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1. INTRODUCTION 

Sampled-data phase lock loops have various applications 

in today's electronic systems [BLl] [GAl] [Mil]. t 

Phase lock loops (PLLs) are subject to an improper 

mode of operation known as false lock. Researchers have 

investigated the problem of false lock for a continuous PLL 

[TAlJ. No references have been found in the literature to 

the problem of false lock in sampled-data PLLs. This thesis 

considers the false lock characteristics of a sampled-data 

PLL which is required to acquire and track the phase of a 

signal of fixed but unknown frequency in the presence of 

additive noise. 

1.1 Components in the PLL 

Fig. 1.1 is a block diagram of a sampled-data phase 

lock loop. 

The block labeled PD represents a phase detector. 

Throughout this work it will be assumed that the phase 

detector output, e, is given by: 

(1.1.1) 

where for any x 

$(X) = X (1.1.2) 

tBracketed citations consisting of two letters and a number 
refer to references listed in the bibliography. 

-1-
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4>(x + 21r) = q,(x) (1.1.3) 

and 

60 = 0 - 0 1 2 (1.1.4) 

This is the typical characteristic of multivibrator or 

sample-and-hold phase detectors, as those mentioned in 

Byrne [BYl]. 

The error signal, e, is sampled with uniform period, 

T, and its value at the sampling instants is stored by the 

clamp circuit, Cl, until the next sample. Thus the output, 

m, of the clamp is given by: 

m(t} = e(iT) (1.1.5) 

for 
iT < t < iT + T (1.1.6) 

The block labled VCO represents a voltage controlled 

oscillator whose output phase has the form 

d dt e2 (t) = c(t) (1.1.7) 

Hereafter the input and output signals will be represented 

by their phases: 01 and 02 • 

The filter is the component which can be designed in 

order to obtain the required performance from the PLL. 
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1.2 Difficulties Caused by the Nonlinearity 

The filter design would be straightforward were it 

not for the nonlinearity introduced by the phase detector. 

The periodic nature of the phase detector output as a 

function of the phase error makes it impossible for the PLL 

to distinguish between successive cycles of the input signal. 

The PLL must make a choice of the cycle of the input signal 

to which it will assign each received sample of e. 

If the PLL processes the input signal so as to make 

a periodically increasing error in its choice of the cycle 

to which it assigns data, it is said to be in false lock. 

In this state, the PLL periodically "slips" a cycle in its 

tracking of the input. 

Since false lock errors increase with time, they result 

in a much larger error in the estimate of the input phase 

than would be expected from the presence of the additive 

noise alone. Therefore it is of primary importance that 

false lock be avoided. 

1.3 The Problem to be Investigated 

It is the purpose of this work to investigate the false 

lock characteristics of the PLL with "ideal" false lock 

performance and then compare it with that of a sub-optimal 

system which would be practical to implement. This system 

is 11 ideal" in the sense that it has a minimum probability 

of false lock. 
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The ideal system will be derived in open-loop form. 

Its operation will be approximated to facilitate analysis. 

The approximation will be shown to introduce errors that 

approach zero as the variance of the noise approaches zero. 

The operation of the approximate system will be interpreted 

geometrically and this interpretation will be used to place 

bounds on its probability of false lock. 

The ideal system will be shown to be unwieldy to 

implement, since its operation will require a large number 

of computations to be performed. Hence the performance of 

more practical systems is of interest. One such system will 

be analyzed in this thesis. The probability of its phase 

error exceeding one-half cycle has been found using a 

computer. These results will be presented. 

It is assumed for all systems investigated that the 

phase noise on the input signal is additive Gaussian noise, 

independently distributed from sample to sample. 



2. THE IDEAL SYSTEM 

The form of the ideal open-loop estimator will be 

derived first and the transformation to a closed-loop 

system will be discussed later. The notation will be 

changed somewhat with this open-loop case to avoid con-

fusion when later handling closed-loop systems. Fig. 2.1 

shows the open-loop system. 

2.1 The Form of the Ideal System 

Assume that the system is receiving samples, 

t = i = 0,1,2,••• of a signal with phase 

s(t) =A+ Bt 

s., at 
1 

(2.1.1) 

which has been corrupted by additive Gaussian noise, n., 
1 

of mean zero and variance a2 , independently distributed for 

each sample, forming 

u. = s. + n. 
1 1 1 

(2.1.2) 

This is a signal of fixed frequency with some initial phase. 

The initial signal phase,A, is assumed uniformly distributed 

on [-n,n], i.e. the system has complete ignorance about the 

initial phase. The signal frequency, B, is assumed uniformly 

distributed on [-Bm,Bm], i.e. it is known only that the 

-6-
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signal is within some frequency band. The center frequency 

of the band has been subtracted from the input and output 

signal phase for mathematical convenience. There is no 

loss of generality in doing this. The signal plus noise 

is passed through a nonlinearity which yields the received 

signal, r.: 
J. 

(2.1.3) 

This is the same as the operation of the phase detector in 

Fig. 1.1 when the feedback signal phase is zero. 

The vector (r0 ,•••,rN) of received signals will be 

denoted as r. 

Since no sampling system could be capable of distin-

guishing between signals whose values for B differed by an 

integral multiple of 2n/T, Bro can be immediately restricted 

to jBml < n without placing any impractical limitation on 

the results. 

Let 

u. = r. + 2nI., 
J. J. J. 

(2.1.4) 

where I. is an integer indicating how many cycles of u. have 
J. l. 

been "skipped" by the nonlinearity to yield r .• 
l. 

Because of the nonlinearity, there is not a one to one 

mapping from ui to r .• 
l. 

A given value of r. could result 
l. 



-9-

from any one of an infinite number of u .• Clearly, values 
J. 

of ui greater in magnitude than n + iBm are less likely to 

be the correct choice than those with smaller magnitudes, 

since the original signal cannot be larger than this, but 

this restriction may still allow a large number of possible, 

choices for I .• Somehow the receiver must choose the 
J. 

correct value of I. associated with each r .• The possible J. J. 

choices of (r 0 ,•••,IN) will be denoted as Ij with elements 

(I . , •••,I. . , • • •, I . ) • For this problem, the set of all OJ J.J NJ 
possible! is countably infinite. Fortunately, all except 

a finite number may be eliminated from consideration without 

any increase in error. 

It is desired that the receiver have the smallest 

possible probability of making an error in the selection 

of I. Thus the receiver should select that! which, based 

on all available information, has the highest probability 

of being qorrect. The available information is contained 

in vector r. The probability of I being correct is the 

conditional probability of the occurrence of!, given the 

vector E, and is denoted P[Ilr]: 

= 
/P[!,EI~] P[~]d~ 

P [E] 
(2.1.5) 

The denominator of (2.1.5) is constant for given£, so 

P[Ilr] is maximum when the numerator of (2.1.5) is maximum. 



Since the noise, 

sample to sample, 

n., 
l. 
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is independently distributed from 

= f -1 - exp[- _L_2 (r. + 21rI. - s.)]P[s]ds 
i=O 12-ira 2a 1 1 1 - -

B ,r 

f m f exp[-
-B -n m 

- A - iB) 2 ]dAdB (2.1.6) 

Thus, the ideal receiver must decide on that I which 

maximizes the integral in (2.1.6) with given r. This 

integral is discussed in the appendix and is quite involved. 

In view of the difficulties involved in working 

directly with the double integral in (2.1.6), a different 

technique for selecting the most likely I will be considered. 

This new technique will be shown to give the same results 

for asymptotically small noise variance as those given by 

the ideal system. For larger noise variance, this approxi-

mate technique will sometimes rank the vectors I. incorrectly -J 
compared to (2.1.6) and thus will perform worse than the 
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ideal system. Its performance will be easier to evaluate, 

however, and thus can be used to place a lower bound on the 

performance of the ideal system. This approximate system 

will be called receiver R. 

2 • 2 Rece•i ver R 

Consider the difference between performing the inte-

gration in (2.1.6) over the entire (A,B) plane rather than 

only within the rectangle (IAI < u, IBI < Bm). The integrand 

is sharply peaked about those values of A and B which imply 

lines passing close to the set of points r + 2uI. If each 

u. is inside the limits 
l. 

lu. I < ,r + iB 
l. m ( 2. 2 ,.1) 

by "several" multiples of cr, then that portion of the 

integral outside the rectangle will be small compared with 

the total integral. In this case, the limited integral and 

the unlimited integral are essentially the same. If the 

noise variance is asymptotically small, these two integrals 

will be asymptotically equal for any u with components 

satisfying {2.2.1). 

If any of the u. are out~ide the limits (2.2.1) by as 
l. 

much as several cr, then there will be a drastic difference 

between the limited and the unlimited integral. Since the 
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integrals of these u would rank quite low in the ordering 

according to their limited integral, they can be .disregarded 

as possible candidates for that u which maximizes that 

integral. A more explicit criterion for differentiating 

between admissible and inadmissible u (and hence!) will 

be developed later. 

This then will be the technique used by receiver R. 

It will select that I from the admissible I. which maximizes -J 
the integral (2.1.6) taken over the entire (A,B) plane. 

2.3 The Error in the Approximation 

The approximation of the operation of the ideal system 

by receiver R will result in significant error~ only when 

the I maximizing (2.1.6) contains one or more ui within 

several cr of the limit (2.2.1). As the noise variance is 

decreased, the probability of an input signal having samples 

in this region also decreases, since the size of the region 

decreases. Hence the probability of errors in approximation 

also decrease. 

Consider an (N + 1)-dimensioned Euclidean space, 
N+l denoted E , each of whose coordinates corresponds to the 

value of a function at time t = i, i = O,•·•,N. For. ~iven 

I, the vector~ can be completely described by a single 

point in EN+l. 

The locus of points describing all possible A+ Bt is 
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represented by lines of direction (1,•••,1) passing through 

the point (O,B,2B,•••,NB). Since the locus of intersection 

points (O,•·•,NB) is also a straight line, the two variables 

describe a two-dimensional subspace of EN+l, which will be 

called the AB subspace. 

From this point of view, the quantity 

N 
l (r. + 2~r. - A - iB) 2 

. 0 l. l. J.= 
(2.3.1) 

which appears in (2.1~6) is the square of the Euclidean 

distance between the point u and the point in .the AB sub-

space implied by the given A and B. 

The minimum value of (2.3.1) is obtained for A' and 

B' given by the well-known linear regression equations: 

N I (A' + iB I) = 
0 

N l i(A' + iB'.) = 
i=O 

N 
I u. 

i=O 1 

N 
L iu .• 

i=O 1 

These equations have the solution 

A' 2(2N+l) -6· 
1 = (N+l) (N+2) 

B' -6 12 

(2.3~2) 

(2.3.3) 

N I u. 
. 0 l. J.= 

(2.3.4) 
N 
I iu. 

i=O 1 j 
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N 
D = l (u. - A' - iB') 2 , 

. 0 l. i= 
(2.3.5) 

is the square of the length of the perpendicular from the 

point u to the AB subspace. Denote the point of intersection 

of this perpendicular with the AB subspace as (AB)'· This 

·perpendicular distance may be different for different I. 

Denote the distance associated with I. as D .• -J J 
The following theorem gives the equivalence of a ranking 

of the u. according to the unlimited integral (2.1.6) and a 
-l. 

ranking according to D .• 
l. 

Theorem 2.3.1 

For given 

rfexp[-
2

~2 Jo (ri + 2rriij - A - iB)
2

]dAdB 
-co 

1 N 2 
- 2 I (r. + 2TIIi'k - A - iB) ]d.AdB 
2a . 0 l. l.= I 

-co 

(2.3.6) 

if and only if 

. D < D j k (2.3.7) 
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Proof: 

Set up a polar coordinate system (p,0) in the AB 

subspace whose origin is at the point {AB)'. Thus 

each choice of I. will have its associated (AB)! and 
J J 

(p,0) .• The distance from u. to some point (p,a)J. in 
J -J 

the AB subspace is o2 + p 2 • The integrals above may 

be expressed in the form: 

()I) 

(2.3.8) 

For given p, Dj < Dk implies 

(2.3.9) 

and since this is true.over the whole range of 

integration the theorem is proved. 

Theorem 2.3.1 allows a considerable simplification in 

the mechanics of implementing receiver R. Rather than 

evaluating the necessary integrals directly, it is only 

necessary to calculate the distances Din order to select 

the proper 1· This calculation also offers us a simple 

way of eliminating those u which will have a small integral 

{2.1.6) because some or all of the u. are outside of the 
1 

A,B rectangle. If, for a given I., A' or B' exceeds the -J 
limits on the original signal, i.e. if IA' I > ,r or 

jB' I > Bm' then the distance Dj will not be computed for 
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the perpendicular distance from u. to the AB subspace, but -J 
will be computed from u. to the closest point in the AB -J 
subspace which meets the limits. For example, if for r 89 , 

A'= 0.3 and B' = 3.0, but Bm = 2.5, then Dj will be taken 

as the distance to (AB)'' where B'' = 2.5, and A'' satisfies. 

N al (u. - A - iB) 2 
. 0 l. 1.= 

aA 
= 0 

B=2.5 

which is the same as (2.3.2) with B = 2.5. 

(2.3.10) 

It is now clear that many values of I. need never be 
l. 

considered at all. Let Iimax be the smallest Ii such that 

(2.3.11) 

Then there is no vector Ij with lrijl > Iimax for which 

\(r
1. 

+ 2TII. - A' - iB 1
)

2 < f(r. + 2TII. - A' - iB 1 )
2 • l 1. l 1. 1.max 

Therefore the receiver need only consider the 

N 
IT (2I. + 1) . 0 1.max 1.= 

possible I. which meet this limitation. -J 

(2.3.12) 

(2.3.13) 
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2.4 Geometrical Interpretation of Operation 

h t . f th . 1 . EN+l '11 . Te representa ion o e signa s 1n wi again 

be used. The reader may find it helpful to refer to Fig. 2.2 

where the representation is illustrated for N = 2, Bm = n. 

The original signal at any given sample time is 

limited to 

(2.4.1) 

Therefore the original signal must be within the edges of 

the rectangular hyperspace 

hi < -rr + iB m i = 0,1,•••,N. {2.4.2) 

This hyperspace may be divided into hypercubes with edge 

length 2n and centers at 

where J .. is an integer and 
1] 

In the example illustrated 

nine such cubes .. 

'B + n 1 m 

2n 

(2.4.3) 

{2.4.4) 

in Fig. 2.2 B = 1r and there are m 
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I/ ,,"" 

Xo// fa~------------------
/ 

/ 
/ 

/ 
/ 

/ 

Fig. 2.2 N=2. The AB-plane within a rectangular space 
defined by the signal range for each of the three 
samples with Bm=n. The center hypercube is shown. 
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The original signal lies somewhere in the AB subspace, 

a two dimensional subspace of EN+l. This subspace inter-

sects some, but not all, of the hypercubes mentioned above. 

The noise added to the signal may drive the point~ anywhere 

in the rectangular hyperspace or even outside of the 

rectangular boundaries. The action of the periodic 

nonlinearity then delivers to the receiver the coordinates, 

~, of the point~ with respect to the center of the hypercube 

in which it lies, but no information about in which cube it 

lies. Thus the space of the received signal, r, is a single 

hypercube of N+l dimensions. 

The receiver makes its decision selecting the most 

likely hypercube by placing a point of the given coordinates 

in every possi~le hypercube, and selecting that hypercube 

in which the point lies closest to the AB subspace. The 

probability of the receiver's making an error in this 

selection is the probability that the noise will drive the 

point u into a region which is closer to the AB subspace 

in the wrong hypercube. 

Consider how sections of the AB subspace are oriented 

with respect to the hypercube they intersect. This will be 

their orientation in the space of the received signal, r. 

They are, of course, all parallel and spaced in some regular 

pattern. For example, in the case N = 2, the five different 

sections of the AB plane (within the limit IAI n,IBI n) 

intersect their respective cubes so as to form three evenly 
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spaced parallel planes when all shifted to the same cube. 

This is illustrated in Fig. 2.3. The pattern is not as 

simple for N greater than 2. Fig. 2.4 illustrates this 

for N = 3. It shows the positions of shifted sections of 

the AB plane in the two-dimensional subspace orthogonal to 

the AB plane. 

2.5 False Lock in Receiver R 

The probability that the receiver will false lock is 

related to the probability that the component of the noise 

orthogonal to the AB plane will drive the signal to a 

position closer to the wrong section of the AB plane in 

the space of the received signal,~- In this case the.· 

receiver will select I improperly. It will be shown that 

not all errors in the selection of I should be classified 

as false lock. A simple criterion of distinction will be 

developed. This will allow bounds to be placed on the 

distance from the AB plane to the nearest shifted region 

causing false lock. This in turn will be used to place 

bounds on the probability to false lock. 

2.6 The Distance D 

In this section the perpendicular distance from the 

AB subspace to the shifted regions of the AB subspace will 

be determined. 
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Fig. 2.3 N=2. The locations of segments of the AB-plane 
within the space of received signal~. 
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Since the position of a point within the AB subspace 

does not affect its perpendicular distance to any other 

point, the point A= 0, B = O, i.e. the origin of the space 

can, for convenience, be used in all calculations. Its 

perpendicular distance from the center of each hypercube 

in the space will be calculated. 

The coordinates of the center of a hypercube with 

respect to the origin of the space was given in (2.4.3) as: 

All possibly different distances will be considered if the 

integers J. . have the maximum magnitude: l.J 

1 + i < 
2 

(2.6.1) 

For every C outside this range, there is another c inside 

this range with exactly the same•distance. 

Two orthonormal vectors describi~g the AB subspace are: 

1 (1,1,•••,1) (2.6.2) 

and: 
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The component of c. perpendicular to the AB subspace is: -J 

D. = C. - (C. ,X.,..) ~.,.. - (C. ,X8 ) XB -J -J -J -n -J - -

where {X,Y) denotes the inner product operation: 

N 
l X.Y. 

i=O 1 1 

This reduces to: 

(2.6.4) 

(2.6.5) 

N N . 3 
- {(2N+l) l J .. - 3.l 1J1.J.}(N+l) (N+2 ) (1,1,•••,l) 

i=l l.J i=l 

(2.6.6) 

The square of the length of this vector is: 

I 1
2 ,2 1 ·, 2 

(ir/2)0 = lJij - (N+l) (N+2) { (lJij) (4N+2) 

(2.6.7) 
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It would be desirable to find the value of D for every 

J which represents an error in the selection of I resulting 

in false lock. However, because of the large number of 

such different J, the work presented here has been directed 

toward finding a lower bound on such D. 

2.7 Restrictions on~ 

Since the probability of false lock is related only 

to the orthogonal distance from C to the AB plane, the 

location in the plane of original signal is irrelevant. 

For simplicity, it will henceforth be assumed that the 

original signal is zero for all time. 

For every point (A,B) in the AB plane, that value of 

J can be found which characterizes the hypercube center 

closest to (A,B). This can be done s~mply.by minimizing 

each individual component of the difference vector: 

Min (J. - A - iB). J. 1. 
1 

(2.7.1) 

This will yield a J which increases (or decreases) mono-

tonically in a periodic or almost periodic manner. The 

qualification "almost" in the last sentence is used to 

allow those cases in which, for some i, the minimization 

of (2.7.1) will occur for two values of J., and eithe~ 
1 

may used in J. Since this is the property expected of 
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vectors I resulting in false lock, the distance D associated 

with these vectors are the distances that should be used to 

bound the probability of false lock. It is not known which 

of these vectors has the smallest value of D, but it is 

known that there is no vector outside this class with a 

value of D smaller than those inside this class. 

For reasons which will.soon become apparent, it is 

necessary to place an additional qualification on those J 

which will be considered as leading to false lock. This 

qualification will be made on the basis of the amount of 

phase error caused by the error in slope for a simple 

linear minimum mean-square estimator whose input is J. The 

unbiased minimum mean-square-error estimate of Bis given 

in (2.3.4). The total phase error caused by the error in 

Bis: 

NB'= (2.7.2) 

It will be said that for J to be considered as resulting in 

false lock, 

NB' > 1r. (2.7.3) 

It is not meant to be implied that the PLL must actually 

use a minimum MSE estimator in processing the signals~ 
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to estimate A and B. This work deals only with the selection 

of I and places no restrictions on the other processing steps. 

Since Din (2.7.2) is independent of the sign of J, 

investigation may be limited to positive J. without loss of 
l. 

generality. In addition, since the addition of a constant 

to all terms of J does not change its orthogonal distance 

to the AB plane, the first term of J may be taken to be 

zero, or any other convenient value. 

2. 8 . The .C.ase:· J. = (O.,.• • • ,1) 

The simplest form the vector J could take is: 

. J = (0,0, • • • ,0,1,1, • • • ,1)'" (2.8.1) 

The number of components is N + 1. Let k = number of ones. 

Then: 

and 

N I J. = • 0 l. J.= 

N 
l J~ = k . 0 l. 1= 

N 
l iJ. = ~(2kN - k2 + k). 

i=O 1 

Substitution into (2.6.7) yields:· 

(2.8.2) 

(2.8.3) 
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N(N+l) (N+2) (D/2u) 2 = -3k4 + 6(N+l)k3 - (4N2 + BN + 3)k 

(2.8.4) 

Examination of the first and second partial derivatives 

with respect to k shows a local minimum at 

k = (N + 1)/2 

and local maxima at 

k = N+l + 13 + 4N + 3 
2 - 6 

(2.8.5) 

(2.8.6) 

The fact that k must be an integer leads to the 

division of this problem into two cases: 

For Nodd, (N+l)/2 is an integer, and D has a local 

minimum at 

At this value of k, 

k = N + 1 
.2 

= (N-1) (N+l) (N+3) 
16N(N+2) 

(2.8.7) 

(2.8.8) 

For N even, the local minima are at the adjacent points: 
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k = N/2 

k = (N + 2)/2 · 

At both these values of k, 

N(N + 2) = 16(N + 1) 

(2.8.9) 

(2.8.10) 

(2. 8 .11) 

Let the values of D given in (2.8.8) and (2.8.11) be 

denoted of. Substitution of Df into (2.8.4) shows that D 

also equals Df when: 

For Nodd 

(2.8.12) 

and for N even 

(2.8.13) 

The restriction 

1 < k < N (2.8.14) 

can be met by (2.8.12) and (2.8.13) when 
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N > 10 {2.8.15) 

with equality at both limits for N = 10. Thus, for N > 11, 

there are some values of J with D less than Df. 

Substitution of (2.8.12) and (2.8.13) into (2.7.2) 

shows that for the values of k given by these two equations, 

the corresponding NB'is: 

for Nodd 

for N even 

N2 + 2N - 3 NB'=n------- < n 
N2 + 2N + 3 

N 
NB'= n(N+l) < n 

{2.8.16) 

{2.8.17) 

Values of~ with smaller corresponding values for D also 

have smaller corresponding values of NB~ 

Thus it can be seen why it is desirable to place the 

restriction of (2.7.3) on J. To not do so would be to use 

an unduly conservative value for D, when that value cor-

responds to .a~ which causes a total tracking error of 

less than one-half cycle. 

2.9 Other Vectors 

No general algebraic expression has been found which 
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expresses the values of D and NB' of a vector more complicated 

than {O,•••,l) when N is not fixed. 

A computer program has been written to search the class 

of all possible vectors for any which simultaneously satisfy 

the conditions: 

(2.9.l) 

NB'> u (2.9.2) 

For the cases 2 < N < 20 no such vectors have been 

found. It is hypothesized that no such vectors exist for 

any N. 

It has been found that for two vectors: 

(0,1,1,2,2,3,3,•~•) (2.9.3) 

and 

{O,O,l,1,2,2,3,3,•••) (2.9.4) 

D = of. It can be shown algebraically that this is true 

for all N. 

2.10 Probability of Noise Within a Hypersphere 

In order to evaluate the probability of false lock, 

it is necessary to evaluate integrals of the form: 
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dx dx • • •dx 0 1 n (2.10.1) 

where the integration is over the hyperspherical volume: 

V: 
n 2 l x. < P. 

i=O 1 

Making the change of variables: 

X3 . 
• . 

X n-1 

X n 

= p 

= p 

= p 

= p 

·yields the form: 

• • • 

• • • 

• • • 

• • • 
• 

• I 

(2.10.2) 

• 
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1T 1T 21T p 

I 1 (n' a 'P) = J • • • f .· f f 
_n+l 2 

(2 2) 2 c· p ] n . . 2 
1Ta exp ---2 p sina2sin a 3 

0 0 0 0 

n-1 •••sin a dpda da •••da n 1 2 n 

Using the relation 

this may be reduced to the forms 

n odd: 

2a 

n even integer 

n odd integer 

n+l. P _n+l 2 

2 ('ET) 
2 · J 2 2 _e_ n = {n-1) 1 (21Ta ) exp {- ·2) P dp 

2 0 2a 

n even: 

(2.10.4) 

(2.10.5) 

(2.10.6) 

(2.10.7) 

n ·ca. - 1)1 P _n+l 2 
Il (n,a,P) = (2)n(,r)z(; - 1H ! (2,ra2) 2 exp(-202>Pndp 

(2.10.8) 

The form 

(2.10.9) 
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may be integrated by parts to yield the recursion formula: 

2 n-1 2 2 = -a p exp(--P-) + a (n-1) 
2a 2 

(2.10.10) 

Successive application of this formula yields: 

, I 2 pnexpt-:-¾-Jdp 
2a 

for n even 

n 

= -n!1 exp(-£) I a2ipn+l-2i ii (n+3-2j) 
2a2 i=l j=l 

+ an (n-1) 1 /?-. f( p ) er -
!!...1 fla 

2 2 (~ -1) l 

(2.10.11) 

for n odd 

n+l 
1 2 - 2- 2i n+l-2i i 

= -~xp<--1½->t la p n (n+3-2j)] 
n 2a i=l j=l 

(2.10.12) 

Inserting the limits O and P yields: 

n even: 



n 
1 p2 2 

- n+l exp(- 202> l i=l 
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i 
II 

j=l 
(n+3-2j) 

(2.10.13) 

n odd: 

n+l 
-2-

1 n+l TI (n+3-2J") - 1 ( L) n+l a ri+I" exp - 2n2 j=l V 

n+l 
- 2- 2· 1 2· .[ l a 1 Pn+ - 1 

i=l 

i 
TI 

j=L 
{n+3-2j)] (2.10.14) 

The probability that the noise will lie outside the 

hypersphere is found by substituting the limits 1; instead 

of]~. Use of this form is sometimes preferable for 

numerical reasons. 

Let 

where 

r1 (n,cr,P) = 1 - I(n cr,P) = JJ:_:•J (same as before) 
V 

V: 
n 2 }: x. > p 

. 0 1 i= 

(2.10.15). 

{2.10.16) 
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This changes only the term: 

00 2 
exp[- _P_]dp 

2o 2 

which then has the value: 

n even 

n odd 

n 
1 p2 2 

n+l exp(- 202) l 
i=l 

(n - 1) ! 

n+l 

i 
II (n+3-2i) 

j=l 

p 
erfc(-) 

fla 

1 P2 - 2- 2· 1 2· i, 
n+l exp(- ) l a 1 Pn+ - 1 n (n+3-2j) 

2a 2 i=l j=l 

2.11 Probability of False Lock 

(2.10.17) 

(2.10.18) 

(2.10.19) 

Using previous results, an upper bound may now be 

placed on the probability that the ideal system will false 

lock. If the component of the noise orthogonal to the AB 

subspace has a magnitude less than Df/2, the ideal receiver 

will not be in false lock. For 
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N < t < N + 1 (2.11.1) 

the system has N + 1 samples to process and the above 

mentioned component of the noise is normally distributed 

in an N - 1 dimensioned space. Hence the probability of 

false lock must be bounded above by: 

(2.11.2) 

2.12 Feedback in the Ideal Receiver 

At this point it should be remarked that the use of 

feedback within the ideal receiver, or even within receiver 

R, would not simplify the calculations that these receivers 

make. Referring to Fig. 1.1 and Fig. 2.1, if, at t = i, 

any 02i other than zero were subtracted from e1i before 

it was operated on by the nonlinearity, ~,alike factor 

would have to be added tori in (2.1.6) and all equations 

following from (2.1.6). This would, if anything, make the 

calculations more cwnbersome. 



3. SUBOPTIMAL SYSTEMS 

3.1 Motivation 

The number of possible values for I that must be 

considered by receiver R is approximately 

NB 
(__.!!!_) ! 

1T 
(3.1.1) 

For N other than very small, this requires very large 

numbers of calculations. Apparently receiver R would not 

be a very practical device to implement. Methods of 

reducing the required number of calculations are of 

primary interest. 

3.2 Systems· Using Feedback 

A system involving less computation for the selection 

of! is one which considers only one possibility for IN 

based on the received signal at t = O,•••,N-1 but not 

considering rN. A prediction, ~N' of the values of sN 

based on the previous N samples, is made and IN is chosen 

so that 

(3.2.1) 

This scheme is quite easy to implement using feedback. 

Referring to Fig. 1.1, if a2 is the predicted value ~N 

-38-
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at the instant that ei - e2 is sampled, the difference 

samples will be the desired value of sN - rN, without 

further computation. This latest sample and the value 

of ?N can then be used to form the prediction, ~N+l' 

and the estimates of A and B. 

In this chapter one such feedback system will be 

investigated. This system will use a time-varying linear 

filter to generate the feedback signal. 

It will be shown that the operation of this system is 

described by a two-dimensional Markov process. Because of 

the nonlinearity of the phase detector, it is impossible 

to analytically derive the probability distribution of the 

error of this system. 

A computer program has been written to calculate the 

probability that the phase error of the system in tracking 

the input signal is less than n. The system was approxi-

mated in order to facilitate computation. This approximation 

consisted of adding an absorbing barrier or trapping state 

to the original two-state process. This barrier was placed 

at NB'= z. Thus, if NB' ever reached z, the phase error 

could never become smaller. In the actual system, there 

would be some probability of the phase error returning to 

a lower value. 

3.3 The Ideal Linear Estimator 

The minimum mean-square-error, linear, unbiased 
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extrapolator of a sampled polynomial, corrupted by additive 

Gaussian noise, has been derived by Lees [LEl]. He has 

shown that for a first order polynomial this estimator forms: 

sN+l =A'+ (N+l)B' (3.3.1) 

where A' and B' are given by (2.3.4). This is, of course, 

a time-varying linear estimator, since the values of the 

matrix in (2.3.4) change with each additional sample. This 

can be simplified to: 

iu. 
1 

(3.3.2) 

This equation holds for N > O. For N = 0, i.e. when 

only one sample has been received, the set of equations 

leading to (2.3.4) is singular. In this case, the best 

estimate of s 1 is: 

(3.3.3) 

This estimator can be used for the filter unit in the 

system illustrated in Fig. 1.1. In this system 

(3.3.4) 

yielding 
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lui lU- 1 
l. 

= + (~ + 82N) (3.3.5) 

Iiu. Iiu. N 
l. 1 

N N-1 

where 

p.3.6) 

N-1 

and 

(3.3. 7) · 

Equations (3.3.5) and (3.3.6) can be combined to form: 

,lUi N-2 6 i:u, 1 -2- N(N-1) l. 

= + (3.3.8) 

})u. -2 N+S })u. N 
l. N-1 1 

N . N-1 

Making the substitution: 



Xl 

x2 
N 

yields 

Xl 

-
x2 

N 

where 

and 

= 1 
(~+l) (N+2) 

N 
N-1 

0 

0 Xl 

1 X2 

N 
8 2N = [N-1 
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-6N 12 }:u. 
J. 

, (3.3.9) 

4N+2 -6 liu. J. 
N 

6N 

+ 1 
(N+l) (N+2) ~, 

-2(N-1) 
N-1 

( 3. 3 .10) 

( 3. 3 .11) 

(3.3.12) 

The diagonal form of (3.3.10) simplifies calculations. 

and 

Comparison of {3.3.9) with (2.3.4) shows that 

X = A' 2N 

(3.3.13) 

(3.3.14) 
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Note that during·the interval N < t < N + 1 the state 

of the system is completely described by the two-element 

vector~· Hence the probability of the system being in 

any state is given by the joint probability distribution 

which will be denoted:· 

Hence the process describing the operation of this system 

is a two-dimensional Markov process. An analogy may be 

drawn to a two-dimensional diffusion process. 

3.4 Errors with the Ideal Linear System 

After the sample at t = O, the output of the system 

is: 

(3.4.1) 

Upon receipt of the sample at t = 1, the system forms: 

(3.4.2) 

Since for all x and y 
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$[X + ~[y]] = ~[X + y] (3.4.3) 

(3.4.4) 

Similarly, A enters into the equations for all subsequent 

02 i only in a term of the form (3.4.1). 

Since the interest here is in the manner in which the 

system tracks changes in 01 , and not in the size of any 

constant error, it may be assumed that 

A= 0 (3.4.5) 

Under this condition, the state vector at t = 1 is: 

(3.4.6) 

and thus the probability distribution on Xis: 

CIO 00 

p [Xl] = I I P[n0 = x21 + 2iri, nl = Xll + X21 - B + 2 ,rj] 
i=-00 j=-00 

for IX11 I, IX21I < 1T -

= 0 otherwise (3.4.7) 
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Since the two variables n 0 and n1 are independently normally 

distributed, 

\' 1 l· 2 2 l :--i" exp[--2{(X21 + 2,ri) + (Xll + X21 - B + 2,rj) }) 
i,j 2,ra 2a 

= 0 otherwise (3.4.8) 

The distribution of x2 , the state vector after the next 

sample, may be found by performing the integration: 

'1T '1T 

P[x2J = k J f P[X1 JP[m2 : x1 -+ x2Jdx11dx22 
-,r -rr 

(3.4.9) 

where P[m2 : x1 + x2] symbolizes: the probabil~ty density 

of that m2 such that x1 is mapped to x2 , and the constant k 

includes any Jacobians required to adjust the probability 

densities to take into account the effects of the constants 

in (3.3.10). The probability density of ~+l given~ is 

00 

--1- exp[-_l_(rn + N+l X + X + 2 1·) 2 ] 2 2 N lN 2N . '1T 

12rra 2a 

1~+11 < ,r 

= 0 otherwise ( 3. 4 .10) 
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Referring to {3.3.10) it is seen that for given x2 , 

x1 is restricted to those values which satisfy the equations 

N-1 0 -6 N 

X = X + 
(N-1) m (3.4.11) (N+l) (N+2) 

0 1 2 

N-1 N 

Thus the integration in (3.4.9) is only over the line: 

(3.4.12) 

It is possible to express (3.4.9) as a triple summation 

of integrals, each of which may be integrated in closed form. 

However, the extension of this calculation past the next 

sample involves the quadruple sum of integrals of the form: 

b 

J erf[cx - d) exp[-e(x - f) 2 Jdx 
a 

which may not be integrated in closed form. 

(3.4.13) 

Because of this difficulty with analytical characteri-

zation of the system performance, a computer has been used 

to directly perform the integration in equations o-f the 

form (3.4.9). The program evaluated the probability that 

XlN =NB'< n. (3.4.14) 
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3.5 Approximations in the Computer Program 

Three approximations were used in the computer program. 

The first and unavoidable approximation was the use of a 

field described only at grid points as a representation of 

a probability density which was actually a continuous 

function of two variables. 

The second approximation was the addition of a trapping 

state to the original process. This was done for the 

following reason: While the state variable x 1N is restricted 

to a small region at the beginning of the process, it soon 

has a range of many n. Even though the probability of x1N 

having a large value is small, straightforward analysis 

would require storing the description of the field at these 

extreme values, and this in turn would require very large 

data storage in order to preserve accuracy in the region 

corresponding to small x1N. 

The trapping state alters the process so that if the 

magnitude of x1N ever exceeds a fixed boundary, z, it may 

never return. Hence, since the interest is in values of 

x1N less than n, no consideration need be given these states 

with x1N greater than z in the subsequent calculations of 

the probability density P[X]. 

This approximation will be in error by the probability 

that x1N could be larger than Z at some time and then return 

to a value less than Z at the sample being evaluated. z 

was chosen experimentally so that 
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P[XlN > Z] < (.Ol)P[XlN > 1r] (3.5.1) 

Thus the error this approximation causes in the results of 

interest must be less than 1 percent. 

The third approximation was the assumption that for 

the original signal 

B = 0 (3.5.2) 

The value of B has some effect on the distribution of m 

for the sample at 

t = 1 (3.5.3) 

and this influences the distribution of the error for all 

subsequent samples. If Bis always small compared to 1r, 

which would be reasonable in practice, then this approximation 

will not produce appreciable errors. This approximation 

provides a symmetry in the probability distribution P[~] 

which reduces computation time significantly. 



4. RESULTS AND CONCLUSIONS 

4.1 Numerical Results 

Figs. 4.1 through 4.3 show graphically the bound on 

the probability of false lock for the ideal system obtained 

by evaluating (2.11.2) and the probability that x1N is 

greater than pi for the system described by (3.3.10). This 

second quantity was only calculated for N < 10 because of 

limitations on computer time available. 

4.2 Comparison of the Two Systems 

Although both of the systems investigated are sampled-

data phase lock loops (or at least would be after the open 

loop ideal system was transformed to a closed loop system), 

there are some strong differences between them. 

The ideal system does not have a fixed number of state 

variables. It must store separately the value of each 

sample received. In addition, the closed loop version 

would need to store the value of its own output, e2 , at 

each sampling instant in order to properly perform the 

operation discussed in 2.12. The characteristics of 

receiver Rare such that the operation of this system can 

be easily predicted by examining the signal plus noise 

before they are operated on by the nonlinearity. This 

examination involves a measurement of geometric distances 
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in a multi-dimensioned Euclidean space. It was natural to 

separate the errors caused by the noise into those caused 

by components of the noise in the plane of the original 

signal and those caused by components of the noise in the 

subspace orthogonal to the plane of the signal. Some of 

these latter errors could be identified as false lock 

errors, independent of the components of the noise in the 

plane of the signal. 

The system with the linear estimator (3.3.10) has 

only two state variables. The only known way of finding 

the system output for a given input, is that of step-by-

step evaluation of (3.3.10). Hence no way is known of 

identifying errors due to false lock apart from other 

errors. 

4.3 Conclusions 

Examination of Figs. 4.1 through 4.3 show that in all 

cases investigated, the probability that x1N = N~ exceeds 

pi for the system with the linear estimator is less than 

the bound which has been derived on the probability that 

false lock in the ideal system will cause an error in the 

estimate of NB'greater than pi. Thus the performance of 

the sub-optimal system in this respect is in these cases 

better than the bound which has been placed on the 

performance of the ideal system. Hence, it can be concluded 
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that the bound in (2.11.2) is a rather conservative one, 

at least for the cases considered. 

4.4 Suggestions for Further Study 

If the solutions of (2.6.7) could be characterized 

more precisely, it might be possible to derive several 

interesting results. Both a less conservative upper bound 

on the probability of false lock and lower bound on the 

probability of false lock for the ideal system would be of 

interest. 

The extension of the results of this study to simple, 

easy to implement systems would have practical significance. 
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b a 

f I 
-b -a 

APPENDIX A 

The Integral in (2.1.6) 

N 
exp[-c l (r. - A - iB) 2 ]dAdB 

. 0 J. 1= 

b a 

= I I 
-b -a 

N 2 N 
exp[-cl r. + (2cl r.)A + {2ciir.)B 

i J. i J. J. 

-cN(N+l)AB - N(N+l) 2N+l) B2 ]dAdB 
6 (A. l) 

By performing a rotation of the axes A and B, completing 

the square in each of the new variables, and then shifting 

the new axes by appropriate constants, th~s integral may be 

reduced to a sum of five integrals, each of the form: 

(A. 2) 
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For one of the five integrals, d 4 = 0 and the evaluation 

of the integral is trivial, as is always the case for the 

second term inside the{·}. The other fou:r; integrals are 

composed of terms of the form: 

D 
/; J 2 2 
2 exp(-y x )erf{a + ax)dx (A. 3) 

0 

This integral has no closed form expression, but it can be 

evaluated by resorting to integration of the Cauchy product 

of the infinite series for the two transcendental functions. 

D 

J 
00 

• {yx) 2 i 00 2k 00 a 2 {n-k) 2n+l 2n+l [ l <-1 >
1 

i! ] { l (ex) l (2n+l)n! [ <2k+1> a + <2k+2> ax] 
O i=O k=O n=k 

2· X 1 = DJ I 
O i=O 

00 

= I 0 2i 

(A. 4) 

i 
I 

k=O 

(A. 5) 

i 
I Y2(i-k) 0 2k 00 2(n-k) 

(-l) (i-k) ___ µ_ l (-l)n 
i=O k=O (i-k) ! n=k (2n+l)n! 

(A. 6) 



APPENDIX B 

COMPUTER PROGRAMS USED IN THIS RESEARCH 

C THIS PROGRAM SEARCHES FOR VECTORS WHICH SIMULTANEOUSLY 
C MEET CONDITIONS (2.9.1) AND (2.9.2) 
C 
10010 FORMAT (110) 
10020 FORMAT (Il,3HN = 1 I3,9X,1HM,5X~l4HVECTORS TESTED/) 
10030 FORMAT (3HOD=,El6.8,6H B=,El6.8,6H K=,2813) 
10040 FORMAT (117 1 113) 
10050 FORMAT (19H COMPUTATION TIME =,f6.1 1 4H SEC} 

INTEGER OLD 
DIMENSION K(200) 

10 READ (5 1 10010) N 
IPAGE=l 
WRITE (6,10020) IPAGE,N 
If {N.EQ.Ol STOP 
CALL TIME(OLOl 
M=N/2 
IF (HOD(N,2).EQ.l) GO TO 20 

C N EVEN 
DF=FLOAT ( N* ( N+2 .. ) l / ( 16.*FLOAT ( N+ U} 
GO TO 30 

C N ODO 
20 DF=FLOAT( (N-l)*(N+l)*(N+3"))/( 16.*FLOAT(N*(N+2.l)) 
30 KZMAX=N/M+l 

NT=O 
DO 110 KZ=l,KZMAX 
KMMAX=(N-KZ)/M 
IF (KMMAX.LE.O) GO TO 110 
00 100 KM=l,KMMAX 
LENGTH=N+l-KZ-KM 
MINUS=M-1 
IF (M.GE.3) GO TO 35 
K( l )=LENGTH 
GO TO 55 

35 KMAX=(N-KZ-KM+2)/(M-l)+l 
KMIN=(N-KZ-KM-lOOO*(H-l)l/(M-1)+999 

C START VECTOR 
00 40 I=l,MlNUS 

40 K(I}=KMIN 
C CHECK LENGTH 

45 L=O 
DO 50 I=l,MINUS 

50 l=L+K(I) 
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IF {L •• LENGTH) GO TO 80 
C FIND D 

55 ISUM=M*KM 
ISUMSQ=M*M*KM 
ISUMI=O. 
L=KZ 
00 60 I=l,MINUS 
ISUM=ISUM+I*K(I) 
I ISUMSQ+I*l*K(I) 
ISUMI=ISUMI+I*IK(I)*(K{I)+l+2*L)l/2 

60 L=L+K(I) 
ISUMI=ISUMI+M*(KM*IKH+l+2*L))/2 
D=ISUM*ISUM*C4*N+2l-12*ISUM*ISUMI 
O=FLOAT( I ISUMI*ISUMI )*12./FlOAT(N) )/FL 

10AT((N+l)*(N+2Jl 
NT=NT+l 
IF (D.GT.DF) GO TO 80 
B=FLOAT{-6*N*ISUM+l2*ISUMI}/FLOAT((N+ll*(N+ZJ) 
IF (B.GT •• 5) GO TO 80 
O==SQRT(O) 
WRITE ( 6 7 10030) D,B, KZ, ( K { l) • I =1, MINUS ),KM 

80 IF (HINUS.EQ.l) GO TO 100 
K(MINUS)=K(MINUS)+l 
DO 90 1==2,MINUS 
J=M-I+l 
IF (K(Jl.LE.KMAX) GO TO 45 
K(J}=KMIN 

90 KtJ-l)=K(J-1}+1 
IF (K(l).LE.KMAX) GO TO 45 

100 CONTINUE 
110 CONTINUE 

WRITE (6,10040} M,NT 
M=M-1 
IF {M.GT.l) GO TO 30 
CALL TIME(NEW) 
T=.OOl*FLOAT(OLD~NEW) 
WRITE (6,10050) T 
OUJ=NEW 
IPAGE=IPAGE+7 
If (IPAGE.GT.8) IPAGE=l 
GO TO 10 
ENO 



C 
C 
C 
C 
C 

C 

C 
10 
30 
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SUBROUTINES HAlfDF AND LONER WERE USED TO EVALUATE 
THE BOUND GIVEN IN {2.11.21 UN THE PROBABILITY Of 
FALSE LOCK FOR THE IOEAL SYSTEM 

SUBROUTINE HALFDf(N,D) 

THIS SUBROUTINE RETURNS HALF THE LENGTH OF THE NORMAL 
VECTOR FROM THE AB SUBSPACE TO THE NEAREST HYPERCUBE 
CENTER CAUSING FALSE LOCK 

Pl=3.141593 
IF {MOD(N,2).EQ.O) GU TO 10 
N IS ODO 
O=fLOAT((N-l)*{N+ll*(N+3J)/FLOAT(lN+2)*N*l6). 
GO TO 30 
N IS EVEN 
D=FLOAT{{N+2)*N)/FLOAT{(N+l)*l6) 
D==SQRT(D)*PI 
RETURN 
ENO 

SUBROUTINE LONER(N,SIGMA,P,PROB) 
C 
C THIS SUBROUTINE RETURNS THE PROBABILITY THAT A 
C GAUSSIAN VECTOR Will FALL OUTSIDE A HYPERSPHERE OF 
C RADIUS PIN AN N+l DIMENSIONED SPACE 
C 

PI=3.141593 
IF (MOD{N,2).EQ.O} GO TO 100 

C N IS ODD 
CONST=PI**(lN+l)/2)*2• 
N2=(N-l)/2 
AN2=FLOATIN2)+.5 
ANl:l. 

10 CONST=CONST/ANl 
ANl=ANl+l. 
IF (AN1.LE.AN2) GO TO 10 
PROD=l. 
SUM =O. 
N2=N2+1 
DO 20 I=l.N2 
PROD=PROD*FLOAT(N+3-2*I) 
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SUM=SUM+SIGMA**l2*I)*P**(N+l-2*I)*PROD 
20 C1JNTINUE 

SUM=SUM*EXP(-P*P/(2.*SIGMA*SIGMA)) 
SUM=SUM/FLOAT(N+l) 
PROB=CONST*SUM 
PROB=PROB/(2.*PI*SIGMA*SIGMA)**((N+l)/2) 
RETURN 

C N IS l:VEN 
100 CONST=2•**N*PI**(N/2) 

IF (N.NE.O) GO TO 105 
PROB=ERFC(P/(SQRT(2.)*SIGMA)} 
RETURN 

105 CONTINUE 
Nl=N/2 
ANl=Nl 
AN2=FLOAT(N)-.5 

110 CONST=CONST/ANl 
ANl=ANl+l. 
IF {AN1.LE.AN2) GO TO 110 
PRDD=l • 
.SUM =O. 
00 120 I=l,Nl 
PROD=PROD*flOAT{N+3-Z*I) 

120 SUM=SUM+SIGMA**(2*I)*P**(N+l-2*I)*PROD 
SUM=SUM*EXP(-P*P/(2.*SIGMA*SIGMA)) 
SUM=SUH+ SQRT(Pl*SIGMA*SIGMA/2.)*ERFC(P/SQRT(2 

1.)/SIGMA)*PROD*SIGMA**N 
SUM=SUM/FLOAT(N+l) 
PROB= Sut.;p;tCONST 
PROB=PROB/(2.*PI*SIGMA*SIGMA)**(FLOAT(N+l)/2.) 
RETURN 
Eh!D 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
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THIS MAIN PROGRAM AND THE ACCOMPANYING SUBROUTINES 
CALCULATE THE PROBABILITY THAT ABS(Xl) IS GREATER 
THAN PI FOR THE SYSTEM DESCRIBED IN SECTION 3.3 

SUBROUTINES REQUIRED: POINT 
VOLUME 
PHI 
PR 
LOOK 

10010 FORMAT (3Il-O,Fl0.5,E20.8,Fl0.5) 
10015 FORMAT (1Hl,3IlO,Fl0.5,E20.8,Fl0.5) 
10020 FORMAT { 3HON=,I3,7H P(,I3,1H,,I3,11H).GE.BOTTOM) 
10025 FORMAT (7HOXlMAX=,Fl0.6,8H X2MIN=,Fl0.6,8H X2MAX=,Fl 

10.6) 
10030 FORMAT {3HON=,I4,10H REGION,12,lOH PROB =,El6.8} 
10040 FORMAT (7HlTIME =,I6,4H SEC) 
10050 FORMAT (22HOTRAPPED THIS SAMPLE =,El6.8,20H TOTAL 

lTRAPPEO =,E16.3} 
10060 FORMAT {13HOTOTAL PROB =,Fl0.7,22H P{ABS(Xl} .GT .PI} 

1 =,E16.7) 
10080 FORMAT (28HOLOWER LIMIT FOR TRAP IS I =,13). 

DIMENSION P(lOl,101),PN{lOl,101) 
0COMMON PI,TWOPI,CZ,CAN,CBN,CN,02H,D2L,Nl,X2MIN,DELX1,D 
1ELX2,X1N,X2N,I~J,P,PN 

C 

REAL ML,MEAN 
INTEGER Dl,D2,D2H,D2L,REGION 
Pl;:::-3.141593 
TWOPI=2.*PI 

10 READ (5,10010) 01 1 02,NMAX,SIGMA,BOTTOM,FACTOR 
WRITE (6,10015) O1,O2,NMAX,SIGMA,BOTTOM,FACTOR 
If (NMAX.EQ.O) CALL EXIT 
D2H=D2 
D2L=l 
BNDRY=FACTOR*PI 

C INITIALIZE PROBABILITY MATRIX 
C 

N=l 
XlMAX=PI 
X2MAX=PI 
X2MIN=-PI 
OELXl=XlMAX/flOAT(Dl-1) 
OELX2=(X2MAX-X2MIN)/FLOAT{D2-l) 
Cl=l./(TWOPI*SIGMA*SIGMA} 
C2=1./(2.*SIGMA*SIGMA) 
CD=SQRT(CZ) 
DO 40 I=l,01 



C 
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DO 30 J=D2l,D2H 
Xl=FLOAT(I-l)*DELXl 
X2=FLOAT(J-l)*DELX2+X2MIN+Xl 
Xl=Xl*Xl 

OPROB=Cl*(EXP{-C2*(Xl+X2*X2)l+EXP(-C2*{Xl+(X2+TWOPl)*(X 
12+TWOPI))} +EXP(-C2*(Xl+(X2-TWOPI)*(X2-TWOPI)))) 

IF (PROB.GT.BOTTOM) GO TO 20 
P(I,J)=O. 
GO Ttl 30 

20 Ptl,J)=PROB 
30 CONTINUE 
40 CONTINUE 

PTRAPT=O. 

C DISCARD-ZERO SECTION Of MATRIX 
C 

X2MAXN=X2MAX 
X2MINN=X2MIN 

C TRANSFER BELOW 
GD TO 125 

C 
C FINO SIZE OF NEW DISTRIBUTION 
C 

C 

60 CONTINUE 
CN=FLOA T( N) /FLOAT ( ( N+2 I *f N+3J) 
CA=TWDPI*CN 
CB=6.*PI*CN 
CAN=2.*CN 
CBN=l./(6.*CN) 
CN=fLOAT(N)/FLOAl{N+l) 
CP=SQRT{Cll*DELXl*CBN*CN/3. 
XlMAXN= ( XlMAX+CiU /CN 
IF (XlMAXN.GT.BNDRY) XlMAXN=BNDRY 
X2MAXN=X2MAX+CA 
XZMINN=X2MIN-CA 
OELXlN=XlMAXN/FLOAT(Dl-1) 
OELX2N=(XZMAXN-X2MINN)/FLOAT(D2-l) 
N=N+l 

C CALCULATE NEW DISTRIBUTION 
C 

DO 110 1=1,fJl 
DO 110 J=l ,D.2 

C 
C FIND RANGE IN OLO MATRIX 
C 

XlN=FLOAT(I-l)*DELXlN 
X2N=X2MINN+FLOAT(J-l)*DELX2N 
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NlH= ( XlN*CN+C.B)/DELXl+l. 
X=(XlN*CN-CB)/DELXl 
IF {X.GE.O.) GO TO 72 
NlL=X-1. 
X=flOATtNll+l)-X 

TO 74-
72 Nll=INT(X-999.}+1000 

X=FLOAT(Nll-1)-X 
74 IF (NlH.GT.01) N1H=Dl 

C NlL.LT.(-Ul)=.FALSE. ALWAYS 
If {Nll • • (-1)1 NlL=l 

C 
C INTEGRATE OVER RANGE 
C 

PN(I,J)=O. 
IF (NlH.LE.Nll) GO TO 110 
Nl=NlL 
IF (X.LE.O.) GO TO 78 
CALL POINT(3.*X) 

78 IF (MOO(IABS(NlH-NlL),2).NE.l) GO TO 80 
C LAST INTERVAL 

Nl=NlH 
CALL POINT (1.5) 
NlH=NlH-1 
Nl=NlH 
CALL POINT(l.5) 

80 IF (NlH.EQ.Nll) GO TO 110 
Nl=Nll 

C FIRST POINT 
CALL POINT(l.) 
NlL=NlL+l 
If {NIL •• (-1)) Nll=l 
Nl=NlH 

C LAST POINT 
CALL POINT (1.) 
NlH==NlH-1 
Nl=NlH 

C NEXT TO LAST POINT 
POINT(4.) 

NlH=NlH-1 
If (Nll.GE.l) GO TO 90 

C NEGATIVE VALUES 
Nll=-NlL 
NX=l 
IF (MOD(Nll,2).EQ.l) NX=2 
DO 84 K=NX,NIL,2 
Nl=-K 
CALL POINT(2.) 



Nl=Nl-1 
84 CALL POINT(4.) 

Nll=3-NX 
C POSITIVE VALUES 
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90 IF {NlH.LE.Nll) GO TO 110 
DD 100 K=Nll,NlH,2 
Nl=K 
CALL POINT (4.) . 
Nl=Nl+l 

100 CALL POINT{2.) 
110 PN(I,J)=PNtI.J)*CP 

C 
C FINO PROB OF BECOMING TRAPPED 
C 

PTRAP=O. 
IF (XlMAXN.LT.BNDRY) GO TO 117 

C LOWER LIMIT 
Nll=INT((BNDRY-PI/CBNl*CN/DELXl-999.)+lOOO 
WRITE (6,10080) Nll 
DO 115 I::::NlL,D1 
DO 115 J=02L.D2H 

C EACH POINT'S CONTRIBUTION 
Xl=FlOAT(J-l)*DELXl 
X2=fLOAT(J-D2L)*DELX2+X2MIN 

C THETA=Xl/CN+X2 
MEAN=PHit-Xl/CN-X2) 
ML=(BNDRY*CN-Xl)*CBN 

115 PTRAP;::PTRAP+P(I,J)*(ERF((PI-MEAN)*CD)-ERF((Ml-MEAN)*CD 
l) ) 

PTRAP:PTRAP*DELXl*DELX2 
PTRAPT=PTRAPT+PTRAP 

117 CONTINUE 
C 
C REPLACE OLD DISTRIBUTION WITH NEW 
C 

C 

DO 120 I=l,Dl 
DO 120 J=l,02 

120 P(l,J) PN(I,J) 
DElXl=DELXlN 
OElX2=DELX2N 
XlMAX=XlMAXN 

C DISCARD ZERO SECTION 
C 

125 CALL TIHE(IDUM) 
WRITE (6,10040) IDUM 
DO 130 J=l,D2 
DO 130 I=l.,01 
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Nl=Dl+l-I 
IF {P(Nl,J).GE.BOTTOM) GO TO 140 

130 CONTINUE 
140 D2L=J 

WRITE (6,10020) N,Nl,J 
X=FLOAT(J-l)*DELX2 
X2MIN=X2MINN+X 
00 150 J=l,02 
N2=02+1-J 
DO 150 I=l,Dl 
IF (P{I,N2).GE.80TTOM) GO TO 160 

150 CONTINUE 
160 D2H=N2 

WRITE (6,10020) N,I,NZ 
X=FLOAT(J-l)*DELX2 
X2MAX=X2MAXN-X 
WRITE (6,10025) XlMAX,X2MIN,X2MAX 

C 
C FINO PROBABILITY THAT MAG(Xl).LE.PI 
C 

C 

REGION=l 
NlH=PI/DELXl+l. 
NlL=l 
N2li=D2H 
N2L=D2L 
PROB=2.*VOLUME(NlL,NlH,N2L,N2H) 
WRITE (6,10030) N,REGION,PROB 
SAVE=PROB 
IF (XlMAX.LE.PI) TO 270 

C FINO PROBABILITY THAT PI.LE.MAG(Xl).LT.BNDRY 
C 

REGION=2 
Nll=NlH 
Nlli=Dl 
N2l=D2l 
N2H=02H 
PROB=2.*VOLUME(NlL,NlH,N2L,N2H) 

260 WRITE {6,10030} N, ION,PROB 
WRITE 16,10050) PTRAP,PTRAPT 
PROB=PROB+PTRAPT 
SAVE=SAVE+PROB 
WRITE (6,10060) SAVE.PROB 

270 CONTINUE 
CALL LOOK(Dl,02} 
IF (N.LT.NMAX) GO TO 60 
GO TO 10 
END 
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SUBROUTINE POINT(WEIGHT) 
DIMENSION P(lOl.101),PN(lOl,101) 

OCOMMON PI,TWOPI,C2,CAN,CBN,CN,D2H,D2L,Nl,X2MIN,DELX1,D 
1ELX2,X1N,X2N,1,J, 

LOGICAL PUS 
INTEGER 02H 7 02l 
REALM 
POS=Nl. .o 
Xl=FLOATlNl-ISIGN(l,Nl)l*DELXl 
M=-CBN*(Xl-XlN*CN) 
X2=X2N+CAN*M 
If tPOS) GO TO 10 
Nl=-Nl 
X 
X2=-X2 
M=-M 

10 OELN=(X2-X2MIN)/DELX2 
N2L=DELN 
DELN=DELN-FLOAT(N2l.) 
N2L=N2l+D2l 
N2H=N2L+l 
IF {N2H.GT.D2H) GO TO 20 
IF {N2L.GT.D2L} GO TO 15 
If (N2L.LT.02L) GO TO 20 
IF (DELN.LT.O.) GO TO 20 

15 CONTINUE 
C THETA=Xl/CN+X2 

X=PR(PHI(M+X2+Xl/CN)) 
Y=(P(Nl,N2HJ*OcLN+P(Nl,N2ll*(l.-DELN)l*WEIGHT 
IF (Y.EQ.O •• OR.X. O.J GO TO 20 
IF (ALOG(Y)+ALOG{X).LT.(-115.)) GO TO 20 
PN(I,J}=PN(I,J)+X*Y 

20 IF (POS) RETURN 
Nl=-Nl 
RETURN 
END 



C 
C 
C 
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FUNCTION VOLUMEtN1L,NlH,N2L,N2Hl 

INTEGRATION IN DIMENSIONS 

OUMMY(l0),.0ELX1,0ELX2,DUM(4),P(l01,101) 
NB=NlH-NlL 
NA=N2H-N2L 
PROB=O. 

C CORNERS 
PR08=PROB+P(N1L,N2Ll*2• 
PROB=PROB+P(Nll,N2H)*(2.-FLOAT{MOD(NA,2)}) 
PROB=PROB+P(NlH,N2l)*(2.-FLOAT(MOO(NS,2))) 
PROB=PROB+P(N1H,N2H)*(2.-FLOAT(MOD(NA+NB 7 2))J 

C EDGE (NIL,*) 
NX=NZH-1 
N2=Nll+l 
IF (MODlNA,2).EQ.l) GO TO 170 
PROB=PROB+P(Nll,N2H-1)*2• 
PROB=PROB+P(NlL+l,N2H}*2• 
N.2=N2+l 
NX=NX-1 

170 Nl=N2l+l 
DO 180 I=Nl,NX,2 
J=I 
PROB=PROB+P(N1L,J)*2• 
J=J+l 

180 PR08=PR08+P(N1L,J)*4• 
C EDGE {*,N2L) 

NX=NlH-1 
N3=N2L+l 
IF (MOO(NB,2).EQ.l) GO TO 190 
PROB=PROB+P(NlH-1,N2L)*2• 
PR08=PROB+P(N1H,N2L+1)*2• 
N3=N3+1 
NX=NX-1 

190 Nl=Nll+l 
DO 200 I=Nl,NX,2 
J=I 
PROB=PROB+P(J,,N2Ll*2• 
J=J+l 

200 PROB=PROB+P(J,N2L)*4• 
C EDGE l*,N2H) 

NX=NlH-1 
IF {MOO(NX-N2,2).EQ.l) GO TO 210 
PR08=PROB+P(NX,N2H)*4• 
NX=NX-1 

210 DO 220 I=N2,NX,2 
J=I 



PROB=PROB+P{J,NZH} 
J=J+l 

220 PROB=PROB+P{J,N2H)*2• 
C EDGE (NIH,*) 

NX=N2H-l 
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IF (MOD{NX-N3,2) •• 1) GO TO 230 
PROB=PROB+P(N1H,NX)*4• 
NX=NX-1 

230 DO 240 l=N3,NX,2 
J=I 
PROB=PROB+P(NlH,Jl*4• 
J=J+l 

240 PRUB=PROB+P(N1H,J)*2• 
C INTERIOR 

NA =Nll+l 
NB =NlH-1 
Nl =N2l+l 
N2 =N2H-l 
C=O. 
DO 250 I=NA,NB 
C=C+4. 
IF (C.GT.6.) C=O. 
CJ=C 
DO 250 J=Nl,N2 
CJ=CJ+4. 
IF (CJ.GT.IO.) CJ=4. 

250 PROB=PROB+P(I,J)*CJ 
VOLUME=PROB*DELX1*DELX2/6. 
RETURN 
END 
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SUBROUTINE LOOK(Ol,02) 
10010 FORMAT (llHl MAX =,E16.8//) 
10020 FORMAT(lOX,10111) 

DIMENSION DUMMY(l6),P{l01,101J,LINE(l01) 
COMMON DUMMY,P 
REAL MAX,MIN 
INTEGER (H .02 
MAX=O. 
DO 10 I=l,Dl 
DO 10 J=l,02 

10 IF (P(I,JJ.GT.MAX) MAX=Ptl,J) 
MIN=MAX/100. 
DEL=MAX*0.11 
WRITE (6,10010) MAX 
00 30 N=l,02 
J=D2+1-N 
DO 20 I=l,01 

20 LINE(I)={Ptl,J)-MIN)/DEL+l. 
30 WRITE (6,10020) (LINE(I),I=l,Dl) 

RETURN 
END 
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FUNCTION PHI{X) 
COMMON PI,TWOPI 
LOGICAL NEG 
NEG=X.LT.O. 
IF (NEG) X=-X 
PHI=AMOD{X+PI,TWOPI)-PI 
IF (.NOT.NEG) RETURN 
PHI=-PHI 
X=-X 
RETURN 
ENO 

FUNCTION PR(X) 
C THIS SUBROUTINE USES SIMPLIFICATIONS GOOD 
C FOR SIGMA.LE.I. 

COMMON PI,TWOPI,C2 
PR=O. 
Y=X*X*C2 
IF (Y.GT.87.) GO TO 10 
PR=PR+EXP(-Y) 

10 Y=X+nmPI 
Y=Y*Y*C2 
IF {Y.GT.87.) GO TO 20 
PR=PR+EXP(-YJ 

20 Y=X-TWOPI 
Y=Y*Y*C2 
IF (Y.GT.87.) RETURN 
PR=PR+EXP{-Y) 
RETURN 
ENO 

INPUT CARDS 

Dl D2 NMAX 

45 25 10 
45 25 10 
45 25 10 

FOR THIS PROGRAM 

SIGMA BOTTOM 

1. 1.E-30 
• 75 l.E-30 
.50 l.E-30 

FACTOR 

4 • 
4. 
4. 
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FALSE LOCK IN SAMPLED-DATA 
PHASE LOCK LOOPS 

by 

Hatcher Edward Chalkley 

Abstract 

The false lock characteristics of a sampled-data phase 

lock loop containing a phase detector with a sawtooth 

characteristic are investigated. 

The ideal processor of data operated on by such a phase 

detector nonlinearity is derived in open-loop form. A second 

system is proposed which is shown to approximate the operation 

of the ideal system with increasing accuracy for decreasing 

noise variance. The operation of the approximate system is 

interpreted in geometric terms. This geometric interpretation 

is used to place a lower bound on the probability of false 

lock of the ideal system. 

A suboptimal system which uses feedback and a time-

varying linear filter is analyzed. It was necessary to use 

a computer to perform the integration leading to the prob-

ability distribution of the error of this system. 

The bound on the probability of false lock for the 

ideal system is compared with the probability of a similar 

error for the suboptimal system. It is concluded that this 

bound is a conservative one. 
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