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Aeroelastic analysis of membrane wings

Soumitra Pinak Banerjee

Abstract

The physics of flapping is very important in the design of MAVs. As MAVs can-

not have an engine that produces the amount of thrust required for forward flight,

and yet be light weight, harnessing thrust and lift from flapping is imperative for

its design and development. In this thesis, aerodynamics of pitch and plunge are

simulated using a 3-D, free wake, vortex lattice method (VLM), and structural char-

acteristics of the wing are simulated as a membrane supported by a rigid frame.

The aerodynamics is validated by comparing the results from the VLM model for

constant angle of attack flight, pitching flight and plunging flight with analytical re-

sults, existing 2-D VLM and a doublet lattice method. The aeroelasticity is studied

by varying parameters affecting the flow as well as parameters affecting the struc-

ture. The parametric studies are performed for cases of constant angle of attack,

plunge and, pitch and plunge. The response of the aeroelastic model to the changes

in the parameters are analyzed and documented. The results show that the aero-

dynamic loads increase for increased deformation, and vice-versa. For a wing with

rigid boundaries supporting a membranous structure with a step change in angle of

attack, the membrane oscillates about the steady state deformation and influence the



loads. For prescribed oscillations in pitch and plunge, the membrane deformations

and loads transition into a periodic steady state.
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Chapter 1

Introduction and Overview

1.1 Motivation

Birds and insects use flapping wing mechanics to fly, by simultaneously producing

thrust and lift. The flight of birds and insects are different. During a flapping cycle,

most birds flap their wings in a vertical plane with small changes in the pitch of their

wings. To produce lift birds use forward velocity. Thus, most birds cannot hover.

Insects, on the other hand, flap their wings in a nearly horizontal plane, with high

pitch angles. This enables them to produce lift in the absence of forward velocity

[1]. Micro Air Vehicles (MAVs) are being designed keeping flapping wing mechanics

in hindsight. MAVs have been successfully built and tested at the University of
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Florida MAV Laboratory [2] [3] [4], and the University of Maryland’s Alfred Gessow

Rotorcraft Center [1]. The goal of the work done in this thesis is to simulate the

flight of a rectangular wing that can be used to model the flight of MAVs, and lay

down the foundation for other types of MAVs. The preliminary work of simulation

would serve as a reference in understanding the physics, and the math that goes

behind the development of MAVs. The aerodynamics is simulated using the vortex

lattice method, and the structural parameters are approximated using Fourier series.

1.2 Micro Air Vehicles (MAVs)

Micro air vehicles are remotely or autonomously controlled unmanned air vehicles

(UAV) typically of six inches (15 cm) in size. MAVs are defined as low aspect ratio

wings operating at low Reynold’s number of the order of 104 [5]. In terms of size and

weight, MAVs are defined as being 15 cm and weighing 15 grams [1]. The idea of

micro air vehicles evolved from insects and birds, who use flapping flight mechanics

to exploit unsteady aerodynamic effects [5]. However, the current MAVs that use

these mechanics have evolved from fixed wing designs, which are easier to design.

A much advanced work has been done by the University of Florida MAV Labo-

ratory. The group has worked on MAVs whose wing span ranged from 8 cm to 2 m.

Their accomplishments include a 4.5 inch MAV that captured images 600 m away;

2



8,12 and 16 inch prototypes of MAVs designed to carry relatively heavier payloads;

the Tadpole, which was designed for Low Altitude Geo-Reference Photography; a

6 inch wingspan morphing MAV that could fit into a ”Cigar” tube and quickly de-

ploy, and assemble its form; the Pocket Micro Air Vehicle (PMAV), that could fit

in a canister, which could fit into military battle dress pant size pockets, and is

used for immediate field access for short range reconnaissance; the 12 inch Gator A

which was again used for visual search for multiple targets; a 24 inch Bomb Damage

assessment (BDA) MAV whose mission was surveillance; and the Micro Morphing

Air-Land vehicle, which in addition to its aerial mission of surveillance is also capable

of terrestrial locomotions using WHEGs (a method of locomotion that combines the

advantages of wheels and legs) to detect IEDs (Improvised explosive devices).

MAVs are designed to be morphing or with fixed wings. It has been shown

that fixed wing MAVs have higher endurance than rotary or flapping wing MAVs.

The Alfred Gessow Rotorcraft Center at the University of Maryland has used an

insect flight mechanism to design MAVs. The MAV Mentor uses the the ”clap wing”

phenomenon, which is used by a few species of insects. Ornithoptic flapping, which

is bird like flapping, has been studied experimentally to a great extent. However,

the more convoluted hover-capable flapping could not be tested due to complex

design requirements; most literature comprises of research by biologists on the wing

3



kinematics and morphology of actual insects [1].

1.3 Aerodynamic modeling

Various approaches have been pursued by different researchers in modeling the aero-

dynamics of a MAV or in the study of birds and insects. As in the aerodynamic

modeling of birds and insects, flapping is an important aspect of their flight, its im-

perative to understand and accurately model flapping flight. In birds and insects,

vortices are released from the trailing edges of the lifting surface, wings in their case,

that contain information of the time history and magnitude of the aerodynamic force.

The wake vortices thus act as an aerodynamic footprint of the passage of the flying

object[6]. In an experimental study of bat flight [6], it was found that in slow speeds

a vortex loop was shed by the wing, whereas in high speeds a pair of undulating

vortices were shed that trailed from the wing tip. This qualitative observation let

the researchers to conclude that lift was produced both during downstroke as well

as upstroke. This was however contradicted by kinematic studies that suggested

that a wing tip reversal reversed the wing circulation during upstroke. Some of the

important conclusions of this study are; the circulation reaches a zero value while

transitioning from upstroke to downstroke, which contrasts the constant circulation

wake model used to simulate bird flight; the quantitative data also show that neg-
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ative lift is achieved during upstroke at medium and high speeds. The negative lift

could be due to the membranous nature of a bat’s wing that prevents separation [6].

The analytical studies done on the aerodynamics of hover-capable flapping wings

have mainly been done on rigid wings [7] [8]. Some of these studies have looked at

ornithoptic flapping whereas some have looked at insect flight. For the modeling of

insect flight, the approaches available for aerodynamic modeling range from indicial

methods based on Wagner and Kussner’s functions to the computationally intensive

unsteady vortex lattice method (UVLM) and CFD analysis [1].

The aerodynamics can also be modeled using particle wake aerodynamics, as

explained by Nitzsche and Opoku [9]. Their aerodynamic code, GENUVP, has the

potential to simulate various flight situations and rotorcraft configurations and is

also capable of accurate modeling of wake effects. The unsteady vortex particle

code uses the Helmholtz decomposition principle, through which the flow-field is

decomposed into an irrotational part and a rotational part. The rotational part is

due to wakes emitted by lifting bodies. The aerodynamic simulation starts out with

the calculation of the velocity of the near wake elements which are calculated using

the vortex panel method, via the Biot-Savart law. At the next time step, vortex

particles are formed from near wake strip elements, thereby becoming part of the

’far-wake’. The strengths of these vortex particles are computed by the integration

5



of the vorticity of near-wake elements. Vortex particle methods have been widely

used in rotorcraft aerodynamic simulation, and their theory can be found in other

publications [10].

Aerodynamics model simulating wake structures generated by rotating blades us-

ing vortex blobs have also been pursued [11]. Their experimentally validated results

focus on simulated wake geometries in the radial and axial directions. In their sim-

ulation of the wake, the wake is divided into three different sections; the tip vortex

region which is well defined, an intermediate region, and an initially generated wake

bundle. The model developed is a function of the geometry of the rotor blades, and

geometries have to be modified for accurate simulations. The vortices shed into the

wake are simulated as vortex blobs; which are finite vortex sticks, with a location

and an associated strength. The model also takes into account vortex stretching,

which is the updated vorticity vector by the local strain field.

The application of vortex-blob method to airfoils with thickness at high Reynold’s

number can be found in Ref. [12]. According to the author, the vortex-blob method

provides a natural and numerically efficient description of eddies and their strengths.

Also, the implementation of the method in a Lagrangian frame makes the simulation

grid free, and allows modeling around multi element bodies of arbitrary shape. The

boundary conditions used in this paper is the same as the ones used for the research

6



in this thesis.

CFD codes have been used in the aerodynamic simulation of flow over a wing

as well as rotating blades [13]. The generation and transport of the vortices can be

described using CFD. However, a rapid decay of the vortical structures is caused

by numerical dissipation. The shortcomings and advantages are taken into account

before the development of the aerodynamic code by several groups [11]. Describing

the far wake boundary condition causes problems in hovering flight and free wake

analysis .

To date successful implementation of prescribed wake [14], an interactive free-

wake and a time marching free-wake model have been done by many researchers [13]

[15] [16].

1.4 Aero-Structures interation

Of all the studies performed on birds and insects, only the wings of bats and some

insects can closely resemble a membranous surface. They can be actively stretched

and collapsed, and lack feathers. [6].

As in any aeroelastic problem, the structure and the aerodynamics of a flying

body have interactions with each other changing their physical characteristics. This

could give rise to aeroelastic instabilities in flight which could have a disastrous
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conclusion. Aeroelastic instabilities can be static or dynamic in nature. The static

aeroelastic problems most heard off in the aviation industry are divergence, and

control surface reversal. Divergence occurs when the aerodynamic loads deflect the

lift surface such that the applied loads increase. The increased loads cause the wings

to further deflect and reach the limit loads and could lead to failure. Control surface

reversal is the reversal or loss of a control surface, due to the elastic deformations

of the lifting surface structure. The dynamic cases most heard off include flutter,

buffeting, and dynamic response. Flutter is defined as a dynamic instability occur

Patil [17], explains the difference in flutter and flapping flight using a holistic

energy perspective. The paper shows that energy is transferred from propulsion to

the structure via the flow during flutter. And thus, as the system goes into flutter

there is an increase in the amount of drag. Flutter and flapping flight are both

classified as modes of an energy flow. Flutter is an unstable mode resulting in an

increase in drag, while flapping flight is a stable and damped mode with energy

transferred to be used for propulsion [17].

Aeroelastic analysis of hover-capable, bio-mimetic flapping wings is presented in

reference [1]. Biomimetic pitching-flapping mechanisms are studied for flight in air at

high frequency. Due to this the light weight and associated high flexibility, the struc-

tures undergo significant aeroelastic effects. The structural model takes into account

8



the large motion of the wings and is discretized as plate finite elements. The wing

consists of mylar sheet with an aluminum external frame. The load and deflection

are also calculated using Fourier series and matched reasonably with experimental

results. Dynamic aeroelastic analysis of morphing wings has been done with the aid

of neural networks [18].

1.5 Thesis Layout

Chapter 1 of the thesis goes through the various research work done in the field of nu-

merical modeling of unsteady flows, theoretical as well as experimental work done in

the field of MAVs and morphing air vehicles, and works in the field of aeroelasticity.

Chapter 2 elaborates on the approach taken in this thesis in aerodynamic modeling.

It goes over the theory that leads to the development of the vortex lattice method and

describes the details of the VLM. Chapter 3 focuses on the structural theory and the

coupling of the aerodynamic and structural models. It emphasizes the aeroelasticity

and describes the order of accuracy of the differencing schemes employed. Chapter

4 consists of the results generated from the work, including validation studies for

the aerodynamic model. Chapter 5 is the conclusion, and summarizes all that could

be deduced from the research. ling of unsteady flows, theoretical as well as experi-

mental work done in the field of MAVs and morphing air vehicles, and works in the
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field of aeroelasticity. Chapter 2 elaborates on the approach taken in this thesis in

aerodynamic modeling. It goes over the theory that leads to the development of the

vortex lattice method and describes the details of the VLM. Chapter 3 focuses on

the structural theory and the coupling of the aerodynamic and structural models. It

emphasizes the aeroelasticity and describes the order of accuracy of the differencing

schemes employed. Chapter 4 consists of the results generated from the work, in-

cluding validation studies for the aerodynamic model. Chapter 5 is the conclusion,

and summarizes all that could be deduced from the research.
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Chapter 2

Aerodynamic Modeling

The aerodynamic model is designed to encompass low-speed, low-angle of attack,

but large motions. The model is developed for inviscid, incompressible, and un-

steady flow. The low-angle of attack, and low-speed assumption ensures that the

flow separates at the trailing edge. To design a model, the vortex lattice method

with vortex rings is implemented. An ideal model would take viscous effects into

consideration, and would be based on the Navier-Stokes equations. Other ways of

modeling the flow would be based on either vortex particle method, free vortex blob

method, and computational fluid dynamics.

CFD programs can simulate the case being studied with higher fidelity, as com-

pared to vortex lattice methods or, vortex particle methods. More sophisticated

11



codes available in the industry based on vortex lattice methods can also do a very

good job of simulating the flow. However, the purpose of this study is to do a prelim-

inary aerodynamic analysis. Since the flow parameters considered are inviscid; with

small angle of attack, and pitch angle; and low speed; the vortex lattice method is a

reliable method for preliminary analysis. Vortex lattice methods can be implemented

with a fixed wake or a free wake approximation. Since the method is being developed

for cases of pitch and plunge; and has to be general enough to accommodate flapping

wing effects for future work, the free-wake model’s wake shape works as a check point

to validate whether the physics of the flight is being captured by the model. Also, the

vortex stretching terms included in the free-vortex blob methods are not considered

as the vortex stretching effects are insignificant for the cases being studied. The VLM

is inexpensive medium order, medium fidelity model. The study and application of

CFD methods, and sophisticated simulation softwares require experience, and are

expensive.

The Vortex Lattice Method is described below.

12



2.1 Basic Concepts

2.1.1 Angular Velocity, Vorticity, and Circulation

The angular motion of a fluid element consists of translation, rotation, and deforma-

tion. The translation is caused by the local velocity of the fluid. Due to variations

in the local velocity, the fluid element rotates and deforms. The components of the

angular velocity of the fluid are given by [14],

ωk =
1

2

(
∂Vi

∂xj

− ∂Vj

∂xi

)
εijk (2.1)

where, indices i, j and k represent the three directions of the cartesian frame, and

i 6= j 6= k.

The angular velocity can thus be written as,

~ω =
1

2

(
~∇× ~V

)
(2.2)
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For convenience, the term vorticity is defined as,

~ζ = 2~ω = ~∇× ~V (2.3)

ζk = 2ωk =

(
∂Vi

∂xj

− ∂Vj

∂xi

)
(2.4)

Figure 2.1: Relation between Surface To Line Integrals

For an open surface S with a closed curve C along its boundary shown in Figure

2.1, the vorticity on the surface S can be related to the line integral around curve C

using Stokes’s theorem.

∫
S

~∇× ~V · ~ndS =

∫
S

~ζ · ~ndS =

∮
C

~V · dl (2.5)

where ~n is normal to the surface dS. This term is called the Circulation and is

14



represented by the Greek letter Γ .

Γ =

∮
C

~V · dl (2.6)

The Circulation establishes the relationship with the velocity, and is later used

in the computation of aerodynamic loads.

2.1.2 Irrotationality

In the presence of viscous forces, a fluid particle will rotate like a rigid body. This

flow is called rotational, and

~∇× ~V 6= 0 (2.7)

On the other hand, in the absence of large viscous forces as being considered in

the aerodynamic modeling, which exist in the region outside the boundary layer of

a body in motion, the fluid is irrotational.
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~∇× ~V = 0 (2.8)

2.2 Biot-Savart Law

For an incompressible fluid, the continuity equation is in the form of Laplace’s equa-

tion. [14].

~∇ · ~V = 0 (2.9)

The following steps are taken to establish a relationship in between the velocity

and a known vorticity distribution. In a region where vorticity can exist, the velocity

field is expressed as the curl of a vector field B such that,

~V = ~∇× ~B (2.10)

B is indeterminate to within the gradient of a scalar function of position and

16



time, as the curl of a gradient vector is zero. B can further be selected to satisfy,

~∇ · ~B = 0 (2.11)

Eq. 2.3 in conjunction with Eq. 2.10 can be written as,

~ζ = ~∇× ~∇× ~B = ~∇
(

~∇ · ~B
)
−∇2 ~B (2.12)

By applying 2.11 into the above equation, it is further reduced to

~ζ = −∇2 ~B (2.13)

Using Green’s theorem the solution to this equation is (Ref. [19], pp.533),

~B =
1

4π

∫
Q

~ζ

|r0 − r1|
dQ (2.14)

where Q is the volume.
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Figure 2.2: Velocity at point L due to a vortex distribution

As shown in Figure 2.2, at a point L, the velocity is then a curl of vector B:

~V =
1

4π

∫
Q

~∇×
~ζ

|~r0 − ~r1|
dQ (2.15)

where r0 is the distance from the origin, with the vorticity at a distance of r1 and

Q is the volume containing the vorticity

The velocity due to a volume distribution of vorticity is derived below. Consider

an infinitesimal vorticity element ζ, Figure 2.3 . The cross sectional area dS is

selected such that the vorticity vector ζ is perpendicular to it. The direction of the

filament d l is parallel to the vorticity vector and is expressed as,
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Figure 2.3: Velocity at point L induced by a vortex segment

d~l =
~ζ

ζ
dl (2.16)

The circulation is thus given by,

~Γ = ~ζdS (2.17)

dQ = dSdl (2.18)

On performing a few mathematical manipulation on the velocity field equation

with the above three terms it leads to, (Ref. [14] pp. 38)
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~V =
1

4π

∫
Q

~ζ × (~r0 − ~r1)

|~r0 − ~r1|3
dQ (2.19)

2.2.1 Velocity Induced by a Straight Vortex Section

Figure 2.4: Velocity Induced By A Straight Vortex Segment

The velocity induced by a straight vortex section is derived from the Biot-Savart’s

law. The vortex segment is considered to be a part of a continuous vortex line. The

vortex segment has a constant circulation Γ, and induces a tangential velocity, as

shown in Figure 2.4. The velocity induced by this vortex segment at a point that is

a distance r away from it is given by,

∆~V =
Γ

4π

dl× ~r

r3
(2.20)
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Figure 2.5: Nomenclature used for the velocity induced by a three-dimensional,
straight vortex segment

By performing geometric manipulations and using basic trigonometric functions,

as illustrated in Katz and Plotkin (Ref. [14] pp. 39) , the velocity induced by the

section of the vortex line can be written as,

~V =
Γ

4π

~r1 × ~r2

|~r1 × ~r2|2
~r0 ·
(

~r1

|~r1|
− ~r2

|~r2|

)
(2.21)

where ~r1 is the distance from point 1 to point L, ~r1 is the distance from point 2

to point L, and ~r0 describes the vortex segment, as shown in Fig. 2.5.
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2.3 Vortex Lattice Method

Figure 2.6: Chordwise And Spanwise Running Vortex Segments

The vortex lattice method used in this work is based on references [20] and [7].

The vortex lattice consists of vortex lines that run along the span wise and chord

wise direction of the wing, see Figure 2.6. Biot-Savart law serves as the basis

for the calculation of velocity. In conjunction with a few theorems and boundary

conditions, it can be effectively used for the prediction of aerodynamic loads and the

wake parameters.

2.3.1 Spatial Conservation of Vorticity

Consider at any instant, a surface S that encloses a region R. The application of

divergence theorem yields,
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∫
S

~ζ · ~ndS =

∫
R

~∇ · ~ζdQ = 0 (2.22)

Figure 2.7: Vortex Tube

An application of this principle to a tube, as shown in Figure 2.7. The tube is

enclosed by circular surfaces S1 and S2 , and along its length by surface Sw . Since

the vorticity is parallel to the surface Sw , its contribution vanishes resulting in,

∫
S

~ζ · ~ndS =

∫
S1

~ζ · ~ndS +

∫
S2

~ζ · ~ndS = 0 (2.23)

The normal vector in the equation is the outward normal. Denoting nv as being

positive and in the direction of the vorticity vector, the equation becomes,
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∫
S1

~ζ · ~nvdS =

∫
S2

~ζ · ~nvdS = const (2.24)

The circulation of a curve C that surrounds the tube, and lies on its wall is given

by,

ΓC =

∫
S

~ζ · ~nvdS = const (2.25)

2.3.2 Helmholtz’s theorem

The application of the above equation to a vortex filament yields,

ΓC = ~ζdS = const (2.26)

Helmholtz’s theorem deals with the rate of change of vorticity. Helmholtz vortex

theorems can be summarized as:

1. The strength of a vortex filament is constant along its length.
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2. A vortex filament cannot start or end in a fluid. It must form a closed path or

extend to infinity.

3. The fluid that forms a vortex tube continues to form a vortex tube and the

strength of the vortex tube remains constant as the tube moves about. Hence,

vortex elements such as vortex lines, vortex tubes, vortex surfaces, etc., will

remain vortex elements with time.

2.3.3 Kelvin’s theorem

Kelvin’s Circulation theorem deals with the rate of change of circulation. The theo-

rem states that, In the motion of an inviscid fluid, the rate of change of circulation

around any fluid curve is permanently zero if the body forces are irrotational and if

there is a single-valued pressure-density relation, or, equivalently under these condi-

tions, the circulation around a fluid curve remains a constant for all times as the

curve moves with the fluid. The conclusion of the theorem is mathematically written

as,

D

Dt
ΓC =

D

Dt

∫ ∫
S

~ζ · ~nvdS = 0 (2.27)
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2.3.4 Discretized Vortex Sheet

The vortex sheet consists of vortex lines running along the span wise and chord wise

directions on the surface of the wing. The chord wise and span wise running vortex

lines cross each other forming quadrilateral vortex elements, as shown in Figures

2.6 and 2.9. These are called vortex rings. In the work done in this thesis, only

rectangular elements are considered. Experience has shown that rectangular elements

used on the surface of the wing in VLM are more efficient than elements of other

shapes [20]. The sum of the circulation at any node on the vortex lattice is zero, as

shown in Figure 2.8. This is analogous to Kirchoff’s principle in Electrical theory.

Figure 2.8: Sum of Γ at a node is zero

The advantage of using vortex rings is that they simplify the programming [14].

The leading segment of the first row’s vortex ring is placed on leading edge of the

wing. Thus, the trailing edge of the last row’s vortex ring lies on the trailing edge of

the wing. The collocation or the control point is in the center of each element, and

the normal to each element is defined at this point.
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Figure 2.9: Rectangular Wing with Vortex Rings

Figure 2.10: Relationship Between G and Γ
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Each vortex ring is defined to have a loop circulation which is defined by the letter

Gi for panel i , shown in Figure 2.9. It is defined positive in the counter-clockwise

direction or in the positive ~k direction. The circulation of vortex segments lying on

the leading edge and the wing tip will be the same as the vortex ring on which they

lie. Thus from Figure 2.10 it can be deduced that,

Γ1 = Γ6 = G1 (2.28)

Γ4 = Γ8 = G3 (2.29)

Γ3 = Γ9 = G2 (2.30)

The value of the circulation for a vortex segment that is an overlap of two different

vortex segments is the difference in the values of the loop circulations of the two

vortex rings involved.

Γ7 = G1 −G3 (2.31)

Γ2 = G2 −G1 (2.32)

The circulation of the vortex segment lying on the trailing edge of the wing is

the difference between the value of the last row of vortex rings at any time minus its

value at the previous time. This is because a row of vortex rings is shed to conserve
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Figure 2.11: One Row of Shed Vortex Rings

the circulation, which is discussed in the next section, as shown in Figure 2.11. The

same principle used in the previous two cases is used in the calculating the circulation

of the vortex segments that lie on the trailing edge of the wing.

2.3.5 Boundary conditions

No Penetration Condition

Using the vortex ring method, the boundary conditions are satisfied on the wing

surface, which can have camber and different planform shapes [14]. The no pene-

tration condition implies that the fluid cannot pass through the wing. Another way

of looking at the no penetration condition, is saying that the normal component of

the structural velocity of the wing is equal to the normal component of the velocities
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induced by vortex panels on the surface of the wing and in the wake. This condition

is applied at the control point of each element, which is the center of the element.

The velocities acting on the wing at the control points originate from the freestream,

structural dynamics, and the induced wake velocity. This is mathematically written

as,

(
~Vs + ~V∞

)
· ~n =

(
~Vwake + ~Vsurf

)
· ~n (2.33)

In the equation above, Vs is the velocity of the wing structure, and can be written

as,

~Vs = ~Vrigid + ~Vmembrane (2.34)

where, ~Vmembrane is the velocity due to structural deformations

~Vrigid is the velocity with which the wing moves, and is described for an oscillating

plunge h = h0 cos ω0t and plunge α = α0 cos (ω0t + φ) as,
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~Vrigid = ~̇h + ~̇α× ~Ra (2.35)

where, ~Ra is the distance arm from the pitching axis to the control point.

~Vsurf is the velocity induced on the control points by the vortex rings on the sur-

face of the wing. ~n is the unit normal vector of the element on which the condition

is applied. ~Vwake is the velocity induced by vortices in the wake on the control points

on the wing.

~Vwake and ~Vsurf are both calculated using the Biot-Savart’s law for the vortex ring.

The velocity from the structures is elaborated in the next chapter. The loop circu-

lation on the surface at any given time is computed based on the structural and the

wake velocity from the previous time step. Thus, the problem involves solving for a

number of unknowns which is equal to the number of surface elements.

AijGj = Vsurf (2.36)

Vsurf =
(

~V∞ + ~Vs − ~Vwake

)
· ~n (2.37)

where A is the coefficient matrix consisting the coefficients from the Biot-Savart law.
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Figure 2.12: Calculation of Normal Vector

In the equation above, i is the panel on which the normal velocity is being

computed, and j is the index of the panel loop circulation that induces the velocity.

The unit out ward normal is computed by the cross product of vectors connecting

nodes diagonally across each other, as shown in Figure 2.12.

~n =
~R1 × ~R2∣∣∣ ~R1 × ~R2

∣∣∣ (2.38)

~R1 = (x4, y4, z4)− (x1, y1, z1) (2.39)

~R2 = (x3, y3, z3)− (x2, y2, z2) (2.40)
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Kutta Condition and Vortex Convection

The Kutta condition is imposed by shedding the vortices from the trailing edge of

the wing. By implementing the Kutta condition at the trailing edge, it is being

assumed that the flow separates at the trailing edge. The velocity induced on the

wake nodes is computed by the Biot-Savart law. Each node in the wake experiences

velocities from the freestream, the vortex panels on the surface and vortex panels in

the wake. The wake nodes travel a distance that is equal to the velocity times the

time interval. The wake panels contain constant circulation, which is acquired during

the shedding process from the last row of panels on the wing’s surface. The shedding

and convection process generates the wake, which induces velocity on the control

points at the next time step. The process of the formation of new vortices, and

convection from the trailing edge continues for any desired number of time steps.

From the nature of the wake formation process, the wake keeps a history of the

circulation strength. From the Biot-Savart law, the velocity induced on a point by

a vortex panel is inversely proportional to the distance. Thus, the vortices far away

from the wing have negligible effect on the aerodynamic loads. Many VLM codes

cut off the vortices that have traveled far from the wing. Typically, a vortex segment

that has traveled a distance of 8 to 10 chord lengths has negligible effect on the

aerodynamic loads.

33



2.3.6 Calculation of Load Coefficient

The formulation of the load coefficient is acquired from Ref.[7]. The pressure co-

efficient is calculated by the mathematical manipulation of Bernoulli’s equation.

Bernoulli’s equation for incompressible unsteady flow is given by,

∂φ

∂t
+

1

2
∇φ · ∇φ +

p

ρ
= Pfs (2.41)

Pfs =
1

2
V 2
∞ +

p∞
ρ

(2.42)

In the equation above, p is the pressure, ρ is the density is the density of air, Pfs

is the far stream stagnation pressure calculated at conditions at infinity, p∞ is the

freestream pressure, V∞ is the freestream velocity, and φ is the scalar gradient of the

velocity. The pressure coefficient Cp is derived as shown below,

p

ρ
− p∞

ρ
=

1

2
V 2
∞ −

1

2
∇V · ∇V − ∂φ

∂t
(2.43)

=
1

2
V 2
∞

[
1− V

V∞
− 2

V 2
∞

∂φ

∂t

]
(2.44)

p− p∞
ρ

=
1

2
V 2
∞

[
1− V

V∞
− 2

V 2
∞

∂φ

∂t

]
Cp =

p− p∞
1
2
ρV 2
∞

= 1− V

V∞
− 2

V 2
∞

∂φ

∂t
(2.45)
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In order to calculate the loads on the wing, the difference in pressure across the

wing is essential. Thus, the next parameter that is calculated is ∆Cp. The parameter

is derived by nondimensionalizing the velocity, the scalar gradient of the velocity, and

the time.

Ṽ =
V

V∞
, φ̃ =

φ

V∞Lp

, t̃ =
t

LpV∞
(2.46)

where, Ṽ , φ̃, and t̃ are the nondimensional velocity, scalar of the velocity gradi-

ent, and time respectively. The velocity is nondimensionalized with respect to the

freestream velocity V∞ for convenience. Lp is the length of a panel in the chord wise

direction.

Lp =
c

ncp

(2.47)

where c is the chord length, and ncp is the number of chord wise panels.

The time step is assigned a value such that the nondimensional time step has

a value of one. By taking this step, the bound vortex elements and the wake vor-
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tex elements have the same size. Experience has shown same size vortex elements

are better than vortex elements of different sizes. After nondimensionalizing, the

equation describing Cp has the following form,

Cp = 1− Ṽ 2 − 2
∂φ̃

∂t̃
(2.48)

Since the no penetration condition is applied at the control points of the element,

the aerodynamic pressure coefficient is also calculated at the same point. This is

computed by taking the difference between the pressure coefficient computed on the

lower surface and the upper surface of the wing.

∆Cp = (Cp)L − (Cp)U (2.49)

=
(
ṼU

)2

−
(
ṼL

)2

+ 2

(
∂φ̃

∂t̃
|U −

∂φ̃

∂t̃
|L

)
(2.50)

= ~̃VU · ~̃VU + ~̃VL · ~̃VL + 2

(
∂φ̃

∂t̃
|U −

∂φ̃

∂t̃
|L

)
(2.51)

where, ṼU is the local particle velocity at a point just over the lattice, ṼL is the
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Figure 2.13: Anatomy of a vortex element

local particle velocity at a point under over the lattice, ∂φ̃
∂t̃
|U and ∂φ̃

∂t̃
|L are evaluated

on the upper and lower surfaces of the control point of the wing respectively.

The calculation of ∆Cp is based on the calculation of Ṽ and ∂φ̃
∂t̃

on the upper and

lower surfaces.

~̃VU = ~̃Va +
∆~̃V

2
(2.52)

~̃VL = ~̃Va −
∆~̃V

2
(2.53)

where ~̃Va is the sum of all the velocities induced by the bound surface vortices and

wake vortices, and the freestream velocity. ∆~̃V denotes the jump in the tangential

velocity across the vortex sheet, which is equal to the vortex sheet strength. For the

derivation of ∆~̃V , a new vector ~̃Γ is defined, whose components are shown in Figure

2.13,
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~̃Γ =
1

2

(
~Γ1 + ~Γ2 + ~Γ3 + ~Γ4

)
(2.54)

~Γi = Γi
Ri

ri

(2.55)

where, ri = |Ri|.

∆~̃V is thus defined by,

∆~̃V = −~n× ~̃Γ

Ã
(2.56)

Ã =
1

2

 ~R1 × ~R3∣∣∣ ~R1 × ~R3

∣∣∣ +
~R2 × ~R4∣∣∣ ~R2 × ~R4

∣∣∣
 (2.57)

Next, ∂φ̃
∂t̃

is evaluated. The time derivative of the velocity potential, at a given

point, is mathematically defined as,

∂φ (r, t)

∂t
= lim

∆t→0

φ (r, t + ∆t)− φ (r, t)

∆t
(2.58)

where ~r is the position vector in the inertial frame.

The distance traveled by a control point, denoted by point Y and Y ′ at time t

38



Figure 2.14: Description of Grid at times t and t + ∆t

and t + ∆t respectively is described mathematically by ∆r. This is illustrated in

Figure 2.14.

~∆r = ~r(t + ∆t)− ~r(t) (2.59)

The velocity potential at time t+∆t can be expressed by the expansion of Taylor

series. Thus,

φ (~r + ∆~r, t + ∆t) = φ (~r, t + ∆t) +∇φ (~r, t + ∆t) ·∆~r + ... (2.60)

φ (~r, t + ∆t) ≈ φ (~r + ∆~r, t + ∆t)−∇φ (~r, t + ∆t) ·∆~r (2.61)

Eq. 2.58 can be expanded using the Taylor series expansion and thereby be
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written as,

∂φ (r, t)

∂t
= lim

∆t→0

φ (~r + ∆~r, t + ∆t)− φ (~r, t)−∇φ (~r, t + ∆t) ·∆~r

∆t
(2.62)

= lim
∆t→0

φ (~r + ∆~r, t + ∆t)− φ (~r, t)

∆t
− lim

∆t→0
∇φ (~r, t + ∆t) · ∆~r

∆t
(2.63)

The body velocity at point L fixed at a vortex lattice is given by lim∆t→0
∆~r
∆t

.

Thus,

∂φ (r, t)

∂t
= lim

∆t→0

φ (~r + ∆~r, t + ∆t)− φ (~r, t)

∆t
−∇φ (~r, t + ∆t) · ~VBL (2.64)

=
Dφ

Dt
|L −∇φ (~r, t + ∆t) · ~VBL (2.65)

where Dφ
Dt

is the total derivative of φ (~r, t). Non dimensionalizing the parameters

in the equation above yields,

∂φ̃

∂t̃
=

Dφ̃

Dt̃
− t

V∞Lp

V 2
∞∇̃

(
φ̃
)
· ~̃VBL (2.66)

=
Dφ̃

Dt̃
− ∇̃

(
φ̃
)
· ~̃VBL (2.67)
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V∞ = Lp/∆t

For the upper and lower surfaces ∂φ̃
∂t̃

and their difference is written as,

∂φ̃

∂t̃
|U −

∂φ̃

∂t̃
|L =

D

Dt̃

[
φ̃ (~rU , t)− φ̃ (~rL, t)

]
(2.68)

−
[
∇̃
(
φ̃ ( ~rU , t)

)
− ∇̃

(
φ̃ ( ~rL, t)

)]
· ~̃VBL

Now,

∇̃
(
φ̃ ( ~rU , t)

)
= ~̃VU = ~̃Va +

∆ ~̃VU

2
(2.69)

∇̃
(
φ̃ ( ~rL, t)

)
= ~̃VL = ~̃Va −

∆ ~̃VU

2
(2.70)

This yields,

∇̃
(
φ̃ ( ~rU , t)

)
− ∇̃

(
φ̃ ( ~rL, t)

)
= ∆~̃V (2.71)

Moreover from Eq. 2.25, ∇̃
(
φ̃ ( ~rU , t)

)
− ∇̃

(
φ̃ ( ~rL, t)

)
can be calculated by,
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(
φ̃ ( ~rU , t)

)
−
(
φ̃ ( ~rL, t)

)
=

∮
~̃V d̃r = ˜Γ (t) = −G(t) (2.72)

Using a first order finite-difference DG̃i

Dt̃
can be approximated, for panel i , as

DG̃i

Dt̃
=

G̃i(t)− G̃i(t−∆t)

∆t
(2.73)

Thus, the element force vectors is given by,

F (i, j) =
1

2
ρU2

∞Lp∆Cp (i, j) L2
p

~n (i, j) (2.74)

The lift and induced drags can be calculated by taking the component of the

forces in the z and freestream x directions respectively.

L = F · ~nz (2.75)

D = F · ~nx (2.76)
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2.3.7 Implementation of VLM

The vortex lattice sheet is discretized on the surface of the wing with nr and nc

number of nodes in rows and columns respectively. The vortices running in the

chordwise and spanwise direction cross each other at these nodes forming vortex rings

as seen in Figure 2.9. These vortex rings thus have vortex segments on its boundaries.

These vortex rings, composed of finite vortex segments, can induce velocity on any

point in space using the Biot-Savart law. At any given time, the Biot-Savart law is

used to compute the induced velocity by these bound vortex rings, on the control

points. It is also used to compute the induced velocity on the nodes at the trailing

edge and in the wake.

The velocity with which the trailing edge is shed into the wake is the sum of

the velocity induced by the bound vortex rings and the wake vortex rings, and the

freestream velocity. The time step dt is pre-set to a value such that in a time step

the trailing edge travels a distance that is equal to the chord length of a panel, as

seen in Figure 2.11. This makes sure that the wake vortex rings and the bound rings

are about the same size.

The following steps outline the aerodynamic modeling.

• The boundary condition is satisfied on each control point on the surface of the

wing. The boundary condition is given by,
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(
~Vs + ~V∞

)
· ~n =

(
~Vwake + ~Vsurf

)
· ~n

where,

~Vs = ~Vrigid + ~Vmembrane

• The individual velocity components can be elaborated as,

~Vrigid = ~̇h + ~̇α× ~Ra (2.77)

AijGj = Vsurf

Vsurf =
(

~V∞ + ~Vs − ~Vwake

)
· ~n

where Aij is the coefficient matrix that contains the influence of bound vortex

j on control point i through the Biot-Savart method, as seen in Eq. 2.21. The

normal vector is computed as shown in Eq. 2.40. At the first time step, the

wake does not contain any wake panels, thus there is no velocity induced by the

wake vortex rings, ~Vwake, on the control points. Also, the velocity due to the

membrane does not exist, as the wing is set into motion from an undeformed
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state.

• On satisfying the boundary condition, the vortex ring strengths are computed.

Using this vortex ring strength, the velocity on the wake nodes, which comprises

the trailing edge nodes, is computed. The wake elements are then moved in

space for the next time step. The newly shed wake row assumes the value of

the last row of vortex rings lined up along the span of the wing. It thereby

keeps the history of the circulation of the previous time step.

• Now that the wake node locations are known for the new time step, the velocity

induced by these wake ring elements is computed on the control points using the

Biot-Savart law. The boundary condition on the control points can be satisfied

and the new bound vortex ring strengths can be computed. The bound vortex

ring strengths can be used to compute the pressure coefficients, and thus the

lift coefficients.

2.4 Theoretical Results

In this section, the theoretical results used in the validation of the aerodynamic

loads are described. For the cases of a very high aspect ratio wing pitch and plunge,

Theodorsen’s theoretical results are used for comparison [21]. Theodorsen’s ana-
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lytical results for the vortex strengths, and lift for plunge and pitch described by,

h = h0e
iωt and α = α0e

iωt respectively are given by,

ΓT =
4bi

k
e−ik

[
H (k)

(
V∞α + ḣ +

1

2
bα̇

)]
(2.78)

LT = 2πρb

[(
b

2

)(
V∞α̇ + ḧ− baα̈

)
+ C (k) V∞

(
V∞α + ḣ + b

(
1

2
− a

)
α̇

)]
(2.79)

where,

H(k) =
1

H
(2)
1 (k) + iH

(2)
0 (k)

(2.80)

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

(2.81)

k =
ωb

U∞
(2.82)

h0 and α0 are the plunge and pitch amplitudes respectively that oscillate with a

frequency of ω0 and a is the distance between the midchord and the pitch axis

nondimensionalized with respect to the semichord. b is the semichord, and V∞ is the

freestream velocity.

For a sudden change in angle of attack, and for a very high aspect ratio wing,

Wagner’s function is used for validation of the lift per unit span [21], which is given
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by,

Lw = 2πρV 2
∞bαφ(s) (2.83)

where,

s =
V∞t

b
(2.84)

φ(s) =
2

π

∞∫
0

F (k)

k
sin (ks)dk = 1 +

2

π

∞∫
0

G(k)

k
cos (ks)dk (2.85)

F (k) and G(k) are the real and imaginary parts of C(k) respectively.
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Chapter 3

Structural Modeling And

Aeroelasticity

The wing is modeled as a membrane structure. A membrane is defined as a tensile

structure, that can carry tension but cannot carry compression or have bending.

Typical examples of membrane structures include a trampoline and a tent, where

a membrane is supported by a rigid structure on the boundary. The pre-stress

introduced into the membrane by stretching its boundaries give it a definite form

and thereby enables its usage as a structure. Common materials used for building

membranes are Teflon coated fibreglass, and PVC coated polyester. In one dimension,

strings are an equivalent of membranes.
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3.1 Membrane theory

Figure 3.1: Description of Membrane And Membrane Deflection

Consider a homogenous membrane that is supported at the edge, given its bound-

ary contour by a hole cut in a plate, as shown in Figure 3.1. The boundary of the

membrane wing is rigid. The stress from the rigid boundary is introduced into the

membrane wing, and is hereby referred to as the pre-stress as it is known before the

system is set into a dynamical state. The membrane will have different displacements

at different locations on the wing plane.

Consider the infintesimal element abcd in Figure 3.1. Let Sstress be the tensile
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force per unit membrane length. From a small deflection z, β ≈ ∂z
∂x

describes the

inclination of Sstress acting on side ab. Since z varies from point to point, the angle

at which Sstress is inclined on side dc is given by,

β +
∂β

∂x
dx =

∂w

∂x
+

∂2w

∂x2
dx

where, w is the deflection

Similarly, the inclination of the tensile forces are ∂w
∂y

+ ∂2w
∂y2 dy, on sides ad and bc

respectively. For constant Sstress, and uniform pressure p, the equation of a dynam-

ically deforming membrane is given by,

− (Sstressdy)
∂w

∂x
+ Sstressdy

(
∂z

∂x
+

∂2w

∂x2
dx

)
− (Sstressdx)

∂w

∂y
(3.1)

+ (Sstressdx)

(
∂w

∂y
+

∂2w

∂y2
dy

)
+ pdxdy = ρmtw

∂2w

∂t2
dxdy

where p is the pressure on the wing. Solving Eq. 3.2 leads to,

∂2w

∂x2
+

∂2w

∂y2
+

p

Sstress

=
ρm

Sstress

tw
∂2w

∂t2
(3.2)
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where, Sstress is the pre-stress introduced into the membrane,

ρm is the density of the membrane,

tw is the thickness of the wing

This is Poisson’s equation [22], and the small slope restriction must be taken into

account in view of the derivation.

3.1.1 Static Membrane Deformation

For a statically deforming membrane, the differential equation describing the deflec-

tion, in the wing plane is given replacing the right hand side of Eq. 3.2 by zero.

Thus,

∂2w

∂x2
+

∂2w

∂y2
= − p

S
(3.3)

where, ρm is the density of the membrane.

3.2 Application of Fourier Series

For a geometry as shown in Figure 3.2 with simple supports along all edges, the

solution to the membrane problem can be obtained by the application of Fourier
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series. The rectangular membrane can be thought of as a wing with rigid boundaries,

with chord length c and span b. The pressure and the structural deformations are

thus represented by,

Figure 3.2: Rectangular Wing

p(x, y) =
∞∑

m=1

∞∑
n=1

pmn sin
mπx

c
sin

nπy

b
(3.4)

w(x, y) =
∞∑

m=1

∞∑
n=1

amn sin
mπx

c
sin

nπy

b
(3.5)

where c and b are the chord length and wing span respectively

Eq. 3.4 can be solved for pmn by using the following mathematical steps.

• Multiply both sides of the equation by sin m′πx
c

sin n′πy
b

and integrate in x and
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y

b∫
0

c∫
0

p(x, y) sin
m′πx

c
sin

n′πy

b
dxdy =

b∫
0

c∫
0

pmn sin
mπx

c
sin

nπy

b
sin

m′πx

c
sin

n′πy

b
dxdy

• Due to the orthogonality of the functions in the x and y directions; m and m’,

and n and n’ have to be the same. Thus, it culminates at,

b∫
0

c∫
0

p(x, y) sin
mπx

c
sin

nπy

b
dxdy =

bc

4
pmn (3.6)

⇒ pmn =
4

bc

b∫
0

c∫
0

p(x, y) sin
mπx

c
sin

nπy

b
dxdy (3.7)

The pressure distribution is acquired from the aerodynamic computation of the loads

and are represented discretely over the panels. The pressure distribution is repre-

sented by,

p(x, y) = p(i, j) =
1

2
ρU2

∞∆Cp (i, j) (3.8)
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where i and j are the panel’s row and column numbers respectively.

Each of the pressure coefficients can thus be represented by,

pmn =
i=nr−1∑

i=1

j=nc−1∑
j=1

4
p(i, j)

mn
cos (

mπx

c
)|x(i+1,j)

x(i,j) cos (
nπy

b
)|y(i,j+1)

y(i,j) (3.9)

where nc and nr are the number of column and row nodes on the wing respectively.

Once the pressure coefficients are computed, the coefficients for the structural de-

formations are computed. From this Fourier series approximations, the spatial and

temporal partial differentials are,

∂2w

∂x2
= −

∞∑
m=1

∞∑
n=1

amn
m2π2

c2
sin

mπx

c
sin

nπy

b
(3.10)

∂2w

∂y2
= −

∞∑
m=1

∞∑
n=1

amn
n2π2

b2
sin

mπx

c
sin

nπy

b
(3.11)

∂2w

∂t2
=

∞∑
m=1

∞∑
n=1

ämn sin
mπx

c
sin

nπy

b
(3.12)

Plugging these approximations for the partial differentials into the differential equa-

tion for dynamic aeroelasticity Eq. 3.2 yeilds,

−amnπ
2

(
m2

c2
+

n2

b2

)
+

pmn

Sstress

=
ρtw

Sstress

ämn (3.13)
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3.3 Aeroelasticity

Eq. 3.13 has two unknowns for each equation with a value for m and n. The coupled

problem is solved by approximating the unknowns using finite differencing methods.

The section is divided into two parts, one for the aeroelasticity at the first time step

and the other for all time steps after that.

3.3.1 Time t = t1

The rectangular wing being studied is assumed to be at rest at t = t0. There are no

initial deformations on the membrane wing. At this time step, it has forward velocity

V∞ and prescribed motion either in the form of an angle of attack, or plunge, or both.

The following steps are taken to solve the aeroelastic problem.

• The wing moves with a pitching and plunging velocity. Since there are no struc-

tural deformation there is no velocity due to membrane structural deformation.

The only velocity acting on the control points is that of the freestream.

• Using the no penetration condition on the control points on the wing as de-

scribed in Eq. 2.77 and Eq. 2.37, the vortex ring strengths are computed.

• The vortex strengths are used to compute the pressure on the surface of the

wing.
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• The bound vortex strengths computed in this time step induce a velocity on

the trailing edge of the wing. This velocity along with the freestream velocity

moves the vortex segments on the trailing edge into the wake for the next time

step. The row of vortex panels shed have the ring strengths of the vortex rings

on the last chordwise row of the wing. This is where the computations end at

the first time step. The wake position required for the next time step is thus

based on the wake velocities calculated at the present time step.

3.3.2 Time ti > t1

At this point we know the pressure at time t = ti − ∆t, and the wake position for

t = ti.

• At time ti, the aerodynamic pressure on the surface of the wing is used to

compute the structural pressure coefficients in Eq. 3.9.

• The pressure coefficients computed are then used to compute the structural

coefficients in Eq. 3.13. The structural coefficients are solved by the expansion

of Eq. 3.13 as follows,

−ati−∆t
mn π2

(
m2

c2
+

n2

b2

)
+

pti−∆t
mn

Sstress

=
ρtw

Sstress

äti−∆t
mn (3.14)

56



The second derivative of the structural coefficients is computed using central

difference and represented by,

äti−∆t
mn =

ati
mn − 2ati−∆t

mn + ati−2∆t
mn

∆t2
(3.15)

It needs to be pointed out that the central difference scheme is 2nd order ac-

curate, and thus introduces 3rd order errors in the deformation calculation.

Eq. 3.14 is expanded as,

ρtw
Sstress

ati
mn − 2ati−∆t

mn + ati−2∆t
mn

∆t2
+ π2

(
m2

c2
+

n2

b2

)
ati−∆t

mn = − pti−∆t
mn

Sstress

(3.16)

The equation above is solved for ati
mn, with known ati−∆t

mn . An exception exists

at ti = t2. At ti = t2, ati−2∆t is unknown. The problem is resolved by knowing

that ȧt1
mn = 0. By the application of central difference at time ti = t1, at2

mn =

at0
mn = 0.

• The structural coefficients can now be applied to Eq. 3.5 and the deformations

at time t = ti can be computed. The velocity due to the deforming membrane,
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structural velocity Vs, is calculated using backward difference, and represented

by,

ẇti =
wti − wti−∆t

∆t
(3.17)

Using the backward differencing introduces errors of the second order in the

velocity calculation.

• The structural velocity is computed in the wing frame, or the body axis. In

order to compute the velocity in the inertial frame, ẇ is multipled with the

unit normal on the panel on which it is computed.

• The unit normal on the wing’s plane changes because of the deformations

experienced. Before the new normal vectors are calculated, the new vortex

nodes have to be calculated after the deformation. This is done by the addition

of w(i, j)~n to the wing surface nodes. The normal can now be calculated by

Eq. 2.40.

• The velocity acting on the control points is calculated for time t = ti, and the

no penetration condition is applied.
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Chapter 4

Results

4.1 Validation of the 2-dimensional aspects of the

Aerodynamic model

The 3-dimensional VLM developed is validated with the 2-dimensional VLM for cases

of constant angle of attack; pitch; plunge; and pitch and plunge. Certain parameters

are kept constant for all the cases. These parameters and their values are, density of

air ρ = 1 kg/m3, freestream velocity U∞ = 100 m/s, and wing chord c = 5 m. Since

the vortex strengths, and lift per unit span of the 3-dimensional VLM are compared

with the corresponding values of a 2-dimensional VLM, it is imperative to have a

very high aspect ratio. For this purpose, the span is assumed to be 9000 m, giving
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the wing an aspect ratio of AR = 1800. Having a high aspect ratio ensures that the

3-dimensional effects are negligible.

The 2-dimensional VLM code has been developed by the author, and the tech-

nique implemented can be found in Ref.[23]. The 2-dimensional code with free wake

has been validated with a fixed wake model. Results from a 2-dimensional constant

angle of attack case have been compared with the analytical results of Wagner, and

results from cases of sinusoidal pitch and plunge motion have been compared to the

analytical results of Theodorsen successfully [21].

4.1.1 Constant Angle of Attack
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Figure 4.1: 2-D plot of the wake vortices after 50 time steps
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Figure 4.2: 2-D plot of the wake vortices after 50 time steps with equal axis
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Figure 4.3: Comparison of Vortex strengths of 2-D and 3-D VLM after 50 time steps
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Figure 4.4: Comparison of 2-D Lift coefficient as a function of time

For an angle of attack of 2o, the plots of the locations of the wake vortices (2plots),

the strengths of the bound and wake vortices, and the lift per unit span are given

in Figures 4.1, 4.2, 4.3, and 4.4 respectively. The flow has been simulated for 50

time steps, which corresponds to 10 wing chord lengths, with each time step having

a value of, dt = 0.005 s.

In Figures 4.1 and 4.2, the wake locations of the vortices shed from the midspan

of the wing at each of the time step are compared with the vortex locations of the

vortices shed by the 2-dimensional VLM. The x-location starts from 5 on the x axis

because the origin of the reference axis is the wing’s leading edge and the wing has

a 5 m chord length. The vortices are shed from the wing’s trailing edge which is at
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5m, and move in the positive x direction.

The strengths of the vortex segments are compared in Figure 4.3. It can be

seen that the values of the vortex strengths computed by the two methods are the

same, thereby validating the 3-dimensional aerodynamic modeling for constant angle

of attack. It has to be realized that the contribution of the free wake to the various

parameters predicted is non-linear. The displacement of the vortices in the wake

becomes insignificant in the calculation of the bound vortex strengths. The match in

the results of the vortex locations and vortex strengths ensures that the wake effects

have been effectively captured for constant angle of attack.

Figure 4.4 shows that the lift coefficient generated from the 2-dimensional VLM,

and the 3-dimensional VLM match with the analytical results of Wagner [21]. The

two VLM method’s transition into the steady state is modeled for a sudden change

in angle of attack from zero degrees. The lift calculation in the VLM is a sum of

a steady and unsteady lifts. At the initial time steps, the unsteady loads are high

due to vortices of higher strengths being shed into the wake. As time passes by,

the unsteady part becomes less dominant, and the lift results converge to the steady

state lift.
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Figure 4.5: Comparison of Vortex Strengths of 2-D and 3-D VLM
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Figure 4.6: 2-D plot of the location of the wake vortices after 150 time steps
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Figure 4.7: 2-D lift coefficient developed by 2-D and 3-D VLM as a function of time

4.1.2 Pitching wing

For the case of pitch, the parameters and their values are as follows; angle of attack

amplitude α0 = 2o; reduced frequency k = 0.25; number of time steps of n = 150;

and time interval dt = 0.01 s. Also, for this case the number of vortex panels in the

chordwise and spanwise directions are 5 and 20 respectively. As can be seen from

Figures 4.5, 4.6, and 4.7 the vortex strengths, wake locations and lift per unit span

generated by the 3-dimensional VLM are in agreement with the results generated

by the 2-dimensional method. The lift per unit span is also in agreement with the

analytical results of Theodorsen [21].
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4.1.3 Plunging wing
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Figure 4.8: Comparison of Circulation of 2-D and 3-D VLM

For the case of plunge, the parameters and their values are as follows; plunge

amplitude of h0 = 0.01 m; reduced frequency k = 0.25; number of time steps of

n = 150; number of rows of vortex ring elements, 5; number of columns of vortex

ring elements, 20; and time interval dt = 0.01 s. As can be seen from Figures 4.8,

4.9, and 4.10 the vortex strengths, wake locations and lift per unit span generated

by the 3-dimensional VLM are in agreement with the results generated by the 2-

dimensional method. The lift per unit span is also in agreement with the analytical

result of Theodorsen.
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Figure 4.9: 2-D plot of the location of the wake vortices after 150 time steps
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Figure 4.10: 2-D lift coefficient developed by 2-D and 3-D VLM
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4.2 Grid discretization studies
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Figure 4.11: Cl from grid discretization study for wing in oscillating plunge

In order to make sure that the results generated are converged, the spanwise lift

and the circulation are compared for three different grid configurations. The results

generated are for a wing of span 20 m, and a chord length of 5 m. The freestream

velocity is 100 m/s. For the case of plunge, the parameters used are; plunge ampli-

tude of h0 = 0.01 m, and reduced frequency k = 0.25. For the case of pitch, the

parameters and their values are as follows; angle of attack amplitude α = 5o, and

reduced frequency k = 0.25. The results are compared for grid sizes of 5 chordwise

and 10 spanwise panels; 10 chordwise and 20 spanwise panels; and 20 chordwise and

40 spanwise panels. The results are plotted in Figures 4.11 and 4.12 for the plunging
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Figure 4.12: Γ from grid discretization study for wing in oscillating plunge
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Figure 4.13: Cl from grid discretization study for wing in oscillating pitch
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Figure 4.14: Γ from grid discretization study for wing in oscillating pitch

case, and in Figures 4.13 and 4.14 for the pitching case.

It can be seen that the results for the three different grid discretization are con-

verged. It can therefore be concluded that the results presented have insignificant

grid discretization related errors.

4.3 Comparison with lifting line theory

The 3-dimensional VLM is compared with the lifting line theory for constant angle

of attack. The lifting line theory provides lift and drag for a 3-dimensional wing

using discrete horseshoe vortices [24]. For constant angle of attack of 5 degrees, wing

span of 20 m, chord length of 5 m, freestream velocity of 100 m/s,and density of 1
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Figure 4.15: Plot of the spanwise circulation for α = 50
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Figure 4.16: Plot of 2-D Cl for α = 50
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kg/m3, the spanwise circulation is compared in Figures 4.15 and 4.16. It can be seen

that the circulation and 2-dimensional lift coefficient estimated by the 3-dimensional

method are very close to those predicted by the lifting line.

4.4 Validation of 3-dimensional aspects of VLM

with Doublet Lattice method

The 3-dimensional aspect of the aerodynamic modeling is validated with the doublet

lattice method which can be found in Ref.[25]. The 3-dimensional VLM and DLM

with 10 chordwise panels and 20 spanwise panels are considered for a wing of span

20 m, and with a chord length of 5 m. The code is validated for cases of pitch and

plunge. The freestream velocity is 100 m/s, reduced frequency is 0.25, and dt is 0.005

s.

4.4.1 Pitch

For a pitch amplitude of α0 = 20, the amplitude of lift coefficient per unit span is

compared in Figure 4.17. The VLM is run for 400 time steps, and the Cl amplitude

is determined from the last period of data. The phase angles for the results over the

span of the wing is shown in Figure 4.18. The closeness in the results validates the
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Figure 4.17: Comparison of Cl from 3-D VLM and DLM for pitch
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Figure 4.18: Comparison of the phase angle between the input pitch and the Cl
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3-dimensional VLM.
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Figure 4.19: Comparison of Cl from 3-D VLM and DLM for plunge

4.4.2 Plunge

For a plunge amplitude of h0 = 0.01 m, the amplitude of lift coefficient per unit

span is compared in Figure 4.19. Again, the VLM is run for 400 time steps, and the

Cl amplitude is determined from the last period of data. The phase angles for the

results over the span of the wing is shown in Figure 4.20.
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Figure 4.20: Comparison of the phase angle between the plunge and the Cl

4.5 Study of loads and deformations for constant

angle of attack

In this section of the thesis, the rectangular wing, with chord length and span of 0.1

m and 0.5 m respectively, is studied for a constant angle of attack of 5o. The wing

has a rigid boundary, and it supports a thin membranous surface. The membrane

is modeled with the properties of nylon, material density of ρm = 1200 kg/m3, and

has a thickness of tw = 0.00025 s. The membrane is modeled with a pre-stress of

Sstress = 10 N/m and m = 3, n = 3 number of structural modes. The membrane

wing is allowed to deform under the influence of the loads. The freestream velocity
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and density are U∞ = 10 m/s and ρ = 1 kg/m3 respectively; there are 10 rows and 20

columns of vortex panels on the surface of the wing, and the study is performed for

400 time steps. Each time step has a value of dt = 0.001 s. The case for the properties

mentioned above is referred to as the base case, and the various parametric studies

conducted are compared and analyzed with respect to the base case. The drag results

do not take the leading edge drag into account. These studies are described below.
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Figure 4.21: Plot of Cl versus time for constant angle of attack of 5o and S=10
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Figure 4.22: Plot of Cd versus time for angle of attack of 5o and S=10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6

7

8
x 10

−3

Time (s)

w
 (

m
)

m,n=1
m,n=3
m,n=5

Figure 4.23: Plot of w versus time at approximately the center of the wing for angle
of attack of 5o and S=10
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Figure 4.24: Plot of the deformation at the midspan of the wing for an angle of
attack of 5o and S=10

4.5.1 Variation in the number of structural modes

The number of modes used to define the structural deformation is varied from values

of m = n = 1 to m = n = 5. The pre-stress stiffness is assigned a value of Sstress = 10

N/m. Other parameters are kept constant and the influence on the lift coefficient,

drag coefficient, the deformation of the wing’s center, and the deformation at the

wing’s midspan are analyzed. For all three cases, the lift and the drag coefficients

oscillate and damp out in 250 time steps. The case where m = n = 1 oscillates with

one frequency as there is only one mode defining the deformation; whereas the cases

with multiple modes oscillate with more than one frequency as seen in Figure 4.23.
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The wing is set into motion from rest at the initial time step. The membrane is at

an undeformed state at this time. The step change in angle of attack causes a step

change in the aerodynamic load, and a corresponding high lift. The aerodynamic

loads causes it to oscillate about the steady state deformation. Some of the oscillation

may be caused by the initial load as well.

The deformation leads to a relative angle of attack for any point on the membrane.

Thus, the total angle of attack at any point on the membrane is the sum of the

angle of attack of the rigid wing and relative angle of attack due to the membrane

deformation. Since, the pressure acts normal to the surface of the membrane, these

deformations bring about a change in the aerodynamic loads by changing the unit

normal vector. Figure 4.24 shows the deformation at the midspan on the wing’s

surface. It can be seen that the deformation calculated using one structural mode is

symmetric about the midchord, whereas the deformation calculated using multiple

structural modes has the highest deformation slightly toward the leading-edge side

of the midchord and is lower in value.

The symmetry in the deformation curve for the m = n = 1 case is expected,

as only one sinusoidal function with zero deformation at the boundary is used to

predict the deformation. For this case, the region ahead of the point experiencing

the maximum deformation has a lower angle of attack, and the region aft of this
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point has higher angle of attacks. When more modes are used in the prediction

of the deformation the amplitude and shape of the deformation calculated is more

accurate.

The shift in the highest deformation on the midspan toward the leading edge of

the wing can be attributed to higher pressure around the leading edge of the wing.

As compared to the m = n = 1 case, the slope of the deformation at the leading

edge is lower, and therefore the total angle of attack experienced by the membrane

in this region is higher than the m = n = 1 case. The slope of the deformation keeps

on decreasing as the deformation increases and reaches its peak. Beyond its peak,

the slope of the deformation is negative just as the m = n = 1 case. However, its

magnitude is lower than the m = n = 1 case. The lower magnitude results in the

region beyond the peak of the deformation curve experiencing a lower angle of attack

than the m = n = 1 case. Since the deformation calculated for the m = n = 3 case

is lower, the loads calculated are lower too than the m = n = 1 case.

The deformation of the membrane at m = n = 3 and m = n = 5 is lower as

compared to deformation of the membrane for m = n = 1, as seen in Figure 4.24.

This is expected because for the cases of m = n = 3 and m = n = 5 the deformed

shape is such that the reduction in angle of attack due to membrane deformation is

magnified and the increase in the angle of attack at the trailing edge due to membrane
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deformation is attenuated. The overall effect of the higher accuracy at m = n = 3

is that the deformation leads to a decrease in the increase of angle of attack which

leads to the decrease in the aeroelastic loads and thus lower deformation.
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Figure 4.25: Plot of Cl versus time for constant angle of attack of 5o

4.5.2 Variation in stiffness

The base case is compared to a case where the pre-stress stiffness is increased, and

its influence on the loads and deformations are analyzed. The base case is compared

to a case with a higher value of pre-stress,Sstress = 100 N/m. The higher stiffness

provides higher resistance against deformation, and is evident in Figure 4.27. The

deformation for the higher pre-stress is 1/20th the deformation of the base case. As
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Figure 4.26: Plot of Cd versus time for angle of attack of 5o
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Figure 4.27: Plot of w versus time at approximately the center of the wing for angle
of attack of 5o
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Figure 4.28: Plot of the deformation at the midspan of the wing for an angle of
attack of 5o

the stiffness is increased 10 times, the deformation will decrease by 10 times just

based on the loads at 5o angle of attack. This lower deformation also leads to lower

aeroelastic loads, and thus in Figure 4.25 the Cl for the higher pre-stress is one-

half the Cl of the base case. The combination of lower aeroelastic loads and higher

stiffness leads to much smaller deformation for the stiffer case(1/20th).

Also, the frequency of oscillation in the Cl, Cd and the wing center’s deformation

values increases for higher pre-stress, and the damping occurs much earlier, see Fig-

ures 4.27, 4.25 and 4.26. The effect of higher modes in the response for the higher

pre-stress case appears to be negligible, and the frequency of oscillation for the load

and the deformations being analyzed appear to be oscillating at one frequency.
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As seen in Figure 4.28, after 400 time steps, the deformation along the midspan

of the wing is much lower for the higher pre-stress case as compared to the base.

Also, the peak of the deformation occurs much ahead of the midchord for the higher

pre-stress case.

4.6 Study of loads and deformations for a plung-

ing wing

In this section, a rectangular wing undergoing plunge is studied and analyzed. The

freestream velocity and density for the base case are U∞ = 10 m/s and ρ = 1

kg/m3 respectively. The pre-stress is S = 100 N/m, number of structural modes

m = n = 3, reduced frequency of 0.25 and has a plunge amplitude of h0 = 0.01 m.

Various parametric studies are performed and compared with the base case. The

drag results do not take the leading edge drag into account. The studies and their

results are described below.

4.6.1 Variation in the number of structural modes

The base case, with m = n = 3 number of structural modes that are used in the

calculation of deformation, is compared with a case having m = n = 1 structural
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Figure 4.29: Plot of Cl Vs Time for different number of structural modes for a
plunging wing
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Figure 4.30: Plot of Cd Vs Time for different number of structural modes for a
plunging wing
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Figure 4.31: Plot of wing’s center Vs Time for different number of structural modes
for a plunging wing

modes. The lift coefficient data is found to be a match, as seen in Figure 4.29. The

drag coefficient of the base case has troughs with much higher magnitudes Figure

4.30. The wing’s deformation is better approximated with multiple modes. The

pressure on the membrane is influenced by the dynamic motion of the wing, and

the deformations of the membrane. Since the membrane deformations are small

as compared to the prescribed plunging motion, it has a minor contribution to the

pressure. Now, for the case of plunge, the wing is almost flat as the deformations

are minor, as seen in Figure 4.31 for the wing’s center. The aeroelastic influence on

the load calculation is therefore minor too. Due to this reason, the Cl calculated by

the base case and the case with one structural mode are the same. In a linear sense,
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as the approximated deformation decreases, the load decreases by approximately the

same factor. In the absence of angle of attack, the induced drag would be expected

to be zero. Although, the thrust calculated for the minor deformations is minor,

the drag coefficient calculated by the m = n = 1 case is lower than the base case.

This is attributed to the deformation calculated by the base case. When multiple

modes are used in the approximation of deformations, the peak of the deformation

is always forward of the midchord due to the pressure distribution, as seen in the

previous section for constant angle of attack. This leads to higher slopes of the

deformations in the forward part of the wing. Due to this, the pressure’s streamwise

component, which is the thrust, yields a higher value. On the other hand, the

pressure’s streamwise components calculated aft of the deformation’s peak on the

wing have lower values in the negative direction, which is the drag. Thus, more

thrust is produced from the forward section, and less drag is produced from the

backward section. The sum produces a higher net thrust on the wing. As seen in

Figure 4.30, the values of the drag coefficient are negative. The negative drag values

are thrust and thus contribute in the forward motion of the wing. Also, the wing’s

center point seems to follow the same trend for both cases. The membrane keeps on

oscillating as cyclic loads act on it. It is also apparent from Figure 4.31 that the

membrane deformation reaches a periodic steady state after 2 periods of oscillation.
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4.6.2 Variation in plunge amplitude
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Figure 4.32: Plot of Cl Vs Time for different plunge amplitudes for a plunging wing

The base case with plunge amplitude h0 = 0.01 m is compared with a case having

a higher plunge amplitude of h0 = 0.1 m. In a linear sense, it would be expected that

the loads would be 10 times higher than the base case. For this reason, the value of

Cl for the h0 = 0.1 m case is multiplied by 0.1 when plotting it as a function of time,

which is shown in Figure 4.32. This is done to make the Cl plots of the same order,

which gives more clarity in visual comparison. The lift even after correcting for the

higher amplitude of motion is slightly higher for the h0 = 0.1 m case. This can be

attributed to the nonlinear effect of large motion and the fact that the shed vortices

will be spread out more vertically for higher plunge amplitudeh0. Otherwise, the
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Figure 4.33: Plot of Cd Vs Time for different plunge amplitudes for a plunging wing
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Figure 4.34: Plot of Wing’s center Vs Time for different plunge amplitudes for a
plunging wing
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lift coefficients match well with each other, concluding that for the 2 plunge cases

considered, the Cl is predominantly proportional to the plunge amplitude.

Figure 4.34 shows the deformation of the membrane for the two cases. As the

h0 = 0.1 m case has around 10 times as much aerodynamic load as the h0 = 0.01 m

case, it is expected that the deformation will be 10 times more for the h0 = 0.1 m

case. To take this into account, the deformation for the h0 = 0.1 m case is multiplied

by 0.1. Even after this correction, the deformation at h0 = 0.1 m case is slightly

higher because the corrected loads at h0 = 0.1 m are slightly higher.

Figure 4.33 shows the drag coefficient as a function of time for the two cases.

Since the drag/thrust comes from the component of the pressure in the direction of

the flow, it is a nonlinear (purely quadratic) expression. The increase in the pressure

by a factor of 10 and the increase in slopes by a factor of 10 leads to an increase

in the drag coefficient by a factor of 100. Thus, to compare the two cases, the drag

coefficient for h0 = 0.1 m case is multiplied by 0.01. And as expected, the corrected

drag coefficients match, with the drag coefficient being slightly larger for the h0 = 0.1

m case (as the corrected loads and corrected deformation are larger for h0 = 0.1 m

case). Also, as expected the cases lead to thrust because the thrust generated near

the leading edge due to the high pressure and deformation slope is much higher than

the drag generated from to the lower pressure and deformation slope at the trailing
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edge. It should be noted that the present analysis does not take into account the

leading edge suction which can have a significant impact on the total thrust.

4.6.3 Variation in reduced frequency
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Figure 4.35: Plot of Cl Vs Time for different reduced frequencies for a plunging wing

The base case with reduced frequency of k = 0.25 is compared with a frequency

of k = 0.1. In a linear sense again, as the frequency is decreased from 0.25 to 0.1, the

pressure would be expected to decrease by a factor of 2.5 since we are considering a

case of plunge and the magnitude of the effective angle of attack for the plunge case

is derived from ḣ and thus proportional to h0 × k. For clarity in comparison, the

Cl for the k = 0.1 case is multiplied by 2.5 and plotted in Figure 4.35. Also, since
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Figure 4.36: Plot of Cd Vs Time for different reduced frequencies for a plunging wing
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Figure 4.37: Plot of Wing’s center Vs Time for different reduced frequencies for a
plunging wing
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the frequency is changed, the time on the x scale is changed to a non dimensional

temporal parameter given by,

t̄ =
t

T
(4.1)

where, T is the period

The change in the scale for the x axis squeezes the data for the k = 0.1 case as it

undergoes fewer oscillations, but the plotted data is much easier to analyze. The

correction of the results is the same as the correction imposed for a change in the

plunge amplitude. The lift coefficient and deformation change by a factor of 2.5,

and the drag coefficient changes by a factor of 2.52. There is slight difference in the

magnitude and phase of the results. The lower reduced frequency has higher loads

and lower phase lag relative to the plunge motion as expected from Theodorsen’s

function.

4.6.4 Variation in stiffness

In this study, the base case with a pre-stress stiffness of Sstress = 100 N/m is com-

pared with a case where the pre-stress is Sstress = 10 N/m. In the previous two com-

parisons, the varied parameter changed the input prescribed motion, which changed

the aerodynamic loads and thus the structural deformation. In this case, however,
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Figure 4.38: Plot of Cl Vs Time for different pre-stresses for a plunging wing
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Figure 4.39: Plot of Cd Vs Time for different pre-stresses for a plunging wing
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Figure 4.40: Plot of Wing’s center Vs Time for different pre-stresses for a plunging
wing

the varied parameter has a direct influence on the structural deformation. As the

pre-stress stiffness is decreased, higher membrane deformation is expected. This is

evident in Figure 4.40, which shows that the deformation is more than 10 times that

of the base case. The lift rises for lower stiffness, as seen in Figure 4.38. This is be-

cause, as the membrane deformation rises, the pressure on the wing rises. However,

considerable change is observed in the drag coefficient results, as seen in Figure 4.39.

This is because, as the stiffness is reduced and the deformation rises, the pressure

acting on the membrane gets more inclined toward the freestream direction resulting

in a much higher component of the pressure as compared to the previous studies,

resulting in higher thrust. The thrust generated is more than 10 times than the
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thrust generated by the base case.

4.7 Study of loads for a pitching and plunging

wing at different phases
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Figure 4.41: Comparison of Cl for a pitching and plunging wing at different phases

The rectangular wing considered in this case has a chord length and span of 0.1 m

and 0.5 m respectively. The wing oscillates at an angle of attack amplitude of α0 = 5o,

and plunges at a plunge amplitude of h0 = π/180 m. It has a reduced frequency of

0.25. The density of air is ρ = 1 kg/m3, and m = n = 3 number of structural modes

are used to estimate the deformation. The stiffness of the membrane is Sstress = 100
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Figure 4.42: Comparison of Cd for a pitching and plunging wing at different phases
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Figure 4.43: Comparison of w for a pitching and plunging wing at different phases
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N/m. The value of the plunge amplitude has been selected such that,

ḣ

V∞α
≈ 1 (4.2)

where the freestream velocity V∞ = 10 m/s.

The rigid wing structural velocity’s and the freestream velocity’s component normal

to the wing is given by,

Vstruc = (Vrigid + V∞) · ~n (4.3)

Vstruc = −h0w0 sin w0t + Rcα0w0 sin (w0t + φ)− V∞α0 cos (ω0t + φ) (4.4)

Vstruc = −h0w0 sin w0t− V∞α0 sin (90− (ω0t + φ)) + Rcα0w0 sin (w0t + φ)(4.5)

= −h0w0 sin w0t + V∞α0 sin ((ω0t + φ)− 90) + Rcα0w0 sin (w0t + φ)(4.6)

where, Rc is the distance from the control point to the pivot point.

The velocity due to the freestream velocity and the plunge are the major components

of Vstruc, whereas the pitch component is the minor term. From Eq. 4.6, it can be

seen that when the plunge and the pitch are in-phase, i.e φ = 0, there exists a phase

of −90o in between the velocity component due to the freestream and the one due

to plunge. Similarly when the two velocities are out-of-phase, there exists a phase

of 90o in between them. During both these cases the maximum and the minimum
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velocity remain the same. Thus, the amplitude of the lift coefficient for the in-phase

and out-of-phase are the same. When the phase is φ = 90o, the velocity amplitudes

subtract yielding a lower total Vstruc, which results in a lower Cl. And when the

phase is φ = −90o, the amplitudes of the velocities add to give a higher Cl. Figure

4.41 shows this trend in the Cl results.

Similar results can be seen in the drag coefficients in Figure 4.43. The difference

in the amplitudes of the drag coefficients for the in-phase and out-of-phase cases

exist because of the deformation, which causes a relative change in angle of attack.

The drag results do not take the leading edge drag into account.

The deformation on the surface of the wing for the in-phase and out-of-phase

cases go through a transition period before they oscillate in a periodic steady state.

The transition is due to the different directions in which the plunge and pitch deflect

the membrane. The ±90o phases do not transition as the pitch and the plunge cause

deformation in the same direction.
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Chapter 5

Conclusion

With the goal of developing a tool that could be used in the preliminary aeroelastic

analysis of MAVs, the aeroelastic model is developed. The unsteady aerodynamics of

the model is based on the vortex lattice method. The unsteady aerodynamic code has

been validated with a 2-dimensional VLM, lifting line theory,and the 3-dimensional

aerodynamics has been validated with the doublet lattice method. To ascertain that

the wake effects of the flow are captured, the wake locations of the 3-dimensional

code were matched with those of the 2-dimensional VLM. Grid discretization study

was performed to ensure convergence with different number of panels on the wing.

The aerodynamic program is then interfaced with the structural code. The structural

code is designed for a rectangular wing modeled by a rigid boundary structure sup-
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porting a membrane with the properties of nylon. The deformation of the structure

is calculated using Fourier series. The coupled model is studied for constant angle of

attack, oscillating plunge and pitch. For the studies conducted, various parameters

such as the pitch amplitude h0, structural stiffness Sstress, reduced frequency (k),

and the number of structural modes (m,n) are varied. The conclusions drawn from

the analysis of the results are outlined below:

• The unsteady VLM developed for the project is valid for pitching, plunging,

and pitch and plunge dynamics.

• For constant angle of attack, the deformation calculated by multiple structural

modes are more accurate. For the case considered, m = n = 3 structural modes

are sufficient to estimate the loads and deformations.

• For constant angle of attack, as the stiffness of the membrane is increased,

lower deformation is experienced, which in turn yields a lower lift and lower

drag.

• For an oscillating plunge motion, the use of multiple mode shapes in the ap-

proximation of the deformation yields more accurate and physically correct

results.

• For an oscillating plunge motion, as the plunge amplitude is increased, it is
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observed that the lift and the deformation on the wing increase by the factor

by which the amplitude is increased. However, the thrust increases/decreases

by the factor squared.

• For an oscillating plunge motion, as the reduced frequency is increased/de-

creased, it is observed that the lift and the deformation on the wing increas-

es/decreases by the factor by which the reduced frequency is increased/de-

creases and again, the thrust increases/decreases by the factor squared.

• For an oscillating plunge motion, as the stiffness of the membrane is reduced,

higher deformation is experienced, which in turn yields a higher lift and much

higher thrust.

• For an oscillating plunge motion, in all the cases considered, thrust is generated.

This thrust is due to the pressure on the wing and does not include the leading

edge suction. Thus, the thrust is produced due to the deformation of the wing

and will not be present for a rigid wing oscillating in plunge.

• For an oscillating pitch and plunge motion, the Cl increases for phase lag of

−90o, decreases for −90o, and the Cl amplitude stays the same for in-phase

and out-of-phase motion
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