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ABSTRACT 

Breast cancer is the most common cancer among women. Statistics released by the 

American Cancer Society (1999) show that every 1 in 8 women in the United States is 

likely to get breast cancer during her lifetime. Thermography, also known as thermal or 

infrared imaging, is a procedure to determine if an abnormality is present in the breast 

tissue temperature distribution, which may indicate the presence of an embedded tumor. 

In the year 1982, the United States Food and Drug Administration (FDA) approved 

thermography as an adjunct method of detecting breast cancer, which could be combined 

with other established techniques like mammography. Although thermography is 

currently used to indicate the presence of an abnormality, there are no standard protocols 

to interpret the abnormal thermal images and determine the size and location of an 

embedded tumor. This research explores the relationship between the physical 

characteristics of an embedded tumor and the resulting temperature distributions on the 

skin surface. Experiments were conducted using a resistance heater that was embedded in 

agar in order to simulate the heat produced by a tumor in the biological tissue. The 

resulting temperature distribution on the surface was imaged using an infrared camera. In 

order to estimate the location and heat generation rate of the source from these 

temperature distributions, a genetic algorithm was used as the estimation method. The 

genetic algorithm utilizes a finite difference scheme for the direct solution of Pennes 

bioheat equation. It was determined that a genetic algorithm based approach is well suited 

for the estimation problem since both the depth and the heat generation rate of the heat 

source were accurately predicted. Thermography can prove to be a valuable tool in 

locating tumors if combined with such an algorithm. 
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Chapter 1 Introduction 
 

 The temperature of the human body on the surface of the skin depends on the 

metabolic activity, the blood flow and the temperature of the surroundings. Any 

abnormality in the tissue, such as the presence of a tumor, alters the normal temperature 

on the skin surface due to increased metabolic activity of the tumor. Therefore, abnormal 

skin temperature profiles can be used as indicators of a disease. 

 The earliest known use of thermal diagnostic of diseases by measuring the surface 

temperature of the skin is found as early as 480 B.C. in works of Hippocrates. Mud slurry 

was spread over the skin of the patient and allowed to dry. The areas on the skin that 

were found to dry earlier than others were thought to show the presence of a disease. 

  In the 1950s, the US military started research into infrared monitors to detect the 

movement of troops at night. Lawson (1956) was the first to propose the use of 

thermographic detection of breast cancer, when he observed that the local temperatures of 

the skin over a tumor were significantly higher (about 2 – 3 degrees) than normal skin 

temperatures. Lawson and Chughtai (1963) demonstrated that the regional temperature 

difference over an embedded tumor was due to convection effects associated with 

increased blood perfusion, and increased metabolism around the tumor. Gershon-Cohen 

(1965) at the Albert Einstein Medical Center, introduced thermal imaging in United 

States. He reported 4,000 cases with a false-positive rate of 6 percent. A paper published 

by the Department of Health Education in the year 1972 identified the position of thermal 

imaging as being beyond its experimental stage.  

 

1.1 Objectives 

  

The specific objectives of this research were to: 

 

1. develop a generic numerical model that can be used to incorporate tumors 

embedded in the tissue, such as tumors in the breast 
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2. develop an estimation procedure for locating embedded tumors and estimating 

their heat generation rate 

3. develop a simple experimental procedure to test the model and the estimation 

program, and evaluate the effect of model parameters on the results. 

 

 This document explains how the objectives of this work were addressed. In 

Chapter 2, a literature review is presented to provide insights into some of the key topics 

related to this research. These topics include medical thermal imaging, the biological 

basis of tumor growth, and the temperature profiles in a medium due to the presence of 

an embedded heat source. A review of genetic algorithms is provided since it is used as 

the main estimation method in this research. In Chapter 3, a finite difference scheme 

based on the Pennes bioheat equation is developed. The usefulness of both gradient-based 

estimation method and genetic algorithms are evaluated. Chapter 4 describes genetic 

algorithms and how they are used in the current research. A detailed description is then 

given in Chapter 5 about the experimental setup and the data acquisition system. In 

Chapter 6, the temperature profiles obtained from the experiments are discussed, and 

compared with temperature profiles obtained from finite difference scheme based on 

Pennes bioheat equation. The estimation program is validated using both simulated and 

experimental data. Finally, the conclusions and recommendations as a result of this study 

are presented in Chapters 7 and 8, respectively. 
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Chapter 2 Literature Review 
 

 Several areas of scientific literature provide crucial insights into the methods used 

in this research. The main areas include medical thermal imaging, the biological basis of 

tumor growth, and the temperature profiles in a medium due to the presence of an 

embedded heat source. A literature review of genetic algorithms is also provided since it 

is later used as the main estimation method. This literature provides a sufficient basis for 

understanding the methods used in the current research. 

 

2.1 Medical Thermal Imaging: Past and Present 

 

 This section briefly analyzes the causes for failure of thermal imaging as a 

medical diagnostic tool, the current status of thermal imaging in relation to other 

detection techniques, and the future prospects of thermal imaging as a tool for detecting 

cancer. 

2.1.1 Causes for Failure of Thermal Imaging in the Past 

  

 In 1973, The Breast Cancer Detection and Demonstration Projects (BCDDP) were 

initiated at 29 locations around the United States, with a total participation of about 

280,000 women. The National Cancer Institute (NCI) and the American Cancer Society 

jointly established these projects for screening a large number of women with breast 

cancer. The purpose of the screening process is to identify those with particular 

distinguishing characteristics that may arouse suspicion about the presence of a disease. 

Diagnosis refers to the process of identifying the nature or cause of the disease. The three 

techniques that were used in screening are physical examination, mammography and 

thermography.  
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 During the beginning of these projects, there was an interest in evaluating the 

potential of thermography as a substitute for mammography in screening for cancer. It 

was found that only 41 percent of the breast cancers were detected when using 

thermography, during the first screening. The remaining thermographic interpretations 

were either abnormal or unknown. In 1978, thermography was discontinued as a routine 

test. In the final recommendation, the working group stated that "thermal imaging does 

not appear to be suitable as a substitute for mammography for routine screening in the 

BCDDP". However, it was also recommended that dismissal of thermal imaging should 

not be interpreted to indicate the future of this technique. It was realized that more 

research is needed to develop thermal imaging as an adjunct to mammography in 

detecting cancer. 

 Joann Haberman, who participated in these projects, reported that one of the 

shortcomings of these projects was the inadequacy of training provided to the technicians 

and radiologists. Out of the 29 demonstration project centers, only 5 centers had 

availability of expertise in thermal imaging. The remaining centers had technicians that 

were either inadequately trained in thermal imaging techniques or had no experience at 

all. It was after 18 months that the project had begun, NCI established training center for 

the technicians and radiologists to learn proper techniques of thermal imaging. 

 Another factor that contributed to the failure of thermal imaging was the lack of 

control over the physical surroundings where the imaging was performed. It was reported 

that many of the experiments were performed in mobile vans that had inadequate heating 

and cooling capabilities. Images were taken in an uncontrolled thermal environment that 

severely degraded their quality. 

 Before the 1980s, there were no standard sets of rules for the reading of thermal 

images to detect cancer. The thermal images were interpreted based on the judgment of 

the radiologists to determine if an abnormality was present. 

  Thus, the lack of expertise in obtaining thermal images and their interpretation, 

absence of high-resolution infrared cameras, and inadequately performed experiments, all 

contributed towards failure in establishing thermography as a reliable technique in 

detection of cancer. 
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2.1.2 Thermal Imaging in Relation to Existing Methods 

  

 Apart from physical examination, some other methods for detection of breast 

cancer include Ultrasound, Mammography, Magnetic Resonance Imaging (MRI) and 

Microwave Thermography. This section discusses these common techniques and their 

strengths and drawbacks.  

Ultrasound 

Ultrasound is one of the first exploratory tools that is used for evaluating a lump. 

Since the tissue of the body is inhomogeneous, it reflects and scatters pulses of high-

frequency sound directed at it (Mottley, 1995). Ultrasound uses a pulse-echo mechanism 

in which high-energy sound waves are directed into the body and the echoes created by 

the interaction of the target and the ultrasound beam are received by transducers 

(Thomenius, 2003). It can distinguish between a cyst and a solid lump. Solid lumps 

require further examination in order to determine the presence of cancer. According to 

Warren (2001), breast ultrasound is low cost and radiation free and can be useful if 

combined with family history, but it is not recommended as a stand alone technique for 

breast cancer detection. This is due to its low sensitivity for ductal microcalcifications in 

the breast. 

Mammography 

 Mammography is currently the most reliable technique for detecting early-stage 

breast cancer (Yaffe, 1995). It uses high-energy x-ray beams that can penetrate through 

most of the soft material in the human body. The image is captured on the film located 

opposite to the projector. According to U.S. Food and Drug Administration (FDA), 

mammography can detect 85 percent of all breast cancers, several years before a lump 

can be noticed. Warren (2001) has compiled some important advantages and 

disadvantages of mammography as a screening method. The advantages include low cost 

of examination, acceptable sensitivity and specificity. The disadvantages include ionizing 

radiation which is a potential carcinogen and increases the risk of cancer, compression of 
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the breast tissue in order to maintain the quality of the images, difficulty of detection in 

radiographically dense breasts, and need for highly skilled interpretation.  

Magnetic Resonance Imaging (MRI) 

 The principle of MRI is based on the random distribution of protons that possess 

magnetic properties. Hydrogen nuclei are commonly used, although many other nuclei 

like 2H, 13C, 19F, 23Na, 31P and 39K may also be used for the purpose of imaging 

(Schaefer, 2003). Once the body is placed inside cylindrical magnets, MRI creates a 

steady state within the body by exposure to a steady magnetic field that has a magnitude 

of approximately about 1-2 Tesla (30,000 times stronger than the earth's magnetic field). 

The body is then exposed to radio waves to change the steady-state direction of the 

protons. Exposure to radio waves is then stopped and the electromagnetic transmissions 

from the body are captured at a given frequency. The transmitted signal is used to create 

images of the body. 

 Hata et al. (2004) conducted a study on 183 breast cancer patients in order to 

compare the techniques of MRI with mammography and ultrasound. The MRI included 

the use of a contrasting agent. The breast cancer detection rates using MRI, 

mammography and ultrasound were found to be 93.7, 84.6 and  97.3 percent respectively. 

 Lee et al. (2004) have identified several problems with MRI. The specificity of 

MRI is lower than its sensitivity which means that there are high levels of false-positive 

results. Another drawback is the high cost of the MRI examination and the follow-up 

costs. Although MRI does not involve any exposure to harmful radiations, it is potentially 

unsafe if there are any metallic implants in the body. Any metal objects would interfere 

with the magnetic field during the examination. The use of a contrast agent makes it an 

invasive procedure. 

Microwave Thermography 

Microwave thermography uses the radiation emitted from the body in the 

microwave region, approximately 0.001  to 0.3 m in wavelength. An antenna to receive 

the microwave radiation is placed in either in direct contact or at a short distance from the 

skin surface. This is done to minimize the loss at the interface of tissue and air. 
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Barrett and Myers (1975) reported a temperature sensitivity of about 0.1 °C and a 

spatial resolution of 0.01 by 0.02 m in sensing temperature distribution below the skin 

surface in human and animal tissue. They used microwave receivers to measure the 

microwave radiation emitted from subcutaneous tissues located at depths of several 

centimeters within the body.  

Barrett et. al (1980) performed a breast cancer detection study on about 5000 

female patients. Using microwave thermography, they collected data with radiation 

wavelengths  0.091 and 0.230 m. At 0.230 m wavelengths, the true-positive and true-

negative detection rates were found to be comparable to those of infrared thermography 

(about 0.7). From this study it was concluded that if microwave and infrared 

thermography are used together for screening purposes,  then the true-positive and true-

negative detection rates can both be as high as 0.9, thus reducing the number of patients 

that need to be exposed to X-rays.  

2.1.3 Future Prospects of Medical Thermal Imaging 

  

 Thermography promises to be a reliable adjunct technique in early cancer 

detection that can be combined with other established techniques like mammography. It 

still remains an adjunct technique since it cannot detect microcalcifications (mineral 

deposits) in the breast that can be seen only by mammography.However, it offers a means 

that is non-invasive and completely free of side effects such as exposure to harmful 

ionizing radiation. According to Amalu (2003), the abnormality in thermal images is the 

earliest known indicator (8-10 years in advance) for the possible development of breast 

cancer in the future. However, as mentioned earlier, it is not currently being used as a 

diagnostic tool that can identify and find the location of the tumor. 

 The Fraunhofer Institute for Applied Solid State Physics (IAF) has developed 

sensors that have a particularly high temperature resolution. The new sensors can 

measure differences in temperature up to 0.005 degrees. The development of high-

resolution digital infrared imaging, computerized image storage and assessment, and 

sophisticated technologies for image enhancement and analysis, offers renewed hope in 

thermography as a means of detecting cancer. The problems encountered with first 
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generation thermal imaging systems such as unacceptable detector sensitivity, thermal 

drift, calibration, analog interface, etc. have been worked out in the last few decades. 

2.2 How is Thermal  Imaging Performed? 

 All objects with a temperature above absolute zero (-273 K) emit infrared 

radiation from their surface. The Stefan-Boltzmann law, also known as Stefan's law, 

states that the total energy radiated per unit surface area of a blackbody in unit time 

(blackbody irradiance), is directly proportional to the fourth power of its absolute 

temperature. This law can be mathematically expressed as: 

 

                                                                                                                    (2.1) 
4TE σ=

 

where 

E = total emitted radiance in W/m2

σ = 5.6697 × 10-8 W m-2 K-4   (Stefan-Boltzmann constant) 

T = absolute temperature of the emitting material in Kelvin. 

  

In order to maintain a constant temperature within the human body, the excess heat 

produced during metabolic activity is dissipated in part, in the form of infrared radiation. 

The wavelength of the radiation that leaves the surface of the skin at any given point is 

proportional to the local temperature of the skin at that point. Infrared rays are found in 

the electromagnetic spectrum within the wavelengths of 0.75 micron - 1mm, and the 

human skin emits infrared radiation mainly in the 2 - 20 micron wavelength range, with 

an average peak at 9-10 microns. Since the emissivity of human skin is extremely high 

(within 1% of that of a black body), sensors in medical systems can measure infrared 

radiation emitted by the skin and convert it directly into precise temperature values using 

the Stefan-Boltzmann law. Each calculated temperature is encoded with a different color 

to generate a  temperature map.   

  Thermographic assessments must take place in a controlled environment. The 

principal reason for this is the nature of human physiology. Changes from a different 

external environment, clothing, etc. can produce undesirable thermal effects. According 
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to a report by Amalu (2001), abstaining from sun exposure, cosmetics and lotions before 

the procedure, along with 15 minutes of acclimation in a florescent lit, draft and sunlight-

free, temperature and humidity-controlled room maintained between 18-22 °C, and kept 

to within 1 degree of change during the procedure, is necessary to produce a 

physiologically neutral image free from interference.    

 

2.3 Modeling Heat Transfer in Tumors 

2.3.1 Biology of Tumor Growth 

  

 This section presents the biological basis of tumor growth that is later used in 

developing a model to get temperature distributions around tumors. The growth of tumors  

described here is based on the model proposed by Judah Folkman (1976). The growth 

usually starts with a single abnormal cell produced during the process of cell division. A 

single deviant cell capable of reproducing itself can rapidly develop into an in-situ lump 

that is characteristic of the earliest stage of a solid tumor. Cancer is more likely to 

develop in tissues in which cells divide rapidly. Breast tissue is especially sensitive to 

developing cancer since the female hormone estrogen promotes rapid division of breast 

cells, increasing the risk of cancer.  

 During the early stage of its development, the tumor is only a few millimeters in 

diameter and resembles a compressed sphere in shape. The tumor is called avascular 

since it has not yet developed its own vascular network of blood vessels for the supply of 

nutrients to its cells. The abnormal tumor cells require adequate supply of oxygen, amino 

acids and glucose in order to divide and reproduce rapidly. During the early stage of 

tumor development, these nutrients are secured by means of diffusion through 

surrounding healthy tissue. The removal of waste materials produced during cell division 

is also achieved through diffusion process. In case of a two dimensional tumor, the 

surface area and the volume of the tumor would increase at the same rate. However, since 

a tumor tends to grow in all dimensions, its shape more closely resembles that of a 

sphere. The diffusion process only supplies nutrients to the outer cells and may be 
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incapable of nourishing the cells at the center. The tumor eventually reaches a steady 

state and may lie dormant for many years. 

 According to Folkman, a critical stage in the growth of a tumor is reached when it 

starts releasing a diffusible chemical substance called Tumor Angiogenesis Factor (TAF). 

The angiogenic factors released by the tumor diffuse into the surrounding tissue. The first 

reaction to this stimulus is that the endothelial cells in the neighboring vessels and closest 

to the chemical source start to modify their structure. After being stimulated by the TAF, 

the endothelial cells begin to migrate and accumulate at the site where the concentration 

of angeonic factors first reached a critical level. The vessel wall starts to swell as 

endothelial cells stack up to form sprouts. These capillary sprouts increase in size by 

gaining the endothelial cells from parent blood vessel. At a certain distance from the end 

of the sprout, endothelial cells begin to multiply. The sprouts are initially parallel but they 

grow towards each other as they elongate. Adjacent sprouts eventually fuse together at 

their tips to form loops (anastomoses). This is followed by the beginning of circulation of 

blood. 

 Thus, the release of TAF triggers the growth of new capillaries towards the tumor 

mass that eventually pierce through it. The growing network of blood vessels efficiently 

supplies nutrients and removes waste material. The rate of cell division is much higher in 

the vascular stage and the tumor grows at a fast pace. Unlike healthy cells that are exact 

copies of their parent cells, the tumor cell division produces variants that are much more 

destructive. These cells may spread to other parts of the body and set up new independent 

colonies.    

2.3.2 The Bioheat Equation 

 

The two main mechanisms of heat transfer in biological tissue are conduction due 

to gradient in temperatures inside the tissue, and the process of convection by the 

perfusing blood. Blood perfusion is defined as the blood volume flow exchange per unit 

volume of the tissue. One of the ways of measuring it is in units of milliliters of blood per 

second per milliliter of the tissue. While the flow of blood through arteries and veins is 

directional, blood perfusion is non-directional in nature and represents the dispersal of 
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blood through capillaries and extracellular spaces of the tissue. The governing equation 

presented by Pennes is later used in developing the numerical model. The steady state 

Pennes bioheat equation describing the flow of thermal energy through a control volume 

of tissue is given by: 

 

                                                                                                                          (2.2) ρ 0)(2 =+−+∇ mabbb QTTCTk &ω

 

where T is the unknown temperature, k is the thermal conductivity, ωb is a term that 

represents blood perfusion, Cb is the specific heat,  ρb is the density, Ta is the arterial 

temperature, and Qm is volumetric metabolic heat generation rate inside the tissue. In the 

presence of a tumor, the metabolic heat generation rate Qm is significantly higher due to 

higher metabolic activity in the tissue. As discussed in the literature review, the tumor 

also has higher blood perfusion ωb due to the growing network of capillaries and blood 

vessels that it develops. 

 

2.4 Temperature Distributions due to a Tumor 

 Lawson and Chughtai (1963) were among the first to note that a correlation exists 

between the temperature rise and the degree of malignancy of a tumor. Temperature 

measurements were taken by using the technique of  direct thermistor thermometry 

during masectomy operations. Based on this study, they claimed that this difference in 

temperature cannot be accounted for on the basis of increased circulation. They further 

claimed that “vascular flow drains off the heat energy and thus actually cools the tumor 

in spite of serving the tumor’s increased metabolic demands.”  

Draper and Boag (1971) studied thermal patterns on the skin surface over veins 

and tumors. They estimated the rate of heat generation within metabolizing tissue using 

the rate at which oxygen is consumed, or in case of anaerobic metabolism, the rate of 

formation of carbon dioxide. The rates of oxygen consumption in human tissue, for 

different parts of the body, were compiled from Roskelley et al. (1943), Albritton (1954), 

and Booth et al. (1967). The oxygen consumption in turn depends on the nutrients 

available to the tissue. Carcinoma cells consume nutrients and oxygen at a much higher 
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rate compared to normal tissue. Based on these studies it was estimated that if all the 

energy available is released as heat, the maximum rate of heat production in a carcinoma 

is not likely to be greater than 25000 W / m3. In order to study the thermal effect of 

tumors, they were treated as buried heat sources with a constant temperature of 37 ° C. 

The resulting surface temperature profiles showed a wide and diffuse shape if the tumor 

was large and located deep below skin surface, but they show sharp peaks if the tumor 

considered was small and located closer to the skin surface. For several different heat 

generation rates in the tumor, the minimum size of the tumor necessary for any 

thermographic detection was calculated as a function of depth.  

Nilsson et al. (1980) performed experimental studies and theoretical calculations 

to study surface temperature increases over an artificial heat source implanted in the 

human body. They found that the maximum increase in temperature on the skin surface 

above the embedded heat source is almost lineraly related to both the depth of the heat 

source and its power output. It was also concluded that a high power output or close 

proximity of the heat source to the skin surface is necessary in order to produce 

measurable temperature differentials. 

 Sudarshan et al. (1998) studied the temperature distributions in breast cancer by 

considering a two-dimensional model first proposed by Romrel et al. (1991). In this 

model, Pennes bioheat equation was used to describe the flow of thermal energy. The 

breast was modeled with various layers of different thicknesses. The model consists of a 

subcutaneous fat layer, followed by a gland layer and a deep muscle layer. The muscle 

layer lies adjacent to the thoracic wall. The thoracic wall is maintained close to the 

arterial temperature of 37 °C by the circulation of blood. The values of thermal 

conductivity, metabolic heat production and blood perfusion for each of these layers were 

taken from Werner and Buse (1988). The heat transfer coefficient h, due to the combined 

effect of convection, radiation and evaporation was adopted to be 13.5 W/m2 °C from 

Pennes (1948). Temperature profiles were generated by varying the tumor size, depth and 

the blood perfusion rate. The temperature profiles showed that the surface temperature 

reaches a maximum directly above the location of the tumor, and drops down as we move 

away on either side.  This effect increases with increase in tumor size. Based on the study 

of different perfusion terms, it was concluded that the skin perfusion term has a greater 
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effect on the maximum surface temperature than due to an increase in the gland perfusion 

term. It was also observed that the effect on the surface temperature is higher for low 

seated tumors than those that are deeply located. For a deep seated tumor and a given 

perfusion set, the maximum surface temperature is almost the same, regardless of the 

tumor size. 

  

2.5 Genetic Algorithms (GAs) 

2.5.1 Background and Description 

 

 Genetic Algorithms were first developed by John Holland (1975) at the 

University of Michigan. Holland’s book titled “Adaptation in Natural and Artificial 

Systems”, published in 1975, is generally acknowledged as the beginning of the research 

of genetic algorithms. Genetic algorithms borrow theories of evolutionary biology and 

mathematically apply them to optimization and parameter estimation problems. 

According to Yunker (1993), GAs were designed to “mimic the strategies that biologists 

have learned from evolution and apply them to optimization problems”.  GAs use 

techniques that are derived based on Darwin’s principle of “survival of the fittest”. This 

means that when a population of biological species evolves over time, characteristics that 

are beneficial to the survival of a species tend to be passed on to successive generations 

because the individuals carrying them get more opportunities to breed. Using GAs, the 

natural concepts of reproduction, crossover and mutation have been successfully applied 

to problems in search and optimization. According to Goldberg (1989), “GAs combine 

survival of the fittest among string structures with a structured yet randomized 

information exchange to form a search algorithm with some of the innovative flair of 

human search. In every generation, a new set of artificial creatures (strings) is created 

using bits and pieces of the fittest of the old; an occasional new part is tried for good 

measure.”  
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2.5.2 Genetic Algorithms in Comparison to Traditional Methods 

 

 GAs differ from traditional optimization and search procedures in four 

fundamental ways: 

1. GAs work with a coding of the design variables, instead of the design variables 

themselves. The design variables are usually coded as finite-length strings. 

 

2. In GAs, the search is from a population of design points, instead of jumping from 

one design point to another. This population of design points evolves from one 

generation to another. Fig. 2.1 shows the contour plot of function F(x1,x2) in the 

design space.  

 

 

 

 

 

 

 

 

 

 

 
Genetic search (starting 
population) 

   

Traditional hill-climbing 

Fig. 2.1 A genetic search technique starts out with a population of initial points. 
 

Here x1 and x2 are the design variables. When a genetic search is used to find the 

optimum, we start with a population of initial points instead of just one initial point. 

This makes GA searches more robust than traditional methods. According to 

Goldberg (1989), “the point-to-point method used in traditional optimization is 

dangerous because it is a perfect prescription for locating false peaks in multi-modal 

search spaces. By contrast, GAs work from a rich database of points simultaneously 

climbing many peaks in parallel. Thus, the probability of finding a false peak is  

reduced over methods that go point-by-point”. 

 14



 

3. GAs work directly with function values. Unlike traditional methods, they do not 

need information about the derivative of the function. In cases where derivative 

information is hard to obtain, GAs can work fairly well. 

 

4. Genetic reproduction is based on probabilistic rules and not on deterministic 

search schemes. GAs use random choices to guide a highly exploitative search. 

 

2.5.3 Recent Applications of Genetic Algorithms 

 

 The robustness of GAs have resulted in their use in diverse fields such as 

optimization in engineering and computer science, structural optimization, automatic 

programming and machine learning, biotechnololgy, economics and social sciences, 

financial forecasting, art, music, and so on. The “Handbook of Genetic Algorithms” by 

Davis (1991) covers a wide range of applications of GAs in the real world. Some of the 

recent applications of GAs in the field of structural optimization, heat transfer and 

medical imaging are outlined below. 

 Goldberg and Samtani (1986) applied a GA to the optimization of a plane truss. 

The objective of the problem was to minimize the weight of the structure given the 

maximum and minimum stress constraints on members of the truss. The areas of the truss 

members were used as design variables and the GA consisted of roulette wheel selection, 

crossover and mutation operations. Furuya and Haftka (1993) used GAs with integer 

coding in order to find the optimal locations for the actuators on large space structures. 

Doyle (1995) applied GAs in order to find the size and location of a crack in a frame 

structure. 

 Rubinsky and Davalos (1998) were among the first to attempt to use a GA for 

solution of problems in the field of heat transfer, particularly the conduction heat transfer 

equation. They successfully applied GAs to solve the problem of a 2-D slab with fixed 

temperature boundary conditions. However, the algorithm worked well only with coarse 

mesh sizes (9 unknown nodes). The size of the search space of total possible solutions 
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grew enormously with even a modest increase in the refinement of the mesh. Tsourkas 

and Rubinsky (2003) realized the source of these difficulties to be the np-hard nature of 

the problem and used a novel “genetic engineering” operator to resolve these difficulties. 

The novel “genetic engineering” operator is similar to gradient-like bitwise improvement 

technique mentioned by Goldberg (1989). Using this new algorithm, Tsourkas and 

Rubinsky were able to solve much finer meshes than was previously possible. The 

algorithm was tested with fixed temperature, convection and prescribed heat flux 

boundary conditions. Garcia (1999) applied GA for experimental design optimization and 

thermophysical parameter estimation of composite materials, where correlated 

parameters and low value of sensitivities make gradient-based methods unstable. 

 Fitzpatrick, Grefenstette and Van Gucht (1984) used GAs to perform medical 

image registration as a part of a larger digital subtraction angiography (DAS) system. 

DAS is used in order to examine the interior of a suspect artery by injection of a dye into 

the artery. Two x-ray images are taken, one before the injection of the dye, and one after 

the injection. The two images are converted to a digital format and subtracted pixel by 

pixel. The result is a subtracted image that shows the interior of the suspect artery. If the 

only disparity between the two x-ray images is the addition of the dye, then the difference 

image shows only the dye-coated regions. Since movement of the patient during the x-ray 

procedure can produce images that are misaligned, alignment or registration of the two 

images is necessary prior to the subtraction procedure. Fitzpatrick et al. used a bilinear 

mapping formula with unknown coefficients to transform the pre-injection image. A GA 

was then implemented to search for the unknown coefficients that minimized the 

difference between pre-injection and post-injection images using the mean absolute 

image difference as the criterion. Numerical experiments with both simulated images and 

real x-ray images were successful. 

From the applications described above, it can be seen that GAs can be used as 

robust non-gradient based optimization procedures. Therefore, in this research, these 

algorithms were implemented to determine the location and heat generation rate of an 

embedded tumor, using a binary encoding for these parameters. 
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Chapter 3 Numerical Model and Estimation 
Methodology 

 

3.1 Numerical Model  

Due to uncertainty in the shape and location of an embedded tumor acting as a 

heat source, exact analytic solutions become impossible to apply and numerical solutions 

are employed instead. The numerical finite difference model used to predict the surface 

temperature distribution is also called the direct model and is based on the bioheat 

equation that was given in Equation (2.2). In this study, a simplified model was used, as 

shown in Fig. 3.1. The metabolism in a tumor is represented as a planar heat source in 

this model to be compatible with the experimental validation described later in Chapter 5. 

The model is highly flexible since it can be modified to be used with any combination of 

boundary conditions, and has the ability to include both internal heat generation of the 

tissue and blood perfusion. For example, in case of breast cancer, the cylinder can be 

used to represent the breast, with lower boundary maintained at core body temperature of 

37 ° C, while all other boundaries exposed to convection. 

 

 

 

 

 

 

 

 

 

 

 

   

R

Z

θ

R

Z

θ
Fig. 3.1 Finite difference scheme in cylindrical coordinates 
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The numerical model was employed with both simulated and experimental data in 

order to test the validity of this model. The model has the radius and height of the 

cylinder to be 0.073 m and 0.0635 m respectively. The shaded area in Fig. 3.1 has a 

radius of 0.023 m and represents the region of the tumor that has different thermal 

properties than the rest of the domain representing healthy tissue. The cylinder was 

considered insulated on all sides except the top surface. The top surface of the cylinder 

was exposed to convection. The results of the simulation and experiments are presented 

in Chapter 6. Although the model developed here is in a cylindrical coordinate system, it 

can easily be modified for use in other coordinate systems.  

3.1.1 Finite Difference Scheme 

 

 The finite difference method employed here has been developed by using the 

approach taken by Patankar (1980) and Vick (2003). It is based on the two-dimensional 

steady state heat equation in cylindrical coordinates that is given by: 
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where T is the unknown temperature, k is the thermal conductivity, and S(r,z,T) is the 

source term. According to Vick (2003), the source term provides a lot of flexibility for 

representation of the physical problem. It can incorporate both the heat generation term 

and the fin term. The source term is further broken down into a temperature independent 

term Sc(r, z) and a temperature dependent term Sp(r, z, T). Equation (3.1) can now be re-

written as: 
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Equation (3.2) has the same form as the steady state Pennes bioheat equation given by 

Equation (2.2). Therefore, it was concluded that a discretization scheme based on 
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Equation (3.2) would be well suited for modeling the flow of thermal energy through a 

control volume of tissue. The Sc(r, z) term can be used to specify the internal heat 

generation rate within the tissue, while the Sp(r, z, T) term gives the option of 

incorporating blood perfusion in the model. The two-dimensional domain is discretized 

as shown in Fig. 3.2. The domain is completely filled with control volumes and the gird 

points at the four boundaries are surrounded by imaginary control volumes that have zero 

thickness. The advantage of using this scheme is that boundary conditions such as given 

temperature, heat flux and convection can be incorporated directly into the finite 

difference equations. 
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Fig. 3.2 Discretization of two-dimensional domain in cylindrical coordinates (Vick, 
2003) 
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A typical control volume in the domain surrounded by its east, west, north and south 

neighbors is shown in Fig. 3.3. 
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Fig. 3.3 A control  volume in the two-dimensional domain (Vick, 2003) 
 

 

Equation (3.2) is integrated over the area of control volume (i, j) shown in Fig. 3.3. 
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Equation (3.4) is integrated both in the radial and vertical direction. The temperature 

gradient terms are evaluated using piecewise linear profiles between the grid points. We 

get an equation of the form: 
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Here Sci and Spi represent average values of Sc and Sp in the control volume. The 

interface conductivity at the east, west, north and south faces of the control volume (i,j) is 

represented by kE, kW, kN and kS respectively. It is useful to cast Equation (3.5) into the 

following form: 
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jjijijijijijijiji zrrSpaSaNaWaEa ∆∆++++= ,,,,,,,,                                                     (3.7e) 
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In general, Equation (3.6) can be thought of as having the form: 

 

∑ =− bTaTa nbnbPP                                                         (3.8) 

 

where TP represents the temperature of the central grid point, subscript nb denotes a 

neighbor, and the summation is taken over all neighboring cells.  

 The formulation given by Equation (3.6) is valid for internal control volumes of 

the domain, ranging from control volume 2 to ii+1. The zero control volumes at the 

boundaries  are used to incorporate the boundary conditions that can be specified as some 

combination of heat flux and convective conditions. For example, the boundary condition 

at the outer surface of the cylinder, for some specified heat flux qR
” and convective 

conditions T∞ and hR, can be written as: 
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The discretized form of Equation (3.9), expressed in terms of coefficients is: 
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If the boundary condition is a specified temperature TR, then Equation (3.10) can be used 

with the following coefficients: 

 

aWii+2, j = 0,  aii+2, j = 1,  bii+2, j = TR 

 

The boundary conditions at r = 0, z = 0 and z = H can be derived in a similar manner. 

 

Solution of the Algebraic Equations 

 

 The solution of the algebraic equations is carried out using a method known as 

ADI (Alternating-Direction Implicit) that was introduced by Peaceman and Rachford 

(1955). In the ADI method, the discretized equations for the grid points along a line in the 

chosen direction are considered. The temperatures of the two neighboring lines are 

considered to be known and equal to their last updated values. The discretized equations 

can then be assembled in the form of a tridiagonal matrix where all elements are zero 

except the diagonal and the elements to the immediate left and right of the diagonal. The 

temperatures along the chosen line can then be solved easily using the Tridiagonal Matrix 

Algorithm Method (TDMA), also  known as the Thomas Algorithm. This procedure is 

carried out for all lines in the radial direction, and then all lines in the vertical direction. 

By alternating the directions in which the TDMA is used, the rate of convergence is 

accelerated  because the information from the boundary reaches the interior quickly. A 

representation of the ADI method is shown in Fig. 3.4. 

 

 

 

 

 

 

 

 

 23



 

Fig. 3.4 Representation of the ADI method in the two dimensional domain 
 

 Computer codes that implement the finite difference method, the ADI method and 

the TDMA are given in Appendix A,B and C respectively. 

 

3.2 Estimation Methodology 

 

The parameter estimation method used in this study requires both the computed 

and the experimentally determined temperature data. First, the objective function is 

described. Then, some gradient-based methods for evaluating the objective function are 

presented. These are followed by a sensitivity analysis of the problem in order to show 

the shortcomings of the gradient-based estimation methods. Finally, a genetic algorithm 

is presented as the parameter estimation method used for this problem. A flowchart 

showing the estimation procedure is shown in Fig. 3.5. 
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Fig. 3.5 A flowchart of the estimation program 
 

3.2.1 The Objective Function 

The objective function used here is a sum of the squares function that relates the 

data from the model to the corresponding experimental data. It measures the distance 

between the estimated and the measured skin surface temperatures. The sum of the 

squares is defined as: 

 

                                                                     (3.12) )]([)]([ ββ TYTY −−= TS
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where Y and T are vectors containing the measured and estimated temperatures, 

respectively, and subscript T denotes the transpose of the vector. The estimated 

temperatures are obtained by the solution of the direct problem using estimates for the 

unknown parameters.  The vector containing the estimates for unknown parameters is 

denoted by β. In this study, the unknown parameter vector β contains the depth and the 

heat generation rate of the tumor. A plot of sum of squares function for a tumor located 

0.035 m from the base and having heat generation rate of 1400 W/m3, is shown is Fig. 

3.6. 

 

Fig. 3.6 The variation of sum of squares function with tumor height and heat 
generation rate 
 

3.2.2 Gradient Based Parameter Estimation Approach 

 

The most commonly used parameter estimation techniques in heat transfer 

analysis are Gauss minimization and Box-Kanemasu Interpolation method. These 

techniques are described below. 
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The Gauss Minimization Method 

 

 Gauss minimization is a gradient based method that minimizes the objective 

function by setting its derivate with respect to the unknown parameters equal to zero. 

Gauss minimization is an iterative method that specifies both the direction and magnitude 

of corrections to the parameters, until the parameters that minimize the objective function 

are found. This method is effective in seeking minima if the initial estimates are in the 

general region of the minimum (Beck and Arnold , 1972). 

A necessary condition at the minimum value of objective function S is that the 

derivative of  S with respect to the parameter vector β must be equal to zero: 

 

( )[ ] ( )[ ] 02 =−∇−=∇ ββS T TYTββ                                                            (3.13) 

 

 The first term on the right hand side of equation (3.13) is the derivative of the 

estimated temperature vector T with respect to the parameter vector β. The transpose of 

this matrix is called the sensitivity matrix. 

 

   X(β) ≡                               (3.14) ( )[ TT βTβ∇− ]
 

Without showing the dependence of X on parameter vector β, the sensitivity matrix can 

be written as: 
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 Each element of the sensitivity matrix X(β) is called a sensitivity coefficient, 

denoted by Xij. For this case, a sensitivity coefficient is defined as the first derivative of 

an unknown temperature Ti, with respect to a parameter βj.  
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Two simplifying assumptions are used in the Gauss method. The matrix X(β) is 

replaced by X(b), where b is an approximation for β. The temperature vector T(β) is 

approximated by the first two terms of the Taylor series of T(β) about b. Using these two 

assumptions, Equation (3.13) can be written as: 
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Equation (3.17) is solved iteratively to find the parameter vector b(k+1) that 

minimizes the sum of squares objective function. The symbol k denotes the index of 

iterations. 
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Box-Kanemasu Estimation Method 

 

A modification to the Gauss method was proposed by Box and Kanemasu (1972) 

that uses the direction given by the Gauss method but modifies the step-size. The Box-

Kanemasu method was modified by Bard (1974) to incorporate a check that the sum of 

squares S decreases from one iteration to another. This method is called the modified 

Box-Kanemasu estimation method. 
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The step-size used in the Gauss method is modified by the introduction of a scalar 

interpolation factor h(k+1). The index (k+1) denotes that h may be iteration dependent. 

Equation (3.18a) can be re-written as: 
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The scalar interpolation factor h(k+1) is calculated as: 
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 In the Gauss method, the scalar interpolation factor given by Equation (3.19b) is 

set equal to 1.  A flow chart of the Box-Kanemasu method is presented in Appendix D. A 

computer code to implement Box-Kanemasu method is given in Appendix E. 

3.2.3 Sensitivity Coefficients 

 The sensitivity coefficients due to a parameter βj can be written in dimensionless 

form as: 
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where  is the maximum temperature difference on the surface of the medium. The 

term  

MAXT∆

jiT β∂∂ /  represents the change in temperature at a location i on the surface due to a 

small change in the parameter βj. For the problem at hand, the parameters considered for 

sensitivity analysis are the radius and the depth of the tumor below the skin surface. The 

plot of dimensionless sensitivity coefficients due to radius and depth are shown in Fig. 

3.7 and Fig. 3.8 respectively. These are sensitivity coefficients at a point on the surface 

that lies directly above the location of the embedded tumor.  
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Fig. 3.7 Dimensionless sensitivity of temperature to tumor size for different tumor 
locations 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 Dimensionless sensitivity of temperature to tumor location for different 
tumor sizes 
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Fig. 3.7 show that the sensitivity of the surface temperature to the radius of the 

tumor, is independent of the location. Similarly, Fig. 3.8 shows that the sensitivity of 

surface temperature to the depth of the tumor is independent of its size. The sensitivity 

coefficients can provide valuable insights into the estimation problem. If the sensitivity 

coefficients have a small magnitude, or if the sensitivity coefficients due to different 

parameters exhibit a correlation with one another, then the estimation problem becomes 

very difficult to solve. In order to examine the correlation of temperature sensitivity to 

tumor size and location, the dimensionless sensitivity coefficient curves due to these two 

parameters are shown superimposed in Fig. 3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9 Dimensionless sensitivity of temperature to tumor location and radius 
 

 From Fig. 3.9 it can be seen that the sensitivity coefficients due to tumor radius 

and depth have a small magnitude. This makes the use of gradient-based estimation 

techniques difficult and ineffective. Therefore, a non-gradient based approach was chosen 

as the parameter estimation method for this problem. It can also be seen from Fig. 3.9 

that the sensitivity coefficients exhibit strong linear dependence on one another if the 

tumor is small in radius or if it is located below a certain depth. Due to this strong linear 

dependence, it becomes very difficult to estimate both the size and location of the tumor 

simultaneously. As mentioned earlier in Section 3.1, these results were derived by 
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representing a three dimensional tumor as a planar heat source. Slightly different results 

can be expected if the heat source is spherical.  

 

3.2.4 Parameter Estimation Using Genetic Algorithms 

 

As noted in the last section, due to the drawbacks of the traditional estimation 

methods, a non-gradient based estimation approach was needed for solving the problem. 

GAs are robust and reliable and they do not suffer from difficulties encountered by 

traditional methods. GAs were therefore chosen to implement the estimation procedure. 

A detailed description of these algorithms is presented in the next chapter. 

3.2.5 Confidence Intervals 

 

 The confidence intervals give us an indication of how far an estimate may be 

expected to be from the true value. The confidence interval can be thought of as a 

probability region for the mean value. A 95 percent confidence interval around a 

temperature estimate can be calculated by using the standard Student’s-t formula: 

 

                                                                                                                                  (3.21) 
n
stTCI −±= n )1,025.0(

 

where T  is the average measured temperature at a given location, s is the standard 

deviation around the average, and n is the number of observations in the sample. 
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Chapter 4 Genetic Algorithms (GAs) 
 

 This chapter discusses genetic algorithms, the non-gradient based method selected 

to estimate the size and heat generation rate of the tumor.  The algorithm is suited to the 

linear difficulties illustrated by the sensitivity analysis of the problem. A flowchart 

showing the procedure of the GAs is shown in Fig. 4.1. 
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Fig. 4.1 Iterative procedure of a genetic algorithm 

  

4.1 Description 

 

Genetic algorithms function by generating an initial population of individuals or 

potential solutions to the optimization problem.  This initial population reproduces and 

creates “children” or the next population.  This new generation of individuals is evaluated 

for fitness.  The fittest individuals (those that best minimize the objective function) will 

be selected to reproduce, passing their traits on to the next generation.  The cycle is 
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complete when subsequent populations cease to change or after a fixed number of 

iterations.  Ideally, this is when the optimum solution has been found. 

4.1.1 Encoding 

 Genetic algorithms are organized in the same manner as the genetic material of a 

cell. Each individual’s cell contains chromosomes that dictate physical and psychological 

traits.  Chromosomes, in turn, are constructed of genes. A gene encodes a specific feature 

of the individual. For example, a person's eye color is dictated by a specific gene. The 

actual value of the gene is called an allele. So the eye color gene may produce brown 

eyes. In GAs, a chromosome is an array of genes, and a gene is an array of data. 

 

                                   Gene1      Gene2       Gene3         Gene4 

    (11000010, 00001110, 001111010, 10100011) 

 

The optimization algorithm uses this chromosome-gene structure to code the design 

parameters of the problem.  The parameter of interest are converted to a binary string of 

numbers that can be modified by the code and optimized.  Multiple parameters are coded 

into a single string.  

4.1.2 Selection 

 Natural selection occurs according to what individuals are best suited to 

reproduce.  For the genetic algorithm, this criterion is known as ‘fitness’.  Fitness relates 

how each chromosome of parameters satisfies the objective function.  The closer the 

parameters come to fulfilling the objective function, the higher would be the numerical 

fitness assigned to that parameter.  All these fitness values are added together to 

determine the total fitness of the group.  The fitness of each chromosome can be viewed 

as a percentage of the total group fitness.  This concept can be thought of as a pie chart 

with different sized wedges.  Bigger wedges are chromosomes that have higher fitness.   

 The pie chart then becomes a roulette wheel where, at random, different 

chromosomes are selected to be parents to the next generation.  Fitter individuals have a 

greater chance of selection, though less fit individuals may still be picked. Fig. 4.2 

illustrates the roulette wheel method of selection. 
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Fig. 4.2 Roulette wheel concept of selection 
 

4.1.3 Genetic modifications 

 The population of a genetic algorithm can be modified in a number of ways.  The 

implementation of GA in this work uses crossover and mutation as the primary methods 

of genetic evolution, though others exist.  These two methods are primarily responsible 

for the genetic evolution of traits. 

Crossover 

Crossover can be viewed as the mating between two parents (two different 

chromosomes) to produce two new individuals.  The two parents are spliced together to 

create new individuals, as illustrated below. 

 

Parent 1: a b c d e f   Child 1: a b c d E F 
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Parent 2: A B C D E F  Child 2: A B C D e f 

 

Two of the parent’s genes (e f and E F) were exchanged to create children. The position 

where crossover occurs is determined randomly and may incorporate any number of 

genes. 

Mutation 

 Mutation is an evolutionary instance where a new trait, not inherited from any 

parent, occurs in the population.  Again, a randomly selected bit will change from a zero 

to a one, or vice versa, to introduce new values of parameters into the population.  

Mutation is important because a population can become “inbred” and too similar in the 

wrong direction through pure crossover.  Mutations alter only a small fraction of the 

strings. The probability of mutation can be set as low as roughly one in every 10,000 

symbols flips from 0 to 1, or vice versa. Mutation alone does not generally advance the 

search for a answer, but it does provide assurance against the development of a uniform 

population incapable of undergoing further evolution. 

 The probability of crossover versus mutation is important to finding convergence 

in the system.  However, there is no set answer to how often each should occur.  The 

right balance is particular to the problem and must be selected carefully.  

 It is also of interest to note that not all mutations and crossovers will be beneficial.  

Some will not improve the population and will not continue to subsequent generations.  

 

4.2 Genetic Algorithms in Detection of Embedded Tumors 

   

 The concept of genetic algorithms has been modified for use with the problem of 

detecting embedded tumors. The potential solution (chromosome) contains the tumor 

height and its heat generation rate as the two genes. In the current implementation of the 

code, 5 bits are used to represent each gene. Therefore, each chromosome has 10 bits. 

This representation is shown graphically in Fig. 4.3. The population size has been chosen 

to be 20. The code is currently written to perform a set number of iterations. 
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Fig. 4.3 Representation of the solution.  
 

The parameters contained in each chromosome are changed from their binary 

representation to floating point representation using: 

 

)(
12

mabaP nbi −
−

+=                                                        (4.1) 

where 

Pi = decimal value of i-th parameter, 

a = lower limit of the search interval, 

b = upper limit of the search interval, 

nb = number of bits used to represent the parameter, and 

m = the decimal value of the parameter in binary form. 

  

   The fitness of each chromosome is evaluated using the sum of the squares 

objective function given by Equation (3.12). The fitness f of a chromosome is related to 

the sum of the squares function using: 

 

)(βSSf MAX −=                         (4.2) 

 

where 

SMAX = maximum value of sum of squares possible, 

S = sum of the squares generated using parameter set (chromosome) β. 

 The finite difference scheme shown in Fig. 3.1 takes the height and heat 

generation information from an individual chromosome and determines the subsequent 

temperature response of the tissue. The closer the finite difference temperature response 
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is to the actual temperature response, the lower will be the sum of squares S, and higher 

would be the fitness of that chromosome. Chromosomes of higher fitness are more likely 

to be selected to reproduce and contribute their genetic material to the next generation.  A 

probability of mutation of 0.10 and a probability of crossover equal to 0.40 are used to 

determine how members of the population will reproduce to bring forth the next 

generation.  A flowchart of the solution method is presented in Fig. 4.4. 
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Temperature Data
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Finite Difference 

Model 

 

 

 

 

 

 

Fig. 4.4 GA based estimation procedure 
 

The computer code for implementing the GA is included in Appendix F. A flowchart 

showing the estimation methodology in detail is presented in Appendix H. 
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Chapter 5 Numerical and Experimental Validation 
 

5.1 Numerical Validation 

5.1.1 Validation of Finite Difference Model 

 

 The numerical finite difference model was described in Section 3.1. In order to 

establish the accuracy of the model, a commercial Finite Element Method (F.E.M.) 

package called ANSYS was utilized. A three-dimensional (3D) ANSYS model was 

generated with the heater embedded 0.03 m below the surface and having a heat 

generation of 0.12 W. The finite difference code was run using the same parameters that 

were used to generate the ANSYS model. The property values used in this evaluation, 

taken from Werner and Buse(1988), are summarized in Table 5.1.  

 

Table 5.1 Property values used for Evaluation of the Model  
 

Property Value Units 

Thermal conductivity 0.48 W/m - °C 

Heat generation rate 700 W/m3

Convection coefficient 13.5 W/m2 °C 

Ambient temperature 21.5 °C 

 

 

 

 

 

 

5.1.2 Validation of Parameter Estimation Program 

  

 In order to achieve confidence and check for errors in the parameter estimation 

program described in Chapter 4, the program was tested with simulated data. The 

properties used for these simulations are given in Table 5.1. The model was run with 

specified values for the depth and the power of the heat source. These values were 

selected so that the effect of varying both the parameters can be observed. Random errors 
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of ± 0.1 °C were added to the temperature output from the model in order to create a 

simulation of experimental data. This was the maximum error expected in the actual data 

to be obtained using a thermal imaging camera. The simulated data were then used in the 

estimation program. It was expected that the parameters given by the estimation program 

should be close to the parameter values that were used to produce the data. Any bias error 

should be eliminated since the parameter estimation program uses the same numerical 

model that was used to generate the simulated data. After running the estimation 

procedure, the percentage errors in each location were calculated by using the total height 

of the cylinder, 0.064 m, as the base value. The percentage errors in the power were 

calculated using the maximum expected power, 1.27 W, as the base value. 
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5.2 Experimental Validation 

  

 Several experiments were carried out in order to validate the ability of the 

estimation procedure to accurately predict the magnitude and depth of an embedded heat 

source. For each parameter set, two runs of the experiment were conducted in order to 

gain confidence in the recorded data. Data from both runs were then used with the 

estimation procedure in order to predict the desired parameters. A parameter set in this 

study is defined as a particular combination of the depth of heat source and its heat 

dissipation. Experiments were conducted for a total of six different parameter sets in 

order to explore the effect of both the depth of the heater and its heat dissipation. The 

experiments were designed  to meet the following criteria: 

 

1. The geometry of the medium needed to be cylindrical to match the finite 

difference solver developed in the cylindrical coordinate system. This was done in 

order to simplify the problem. Reducing the problem from three to two 

dimensions greatly reduces the amount of temperature data to be considered and 

the computational resources involved in running the parameter estimation 

program. The model and the estimation procedures can also be used with multi-

dimensional complex geometries.  

 

2. The heat source needed to be circular in shape, have a uniform heat dissipation 

over its surface area, and placed at the center of the cylinder. This was to ensure 

that conditions of symmetry in the angular direction can be used to justify the 

two-dimensional treatment of the problem.  

 

3. Since the surface temperatures in thermal imaging are sensitive to the temperature 

of the environment, the experiment needed to be performed in a room maintained 

at a constant temperature. In a clinical setting, the room is maintained between 

18-22 °C and held to within 1 °C of change (Amalu, 2003). The illumination, 

sunlight, and humidity of the room are carefully controlled. 
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4. The temperature was to be measured using both infrared camera and the 

thermocouples. Since the temperature data were obtained using an infrared 

camera, thermocouples were also needed to calibrate the camera. In a clinical 

setting, cameras are usually calibrated by recording the temperature of a black 

body that is maintained at a known temperature value. 

 

The experimental apparatus and setup are presented in Section 5.1. The procedures and 

test conditions of this experiment are described in Section 5.2.  

 

Experimental Setup 

 

 Figures 5.1 and 5.2 show the configuration used to perform the experiment.  

 

Fig. 5.1 Schematic of the experimental setup 
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 Fig. 5.2 Photograph of the experimental setup 
 

 The setup consisted of a lexan circular cylinder filled with agar phantom and 

mounted on top of a square base plate.The cylinder and base plate assembly, along with 

its dimensions, is shown in Fig. 5.3.  

 
                       (a)                                                                   (b) 

Fig. 5.3 Figure showing the (a) photograph and (b) dimensions of the cylinder and 
base plate assembly 
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Four equally spaced holes were drilled into the cylinder at different depths for inserting 

the heater wire. The cylinder was covered with 0.02 m thick natural cork strip insulation 

around its circumference. The cylinder was insulated on all sides except the top surface 

that was exposed to convection.  

 A resistance heater was embedded in agar and connected to a 0-60 V DC power 

supply. The resistance heater is shown in Fig. 5.4. The heater has a radius of 0.023 m and 

a resistance of 32 Ohms. A digital multimeter was set up to probe the voltage across the 

heater. 

 

 
 

Fig. 5.4 The resistance heater used as the heat source in the experiment 
 

 The PV-320T model of the infrared camera from Electrophysics was used for 

thermal imaging. This camera is shown in Fig. 5.5. Specifications for the camera can be 

found in Appendix I1. 

 

 

Fig. 5.5 The Infrared camera used in the experiment 
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Experimental Procedures 

 

 A 1.0 percent solution of Difco Agar, Technical© was prepared by dissolving 

agar in boiling water. The solution was then allowed to cool for a few hours until it 

acquired semi-solid jelly-like consistency. The agar was poured into the insulated 

cylinder and the resistance heater was embedded in the agar at the required depth. Care 

was taken to ensure that the heater was placed exactly at the center of the cylinder and it 

is not disturbed when agar is poured on it. The heater wire protruding through the hole in 

the cylinder was connected to the power supply. The power supply was used to adjust the 

voltage applied across the heater. By changing the voltage across the heater, the power 

dissipated by the heater could be adjusted to desired value. A total of six experiments 

were carried out, grouped into experimental sets A and B. The combinations of the depth 

of the heater and its power dissipation for each of the 6 experiments are given in Table 

5.2.  

 

Table 5.2 Parameters used for different experimental runs 

 

Exp. Heater Depth (m) Power (W) 

A1 0.013 0.12 

A2 0.013 0.78 

A3 0.025 0.12 

A4 0.025 0.78 

B1 0.038 1.12 

B2 0.051 1.12 

 

  The parameters for each of these six experiments are shown graphically in Fig. 

5.6. The curve in Fig. 5.6 was prodcued using the numerical model described in Section 

3.1. For a given depth of the heater, the curve shows the minimum power level that is 

necessary to produce a 0.5 °C temperature differential on the surface of the cylinder. 
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Therefore, for any combinations of the parameters that lie below the curve, the heater 

would not detectable based on the infrared image. 

 

 

Fig. 5.6 The parameters used for different experimental runs and the limits of 
steady-state detection of the heater assuming a mimimum temperature rise of 0.5 
degrees on the surface 

 

 The cylinder was aligned with the infrared camera such that its top surface was 

visible in the infrared images acquired using the Velocity software. For each experiment, 

the setup was left undisturbed for about 4 hours after turning on the power to ensure a 

steady-state temperature field in the specimen.  

 The infrared camera was calibrated with the help of thermocouple temperature 

data. The thermocouple was placed on the surface of the cylinder and used for measuring 

several steady-state temperature values. These steady-state temperatures were also 

captured by the infrared camera. The average pixel gray scale values at the location of the 

thermocouple were plotted against the thermocouple temperatures in degree Celsius. The 

resulting interpolation curve is shown in Fig. 5.7. This method eliminated the need to 

know the emissivity of the agar specimen. In a clinical setting, it is important to 

 46



accurately know the emissivity of the human skin. Steketee (1973) has described a 

method in which skin radiation is compared with blackbody radiation. Fujimasa et al. 

(1973) have pointed out emissivity differences in skin covered with tinctures and paints. 

 

Fig. 5.7 Infrared camera calibration using thermocouple 
 

 The data from the infrared camera were reduced using the process shown in Fig. 

5.8. Each infrared image was stored in a digital “.fts” file format. This image file was 

used to obtain a matrix of gray scale values that was stored in a ASCII text file. A 

MATLAB program was written for locating the boundaries and the center of the 

cylindrical surface, and generating coordinates of points of interest in this (r, θ) 

coordinate system. The program read in the gray scale values at the points of interest, and 

converted them to temperature in degree Celsius using the calibration data. The computer 

code for this program can be found in Appendix G. 

 

 

 

 

 47



 

  *.fts file 

G1,1    G1,2  .  .  .  G1,320    
 
G2,1    G2,2  .  .  .     .         
                          
G3,1      .     .  .  .     . 
 
.           .     .  .  .     .         
 
G240,1      .  .   .  .  G240,320G

ra
ys

ca
le

 m
at

rix
   

   
   

 
( 2

40
 ×

 3
20

)  
te

xt
 fi

le
 

Velocity 
software 

Te
m

pe
ra

tu
re

 v
al

ue
s 

at
 d

es
ire

d 
 (r

, θ
)  

   
 

Matlab 
code

Calibration 
data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8 Infrared data reduction 

 

Since the temperature at any point on the surface of the cylinder should depend 

only on the radial location of that point, and not on the angular location, data were taken  
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along several radial lines placed at equal angles from each other. Radial lines run from 

the center of the cylinder to its circumference, as shown in Fig. 5.9. 

 

 

Fig. 5.9 A thermal image showing the surface of the cylinder and some radial lines 
along which the temperature data are taken. 

 

 To obtain an accurate estimate of the temperature at a given distance from the 

center of the cylinder surface, the temperatures at several points around the 

circumference were averaged to get a mean temperature. The confidence intervals were 

calculated using Equation (3.21). The data from the experiments were used to determine 

the average convection coefficient and the thermal conductivity of agar by using the Box-

Kanemasu minimization procedure. A flowchart showing the estimation of these thermal 

properties is shown in Fig. 5.10. The computer code that implements this procedure can 

be found in Appendix E2. 

 

 
 

Fig. 5.10 Estimation of thermal properties 
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Chapter 6 Numerical and Experimental Results 
 

 This chapter presents the results of both the numerical simulations and the 

experiments. First, the results of numerical model validation are presented in order to 

establish the validity of the model. Presented next are the results of the parameter 

estimation program validation using simulated data with random errors. Finally, the 

results from the experiments are presented. The results obtained from several different 

experimental runs are graphed, showing both the experimental curves and the 

corresponding theoretical curves obtained using computer program.  

 

6.1 Numerical Model Validation Results 

 

 The three-dimensional (3D) ANSYS model is shown in Fig. 6.1 below. The 

surface temperature profiles obtained using ANSYS were compared with the 

corresponding temperature profiles from the finite difference model by superimposing the 

two curves on the same plot. This plot is shown in Fig. 6.2. It can be seen from Fig. 6.2 

that the two temperature profiles closely match although they were produced using two 

independent computer programs. The maximum error in the two temperature profiles is 

approximately 0.1 °C. It can therefore be concluded that the two-dimensional finite 

difference model accurately represents heat flow in the 3D geometry of a cylinder. 
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Fig. 6.1  3D ANSYS model showing the temperature distributions in a cylinder with 
an embedded heat source 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2  Temperature profiles obtained using finite difference model and ANSYS 
software 

 51



6.2 Parameter Estimation Program Validation Results 

 

 The results of the test runs are shown in Fig. 6.3. Each of these figures show both 

the simulated experimental data and the corresponding temperature data obtained using 

predicted parameters. The results of these test cases are summarized in Table 6.1, along 

with the absolute and the percentage errors in the parameters.  It can be seen from these 

cases that the parameter estimation program performs well considering the random errors 

in the simulated data. The maximum error in the depth is within 5 percent, while the 

maximum error in heat generation is within 3 percent. 

 

Table 6.1 Results of Simulations 

 

Actual  Estimated Absolute Error Percent Error 

Case Depth  

(m) 

Power 

(W) 

Depth 

(m) 

Power 

(W)  

Depth 

(m) 

Power 

(W) 
Depth  Power 

a 0.025 0.50 0.027 0.53 0.002 0.03 3.1 2.4 

b 0.035 0.50 0.036 0.51 0.001 0.01 1.6 0.8 

c 0.045 1.00 0.048 1.02 0.003 0.02 4.7 1.6 
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Fig. 6.3 Plot showing simulated data and the resulting temperature distribution 
predicted using estimation program for cases a,b and c. 
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6.3 Results of Experiments 

 

 This section presents the results from the six experiments. Since the last two 

experiments were conducted at a different time than the first four experiments, they share 

different convection coefficient and thermal conductivity values. The difference in 

thermal conductivity arises primarily from the difference in quality of the agar in use. 

Therefore, these are reported separately under Experiment Set B. The uncertainty in 

convection coefficient and thermal conductivity parameters in the direct numerical model 

clearly effects the solution, yet they are not the parameters that we are seeking. In order 

to study the effect of these parameters on the model, results from a sensitivty analysis are 

presented in Section 6.4. 

Experiment Set A 

 

 This section presents the results from the first set of experiments. The average 

convection coefficient was found to be 29.0 ± 4.0 W/m2 °C. The ambient air temperature 

was 21.5 °C. Since the agar solution used for this set of experiments had appearance of 

jelly and made of 99 percent water, the value of its thermal conductivity was taken to be  

0.61 W/m-°C, the same as the thermal conductivity of water. It was found that this value 

matches the observed temperature profiles well. 

 The surface temperature data obtained from the experiments were used to predict 

the depth and the power of the heater using the GA. The results are summarized in Table 

6.2. These results show excellent agreement between actual and predicted parameters, 

with percentage errors in depth within 6 percent, and percentage errors in power within 3 

percent. Fig. 6.4 through Fig. 6.7 show the surface temperature data from the 

experiments, and the temperature profile using the parameters predicted by the GA.  
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Table 6.2 Results of Experimental Set A  
 

Actual  Estimated Absolute Error Percent Error 

Exp. Run Depth  

(m) 

Power 

(W) 

Depth 

(m) 

Power 

(W)  

Depth

(m) 

Power 

(W) 
Depth  Power 

1 0.016 0.14 0.003 0.02 4.7 1.6 
A1 

2 
0.013 0.12 

0.017 0.14 0.004 0.02 6.3 1.6 

1 0.011 0.76 0.002 0.02 3.1 1.6 
A2 

2 
0.013 0.78 

0.012 0.79 0.001 0.01 1.6 0.8 

1 0.021 0.14 0.004 0.02 6.3 1.6 
A3 

2 
0.025 0.12 

0.022 0.15 0.003 0.03 4.7 2.4 

1 0.028 0.72 0.003 0.06 4.7 4.7 
A4 

2 
0.025 0.78 

0.028 0.75 0.003 0.03 4.7 2.4 
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Fig. 6.4 Result of Experiment A1 showing experimental data and predicted 
temperature profiles 
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Fig. 6.5 Result of Experiment A2 showing experimental data and predicted 
temperature profiles 
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Fig. 6.6 Result of Experiment A3 showing experimental data and predicted 
temperature profiles 
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Fig. 6.7 Result of Experiment A4 showing experimental data and predicted 
temperature profiles 
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Experiment Set B 

 

 For the second set of experiments, the experimental data were used to estimate 

both the average convection coefficient and the average thermal conductivity. The 

average convection coefficient for this set of experiments was found to be 24.0 ± 3.0 

W/m2 °C, which is close to the convection coefficient found for the first set of 

experiments. The ambient air temperature was 21.5 °C. The average thermal conductivity 

was found to be 3.4 ± 1.0 W/m-°C. The most likely cause of this large uncertainty 

associated with the thermal conductivity is due to the quality of the agar. Solidification of 

agar can cause large changes in its thermal conductivity. Therefore, it was noted that the 

quality of agar must be very precisely controlled during any future experiments, and a 

quantitative method must be devised to assess its quality than a mere visual inspection. 

The results are summarized in Table 6.3. Overall, these results show a higher percentage 

error than the parameter estimation results in Experiment Set A. Fig. 6.8 and Fig. 6.9 

show the surface temperature data from the experiments, and the temperature profile 

using the parameters predicted by the GA. 

 

Table 6.3 Results of Experimental Set B  
 

Actual  Estimated 
Absolute 

Error 
Percent Error 

Exp. Run 
Depth  

(m) 

Power 

(W) 

Depth 

(m) 

Power

(W)  

Depth

(m) 

Power 

(W) 
Depth  Power 

1 0.038 0.98 - 0.14 - 11.0 
B1 

2 
0.038 1.12 

0.039 1.07 0.001 0.05 1.6 4.0 

1 0.053 1.17 0.002 0.05 3.2 4.0 
B2 

2 
0.051 1.12 

0.050 1.10 0.001 0.02 1.6 1.6 
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Fig. 6.8 Result of Experiment B1 showing experimental data and predicted 
temperature profiles 
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Fig. 6.9 Result of Experiment B2 showing experimental data and predicted 
temperature profiles 
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6.4 Sensitivity Analysis 

 

 In order to study the effect of uncertainty in the convection coefficient and 

thermal conductivity on the model output, two experimental cases, A1 and B2, were 

analyzed further. For experiment A1, since it was assumed that the thermal conductivity 

is known, only the effects of variation in convection coefficient were examined. Fig. 6.10 

shows the experimental data and the direct model solution based on nominal value of 

convection coefficient as well as its upper and lower confidence limits. 
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Fig. 6.10 The effect of convection coefficient on model output for experiment A1 

 

 For case B2, the effects of changing the convection coefficient and thermal 

conductivity within their confidence intervals are examined. The results are shown in Fig. 

6.11 and Fig. 6.12 respectively.  

 It can be observed that the convection coefficient value has the effect of scaling 

the temperature profile. A lower value of convection coefficient causes the temperature 

profile to move up, while a higher value makes it move down. This behavior is expected 
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since lower convection leads to less efficient dissipation of heat from the system. Also, 

since the cylinder is insulated on all sides and top surface convection is the only means of 

heat removal from the system, the effect of changing convection coefficient is much more 

pronounced than it would be otherwise. 
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Fig. 6.11 The effect of convection coefficient on model output for experiment B2  

 

 Fig. 6.12 shows that the effect of thermal conductivity is primarily to change the 

shape of the temperature profile. A higher thermal conductivity leads to a more leveled 

temperature profile, reducing the temperature differential observed on the surface. This is 

the expected behavior since a higher thermal conductivity means better diffusion of heat 

from the center of the cylinder to its periphery. 
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Fig. 6.12 The effect of thermal conductivity on model output for experiment B2 
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Chapter 7 Conclusions and Recommendations 
 

7.1 Conclusions 

 

The overall objectives outlined in Section 1.1 were achieved through this work. 

The following list presents the main conclusions that can be drawn from this research. 

These conclusions cover the areas of thermal imaging, the biological aspects of 

development of tumors, and the parameter estimation program. 

 

1. A review of thermal imaging reveals that the development of high-resolution 

digital infrared imaging, computerized image storage and comparison, and 

sophisticated technologies for image enhancement and analysis, offer potential in 

the use of thermography as an adjunct technique of detecting cancer. It still 

remains an adjunct technique since it cannot detect microcalcifications in the 

breast that can be seen only by mammography.  

 

2. Using sensitivity analysis, it was shown that surface temperature exhibits a very 

low sensitivity to the location of the tumor. This is because the variations in 

surface temperature caused by a tumor are extremely small, especially if the 

tumor is embedded deep below the skin. This makes gradient-based estimation 

methods unstable and difficult to use. A genetic algorithm was found to be a 

robust non-gradient based optimization technique to use in this case. 

 

3. For the cases studied, results from simulations and experiments show that it is 

possible to determine the location and heat generation rate of a phantom heat 

source using surface temperature measurements.  
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7.2 Recommendations 

 

 This research represents a significant step forward in the early diagnostics of 

tumors using thermal imaging, by completing a clinically applicable algorithm that can 

be used to recognize tumors and pinpoint their locations. However, several areas deserve 

further attention but were beyond the scope of this work.  The overall recommendations 

for advancement of the thermal tumor detection research are explained in the paragraphs 

below. 

 

1. A simplified two-dimensional model was used in this research with a constant 

size planar heat source representing the metabolic heat generation in a tumor. This 

simplified study validates the idea of using thermal imaging as a means of 

detecting an embedded heat source. The model can further be extended for use 

with more realistic three-dimensional complex geometries and a spherical heat 

source representing the tumor. The extended study can provide further insight into 

whether it would be possible to determine both the size and location of the tumor, 

and how accurately the parameters can be predicted in a realistic situation. 

 

2. Although the Pennes bio-heat equation appears to give adequate results in 

numerous applications, a precise description of heat transfer in living tissue is a 

challenging task. The flow of thermal energy in a living tissue is extremely 

difficult to model both due to disordered geometry in the tissue structure and a 

large number of interdependent concurrent processes in the tissue. In order for the 

estimation procedure to be highly accurate, the heat transfer equation used to 

model the direct problem should closely mirror the underlying physical processes 

in the tissue. It would be useful to study the limitations of bio-heat transfer 

equation and seek alternatives. 

 

 

3. Although it was found in this study that the effect of metabolic heat liberation 

dominates the effect of increased blood circulation in tumors, the exact effects of 
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increased blood circulation on the temperature distributions merit further 

investigation. Any such investigation would have to take into account the density 

of veins and capillaries around a tumor as well as their cross-sectional areas. 

 

4. Reliable data on in-vivo thermal properties of the tissue and tumor is limited. 

Accurate values of properties like blood perfusion, thermal conductivity and 

specific heat are necessary in order for the parameter estimation program to be 

effective. There are currently no standardized methods to measure these values. 

Data should be collected over a wide range of temperatures and for different 

periods in the growth of the tumor. 

 

5. The estimation algorithm should be tested on a variety of biological tissues in a 

controlled environment. Although the phantom experiments conducted using agar 

show the validity of the parameter estimation technique, further in-vitro 

experiments should be performed that mimic the biological conditions more 

closely. These experiments could include bringing in tumors or biological tissue 

to the test tube. This can then be followed by testing on animals and humans, both 

healthy and those known to have a tumor. Since thermal imaging is a completely 

non-invasive procedure, the use of animal or human subjects does not pose any 

ethical concerns.  The information obtained from these tests can be incorporated 

into the mathematical model developed in this research.  

 

6. The genetic algorithm used as the parameter estimation method in this research 

uses mutation and simple crossover operators. Several natural operators and 

phenomenon such as inversion, deletion, translocation, etc. remain to be explored 

in order to improve upon the robustness of simple GAs.  

 

7. Skin temperatures are highly sensitive to the heat transfer coefficient. Although 

the imaging procedure is carried out in a thermally controlled environment, 

obtaining accurate estimates for the heat transfer coefficient during the procedure 
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remains a challenging task. The heat transfer coefficient should take into account 

the effects of convection, radiation and evaporation.   

 

8. This research can be extended further by considering the use of techniques such 

as skin surface cooling and measuring the transient response. Although a transient 

analysis would be computationally more expensive than the steady state analysis 

presented in this research, it may enhance the signature of the tumor on the 

surface and may possibly help alleviate the low sensitivity problem typically 

encountered in medical thermal imaging. 

 

This research provides a foundation for the recommendations mentioned above. 

The described theory and experiments validate the idea of combining thermal imaging 

data, biological properties of tumors, and parameter estimation techniques, in order to 

non-invasively predict the presence of a tumor and pinpoint its location. The key to 

cancer survival is its earliest possible detection. This work contributes to increasing the 

valuable knowledge in the field of early cancer detection using non-invasive technique of 

thermal imaging.  
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Appendix A: Finite Difference Code 
 
function[temp] = cylindrical_SS_2D(Parameters, NCV, Radius, Height); 
 
% *********************************************************************  
% 2D Finite Difference Code    Copyright Manu Mital, 2003 
%  
% This code computes the temperature distribution in a two-dimensional 
% domain in the cylindrical coordinate system (having radial and vertical 
% directions). The Theta (angular) dimension is not considered because 
% of symmetry.  
% 
% INPUTS:   
%  
% Paraeters: This is the vector that contains the location of the heat 
%            source (cm) and its heat generation rate (W/cm^3)   
% 
% NCV      : Specifies the number of control volumes to use in the R 
%            and Z directions 
% 
% Radius   : Specifies the radius of the cylinder 
%   
% Height   : Specifies the height of the cylinder 
% 
% 
% 
% OUTPUTS: 
% 
% temp     : This is a one dimensional vector containing the surface  
%            temperatures. 
% 
%  
% 
% This function performs the following tasks: 
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%  
%     1.  takes in the dimensions of domain and the parameters 
%     2.  discretizes space based on number of control volumes specified 
%     3.  Applies specified boundary conditions 
%     4.  Calls ADIT solver 
%     5.  If required, it can plot the surface temperature vector  
%         versus the radial location. 
% 
% ********************************************************************** 
 
 
 
 
tr = 2; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INPUT SECTIONS BEGIN %%%%%%%%%%%%%% 
 
%NR is the number of non-zero control volumes into which the body is divided  
% along the path of heat transfer in the R direction 
 
R = Radius;   NR =NCV;    % Total control volumes = NR + 2 
  
 %NZ is the number of non-zero control volumes into which the body is divided  
% along the path of heat transfer in the Z direction 
 
H= Height;   NH = NCV;     % Total control volumes = NZ + 2 
 
 
  
 % Set the grid size by specifying deltaR and deltaZ 
  
  deltaR =(R/(NR) )* ones(NR+2,1);     % deltaR = 1/32 
  deltaR(1) = 0;  deltaR(NR+2) = 0;    % zero control volumes at r =0 and r = Radius 
   
  deltaH =(H/(NH) )* ones(NH+2,1);     % deltaZ = 1/32 
  deltaH(1) = 0;   deltaH(NH+2) = 0;   % zero control volumes at z = 0 and z  = Height 
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  % Compute the values of r and z locations 
 R_LOC = zeros(NR+2,1);   H_LOC = zeros(NH+2,1); 
 R_LOC(1) = 0;            H_LOC(1) = 0;             
  
   
 for i = 2:NR+2 
     R_LOC(i) =  R_LOC(i-1) + (deltaR(i) + deltaR(i-1) ) / 2.0; 
 end 
  
 for j = 2:NH+2 
     H_LOC(j) =  H_LOC(j-1) + (deltaH(j) + deltaH(j-1) ) / 2.0; 
 end 
   
 
   
 % Must customize the components of Pvector before using it %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 % Parameters(3) already contains the appropriate heat generation rate that we wish to use. 
 i = 1;           % initialize 
 x = deltaR(i); 
  
 
  
while ( x < tr ) 
    i = i + 1; x = x + deltaR(i); 
end  
tr = i; 
 
 
i = 1;            % re-initialize 
y = deltaH(i); 
 
while ( y < Parameters(1) )  
   i = i + 1;    y = y + deltaH(i); 
end  
Parameters(1) = i; 
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 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   
   
 % What kind of boundary conditions do you need ? 
 % 1 indicates that the temperature has been specified as boundary conditions 
  % 2 indicates that heat flux and/or convection specified at the boundaries. 
   
BCr0 = 2;    BCrR = 2;  BCz0 = 2; BCzH = 2; 
                       
 % Specify the variables depending on the boundary conditions you need. 
 % These properties at the boundaries are specified as being constants along a boundary. 
 % However, if they vary, then specify them as vectors. 
  
 h_r_zero = 1e-150;       h_r_R = 1e-150;            h_z_0 = 1e-150;       h_z_H = 1.35e-3;  
 q_r_0 = 0;              q_r_R = 0;        q_z_0 = 0;            q_z_H = 0; 
 Tinf_r_0 = 0;           Tinf_r_R = 0;     Tinf_z_0 = 0;         Tinf_z_H = 21; 
 Tr0 = 0;                TrR = 0;          Tz0 =37;               TzH = 0; 
 
  
 % Create the matrices SC and SP 
 
 SC =(.7e-3) * ones(NR+2,NH+2); 
 SP = 0*(2.4e-3) * ones(NR+2,NH+2); 
  
 
  
 for i = 1:tr  SC(i,Parameters(1)) = Parameters(2); end 
 
 
  
 % The thermal conductivity matrix 
  
 k = (4.8e-3)*ones(NR+2,NH+2); 
 
%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  END OF THE INPUT SECTION %%%%%%%%%%%%% 
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 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PROCESSOR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 % Define the temperature vector that has elements from 1 to NR+2 in the R-direction.  
 % It has elements from 1 to NH + 2 in the Z direction. We initialize the temperature  
 % vector with zeros 
  
 T = zeros(NR+2 , NH+2); 
  
  
 % Define the b vector and fill in its components 
 B = zeros(NR+2,NH+2); 
  
 for i = 1:NR+2 
     for j = 1:NH+2 
        B(i,j) = SC(i,j) * R_LOC(i) *  deltaR(i) * deltaH(j); 
    end 
end 
  
 
  aij = zeros(NR+2,NH+2); 
     
 % The following formulation is valid for i = 2 to i = NX+1 and from j = 2 to j = NY+1 
 aeij = zeros(NR+2,NH+2);    anij = zeros(NR+2,NH+2);                                          
 awij = zeros(NR+2,NH+2);    asij = zeros(NR+2,NH+2); 
  
% awij and aeij matrices represent the east and the west side 
  
 for i = 1:NR+1 
     for j = 1:NH+2 
aeij(i,j) = deltaH(j) *(2 * k(i,j) * k(i+1,j) )/ [ ( deltaR(i) * k(i+1,j) + deltaR(i+1) * k(i,j) ) ]; 
   
   end 
end 
 
 for j = 1:NH+2 
        awij(1,j) = 0;          % The first set of control volumes have no west neighbour  
        aeij(NR+2,j) = 0;       % The last set of control volumes have no east neighbour  
    end 
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ii = NR + 2; 
 
for i = 2: NR+2 
    for j = 1:NH+2 
        awij(i,j) = aeij(ii-1,j); end 
    ii = ii - 1; 
end 
 
 
% Fill in the North and the South coefficients 
% anij and asij matrices represent the north and the south side 
 
for i = 1:NR+2 
    for j = 1:NH+1 
        anij(i,j) = deltaR(i) * R_LOC(i) * (2 * k(i,j) * k(i,j+1) )/ [ ( deltaH(j) * k(i,j+1) + deltaH(j+1) 
* k(i,j) ) ]; 
    end 
end 
 
 
 
for i = 1:NR+2 
asij(i,1) = 0;               % The bottom set of control volumes have no south neighbours 
anij(i,NH+2) = 0;            % The top set of control volumes have no north neighbour 
end 
 
    for j = 2:NH+2 
     for i = 1:NR+2 
        asij(i,j) = anij(i,j-1); 
               
    end 
end 
 
 
 
% Now that we know aeij (east)  awij(west)  anij(north) asij (south), we can fill in the  
% aij vector 
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for i = 1:NR+2 
    for j = 1:NH+2 
        aij(i,j) =  aeij(i,j) + awij(i,j) + anij(i,j) + asij(i,j) +  SP(i,j) * deltaR(i) * deltaH(j); 
    end 
end 
 
 
 
%%%%%%%%%%%%%%%%%% APPLY THE BOUNDARY CONDITIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Boundary conditions at r = 0    These depend on the variable Bcr0 
  
  if BCr0 == 1 
                     for j = 1:NH+2 
                              aeij(1,j) = 0; 
                              aij(1,j) = 1; 
                              B(1,j) = Tr0;    
                          end 
  
       
  elseif BCr0 == 2 
                                         for j = 1:NH+2 
                                            aeij(1,j) = (2 * k(2,j) ) / deltaR(2); aeij(1,1) = 0; 
aeij(1,NH+2) = 0; 
                                            aij(1,j) =  aeij(1,j) + h_r_zero;         
                                            B(1,j) =  q_r_0 + (h_r_zero * Tinf_r_0) ;    
                                        end 
  
end  % this end is for the if statement 
  
 % Boundary conditions at x = R 
  
 if BCrR == 1 
                                        for j = 1:NH+2 
                                            awij(NR+2,j)  =  0; 
                                            aij(NR+2,j) =  1; 
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                                            B(NR+2,j) =  TrR; 
                                        end 
      
  
elseif BCrR == 2 
                                       for j = 1:NH+2 
                                        awij(NR+2,j) =  (2 * k(NR+1,j) ) / deltaR(NR+1);  awij(NR+2,1) = 0; 
awij(NR+2,NH+2) = 0; 
                                        aij(NR+2,j) =  awij(NR+2,j) + h_r_R;           
                                        B(NR+2,j) =  q_r_R + ( h_r_R * Tinf_r_R);       
                                    end 
 
end 
 
 
 
% Boundary conditions at z = 0    These depend on the variable BCz0 
 
if BCz0 == 1 
     
                     for i = 1:NR+2 
                              anij(i,1) = 0; 
                              aij(i,1) = 1; 
                              B(i,1) = Tz0;    
                          end 
     
 
 elseif BCz0 == 2 
     
                     for i = 1:NR+2 
                              anij(i,1) = 2 * k(i,2) / deltaH(2); anij(NR+2,1) = 0;anij(1,1) = 0; 
                              aij(i,1) = anij(i,1) + h_z_0;        
                              B(i,1) = q_z_0 + (h_z_0 * Tinf_z_0);     
                          end 
                           
end 
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% Boundary conditions at z = H    These depend on the variable BCyL 
 
if BCzH == 1 
     
                     for i = 1:NR+2 
                              asij(i,NH+2) = 0;  
                              aij(i,NH+2) = 1; 
                              B(i,NH+2) = TzH;    
                          end 
     
 
  elseif BCzH == 2 
     
                     for i = 1:NR+2 
                              asij(i,NR+2) = 2 * k(i,NH+2) / deltaH(NH+1);  asij(1,NH+2) = 
0;asij(NR+2,NH+2) = 0; 
                              aij(i,NH+2) = asij(i,NH+2) + h_z_H;                
                              B(i,NH+2)  = q_z_H + (h_z_H * Tinf_z_H);     
                          end 
  end                     
   
   
   
   
 
 
                   
 %%%%%%%%%%%%%%%%%% END OF BOUNDARY CONDITIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%         
  
          
% Finally we solve for the Temp 
 
 %T = GaussSeidel(aij,aeij,awij,anij,asij,B,T,NR+2,NH+2) 
 
%t = cputime; 
 T = ADIT2(aij,aeij,awij,anij,asij,B,T,NR+2,NH+2); 
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 %cputime-t 
  
 temp = zeros(NCV,1); 
 r = zeros(NCV,1); 
  
 for i = 2: NR+1 
     r(i-1) = R_LOC(i); 
     temp(i-1) = T(i,NH+2);end 
  
 % Uncomment the following line if a plot of surface temperature distribution is required  
 %plot( r , temp,'-x'); hold on; 
 
 
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RESULTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix B: Alternating-Direction Implicit Solver 
 
function [U] = ADIT(AIJ, AEIJ, AWIJ, ANIJ, ASIJ, BIJ, T, XCV,YCV) 
 
% ********************************************************************************************** 
% This is the Alternating Direction Solver  Copyright Manu Mital, 2003 
% 
% XCV = # of X control volumes    YCV = # of Y control volumes 
% 
% The matrix U holds the most current temparature. After every round of iteration, U will be set  
% equal to T. Therefore, U will lag behind T by one round of iteration. When T and U are close enough, 
% the iterations will stop. 
% 
% When solving for a vertical line, the east and west neighbours of each point on the vertical line 
% are assumed to be known. Therefore, the energy equation to be solved can be re-arranged as: 
% 
%           -anij(i,j) * T(i,j+1)   +  aij(i,j) * T(i,j)  -  asij(i,j) * T(i,j-1) =  
%                                 awij(i,j) * T(i-1,j)  + aeij(i,j) * T(i+1,j) + B(i,j) 
% 
% In the above equation, the right hand side is completely known. The left hand side is not known. The  
% above system can be solved using the traditional TDMA approach. 
% 
% 
% 
% When solving for a horizontal line, the north and south neighbours of each point on the horizontal line 
% are assumed to be known. Therefore, the energy equation to be solved can be re-arranged as: 
% 
%           -awij(i,j) * T(i-1,j) +  aij(i,j) * T(i,j) - aeij(i,j) * T(i+1,j)  =  
%                      anij(i,j) * T(i,j+1) + asij(i,j) * T(i,j-1) +  B(i,j) 
% 
% In the above equation, the right hand side is completely known. The left hand side is not known. The  
% above system can be solved using the traditional TDMA approach. 
% 
% The horizontal and vertical lines are solved alternately till we reach the boundaries.  
% This completes one iteration.% Keep iterating until we get convergence i.e... difference between U and  
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% T is "small" 
% *************************************************************************************************** 
 
U = T;    % Initialize U 
 
d1 = zeros(YCV,1); 
d2 = zeros(XCV,1); 
 
convergence = 0; 
 
% If there are XCV control volumes in the x-direction, then there will be XCV vertical lines 
% If there are YCV control volumes in the y-direction, then there will be YCV horizontal lines 
 
while (convergence == 0) 
     
     
x = 1; 
y = 1; 
     
         
% Lets do the vertical line first 
while (x <= XCV)    
     
    % Fill in the d vector that would be passed on to the tridiagonal algorithm 
        if (x == 1) 
    for k = 1:YCV     d1(k) = AEIJ(x,k) * T(x+1,k) + BIJ(x,k);  end 
         
    elseif ( x == XCV) 
     for k = 1:YCV     d1(k) = AWIJ(x,k) * T(x-1,k)  + BIJ(x,k); end 
      
 else  
     for k = 1:YCV     d1(k) = AWIJ(x,k) * T(x-1,k)  + AEIJ(x,k) * T(x+1,k) + BIJ(x,k); end  
      
 end 
    
        %%%%%%%%% end filling the d vector    %%%%%%%%%%%%%%%%%% 
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     TX = tridiagonal( (AIJ(x,:))' ,  (ANIJ(x,:))' ,  (ASIJ(x,:))' ,    d1, YCV) ;    T(x,:) = TX'; 
     
   
    x = x + 1;  % next vertical line 
end 
 
 
 
 
 
 
% We now do the horizontal line 
 
while (y <= YCV) 
     
    % Fill in the d vector that would be passed on to the tridiagonal algorithm 
     
    if(y == 1) 
        for k = 1:XCV     d2(k) = ANIJ(k,y) * T(k,y+1) +   BIJ(k,y); end 
         
    elseif (y == YCV) 
      for k = 1:XCV     d2(k) = ASIJ(k,y) * T(k,y-1) +  BIJ(k,y); end   
     
    else 
    for k = 1:XCV     d2(k) = ANIJ(k,y) * T(k,y+1) + ASIJ(k,y) * T(k,y-1) +  BIJ(k,y); end   
                                                                                          
  end 
     
    
  
 
% Call the triadiagonal solver 
T(:,y) =  tridiagonal(AIJ(:,y) ,  AEIJ(:,y) ,  AWIJ(:,y) ,    d2, XCV) ; 
   
     
    y = y + 1; 
     
end 
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convergence = 1; 
 
 
% Check for convergence 
for m = 1:1:XCV 
  for  n = 1:1:YCV 
      if  abs( abs(T(m,n) - abs( U(m,n)))  > 0.00001) 
     
convergence = 0;  end  
end 
end % stop the iterations 
       
      U = T; 
       
      
        
end   % end of convergence loop 
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Appendix C: Tridiagonal Matrix Algorithm (Thomas Algorithm) 
 
 
function [T] = tridiagonal(a,b,c,d,NUM) 
 
% *********************************************************************** 
% This is the Tridiagonal Matrix Algorithm, also called Thomas Algorithm. 
% This algorithm was adopted from "Numerical Heat Transfer and Fluid Flow" 
% by S.V. Patankar and modified by Manu Mital. 
%                Copyright Manu Mital, 2003 
% 
% 
% The designation TDMA refers to the fact that when the matrix of the  
% coefficients of these equations is written, all the non-zero coefficients 
% align themselves along three diagonals of the matrix. 
% 
% INPUTS: 
% 
% a,b and c are the diagonals of the matrix on the left hand side of the 
% equation. d is the vector on the right hand side. NUM is the number of  
% grid points and the size of the left hand side matrix. 
% 
% OUTPUT:  The unkown temperature vector T 
% 
% Unlike the general matrix methods, the TDMA requires computer storage 
% and computer time proportional to N, rather than to higher powers of N 
%************************************************************************* 
 
 
 
%NUM is the total number of diagonal elements of vector a 
T = zeros(NUM,1); 
P = zeros(NUM,1); 
Q = zeros(NUM,1); 
% We start out by calculating the value of P(1) and Q(1) 
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P(1) = b(1)/a(1); 
Q(1) = d(1) / a(1); 
 
for i = 2:NUM 
     
    P(i) = b(i) / ( a(i) - c(i) * P(i-1) ); 
    Q(i) = (d(i) + c(i) * Q(i-1) )/ ( a(i) - c(i) * P(i-1) ); 
     
end 
 
% Set T(N) = Q(N) 
 
T(NUM) = Q(NUM); 
 
for i = NUM -1 : -1:1 
  
   
    T(i) = P(i) * T(i+1) + Q(i); 
     
     
end 
 
%%%%%%%%%%%%%%%%%%%%%% END OF TRIDIAGONAL SOLVER %%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix D: Box-Kanemasu Method Flowchart 
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Appendix E 

E1 Box-Kanemasu Method Code for Parameter Estimation 
% ************************************************************************************** 
%  Box- Kanemasu estimation program,             Copyright Manu Mital, 2003 
% 
% This is the Box-Kanemasu estimation program that uses Finite Difference Code to 
% evaluate derivatives and get sensitivity information. 
% 
% *************************************************************************************** 
clear;clc  
 
% STEP 0: Declare and initialize the variables 
 
k = 0;                                % k is the iteration counter. Start with zero-eth iteration 
N = 7;                                % N is the number of observations 
pe = 2;                                % pe is the number of parameters to be estimated using  
                                      % the N observations 
Radius = 7.0; 
Height = 7.0; 
t = cputime ;    
 
                                       
S0 = zeros(N,1); S_alpha = zeros(N,1);     % S0, S_alpha and b at current iteration 
b = zeros(pe,1);    
err = .1 * ones(pe,1); 
X = zeros(N,pe);                       % X is the sensitivity of the function (N observations)  
                                      % w.r.t. pe parameters 
 
 Y = zeros(N,1);                     % Y is the vector of observed data 
 Eta = zeros(N,1);                   % Eta is estimated based on current guess of parameters 
                                     % that dwell in b 
                                       
  h= 1;                              % initialize h        
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  stop = -1; 
                                      
% Before starting the loop, we put an initial guess for the pe parameters in 
% the b vector. We also need to fill in data into Y.  
 
 b = [4; 1e-3];     %These are the initial guesses  
 b_direct = [5;1.4e-3]; 
 Y = cylindrical_SS_2D(b_direct,N,Radius,Height); 
 
Eta = Cylindrical_SS_2D(b,N,Radius,Height); 
 
 
 
 
while ( stop == -1)                                   
 
     
 %%%%%% STEP 1: Calculate S0 @ iteration k %%%%%%%%%% 
 
S0 = (Y - Eta)' * (Y - Eta);   
 
%%%%%% STEP 2: Update the value of sensitivity coefficient %%%%%%%%%%%%%%%%%%%%%%%%%% 
 
X = updateX(b,N,Eta,Radius,Height); 
 
 
%%%%%%% STEP 3: Calculate del_b and G %%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Pinv = (X' * X)  ; P = inv(Pinv); 
 
 
 
del_b =   P *   ( X'  * (Y - Eta) )   
 
 
G = del_b' * Pinv * del_b; 
 
if (G < 0) stop = 1; end 
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%%%%%% STEP 4: Set the values of alpha and A %%%%%%%%%%%%%%%%%%%%%%%%%% 
 
alpha = h;        % alpha is inititially set equal to 1 
A = 1.1; 
 
%%%%% STEP 5: Update the value of b that holds the current guess of parameters %%%%%  
 
b_previous = b;   % This would always behind vector b by one iteration. When the vectors 
                  % b and b_last come close enough, the iterations may be 
                  % stopped 
                   
b =  b + (alpha) *del_b;         % This is the updated value of b 
 
%%%% STEP 6 : Stop iterations ? 
 
if ( (b - b_previous) <= err) stop = 1;end 
 
 
%%%% STEP 7: Calculate S_alpha using b that was updated in last step %%%%%%%%%%%%%%%%%%%%% 
 
Eta = Cylindrical_SS_2D(b,N,Radius,Height); 
 
S_alpha =  (Y - Eta)' * (Y - Eta); 
 
S_check = S0 - (alpha * G)*(2- (1/A)); 
 
%%%%% STEP 8 : Compare S_alpha with S_check and set the new value of h %%%%%%%%%%%%%%%%%%%% 
 
if ( S_alpha >= S_check) h =  ((alpha^2) * G) / (S_alpha - S0 + 2*alpha*G);  
else h = alpha * A; end 
 
 
 
end   % end of the while loop 
 
b  % print b 
 
cputime-t 

 92



UpdateX Function 
 
function[x] = UpdateX(Pvector,N,eta,Radius,Height); 
 
% ************************************************************************************** 
%  UpdateX             Copyright Manu Mital, 2003 
% 
% This is function that is called by the Box-Kanemasu estimation program to find the 
% derivatives of the temperatures at various spacial locations w.r.t. the height and  
% heat generation rate. 
%  
% INPUTS: 
%             1. the vector containing the height and heat generation rate at which 
%                 the derivatives are to be taken   (Pvector) 
%             2. the number of control volumes to use (N) 
%             3. the temperature vector 'eta' containing the surface temp. distribution 
%                due to the parameters contained in 'Pvector'. This information is used 
%                while taking derivatives. 
%             4. The radius and height of the cylinder 
% 
% OUTPUT: 
%             1. a vector containing the derivatives w.r.t. to the parameters. 
% *************************************************************************************** 
 
 
num_param = size(Pvector,1); 
 
% Pvector = [radius; height from base; heat generation rate] 
 
x= zeros(N,num_param);  % initialize the sensitivity coefficient vector 
 
Pvector_modified = Pvector;  Pvector_modified(1) = Pvector_modified(1) + 1; 
F_delH = cylindrical_SS_2D(Pvector_modified,N,Radius,Height); 
  
x(:,1) = (F_delH - eta); 
  
Pvector_modified = Pvector;  Pvector_modified(2) = Pvector_modified(2) + .1e-3; 
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 F_delQ = cylindrical_SS_2D(Pvector_modified,N,Radius,Height); 
  
 x(:,2) = (F_delQ - eta)/ (.1e-3); 
 
 
 

E2 Box-Kanemasu Method Code for Estimating Convection Coefficient 

 
************************************************************************************** 
%  Box- Kanemasu estimation program,             Copyright Manu Mital, 2003 
% 
% This is the Box-Kanemasu estimation program that uses Finite Difference Code to 
% evaluate derivatives and get sensitivity information. 
% 
% *************************************************************************************** 
 
 
% STEP 0: Declare and initialize the variables 
 
k = 0;                                 % k is the iteration counter. Start with zero-eth iteration 
N = 12;                                % N is the number of observations 
pe = 1;                                % pe is the number of parameters to be estimated using  
                                       % the N observations 
Radius = 7.3; 
Height = 6.35; 
case1 = [5.1, 36/32.2];           % the actual value of height and heat generation 
t = cputime ;    
 
                                       
S0 = zeros(N,1); S_alpha = zeros(N,1);     % S0, S_alpha and b at current iteration 
param_vector = zeros(pe,1);    
err = 0.1e-4 * ones(pe,1); 
X = zeros(N,pe);                       % X is the sensitivity of the function (N observations)  
                                      % w.r.t. pe parameters 
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 Y = zeros(N,1);                     % Y is the vector of observed data 
 Eta = zeros(N,1);                   % Eta is estimated based on current guess of parameters 
                                     % that dwell in b 
                                       
  h= 1;                              % initialize h        
   
  stop = -1; 
                                      
% Before starting the loop, we put an initial guess for the pe parameters in 
% the b vector. We also need to fill in data into Y.  
 
param_vector = [.0018];     %These are the initial guesses  
 
  
 Y = [ ]; % enter the observed data here 
 
 
 
Eta = h_only_FD(case1,  N,  Radius,  Height, param_vector(1)  ); 
 
 
 
while ( stop == -1)                                   
 
     
 %%%%%% STEP 1: Calculate S0 @ iteration k %%%%%%%%%% 
 
S0 = (Y - Eta)' * (Y - Eta);   
 
%%%%%% STEP 2: Update the value of sensitivity coefficient %%%%%%%%%%%%%%%%%%%%%%%%%% 
 
X = updateX_h_only(case1, N , Eta, Radius, Height,param_vector); 
 
 
%%%%%%% STEP 3: Calculate del_b and G %%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Pinv = (X' * X)  ; P = inv(Pinv); 
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del_param_vector =   P *   ( X'  * (Y - Eta) )  ; 
 
 
G = del_param_vector' * Pinv * del_param_vector; 
 
if (G < 0) stop = 1; end 
 
%%%%%% STEP 4: Set the values of alpha and A %%%%%%%%%%%%%%%%%%%%%%%%%% 
 
alpha = h;        % alpha is inititially set equal to 1 
A = 1.1; 
 
%%%%% STEP 5: Update the value of b that holds the current guess of parameters %%%%%  
 
param_vector_previous = param_vector;   % This would always behind vector param_vector by one iteration. 
When the vectors 
                                        % b and b_last come close enough, the iterations may be 
                                         % stopped 
                   
param_vector =  param_vector + (alpha) *del_param_vector;         % This is the updated value of 
param_vector 
 
%%%% STEP 6 : Stop iterations ? 
 
if ( (param_vector - param_vector_previous) <= err) stop = 1;end 
 
 
%%%% STEP 7: Calculate S_alpha using b that was updated in last step %%%%%%%%%%%%%%%%%%%%% 
 
Eta = h_only_FD(case1,  N,  Radius,  Height, param_vector(1) ); 
 
S_alpha =  (Y - Eta)' * (Y - Eta); 
 
S_check = S0 - (alpha * G)*(2- (1/A)); 
 
%%%%% STEP 8 : Compare S_alpha with S_check and set the new value of h %%%%%%%%%%%%%%%%%%%% 
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if ( S_alpha >= S_check) h =  ((alpha^2) * G) / (S_alpha - S0 + 2*alpha*G);  
else h = alpha * A; end 
 
 
     
end   % end of the while loop 
 
 
param_vector  % print b 
 
cputime-t 
 
function[x] = UpdateX(case1,N,eta,Radius,Height, param_vector); 
 
 
UpdateX Function 
 
% ************************************************************************************** 
%  UpdateX             Copyright Manu Mital, 2003 
% 
% This is function that is called by the Box-Kanemasu estimation program to find the 
% derivatives of the temperatures at various spacial locations w.r.t. the height and  
% heat generation rate. 
%  
% INPUTS: 
%             1. the vector containing the height and heat generation rate at which 
%                 the derivatives are to be taken   (Pvector) 
%             2. the number of control volumes to use (N) 
%             3. the temperature vector 'eta' containing the surface temp. distribution 
%                due to the parameters contained in 'Pvector'. This information is used 
%                while taking derivatives. 
%             4. The radius and height of the cylinder 
% 
% OUTPUT: 
%             1. a vector containing the derivatives w.r.t. to the parameters. 
% 
% *************************************************************************************** 
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% Pvector = [radius; height from base; heat generation rate] 
 
x= zeros(N,1);  % initialize the sensitivity coefficient vector 
 
param_vector_modified = param_vector;  param_vector_modified(1) = param_vector_modified(1) + .1e-4; 
  
F_del_conv = h_only_FD(case1,  N,  Radius,  Height, param_vector_modified(1)  ); 
  
x(:,1) = (F_del_conv - eta)/ .1e-4;  
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Appendix F: Genetic Algorithm code 
 
% *********************************************************************** 
% Genetic Algorithm code        Copyright Manu Mital, 2003 
% 
% This is the parameter estimation program that works with the finite 
% difference scheme. This implementation of GAs use binary representation 
% of parameters to be estimated. The two parameters to be estimated are 
% the location and heat generation rate of the source. 
% 
% PARAMETERS THAT CAN BE USED TO CUSTOMIZE THE PROGRAM:  
%             1. dimensions of the cylinder (radius, height) 
%             2. number of control volumes used for running FD code (N) 
%             3. number of bits to use for representing the solution (hbits, qbits) 
%             4. population size  (pop_size) 
%             4. probabilities of mutation and crossover (pc, pm) 
%             5. Number of iterations to run the program (MAX_ITERATIONS) 
% 
% ********************************************************************************* 
 
 
clear all; clc; 
tic 
 
% **************************** Set constants **************************** 
pop_size  = 20;               % population size or number of chromosomes evaluated 
 
radius = 7.0;   % of the tumor 
height = 7.0;   % of the tumor 
 
% two parameters of interest - height and heat generation rate 
hbits = 5;      % number of bits for the height of the tumor 
qbits = 5;      % number of bits for the heat generation rate 
bits = hbits + qbits;         % Number of bits for each member (number of genes for each chromosome) 
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pm = 0.10;                    % probability of mutation 
pc = 0.90;                    % probability of crossover 
N = 10;                       % N is the number of observations  
Y = zeros(N,1);               % Y is the vector of observed data 
global elite; 
global elitefitness; 
global fitness; 
elite = zeros(1,bits);        % the best solution so far (elite member) 
elitefitness = 0;             % fitness of the elite member 
 
MAX_ITERATIONS = 50;          % Maximum number of iterations allowed before terminating the loop 
                              % this keeps the program from running indefinitely long   
% ********************* End set constants ******************************* 
 
                               
                               
% ************************ Generate observed data ************************ 
% Will be replaced with measured test data, used to compare GA calculations to. 
b_observed = [4.0 ; 0.014];   Y =  cylindrical_SS_2D(b_observed,N,radius,height);    
 
for i = 1:N 
    Y(i) = Y(i) +  (0.001 * randint(1,1,[-100,100]) );  %adding noise 
end 
% ********************** End generate observed data ********************** 
 
 
% *************************** Genetic Algorithm *************************** 
 
% Create and initialize population 
v = randint(pop_size,bits);    % v is the population vector 
 
 
terminate = 0;     % termination condition is initialized to false 
iterations = 0;    % iteration count is set to zero 
 
% !!!!!!!  Main loop starts  !!!!!!!! 
while (terminate == 0) 
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% *** Crossover Code section 
 p = 0; % crossovers on the population (initializing p) 
 
for i = 1:pop_size 
% This loop generates a random number for each member which determines 
% (when compared to the probability of crossover) whether or not crossover  
% will occur in that member. 
    if rand < pc        % pc is the probability of crossover 
        p = p + 1;      % steps through matrix 
        crossovers(p) = i;  % stores which member will crossover  
    end 
end 
 
 
if ( rem(p,2) ~= 0 )        % p must be even for crossover (2 parents necessary for each child) 
 if rand < .5 
     p = p + 1; crossovers(p) = randint(1,1,[1,pop_size]);           % Increasing p by 1 to make it even 
 else 
     p = p-1;               % Dropping p by 1 to make it even 
 end 
end 
 
i = 1;  % Creates the children 
while i < p 
        % two children replace position of two parents in crossover 
      [ v(  crossovers(i),:) v(   crossovers(i+1) , : )  ] =   DoCrossover( v ( crossovers(i),:) , v(   
crossovers(i+1),:), bits ); 
      i  = i + 2; 
  end 
% *** End Crossover Code section 
   
 
 
% *** Mutation Code section 
% Mutations on the new population, goes through each allee (or bit) individually 
for i = 1:pop_size 
    for j = 1:bits 
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        if rand < pm                     % pm is the probability of mutation 
            v(i,j) = not( v(i,j)  );        % The not operator flips the bit 
        end      
              
    end         
end 
% *** End Mutation Code section 
 
 
% Evaluate fitness of each chromosome 
for i = 1:pop_size 
    b = EvalChromosome(  v(i,:),hbits,qbits, radius, height  );     % b constains [height; heatgen] 
    fitness(i) = EvalFitness(b,N,Y,radius,height); 
 
    % if( 30 - fitness(i) <= 1e-4 && terminate == 0)  terminate = 1;  b 
    % end 
end    
 
 
% make a record of best possible solution so far. 
[FitVal, index] = max(fitness); 
 
      
 
if(FitVal > elitefitness)  % change the record of elite fitness 
    elitefitness = FitVal; 
    elite = v(index,:); 
     Elitesolution = EvalChromosome(elite,hbits,qbits, radius, height  )  
      
 elseif (FitVal < elitefitness)  % inject the elite member into the population 
     sub = randint(1,1,[1,pop_size]); 
     v(sub,:) = elite; 
     fitness(sub) = elitefitness; 
      
end    
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% Calculate total fitness of the population 
total_fitness = 0; 
for i = 1:pop_size 
   total_fitness = total_fitness +  fitness(i); 
end 
 
% Calculate the probability of selection of each chromosome 
for i = 1:pop_size 
    probability(i) = fitness(i) / total_fitness; 
end 
     
% Calculate cumulative probabilities 
cumulative(1) = probability(1); 
for i = 2:pop_size 
    cumulative(i) = cumulative(i-1) + probability(i); 
end 
 
% spin the roulette wheel 
r = rand(pop_size,1); 
     
% select the new population from current one 
w = zeros(pop_size,bits);   % the new v 
     
for p = 1:pop_size 
     
    i = 1;     
    while cumulative(i) < r(p) 
        i = i + 1; 
    end 
     
    w(p,:) = v(i,:); 
     
end 
     
v = w;     
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%  If fitness does not change much or number of iterations >= MAX, terminate loop. Otherwise, continue. 
iterations = iterations + 1 
 
if (iterations >= MAX_ITERATIONS)  
    terminate = 1;    
end 
     
end   
% !!!!!!!  Main loop ends  !!!!!!!! 
 
 
% Output the results only if termination was due to all iterations completed  
if (iterations >= MAX_ITERATIONS) 
     
[FitVal,I] = max( fitness); 
b = EvalChromosome(  v(I,:), hbits,qbits, radius, height  )  ; 
Elitesolution = EvalChromosome(elite,hbits,qbits, radius, height  )   
 
end 
t = toc 
 
 
Fitness Evalaution Function 
 
 
function[f] = EvalFitness(b, N, Obs,Rad, Ht); 
 
%************************************************************************* 
% Function to evaluate the fitness of the chromosome    
%     Copyright Manu Mital, 2003 
% 
% This function evaluates the fitness by using a fitness criteria related to 
% the Sum of squares.  
% ************************************************************************** 
 
% Calculate the sum of the squares 
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 Eta =  cylindrical_SS_2D(b,N, Rad, Ht); 
 
 S = (Obs - Eta)' * (Obs - Eta); 
  
 f = 200 - 10 *S; 
 
 
 
Crossover Function 
 
 
function[ x,y] = DoCrossover(a, b, nbits); 
 
% ************************************************************************* 
% Crossover function    Copyright Manu Mital, 2003 
% 
% This function takes two chromosomes a and b. It also takes in the number 
% of bits in the chromosome. It then does crossover by using a random 
% number as the crossover location. The function returns the two new  
% chromosomes created as a result of crossover operation. 
% 
% ************************************************************************* 
 
r = randint(1,1,[1,nbits]); 
 
for i = r+1:nbits 
     
    if( a(1,i) ~= b(1,i) )    % Exchange bits if they are different 
        a(1,i) = not( a(1,i) ); 
        b(1,i) = not( b(1,i) ); 
    end 
            
     
end 
 
x = a; y = b; 
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Appendix G: Infrared Data Reduction Program 
 
% ************************************************************************** 
% This code generates the locations at which temperature data needs to be  
% obtained from the Infra-red image. It takes in the number of the points  
% along a radial line at which the temperature data is to be recorded. A 
% radial line is defined as a line that runs from the center of the cyinder 
% to the circumference of the cylinder. 
% The temperature on the surface of the cylinder at any point should depend 
% only on the radial location of that point, not the angular location. In   
% order to ensure angular symmetry, the data is taken along several radial  
% lines placed at equal angles from each other. This angle can be specified  
% by the user. 
% This code generates the [r,theta] locations of the points at which the 
% temperature data needs to be taken. It also has the capability to import 
% raw data from the images and output the Celsius temperatures at those 
% [r, theta] locations. 
% *************************************************************************** 
 
clear; clc; 
 
% specify the length of the radial line (in pixels) 
 
rLength = 100; 
 
% NR is the number of non-zero control volumes into which the body is divided  
% along the path of heat transfer in the R direction 
 
NR = 12; 
 
deltaR =( rLength/(NR) )* ones(NR+2,1);     % deltaR is the size of the control  
                                            % volume 
                                             
deltaR(1) = 0;  deltaR(NR+2) = 0;           % zero control volumes at r =0 and   
                                            %r = rLength 
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 % Compute the values of locations along radial lines at which the temperature 
 % data will be taken 
  
 R_LOC = zeros(NR+2,1);   
 R_LOC(1) = 0;                      
  
   
 for i = 2:NR+2 
     R_LOC(i) =  R_LOC(i-1) + (deltaR(i) + deltaR(i-1) ) / 2.0; 
 end 
  
  
 
 for i = 2: NR+1 
     r(i-1) = R_LOC(i); 
 end 
  
 
  
 nLines = 60;           % number of radial lines desired.  
  
 ang  = 360 / nLines;  % all radial lines are spaced equally and "ang" angle 
                       % apart from each other. 
  
  
 % convert [r, theta] points into the [x,y] points. x is to the right and y 
 % is downwards. Theta is zero on the x-axis and moves clockwise. 
 % 
 % 
 %   -------> x-axis 
 %  | 
 %  | 
 %  | 
 %  v  y-axis 
 %  
  
 theta = 0;  
 x_pos =  zeros(nLines, NR);  
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 y_pos =  zeros(nLines, NR); 
  
  
 for i = 1: 1: nLines 
   
     for j = 1:1:NR 
          
         x_pos(i,j) =  r(j) * cos(theta * pi /  180);         
         y_pos(i,j) =  r(j) * sin(theta * pi /  180); 
          
     end      
      
 theta = theta + ang; 
      
 end 
      
 
  
 % Since the [r, theta] coordinate system and the [x,y] coordinate system 
 % do not share the same origin, we need to offset the points in x_pos and 
 % y_pos matrices 
  
 % First specify the center of the [r, theta] system 
  
 center_x  = 162; center_y = 123;        
  
 % Now add these to the x_pos and y_pos matrices 
  
 x_pos =  x_pos +  center_x * ones(nLines, NR); 
 y_pos =  y_pos +  center_y * ones(nLines, NR); 
  
  
x_pos = round(x_pos); 
y_pos = round(y_pos); 
 
% x_pos and y_pos now contain the x and y coordinates of the locations at which 
% the temperature data is needed.  
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% Load the file having array of greyscale values 
 
load data.txt; 
 
data_matrix = data(:,:); 
 
 
for i = 1:nLines 
     
    for j = 1:NR 
     
raw_temp(i,j) = data_matrix(  y_pos(i,j)    ,  x_pos(i,j)   ); 
 
end 
  
end 
 
 
 
 % The raw temperaturematrix contains the greyscale temperature values. To 
 % convert these values to celsius temperatures, we use equation of the form 
 % celsius_temp = raw_temp * m + b 
  
  
 % calibration data 
 %pRaw = [ 1 2 3 4 5];  pCelsius = [1 2 3 4 5];  
  
 %calibration = polyfit(pRaw, pCelsius,1); 
  
 calibration =  [.0056, 2.36]; 
  
celsius_temp = raw_temp * calibration(1)  + calibration(2); 
 
% we now calculate the mean temperature of each location and the standard deviation 
% of the temperature at that location. 
 
for j = 1:NR 
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mean_temp(j) = mean( celsius_temp(:,j) ); 
std_temp(j) = std( celsius_temp(:,j)  ); 
     
end 
 
% celsius temperatures are the temperatures in celsius at the specified x 
% and y locations. 
 
[mean_temp', std_temp'] 
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                             Appendix H: Estimation Program Flowchart 
Initialize chromosome population  

Crossover &  Mutations 

Evaluate fitness of 
chromosomes (F) 2D Finite Difference
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Calculate total fitness of 
population (TF) 
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Calculate cumulative 
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Appendix I: Infrared Camera Specifications 
 

   Table I.1 Specifications for the PV320 Infrared Camera 

18 mm f 1.0 Field of view 52° 
Field/Frame Rate 60/30Hz 
Sensor Type Uncooled Ferroelectric 
Size 140 mm (L) x 114 mm (W) x 114 (H) 
Temperature Calibration Range -20° - 500° C 
25MM f 1.0 Field of View 35° 
Array Resolution 320 x 240 
Digitization  12-bit
Measurement Accuracy +/- 2% 
Weight 3 lbs. without lens 
35 mm f 1.0 Field of View 25° 
Ambient Operating Temperature -20° C to 50° C 
Digital Output USB 2.0 High Speed 
Spectral Response 8-14 Microns (2-14 Microns - Optional) 
50MM f 1.0 Field of View 18° 
Storage Temperature -20° C to 60° C 
Video Output NTSC or PAL 
100 mm f 1.0 Field of View 9° 
NETD  80 mK 
Remote Control RS-232 
Tripod Mount 1/4-20 Standard 
Detector Cooling TE Stabilized 
TE Stabilized 47 microns 
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