnmapResources 25 69.98 18
cudaGraphicsUnregisterResource 25 71.41 16
cudaGraphicsMapResources 25 72.84 18

Table 5.3: Top 15 CUDA calls in the CUDA 3.2 SDK.

CUDA Call Times Called Running % of
Total

Files Used In

cudaFree 104 22.37 17
cudaMemcpy 99 43.66 17
cudaMalloc 78 60.43 17
cudaMemcpyToSymbol 33 67.53 9
cudaThreadSynchronize 21 72.04 12
cudaMemset 19 76.13 8
cudaCreateChannelDesc 17 79.78 3
cudaUnbindTexture 13 82.58 3
cudaGetErrorString 10 84.73 5
cudaSetDevice 9 86.67 8
cudaBindTexture 8 88.39 4
cudaGetLastError 8 90.11 5
cudaFreeArray 6 91.40 2
cudaGetDeviceProperties 6 92.69 6
cudaMemcpy2D 6 93.98 2

Table 5.4: Top 15 CUDA calls in the Rodinia benchmark suite.

Gabriel E. Martinez Arroyo Chapter 5. Evaluation 57

Source Application Lines Changed %

CUDA SDK

asyncAPI 136 4 97.06
bandwidthTest 891 9 98.99
BlackScholes 347 4 98.85
matrixMul 351 2 99.43
scalarProd 171 4 97.66
vectorAdd 147 0 100.00

Rodinia

Back Propagation 313 5 98.40
Breadth-First Search 306 8 97.39
Hotspot 328 7 97.87
Needleman-Wunsch 418 0 100.00
SRAD 541 0 100.00

Table 5.5: CU2CL’s automatic translation coverage of a range of applications.

Management, Stream Management, and Event Management. The translator also supports

the most commonly used methods of the Memory Management module, including calls to

allocate device and pinned host memory. As a result of CU2CL’s robust translation meth-

ods, alongside its support for many CUDA constructs, it can automatically translate many

applications almost in their entirety. Table 5.5 shows this for applications from the CUDA

SDK and the Rodinia benchmark suite. In each case only a few lines of host or kernel code

had to be manually ported.

Of manual changes, none are particularly difficult to handle and support will be added as

CU2CL evolves, save for one exception. As pointed out in work for the other CUDA to

OpenCL translator [19], device memory declarations rewritten to cl mems may require a

propagation of type rewrites in other declarations, such as methods that expect a device

pointer. CU2CL does not currently cover this. This is not a limitation of the Clang frame-

work, but is instead caused by the difficulty of the problem, requiring control flow analysis

of the program.

Chapter 6

Conclusion

6.1 Summary

In this thesis we have presented CU2CL, an automated source-to-source translator from

CUDA to OpenCL. By leveraging the production Clang compiler framework, we were able

to take advantage of its powerful source-level tools to perform the translation. We used

Clang’s driver to efficiently parse the CUDA source files and also employed its versatile

AST and Rewrite libraries to traverse CUDA applications and go through with complicated

transformations in an elegant manner.

In designing and implementing CU2CL, we determined common patterns that could be of use

for future work in Clang-based source-to-source translators. We also demonstrated methods

of recursively rewriting expressions and of efficiently rewriting include directives through the

use of the Clang driver’s preprocessor.

58

Gabriel E. Martinez Arroyo Chapter 6. Conclusion 59

We gave a detailed procedure of CU2CL’s automatic translation, showing how specific CUDA

constructs mapped to OpenCL and highlighting portions that have no direct equivalent in

OpenCL. Experiments on sample applications from the official CUDA SDK and the Rodinia

benchmark suite showed that the OpenCL code generated by CU2CL can perform as well

as codes manually-translated. Unfortunately both versions of the ported program were

slower than the native CUDA; however, previous work [7, 15] shows that by applying some

optimizations to the OpenCL kernels and host code, the performance gap can be narrowed.

As an early prototype, we focused on flexibility and correctness, therefore we chose to support

a useful subset of the language. We have shown that the subset chosen covers most of the

CUDA runtime API calls used in many applications. To further display CU2CL’s CUDA

coverage, we showed how several applications could be translated almost in their entirety

without any manual translation. In effect, our translator can already perform the majority

of the OpenCL porting effort.

6.2 Future Work

The work presented in this thesis may be extended in a several ways. A few possible directions

are listed here:

Generalize rewriting patterns to rewriting framework: The common patterns intro-

duced in Chapter 4 and used to modularize CU2CL’s rewriting can be applied outside

of translating CUDA to OpenCL. Rewriting types in a general manner along with

Gabriel E. Martinez Arroyo Chapter 6. Conclusion 60

making intelligent use of uniformity in an API that is to be rewritten are both useful

in many other source transformation scenarios. Therefore, generalizing these kinds of

patterns into a framework for rewriting program source codes would be very useful

work. This could be done via polymorphism, similar to how Clang currently provides

visitors for statement nodes in the AST.

Create an optimizing compiler for device-specific OpenCL optimizations: Although

OpenCL kernels may run on any OpenCL-capable device does not mean they will per-

form well without device-specific optimizations, as already shown in [7,15]. Preliminary

results from running CU2CL’s automatically-translated OpenCL of the applications in

Chapter 5 on an AMD Radeon HD 5870 gave poor results. Though the GPU has a

higher theoretical peak performance than the NVIDIA GTX 280, its run times were

0.075s, 2.11s, and 15.24s, for vectorAdd, SRAD, and Needleman-Wunsch, respectively.

The values are all at least 50% worse than the OpenCL run times on the NVIDIA GPU

presented in Table 5.2. Buildling an optimizing compiler like [28] on top of CU2CL

would allow for CUDA applications to be both translated and optimized for specific

devices. As in the optimizing compiler, CU2CL would need to identify regions in ker-

nels and host code where optimizations could be applied. Further down the road, a

framework for user-supplied optimization passes could be implemented.

Extend CU2CL’s CUDA support: Currently CU2CL’s translation is incomplete; we

have shown that it “only” covers 50% of the CUDA runtime API, with no support for

the driver API. Therefore, we are interested in seeing other modules of the CUDA run-

Gabriel E. Martinez Arroyo Chapter 6. Conclusion 61

time API supported, especially the Texture and Graphics modules (including OpenGL

support). Along the same lines support for the CUDA driver API in CU2CL would

come in handy for many applications. Given that the OpenCL API and CUDA driver

API are very similar this should be easier than translating CUDA runtime API has

been thus far. Along the same lines, CU2CL’s translation process has areas that could

still be improved. Of utmost importance would be a method for translating CUDA ap-

plications with source files that are separately compiled, as this remains quite a limiting

factor. We would also like to add the ability to propagate type changes throughout an

application, as is already done in CUDAtoOpenCL [19]. While several other possible

features are being worked on, the two mentioned here affect more CUDA applications

than the rest.

Translate OpenCL to CUDA: It has been shown that NVIDIA’s OpenCL compiler pro-

duces slower code than its CUDA compiler [11,15]. Therefore, one possible “optimiza-

tion” for OpenCL applications when running on NVIDIA GPUs is to convert them to

CUDA. This would allow developers to continue to write their applications in OpenCL

and yet take advantage of CUDA’s higher performance. Translating from OpenCL to

the CUDA runtime API would be difficult, as OpenCL gives you access to features not

available in the runtime API. However, given the similarities between OpenCL and the

CUDA driver API, translating between the lower-level APIs should be much simpler.

Furthermore, such future work could make use of the translation techniques presented

in this thesis for source-to-source translation with Clang, which should aid the process.

Bibliography

[1] “clang”: a C language family frontend for LLVM. http://clang.llvm.org/. [Online;

accessed 15-April-2011].

[2] OpenCLTM Optimization Case Study: Diagonal Sparse Matrix Vector Mul-

tiplication. http://developer.amd.com/documentation/articles/pages/

opencl-optimization-case-study.aspx. [Online; accessed 10-July-2011].

[3] Parboil Benchmark suite. http://impact.crhc.illinois.edu/parboil.php. [Online;

accessed 15-April-2011].

[4] PTX ISA 2.2. http://developer.download.nvidia.com/compute/cuda/3_2_prod/

toolkit/docs/ptx_isa_2.2.pdf. [Online; accessed 10-July-2011].

[5] Rodinia: A Benchmark Suite for Heterogeneous Computing. http://lava.cs.

virginia.edu/Rodinia/rodinia.htm. [Online; accessed 10-July-2011].

[6] I.D. Baxter, Christopher Pidgeon, and M. Mehlich. DMS: Program Transformations

for Practical Scalable Software Evolution. In Proceedings of the 26th International

Conference on Software Engineering, pages 625–634. IEEE Computer Society, 2004.

62

http://clang.llvm.org/
http://developer.amd.com/documentation/articles/pages/opencl-optimization-case-study.aspx
http://developer.amd.com/documentation/articles/pages/opencl-optimization-case-study.aspx
http://impact.crhc.illinois.edu/parboil.php
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/ptx_isa_2.2.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/ptx_isa_2.2.pdf
http://lava.cs.virginia.edu/Rodinia/rodinia.htm
http://lava.cs.virginia.edu/Rodinia/rodinia.htm

Gabriel E. Martinez Arroyo Bibliography 63

[7] Mayank Daga, Thomas R W Scogland, and Wu-chun Feng. Architecture-Aware Opti-

mization on a 1600-core Graphics Processor. Technical report, Virginia Tech, 2011.

[8] Anthony Danalis, Gabriel Marin, C. McCurdy, J.S. Meredith, P.C. Roth, K. Spafford,

V. Tipparaju, and J.S. Vetter. The Scalable HeterOgeneous Computing (SHOC) Bench-

mark Suite. In Proceedings of the 3rd Workshop on General-Purpose Computation on

Graphics Processing Units, pages 63–74. ACM, 2010.

[9] Gregory Diamos. The design and implementation ocelot’s dynamic binary translator

from ptx to multi-core x86. Center for Experimental Research in Computer Systems,

2009.

[10] R. Dominguez, Dana Schaa, and David Kaeli. Caracal: Dynamic translation of runtime

environments for gpus. In Proceedings of the Fourth Workshop on General Purpose

Processing on Graphics Processing Units, number March, page 7. ACM, 2011.

[11] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, and Jack

Dongarra. From CUDA to OpenCL: Towards a Performance-portable Solution for Multi-

platform GPU Programming, 2010.

[12] Khronos Group. OpenCL. http://www.khronos.org/opencl/. [Online; accessed 15-

April-2011].

[13] M.J. Harvey and G. De Fabritiis. Swan: A tool for porting CUDA programs to OpenCL.

Computer Physics Communications, 182(4):1093–1099, April 2011.

http://www.khronos.org/opencl/

Gabriel E. Martinez Arroyo Bibliography 64

[14] Martin Jurecko, Jana Kocisova, Jan Busa Jr., Tomas Kasanicky, Marek Domiter, and

Marian Zvada. Evaluation Framework for GPU Performance Based on OpenCL Stan-

dard. 2010 First International Conference on Networking and Computing, pages 256–

261, November 2010.

[15] Kazuhiko Komatsu, Katsuto Sato, Yusuke Arai, Kentaro Koyama, H. Takizawa, and

H. Kobayashi. Evaluating performance and portability of OpenCL programs. In The

Fifth International Workshop on Automatic Performance Tuning (iWAPT2010), 2010.

[16] Chris Lattner and V. Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. Optimization, 2004.

[17] Seyong Lee, S.J. Min, and Rudolf Eigenmann. OpenMP to GPGPU: a compiler frame-

work for automatic translation and optimization. In Proceedings of the 14th ACM SIG-

PLAN symposium on Principles and practice of parallel programming, pages 101–110.

ACM, 2009.

[18] S.I. Lee, T.A. Johnson, and Rudolf Eigenmann. Cetus–an extensible compiler infras-

tructure for source-to-source transformation. Languages and Compilers for Parallel

Computing, (9703180):539–553, 2004.

[19] Deepthi Nandakumar. Automatic Translation of CUDA to OpenCL and Comparison

of Performance Optimizations on GPUs. 2011.

[20] NVIDIA. CUDA Toolkit & SDK. http://developer.nvidia.com/

cuda-toolkit-sdk. [Online; accessed 15-April-2011].

http://developer.nvidia.com/cuda-toolkit-sdk
http://developer.nvidia.com/cuda-toolkit-sdk

Gabriel E. Martinez Arroyo Bibliography 65

[21] NVIDIA. CUDA Zone. http://www.nvidia.com/object/cuda_home_new.html. [On-

line; accessed 15-April-2011].

[22] D. Quinlan. ROSE: Compiler support for object-oriented frameworks. Issues, 2(3):215–

226, 2000.

[23] J. Stratton, S. Stone, and W. Hwu. MCUDA: An efficient implementation of CUDA

kernels for multi-core CPUs. Languages and Compilers for Parallel Computing, pages

16–30, 2008.

[24] R Strzodka, M Doggett, and a Kolb. Scientific computation for simulations on pro-

grammable graphics hardware. Simulation Modelling Practice and Theory, 13(8):667–

680, November 2005.

[25] M.L. Van De Vanter. Preserving the documentary structure of source code in language-

based transformation tools. Proceedings First IEEE International Workshop on Source

Code Analysis and Manipulation, pages 131–141, 2001.

[26] J. Van Wijngaarden and Eelco Visser. Program transformation mechanics: a classifica-

tion of mechanisms for program transformation with a survey of existing transformation

systems. Technical report UU-CS, (2003-048), 2003.

[27] Eelco Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and

systems. Domain-Specific Program Generation, (February), 2003.

http://www.nvidia.com/object/cuda_home_new.html

Gabriel E. Martinez Arroyo Bibliography 66

[28] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. A GPGPU compiler for memory

optimization and parallelism management. Proceedings of the 2010 ACM SIGPLAN

conference on Programming language design and implementation - PLDI ’10, page 86,

2010.

	Introduction
	Motivation
	Related Work
	Contributions
	Document Organization

	Overview of GPGPU Frameworks
	CUDA
	OpenCL

	Source-to-Source Translation
	CUDA Data Structures
	CUDA Device Memory
	Runtime API Procedures
	Thread Management
	Device Management
	Stream Management
	Event Management
	Memory Management

	Device Procedures
	Kernel Calls
	OpenCL Limitations

	The Design and Implementation of CU2CL
	Approach
	Architecture
	AST-Based, String-Based Rewriting
	Common Patterns
	Recursively Rewriting Expression
	Rewriting Includes

	Challenges

	Evaluation
	Performance of the CU2CL Translator
	Performance of CU2CL-Translated Applications
	Coverage of the CU2CL Translator

	Conclusion
	Summary
	Future Work

	Bibliography

