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(ABSTRACT) 

Binary response data is often modeled using the logistic regression model. 

Experimental design theory for the logistic model appears to be increasingly important as 

experimentation becomes more complex and expensive. The optimal design work is 

extremely valuable in areas such as biomedical and environmental applications. 

Most design research dealing with the logistic model has been concentrated on the 

one-variable case. Relative little has been done for the two-variable model. The primary 

goal of this research is to develop and study efficient and practical experimental design 

procedures for fitting the logistic model with two independent variables. Optimal designs 

are developed addressing D optimality, Q optimality, and the estimation of interaction 

between the design variables. The two-variable models with and without interaction 

usually have to be handled separately. The equivalence theory concerning D optimal 

designs is studied. The designs are compared using their relative efficiencies in the 

presence of interaction. Robustness to parameter misspecification is investigated. 

Bayesian design procedures are explored to provide relatively more robust experimental 

plans.
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

§1.1 Introduction 

The primary focus of this work will be the experimental design aspect of response 

surface methodology (RSM), more specifically optimal-design theory for modeling the 

mean of binary response data using two-variable logistic regression models. As 

experimental situations become more complex and thus more expensive, researchers seek 

ways to maximize the information gained from a finite-size experiment. Optimal design 

theory has been thoroughly researched in the context of the linear model due to its 

simplicity and applicability. As the need for nonlinear statistical modeling increases in 

areas such as the chemical, biological, and clinical sciences, design research in the area of 

nonlinear models has gained momentum. In particular, optimal designs for fitting the 

logistic regression model with binary data have been the subject of numerous papers over 

the past two decades. However, the majority of those works consider only one design 

variable. Modeling using two design variables is more complicated and less structured in 

the context of design theory. Nevertheless, the usefulness and practicality of the two- 

variable logistic models make the development of its design theory an important subject. 

This research seeks to extend the optimal-design theory from the one-variable framework 

to the situation of fitting a logistic regression model containing two design variables and 

their possible interaction.



§1.2. Linear Model and Design Optimality 

The theory of design optimality for the linear model has been well documented in 

the statistical literature. The standard linear model has the following form: 

y=XPre 

where 

yy PoXyy 0 XK Bo €| 

y=/%2}, xa] Mt Rae] galPr) eg) 2) 
Yn 1 Xpt 7 Xnk Bx En 

In this model, y is a vector of responses from n experimental runs, X is a matrix 

containing k+1 regressor variables across the n runs and is determined by the design 

variables and the model form, B is a vector of unknown parameters, and € is a vector of 

random errors. A general assumption is that E[e¢] = 0 and Var[e] = o'l where oO” is a 

common variance, usually unknown. Under this assumption, the best linear unbiased 

estimator (BLUE) for B is the ordinary least squares (OLS) estimator of B given by B= 

(X’X)'X’y with E[B] = B and Var[B | = o°(X’X) '. Normality is often assumed for €, i.e. Laat ny eee 

  

e ~ NCO, o’D). This will result in the convenient property that the maximum likelihood 
TN at a penne 

    

estimator (MLE) of B is identical to the OLS estimator B, which is distributed as N(f, 

o°(X’X)"). The normality assumption also leads to the fact that the Fisher information 

matrix of B, I(B), is equal to the inverse of the variance-covariance matrix of B, or I(B) = 

+ (%'X). In fact, the matrix (X’xy! plays a key role in the design optimality criteria as 
Oo 

will be seen shortly. 

Kiefer and Wolfowitz (1959) introduced the foundation of optimal design criteria 

in the early development. Representing the design by a probability measure assigning the



sample allocation over the design space, they established the D and E optimality criteria, 

from which evolved the term “alphabetic optimality”. Additional performance criteria 

were created subsequently including A, G, and Q. These design criteria address either 

parameter estimation or prediction of the mean responses. 

The most well-known and commonly used design criterion is D optimality. The D 

optimal design minimizes the determinant of (x’xy |, the generalized variance of the 

A 

coefficient estimates B. It can be shown that minimization of (X’Xy ‘I results in the 

smallest volume of the confidence ellipsoid for B. A scaling factor ~ is adopted in most 
Oo 

criteria to remove the effects of the total resource consumed, represented by the sample 

size N, and the magnitude of the error variance, represented by o”. Thus minimizing the 

determinant of * varthy, or IN(X’Xy 11, leads to the D optimality criteria expressed in 
0 

the following form: 

X’X 
  

5   

  

where J is the set of possible designs. 

A common criterion addressing the quality of prediction is Q optimality. The Q 

criterion aims at improving prediction stability in an average sense over a specific region 

of the design variables. Box and Draper (1959, 1963) first considered the idea of 

averaging or integrating prediction variance over a region of interest R. The prediction 

variance Var[ ¥ (x)] at the point x in the model space is given by Var[x’ B ]=0" x’(X’X) x. 

Thus the Q optimality defined by minimizing the average scaled prediction variance 

(APV) is expressed as 

Min ~ J x’(X’xy x dx 
5 Kr 

where K is the volume of the region and is given by J dx. 
R



Another criterion motivated by enhancing prediction is G optimality. This 

criterion addresses the same target of prediction variance as Q optimality does. However 

the approach is minimax rather than averaging. Seeking the best among the worst, G 

optimality minimizes the maximum scaled prediction variance over a region R according 

to the following expression: 

Min Max N x’(X’X) ‘x. 
§ xeR 

Myers, Khuri, and Carter (1989) provided more detailed discussion on the design 

criteria and their use in RSM. Since these criteria are functions of only the design-point 

locations, an optimal design in the linear case can be expressed explicitly as a placement 

of design points and thus can be implemented independently of the model parameters. It 

is apparent that the above criteria are all driven entirely or partially by the matrix X’X. In 

the linear model situation, one can recognize the matrix (X’xy' directly as an active part 

of Var[B] without referring to the information matrix. However for a nonlinear model, 

the notion of an information matrix becomes a necessity since one has to rely on 

asymptotic properties of the MLE for B which are in fact governed by the information 

matrix A(B). The information matrix K() 1 in the nonlinear case usually involves unknown 

parameters in addition | to the design layout. This is one reason that design optimization 

becomes more ‘complicated and parameter dependent for nonlinear models. The criteria 

mentioned in this section were originally developed for the linear model. As the 

application of statistics broadens, much work has been done to adapt them to nonlinear 

situations. The nature of a nonlinear model though can significantly complicate the way 

in which one implements the criteria. 

§1.3. Nonlinear and Logistic Models 

A nonlinear model usually takes the form 

y=f(x; B) +e (1.3.1)



where x is a vector of regressor variables, y is the response at the point x, B is a vector of 

unknown parameters, € is the random error, and f is a known function nonlinear in B. A 

usual assumption is that E[y] = f(x; B) when modeling the mean response. 

The distribution of the random response y in nonlinear modeling often comes 

from one of the exponential families such as Poisson, binomial, exponential, or gamma, 

etc. The general form of the distribution functions for the exponential families is given by 

p(y; 8) = exp{ r()Ly8 - g(8)] + hty, o) } (1.3.2) 

where y is the random variable, 6 is the unknown parameter of interest, and the > function 

1() is called the scale parameter. Based on (1.3.2), a subclass of nonlinear models called 

the generalized linear models (GLM) is developed by using nonlinear functions of a 

linear predictor x’B. 

The binary response data under study in this research have Bernoulli distributions. 

The mean response is modeled by the so called logistic function written as 

  

l 
f(x; B) = Ely] =P= xB” (1.3.3) 

Il+e 

which corresponds to the logit link function 

logit(P) = log =) = x’B (1.3.4) 

according to the theory of generalized linear models. For an experiment with a total of N 

observations over m design points with sample size n; at the in point, i= 1, ... , m, the 

logistic regression model is given by 

1 
yi = f(x; ; B) + ey = Pi + &j = ———— + 6; (1.3.5) 

1+e7%iB 

where yj; and €j are respectively the binary response and error for the j° observation at 

the i” design point, and x;’B is the linear predictor in p parameters at the i” point. The 

information matrix for B is given by



I(B) = X’EX (1.3.6) 

where X is an mxp matrix with the i” row Xj corresponding to the i* design point, and x 
Rte 

is an mxm diagonal matrix with the i diagonal element being the binomial variance 
ee ence ee ne ne eg 

n,P;(1-P;) at the im design point, i=1,...,m. 
        
  

The logistic model in (1.3.5) is not only a result of an elegant mathematical 

derivation in the framework of GLM, but it is also a well suited nonlinear function which 

often closely describes binary data in practice, more specifically in areas such as 

biological assays of drugs, material fatigue to failure studies, and stress and fracture 

studies. In a drug testing experiment for instance, the response yj; in (1.3.5) can be a cure 

or lack thereof (1 or 0), and the mean response Pj is the probability of a cure (1) at the 

dose level(s) determined by x;. Due to its nondecreasing and nonnegative nature along 

with being bounded by 0 and 1, the logistic function in (1.3.5) can appropriately serve as 

the cumulative distribution function of the linear predictor x’B. This gives rise to the 

concepts of tolerance and tolerance distribution. Each subject in a bioassay is assumed to 

have a given tolerance level which is the maximum amount of drug that the subject can 

sustain before producing a response. With this tolerance corresponding to the linear 

predictor x’B, the logistic function in (1.3.5) can be used as the cumulative distribution of 

the tolerance over the population of subjects under study. Hence Prob(tolerance<x’B) = 

a . Since the population proportion with tolerance lower than or equal to a 
l+e7 

particular level x’B is nothing but the proportion of responses in the population, or the 

probability of response for a single subject, when a dose at level x is administered, the 

two ways of interpreting the probability in (1.3.5) logically fit each other. In other words, 

1 
Prob(y=1Ix) = P(tolerance<x’B) = . 

l+e7*B 
. This probability as a cumulative distribution 

further leads to the density function of the tolerance distribution 

“)



, 

exe f(x'B) = = . 
*P (14e7* By? 

(1.3.7) 

§1.4 Design Optimality for One-Variable Logistic Model 

Research in design optimality for the logistic model began with the simplest 

situation in which a single design variable is considered. The logistic probability function 

in (1.3.5) for the one-variable model is written as 

1 
fox: B) = Ey] = P= aay 

where x is a scalar. In this work x will be a vector unless otherwise indicated. An 

example of one-variable logistic curve with Bo = -3 and B; = 2 is shown in figure 1.4.1. 

    
Figure 1.4.1 One-variable logistic curve, Bg = -3, B; = 2 

Again, design considerations center around parameter estimation and prediction of 
—— 

the response, involving the information matrix X’ZX as a key factor. Naturally, design 

work attempts to apply the ideas of the alphabetic criteria (D, A, Q, G, E) developed for 

the linear model to the logistic situation. In addition, the F criterion which is unique to the 

one-variable logistic case has been created. Unlike the linear case, the scaling factor



. ; . Loos N 2 
applied to variances in the criteria is N rather than => because the common variance o 

oO “a, 

no longer exists in the logistic case and the variance is in fact a function of the mean. 

Some important works are summarized in the following. 

Kalish and Rosenberger (1978) derived the D optimal designs. Since the 

asymptotic variance-covariance matrix of the MLE for B is the inverse of the information 
A , /. 

matrix X’ZX, the D optimality concerning Var() becomes «(). © - 

I 
Max 1(B) . 

5 | N 

  

t 

They also developed the G optimal designs addressing Var[P], the variance of predicted 
TA accent ae 

  

response. It can be shown that Var[P] asymptotically approaches P*(1-P)°x’I(B) x.,Thus 
    v 

the G optimality is given by 

Min Max N P*(1-P)” x’ (B)7!x. 
5 xeR 

Myers, Myers, and Carter (1994) derived the Q and G optimal designs in which the 

variance of predicted logit is addressed rather than the variance of predicted response. 

, ws . ; P m: tian ie dat’ B mR 
Since the logit is defined by logit(P) = log(-—|) = x’B, its prediction is logit(P ) = x’B 

with the asymptotic variance Var[logit( Pp J = x’I(B) ‘x. Based on logit, the Q criterion is 

Min N J x’ I(B) ‘x dx , 
5 KR 

and similarly the G criterion is 

. -] 
Min Max N x’ I(B) x. 

S eR (B) 

Myers (1991) and Letsinger (1995) investigated optimal designs using the E optimality 

  

which is given by 

Min Max A; 
JS i 

where A; is an eigenvalue of (py, i= 1,2.



The F optimality is a criterion of different interest. It addresses the estimation of 

the dose level required to produce a certain probability of response, P. This dose is 

usually referred to as EDjo9p where ED stands for “effective dose”. An F optimal design 

minimizes the length of the Fieller interval on EDjqop for a specific P. Several F optimal 

as well as D and A optimal designs were given for the logistic model as well as other 

nonlinear models by Sitter and Wu (1994). Letsinger (1995) obtained various F optimal 

designs and studied their relationship to other criteria. 

As previously noted, since these criteria are functions of both the design layout 

and the unknown parameters, the optimal designs obtained can only be expressed to the 

best extent as certain response probabilities, which implicitly point to the actual design 

levels via the parameter values. For instance, the D optimal design for the one-variable 

logistic model is a two point design with equal numbers of design points at ED;7. and 

EDg> 4. The actual doses corresponding to the probabilities of response being 0.176 and 

0.824 remain unknown unless true values of the parameters are available. In this sense, 

the optimal designs based on the above criteria depend on the values of the parameters. In 

practice, parameters must be “guessed” prior to implementing a design. This brings up the 

issue of design robustness to parameter misspecification. 

Various optimal designs were further evaluated upon their robustness to parameter 

misspecification through efficiency studies. These results accompany much of the 

literature dealing with optimal design procedures. It is felt that designs with multiple 
  

re 

levels tend to be more robust than the two-level designs, especially in the presence of 

  

Pm a, ROR EAN or 

severe~parameter misspecification. Related discussions are found with Abdelbasit and 

Plackett (1983) and Myers (1991). 

Moreover, several other statistical techniques including sequential 

experimentation, Bayesian and minimax approaches have been incorporated into design



optimization procedures in order to produce more robust designs. Bayesian analogs to D 

and A optimal designs were given by Chaloner and Larntz (1989). Their procedure takes 

into account the parameter uncertainty by utilizing prior distributions of parameters 

specified by the experimenter. The minimax procedure, also based on prior knowledge 

about the parameters, has been studied by Sitter (1992), whose work dealt with the D, F, 

and asymptotic confidence interval criteria. Letsinger (1995) explored the Bayesian F and 

D criteria in greater detail. Sequential designs allow experiments to proceed in stages, 

where a later stage could benefit from the information gained earlier. Two-stage designs 

were discussed by Abdelbasit and Plackett (1983) and Minkin (1987) using the D 

optimality criterion. Myers (1991) developed a two-stage D-Q design with the first stage 

being D optimal and the second stage Q optimal conditioned on the first stage. Letsinger 

(1995) developed a two-stage D-D design which involves a Bayesian procedure in the 

first stage. 

§1.5 Design Optimality for Two-Variable Logistic Models 

Due to the complexity of the design issue, the vast majority of design optimality 

research for logistic models thus far has been dealing with the simplest situation with the 

one-variable model. However, as experimental studies of binary data become highly 

sophisticated, experimentation with two or more design factors receives increasing use in 

practice. In clinical sciences for instance, development of a combination drug by studying 

the effects of the two component compounds and their possible interaction is a frequent 

topic in the current literature of biopharmaceutical science. The prevailing research 

interest in the joint effect of two variables on binary responses motivates investigation of 

optimal-design theory for the two-variable logistic models. This research studies optimal 

designs for the two-variable logistic models in two basic forms: the simple first-order 

model and the model with both the first-order and interaction terms. 
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For the simple first-order model, the logistic probability function in (1.3.5) is 

written as 

1 

1+ e (Bot Bix1+B2x2) 
  f(x; B) = Ely] =P = (1.5.1) 

The probability of response P remains constant when the design point in the (x1, x2) space 

stays on a straight line defined by 

Bo + Bix1 + Box2=L (1.5.2) 

where L is the logit of the constant probability P, given by L = logit(P) = log — ). The 

line expressed in (1.5.2) can be viewed as EDjgop. Graphical features are illustrated with 

an example where Bo = -1, B; = 1, and B. = 2. Figure 1.5.1 presents the parallel-line 

contours for the logit and the response probability. Figure 1.5.2 shows the surfaces of the 

logit and the response probability respectively over the (x1, X2) space. The logit forms a 

plane. Applying the logistic function to the logit bends the plane into a curved surface for 

the response probability, where the curvature parallels that of a typical logistic curve in 

the one-variable case. 

For the model with the additional interaction term, the logistic probability 

function in (1.3.5) is written as 

1 

L+ exp (Bo+Bixi+Box2+Bioxix2) 
  f(x; B) = Ely] =P= (1.5.3) 

A constant probability P falls on a pair of hyperbolae in the design space represented by 

Bo + Bix) + Boxe + By2x1x2 =L (1.5.4) 

  where L is the logit given by L = logit(P) = log( ). The pair of hyperbolae expressed 
1-—P 

in (1.5.4) can be viewed as EDjgop. Graphical features are illustrated in figures 1.5.3 and 

1.5.4 for an example with Bo = -1, By = 1, Bz = 2, and By2 = -1. Note that except By, the 

other parameters are the same as in the example for the no-interaction model. Figure 1.5.3 
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(a) Logit (b) Probability 

Figure 1.5.1 | Contours of logit and probability for two-variable logistic model, 

Bo =-1, Bi = 1, By = 2, Biz =0 

   
(a) Logit (b) Probability 

Figure 1.5.2 Surfaces of logit and probability for two-variable logistic model, 

Bo =-1, Bi = 1, By =2, Bj2=0 
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(a) Logit (b) Probability 

Figure 1.5.3 Contours of logit and probability for two-variable logistic model, 

Bo =-1, Bi = 1, Bo = 2, Bi2 = -1 

  

(a) Logit (b) Probability 

Figure 1.5.4 Surfaces of logit and probability for two-variable logistic model, 

Bo =-1, Bi = 1, Bo = 2, Bia =-1 
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shows the hyperbolic contours of the logit and those of the probability. Figure 1.5.4 plots 

the surfaces of the logit and probability respectively over the (x), x2) space. Both the logit 

and the response probability appear in curved surfaces. 

Obviously, the presence of interaction considerably changes the behaviors of the 

logit and the response probability over the design space. This could substantially 

complicate the design optimality studies for the model containing interaction. Completely 

different design geometries may have to be employed in handling the situations with and 

without the interaction. 

Relatively little work has been attempted in seeking optimal designs for two- 

variable logistic models. To study two drugs used in combination, Mantel (1958) and 

others first advocated an idea which later was termed a “ray” design by Brunden, Vidmar, 

and McKean (1988). The design received its name from the fact that the design points fall 

on rays emanating from the origin onto the first quadrant. Using the D optimality 

criterion, Brunden et al. proposed the two-ray and three-ray designs as well as some 2x2 

and 3x3 factorial designs. A 2x2 factorial design was also created through minimization 

of Var( B19). 

Theoretically, the design criteria introduced in the previous section for the one- 

variable logistic model also apply to the two-variable models discussed here. However, 

additional considerations and necessary constraints must be given as the design space 

expands from one to two dimensions. In the two-dimensional space, a design with an 

arbitrary geometric pattern may very likely result in optimal ED’s that are dependent on 

the parameter values. The ray designs by Brunden et al. are of this type. The current 

research pays special attention to the natural ED pattern, which appears as parallel lines 

for the no-interaction model and pairs of hyperbolae for the interaction model. Allowing 
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the natural ED pattern to dominate the design geometry, optimal designs are obtained in 

this work where the optimal ED’s are independent of the parameter values. 

Several D optimal designs are developed for the no-interaction and interaction 

models. The equivalence property is studied for certain D optimal designs. The D 

efficiencies of various designs, including some by Brunden et al., are evaluated in the 

presence of interaction. 

Designs for optimizing the estimation of the interaction coefficient are given and 

their performances compared using the relative efficiencies. Q optimal designs are created 

for both the no-interaction and interaction models. The relative efficiencies indicate that 

the logit-based Q optimal designs and the probability-based ones achieve quite similar 

performances. 

As design implementation remains parameter dependent with the two-variable 

logistic model, the robustness property to parameter misspecification is investigated for 

various D optimal designs. The Bayesian design procedure is explored with D optimality 

in an effort to better cope with poor parameter knowledge. Robustness of the Bayesian 

designs is also studied and they appear to have overall improvement over the 

conventional designs. In general, the Bayesian design approach is found to be successful 

in building more robust experimental plans for the two-variable logistic model. 
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CHAPTER 2 

D OPTIMAL DESIGNS 

The D optimality criterion focuses on achieving best parameter estimation by 

addressing the variance-covariance structure of the coefficient estimates. The asymptotic 

variance-covariance matrix of the MLE for B is the inverse of the Fisher information 

matrix I(B), which is given by X’2X in the case of a logistic model. A D optimal design 

maximizes |X’ X|. Unlike the one-variable logistic model for which an optimal design is 

expressed purely through ED’s, designs for the two-variable models come in different 

geometric patterns in addition to the optimal ED’s. 

Based on the ED patterns, a parallel-line design is given for the no-interaction 

model and a hyperbola-based design for the interaction model. The factorial and ray 

designs initially found by Brunden ef al. (1988) are rederived to illustrate additional 

insight. The D criterion used by these authors is unusual in that the information matrix I(B) 
ee 

    

comes from fitting an interaction model while the dose-response relationship involved in 
ee ee sane 

I(B) is assumed to be the no-interaction model. Obviously, they tried to involve the 
ne Hn - we 

interaction into the optimization while still making use of the simple straight line ED’s. To 

  

ete ey 

experience such an approach, an alternative parallel-line design is generated in a similar 

fashion. Still, the effectiveness of Brunden’s criterion will be investigated through 

efficiency studies. On the other hand, modified ray designs are also created using the 

regular D criterion for the interaction model as opposed to Brunden’s approach, ie. 

assuming that the information matrix from fitting the interaction model does contain the 

interaction in the true dose-response relationship. 
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§2.1 Parallel-Line Design 

The no-interaction two-variable logistic model takes the form 

1 
+ 

1+e7 (Bo+Bix1 +B 2x2) 
  y=Pte= e. (2.1.1) 

The ED’s appear as parallel lines in the two-dimensional design space. In particular, 
nnn 

ED) oop is a line defined by Bo + Bix; + Box2 = L, where L = logit(P) = log(P/(1-P)). The 

D optimal design in the one-variable case is given by two levels: anddx2} In the 

two-variable case, the two ED points are now relaxed into two parallel lines as the design 

  

space extends from one to two dimensions. An analogy to the one-variable design in the 

two-variable situation should naturally lie on two parallel ED lines. 

x2 
(x72, X22) bin 

€ 

  

    
Xx] 

Figure 2.1.1 Parallel-line design 

Consider a preliminary design arrangement as shown in figure 2.1.1. The four- 

point design falls on two parallel lines denoted EDjgop, and EDjo9p, . The distance 

between the two points on the same ED is equal to that on the other ED. The slopes k’ 

and k, as indicated in the figure, are not restricted to be perpendicular. The center of the 
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XyptXyq _ XQ +X and X99 = X91 tT X94 
2 2 °° 2 

X97 +X . ; a — ao The sample sizes are assumed equal for the points on the not 

necessarily so for points on ditfereg€ BD's Let r and 1-r denote the sample proportions 

allocated to EDjg9p, and ED joop, respectively. 

design is denoted by (x10, x20) where x10 = 

Similar to the one-variable case, the probabilities P; and Pz as well as the sample 

proportion r in the parallel-line design are to be optimized through the D optimality 

criterion, which is given by 

Dt P P = No (bk 2) - Jog(—1_y/* I(B)| = N° ( 2) [lose los 
i : 

-rP\(1-P)) (1-r)P2(1-P2)-[rPi(1-P1) + (1-r)P2(1-P2)] . (2.1.2) 

Maximizing |I(B)| leads to the optimal solutions 

P| = 0.227425, P> = 0.772575, and r=05, (2.1.3) 

which give an equal sample size design with symmetric ED’s. The optimal ED’s (ED2) 7, 

ED77.3) draw closer together than those of the one-variable design (ED 17.6, EDg2.4). The 

D criterion for a one-variable two-level design is given by 

  

_N? P, PL. 
II(B)| = —> [log( ) - log(——)J° rP1(1-P1)(1-1)P2(1-P2) . (2.1.4) 

By 1- 1l- Pi Py 

The two-variable criterion differs from the one-variable one with the additional factor 

[rP\(1-P)) + (1-r)P2(1-P2)], which provides an extra force driving P; and Py both toward 
te 

EDs0. This causes the smaller dispersion in the two-variable design. 
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The parallel-line design allows user customization in several ways as illustrated in 

figure 2.1.2. First, one can choose his or her own design location since the D criterion 

remains constant as the design moves along the two ED lines. Secondly, the two non-ED 

edges can be rotated to a desired angle without changing the criterion value. Thirdly, one 

can always improve the design by making it wider in the direction of the ED lines as this 

will yield a greater criterion value. 

a ao me, Re - . Re 
Uo hy a wa . 

- / A Tony 

me t “ ™ / me 
me / La L f x, t . / . 

NY 

(a) (b) 

    

Figure 2.1.2 Properties of parallel-line design 

(a) Invariance of D criterion to location and angle 

(b) Increase in D criterion as the design widens 

The parallel-line design is a four-point design assuming a main effect model and 

hence offers one lack-of-fit degree of freedom for testing interaction. Adding the design com for testing interaction. fd   

center as another design point would further provide one extra degree of freedom 

designated to the detection of quadratic trend. Similar to designs with center runs for the 
— 

linear model, the single degree of freedom due to the center point can only be used to test 

the sum of the quadratic coefficients as the individual quadratic effects in x; and-x> are — te 

confounded. As some of the observations are assigned as center runs, the D criterion of 

  

the design is expected to become less than optimal. The D efficiency of design A relative 

to design B can be evaluated with 

1 

D-EFF = (i from design 4) D 
|I(B)| from design B 
  (2.1.5) 

where p is the number of model parameters. 
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It is assumed that the center point is given the same number of runs as any other 

point of the parallel-line design. When fitting a no-interaction model, the D efficiency of a 

parallel-line design with center runs relative to the design at the same symmetric ED’s but 

without center runs 1s 

1 

4 1 3 “f+, (2.1.6) 
5 16P(1 - P) 

where P and 1-P are the response probabilities that the design resides on. For the optimal 
en neti 

design where P = 0.772575, the efficiency due to the center runs is 88.54%, which is not 

severely low. It 1s the balance between an acceptable D criterion and the flexibility in being 

able to check model adequacy that leads to one’s decision as to whether the center runs 

should be used. 

Design implementation with a nonlinear model normally requires parameter 

knowledge. As in the one-variable logistic case, the parameters must be known to 

construct a parallel-line design for the two-variable model. Design robustness to parameter 

misspecification will be dealt with is r chapter. Assuming the parameter values are 

supplied, the design points of Gand parallel-line design can be found using the 

design matrix 

    

    

    

    

—-D,- -—— + —Dy)I- 
x19 -D) 52g 85 [Bo +Bi(x19 - Dy)] B? +p? 

L 1 L Xu X21} |x) pit Pi + —7>—[Bo +8110 - D1)]+ Po 2 
X12 X22 | _ Br +B, Ba By + Ba (2.1.7) 
X13 X23 +p, -—t -— [Bo + +D)I- = X14 X24 no) B? +p3 By Po +Piesio Dv Br +83 

ByL I Pol D -—— Dito? 104 +p +B By [Bo + Bi (x10 + Vir? pe 

where L = logit(P2) = 1.22291. The points on the lower ED are (x11, x21) and (x13, x23) 

while those on the upper ED are (xj2, x22) and (x14, x24). The experimenter must choose 
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the location and size of the design through specifying the central level x9 and the distance 

Dj, which are indicated in figure 2.1.1. If a total deviation A; from the central level to the 

[By |L | 

Bi +83 
  level at the outermost point is specified, then D; can be obtained by D; = A - 

9 

For instance, suppose that the parameters are given by Bo = -3, B; = 0.5, and B2 = 

1. Suppose that the variable x; is operable within +1 from its central level. This implies A, 

[By |L 

Bi +B5 

design points (1.00, 1.28) and (2.02, 0.76) on ED 2.7 and (1.98, 3.24) and (3.00, 2.72) on 

= | and thus D; = 1- = 0.49. Applying the design matrix in (2.1.7) yields the 

ED77.3. The equal sample size design appears in figure 2.1.3. 

  

AT 

ED 

x Po 

ED) 7* 
0 —   

x] 

Figure 2.1.3. Example of parallel-line D optimal design 

§2.2 Hyperbola-Based Design 

The two-variable logistic model with interaction takes the form 

1 

1+e7(Bo+Bix +B2X2 +B 12X1X2) 
(2.2.1)   
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A constant probability P falls on a pair of hyperbolae in the design space defined by Bo + 
  

  

Bix] + Boxe + Byox1x2 = L, where L= logit(P). A four-point design situated on two pairs 

of hyperbolae is considered and shown in figure 2.2.1. The points are placed in such a way 

that any two points on the same ED are symmetric about the hyperbola center. The points 

on a common ED are assumed to have equal sample sizes. The sample proportions for 

ED jo0p, and ED joop, are denoted r and 1-r respectively. 

_. oh 

The hyperbolic ED curves center at (x10, x29) where bo- —_ Ba and x29 =— i \\ . 
12 12 J ) 

The centered variables can be obtained as z) = x) - Xjg and Z2 = Xp - x99. Wit contereg 

variables, the logit expression simplifies to L = Bg + B12z1z2, where Bo represents the 

logit value anywhere on the centered axes and is given by 

Br = By - PrP. (2.2.2) 
Bio 

Different possible situations of a hyperbola-based design are also shown in figure 2.2.1 

along with their respective conditions. 

Given the hyperbola-based design structure, the probabilities P) and Pz as well as 

the sample proportion r will be optimized using the D optimality criterion, which is shown 

  

  

to be 

N4 2 2 
(1(B)| = —- [rP,(1-P1) (1-r)P2(1-P2)]? log - Do los(— 1) 

Bip Py ”) 

-[t (log(— P) Bo) - * (lo e(— )- Bo)’, (2.2.3) 
t 1- P 

where t is a ratio of the centered design levels given by either 71} or |221) Since te(0, 
212 222 

  

  

  

  

oo) and |I(B)| > «© as t > 04 or t > ~ for any values of P;, P2 and r, an optimal t that is 
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X10 xy   
(a) 

       
(0, 0) 

    

1, 0) 

  

  ED 100P 5 ED j00P5        
(b) (c) 

Figure 2.2.1. Hyperbola-based design in different patterns 

(a) logit(P}) < Bo < logit(P2) for Bj2 > 0, or logit(P2) < Bo < logit(P;) for By2 < 0 

(b) Bo < logit(P) < logit(P2) for B12 > 0, or logit(Pz) < logit(P;) < Bo for B12 < 0 

(c) logit(P2) < logit(P)) < Bo for B12 > 0, or Bg < logit(P)) < logit(P2) for Biz < 0 
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bounded, or practical, does not exist. Therefore the optimal P), P) and r may have to 

depend on the parameter Bo and a user selected ratio t. However, it is felt that using t = 1 

is an option which is both mathematically neat and practically convenient. With t = 1, Bo 
en cae me 

is canceled from (2.2.3) and thus the D criterion reduces to 

  

4 

HB) = EP AC-PD) (-Pa(1-PaP Nos) -log 22.4 
12 

The condition t = 1 corresponds to certain design symmetry as can be seen in 

figure 2.2.2. For both situations given in the figure, the symmetry refers to the fact that the 

points on different ED’s are equidistant to one of the centered axes. 

    

  

    

  

(b) Ho Po >0 

Ly -Bo 

  

Figure 2.2.2. Symmetry of hyperbola-based design with t = 1 

Maximizing |I(B)| in (2.2.4) gives an optimal design with symmetric ED’s and 

equal sample sizes, 1.e. 

P; = 0.176041, Pz = 0.823959, and = r=0.5. (2.2.5) 

It is realized that these optimal ED’s are in fact identical to the one-variable D optimal 

solutions. Examining the D criterion expressions for the one- and two-variable designs as 

given in (2.1.4) and (2.2.4) tells that apart from the constants, the two-variable expression 

24



is exactly the square of the one-variable expression. Such coincidence causes the identical 

D optimal solutions. 

If observations are also taken at the center of the design, these center runs would 

offer one lack-of-fit degree of freedom for a check of quadratic effect. Assuming equal 

number of center runs are used as for each corner point, the D efficiency of the design 

involving center runs relative to the one using the corner points only is expressed as 

1 avi 

4,,, 1 Bo ,|* fait 2 : (2.2.6) 

where P and 1-P are the design probabilities and L = logit(P). For the optimal design 

where P = 0.823959, the efficiencies are evaluated in table 2.2.1. Higher efficiencies occur 

when the central logit Bo is far from zero. In general, using center runs does not seem to 

result in substantially less efficient designs. This gives more justification to the usual 

practice of applying center runs in almost all real experiments. 

Table 2.2.1 D efficiency of hyperbola-based design, center runs vs. no center runs 

Bo | | 02 04 06 08 1.0 1.2 1.4 1.6 18 2.0 
  

EFF | 876 .879 885 892 901 912 .923 .938 .953 .969 

As with any other design in the logistic case, implementation of the hyperbola- 

based design also requires parameter knowledge. The effect of poor parameter guesses 

will be investigated later in the discussion of robustness. To construct a hyperbola-based 

design with t = 1, one must choose one of the design variables to be equidistant to the 

central level. Assuming that x; is the equidistant variable and the parameter values are 

supplied, the design points can be found using the design matrix 
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[~ * | 

P27, _Pir bBo 
Bi2 Biz = By22Zy 

Xq1 XQ] B> B; L-fo 
x1 xX “Bo Bry Boz 12 X22] _ 12 12 Biot (2.2.7) 

X13, X93 B> te B; L-Bo ~P2 4,, -PL_=o Po 
X14 X24 Bio Bin = Byozy 

* 

bo ,, br, bobo 
| By Bia Braz |     

where L = logit(0.823959) = 1.54341 and z is the user specified common deviation of x; 

from the central level. 

Suppose that the parameters are given by Bo = - 2.5, Bi = 2, Bz = 1.5, and Bi2 = - 

1, and the variable xz is desired to be equidistant at +1.46 from its central level, i.e. z2 = 

1.46. Then using (2.2.7) while paying attention to the position switch of the two variables, 

the design points can be obtained as (0.10, 0.54) and (2.90, 3.46) on ED)7. and (0.79, 

3.46) and (2.21, 0.54) on EDg2 4. The hyperbola-based design with equal sample sizes 

appears in figure 2.2.3. 

  

  

  

Figure 2.2.3. Example of hyperbola-based D optimal design 
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§2.3 Ray Design 

Brunden et al. (1988) proposed the two-ray design_as shown in figure 2.3.1. The 

      

design makes use of two parallel ED lines in the fo-interaction situation as well as two 

rays extending from the origin. The four intersections aré taken as design points. The two 

points on the same ED are assumed to have equal sample sizes. The two rays are assumed 

to be symmetric about the 45° line and thus their slopes can be denoted by g and 1/g. 

    

slope = I/g 
‘ 

(X12, x92) 

x9 

‘ (14, X24) slope = (X74, X21) pe=8 

ED (x13) X93) 100P,, 

~ EDj oop. 

X4 

Figure 2.3.1 Ray design 

The design criterion used by the authors is the determinant of the information 

matrix for fitting an interaction model while assuming no interaction in the true 

relationship. Under such a condition, the criterion is shown to be the following expression 

N‘4 

             

(8) = —-—— f(k) r2P2(1-P,)*(1-r)* P2(1— Py 2 (B) om (k) r“Py ( 1) d-—1r)* P5( >) 

(los Pp log(— yy [lo og(— )- Bol’ [lo o8G (2.3.1) 
-P 2 =P 1 

where r is the sample proportion for P; and 
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k*(1-k)*(1+k)*(1-g)4+)4 f(k) = rc 

Bi (+2) + Bk)" 
  (2.3.2) 

By where k = —. 
2 

Maximizing f(k) with respect to g yields the optimal ray slope expressed as a 

function of k: 

2 

_i 1, | i] 1, fosaety? g(k) = i foe + I2+(k+_) (Vk a2 + I2+(k+2) . (2.3.3) 

Maximizing the balance of the criterion expression in (2.3.1) gives an optimal sample 

  

proportion of r = 0.5 as well as the optimal ED’s, which are however dependent upon the 

parameter Bo. Selected results are given in table 2.3.1. The parameter Bg can also be 

interpreted as the logit at the origin. The response probability at the origin, given by Po = 

Bo is also listed in the table to give an idea how far the design lies away from the 
l+e °° 

origin in terms of the response probability. 

Table 2.3.1 | Optimal probabilities for ray designs 

  

Bo Po Pi P2 

0 0.5 0.710619 0.977885 
0.5 0.377541 0.633708 0.969554 
-1.0 0.268941 0.560989 0.960133 
-2.0 0.119203 0.445324 0.940530 
5.0 6.69285x107 0.293432 0.897616 
-10.0 4.53979x10> 0.231674 0.867236 
-10° 0. 0.176041 0.823960 

In table 2.3.1, the extreme negative value -10° for Bo is intended to show that as 

the response probability at the origin tends to 0, the optimal ED’s of a ray design will 
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approach those of the one-variable D optimal design, namely ED,7.6 and EDg>.4. In fact, 

the effective part of II(B)| with respect to P; and Pz approaches the square of the one- 

variable D criterion as By 3 + ~. 

Construction of a ray design requires parameter values as in other designs for the 

logistic models. With the specified parameters, the ED lines can be found as Bo + By x; + 

Box = L, where L corresponds to logit(P;) and logit(P2) respectively. The ray slope can 

be computed from (2.3.3). Then some simple geometry will produce the design points. A 

potential drawback of the ray design lies in its total failure when k = 1, or Bj = Bo. The 

condition k = | causes II(B)| = 0, or a singular information matrix. This may imply that 

fitting an interaction model with proportional doses may not be statistically viable under 

equal linear effects. 

To avoid repetition of the original work and to provide further insight, we derived 

the ray design in a more organized way, which parallels the presentation in the 

development of other designs in this research. Most of the derived expressions and 

discussed issues in this section are not found in the original work by Brunden et al. For 

instance, the original authors denoted the ray slope as kT and provided numerical results 

for the optimal T, while in this work an analytical solution as expressed in (2.3.3) is given 

for the optimal ray slope g. The results from using (2.3.3) match the original numerical 

results. 

§2.4 Factorial Design 

Brunden et al. (1988) also developed a 2x2 factorial design as shown in figure 

2.4.1. The design forms a rectangle falling on three parallel ED lines. The sample 
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proportions for each point on Pj, Py, and P3 are denoted 11, rz, and r3 respectively. The 

total allocation on P2 is 2rp. 

      (X11, X21)     
*] 

Figure 2.4.1 Factorial design 

The rectangular design implies that 

    vir (2.4.1) 27 ; 

VPyP3 + (1- P,)(1—P3) 

The design criterion is derived similarly to the ray design situation, namely fitting an 

interaction model while assuming 6) = 0. The D criterion so defined is shown to be 

_ Nt 2 
[I(B)| = Hpips rr3(1 - ry - 13) 

a) 2 2 Pi P3 a — P,) (i a P3) 5 [log(—*3-) - los(—L-)p . (2.4.2) 

~—t] (JPPs+VG-P)d-P)) 173 

Maximizing |I(B)| and then making use of the relationship in (2.4.1) leads to the optimal 

  

design given by 

P; = 0.015818, Py = 0:5, P3 = 0.984182, 

and Ty) =m =1r3=0.25. (2.4.3) 
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The design has symmetric ED’s and equal sample sizes. 

Assuming that the parameters are supplied, a factorial design can be constructed 

using the design matrix 

  

  

  

  

0” L Bo +Bixi9 LS 
2B, Bo 2B 

X11 X21 x, _ Bot Bixio , L 
Xp X22] _ 2B Bo 2B (2.4.4) 
X12 X21) |g L _BotBixio L - 
X12 X22 2B, Bo 2B. 

+ x19 + _BotBixio | L 

L 2B, Bo 2B. |     
where L = logit(P3) = 4.13068 and xj9 is a user selected central level for x). 

In this section we derived the 2x2 factorial design in a way that better fits into the 

current research and meanwhile provided supplementary discussion to the original work. 

§2.5 Alternative Parallel-Line Design 

A parallel-line design can also be optimized using the type of criterion adopted by 

the authors of the ray design. In such a criterion, the information matrix comes from an 

interaction model while the true relationship is assumed to contain no interaction effect. 

Given the parallel-line design structure, the D criterion formed in this fashion is shown to 

be 

    

Di k+k’ 2 2 P. Pr ..2 _ 1 _ _ _ 2 _ J 
II(B)l=N “Bt “kok” (rPy(1-P;)(1-r)P2(1-P2)] Hosp, 8— Wo (2.5.1) 

where k = BL and k’ is the slope of a non-ED edge as indicated in figure 2.1.1. 
2 
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Normally the design would be made rectangular with k’ = -1/k and thus the factor 

k+k’ . k2 — 
in (2.5.1) becomes . However, when k = +1, the rectangular design will 

k-k’ k? +1 

  

  

lead to a singular information matrix with II(B)l = 0. An alternative is to make the non-ED 

edges either horizontal or vertical, i.e. to use k’ = 0 or co. Using the convention that k’ = 

, 

  -* if k # +1 while k’ = 0 or » if k = +1, the factor in (2.5.1) can be replaced by 
— k’ 

  

2 

< I ; k#+1; 
f(k) = <k* +1 (2.5.2) 

1, k=+1. 

Apart from a constant and f(k), the rest of the II(B)l expression coincides with the 

square of the one-variable D criterion. Therefore the same optimal results as in the one- 

variable case are obtained below: 

P, = 0.176041, Py = 0.823959, and ry, =m=0.5. (2.5.3) 

As the interaction effect is added to the fitted model, the dispersion of the design becomes 

greater than that of the regular parallel-line design. 

Center runs can also be used to check for quadratic effect. Here to evaluate the D 

efficiency, the D criterion is based on fitting an interaction model while assuming a true 

relationship that involves no interaction, namely the same condition that yielded the 

optimal design. If the center point still receives the same sample size as other design 

points, the D efficiency of a design with center runs relative to the corresponding one 

without center runs is expressed as 

1 

4 4 
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where P and 1-P are the response probabilities that the design resides on. The function 

f(k, g) in (2.5.4) is given by 

    

Ly. k7 +1 = L k? ; 
[ePok, 1 Lp (k? +1)? 5} wees f(k, g) = 7 D (k* +1)(k* -1) 

Lp,2 =D)? k =H, ([ 

where k = a Lp = IB, Dj! = IB2Dol, and L = logit(P). 
2 

(2.5.5) 

Table 2.5.1 D efficiency of alternative parallel-line design, center runs vs. no center runs 

  

  

Lp 
IKI 2 4 6 8 1.0 1.2 1.4 1.6 1.8 2.0 

0.1 0.88 088 0.88 089 0.90 091 0.93 0.94 0.96 0.97 

03 | 089 0.88 0.88 0.89 0.90 0.92 0.93 0.95 0.97 0.99 

0.5 104 090 0.88 088 0.90 0.93 0.96 0.99 1.03 1.06 

0.7 144 1.03 089 088 0.92 0.99 106 1.13 1.19 1.26 

0.9 | 2.68 1.70 1.12 089 1.15 1.412 1.63 1.81 1.97 2.12 

10 | 088 0.88 088 0.89 090 0.91 092 0.94 0.95 0.97 

Table 2.5.1 evaluates the efficiency due to center runs for the optimal design 

where P = 0.823959. The figures in this table indicate that the efficiency of using center 

runs tends to be higher when the length of the design in the direction of the ED lines is 

greater in terms of the scale free, or logit type, distance Lp. The efficiency also appears to 

be increasing when the linear coefficients 8; and Bz are more alike in their values, which 

is indicated by a value of k closer to 1. 
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§2.6 Modified Ray Design 

When interaction enters the model as an additional effect, each ED line is turned 

into a pair of hyperbolae. Figure 2.6.1 illustrates the geometric nature of the one-to-one 

correspondence between a line and a pair of hyperbolae with identical logit levels. A nice 

feature is that a hyperbola curve, whenever crossing a natural axis of x; or x9, will cross 

the axis at the same point(s) as the original line with the equal logit value has passed by. 

Bibs 
B 12 

  The line with a constant logit equal to Bo, or Bo - , separates all lines of constant 

logits into two categories. This separation line crosses the x; and x2 axes at the same 

points as the centered axes for the hyperbolae do. The lines on one side of the separation 

line, the side that holds the origin, are turned into pairs of hyperbolae such that only one 

curve in each pair passes the x; and x2 axes as well as the original line, certainly at 

common points. Those lines on the other side of the separation line correspond to pairs of 

hyperbolae such that both curves in a pair each intersect one of the x; and x axes and the 

original line in the meantime. 

Each graph in figure 2.6.1 shows three matches of a line and the hyperbolae, with 

the logits indicated by a, b, and c respectively. The logit b represents Bo and corresponds 

to the separation line as well as the centered axes. 

Figure 2.6.1 also shows the position of the hyperbola center in different quadrants 

depending on the signs of the parameters. Graph (3) illustrates a scenario of synergism, 

where the hyperbola center is found in the third quadrant. Antagonism is shown in graph 

(2) with the hyperbola center located in the first quadrant. 
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The graphs in figure 2.6.1 are intended to show the four general situations that an 

interaction circumstance can fall in. The specific parameter values used to create these 

examples are given in table 2.6.1. Also listed are the hyperbola centers (x19, X29) and the 

selected logit values a, b, and c indicated in the graphs. 

Table 2.6.1 Examples illustrated in figure 2.6.1 

  

Graph Bo By Bo Bi2 (X10; X20) a b(Bo) 

(1) 1-1 2 1 (-2, 1) 0 1 2 
(2) -1 2 1 (2,10 0 1 2 
(3) -1 2 1 (-2, -1) ) 3 -4 

(4) a 1 (2,-1) 0 3. 4 

The ray designs developed by Brunden et al. are intended to handle situations 

where potential interaction is concerned. In a ray design scenario, the interaction can be 

either synergistic or antagonistic. The ray design is created by assuming no interaction in 

the true relationship, though the dimension of the information matrix comprises the 

interaction coefficient. With such designs, there seems to be an inconsistency between the 

goal dealing with interaction and the optimization environment assuming a no-interaction 

state of nature. Therefore it might be suspected that the ray design may not perform as 

well compared to the hyperbola-based design in the presence of interaction. In fact, it will 

be shown later that when interaction exits, the D efficiencies of ray designs relative to the 

hyperbola-based design are often unsatisfactory. The efficiency falls extremely low when 

the interaction is synergistic, possibly because the ray design locates farther away from 

the hyperbola center in the third quadrant under synergism than from the one in the first 

quadrant under antagonism. 

The ineffectiveness of the ray design under synergism is also revealed in the work 

by Brunden et al. They computed an “efficiency” which is the ratio of the D criterion of a 

ray design under interaction relative to the D criterion of the same design under the no- 
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interaction situation. Though these ratios are not proper efficiencies that compare two 

different designs, they do indicate that the D criterion of a ray design usually goes down 

quickly when synergism forms and becomes more severe. However if the interaction 

starts to grow toward the antagonism direction, the D criterion of a ray design will be 

increasing and will begin to decrease at some point when the antagonism becomes too 

strong. 

In spite of its difficulty with synergism, the ray design seems attractive to 

practitioners for some practical reasons. First, design points on the same ray receive 

proportional doses since the ratio x,/xz stays constant anywhere on the ray. Once the 

experimental mixture at one point is administered, the same x;/x» mixture will also apply 

to the other point on the ray and usually it is just a matter of adjusting the amount of 

mixture. The entire experimental task is therefore greatly reduced. The ray type designs 

are also useful in some experiments by offering all positive design levels. In a drug 

experiment, if the natural doses are to be used as regressor variables, then negative design 

levels are not allowed. This may not always be an issue as centered variables or log doses 

are often used in practice. Using log doses in a logistic model can sometimes produce 

better fit and more closely represent the unknown relationship. Finney (1978) pointed out 

that in bioassays, an analysis in terms of the log doses may be preferable to one in 

absolute units, and that normality of tolerance distribution is likely to be better 

approximated by log doses. 

Of the two types of interaction effect, antagonism does not pose as much concern 

since the efficiency of the ray design with antagonism is less inferior and meanwhile a 

hyperbola-based design can often be found even if positive doses are required. Synergism 

however can be problematic due to poor efficiencies of the ray designs and lack of a 

practical hyperbola-based design alternative with all positive design levels. 
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The goal of this section is to better handle the synergistic condition while still 

pursuing the practical advantages of a ray type design, which are desired not in all but in 

certain experimental situations as mentioned above. The proposed strategy will be 

referred to as a modified ray design, which still makes use of symmetric rays as in the 

original ray design. The modification focuses on removal of the inconsistency explained 

earlier between the assumption and the goal of the ray design. This is achieved by using 

the hyperbolic ED curves rather than the ED lines, namely by assuming the presence of 

interaction in the true state of nature. Figure 2.6.2 shows the design structure. The slopes 

of the rays are denoted by g and I/g. The probabilities of response on the two curves are 

P; and P2. The sample sizes for the two points on a common ED are assumed equal. 

x2 

    

  

  

X1 

Figure 2.6.2 Modified ray design 

Define a function S as follows: 

_ 2 L—Bo 
S(g, L)= /(1+ gk)“ +4gk——— -(1+gk) (2.6.1) 

AB 

where k = By and A, is the difference in logit between the origin and the hyperbola 
2 

center, which is given by A, = Bo - Bo = Biba The model matrix for a modified ray 
Bio 

design can then be written as 
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F a SL Bes Ly) {Best} 

o 1 Be Spt) spose {stin) 

1 Fo SEL) Hp ELD 1B siesty) 

i; Fe SL) er S(g,L2) 1( 22 se)     
where L, and L, are the logits of P; and P. The determinant of X is given by 

  

Ag 2 1 1 
[XI = [S(g, Ly) - S(g, Lo) I[S(—, Li) - S(—, L2)] 

4kByo g g 

1 I 1 
= -DS(, LS, La) + (e’- IS LIS Ladd. 

& 

Due to lI(B)| = [X’ZXI, the D criterion of a modified ray design is given by 

4 

I(B)I = (5) [ r(1-1) Py(1-P}) Po(1-P2) XI? 

where N is the total sample size and r is the sample proportion assigned to P}. 

(2.6.2) 

(2.6.3) 

(2.6.4) 

The D criterion in (2.6.4) is a function of the model parameters Bo, As, and k as 

well as the design indices P;, Pz, r, and g. The optimal P;, Po, r, and g will then depend on 

Bo, Ay, and k. Since II(B)I is invariant when k is replaced by 1/k, only the k < 1 case will 

be investigated. As for the original ray designs, only negative values of Bg will be 

addressed based on the practical consideration that the probability of response at the 

origin is normally below 0.5. The assumption of positive linear effects was implicitly 

used in the work of Brunden et al. on the original ray designs and must have been based 

on practical appropriateness. Since currently we are in the situation of synergism, using 
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the assumption of positive linear effects implies that the parameter A, takes on positive 

values. The optimal sample proportion is always 50% at each probability level in all 

cases. The optimal probabilities and ray slope given values of Bo, A,, and k are listed in 

table 2.6.2. 

Table 2.6.2 indicates that both the lower and upper design probabilities decrease 

and their dispersion widens as the probability of response at zero doses goes down. This 

is quite intuitive since by assumption the design probabilities have to lie above the 

probability level at zero doses. Slight decrease of the design levels also occurs when A, 

becomes smaller. Recall that A, is the difference in logit between the origin and the 

hyperbola center. This implies that as the hyperbola center (in the third quadrant) moves 

closer to the origin in terms of the logit distance, the design will also draw closer towards 

the origin, though the movement appears much smaller than that caused by the variation 

Bi in Bo. The design probabilities are quite invariant to the ratio k = —. However, the 
2 

impact of k is fairly obvious on the position of the rays through the ray slope g. As the 

linear parameters become more unbalanced, indicated by values of k remotely away from 

1 in either direction, the rays are required to be more open, or nearer to the x; and x2 axes. 

Assuming that the parameters are known, the design can be implemented by using the 

second and third columns of the model matrix given in (2.6.2) as the design matrix to 

compute the design points. 
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Table 2.6.2 Modified ray designs 

Bo A, k P 1) g£ 

0) 5 1 697953 973191 24.7503 
3 697487 .972940 10.6253 
ie) .697144 972749 8.45559 
7 .696974 972653 7.78838 
9 .6969 1 1 972617 7.58271 

2 A .68768 1 969538 29.8512 
3 .687105 .969069 13.3580 
S .686736 968745 10.8683 
J 686565 968588 10.1045 
9 686504 .96853 1 9.86915 

-----~------------ b—~--—-~-~-—--~-.-~-——~--~-~-—---~--~---~--—~----+ 

l l 678292 .966311 37.5012 
3 677935 965674 17.5635 

5S .677762 965273 14.5994 
7 .677695 965085 13.6911 
9 .677673 965018 13.4112 

S 1 669025 963215 51.7133 
3 669293 962488 25.5569 
Re) 669526 962071 21.7252 
7 .669650 961883 20.5516 
9 .669697 .961816 20.1897 

~--------------------- Fpennnn anne anna nnn nono n 8 8888 o eee 

-1 5 1 540937 951946 25.445] 
3 540215 951523 10.9871 
J 539693 951208 8.77299 
7 539435 951049 8.09269 
9 539341 95099 1 7.88306 

2 A 29777 945976 31.5896 
3 524942 945244 14.2769 
a) 524420 944751 11.6759 
7 524181 944514 10.8791 
9 524097 944428 10.6337 

1 Al 312789 940992 41.0379 
3 512323 .940078 19.4541 
J 512110 939516 16.2639 
7 512031 939256 15.2879 
9 512005 939163 14.9873 

S 1 500841 .936494 58.9948 
3 501239 933545 29.4789 
J 501573 935012 25.1800 
7 501749 .934774 23.8661 
9 501814 934689 23.4614   
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Table 2.6.2 (continued) 

Bo A, &k P} Py g 

-2 5 wl .420300 928965 26.5083 
3 419426 928395 11.5422 
5 418806 .927979 9.26018 
7 418503 927772 8.55983 
29 418392 927696 8.34410 

2 1 403245 921308 34.2826 
3 402312 920417 15.7046 
5 401746 .919833 12.9312 
7 401491 919557 12.0830 
29 401401 919457 11.8219 

1 l 389889 915414 46.5642 
3 389413 .914408 22.4129 
5 .389207 .913808 18.8677 
7 389132 913534 17.7854 
9 389109 .913437 17.4523 

i) 1 .378669 910513 70.4217 
3 379045 .909575 35.6260 
5 379374 .909059 30.5880 
7 379542 .908830 29.0513 
9 .379605 908749 28.5783 

-5 5 1 .268844 882230 31.1186 
3 .268076 881584 13.9684 
5 .267567 881144 11.3922 
7 .267325 880932 10.6064 
9 .267239 880855 10.3623 

2 dl 257492 875206 46.0443 
3 256853 874459 21.9914 
5 256496 874009 18.4647 
7 256339 873803 17.3907 
9 .256285 873730 17.0606 

1 1 .250718 871021 70.6319 
3 .250426 .870360 35.3723 
5 .250303 869991 30.2763 
7 .250258 .869826 28.7265 
9 250243 869768 28.2501 

5 l 246165 868209 119.624 
3 .246261 867693 62.1822 
5 .246357 867419 53.9525 
7 .246410 867299 51.4497 
9 246430 867256 50.6803   
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CHAPTER 3 

EQUIVALENCE THEORY FOR D OPTIMAL DESIGNS 

The equivalence of certain properties associated with a D optimal design leads to 

deeper insight into design optimality criteria, especially for logistic models. Quite often a 

D optimal design may have to be found numerically or with restriction. This is seen in the 

designs given in chapter 2 as well as in many other cases not involved in this research. In 

such a case, the exact D optimal property of the design may not be clear enough. The 

equivalence theory can often provide alternative ways for checking D optimality which 

are much more convenient than the D criterion itself. The design equivalence theory 

reveals the relationship between the parameter oriented D criterion and other prediction 

oriented performance measures. 

§3.1 Design Equivalence Overview 

Kiefer and Wolfowitz (1960) introduced the equivalence theorem for linear 

models. Federov (1972) developed the equivalence theorem in the general framework of 

design optimization, which accommodates nonlinear models as well. 

In Federov’s work, a design is expressed as a probability measure E(x) defined on 

a sample space R, satisfying the conditions 

Jp E(x) = 1, E(x) 20, xeR. (3.1.1) 

In this definition, §(x) could represent the proportion of sample size assigned to the point 

x for a design with isolated points, as usually seen in practical design optimization, 
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though in the broad sense the probability measure E(x) could characterize any design, not 

necessarily one with isolated points. 

The D optimal design for a preselected region R and a model with parameter B is 

defined as the probability measure €*(x) which | maximizes II(€; By the determinant of the 

information matrix for B due to design €7 among , all ‘probability measures defined on the . 

sample space R. This definition of D optimality takes the form 

IG*; B= Max I; B) (3.1.2) 
c=R 

where Ep is the set of all probability measures defined on the sample space R. 

A generalized scaled prediction variance V(&; x) is defined as 

VEX) =N TIlE; B) JO; BI (3.1.3) 

where I(E; B) is the information matrix for B due to the design &, J(x; B) is the information 

matrix for B due to a single observation at the point x, and N is the total number of 
~, 

observations in ‘the design €. Both I(E; 8) and J(x; B) are pxp matrices, where p is the 

number of parameters in the vector B. 

The equivalence theorem proved by Federov states that the following assertions 

are equivalent: 

(1) the design &* maximizes II(E; BI: II(G*; By! = Max II(E; BDI, 
E=R 

(2) the design &* minimizes MaxV(&; x): Max V(5*; x)= Min Max V(6; x), 
EeEp xER 

(3) Max V(E*; x) =p. (3.1.4) 
xER 

The equivalence guarantees that any one of the three properties implies the other 

two. The design €* in condition (1) defines a D optimal design for the region R. 
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Condition (2) is related to G optimality but not guaranteed to be the same. Condition (3) 

involves only the design itself and thus can be verified without examining any competing 

designs. When the equivalence theorem is applied later in this chapter, condition (3) will 

play an important role. The equivalence implies that conceptually a D optimal design can 

also be solved by property (2) or (3), as can be seen later with several designs. 

§3.2 Design Equivalence for Linear Model 

For the linear model, since I(€; B) = + x’x and J(x; B) = xx the 
o o 

generalized scaled prediction variance is given by 

V(E; x) = Nx(X’X) "x. (3.2.1) 

  

The generalized scaled prediction variance VE; x) coincides with the scaled prediction 

variance addressed in the G optimality. Therefore property (2) of the equivalence theorem 

corresponds to G optimality and thus properties (1) through (3) can be put as 

(1) &* is D optimal, (3.2.2) 

(2) E* is G optimal, (3.2.3) 

(3) Max V(E*; x) =p. (3.2.4) 
xER 

The equivalence theorem indicates that for the standard linear model, a D optimal design 

for a given region is also G optimal for that region. 

For instance, when the linear model is first order with two design variables and 

the region R is rectangular, it is well known that a four-point design placed at the region 

vertices with equal sample sizes would be both D and G optimal. It may be less obvious 

to recognize properties (1) and (2), which involves comparisons among all possible 

designs on the region R. Property (3) though can be seen very easily and D and G 

optimalities would then follow from the equivalence theorem. 
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For a design €* with equal sample sizes placed at the corners of a rectangular 

region bounded by x,€[X11, X12] and x2€[X2}, X22], the condensed model matrix X and 

the vector x due to one observation can be expressed as 

  

X = ZA’ and X = AZ (3.2.5) 

respectively where 

1-1 - 0 0 oo 
Az=|™ut*2 X27 Xu 0 and = Z= (3.2.6) 

2 2 1 1 -l 
X21 + X22 0 X22 — X21 1 11 

2 2 

From (3.2.1), it follows that 

Ks ~ , N , -1. vA? , nl _ 2 2 
Ve x) = Nx(7- XX) x = 47’A(AZ’ZA’) Az=1+z{ +25. (3.2.7) 

Obviously, Max V(&*; x) = p, where p = 3 for the two-variable first-order model. And the 
xER 

maximums occur at the design points. It is not important where the maximum is 

achieved. What matters is that the maximum scaled prediction variance over the entire 

region is equal to p, i.e. condition (3) holds for the design —*. By means of the 

equivalence theorem, once property (3) gets verified, the design &* can then be said to be 

both D and G optimal. 

The scaled prediction variance at a design point is related to the hat diagonal h;i by 

V(&; xi) = N hi (3.2.8) 

N 

where hj; = x;’ (X’X) | Xj. Since L hj =p, a design with equal hat diagonals h;; = p/N, 1 
i=] i= 

= 1,..., N, always satisfies V(€; x;) = p at any design point. However, such a design has 

nothing to do with D optimality since the maximum V(E*; x) over the region can still 

exceed p. For example, in the previous situation with the rectangular region R, a design 
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E, with four evenly weighted design points forming a smaller rectangle lying inside and 

concentric with the region R corresponds to 

1 -a -b 
1 -a b 

Z={; 4 -b (3.2.9) 

! ab 

where lal <1 and Ibl <1. Equation (3.2.1) implies that 

2 2 

VEnx)el+ 242, (3.2.10) 
az ibe 

It follows that V(E;; x) = p = 3 at the design points. However, the design €; can not be D 

or G optimal since at least, V(€*; x) is above 3 anywhere outside the design rectangle but 

within the region. 

§3.3 Design Equivalence for Logistic Model 

For logistic models, the information matrix due to the design € is I(E; B) = X’=X. 

The information matrix due to one observation at the point x is J(x; B) = O° xx’, where 0” 

= P(1-P) and P is the probability that the observation is equal to 1 at the point x. Hence 

the scaled prediction variance is given by 

V(E; x) = No*x’(X’EX) |x. (3.3.1) 

The equivalence theorem applied to a logistic model then says that a D optimal design €* 

for the region R achieves the following simultaneously: 

(1) I(E*; B)l = Max IX’E=XI, (3.3.2) 
SEER 

(2) Max V(E*; x) = Min Max No?x’(X’EX) "x, (3.3.3) 
xeR Eekp xeR 

(3) Max VES x) =p. (3.3.4) 

4]



In the logistic case, G optimality based on the logit addresses NVar[logit(y)] = 

Nx’(X’EX) x while G optimality based on the probability addresses NVar[¥ ] = N(o’)*x’ 

(X’EX) x. Neither of the scaled prediction variances involved in the two forms of G 

optimality corresponds to V(&; x) as in (3.3.1). Therefore property (2) of the equivalence 

theorem does not represent G optimality in the above senses. In fact, V(G; x) is the 
  

geometric average (NVar[¥])(NVar[log it(y)]) . 

If hj denotes a hat diagonal based on the hat type matrix H =r! ?x(x’Exy x’E! 2 

N 
then V(E; x;) = N hy at a design point. Since > hy = p, a design with equal hat type 

i=] 

diagonals where h;; = p/N, i = 1, ..., N, would have V(€; x;) = p at all design points. 

However the condition V(€; x;) = p at the design points will not bring the design any 

closer to being D optimal since D optimality requires Max V(€; x) = p, which is not 
xER 

guaranteed in any way by such a design. 

§3.4 Parameterization and Design Equivalence 

The equivalence theorem discussed in the previous section essentially enunciated 

three design properties that occur simultaneously. The entire proposition is based on the 

same parameterization. Reparameterization for a given model, sometimes in order to 

accommodate practical concerns or specific analyses, also bears its implication to design 

equivalence. Raising the issue of parameterization opens another dimension in the study 

of design equivalence. 
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Suppose that B is the initial parameterization for a given model. Let another 

parameterization a for the same model be defined as a function of B with the Jacobian 

matrix 

0a da; === [—" lho » (3.4.1) 
op op; PxP 

where p is the number of parameters. For a proper reparameterization a, the matrix C is 

  

of full rank and is independent of the design characteristics involved in the optimization 

(not necessarily independent of parameters). The information matrix I(€; «) for the 

transformed parameter a due to the design € will be different from but related to the 

information matrix I(€; B) for the initial parameter B due to the same design. Let £ be the 

joint log likelihood for all observations of the design. The following relationship holds: 

of oz da’ df of 0a 
      Ig; P)= Else op’! = E[ 3B 50 Da a8” =C’ IG; a)C, 

and thus 

KE; @) = (CY WE; BC" (3.4.2) 
with the determinant 

ICE; ol = ICT? WE; B)I. (3.4.3) 

More insight about the information matrix under reparameterization is discussed in 

Lehmann (1983). 

The relationship in (3.4.3) indicates that the same design will yield different 

amounts of information regarding different parameterizations in terms of the determinant 

of the information matrix, unless the reparameterization maintains an orthogonal matrix 

C. That is, for a given design, the D criteria for different parameterizations will not have 

the same value unless C is orthogonal. However, since the matrix C under proper 

reparameterization does not involve any design parameters subject to D optimization, the 

D optimal design for B, which maximizes II(€; B)I, will also be a D optimal design for a 

which maximizes II(E; al = Icr? T(E; ByI. 
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The result in (3.4.2) implies that 

J(z; aw) =(C’Y I(x; BC" (3.4.4) 

where J(x; B) and J(z; a) are the information matrices for 6 and @ respectively due to one 

observation at the common point identified by x with parameter B and by z with 

parameter a. From (3.4.2) and (3.4.4), it follows that the scaled prediction variance 

evaluated under parameterization a, denoted Vo(E; z), proves to be identical to the result 

evaluated under parameterization B, denoted Vg(é; x): 

Va(§; 2) = NTrINE; at)" 'I(2; 0] 

= NTC IG; BY 'C'(C’Y "I(x; B)C“] 

= NTr[I(E; B) I(x; B)] 

= Va(&; x) . (3.4.5) 

It is found from the above that under proper reparameterization, i.e. ICl 4 0 and C 

being independent of the design optimization, 

(1) the D criterion value (II(E; B)l) for a given design is invariant only up to 

reparameterizations such that the derivative matrix C is orthogonal, 

(2) the solution of a D optimal design is invariant to any reparameterization, 

(3) the scaled prediction variance for a given design is invariant to any 

reparameterization. 

These invariance properties to reparameterizations imply that a D optimal design can be 

found by properly choosing a convenient parameterization. Once the design is found, it 

will remain D optimal and will thereby enjoy the equivalence property for any proper 

reparameterization, although the value of the D criterion will vary with the 

parameterization. The above discussion of parameterization and design equivalence 

assumes a general situation. Thus the result applies to both linear and logistic models. 
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In the following sections concerning logistic models, linear transformations of 

natural design variables into centered and scaled variables are often used to ease analyses. 

Such transformations in general take the form Z = XA", where Z is the centered and 

scaled model matrix. This implies o=AB. The logit is given by L = x’B = z’a. One must 

realize that the vector a here is not a reparameterization since the matrix A heavily 

involves design characteristics subject to optimization. This implies that the true value of 

a changes from design to design. In fact, a set of model parameters in its statistical sense 

should be a set of unknown constants regardless of where observations are taken. D 

optimality aims at seeking a design that brings about the most information towards a set 

of unknown constants, which are parameterization dependent but not design dependent. 

From (3.4.3), it follows that 

NCE; a = IAI? ICE; B)I. (3.4.6) 

This might project the illusion that transformations with different matrix A will result in 

different D optimal designs for various parameterization a=AB since the matrix A 

participates in the optimization. Then by (3.4.5), two different designs, each being D 

optimal only for its own parameterization (not for the other), should achieve minimax of 

the scaled prediction variance equivalently defined under the other parameterization. By 

the equivalence theorem, each of the two designs which is D optimal only for its initial 

parameterization should also be D optimal for the other parameterization. It seems as if a 

contradiction had occurred. 

The key reason causing the above misunderstanding can be explained as follows. 

It is true that a design can be found by maximizing (3.4.6), the determinant of the 

information matrix pertaining to some improper parameterization a. Since lI(E; B)I in 

(3.4.6) stays constant under transformations of B into various , the solution of such a 

design will vary according to the matrix A that provides a specific formulation of o from 
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the initial parameter B. Since a=AB and A depends on the designs, for a given 

transformation A, the design obtained by maximizing (3.4.6) has the largest information 

among all competing designs only in the sense that the information offered by each 

competing design, which identifies its competitiveness, is the information pertaining to a 

specific set of unknown parameter values determined by this design. So the competition 

is really judged by levels of information, each for a different set of parameters, due to 

various candidate designs. The winner of such competition is not a D optimal design in 

the proper sense because the competing informations are not for any common set of 

parameter values, whereas a true D optimal design is found by comparing informations all 

for a set of common parameter values among various designs. When a design is not D 

optimal, there will not be the equivalence property. In conclusion, a contradiction really 

has never happened. 

A caution drawn from the above is that despite the invariance of a D optimal 

design to parameterizations, one should not attempt to obtain a D optimal design by 

maximizing the information for a transformed parameter when the transformation is 

design dependent. 

§3.5 Equivalence for Two-Level D Optimal Design, One-Variable Logistic Model 

Despite the moderate amount written about the one-variable logistic design 

problem, design equivalence has been discussed very little. Equivalence of D optimal 

designs for a one-variable logistic model is mentioned briefly for the situation of a limited 

design space in White (1973). 

The determinant of the information matrix for the one-variable logistic model, due 

to a design with N observations, is given by 
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1 .N 4N N 
P= —LE oF Lop Li -(EOPL)I, (3.5.1) 

By i=l i=l i=l 

where o? = P(1-P;) and L; = logit(P), where P; is the probability of response for the i” 

observation. Maximizing II(B)I in (3.5.1) under no restriction as to the number of design 

points yields a D optimal design with two equally weighted levels: ED;7.6 and EDg9 4. 

The D criterion restricted with two design levels, II(B)I = 0? oS (Lz - L;)’, would of 

BF 
course lead to the same optimal solution. 

For an equal sample size design placed at the symmetric logits -Lo and Lo, where 

Lo > 0, the scaled prediction variance at the point x as given in (3.3.1) can be expressed as 

a function of the logit L at the point x, where L = Bp + By x, in the following form: 

—-L L 2 

(Ive dre) yy. (3.5.2) 
(+e byte) 13 
  V(Lo; L) = 

Define z to be a centered and scaled design variable given by the transformation 

_~L _bo , By, (3.5.3) 
Lo Lo Lo 

The transformation is done in such a way that z equals 0 at EDsg and +1 at the design 

points. The accordingly transformed vector of parameters is given by « = AB, where 

1 _ Bo 

By As| ft, (3.5.4) 
O _v 

By 

so that the logit can be equivalently written as L = x’B = z’a. However, the matrix A 

involves design specification Lo which participates in the optimization. The discussion on 

parameterization in §3.4 indicates that the parameter a, resulted from centering and 

scaling of the natural design variable, does not constitute a proper parameterization as far 

53



as design optimization 1s concerned and will not lend itself to a meaningful D optimal 

design. The sole purpose of the transformation is to benefit from the centered and scaled 

design variable z in the evaluation of a design generated for the initial parameter . 

The scaled prediction variance V(Lo; L) appearing in (3.5.2) can be reexpressed as 

a function of z in the form 

(1+e7 0 y(14+ebo) 
—Loz 

  W(Lo; Zz) = — [l+z°]. (3.5.5) 
(l+e 0”) 

For the one-variable logistic model, p = 2. Since W(Lo; z) = p = 2 at z = +1 for any Lo, 

jU+e 

any symmetric two-level design with equal sample sizes would have a scaled prediction 

variance equal to p at the design points. Nevertheless, for a design to be D optimal, 

according to the equivalence theorem, it has to satisfy Max W(Lo; z) = 2, where R is the 
zER 

entire real line (-:°, oo). The above implies that if Max W(L9; z) occurs at the design 
zER 

points, or z = +1, for some Lo = L*, then the design identified by the logit L* will be aD 

optimal design for the region R. Therefore, the condition 

W(L*; c) = Max W(L*; z), (3.5.6) 
zER 

where c = +1, may offer another way to solve for a D optimal design. 

To solve the D optimal logit L* from condition (3.5.6), obtain the following 

derivative from (3.5.5): 

  

W(Lo; P,(1-P. OW(Lo32) _ PoP) oy op yi +22) +22], (3.5.7) 
OZ Po(1— Po) 

1 1 ; ., 
where Pp = —T, and P, = Tadeo Evaluating (3.5.7) at z = 1 and setting it to 

l+e ~0 l+e 

zero leads to 

Lo(1 - 2P9) + 1=0. (3.5.8) 
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Numerical solution of (3.5.8) yields Lo = L* = 1.5434056, or Pp = P* = 0.823959, which 

agrees with the result from maximizing I(B)I in (3.5.1). The second order derivative is 

shown to be 

d7W(Lo;z) _ P,(1-P,) 

dz? Po(1— Po) 
  [L4,(1-2P,)° (142°) - 2L4P,(1-P,)(14z7) + 4zLo(1-2P,) + 2] 

(3.5.9) 
and it reduces to - 4L*’P*(1-P*) at Lo = L* and z = +1, which is negative and thereby 

confirms the maximization of W(L*; z) at z= <1. 

The above has shown that L* = 1.5434, originally coming from Max II(B)I, is also 

a solution of (3.5.6) and equivalently a solution of Max W(L*; z) = p (condition (3)). 
zER 

This indicates that the two-level D optimal design simultaneously meets conditions (1) 

and (3) in the equivalence theorem. Condition (2) will not be illustrated to the fullest 

extent here since it involves comparison of all possible designs. Direct verification of 

condition (2) has been partially done. Since W(Lo; z) = p at z = +1 for any Lo while 

Max W(Ly; z) = p only for Lp = L*, the D optimal design does minimize the maximum 
zER 

scaled prediction variance among all symmetric, equally weighted two-level designs. 

In figure 3.5.1 on page 64, the scaled prediction variance W(L; z) is plotted as a 

function of z for the designs with the upper logits at Lo = 1, Lp = L* = 1.5434, and Lo = 2. 

Obviously, all three designs have W(Lo; z) = 2 at z = +1, while only the D optimal design 

has Max W(Lo; z) = 2 (condition (3)) and maintains the smallest maximum W(Lp; z) 
zeR 

(condition (2)) among the three designs. 

55



§3.6 Equivalence for Three-Level D Optimal Design,One-Variable Logistic Model 

The determinant of the information matrix for a three-level design in the one- 

variable logistic case can be expressed as 

yy 2 2 2 (8) = ra [o? 05 (Ly - La)" + 07 63 (Ly) - Ls)" + 03 of (Lp-Ls)"]1,. (3.6.1) 
1 

where L,; = logit(P,) and of = n,P\(1-P,), i = 1, 2, 3. Maximizing II(B)I constrained on 

equal sample sizes yields an optimal design given by ED)36, EDso, and EDge.4. The 

three-level D optimal design is in fact the result of constrained optimization of the II(B)I in 

(3.5.1). Hence the three-level D optimal design is not truly D optimal among all possible 

designs, as implied in the equivalence theorem, but rather conditionally D optimal among 

all equally weighted three-level designs. As a result, the three-level D optimal design will 

not have any of the three properties in the equivalence theorem. Jt does not minimize II(B)! 

among all designs (losing property (1)) because unconstrained maximization of [I()I 

yields the two-level design. Its maximum scaled prediction variance, as can be seen later, 

is greater than p = 2 (losing property (3)) and hence is not the smallest among all designs 

(losing property (2)) since the two-level D optimal design keeps its maximum scaled 

prediction variance as low as p = 2. 

Although the three-level D optimal design is not truly D optimal and hence is 

deprived of all the properties of the equivalence theorem, its conditional D optimality still 

earns itself respective properties in equivalence in a restricted scale. The two properties in 

equivalence for the three-level D optimal design are as follows: 

(1) the design achieves Max II(B)I, 
GEEZ 

(2) the design achieves Min Max V(E; x), 
Ee=q xeER 
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where =p is the set of all equal sample size three-level designs defined on the entire real 

line. 

For an equal sample size three-level design with symmetric logit levels -Lo, 0, and 

Lo (Lo > 0), the scaled prediction variance V(E; x) can be expressed as a function of the 

logit L = Bo + Byx in the form 

    

-L L 2 Vito: Ly= 3 Ute ate) LE 8 
2 dt+ebyitel) LE 8+d+e%oj)Ad+el) 

]. (3.6.2) 

Transforming the natural variable x into the centered and scaled variable z by equation 

3.5.3, where z equals 0 at EDs9 and +1 at the design points, leads to the scaled prediction 

variance expressed as a function of z: 

3 (te bojyi+elo) , 8 
W(Lo; z) = — [z + . 3.6.3 

° 2 (1+e7b02y(1 4 eho?) 8+(1+e 10 eekoy" 6.6.5) 
    

Again, one should be cautioned that the modified parameters accompanying the 

transformed variable z do not form a proper parameterization for the purpose of design 

optimization and therefore cannot support the regular definition of a D optimal design. 

In figure 3.6.1 on page 64, the scaled prediction variance W(Lo; z) is plotted for 

the three-level designs with the upper logit at Lp = 1.5, 1.85, and 2.63. The design with Lo 

= 1.85 is the three-level D optimal design and the design with Lo = 2.63 has its scaled 

prediction variance equal to p = 2 at the design points. Clearly, the three-level D optimal 

design has the lowest maximum W(Lo; z), which equals 2.226 and occurs at the lower 

and upper design points. The design with Lo = 2.63, though having W(L); z) = 2 at all 

design points, has higher maximum W(L ; z) than the three-level D optimal design. 
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It turns out that the three-level D optimal design can also be solved by the 

condition that Max W(Lo; z) occurs at the design points. To find the three-level D 
zER 

optimal design by requiring Max W(Lo; z) = W(Lo; 1), obtain the derivative 
zER 

W(Lo; — 
OW(Lo32) 3 POP) a yop ye +22], (3.64) 

OZ 2 Po(— Po) Qa 

Po(l— Po) 

where Pg = —— and P, = —___ . Evaluating (3.6.4) at z= 1 and setting it to 
l+e “0 +e 707 

zero leads to 

Lo(1 - 2Po)(2 - __! i» +1=0. (3.6.5) 
8Py(1— Py) +1 

Numerical solution of (3.6.5) yields Lo = L* = 1.850123, or Py = P* = 0.864142, which 

agrees with the result from maximizing II(B)I in (3.6.1). It can be verified that a negative 

0? W(L3z) . ; 
second order derivative — 7 — Is concurrent with the maximum W(Lo; z) at z = +1 

OZ 

for the optimal design with Lp = L*. 

§3.7 Equivalence for Parallel-Line D Optimal Design, !wo-Variable Logistic Model 

The parallel-line D optimal design is developed for the two-variable, no- 

interaction logistic model. If the region R is taken to be the entire two-dimensional design 

space, there would not exist a D optimal design since II(f)I could be made infinitely large 

by stretching the design points to the outer extremes along the direction of a constant 

probability. For the two-variable logistic model, one can only talk about the D optimal 

design for some constrained region R. This is equivalent to the usual practical restriction 
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in the linear model that the variables are confined to the scaled interval [-1, 1]. Design 

levels allowed to wander beyond this interval will result in larger values of [X’XI. 

The situation is shown in figure 3.7.1. Consider an elongated region R that spans 

unbounded from one extreme EDp to the other EDjo9, but within a limited distance of 

+/D? + D5 in the direction of constant probabilities, where the lengths D; and D2 are 

indicated in figure 2.1.1. Consider a subset of designs placed on this region, each having 

four design points located at the intersections of two constant probability lines (P; and P 

specific to the design) and the two common lines of region boundaries. Equal sample 

sizes are assumed for the two points on the same probability level. All possible 

combinations of P; and P2 along with various sample weightings constitute the complete 

subset of parallel-line designs. 

  

Region --R 

Figure 3.7.1 Region and design layout for parallel-line design 

In fact, the parallel-line D optimal design, given by ED277 and ED773 with equal 

sample sizes, is obtained by finding the optimal P; and Pz along with the best sample 
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allocation that maximize II(B)| among the subset of all parallel-line designs on the region 

R. Up to this point the parallel-line D optimal design is known to be the best only in the 

set of parallel-line designs. The following work verifies that property (3) of the 

equivalence theorem holds for the parallel-line D optimal design and thereby confirms its 

D optimality among all possible designs in the region R. 

The centered and scaled variables z; and zz can be created through the 

X] X10 Dy a | 
= + 3.7.1 

hi | Ki dy || 2 C1) 
where Dj and d;, 1 = 1, 2, are quantities characterizing the design and region geometry as 

relationship 

displayed in figure 2.1.1, and x;9 and X29 identify the design center also as shown in 

figure 2.1.1. Once again, since d; and d, involve the design probability levels that need to 

be optimized, the set of the transformed parameters accompanying variables z, and Z> 

will not represent a proper parameterization that can lend itself to the normal definition of 

a D optimal design. Using variables z; and Z2, the design center is represented by (0, 0), 

and the design points are located at levels +1. Therefore, the design identified by z,; and 

Z2 1S a Square with the four comers being the design points. 

The quantity x’(X’EX) x contained in the expression for the scaled prediction 

variance as in (3.3.1) can be expressed as 

    

2 ~1)? 1)? Zz 
x’(X’E=X) 12 1,2 ~ +r) ]+ = 5 (3.7.2) 

8 OF O5 2(6; +05) 

where of =n;P;(1-P;), i= 1, 2. For a design with symmetric ED’s at 1-Po and Po as well as 

N ae ; 
equal sample sizes, o7= 03 = gq Potl-Po). Substituting (3.7.2) into (3.3.1), the scaled 

prediction variance for such a design is given by 
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PU-P 
Ve:x)= OE? rt 224 23] (3.7.3) 

Po(— Po) 

where P = 5 . The logit L, where L = logit(P) = x’B, can be expressed in terms of 
l+e- 

Z, and Zp» via (3.7.1) and turns out to be a function of only zp: 

L= =2—*l ny, (3.7.4) 

where L, and Ly are the logit levels of the parallel-line design. For a symmetric design 

indicated by Po, 

L=L[22 (3.7.5) 

where Lo = logit(Pg). With (3.7.5), the scaled prediction variance of a symmetric design 

indicated by Lp can be written as a function of z in the form 

(Ite 10)i+el0) 

(+e 1022 (1 + e072 ) 
[1+ z7+ 25]. (3.7.6)   V(E; x) = W(L; z) = 

Clearly, for any symmetric parallel-line design with equal sample sizes, the scaled 

prediction variance would be equal to the number of parameters p = 3 at the design 

points, where zj = +1, 1 = 1, 2. However, only for the optimal design is the maximum 

scaled prediction variance over the entire region equal to 3. This can be seen by 

inspecting the contours of W(Lp; z) in figures 3.7.2 through 3.7.4. In the (z;, z2) space, 

the initially defined region R is now the area constrained by | z;| < 1. Figures 3.7.2 and 

3.7.3 on page 65 show the contours of W(Lp; z) for the designs with the below-optimal 

logit Lo = 1 and the above-optimal logit Lp = 1.5 respectively. Within the region R, areas 

where W(Lo; z) exceeds 3 are found in both situations. Such areas lie outside of the 

design square for the design with lower-than-optimal Lp and inside for the design with 

higher-than-optimal Lo. The contours of W(Lo; z) for the optimal design, where Lo = 

61



1.2229, appears in figure 3.7.4 on page 66. The contour plot for the optimal design shows 

that except at the design points, where W(Lo; z) = 3, the scaled prediction variance is 

smaller than 3 throughout the region. 

The contour plot for the optimal design has confirmed that the parallel-line D 

optimal design possesses equivalence property (3): Max V(&; x) = 3. This design will 
xeR 

then be entitled to properties (1) and (2). Meanwhile, property (2) has been partially 

verified as it has been shown that the optimal parallel-line design has the smallest 

maximum scaled prediction variance among all symmetric, equal sample size parallel-line 

designs. 

Equation (3.7.6) indicates that for a fixed Z2, W(Lo; z) is maximized at z; = +1, or 

the region edges. This implies that the maximum W(Lp; z) within the region R is always 

to be achieved somewhere along the region boundaries. The scaled prediction variance on 

the region boundaries is a function of only z2, denoted w(Lg; z), and is given by 

—-L L 

(Ite Sy +e *) 2427] (3.7.7) 
(l+e /07)(1 +407) 
  w(Lo; Z) = 

where z is a scalar variable equivalent to zz. The functional form of w(Lg; z) largely 

resembles that of W(Lo; z) for a symmetric two-level design in the case of a one-variable 

model. The function w(L; z) is plotted in figure 3.7.5 on page 66 for the same designs 

inspected earlier using the contour plots. The plot of w(Lo; z) in figure 3.7.5, with a 

pattern similar to the one-variable plot of W(Lo; z), depicts the behavior of the scaled 

prediction variance along the region boundaries for both the optimal and other than 

optimal designs. All three curves cross at z = +1, giving w(Lo; z) = 3, but only the one for 

the optimal design is able to refrain itself from exceeding 3. 
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Similar to the cases in the previous sections, the function w(Lo; z) offers an 

alternative in solving for the optimal design. Again, equivalence property (3) suggests 

that the design for which Max w(Lo; z) is achieved at the design points z = +1 is the 
zeER 

optimal solution. Consider the derivative 

  

. P,(1-P 
dw(Lg;z) _ P,U=P,) [Lo(1 - 2P,)(2 + 2°) +22], (3.7.8) 

OZ Po(l _ Po) 

l 1 . . . 
where Pp = ————— and P, = —— Evaluating (3.7.8) at z= 1 and setting it to 

1+e7bo l+e 07 

zero leads to 

3Lo(1 - 2P9) +2=0. (3.7.9) 

Numerical solution of (3.7.9) yields Lp = L* = 1.22291, or Po = P* = 0.772575, which 

0° w(L3Z) 
agrees with the result from maximizing [I(B)! in §2.1. The second derivative 5 

dz 

is found to be negative at z = +1 given Lo = L*, confirming that w(Lpo; z) has indeed been 

maximized at z = +1 for Lp = L*. 

In summary, we have verified equivalence property (3), and partially property (2), 

for the parallel-line D optimal design and thereby confirmed all three equivalence 

properties associated with the design. The parallel-line D optimal design was originally 

intended to be the best only among the set of all parallel-line designs over the selected 

region. Its global D optimality among all possible designs in the region remained 

unknown until the discovery of property (3) for the design, i.e. Max V(E; x) = p. Since 
xER 

property (3) has been verified, it can be concluded that the parallel-line D optimal design 

is not only the best in the set of parallel-line designs but also truly D optimal among all 

possible designs that can be constructed in the selected region. The set of all possible 

design measures includes designs of any other patterns with any number of design points. 
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W(LO;z) 

    

  

ne LO=1 —— L0=1.5434 (optimal) -—-----— LO=2 

Figure 3.5.1 Scaled prediction variance for two-level designs, one-variable model 

      
~ ian L0O=1.5 —— L0=1.85 (optimal) -—->---> LO=2.63 

Figure 3.6.1 Scaled prediction variance for three-level designs, one-variable model 
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Figure 3.7.4 Scaled prediction variance for D optimal parallel-line design (LO = 1.2229) 

      
Figure 3.7.5 Scaled prediction variance for parallel-line designs along region edges 
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CHAPTER 4 

DESIGN EFFICIENCY IN THE PRESENCE OF INTERACTION 

§4.1 Overview 

Designs assuming the no-interaction model are built on straight line ED’s and 

have relatively simple structures while those assuming the interaction model have more 

complicated structures due to the hyperbolic ED curves. In addition, design construction 

is done without using the interaction coefficient for designs based on straight line ED’s 

but does require knowledge of the interaction parameter for designs involving hyperbola 

ED’s. Therefore design implementation seems easier and more practical for designs on 

straight line ED’s than for those on hyperbola ED’s. 

However, since an interaction effect is of potential concern in many experimental 

studies, a simple design on straight line ED’s can often be intended for situations with 

interaction. Such consideration is reflected in the design criterion adopted by Brunden et 

al. which comes from fitting an interaction model while assuming B)2 = O in the true 

relationship. How effective such an approach is in bringing a good design to an 

interaction situation can be evaluated through relative efficiencies between alternative 

designs. In general, it is of interest to investigate all designs based on straight line ED’s in 

the presence of interaction. This will be done by finding their efficiencies relative to the 

hyperbola-based design. The D efficiency in this context can be expressed as 

1 

|1(B)| from design A, given B,2 # 5° 

|1(B)| from design B, given B, # 0 
  D-EFF = ( (4.1.1) 
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where p is the number of parameters, or p = 4, B currently represents the hyperbola-based 

design which is the common basis of comparison, and A is a design under investigation 

such as the ray, factorial, or parallel-line designs. 

Brunden et al. (1988) computed a different type of efficiency for their ray and 

factorial designs. Their efficiency is defined as 

l1(B)| from design A, given B), #0 
; (4.1.2) 

I(B)| from design A, given B,. =0 
  

  

This efficiency expression does not compare two designs but rather measures the change 

in II(B)I as By2 varies from zero for the same design. A large value of this efficiency says 

nothing as to whether the design is a successful candidate in the respective situation. 

To evaluate the efficiency defined in (4.1.1), let X* be the model matrix from 

fitting an interaction model due to a simple design. Let P; denote the actual response 

probability given B,2 # 0 at the ith point of the simple design. It is shown that the 

efficiency can be expressed as 

1 

1 4 4 
ly #4 P; (1—P, nen (fro) 

D-EFF = — - _ (4.1.3) 
4 L PUO-P) 
  

where P is the upper optimal probability for the hyperbola-based design, or P = 0.823959, 

and L = logit(P). 

§4.2 Efficiency of Ray Design 

For a ray design, it is shown that 
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— 2 . 2 -1 pe BkEiBoy (ke) j-Bo) 
4 2 J” G4ek)2A J (4(k/2))2A 
me*d-P*)=| Wm trate St 8 yaee KB AB 
i=l s=-I,1 j=l 

(4.2.1) 

By where k = -——, g is a function of k given in (2.3.3), Lj is an optimal logit for the ray 
2 

design, and As is the difference in logit between the origin and the hyperbola enter, which 

  

  

is given by 

Ap = Bo - Bi, = PiP2. (4.2.2) 
Bia 

The D efficiency of the ray design relative to the hyperbola-based design is given by 

1 

1 4s «4 4 TIP; (1-P;’) f(k)4 (Ly -Ly)/(Ly — Bo )(L2 - the 
D-EFF=F(k, Bo, As)= (k)* (Lg ~ ba) v(L1 ~ Bo)L2 Bo) List , (4.2.3) 

4L\Ap| P(1—P) 

where L, and L, are the optimal logits of the ray design, which vary with Bo, and f(k) is a 

function jointly given by (2.3.2) and (2.3.3). 

Essentially, the efficiency is a function of the parameters k, hy, and As. Due to the 

symmetry in k and the assumption BoSO, only cases of k<1 and Bo<0 will be evaluated. 

Recall that when k=1, the ray design will cause !I(B)l=0 and hence zero efficiency. The 

efficiency is tabulated in table 4.2.1 and also plotted in figure 4.2.1. 

\< “> U 

The assumptions in a ray design imply that As >0 represents synergism whereas As 
rr 

<0 corresponds to antagonism. Both the table and the graphs indicate that the ray design 

is not efficient at all With synergism as the efficiency gets close to zero most of the time. 

The efficiency is much better with antagonism. Nevertheless, as seen from the plots, 
eee a ee 

unfailing performance only occurs over limited regions of the parameter space. For a 

KS 
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given Bo, there is a maxirnum efficiency at a certain condition of k and As. These results 

appear in table 4.2.2. 

Table 4.2.1 Defficiency of ray design 

  

  
  

As 
Bo k -5 -2 -1 0.5 0.5 1 2 5 

0 0.1 04 11 28 43 06 7 ~~ 05 .03 

0.3 03 10 27 #2152 05 06 04 02 

(ED711, 0.5 03 08 24 1.58 04 05 £4.04 #02 

EDo7.8) 0.7 02 # .06 18 = .53 03 03 03 01 

0.9 01 .03 10 ~—-.32 01 02 01 01 
~ oe eee eee +--+ fren nnn c nena nnn nnn nnn ncn nnn 

-1 0.1 07 20 44 A2 08 10 09 05 

0.3 06 19 45 ~~ 53 06 09 08 04 

(EDs6.1, 0.5 05 16 42 64 05 07 06 03 

EDo¢.0) 0.7 04 12 33  ~§=©.60 03 05 04 02 

0.9 02 07 19.36 02 03 02 01 

-2 0.1 11 31 47.27 07 12 12 07 

0.3 10 30. 527 05 11 10 06 

(ED445, 0.5 08 26 ~=-.53 44 04 08 08 05 

EDo4.1) 0.7 06 20 «45 ~——«38 03 06 06 04 

0.9 03 11 26 = 22 02 03 03 02 

-5 0.1 23 27 09 ~=.00 00 04 12 12 

0.3 21 30 12 ©8601 00 04 ~~ «11 11 

(ED 29 3, 0.5 19 3] 13 00 00 03 09 8.09 

EDg9_8) 0.7 14 27. 10 ©.00 00 02 8606 ~§ 06 

0.9 08 15 05 00 00 01 04 04 

Table 4.2.2. Maximum D efficiencies of ray design 

Bo | Max D-EFF k Ap 

0 0.644441 0.595058 -0.382167 

-1 0.650155 0.547976 -0.529677 

-2 0.576373 0.505713 -0.773346 

-5 0.323374 0.401569 -2.33088 
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0) 
Delta-beta 2    0 

Delta-beta 2 

(1) Bo =0 (2) Bo =-1 

  

0 0 
Delta-beta 2 Delta-beta 2 

  

(3) Bo =-2 (4) Bo =-5 

Figure 4.2.1 D efficiency of ray design 

71



As seen in §2.6, the hyperbola center falls in the third quadrant under synergism 

but in the first under antagonism. The better efficiencies with antagonism then suggests 

that the simple design, currently the ray design, performs better when it lies closer to the 

hyperbola center and therefore closer to the hyperbola-based design as well. Intuitively, 

geographical closeness presumably should yield less inferior performance. As a matter of 

fact, this is a common feature revealed later in all other simple designs. 

§4.3 Efficiency of Factorial Design 

For the 2x2 factorial design, it is shown that 

Ss SoL SoL 
a, + Bo +L, + > 4 

mpe*a-P*)=| TW 1 date? ) 
i=l 8] =-1,1 $2 =-1,1 

  

s soL SoL ~ 
$89L9+—-(L, - 5 "Bo +L, + 5 oy 

‘(Ite B yl, (4.3.1) 

    

where Lg is the upper optimal logit for the factorial design, or Lp = 4.13068, Ag is given 

by (4.2.2), and Lx = B, X10 or B2x29 where (X10, X20) is the design center as shown in figure 

2.4.1. The efficiency of the factorial design is given by 

1 

tie P| 12 1 1 i 

D-EFF = F(Bo, As, L,) = —24 - (4.3.2)   

The efficiency is a function of the parameters Bo and Ag as well as the design 

location index Ly. The logit type quantity Lx is a scale free index representing the user 
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selected position for the design center. For a given set of parameters, Lx uniquely 

determines the design location as illustrated in figure 4.3.1. 

x9 A    
  

  x 

Legend a: ED for logit La, assuming no interaction 

b: ED for logit Bo. assuming no interaction 

C: EDs, assuming no interaction 

d: ED for logit Lp, assuming no interaction 

€}, 22: ED for logit La, assuming interaction 

f;, f2: ED for logit Lp, assuming interaction 

A: design center given by Lx = La-Bo (assuming Ly = Byx10) 

B: design center given by Lx = Lp-Bo (assuming Ly = 81x19) 

Figure 4.3.1 Correspondence between Lx and design center on EDs 

Due to the symmetries 

(1) F(Bo, Ap, Lx) = FC -Bo, - AB, - Lx ) 

and (2) F(Bo, Ap, Lx) = F(Bo, AB, - Bo - Lx), 

only cases of Bo<0 and L,2 - fo will be tabulated. The condition L, = - “ corresponds 

to a design center at the midpoint of the EDso line segment intersected by the x, and x 

axes. The efficiency is listed in table 4.3.1 and also plotted in figure 4.3.2. 
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Table 4.3.1 Defficiency of factorial design 

  

Ap 

Bo Lx 10 5 2 -1 1 2 5 10 

0 0 12 22 35 19 19 35 22 12 

1 11 19 25 13 13 25 19 11 

2 10 14 11 03 03 11 14 10 

3 09 09 .03 .00 .00 03 09 09 

4 06 05 .00 00 00 00 OS 06 

-1 0.5 13 27 55 25 10 23 18 11 

1.5 12 24 40 .20 06 16 16 10 

2.5 11 18 18 .O7 01 07 12 09 

3.5 09 il 05 .00 00 02 08 08 

4.5 07 06 00 .00 00 00 04 06 

-2 1 14 33 75 26 .06 16 15 10 

2 14 30 57 19 03 10 14 09 

3 13 22 29 11 .00 04 10 08 

4 11 14 08 00 .00 01 07 07 

5 08 07 00 00 00 00 04 05 

-5 2.5 19 46 30 03 00 04 08 07 

3.5 19 45 27 02 00 03 08 07 

4.5 18 40 22 01 00 01 06 07 

5.5 15 30 17 .0O .00 .0O .04 .06 

6.5 12 17 .03 00 OO .00 .03 .05   
Since B,; and B> are not restricted to have identical signs as in the ray design, the 

condition As>O now describes a broader situation than synergism. The correct 

interpretation is that As>O corresponds to the situation where the EDso and the hyperbola 

Bo center are separated by the origin. Furthermore, As>0 implies that if L, = - “3? the center 

of the factorial design and the hyperbola center would fall in opposite quadrants, either 
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D-EFF    
(1) Bo =0 (2) Bo =-1 

  

(3) Bo =-2 (4) Bo =-5 

Figure 4.3.2 D efficiency of factorial design 
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Bo first/third or second/fourth. On the contrary, As<O implies that if L, = - “3” the design 

center and the hyperbola center would lie in the same quadrant. 

The efficiency is worse when As>0 than when As<0 and especially so if the origin 

is relatively far from EDs, or Bo far from 0. Supported by the above paragraph, this 

suggests that in general, the factorial design seems less inferior when it lies closer to the 

hyperbola-based design but often deteriorates if away from it in the opposite direction. 

For the factorial design, the best position of the design center is always given by 

Bo the condition Lx, = - "5? which leads to the highest possible efficiency given the 

parameters. The maximum efficiencies given Bp or or with no restriction are summarized 

in table 4.3.2. 

Table 4.3.2 Maximum D efficiencies of factorial design 

  

  

Bo Max D-EFF Lx Ap 

0 0.348610 0 - 1.95936 

-| 0.552402 0.5 -1.81418 

-2 0.751089 1 -2.00687 
-5 0.538607 2.5 -3.67626 

Global Max: 

-2.85649 0.816074 1.42825 -2.27609 

§4.4 Efficiency of Parallel-Line Design 

By As seen in §2.5, when k = -——= +1, a rectangular parallel-line design will result 
2 

in a singular information matrix for fitting the interaction model. Similar to §2.5, the 
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assumption here is to make the non-ED edges of the design horizontal if [kl = +1 and 

leave the design rectangular otherwise. The D criterion of a parallel-line design is directly 

proportional to the squared length of an ED edge. The comparison of the parallel-line 

design against the hyperbola-based design will then have to be constrained on the two 

designs having equal areas. 

For the above described parallel-line design, it is shown that 

4 

ITP. (1-P*)= 
i=1 

L L L Ly! 
sist (LH (k) 489g — (By Lat $2 -F(K))-s9Ag >) 

0 0 Tt WM ave P 
s,=-11 S)=-1,1 $3=-1,1 

(4.4.1) 

where k = - Bi Lo is the upper optimal logit for the parallel-line design, or Lp = 1.22291, 
2 

Ags is as defined in (4.2.2), L, = ByX19 where x19 is the x; level at the design center as 

shown in figure 2.1.1, and the function f(k) is given by (2.5.2). The D efficiency relative 

to the hyperbola-based design is given by 

i 
fi Pr(—P? } 4 

D-EFF = F(k, Bo, As, Ly) = HI f(k)| . 4.4.2 PoP) lf (k)| (4.4.2) 

Due to the symmetries 

(1) F(k, Bo, “Ap, Lx) = F(k, -Bo, ~ As, -Lx), 

(2) F(k, Bo, AAs, Lx) = F(-k, Bo, As, Ly), 

l 
and (3) fork #+1, Fk, Bo, As, Lx) = FC Bo, As, - Bo - L,), 
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the efficiencies will be investigated for the restricted parameter space Ikle (0,1] A Boe (-°, 

0]. The user selected design location is reflected by the scale free index L,, which has 

been discussed with more details in §4.3. Considering the results in §4.3, L, will be 

examined at values symmetric about - Fo. The efficiency is listed in table 4.4.1. For Iki = 

0.5, the efficiency is plotted in figure 4.4.1. For other tabulated values of Ikl, the graphs 

would look quite similar. Situations producing maximum efficiencies are summarized in 

table 4.4.2. 

Table 4.4.1. Defficiency of parallel-line design 

  

Ap 

kl Bo Lyx 3 2 -1 05 05 1 2 3 

0.2 0 -2 .O1 .02 .O1 .00 OO 02 .O2 .O1 

-1 04 12 21 12 23 20 09 03 

O 05 21 58 76 .76 58 21 05 

1 03 09 20 23 12 21 12 04 

2 01 02 02 .0O 00 01 02 01 

-| -1.5 01 02 01 .00 00 02 01 00 

-0.5 04 14 27 24 23 18 09 03 

0.5 06 25 75 1.03 41 49 22 06 

1.5 03 11 26 24 05 18 13 04 

2.5 01 02 02 .O0 00 00 02 01 

-2 -1| 01 03 02 .O1 01 02 02 01 

-5 0.5 03 04 04 = .03 03 04 03 02 

1) 18 39 12 00 00 09 ~~ .20 08 

2.5 35 102 05 .oO0 00 03 33 22 

3.5 17 = 38 ——«3 00 00  .O1 AS 16 

4.5 03 04 02 oO 00 O01 .03 02   
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Table 4.4.1 (continued) 

  

Ap 

Iki Bo Ly 3 2 «4 0.5 0.5 1 2 3 

0.5 0 -2 .O1 .O1 .O1 .0O .0O .O1 01 01 

-1 03 11 19 AS 22 18 08 03 

0 05 20 60 19 79 60 20 05 

1 03 08 18 22 15 19 11 03 

2 Ol 01 01 .00 00 O01 O01 01 

-] -1.5 01 02 01 .0O0 00 O01 01 O01 

-0.5 03 12 24 26 20 17 08 03 

0.5 O05 23 80 = 1.08 37 49 21 05 

1.5 03 10 24 26 08 17 11 03 

2.5 01 02 02 .00 00 01 01 01 

-2 -1 01 02 02 01 01 02 01 01 

  
-5 0.5 03 03 03 02 01 03 03 01 

1.5 16 34 09 ~=.00 00 05 18 08 

2.5 32 =1.06 04 + .00 00 02 29 21 

3.5 {5 34 04 3.00 00 01 15 12 
4.5 02 03 02 #£.00 00 01 03 02 

0.8 O -2 O1 Ol 01 .00 00 01 Ol 00 

-I 02 06 12 12 ~~ = .14 12 06 02 

0 03 13 43 36 6 43 13 03 

| 02 06 12 14 12 12 06 02 

2 00 01 01 .00 00 01 01 01 

-J -1.5 01 01 01 00 00 01 01 00 

-0.5 02 07 15 18 11 11 06 02 

0.5 03 15 58 75 23 34 14 03 

1.5 02 07 15 18 08 11 06 02 

2.5 01 01 01 .00 00 01 01 01 
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Table 4.4.1 (continued) 

kl Bo kk -3 -2 -1 -0.5 0.5 1 2 3 
  

0.8 -2 -] O1 01 01 O1 00 O01 .O1 O01 

-5 0.5 02 02 02 00 00 02 02 Ol 

1.5 10 22 04 00 00 02 12 06 

2.5 21 76 02 #00 00 01 18 14 

3.5 10 22 03 00 00 01 11 07 

4.5 | 02 02 02 + .00 00 01 02 01 

1 0 -2 01 02 02 +~«.00 00 01 02 01 

-1 03 09 20 ~—.23 11 21 13 04 

0 05 21 56 — «73 13 56 21 05 

1 04 13 21 ld 23 20 09 03 

2 01 02 01 .00 00 02 02 01 
~eee eee --- |-~-----------~-----~-----+----+------ 22+ == +--+: 

-1 -1.5 01 02 02 + .00 00 01 02 01 

-0.5 03 11 16 ~—.23 05 17 13 04 

0.5 06 25 73.99 4] 48 22 06 

1.5 04 14 27 ~—.23 23 18 08 03 
2.9 01 02 O1 00 00 02 02 O1 

-2 -1 01 02 02 + #.00 00 01 02 01 

  -5 0.5 03 04 02 #00 00 00 03 03 

1.5 17 38 03 .00 00 01 15 16 

2.5 35 99 06 ~~ .00 00 03 33 22 

3.5 19 39 12 00 00 10 20 08 

4.5 03 04 04 03 03 04 03 02 
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Delta-beta 

(1) Bo =0 

0 
Delta-beta 

(3) Bo = -2 

    

    

      

    

-2 

0 
Delta-beta 

(2) Bo =-1 

0 
Delta-beta 

(4) Bo =-5 

Figure 4.4.1 D efficiency of parallel-line design, Ikl = 0.5 
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Table 4.4.2 Maximum D efficiencies of parallel-line design 

[kl Bo Max D-EFF Lx As 

0.2 0 1.01655 0.122949 -0.121582 
-1 1.03369 0.476906 -0.455597 

-2 1.02722 0.965984 -0.842871 

-5 1.02092 2.47883 -2.00833 

Max given kl: 

-0.610870 1.03542 0.305435 -0.305435 

0.5 0 0.953837 0.259877 -0.236806 

-] 1.08343 0.515547 -0.539878 

-2 1.08083 0.985573 -0.9003 13 

-5 1.06786 2.48735 -2.03742 

Max given IkI: 

-1.27061 1.08527 0.635305 -0.635305 

0.8 0 0.569423 0.155526 -0.409865 

-1 0.777025 0.514442 -0.587630 

-2 0.783126 0.996431 -0.934492 

-5 0.770943 2.49563 -2.05558 

Max given kl: 

-1.54952 0.784779 0.774762 -0.774762 

1 0 |* 0* 0* 

-1 0.995652 0.539806 -0.427234 

-2 0.990787 1.04092 -0.824623 
-5 0.986517 2.52350 -1.99947 

Max given IkI: 

0* |* O* 0* 

Global Max: 

0.439529 -1.17012 1.09196 0.585060 -0.585060 

* Since As by definition is not allowed to be 0, the values with asterisks are 

  
meaningful only in the limiting sense, which means that for Ikl = 1, the efficiency 

approaches | as Bo, L,, and As all tend to zero in a manner such that L, = - Bo/2 

and As = B)/2. 
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As seen from table 4.4.1 and figure 4.4.1, the same feature found in the ray and 

factorial designs is once again present here. The efficiency is usually poor when Ag>O but 

considerably better when Ag<0. The difference becomes more obvious as EDs9 shifts 

away from the origin, or Bo deviates from 0. Similar to the interpretation given in the 

previous sections, it is felt that the parallel-line design is likely to be less inefficient when 

located near the hyperbola-based design. 

Table 4.4.2 shows that the best L,, indicating the design location, is always close 

to - fa for given Ikl and Bo. For the less restricted maximum given Ikl only as well as the 

unrestricted global maximum, the best L, is exactly at - Fo. Whenever L, = - fe 

Bo accompanies a maximum efficiency, the condition As = is also present. 

§4.5 Efficiency of Alternative Parallel-Line Design 

The study is conducted in exactly the same fashion as seen for the regular parallel- 

line design. The only adjustment needed is to use the appropriate optimal logit for the 

alternative parallel-line design, which is 1.54341 instead of 1.22291 for the regular 

parallel-line design. Numerical results are given in tables 4.5.1 and 4.5.2. The efficiency 

is plotted in figure 4.5.1 for selected situations. No remarkable difference is found for the 

alternative parallel-line design and the same comments given in §4.4 apply here. 

Based on §4.2 through §4.5, the simple type of designs including the ray, factorial, 

and parallel-line designs do not seem to offer reliable performance for the purpose of 

fitting an interaction model when the interaction is indeed present. The efficiencies are 
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quite sensitive to the parameter structure and where needed, to the user selected design 

location as well. In all four designs, the efficiency can be rather low when As>0. The 

interpretation is that a simple design is especially unsuccessful when it lies far from the 

hyperbola-based design. Best efficiencies roughly around 0.7 to 1.0 occur only in limited 

situations. As far as the efficiency is concerned, the hyperbola-based design still remains 

a better approach to handle an interaction situation. 

Table 4.5.1 Deefficiency of alternative parallel-line design 

  

As 
Ik\ Bo L, -3 -2 -| 0.5 0.5 1 2 3 

0.2 0 -2 .04 05 02 .00 .OO 03 05 .O3 

-1 17 #27) 22 O7 34 34 20 112 
0 23 42 .63 10 10 .63 42 23 

1 12 .20 34 34 .07 22 | 17 

2 | 03 05 03 00 .0O0 02 05 04 

-1 -1.5 05 06 03 00 00 04 04 03 

-0.5 19 31 35 24 34 29 19 11 

0.5 26 51 #488 1.03 25 4.43 £4.38 22 
1.5 13 25 44 24 02 13 24 17 

  -5 0.5 10 1] 10 ~—.05 03 10 08 05 

1.5 50 50 08 .00 00 05 26 18 

2.5 91 82 03 .00 00 01 17 29 

3.5 49 40 02 «00 00 00 07 18 

4.5 10 11 02  .00 00 00 03 06 

84



Table 4.5.1 (continued) 

  

As 
Ik} Bo Lx 3 2 -1 -05 0.5 1 2 3 

0.5 0 -2 .04 .04 .O2 OO .00 .03 .04 .03 

-1 15 24 25 ~=—«13 37 32 20 11 
0 22 43 65 .68 68 65 43 22 

1 11 20 32 37 13 25 24 15 

2 03 04 03 00 .0O 02 04 04 

-| -1.5 04 05 03 .O0 00 03 04 03 

-0.5 16 28 36. ~— 35 30 27 18 11 
0.5 25 52 94 97 21 40 38 22 
1.5 13 24 42 ~~ «35 04 16 22 15 
2.5 03 05 04 .00 00 02 04 04 

-2 -1 05 06 05 .O1 01 04 04 03 

  
-5 0.5 08 09 09 = .02 01 06 06 05 

1.5 46 47 05 .00 00 02 19 17 

2.5 95 75 02 ~«.00 00 01 14 26 

3.5 44 40 02 ~ .00 00 00 08 17 
4.5 08 09 02 ~~ .00 00 00 04 05 

0.8 0 -2 02 03 02  ~=-«.00 00 02 03 02 

-1 09 15 19 ~=.16 23 21 14 08 

0 15 30 45 43 43 45 30 15 

1 08 14 21 23 16 19 15 09 

2 02 03 02 ~«.00 00 02 03 02 
~---------------! p= -- wenn nnn 88-882 --- +--+ 

-1 -1.5 02 03 02 #00 00 02 Q2 Q2 

-0.5 10 18 26 ~—-«.30 15 17 13 08 

0.5 17 37 68 58 13 26 26 15 

1.5 09 {7 27 ~—-«.30 06 14 14 09 

2.9 02 03 03 £00 00 01 02 02 
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Table 4.5.1 (continued) 

Iki Bo kk -3 -2 -1 0.5 0.5 1 2 3 
  

0.8 -2 -1 03 04 04 #201 00 02 02 #02 

ee ee ew we ea a a i me a a ew eee ee ee ee ee ee 

  

-5 0.5 05 06 05 .00 00 02 04 03 

1.5 30 31 02 ~~ «.00 00 01 09 12 

2.5 68 49 01 .00 00 01 09 16 

3.5 29 29 02 #00 00 00 06 11 

4.5 05 06 03 .00 00 01 03 03 

0 -2 03 Us) 03 .00 00 Ol O5 05 

-| 11 20 34 32 06 21 27 18 

0 23 4} 61 .68 68 6] 4) 23 

l 18 27 21 .06 32 34 20 11 

2 05 05 01 .00 00 03 05 03 

-1 -1.5 | 04 06 04 .00 00 01 04 05 

-0.5 13 25 44. 21 01 12 24 18 

0.5 25 50 84 I 26 43 37 22 

1.5 19 31 3421 34 29 18 11 
2.5 | 05 06 02 #.00 00 04 04 03 

-2 -1 05 07 05 .00 00 Ol 04 05 

0 17 34. =.47 = =.06 ~——-.00 06 21 19 

1 32 66 1 52  .06 26 35 24 

2 23 39 ATCO 35 29 19 11 

3 06 07 .O5 O1 01 05 05 03 

-5 0.5 10 1] 01 .00 00 00 03 06 

1.5 48 39 02 ~=«.00 00 00 07 18 

2.5 88 81 03 .00 00 01 17 29 

3.5 50 49 09 ~=.00 00 06 27 18 

4.5 11 11 10 ~=.05 05 10 08 05 
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(1) Bo =0 

0 
Delta-beta 

(3) Bo = -2 

    

    

    

0 
Delta-beta 

(2) Bo =-1 

0 
Delta-beta 

(4) Bo =-5 

Figure 4.5.1 D efficiency of alternative parallel-line design, Ikl = 0.5 
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Table 4.5.2 

KK 

Maximum D efficiencies of alternative parallel-line design 

  

  

IkI Bo Max D-EFF L, Ag 

0.2 0 1.01122 0.176667 -0.172197 

-1 1.03364 0.534030 -0.549454 

-2 1.03509 1.01119 -1.03153 

-5 1.03540 2.50131 -2.51615 

Max given kl: 

00 1.03542* - Bo/2 Bo/2 

0.5 0 0.919936 0.392824 -0.314002 

-1 1.05136 0.610963 -0.683746 

-2 1.07768 1.03433 -1.12989 

-5 1.08487 2.50373 -2.56918 

Max given kkI: 

-co 1.08527* - Bo/2 Bo/2 

0.8 0 0.500254 0.664515 -0.191627 

-| 0.721647 0.583482 -0.762561 

-2 0.770657 1.02082 -1.18972 

-5 0.784024 2.50206 -2.60232 

Max given |kI: 

-00 0.784779* - Bo/2 Bo/2 

-] 1 0.5 -0.5 
-2 1 1 -1 

-5 1 2.5 -2.5 

Max given |k| 

Box! I - Bo/2 Bo/2 

Global Max: 

0.439529* -00 1.09196* - Bo/2 Bo/2 

These maximums are in fact the limits of the efficiency as Bo tends to infinity 

while L, assumes the value -Bp/2 and As assumes Bo/2. 

Since As by definition is not allowed to be 0, the values are meaningful only in the 

limiting sense, which means that for Ikl = 1 and Bo = 0, the efficiency approaches 1 

as L, and As tend to zero. 
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§4.6 Ray Design vs. Modified Ray Design 

As the ray design often results in poor performance with synergism, the modified 

ray design is proposed primarily as an alternative to better cope with synergistic 

conditions. More insight and motivation were discussed in §2.6. Taking into account the 

effect of interaction, the modified ray design relies on the hyperbola ED curves rather 

than the ED lines that were used in the ray design as a result of assuming no interaction. 

Let L} and L> denote the logits of the ray design. Let L; and Ly denote the logits and g 

denote a ray slope of the modified ray design. By the definition in (4.1.1), the D 

efficiency of the ray design relative to the modified ray design can be expressed as 

1 
(Ly -L4 (Li - Bo (L2 - Bo)? 

Ap 

1 

D-EFF = F(k, Bo, As) = 4k f(k)4   

1 
isc Ly)—S(g, Ly ISL) “SG ) 

1 

2 

(F—DS(g,L1)8(g,L9) +(e? -1s tyst3)) 
& 

! 

‘i d+eti } 
i=l j=-1J 
  

1 
, 2 i 

, , (k/sLi-Bo)”) |4 k(L{-Bg)? (ACIP) jay 
(1+(k/g))“ Ag , 2 eit (l+-gk)7A 

Tl [(i+e ee Bite 
i=l j=-11 

(4.6.1) 
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B Fl g is a function of k given in (2.3.3), the function f(k) is jointly given by 
2 

(2.3.2) and (2.3.3), Ap is defined in (4.2.2), and the function S(g, L) is defined in (2.6.1). 

where k = 

The efficiency is evaluated in table 4.6.1. 

Table 4.6.1 Deefficiency of ray design relative to modified ray design 

  

Ap 

Bo k 0.5 1 2 5 

0 1 4086 .7404 9295 1.006 

3 3927 7315 9274 1.007 

5 3775 7220 245 1.007 

7 3691 .7165 9227 1.007 

9 3659 7143 9220 1.007 
eee eee ee ee J —~-----------~-----~----~----+-~+---+------------------- 

-1 1 3108 .6657 8972 1.001 

3 2966 .6563 8948 1.002 

5 2828 .6460 8915 1.002 

7 2751 .6399 .8894 1.002 

9 2722 .6375 8885 1.002 

-2 1 1875 5470 8378 9897 

3 1779 5382 8355 9908 

5 1681 5277 8318 9911 

7 1627 5214 8294 9912 

9 1607 5189 8284 9912 
Woo eee pa nnn n nnn nn nnn nnn nnn nee 

-5 1 0032 .1024 .4608 8720 

3 0031 .1050 .4684 8781 

5 0028 .1053 .4718 8820 

7 0028 1051 4728 8838 

9 0025 1051 4731 8845   
The efficiency is quite insensitive to the ratio k but is greatly affected by Bo and 

As. Decreasing efficiency occurs as By goes down, or the response probability at zero 

doses becomes lower. In the meantime, the efficiency drops very quickly as Ag decreases. 
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BiB 
Bi2 

or a shorter logit distance from the origin to the hyperbola center, would indicate stronger 

In fact, when B; and B» are considered to remain constant, a smaller value of As = 

synergism. This means that as the interaction in the form of synergism gets more severe, 

the modified ray design would become more advantageous over the regular ray design. 

By comparing the efficiencies in table 4.2.1 to those in table 4.6.1, one can obtain 

the efficiency of the modified ray design relative to the hyperbola-based design, which is 

given in table 4.6.2 

Table 4.6.2 Defficiency of modified ray design relative to hyperbola-based design 
(efficiency of ray design relative to hyperbola-based design in parentheses) 

  

  

Ap 

Bo k 0.5 1 2 5 

0 1 14 (.06) .09 (.07) 05 (.05) .03 (.03) 

3 12 (.05) .08 (.06) 05 (.04) .02 (.02) 

ae) 10 (.04) .06 (.05) .04 (.04) 02 (.02) 

7 .07 (.03) 04 (.03) .03 (.03) 01 (01) 

9 04 (.01) 03 (.02) 02 (.01) 01 (.01) 

-| 1 24 (.08) 16 (.10) 10 (.09) .05 (.05) 

3 .21 (.06) 14 (.09) 08 (.08) .04 (.04) 

5 17 (.05) 11 (.07) .07 (.06) 03 (.03) 
7 13 (.03) .08 (.05) .05 (.04) .02 (.02) 

9 .07 (.02) .04 (.03) .03 (.02) .01 (.01) 

-2 wl .35 (.07) 23 (.12) 14 (.12) .07 (.07) 

3 .30 (.05) 20 (11) 12 (.10) .06 (.06) 

5 .24 (.04) .16 (.08) 10 (.08) .05 (.05) 

1 18 (.03) 12 (.06) .07 (.06) 04 (.04) 

9 10 (.02) .06 (.03) .04 (.03) 02 (.02) 

-5 wl .60 (.00) 40 (.04) 26 (.12) 14 (.12) 

3 52 (.00) 135 (.04) 23 (11) 12 (.11) 
5 .A2 (.00) .28 (.03) 19 (.09) 10 (.09) 
7 31 (.00) 21 (.02) 14 (.06) .07 (.06) 

9 .17 (.00) 11 (.01) 08 (.04) 04 (.04) 
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For a quick reference on how much improvement the modified ray design 

possesses, the efficiency of the ray design relative to the hyperbola-based design is also 

listed next in parentheses in table 4.6.2. Apparently, the most difficult situation for the ray 

design is strong synergisrn accompanied by a fairly low zero-dose response probability. 

Quite to the contrary, the very same type of scenario is actually the most optimistic 

condition for the modified ray design. It seems that the worse the ray design performs, the 

greater the improvement of the modified ray design tends to be. Even though the 

modified ray design may still seem not so efficient compared to the hyperbola-based 

design, one should keep in mind that the table numbers do not really present the practical 

side of the story, in which the hyperbola-based design is often ruled out even from the 

candidate list because of negative doses or other practical concerns discussed in §2.6. 

In general, the ray design appears less efficient than the modified ray design most 

of the time, especially under strong synergism with a close to zero response probability at 

zero doses. From the efficiency stand point, the modified ray design may indeed be a 

meaningful alternative to the regular ray design in a synergistic situation. 
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CHAPTER 5 

ROBUSTNESS TO PARAMETER MISSPECIFICATION 

The optimal designs developed in the previous chapters are expressed through 

EDjoop’s along with certain geometric constraints due to the two-variable design space. 

To determine the actual design points, the values of all model parameters must be known. 

Parameter guesses in a real experiment can rarely be perfect, especially for the interaction 

case where the knowledge about the interaction coefficient is often scarce. If the 

parameters are misspecified, the implemented design will not be the desired optimal 

design. This chapter examines the effect of parameter misspecification on several D 

optimal designs. The robustness property of the design under parameter misspecification 

is evaluated through the D efficiency defined as 

1 

\1(B)!| for the design obtained from misspecified panes 
  D-EFF = ; 

II(B)! for the design obtained from true parameters 

where p is the number of parameters. Due to the additional geometric constraints, 

parameter misspecification can distort a design in a more complicated way than it does in 

the one-variable logistic case where a design is given purely in terms of ED’s. 

§5.1 Parallel-Line Design 

The D optimal parallel-line design is given by ED 227 and ED773 with equal 

sample allocations. The construction of such a design is discussed in §2.1. Assume that 

the experimenter computes the design points using the design matrix given in (2.1.7). Let 
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Bo, B1, and Bz denote the true parameters and Bo, Bj, and B4 the specified values. The 

degree of misspecification can be quantified through the ratios 

n= Bd mB _ BR 
0 

Bo’ me BL By? 

where f; # 0, j = 0, 1, 2. The design points computed with the misspecified parameters no 

  and mp) (5.1.1) 

longer fall on ED>».7 and ED77.3 but rather have their actual logit levels given by 

  

2 

Li = Bo(1 - ™2) 4 (L,-Lpy(1- ML) -1 tm, 
m9 my myk +M5 

2 

Ly = Bo(l - 2) + (Ly -Lp)(1 - hy +p me tm   

  

my m2 m?k? +m3_ 

Mg my mk? +m» Ly = Bol - M2) + Cy + Lp - BL) LA 
m2 m2 myk* +m) 

Mg mM, mk? +m 

L4 = Bo(l - —) + x + Lp) - —)+L—-5—: (5.1.2) 
m4 m9 myk +m») 

where L, = B;X10, Lp = 81D}, k is the slope of the true ED’s given by ee and L is the 
2 

optimal logit 1.22291 for the parallel-line design. When Bo = 0, the term Bo(1 - 0) in 
m2 

(5.1.2) should be replaced by Bo The scale free index L, stands for the user selected 
my 

design location and was explained in detail in §4.3. The scale free distance Lp = B,D, 

describes the length of the design along the ED edges, where the distance D, 1s initially 

defined in figure 2.1.1. The scale of the design is in fact characterized by the two logit 

type distances L and Lp, which address two orthogonal directions: the direction with the 

steepest variation in the response probability and the one with a constant response 

probability. 
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The D criterion of the constructed design is then compared to that of the optimal 

design. This relative efficiency measures the design robustness and is given by 

D-EFF = F(k, Bo, Lx, Lp, Mo, M1, m2) =(M9 ) 3 

2 -L 
2+e L +e 
  (5.1.3) 

(2+e i +eli) 

4 

  1 

z Q+ehi +eli) 

M
a
r
 

An example of design misplacement appears in figure 5.1.1. The optimal design 

in solid lines, when implemented with the wrong parameters, becomes the incorrect 

design in dashed lines. Table 5.1.1 gives the design points and their actual logits for both 

the correct and incorrect designs. In this example, the D efficiency of the constructed 

design relative to the optimal design is 45.95%. 

Figure 5.1.1 
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x1 

Design shift due to parameter misspecification, parallel-line design 
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Table 5.1.1 Design shift due to parameter misspecification, parallel-line design 

    

  

(X19 = 2, D; = 1) 

Correct design Misplaced design 

(Bo = -5, By = 1, Bz = 2) (Bo =-6, Bj = 1.5, B45 =1) 

(X1, X2) Logit (X1, X9) Logit 

(0.76, 1.51) -1.22 (0.44, 4.12) 3.68 

(1.24, 2.49) 1.22 (1.56, 4.88) 6.32 

(2.76, 0.51) -1.22 (2.44, 1.12) -0.32 

(3.24, 1.49) 1.22 (3.56, 1.88) 2.32 

The robustness property in a simplified situation assuming no misspecification in 

the slope k, or m; = m2 = 10, is first inspected in table 5.1.2 so that the effect of mg can be 

looked at more carefully. The efficiency function is free from k, Lx, and Lp due to the 

constraint m, = m. It seems that the design is slightly more robust to overestimation than 

to underestimation of the linear effects, especially when |Bol is small. The worst scenario 

occurs with an overestimated Bg accompanied by underestimated linear effects, especially 

when [Bol is already large. Furthermore, the efficiency function will be free from Bg 

whenever the misspecification is proportional across all the parameters, or mp = m, = m2 

=m, and is a function of m only. A general impression here is that the design appears 

somewhat more robust to overestimation than to underestimation of the parameters. 

The effect of misspecification is further investigated subject to no constraint. 

Selected results are given in tables 5.1.3 and 5.1.4. Many other tables are obtained but not 

shown here as they reflect similar results. It seems that the design is less robust when it is 

constructed longer in the direction of constant probabilities, characterized by a larger Lp. 

Recall that the D criterion of the optimal design based on the true parameters always 

improves as Lp increases. A design with longer ED edges is hence more desirable under 
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good parameter knowledge but will be somewhat penalized when the parameter 

knowledge is poor. 

Table 5.1.2. Defficiency under parameter misspecification, parallel-line design, 

mm, =m2=m 

  

  

, m 

IBol mo 2 5 7 1 125 15 175 2 

0 oO (dBoD| al 66 94 1 £97 92 87 82 
5 (pol) | 16 68 92 97 95 90 86 81 
i (Bo) | 21 63 82 88 88 85 81 .78 
15(B9) | 10 44 64 73 77 77 75 73 
2 (Bol); 02 23 44 57 64 66 67 66 

1 25 il 67 92 93 88 81 75 70 
5 12 66 94 97 92 85 78 «73 
75 16 67 94 99 95 88 81 «75 

1 19 68 94 1 4.97 90 84 78 
1.25 21 67 «4.92 99 97 92 86 .79 
1.5 17 63 88 97 97 92 87 Bi 
1.75 10 «4.550 82s—i«e—s—<‘<‘SHS es ssiaTCté« 
2 05 44 74 88 92 90 87 82 

2 25 11 68 82 73 64 56 49 .44 
5 16 66 92 88 77 66 58 .52 
75 21 68 94 97 88 77 67 59 

1 10 «6306.92 iS BS TSG 
1.25 02 44 82 97 97 90 81 273 

1.5 00 23 64 88 95 92 86 «78 
1.75 00 10 44 73 88 90 87 81 
2 00 04 27 57 77 85 86 82 

wooo eee | w.---~----- ee ee eee ee ee ee 

5 25 11 550.27 «15 10'—s«OTs—iw—t«<CS 
5 17 66 74 Al 24 AS Al 08 
75 00 55 94 81 50 31 21 15 

1 00 «100 741 B8DsiSHsCBTSCt«i«i 
1.25 oo Ol 27 81 97 81 58 AI 
1.5 00 00 06 41 82 92 78 59 
1.75 00 00 Ol 15 50 81 87 75 
2 00 00 00 05 24 56 78 82 
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Table 5.1.3. Defficiency under parameter misspecification, parallel-line design, 

Bo =-1,L, =0.5, Lp = 1 

  

m2 

Ik Mo m, 25 5 75 1 1.25 1.5 1.75 2 

5 5 25 12 60 87 .90 86 80 74 68 
5 40 66 89 93 89 82 76 70 
75 91 84 94 95 90 84 78 73 

1 74 1.01 99 97 92 85 719 73 
1.25 35 1.02 102 97 92 86 79 74 
1.5 15 86 99 96 91 85 79 74 
1.75 06 65 90 92 88 84 78 74 
2 | 03 47 78 86 85 81 77 73 

Woonona Lee p= — oA 
1 25 19 62 85 89 86 80 75 69 

5 48 68 88 93 90 84 78 72 
75 79 84 94 .96 93 87 80 74 

1 72 101 101 1 95 89 82 76 
1.25 35 1.04 1.07 1.03 97 90 83 77 
1.5 12 89 1.06 1.03 97 90 84 78 
1.75 04 66 98 1.00 .96 90 84 78 
2 02 44 85 95 93 88 83 78 

1.5 25 17 56 77 83 82 78 74 69 
5 27 63 81 88 87 82 77 72 
75 37 716 88 92 90 86 80 75 

1 44 89 .96 97 94 89 83 77 
1.25 37 95 1.02 1.01 97 9] 85 79 
1.5 18 86 1.03 1.03 98 92 86 80 
1.75 06 66 98 1.02 .99 93 87 81 
2 02 44 86 98 97 92 86 81 

1 5 25 12 44 74 83 82 78 72 68 
5 75 66 .79 84 83 79 74 69 
75 1.22 1.03 .94 .90 86 81 75 70 
1 73 1.22 107 .97 89 83 77 71 
1.25 32 1.13 1.12 1.01 92 84 78 72 
1.5 14 90 106 101 92 85 79 73 
1.75 06 66 95 .96 91 84 78 73 
2 03 47 81 89 87 83 77 73 

1 25 19 48 73 82 82 78 73 69 
5 71 68 .78 84 84 80 75 70 
75 98 1.01 94 91 88 83 77 72 
1 75 122 110 1 92 86 80 74 
1.25 32 1.17 1.18 1.07 97 88 82 75 
1.5 11 93 116 1.09 99 90 83 77 
1.75 04 65 1.04 1.06 .99 91 84 77 
2 01 43 88 99 96 90 84 78 

1.5 5 17 47 69 78 79 76 72 68   
98



Table 5.1.4 | Defficiency under parameter misspecification, parallel-line design, 

Bo = -2,L, = 1, Ikl=0.5 

  

  

m2 

Lp Mo my 25 5 75 1 1.25 1.5 1.75 2 

1 5 25 16 .60 87 90 85 .78 71 65 
5 42 66 88 91 85 78 71 66 
715 91 84 92 .90 84 77 71 65 
1 74 97 93 .88 81 75 69 64 
1.25 39 89 88 82 77 71 66 61 
1.5 19 70 77 75 71 66 62 59 
1.75 10 52 65 66 64 61 58 55 
2 05 38 53 57 57 56 54 52 

ween ne eee 4-2 ~- = ~~ nnn nnn nn een ane n nnn 

1 25 10 52 77 85 85 80 75 69 
5 20 63 83 91 89 84 77 71 
75 37 80 92 96 93 86 79 73 

1 53 97 1.01 1 95 87 80 73 
1.25 39 1.04 1.07 1.02 95 87 79 73 
1.5 13 89 1.05 1.00 93 85 78 71 
1.75 04 66 95 95 88 81 75 69 
2 02 46 81 86 82 77 71 66 

1.5 25 00 16 44 63 71 73 71 68 
5 01 23 54 71 78 78 75 71 
75 01 33 64 79 84 83 79 74 

1 04 47 16 88 90 87 82 77 
1.25 10 62 88 95 95 91 85 78 
1.5 16 70 95 1.00 98 92 86 79 
1.75 10 64 95 1.01 99 92 86 79 
2 03 46 86 98 96 91 84 78 

2 5 25 16 61 78 72 63 55 48 43 
5 48 66 87 83 73 63 55 49 
75 37 84 92 .88 79 69 61 54 

1 06 77 90 88 .80 71 64 57 
1.25 OL 47 78 81 77 70 64 58 
1.5 00 24 .60 .70 70 66 62 57 
1.75 00 11 42 58 62 61 58 55 
2 | 00 05 28 A6 53 54 54 52 

1 25 10 51 .70 .70 63 55 49 44 
5 19 63 82 83 75 66 58 51 
75 24 78 92 94 86 75 66 58 

1 10 77 98 1 93 82 72 64 
1.25 OL 46 91 99 95 86 716 67 
1.5 00 19 69 90 91 85 77 69 
1.75 00 07 45 74 82 80 75 69 
2 | 00 03 27 57 71 73 71 66 

1.5 25 00 17 43 56 57 53 48 44 
5 01 23 53 67 68 63 57 51 
75 02 34 64 78 79 73 66 59 

1 05 44 75 88 88 82 74 66 
1.25 03 Al 78 93 95 89 81 72 
1.5 00 24 .67 .90 96 92 85 76 
1.75 00 09 45 77 90 91 86 78 
2 00 03 25 59 79 85 83 78 
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§5.2. Hyperbola-Based Design 

The D optimal hyperbola-based design is given by EDj7,.6 and EDg9 4 with equal 

sample allocations. The clesign implementation was discussed in §2.2. Assume that the 

design is constructed from the design matrix given in (2.2.7) with the guessed parameters 

Bo’, Bj, BS, and Bj, where Bo’ is the guessed logit on the centered axes and is given 

by Bo'= Bo - Biba . The misspecification can be characterized by the ratios 

    

  

  

12 

x, , , , 

mo = Pov m, = Bi , m2 = Ba and mj2= Bi2 , (5.2.1) 
Bo By Bo Bio 

where Bo= Bo - a. and Bp# 0. The actual logits of the constructed design will not 
12 

correspond to ED)7.5 and EDg> 4 but are given by 

* my m, | L—mofo Li = Bo + A,(1 - —2)-Lp][(1- —+)- 1, 
m2 my mj2Lp 

Lo= Bo + A(1-22)-Lp ][(.- BL) + SE m0Po 
m12 

  

  

my my2Lp 

m m, , L+moBo 
L3 = Bo + [4,1 - —*+)+Lp] [C1 - —+)- ore), 

m4 My. = =mMyQhp 

* m m, ,, L—moBo L4= Bo +£4,(1 - —+)+Lp][(.-—+) + 1, (5.2.2) 
m2 m1 my2Lp 

where L is the optimal logit 1.54341 for the hyperbola-based design, A, = Bo - Bo= ne 
12 

and Lp = B1z;, where z; is the equidistant deviation in x; selected by the user and was 

better explained in §2.2. The quantity Lp is a logit type measure of the centered design 

level. As initially defined in (4.2.2), the quantity A, is the difference in logit between the 

origin and the hyperbola center. When Bo = 0, the term mo Bo in (5.2.2) is replaced by 

Bo’. 
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The robustness is measured by the D efficiency of the design obtained from the 

guessed parameters relative to the one from the true parameters. The D efficiency is given 

by 

-L L 

D-EFF = F( Bo, As, Lp, mo; mM), M2, M}2) = are “+e : (5.2.3) 
4 4 

al (2+ e bi +ebi | 

  

1= 

An example of design misplacement due to wrong parameter knowledge is shown 

in figure 5.2.1. The solid curves are associated with the optimal design and the dashed 

ones with the misplaced design. Table 5.2.1 lists the design points along with their actual 

logits for both setups. In this example, the D efficiency of the constructed design relative 

to the optimal design is 51.44%. 

x2 

    

    

correct ED 

ef ee    
    
    incorrect ED   

          “7 

” 

' 7 

Vi / 
. x1 

5 1 2 3 4 6 7 

Figure 5.2.1 Design shift due to parameter misspecification, hyperbola-based design 
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Table 5.2.1. Design shift due to parameter misspecification, hyperbola-based design 

    

  

  

(Z) = 2) 
Correct design Misplaced design 

(Bo = -5, By = 1.5, Bo = 2, Bio = -Q.5) (Bo= -7, Bj= 2, p> = 3, Bio= -1) 

(X1, Xo) Logit (X1, X2) Logit 

(2, 3.54) 1.54 (1, 3.27) 1.41 

(2, 0.46) -1.54 (1, 1.73) -0.91 

(6, 5.54) -1.54 (5, 2.27) 1.36 

(6, 2.46) 1.54 (5, 0.73) 2.14 

The robustness property in a simplified situation assuming m; = mz = mj = m is 

first illustrated in table 5.2.2 where the effect of mg can be observed more carefully. The 

efficiency function is free from A, and Lp due to the constraint. The design seems more 

robust to overestimation in Bg when the other effects are also overestimated. However, 

the design is likely to be badly affected by an overestimated Bo when the other effects are 

underestimated, especially if IBol is already large. The efficiency function will be further 

free from Bo when the misspecification is proportional across all the parameters, or mo 

=m, = Mz = m)2 = mM, and becomes a function of m only. A general impression is that the 

design appears somewhat more robust to overestimation than to underestimation of the 

parameters. 

The effect of misspecification is further studied subject to less constraint. Selected 

results are given in tables 5.2.3 and 5.2.4. Many other tables were obtained but not shown 

here as they reflect the same results. To be more consistent with other illustrations in this 

dissertation, tables 5.2.3 and 5.2.4 are indexed by Bo and A, whereas they could have been 

indexed by Bo and A, which appear in the efficiency function in (5.2.3). A tendency 

similar to the previous observation is revealed here. The design appears to be most 
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adversely affected when the central logit Bo is overestimated while the interaction effect 

is underestimated, especially if the linear effects are both overestimated. Apart from this 

vulnerable point, the efficiency often seems quite reasonable. 

Table 5.2.2. Defficiency under parameter misspecification, hyperbola-based design, 

m, =m™m2=mjy2=m 

m 

IBol mg 25 5 75 1 1.25 15 1.75 2 
  

0 0 (B9') 06 58 92 1 96 89 882 = 75 

  

5 (pil); 06 55 88 96 94 87 80 .74 
1 (py) | 05 47 77 86 86 82 76 71 
15(p'l)| .03 33 59 72 75 74 10 66 
2 (prt)! 01 18 41 56 62 64 63 60 

1 25 06 57 88 92 86 .78 70 63 
5 06 58 91 96 90 82 .73 66 
75 06 57 92 99 94 85 76 69 

1 06 55 OL 1 96 87 79 71 
1.25 05 52 88 99 96 89 80 .72 
1.5 04 #47 «#483 06©6.96)—96S—i«i«SD—“‘<‘ CCT 
1.75 03 40 77 92 94 89 82 74 
2 02 33 68 86 90 87 81 75 

2 25 06 5S 77 72 62 53 46 40 
5 06 58 88 86 75 64 54 AT 
75 05 55 92 96 86 74 63 54 

1 03 47 88 1 94 82 70 60 
1.25 01 33 77 96 96 87 76 66 
1.5 00 18 59 86 94 89 80 71 
1.75 00 08 41 72 86 87 82 74 
2 00 03 26 56 75 82 80 .75 

5 25 06 40 26 15 09 07 05 .04 
5 04 #58 68 40 23 15 10 08 
75 00 40 92 80 49 30 19 14 

1 00 08 68 1 81 53 34 ~~ .23 
1.25 00 Ol 26 80 96 78 54 37 
1.5 00 00 06 40 81 89 73 54 
1.75 00 00 Ol 15 49 78 82 69 
2 00 00 00 04 23 53 73 275 
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Table 5.2.3 Defficiency under parameter misspecification, hyperbola-based design, 

m,; =m2.=m, Bp =-1, Lp=1 

  

  

™}2 

A, om tt 1 1 125 15 175 2 

“5 5 25 | 05 57 89 93 86 76 68 60 
5 05 58 90 94 87 78 69 62 
715 | 05 57 91 95 89 80 71 63 
1 05 #457 8691 ©=©=.96)0—i90st—“‘<‘ W;“C“‘<‘“ TC;«‘«é 
125 | 05 56 90 9 91 82 73 65 
15 | 0 55 89 96 1 83 74 66 
175 | 05 54 87 95 91 84 75 67 
2 | 3 5285 TR 

1 2 | 00 Sl 89 98 93 84 75 66 
5 00 Sl 90 99 94 85 76 67 
75 | 00 5i 91 100 95 86 77 68 

1 00 50 91 1 95 87 78 69 
125 | 00 50 90 100 96 87 78 .70 
15 | 0 49 89 99 96 88 79 71 
175 | 00 48 87 498 95 88 7 7 
2 00 47 8 9 94 88 79 72 

15.25 | 00 2 77 93 93 86 78 «70 
5 00 30 78 94 94 87 79 71 
75 | 00 30 79 95 95 88 80 72 

1 00 486300 80—iaHs—“(itiS 8 BC 
125 | 00 30 80 9 96 89 81 «73 
15 | 00 30 80 96 96 89 81 73 
175 | 00 30 80 95 95 89 81 74 
2 [| 0 309 89 

5 5 2 | 0 56 80 77 £4.70 63 56 51 
5 05 58 8 84 75 67 59 53 
75 | 05 56 88 88 78 69 61 55 

1 04 52 86 88 79 70 62 «55 
125 | 02 44 79 85 7 70 62 56 
15 | 01 33 68 78 75 68 61 °55 
175 | 00 21 55 69 69 64 59 53 
2 00 12 41 58 62 £60 56 SI 

1 25 | 00 42 80 83 74 £465 58 «52 
5 00 44 86 92 83 72 63 «55 
75 | 00 43 88 98 89 77 4.67 «59 

1 00 37 86 1 93 81 70 61 
125 | 00 27 79 98 94 83 72 63 
15 | 00 17 68 92 92 83 73 64 
175 | 00 10 55 83 88 81 72 64 
2 00 05 41 72 81 7 70 63 

15.25 | 0 23 62 77 74 66 59 ~~ 52 
5 00 20 64 84 83 74 64 «57 
75 | 00 13 62 88 89 80 70 61 
1 00 07 57 88 93 85 74 65 
125 | 00 04 48 85 94 88 78 68 
is | 0 02 37 78 92 89 80 .70 
175 | 00 OL 28 69 88 88 80 71 
2 00 00 20 58 81 85 80 71 
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Table 5.2.4 Defficiency under parameter misspecification, hyperbola-based design, 

my =m)=mM, Bo =-2, Lp = l 

  

m2 

A, om mo | 25 5 5 1 125 15 175 2 

| 5 2 | 03 57 83 81 71 61 52. 45 
5 03 58 8 86 76 66 56 49 
75 | 03 57 88 89 80 .70 60 52 

1 03 5S 88 Ot 83 73 64 55 
125 | 03 52 86 O1 86 76 67 58 
15 | 03 47 1.82 Ol 87 78 69 61 
175 | 02 40 77 1.89 87 80 71 63 
2 01 33 70 85 86 80 .73 65 

1 2 | 00 28 4.83 92 84 74 £63 55 
5 00 28 86 96 89 78 67 58 
75 | 00 28 #88  #o9 92 81 71 61 

i 00 28 88 1 9 84 73 64 
125 | 00 28 4.86 99 95 86 76 66 
15 | 00 27 1.82 96 95 £4.87 78 68 
175 | 00 26 77 1.92 93 87 79 (70 
2 00 24 70 86 90 86 79 71 

is 2 | 00 02 448 8! 84 #78 69 61 
5 00 02 4.50 86 .§9 82 73 64 
75 | 00 Ol 51 89 92 85 76 67 

1 00 Ol 51 91 94 87 78 69 
125 | 0 OL 51 91 95 89 (80 71 
is | .00 Ol 51 .91 95 89 ‘81 72 
175 | 00 OL 50 89 93 89 81 23 
2 00 00 48 85 90 87 81 74 

1 5 2 | ol 52 4.51 41 36 32 29 © .26 
5 01 58 66 #51 42 237 33 29 
75 | 00 52 73 56 45 £39 £34 231 

| 00 33 64 4.53 43 37 33 30 
125 | 00 12 42 42 36 32 29 27 
1.5 00 03 22 .29 27 26 24 23 

175 | 00 O01 .10 18 19.19 19 19 
2 | 00 00 13 14 14 15 

1 2 | 00 13 51 48 4.37 #4431 26 © 224 
5 00 12 66 72 4.54 42 34 29 
75 | 00 05 73 92 70 52 42 35 

1 00 ol 64 1 82 «61020 47ts«810 
125 | 00 00 42 4.92 85 64 50 Al 
15 | 00 oO 22 #472 #79 463 49 & 40 
175 | 00 00 10 48 464 4.56 £45 38 
2 00 00 04 28 47 4.46 39 34 

15 25 | 00 02 24 ° AI 37 «30'—«iaSt«D. 
5 00 00 22 &2351 454 443 34 29 
75 | 00 0 13 56 70 58 46 237 
1 00 00 06 53 82 74 57 45 
125 | 00 00 02 42 4.85 85 67 52 
1s | 00 00 Ol 29 4.79 89 74 (58 
175 | 00 00 0O 18 64 85 76 61 
2 00 oO 00 dl 47 #74 72 © 60   
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§5.3. Ray Design 

The ray designs were derived by maximizing the determinant of the information 

matrix for an interaction model while assuming no interaction in the true relationship. To 

obtain the robustness efficiency, it would be reasonable to compute the D criterion in the 

same fashion as it was used to generate the optimal ray design. Namely, II(B)I in the 

efficiency expression will come from fitting an interaction model while the dose-response 

relationship involved in II(B)| follows straight line ED’s. This will preserve the criterion 

value of the correctly implemented design based on the true parameters. 

The optimal ED’s of a ray design depend on ip while the optimal ray slope varies 

with k = By The optimal design is first found with the specified parameters and can then 
2 

be implemented using the design matrix 

  

  

  

  

| =Ly-Bo Ly-Bo | 

By +B2/g(k) Byg(k) +B 

X11 X94] Ly —Bo Ly —Bo 

Kia Xa9 | _ B, +B2/g(k) Byg(k)+Be 63.1 

X13 X92 L; — Bo L, —Bo ~ 

X14 X24 By +Bog(k) By /g(k)+B. 

Ly —Bo Ly —Bo 

| Bi +Bog(k) By /g(k)+Bo |     
where L; and L» are the optimal logits determined by the specific Bo and g(k) is the 

optimal ray slope expressed as a function of k given by (2.3.3). 

In this section, it is assumed that the user implements the design according to the 

logits and ray slope solved from the guessed parameters. This design is then compared to 

the optimal design both solved and implemented with the true parameters. Normally, 
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design robustness may as well be studied by addressing the implementation stage only 

without combining the issue of wrong solutions. Namely, a given optimal design is 

subject to pure implementation error and then compared to the same optimal design 

implemented with the true parameters. The current approach would involve more 

complexity but sometimes can better represent the reality. 

The same ratios mg, m,, and mp as defined in (5.1.1) are used to characterize the 

misspecification. Let L; and L5 represent the optimal logits resulting from the true 

intercept Bp and Lj' and L,' the optimal logits obtained from the specified intercept BQ. 

The actual logits of the design points obtained from the guessed parameters are given by 

‘k+1 
Ly = Bo + —2———-(L}'- moBp) , 

mg k+m) 

‘k+1 , 
Ly = By + —2*——— (L5'- mo) , 

mgk+m) 

k/g’+1 ' 
L3 = By + ———>_(L'-m , 3 = Bo mk/g’+m) oBo) 

k/g’ +1 x, 
L4 = By + —= ———-(L5'- mofo) , (5.3.2) 

m,k/g +My) 

where g’ is the optimal ray slope resulting from the guessed parameters and is given by 

the function a( Lk), The D efficiency of the design obtained from the specified 
m9 

parameters relative to the one given by the true parameters is expressed as 

D-EFF = F(Bo, k, mo, m1, my, Lj, Ly, Ly, L5') 
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1 1 

4 2 * *» \> 
fw) 47g arg . + [fire reli} 

__! m4 (=11) {est seat i=] 

fmymy|]  £(k) Ly - Ly (Li — Bo (L2 — Bo) l 

| 

where the function f is jointly defined by (2.3.2) and (2.3.3). When Bg = 0, the term moo 

(Qt+e bi +ehi )} 

to
s 

(5.3.3) 

in (5.3.2) and (5.3.3) is replaced by Bg. Of those parameters involved in the efficiency 

function F, an independent set of parameters consists of only Bo, k, mo, m,, and mg. 

Among the other factors, L} and L5 are determined by Bg while Lj' and L5' are 

determined by Bo and mp, though not through any algebraic functions. 

Figure 5.3.1 illustrates an example of design shift due to parameter 

misspecification. Table 5.3.1 contains the relevant information concerning the parameters 

and the design points. The optimal design resides on the solid lines and the misplaced 

design on the dashed lines. The true parameters yield the optimal logits Li = -0.22 and 

L}=2.76 as well as the optimal ray slopes 0.15 and 6.62. On the other hand, the 

misspecified parameters give the optimal logits Lj'= -0.53 and L5'= 2.48 along with the 

optimal ray slopes 0.17 and 5.96, which are not optimal with respect to the true 

parameters. The misplaced design does lie on the rays with slopes 0.17 and 5.96 and 

meanwhile falls on the parallel lines corresponding to Li and Ly defined by the 

incorrect parameters. However, the actual logits of the design points are defined by the 

true parameters and are listed in table 5.3.1. From figure 5.3.1, it can be seen that the ray 

slopes under misspecification are only off by a minimal amount. Distortion of the design 

is primarily caused by the incorrect ED lines. The D efficiency of the incorrect design 

relative to the correct one in this particular case is 47.48%. 
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correct ED 

incorrect ED 

    

  
  
  

  

Figure 5.3.1 Design shift due to parameter misspecification, ray design 

Table 5.3.1 Design shift due to parameter misspecification, ray design 

    

    

Correct design Misplaced design 

(Bo = -2, Bi = 1, fi = 2) (Bo=-3, Bi=2, B2 = 1.5) 

(X1, X2) Logit (x1, X2) Logit 

(0.13, 0.83) -0.22 (0.23, 1.35) 0.92 

(0.33, 2.21) 2.76 (0.50, 2.99) 4.48 
(1.37, 0.21) -0.22 (1.10, 0.18) -0.53 
(3.66, 0.55) 2.76 (2.44, 0.41) 1.25 

The robustness property in a simplified situation assuming no misspecification in 

the slope k, or m; = m2 = m,, is first displayed in table 5.3.2 so that the effect of mg can be 

looked at more carefully. The efficiency function is free from k due to the constraint m; = 

my. Relatively speaking, a more optimistic type of misspecification seems to happen 

when both [Bol and the linear effects are moderately overestimated. The most detrimental 
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circumstance would be to underestimate B; and B2 while overestimating IBol, especially 

when IBol is already large. 

Table 5.3.2 D efficiency under parameter misspecification, ray design, m, = mz = m 

m 

Bo mo 3% 5 75 1 1.25 15 1.75 2 
  

0 O (Bj) | 02 47 89 1 94 83 72 62 
25 (Bh) | 02 44 87 100 96 85 74 64 
-5 (Bo) | 01 40 84 99 96 87 76 66 
75 (Bj) | 01 35 80 98 97 89 78 68 
-1 (Bj) | 01 31 75 96 97 90 80 .70 
-1.25(Bj) | .00 26 .70 93 96 91 82 72 
-1.5 (Bj) | 00 21 64 89 95 91 83 74 
2 (Bj) | 00 14 51 79 90 90 85 77 

  
-1 25 02 53 93 97 86 71 58 47 

5 02 50 92 99 88 74 61 49 
75 01 45 90 1.00 .90 TT 63 52 

1 01 40 87 93 80 67 55 
1.25 01 35 83 1.00 .95 83 70 58 
1.5 00 29 78 .98 96 85 73 61 
1.75 00 24 72 ~~ ~=.96 97 88 76 64 
2 00 19 65 92 97 89 78 67 

-2 25 03 60 92 .86 67 50 38 28 
5 01 53 94 92 75 58 43 33 
75 Ol 42 91 .98 84 66 50 39 

l 00 30 83 | Oo 74 58 45 
1.25 00 19 71 97 .96 82 66 52 
1.5 00 11 56 — 90 97 87 73 59 
1.75 00 06 40 ~=—-.78 93 90 79 66 
2 00 03 28 .64 86 90 82 71 

-5 5 05 58 51 23 11 05 03 02 
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Table 5.3.3 Defficiency under parameter misspecification, ray design, Bo = -1 

  

  

m2 

k Mo m, 25 5 75 1 1.25 1.5 1.75 2 

3 5 25 02 21 .40 48 50 48 45 42 
5 05 50 89 1.07 1.11 1.08 1.01 95 
75 04 52 92 1.10 1.14 1.11 1.04 97 

1 07 46 82 99 1.02 99 94 87 
1.25 13 35 70 85 88 86 81 76 
1.5 17 21 57 72 75 74 710 65 
1.75 20 14 45 .60 64 64 61 57 
2 22 26 34 50 55 55 52 49 

] 25 01 15 30 38 41 40 39 36 
5 03 40 .80 1.01 1.07 1.06 1.01 95 
75 03 45 87 1.09 1.16 1.14 1.09 1.02 

1 05 4) 80 1 1.06 1.04 1.00 94 
1.25 10 32 69 87 93 92 88 83 
1.5 13 20 58 75 .80 80 77 72 
1.75 16 13 .46 .63 .69 69 67 63 
2 18 25 35 53 59 60 58 55 

1.5 25 00 09 21 28 31 31 30 29 
5 02 29 67 .90 .99 1.00 97 92 
75 02 36 78 1.04 1.14 1.15 1.12 1.06 

1 03 34 74 .98 1.08 1.09 1.06 1.00 
1.25 07 28 66 88 .96 97 94 90 
1.5 10 18 56 76 84 85 83 79 
1.75 12 12 45 65 73 75 73 69 
2 | 13 23 34 55 .63 65 64 61 

7 5 25 02 25 53 .69 14 74 71 67 
5 11 50 1.08 1.42 1.55 1.57 1.52 1.44 
75 31 26 92 1.31 1.48 1.52 1.49 1.42 

1 47 76 42 .99 1.20 1.26 1.26 1.22 
1.25 57 1.00 62 58 88 99 1.02 1.00 
1.5 60 1.12 87 32 57 74 80 80 
1.75 61 1.16 98 61 18 51 61 64 
2 | 59 1.16 1.02 72 38 27 44 49 

1 25 01 17 40 54 61 62 60 57 
5 07 40 .96 1.32 1.49 1.53 1.51 1.44 

75 23 23 87 1.29 1.50 1.56 1.55 1.49 
1 36 70 42 1 1.24 1.33 1.34 1.31 
1.25 45 04 .62 .60 93 1.06 1.10 1.09 

1.5 50 1.08 88 34 61 80 87 88 
1.75 51 1.14 1.01 65 19 55 67 70 
2 50 1.15 1.06 77 42 30 48 55 

1.5 25 .00 10 27 39 A5 AT AT 45 
5 04 .29 .79 1.16 1.36 1.44 1.44 1.39 
75 15 18 .78 1.22 1.46 1.56 1.57 1.54 

1 25 .60 39 98 1.26 1.37 1.41 1.39 
1.25 33 85 .60 60 .96 1.12 1.17 1.17 
1.5 37 .99 87 35 .64 85 .94 .96 

1.75 39 1.07 1.01 67 20 .60 73 78 

2 39 1.09 1.08 81 45 32 53 .61 
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Table 5.3.4 Defficiency under parameter misspecification, ray design, By = -2 

  

m2 

k Mg m, 25 5 75 1 1.25 1.5 1.75 2 

3 5 25 01 21 40 46 46 43 39 35 
5 05 53 93 1.07 1.05 98 88 79 
75 04 55 94 1.07 1.05 97 87 78 

1 07 AT 81 92 91 83 75 67 
1.25 13 35 67 77 75 69 62 56 
1.5 16 21 53 63 62 58 52 46 
1.75 18 13 4] 51 51 Ag 43 39 
2 19 24 30 41 43 40 37 33 

1 25 00 07 19 25 27 26 25 23 
5 01 30 71 93 100 .97 90 83 
75 01 38 83 1.08 1.14 1.10 1.02 93 

1 03 36 .78 1 1.05 1.01 93 85 
1.25 06 29 68 87 91 87 80 73 
1.5 08 18 56 73 77 74 68 62 
1.75 10 12 44 61 65 63 58 53 
2 11 22 33 50 54 53 49 45 

1.5 25 100 02 06 .09 11 12 12 11 
5 00 11 38 61 73 77 75 71 
75 00 17 56 87 1.03 1.07 1.04 98 

1 01 19 59 .90 1.05 1.08 1.05 98 
1.25 02 17 55 83 97 99 96 89 
1.5 03 12 48 74 85 87 84 78 
1.75 04 08 40 63 74 76 73 68 
2 04 16 31 53 63 54 63 59 

we ew ew ee eee ee eee ee Pr rr rer srt 

7 5 25 01 25 53 67 .69 .66 61 55 
5 11 53 1.13 142 149 1.43 1.33 1.21 
75 31 37 94 1.28 1.37 1.34 1.26 1.15 

1 46 77 42 92 1.07 1.07 1.02 95 
1.25 53 98 58 52 75 80 79 74 
1.5 55 1.05 78 28 47 58 59 57 
1.75 53 1.04 85 50 14 38 43 44 

2 | 50 1.00 85 57 29 20 30 33 

1 25 00 08 24 35 40 40 38 36 
5 03 30 84 1.21 1.38 140 1.34 1.26 
75 13 19 83 1.28 1.47 150 1.45 1.37 

1 23 63 Al 1 1.23 1.29 1.26 1.19 
1.25 29 86 61 59 91 1.01 1.01 97 
1.5 32 98 86 33 58 74 78 77 
1.75 32 1.02 .96 61 18 50 58 59 
2 | 31 1.01 98 71 38 26 4] 45 

1.5 25 .00 02 .07 13 16 18 18 17 
5 01 1 43 76 98 1.08 1.09 1.06 
75 .03 .09 56 1.01 1.30 861.43 1.45 1.42 

1 07 37 32 90 1.22 1.36 1.39 1.36 
1.25 | .11 57 52 58 97 1.14 1.19 1.17 
1.5 13 71 78 34 65 87 95 .96 
1.75 | .14 79 92 66 21 61 73 77 
2 15 81 98 79 A5 32 52 59   

112



Tables 5.3.3 and 5.3.4 evaluate cases of unrestricted misspecification. These 

tables show that higher D efficiencies occur with moderately overestimated B2 and 

B +l < 1 case is currently addressed due to 
2 

moderately underestimated B;. Since the k = 

the duality between k > 1 and k < 1, it seems that slightly overestimating the larger 

coefficient while underestimating the smaller one might be relatively safer as far as 

preserving the efficiency is concerned. The performance can be poor when both B, and B» 

are underestimated, especially if IBol is large and even over estimated. Otherwise, the 

efficiency is quite often at reasonable levels. 

§5.4 Modified Ray Design 

As in a regular ray design, the optimal ED’s as well as the ray slope for a modified 

ray design are case-by-case solutions depending on the specific set of parameter values. 

Similar to the ray design case, it is assumed that the user implements the design according 

to the optimal ED’s and ray slope conditioned on the specified parameters. The design 

matrix required to compute the design points can be given by the second and third 

columns of the model matrix in (2.6.2). 

Let Li and L5 denote the optimal logits and g the optimal ray slope due to the 

true parameters. Let Li. L,', and g’ represent the corresponding attributes resulting 

from the specified parameters. The ratios mg, mj, M2, and mj2 defined in (5.1.1) and 

(5.2.1) will be used as measures of misspecification. Define a function S,, as 

  

2 
L- 

Sn(g’, L) = Tg +4g’'k 2 Le mobo _ 4 ™M yy (5.4.1) 

113



where k = Bi and A, was initially defined in (4.2.2) as A, = Bo Bo=A which 
2 12 

represents the logit distance between the origin and the hyperbola center. The term mofo 

becomes Bp when Bo = 0. The actual logits of the design points obtained from the 

specified parameters are given by 

Li 1 ae 
            [a-—L)+ PORE SSL) 

    

    

  

m2 m9 Primo m12 m 12 

Mo Ly" 1 m2 mM g My») 1 xy 
Ly = Bo 1- ——) + —* + = A, [(1- 1 yy (1-—— )] Sn(— ,L9'), 

my. m2 2 >my m2 k my g 

Mog Li 1 m4 my, ] m9 ras 

L3 = Bo(1-——) + —— + = = Ag [d- )+ —(1- )] Sm(g’, Ly") 
my. my 2 my Mm. gk mp 

mg Ly" m9 1 m9 
L4 = Bo(l-——) + — ~A, (1-— Ly 4 — (1- 1 Sm(g’, L, ); 

m2 m2 2 Pmy m2 gk mp 

(5.4.2) 

where the term Bo(1-—2- ) becomes - when Bo = 0. 
m2 m)2 

The D efficiency of the design obtained from the specified parameters relative to 

the one from the true parameters is given by 

D-EFF = F(Bo, Ag, k, mo, mj, m2, my2, Lj}, Ly, g, Ly’, Ly', g’) 

Lang lan I fw, 
2| Ug’? — DSL Sin La )+(—>-DSm (87S m(s’L9')] 
  _ (2 

m2 [(g* - I)S(—,L})S(—, Lp) + (= - DS(g,L})S(g,L5) g g g” 
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N
l
 ] 

r,s rks ] xy 1 *, 2 2 -l[* L. 

[Sms »Ly )-Sml& »Ly Sim Grobe )~Sim rob y] HG +e +e 1) 

i= 
  

1 * a” ls 1 (S(g,L5) -S(g,L})IIS(—,L) - S(—,L})] ( LoL } 
g & (2+e 1 +e71) 

ro
s 

(5.4.3) 

where the function S was initially defined in (2.6.1). An independent set of parameters in 

the D efficiency function F consists of Bo, Bo. k, mo, Mj, Mz, and m2. Among the other 

parameters, Li , L5, and g are determined by Bo, Bo, and k, while Li', L' , and g’ are 

determined by the same along with the misspecification ratios. 

Figure 5.4.1 illustrates an example of design shift due to parameter 

misspecification. The optimal design resides on the solid curves while the misplaced 

design on the dashed ones. Table 5.4.1 contains the relevant information concerning the 

parameters and the design points. The true parameters yield the optimal logits Li = -0.30 

and Ly =2.60 as well as the optimal ray slopes 0.13 and 7.99. On the other hand, the 

misspecified parameters give the optimal logits Lj'= 0.20 and L'= 3.06 along with the 

optimal ray slopes 0.14 and 7.37, which are not optimal though with respect to the true 

parameters. The misplacecl design does lie on the rays with slopes 0.14 and 7.37 and 

meanwhile falls on the parallel lines corresponding to Li and L' defined by the 

incorrect parameters. However, the actual logits of the design points are defined by the 

true parameters and are listed in table 5.4.1. Similar to what has been observed earlier in 

the ray designs, the rays here are affected very little by the parameter misspecification. 

The design is affected mostly by the wrong ED curves. The D efficiency of the incorrect 

design relative to the correct one in this particular case is 79.35%. 
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correct ED 

incorrect ED   

      
Figure 5.4.1 Design shift due to parameter misspecification, modified ray design 

Table 5.4.1. Design shift due to parameter misspecification, modified ray design 

  
  

  

  

Correct design Misplaced design 

(Bo = -2, Bi = 3, B2 = 5, Biz = 2) (Bo=-1, Bj =4.5, By =2.5, Bi = 1) 

(Xi, X2) Logit (X1, X2) Logit 

(0.04, 0.31) -0.30 (0.05, 0.38) 0.09 
(0.10, 0.82) 2.60 (0.17, 1.24) 5.11 
(0.45, 0.06) -0.30 (0.25, 0.03) -1.08 
(1.17, 0.15) 2.60 (0.82, 0.11) 1.20 

As the optimal solutions of a modified ray design depend on a number of model 

parameters jointly and the current study takes into account the wrong solutions due to 

each specific scenario of misspecification, the task is considerably increased on the 

computational side. Consequently, the numerical results are provided in a slightly reduced 

scope as compared to the previous sections. 
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The D efficiency under proportional misspecification (Mp = mj = mM» = mj2 = m) 

as an over simplified case is first investigated in table 5.4.2. A general impression is that 

the designs appear slightly more robust to overestimation than to underestimation of the 

parameters. Recall that the modified ray design applies to synergistic situations where the 

center of the hyperbola ED’s lies in the third quadrant. The efficiency slightly increases as 

A, decreases. This means that the design tends to be slightly more robust as the 

synergistic interaction gets stronger, or the hyperbola center moves closer to the origin in 

terms of the logit distance. Another temperate increasing trend is found when the 

response probability at the zero doses becomes lower or Bo gets negatively larger. 

Meanwhile the robustness property seems quite insensitive to the ratio k. 

Table 5.4.2 Deefficiency under parameter misspecification, modified ray design, 

Mo =M, =m2=Mj2=_M 

  

  

m 

Bo A, k a) 15 | 125 1.5 1.75 2 

-] ] 3 050 566 918 1 958 878 .792  .715 

7 050 567 919 | 959 878 .794 .716 
------ +--+ { --~--------- +--+ eee eee 

2 3 046 557 .916 1 957 =.873—— 785.704 

7 047 559 .916 957 =.874 =.786 ~—.706 

-2 J 3 061 596 .926 | 963 .892 817 .747 

7 061 597 927 | 963 .893. 818 £748 

2 3 057 588 924 1 962 889 811 .739 

7 058 589 924 1 962 «6.889 812-741 

Proportional misspecification except for Bg (m; = mz = mj2 = m) is evaluated in 

table 5.4.3. The efficiency appears to be relatively better when all the parameters are 

moderately overestimated as opposed to misspecification in opposite directions. 
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Table 5.4.3. D efficiency under parameter misspecification, modified ray design, 

m,; =m2=mj2=m 

  

Se ee 

  
Table 5.4.4 examines a number of cases with less restricted misspecification. 

When Bo and the linear coefficients are both underestimated, overestimating the 

interaction coefficient tends to result in higher efficiencies; when Bo and the linear 

coefficients are both overestimated, underestimating the interaction coefficient tends to 

give better results. In general, the efficiency quite often achieves reasonable levels. 
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Table 5.4.4 Defficiency under parameter misspecification, modified ray design, 

m, =m, =m, k=0.5 

  

m2 

Bo A, m Mo 25 J 75 1 125 1.5 1.75 2 

-1 1 5 5 40 57 62 .64 63 62 61 59 
1 31 4] 52.54 54 53 52 51 

ce eee eee me ee i ws ee i i ee a a a a ee a a a i ee ee eee ee ee 

ee ee eee ee ae a a a ae a i a a og ee a we ew a a ee ee a ee ee wee ee ee ee ee 

ee ie a a a i a a a ee ee ee em em em ee ee em em ee ee ee ee ee ee ee 
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In this chapter we investigated the robustness property under parameter 

misspecification for several types of D optimal designs, including the parallel-line, 

hyperbola-based, ray, anc modified ray designs. The study shows that these designs all 

have reasonable efficiencies and do not appear to be severely affected when subject to 

moderate misspecification of the parameters. Still, driven by the conventional 

optimization criterion, these designs are intrinsically designated to be most competitive 

only for the set of parameter values used to construct the design, namely when the 

researcher knows the true parameters. As a result, the efficiency tends to decrease as the 

parameter guesses deviate from the true values. Conceptually, to take into account the 

uncertainty involved in the parameter knowledge, one could adopt the Bayesian design 

approach, which addresses various possible parameter values in a systematic way. 
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CHAPTER 6 

BAYESIAN DESIGNS 

$6.1 Bayesian Design Procedure 

If the guessed parameters used in constructing an optimal design differ from the 

true values, the constructed design will be different and less efficient than the design 

which makes use of “true”? parameters. Such behavior of the design, referred to as its 

robustness to parameter misspecification, was studied in the previous chapter. In fact, the 

designs discussed earlier in this dissertation are from the very beginning driven by such 

criteria that render the design to be the best only for the single set of parameter values that 

are used in constructing the design. The following idea then arises: improving the design 

robustness begins with using a criterion that takes into account various possible values of 

the parameters, not merely the construction values. To gear a design to various possible 

parameter values, one relevant approach is to use an overall criterion that is a “weighted 

average” of the individual criterion values over a range of parameter values surrounding 

the construction values. The “weight” represents the likelihood of the true parameter 

values falling on each individual case. All the criteria addressed earlier in this work put 

all the weight only on the construction values. Conceptually, distributing the weight 
rr Tn, tense, te, 

should yield a design which is less good for the construction values but improved for ee A eee atte, 

  

ene: 

other values. Such a design possesses a balance in its ability to cope with various possible 
TN etme 

states of nature. 

The above description is indeed the core rationale of the Bayesian design 

procedure. For the one-variable logistic model, a Bayesian procedure was developed by 
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Chaloner and Larntz (1989) which utilizes a density function to represent the 

experimenter’s a priori belief about the parameters. In general, the Bayesian design 

procedure is given by the following expression 

Min J, R@, ®) 2) dO (6.1.1) 

where @ is a vector of model parameters, (8) is the prior density of 6, R(6, 8) is the 

expression for any design optimality criterion of choice, and 6 is any design from the set § 

of candidate designs. Expression 6.1.1 comes from Bayesian decision theory where 

R(6,6) represents the risk. Unlike Bayesian estimation, R(d, 6) implicitly contains a fixed 

estimator. The Bayesian cptimal design minimizes the expected risk with respect to the 

designs rather than estimators. 

The Bayesian D optimal criterion is given by 

Max J,, cB)! m(B) dB (6.1.2) 

where B is the vector of model parameters. The experimenter would need to select a prior 

distribution 72(B) which reflects his or her knowledge about the parameters. In this 

dissertation, two common situations are investigated: normal and uniform prior 

distributions. In both cases, the joint distribution assumes no correlation. The design 

scenario considered is the parallel-line design for the no-interaction model. The designs 

are found using a numerical expectation and the Nelder-Mead algorithm which does 

function minimization through a simplex method. The integration is approximated by a 

30 point segmentation of the density in the uniform case and a 30 point segmentation over 

the +3 standard deviations in the normal case. A 40 point segmentation was initially 

explored within the +4 standard deviations for the normal prior. Negligible differences 

were found between the 30 and 40 point approximations. Given the three-dimensional 

parameter space for the two-variable model, even the 30 point approach consumes very 
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large amounts of CPU time. Consequently, the 30 point segmentation is used merely to 

avoid unnecessary computational intensity. 

§6.2. Normal Prior Distribution 

The normal prior distribution of the parameters is represented as follows: 

Bo Ho] | 0 O 
Bi} ~ N(Ju,} | 0 1? Of). (6.2.1) 

B» U9 0 O TS 

Initially a six-point parallel-line design is assumed to be constructed on three ED lines 

defined by the mean of the prior distribution with the lower and upper logits L; = Uo + 

[1X1 + Hox. and Ly = Uo + LyX] + [2X2 and the middle logit being (L; + Ly)/2. The 

sample proportions are denoted rj), rz, and r3 on the lower, middle, and upper ED’s 

respectively where r; + r2 + 13 = 1 and the two points on the same ED always have equal 

sample sizes. It would be more convenient to reexpress the design logits in terms of a 

midpoint logit S and a shift T below and above the midpoint, or 

L,+L L5 -L 
— 21° *2 and T= —2 —1. 

2 2 
S (6.2.2) 

Thus the design logits are given by S - T, S, and S + T. A symmetric design about EDs0 is 

indicated by S = 0. Let Lj, i = 1, ..., 6, denote the actual logits of the design points when 

the parameters falls on a particular point (Bo, Bi, Bz)’ of the prior distribution, where 

points 1 and 4 reside on the lower ED, 2 and 5 on the middle ED, and 3 and 6 on the 

upper ED. These actual logits are given by 

2 
1k’ +a 

Ly = Lo(O - tg) + O18 + (Lx - Lp)(Oy - Oy) - T a 

Ly = [o(Oo - &2) + G25 + (Lx - Lp)(Q) - G2), 
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Ok? +0 
L3 = [o(Olo - 02) + 2S + (Lx - Lp)(oty - ot) + T 

kr) 

2 
k 

L4 = Uo(M - 2) + AS + (Lx + Lp)(Qy - 2) - T Ta , 

Ls = Up(O - O12) + A2S + (Lx + Lp)(Q) - a2), 

Ok? +0 
Le = Wo(Qo - Ol2) + O25 + (Lx + Lp)(Q) - 2) + T ap 

(6.2.3) 

where Lo #0, Ap = Bo 1 = Bi Ol2 = Bo L, = L1X10, Lp = u,D,, and k = Fa where 

Lo Ly oe) Lo 

X;9 and Dy, are indices of the design center and length pertaining to the variable x; as 

illustrated in figure 2.1.1. The logit type quantities L, and Lp serve as scale free indicators 

of the location and size of the design, more details of which were discussed in §4.3 and 

§5.1. When Up = 0, the term {19(Qp - Ol) in the logit expression in (6.2.3) should be 

replaced by Bo. 

Let P; = a and W; = P,(1 - P;), i = 1, ..., 6 The Bayesian D optimal 
l+e 7} 

criterion can be expressed as 

    

N? (LyT)” 
> -J oJ J [yW1 + mW + 3W3)(4r1r3W4We + r2Ws5(r1W4 + 13We)) 

Hi Hs 2 7 A, Ay 

+ (ry W4 + 12Ws + 13Wo)(411r3W 1 W3 + r2W2(r] W, + 13W3))] f(Oo, 0), 2) do&pdajdar 

(6.2.4) 

where f(Qp, Oj, O&2) is the density corresponding to 

Or 1] |y¥ 0 0 
a, | ~ N({1], |0 yy? O]). (6.2.5) 
07 1 0 0 ¥3 
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The standard deviation y,’s are indeed the coefficients of variation in the original prior, 

i.e. 

Tj ; 

Vj = | ’ J = 0, 1, 2. (6.2.6) 

j im 

When Ug = 0, Mo is not defined and it is assumed Bo ~ N(O, v6) where Yo = To. 

Optimization of the Bayesian criterion in (6.2.4) appears to be dependent on {y, k, 

Yo: Yi> Y2, Lx, Lp, S, T, fy, r2, and r3. Further evaluation of the criterion suggests that the 

criterion is monotonically increasing with the scale free design length Lp. The Bayesian 

designs will be found by optimizing S, T, r,, r2, and r3 for given values of Ug, k, Yo, Yi. Yo: 

L,, and Lp, which must be supplied by the user in real applications. Among the user 

specifications, L, and Lp represent the location and length of the design while Up, k, Yo, 

1, and 2 constitute a form of prior knowledge about the parameters. 

Regarding Ug, only the case Ug < O will be evaluated as the criterion expression 

possesses a symmetry in the sense that -t9 would yield the same criterion value as [Uo if 

L, and S also switch sign and r; and r3 switch position. As to k where k = Ba , evaluating 
Ma 

Ik! < 1 would be sufficient since each k > 1 case corresponds to a k < 1 case if the two 

design variables switch position. 

The coefficients of variation Yo, ¥;, and Y2 quantify the degree of uncertainty in the 

prior knowledge. Larger values of ¥;’s indicate less precise knowledge while y; = 0 means 

that a point value is supplied for B; as opposed to a nontrivial prior distribution. If the 

Bayesian design criterion in (6.2.4) involves integration over a range of the prior 

distribution which extends to both the negative and the positive regions, it can be shown 
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that maximization of the Bayesian criterion can possibly require that the logit deviation T 

go to infinity. To ensure that a Bayesian design does exist, the integrated region of 0, 

must remain within the positive side, or 3y, < 1. This requirement corresponds to the 

condition that within +3 standard deviations from the mean of the prior, the coefficient 

does not switch sign, or the region [Hj - 31, H; + 31)] does not contain zero. In practice, 

the experimenter may have a fairly wide range of +3 standard deviations for a model 

effect due to lack of knowledge about its exact magnitude. However, it is not 

unreasonable to assume that the experimenter has some idea regarding the nature of the 

effect and hence is at least certain about the sign of the coefficient. Due to the above 

concern, which implies the assumption 3y, < 1, the coefficient of variation y, is chosen to 

be evaluated at levels 0, 0.15, and 0.3. 

Tables 6.2.1 and 6.2.2 give selected Bayesian D optimal designs for the cases Up = 

O and Up = -2 respectively. Even though the initial design layout assumes a three-line 

design, the optimal sample proportion rz for the middle ED line turns out to be zero for 

all the cases evaluated here. Consequently, all the Bayesian optimal designs end up to be 

two-line designs for the normal prior distributions considered here. In addition, the case 

Yo = ¥1 = Y2 = O, regardless of the values for other factors such as Uo, k, Lx, Lp, and the 

type of prior, always yields the same non-Bayesian design which agrees with the results 

of parallel-line D optimal design obtained in §2.1. 

For the cases in table 6.2.1 where Wp = 0, the Bayesian designs all have equal 

sample sizes, indicated by r; = rz = 0.5, and symmetric ED’s, indicated by the optimal 

central logit S equal to zero. The logit deviation T always increases as the uncertainty of 

parameter knowledge becomes larger, or y, increases. As a result, the design becomes 
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Table 6.2.1 Bayesian designs, normal priors, Uo = 0, Ikl = 0.5, L, = 0, Lp = 2 

Yo ¥1 ¥2 S T : P; P» P3 1 I 13 , Criterion 

0 0 O | O 1.223 | 227 -- 77335 0 5: 0324 
0 O 15 | 0 1266 | 219 -- 71:5 O 5: 0318 
0 O 3 | O 1.360 } 204 -- 796'.5 0 5 0298 

0 15 O | O 1.237 | 225 -- 775:'5 OO 5: 0314 
0 415 15 | O 1.286 } 217 -- .783'.5 0 5: 0308 
0 15 3 | O 1385 ; 200 -- 800:.5 0 5: 0292 

0 3 O | 0 1281 | 217 — 783'5 0 5: 0288 
0 3 J45 | O 1325 $210 -- 790:.5 0 5: 0285 
0 3 3 | 0 1448 | 190 --- 810:.5 0 5: 0278 

1s 0 oO | O 1228 | 227 -- 73:5 0 5) 0321 
15 0 A5 | O 1.270 : 219 ---- 781 :.5 0 5: 0314 
15 0 3 O 1.364 : 204 ---- 796 :.5 0) 5 } 0295 

1 15 O | O 1245 | 224 -- 776:.5 O 5: 0310 
15 15 15 | O 1.288 | 216 -- 784:.55 0 5: 0305 
15 15 3 | O 1389 } 200 --- 800:.55 0 5: .0289 

15 3 0 | 0 1284 | 217 -- 783'.5 0 5: 0285 
1 3 415} 0 1330 209 -- 71:5 0 5: 0283 
1 3 3 | 0 1449 } 190 -- 810'.5 0 5: 0275 

3 0 0 | O 1242 | 224 -- 776:'5 O 5: 0313 
3 O 15 | 0 1.282 : 217 -- 783 :.5 0 5: .0307 
3 0 3 O 1.370 : .203  --- .797 : 5 0 5} 0289 

3 15 0 | O 1.255 | 222 -- 77835 O 5: 0303 
3 415 15 | 0 1301 | 214 -- 786:.5 0 5: 0298 
3 15 3 | 0 1402 | 197 -- 803.5 0 5: .0283 

3. 3 0 | 0 1296: 215 —- 785'.5 0 5: 0279 
3 3 45} 0 1341 :.207 -- 793:.5 O 5: 0277 
3 3 3 | 0 1458 : 189 -- 8115.5 O 5: 0269 
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Table 6.2.2 Bayesian designs, normal priors, [lp = -2, Iki = 0.5, L, = 1, Lp =2 

  

Yo Y1 Y2 S T Py P2 P3 ry 19 r3 : Criterion 

0 1.223:.227 -- .773:.5 0 5 | .0324 0 oO 0 - . 
0 0 15 | .0752 1.265:.233 --- .793; 515 0 485: .0315 
0 0 1226 1.372:.223 --- 817 506 0 494. 0292 

0 15 0 | 0157 1.245).226 --- 779; 501 0 499: .0311 
0 15 15 | .0681 1.295:.227 -- 796.506 0 494: .0303 
0 AS 3 | .1764 1.404:.227 ---- 829 | 511 0 489: .0283 

0 3 0 | 0451 1.289:.224 ---- .792 504 0 496: .0282 
0 3 AS | 1199 1.343:.227 --- 812) 510 0 490: .0277 
0 3 3 | .2926 1481:.234 -- 855: 519 0 481: .0262 

15 0 oO {0 1.239:.225 --- 775:.5 0 5 : 0313 
AS 0 1S 0381 1.284: .223 ---- .789 : 502 0 498: .0305 

15 0 3 1135 1.387:.219 ---- 818 | 505 0 495: .0283 

15 15 0 | .0127 1.260:.223 --- 781/502 0 498! .0301 
15 45 15 | 0566 1,309).222 --- .797 | 503 0 497: .0294 
15 15 3} 1631 1.426'.220 ---- 831 | 508 0 492: .0274 

15 3 0 | .0614 1.310:.223 --- 798: 515 0 485: .0273 
15 3 15 | .1141 1.343: .226 ---- 811: 506 O 494: 0268 
AS 3 3) | 2725 1.491:.228 ---- 854. | 516 0 A84: 0255 

3 0 0 | 0 1276:.218 -- 782:'.5 0 5 : .0287 
3. 0 15 | 0379 1,323:.217 -- 796: 506 0 494: 0281 
3 0 3 | 0943 1.424:.209 ---- 820: 503 0 497: .0262 

3. 15 0 | 0234 1.293:.219 ---- .789 506 0 494! 0277 
3 AS 15 0509 1.342: .216 ---- .801 : 503 0O A497: .0271   3 15 3 | 1166 1446;.209 --- 827: 502 0 498: 0255 

3. 3 © | 0370 1.337:.214 --- .798: 502 0 498: 0253 
3. 3 15 | 1120 1.385:.219 --- 817; 509 0 ~— 491; 0249 
3 3 3 | .2318 1520:.216 --- 852: 510 0 490: .0238 
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more spread out as the prior information gets vaguer with larger dispersion. This does 

agree with the intuition behind the Bayesian rationale. 

When the prior mean Up deviates from zero, as seen in the cases of table 6.2.2 

where Up = -2, the two symmetric properties, i.e. equal sample sizes and symmetric ED’s, 

are still concurrent with each other, but only occur when the prior distributions for both 

linear effects B; and By are degenerated, or point priors. Otherwise, the optimal central 

logit S is found to be shifted always to the opposite direction from Up while the optimal 

sample allocation is always weighted towards the same direction with Uo, or weighted at 

the ED closer to fg. Currently given Lp < 0, it is observed that S > 0, r; > 0.5, and r3 < 0.5 

for any case where , and 2 are not all zero. This implies that the design ED’s fall more 

toward the upper probability tail with a greater sample weight at the lower ED. The shift 

in the ED’s becomes more obvious as the prior knowledge about the linear effects 

involves more uncertainty, indicated by larger values of y, and 2. However, the 

asymmetry in either the ED’s or the sample weights does not seem to be severe in any of 

the cases and often appears moderate or slight. The logit deviation T is once again found 

to be increasing with y,, suggesting a wider design when the prior knowledge is vaguer. 

3 

2,2’ 
Hy Ho 

each design in the tables. Inspection of these criterion values indicates that the Bayesian 

The Bayesian D optimality criterion, apart from the factor is given for 

D optimality criterion decreases as the uncertainty in the parameter knowledge increases, 

characterized by larger values of y;. Meanwhile the Bayesian criterion also becomes 

worse as the prior mean [lp deviates from zero and thereby the design is forced to lose its 

symmetry. Nevertheless, the change in the criterion value never exhibits any large 

momentum, and the Bayesian design criterion still seems quite stable. 
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Bayesian designs are found for other values of Lo, k, L,, and Lp. No additional 

systematic features are observed, except that similar to the non-Bayesian situation, the 

Bayesian D optimality criterion increases as Lp becomes larger, representing a greater 

design length in the ED direction. 

§6.3. Uniform Prior Distribution 

The uniform prior distribution is assumed to take the form 

B; ~ Uniform ( Lj - 36;, Ly + 36; ); 

Covi(B;, B;.) = 0, 

jj =0,1,2, j#j’. (6.3.1) 

Expressing the half range of the uniform distribution as 38; is meant to create an analogy 

to the normal prior case where the numerical integration extends to +3 standard 

deviations from the mean. For the uniform prior in (6.3.1), the standard deviation of B; is 

indeed J/3 6;. Except y;’s, all other parameters defined in the normal case can be used 

here with the uniform prior. The analogous y,’s with the uniform prior given in the form 

of (6.3.1) would be defined by 

6 | y=—G, j=0,1,2. 
| 

It follows that 

a ~ Uniform(1-3y,, 1+ 3y), 

where Qj = Bj and the standard deviation of oF is J3 "¥j- 

aa 
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(6.3.2) 

j=0, 1,2, (6.3.3)



Similar to the normal prior case, a three-line design is initially assumed on the 

logits S - T, S, and S + T. Again, the notion of logit here does not represent the actual 

logit but rather a linear combination of the design variables via the mean of the prior, or 

Ug + 1X1 + 2X2, which serves as a geometric characterization of the design. 

The Bayesian D optimality criterion given the uniform prior takes the same form 

as in (6.2.4) for the normal prior except that the density f(Q, 0, 2) is based on the 

1 
uniform distribution in (6.3.3), or f(Q%9, Oj, 2) = ———————-. The design indicated by 

216Y0¥172 

S, T, 1, f, and r3 is found for given values of Up, k, Yo, ¥1, '¥2, Lx, and Lp by maximizing 

the Bayesian D criterion. 

Similar to the situation of normal priors discussed in the previous section, selected 

Bayesian D optimal designs are found and given in tables 6.3.1 and 6.3.2 for the cases Ug 

= 0 and Up = -2 respectively. Unlike the normal situation where the optimal designs in the 

selected cases are all found to have two levels, solutions under a uniform prior often leads 

to a three-line design. The optimal number of ED lines changes from two to three when 

the prior distribution becomes more spread out, or y; increases. Uniform priors lead to 

designs with more levels than normal priors due to the relatively heavier weights assigned 

to the extreme values by a uniform distribution. 

For [Wo = 0, as shown in table 6.3.1, symmetric ED’s, indicated by S = 0, is always 

accompanied by symmetric sample proportions, or r; = r3. Whenever S # 0, there exist 

dual solutions. If the two solutions are denoted as {S, T, rj, r3} and {S’, T’, rj, 13 }, they 

satisfy S = -S’, T = T’, r; =13, and r3 =r; . Dual solutions tend to give three-line designs 

and often occur when the prior distribution is wide. The cases with dual solutions are 

shaded in table 6.3.1. 
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Table 6.3.1 

Yo YI Y2 

Bayesian clesigns, uniform priors, Uo = 0, Ikl = 0.5, L, = 0, Lp = 2 

S T Py P» P3 : Ty 19 13 : Criterion 
  

0 0 

  

oe 
o
c
 

o
o
o
 

AS 

AS 
AS 

5 

15 
15 

1S 0 
AS 15 

  

3 0 
3 AS 
3 3 

AS 0 
AS 5 

3 0 
3 15 
3 3 

3 0 

3 AS 

3 3 

0 1445 5.191 -—- 809 | 5 0 5 | 0283 

  
wh
 0 1.223: 227 -- 773 0 5  : 0324 

0 1.366 | : 5 0 5 0307         

  

   

0 1.276: .218 -- 782: 5 0 5 i 0295 
0 : 194 --- 806: 5 0 5  : .0289 

  

0 1.724} 151 5 849 : 437 126 437: .0243 
0 4.709 | 009 5 991 : 354 292 354: .0365 

0 1.236 5.225 --+ 775 : 5 0 5  : 0316 

  

0 1.290 | 216 --- 784: 5 0 wi
 .0288 

  

0 1.394 :.199 --- 801 : 5 0 5 } 0226 
0 1.734 : .150 5 850 : .438 124 438: 0239 

0 4.751 : 009 45 991 : 353 294 353: = .0357 

  

0 1424/19 -- 804 :.5 0 5 } 0215 
0 L777} 145° 5855; 437126437: 0226 
0 4873 :.008 5 992 | 350 300 .350: .0337 

132



Table 6.3.2 Bayesian clesigns, uniform priors, Up = -2, kl = 0.5, L, = 1, Lp = 2 

Yo v1 Y2 Ss T 'P 1 P2 P3 : ry Tp r3 : Criterion 
  

0 |0  1223:.227 -- 773:5 0 5 | .0324 0 0 
0 O 15 | 1426 1.377:.225 ---- 820: 509 0 491: .0301 
0 0 . 1.670 3.063:.199 .842 .991: 445 .329 .226: .0250 

0 15 0 | 0475 1.286:.225 -- .791:.504 0 496: .0289 
0 15.15 | .3053 1.479: .236 ---- 856: 520 0 480: .0277 
0 AS 3 2.386 3.611:.227 916 .998 : 442 .296 .262: .0264 

3 0 | 1072 1,396:.216 --- 818: 508 0 492! .0221 
. . 5957 1.803: .230 .645 917; 482 .107 411; .0226 
3 3 | 5.164 5,.606:.391 994 1.00! 429 .276 295! .0314 o

o
o
 

Qo
 On 

1 0 0 [0  1272).219 -- 781'.5 0 5 | .0294 
15 0 15 | 1097 1.421:.212 -- 822: 504 0 496.0276 
15 0 3 | 1583 3.124).176 .830 991; 433 328 .239; .0235 

15 15 © | .0403 1.330:.216 ---- .797: 503 0 497: .0265 
15 15 15 | .2383 1.505:.220 --- 851: .512 0 488: .0256 
15 15 3 | 2.280 3.670:.199 .907 .997: 432 302 .266: .0249 

15 3 OO | 0946 1.439:.207 ---- .823: 513 0  .487! .0206 
IS. 5393 1.906:.203 632 920: 451 .160 .389; .0211 
15 3 3 | 4846 5.558.329 992 1.00! 425 .281 .294: .0298 

rey
) 

— WN
 

0 | 0  1.367:.203 -- .797:.5 0 5 : .0230 3 0 
3 0 15 | .0445 1.516:.187 ----  .826: .500 O 500: .0221 
3 0 1.269 3.272:.119 .781 .989 | 402 .327 .271: .0201 

3. 15 © | 0247 1.418:.199 ---- .809: 501 0 499! .0212 
3 AS 315 | 1275 1.669:.176 .532 858} 466 .077 .457: .0208 
3 15 3 | 1,868 3.805:.126 .866 .997: 404 317 .279! .0215 

3. 3  O | .0807 1.520:.192 ---- 832: .503 0 497: 0171 
. . 3975 2.117: 152 598 925 | 402 .237 .361: .0178 
3 3 3 | 3.994 5.519:.179 982 1.00; 407 .297 .296; .0258 

oS
) We
 

—
 

A
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When [Up is other than zero, uniform priors lead to design patterns similar to the 

normal prior case. As shown in table 6.3.2 where Up = -2, the design has symmetric ED’s, 

or S = 0, and equal sample sizes only when both linear effects come with point priors, or 

V1 = 2 = 0. Otherwise the design ED’s and sample weights both turn out to be unbalanced 

in the same fashion as found in the normal case, which is explained in §6.2. The only 

additional] feature here is that for a uniform prior, the result is often a three- rather than 

two-line design. 

3 

The Bayesian optimality criterion, apart from the factor >? is given for each 

Hip 

design in the tables. Similar to the normal case, the criterion decreases as the prior 

becomes more dispersed or aS [ig deviates from zero. However, an increase in the 

criterion is often achieved whenever the optimal design increases from two to three levels 

due to any increase in the dispersion of the prior, represented by an increase in ¥j. If the 

increase in ‘¥, does not lead to an additional design level, then the criterion will decrease. 

The Bayesian D optimality criterion in the uniform case tend to be smaller than 

that in the normal case when both types of priors lead to two-level designs. In the cases 

where the uniform prior leads to a three-level design whereas the normal prior gives a 

two-level solution, the criterion with the uniform prior is usually greater than that with 

the normal prior. 

In general, compared to normal priors, uniform priors tend to give designs with 

more ED levels and with larger ED dispersions. 
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§6.4 Robustness to Parameter Misspecification 

The experimenter is assumed to make guesses of the parameters through prior 

distributions. The Bayesian optimal design is found for the given prior distribution and 

constructed using the mean of the prior (Uo, [1, M2)’. If the guessed prior has the true 

parameter (Bo, 81, Bz)’ as its mean, the design would be correctly constructed. Otherwise 

if the mean of the guessed prior differs from the true parameters, the design would be 

constructed from the wrong parameter values and is suspected to be often less than 

optimal. The robustness property of a Bayesian design can be evaluated by the D 

efficiency defined as 

1 

D-EFF = |B) due to given design constructed with | 
  : (6.4.1) 
|1(B)| due to given design constructed with B 

where B denotes the true parameter (Bo, B;, Bz)’, W denotes the specified mean (Uo, HW, 

L2)’ of the prior, and p is the number of individual parameters, or p = 3. 

The degree of misspecification can be measured with mo = 10 m =H and m) 
0 By 

= 2 where Bo # O. For a six-point parallel-line design with the logits S - T, S, and S + T, 
2 

the actual logits of the constructed design fall on 

m 1 m mk? +m 
Ly = Bo(1 - —*) + —S + (Lx -Lp)(1 - +) - T+ . 

m4 my m9 myk* +m35 

m 1 m 
Ly = Bo(l - —2) + —S+(Lx-Lp)(1- +), 

m4 m9 M9 

m 1 m mk? +m 
L3 = Bo(1 - —2) + —S+ (x -Lp)d - —+)+T—5— . 

m4 m9 m9 myk*“ +m5 
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2 
m 1 m m,k*“ +m 

L4 = Bo(1 - —*) + —S+ (Lx +Ip\(l- —)-T55—4 . 
my m2 m9 myk* +m9 

m 1 m 
Ls = Bo(1 - —2) + —S+(Lx+Lp\(1- +), 

m9 Mm m4 

m 1 m mk? +m 
Le = Bo(1 - —*) + —S + (Lx +Lp)(1 - —+) +T—-,—. 

m9 m9 m9 myk +Mm95 

(6.4.2) 

where k = a Lx = 8X10, and Lp = B,D. In the case of By = 0, the term Bo(1 - ™0 ) in 
2 m9 

(6.4.2) should be replaced by - Po. 
m4 

Let S and T denote the central and deviation logits of the Bayesian D optimal 

design under consideration. The optimal sample proportions are denoted rl, r2, and 13. 

The logits for the optimal design can be denoted by Lj = S - T, L3=S, and L3=S +T. 

Let P= —_! and W, = P. (1 -P,), i = 1, 2, 3. Again, let P,; be the response 
l+e bi 

probability at the i” point of the constructed design, i = 1, ..., 6, or P; = —_t_, where 
Ite 7 

L, are given in (6.4.2). Let W; = P\(1 - Pj), 1 = 1, ..., 6. The D efficiency defined in (6.4.1) 

can then be expressed as 

1 
D-EFF = { a {(r, W, + rW> + r3W3)(4r;r3W4We + r2W5(r;W4 + 13W6e)) 

m9 

+ (r) W4 + rm Ws + r3W.)(4r)6r3W 1 W3 + rW>(r,; W, + r3W3))]/ 

G
2
 

| 

[2(ry Wy + ry W + 3 W3 )(4 ryr3 Wy W3 + 12 Wo (1) W, +13 W3 ))]} 3. 

(6.4.3) 
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The robustness property of the Bayesian designs with normal priors is illustrated 

through tables 6.4.1 and 6.4.2, each addressing a particular Bayesian design. Both designs 

achieve reasonable efficiencies most of the time, and are relatively more efficient when 

all parameters are moderately overestimated, especially for the latter design where Bo + 0. 

Table 6.4.1 contains efficiencies where Bg = 0 and can roughly be compared to the 

top portion of table 5.1.2, which gives the efficiencies of the non-Bayesian parallel-line 

optimal design in similar situations of misspecification. The Bayesian design appears to 

be especially more robust than the conventional parallel-line optimal design under 

overestimation of the parameters. 

Table 6.4.1. Bayesian design efficiency under parameter misspecification, normal prior, 
Bo = 0, Ikl = 0.5, Ly = 0, Lp = 2, Yo = 0.3, Y) = 0.3, Yo = 0.3 

  

m) 

lol = my, 25 5 75 1 125 1.5 175 2 

0 25 05 AT 76 77 .70 62 56 50 
5 29 51 80 87 81 73 65 58 
75 43 71 87 94 91 82 74 66 

1 07 81 95 1 98 90 82 73 

2 00 03 29 66 88 95 94 90 

5 25 07 49 75 16 69 62 55 50 
5 35 54 79 85 80 72 64 58 
75 40 73 86 92 89 81 73 66 

1 10 79 93 98 96 89 81 73 

2 00 04 31 .66 86 93 93 89 

1 25 12 51 70 72 67 60 55 50 
5 27 56 75 .80 7] 70 63 57 
75 24 67 80 86 84 78 71 64 

\ 12 66 85 91 90 85 78 71   
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Table 6.4.2 Bayesian design efficiency under parameter misspecification, normal prior, 

Bo = -2, Iki =0.5, L, = 1, Lp = 2, Yo = 0.3, y, = 0.3, Yo = 0.3 

  

m2 

Mo m, 25 5 75 1 1.25 1.5 1.75 2 

5 25 08 47 75 .78 71 64 57 52 
5 32 48 78 87 82 73 65 58 
75 44 68 85 93 88 80 72 64 

1 07 81 92 95 91 84 76 68 

2 00 06 34 58 67 68 67 65 

i 25 06 43 67 74 70 64 58 52 

5 13 52 76 85 82 75 67 60 

75 17 67 84 .93 92 85 76 68 

1 12 75 93 1 99 92 83 74 

2 00 03 32 .67 84 87 85 80 

1.5 25 00 15 42 58 62 61 56 52 

5 00 21 51 .68 73 71 66 60 

75 01 30 61 78 83 81 75 68 

1 03 39 72 87 92 90 83 76 

1.25 .03 41 19 94 .99 97 91 83 

1.5 .O1 29 i) 95 1.02 1.01 95 88 

1.75 .00 13 34 .86 1.00 1.01 97 .90 

2 .00 04 32 .69 .90 97 .96 .90   
Table 6.4.2 contains efficiencies where Bg # 0 and is comparable to the lower 

portion of table 5.1.4, which exhibits the robustness property of the non-Bayesian design 

in corresponding situations. The Bayesian design often has higher efficiencies and 

displays considerable improvement in robustness under overestimation. The Bayesian 

design only shows slightly lower efficiencies when subject to severely underestimated 

parameters. 

For the Bayesian design with uniform priors, the robustness property is illustrated 

through tables 6.4.3 and 6.4.4, each evaluating a particular design. Both designs are fairly 
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robust and especially so when the parameters are overestimated. The design in table 6.4.4, 

which is based on a broader prior, appears considerably more robust than the design in 

table 6.4.3, which results from a relatively tighter prior distribution. 

Both table 6.4.3 and table 6.4.4 are comparable to the lower portion of table 5.1.4, 

which evaluates the robustness in the corresponding non-Bayesian situation. The 

Bayesian designs achieve better robustness overall than the conventional design, with 

substantial improvement in the presence of overestimation. 

Table 6.4.3 Bayesian design efficiency under parameter misspecification, uniform prior, 

Bo = -2, [kl = 0.5, Ly = 1, Lp = 2, Yo = 0.3, yy = 0.15, Yo = 0.15 

  

m2 

Mo m 25 5 75 1 1.25 1.5 1.75 2 

5 25 15 4] 75 .80 74 67 60 54 
5 37 50 77 .87 83 75 68 61 
75 57 68 83 92 89 82 74 66 

1 10 83 91 94 92 85 77 70 

2 00 06 36 59 68 69 68 66 

1 25 22 50 69 16 73 67 61 55 
5 27 57 76 86 85 78 70 63 

75 23 69 83 .94 94 87 79 71 

] 14 79 93 1 1.00 94 86 77 

2 00 04 35 70 86 89 86 82 

1.5 25 01 23 48 62 66 64 59 55 

5 02 31 58 72 76 74 69 63 

75 03 40 68 82 87 84 78 71 

l 05 46 78 91 95 93 87 79 

1.25 .03 AS .83 97 1.02 1.00 .93 .86 

1.5 .O1 32 77 .98 1.05 1.04 .98 .90 

1.75 .00 13 7 90 1.02 1.04 1.00 .93   
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Table 6.4.4 Bayesian design efficiency under parameter misspecification, uniform prior, 

Bo = -2, kl = 0.5, Ly = 1, Lp = 2, Yo = 0.3, y, = 0.3, Y2 = 0.15 

  

m2 
Mp mm | .25 5 75 1 125 1.5 175 2 

5 25 13 51 16 86 83 16 69 63 
5 42 56 77 90 91 85 78 71 
75 71 70 82 94 96 91 84 77 

1 18 89 91 98 99 95 88 81 

2 00 08 44 10 81 84 83 80 

1 25 22 54 70 19 80 76 70 64 

5 30 59 76 87 90 86 80 73 

75 23 71 83 .94 98 95 88 81 

1 16 78 92 1 1.04 1.01 95 87 

  5 02 39 63 14 80 80 77 72 

75 03 46 72 84 90 90 86 80 

1 .04 48 80 92 98 98 .94 88 

1.25 .03 43 .83 .98 1.05 1.05 1.01 95 

1.5 OL 36 81 1.02 1.09 1.10 1.06 1.00 

1.75 .00 .20 .68 98 1.09 1.11 1.09 1.03 

2 .00 07 45 84 1.03 1.09 1.09 1.04 

Comparing tables 6.4.1-2 for the normal priors to tables 6.4.3-4 for the uniform 

priors, it is found that uniform priors tend to yield more robust designs than normal 

priors. This is a result of larger weights given by uniform priors to the values near the 

margins. 

Since Bayesian designs are less than optimal given perfect parameter knowledge, 

a higher robustness efficiency does not necessarily imply that the Bayesian design offers a 

larger, or better, criterion value than the conventional optimal design, either with or 
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without parameter misspecification. To better understand the properties of Bayesian 

designs, it is found that under no parameter misspecification, the Bayesian designs 

examined in tables 6.4.1 through 6.4.4 have efficiencies of 98.0%, 96.6%, 94.9%, and 

89.1% respectively, relative to the D optimal parallel-line design. These high efficiencies 

suggest that the above Bayesian designs are highly desirable from a practical point of 

view. In addition, the four designs, with their efficiencies in descending order, appear to 

have ascending degrees of robustness. This feature reflects the two conflicting design 

qualities: being efficient under good parameter knowledge versus being robust under poor 

parameter guesses. 

In this chapter we have developed Bayesian D optimal designs with the parallel- 

line structure for the two-variable logistic model containing interaction. Construction of a 

Bayesian design is done by using the mean of the prior distribution in the same fashion 

for the parallel-line design as outlined in §2.1. Both two- and three-line designs are 

encountered in the optimal solutions. The three-line designs tend to be associated with 

prior distributions of larger dispersion. Similar to the results of other Bayesian optimal 

design work, it is found that the Bayesian designs developed here often appear more 

robust than the non-Bayesian parallel-line optimal design and achieve substantial 

improvement in certain situations. 
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CHAPTER 7 

OPTIMAL DESIGNS FOR ESTIMATION OF INTERACTION 

The optimal designs studied in the previous chapters focus on enhancing the 

overall estimation of the rnodel parameters. In some dose-response studies, estimation of 

the interaction effect may be a special concern. To gear a design to the estimation of 

interaction, the optimization criterion would address the asymptotic variance of the 

interaction coefficient, which corresponds to a single element of the inverse of the 

information matrix I(§) rather than the entire information matrix addressed in D 

optimality. In this chapter we develop optimal designs that minimize the asymptotic 

variance of the interaction coefficient. The criterion is expressed as 

Min Var[ B15] 
5 

where J is a set of candidate designs, Bio is the MLE for B;2, and Var[ B13] denotes the 

asymptotic variance of By5. 

The asymptotic variance Var[B,>] is given by the appropriate diagonal element of 

the inverse of the information matrix I(B), where I(8) comes from fitting an interaction 

model. A hyperbola-based design is found by assuming that the dose-response 

relationship does contain interaction and have hyperbolic ED’s. Similar to their approach 

used with D optimal designs, Brunden et al. (1988) derived a factorial design that 

minimizes Var[ B10] by assuming a no-interaction kind of dose-response relationship with 

straight line ED’s. Using Brunden’s approach, a parallel-line design is also obtained 

mainly to provide design simplicity. The simple designs, namely the factorial and 
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parallel-line designs, are then compared to the hyperbola-based design in terms of their 

relative efficiencies in the presence of interaction. 

§7.1. Hyperbola-Based Design 

The same hyperbola-based design structure as shown in figure 2.2.1 is used to 

generate a design that minimizes Var[B,7]. Given this design structure, the asymptotic 

variance of 8B) is shown to be 

2 P, 
VarlB Bio Py yy2 I 1 = 212 Ioe(—2_) - [By2] ny Los P, logs | + 

—P, rP, (1—P,) (=pP,0—P,)” 

(7.1.1) 

    

where N is the total sample size, P; and P2 are the ED levels of the design, and r is the 

sample proportion allocated to the points on EDjgop,. Minimizing the Var[B 19] 

expression in (7.1.1) yields the optimal solutions 

P, = 0.083222, P» = 0.916778, and r=0.5. (7.1.2) 

While the D optimality criterion for a hyperbola-based design involves the central 

logit Bo and the ratio t of the design levels, the criterion Var[By5] is not a function of Bo 

and t. The optimal design for Var[B13] is therefore completely defined by (7.1.2) and 

independent of any additional constraint. This implies that theoretically, the experimenter 

has complete freedom in choosing where on EDg 3 and EDo1.7 to put the design points, as 

long as the basic rule is followed that the two points on a common ED are symmetric 

about the hyperbola center. 

Compared to the D optimal hyperbola-based design, which is given by ED)7.¢ and 

EDg> 4, the optimal design for Var[B 19] has a larger dispersion. It seems that emphasizing 
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the interaction coefficient in the design criterion tends to increase the design spread in 

probability space. 

§7.2 Factorial Design 

The 2x2 factorial design by Brunden et al. has the structure shown in figure 2.4.1. 

In this section we rederive the factorial design in a way that is more consistent with the 

rest of the design work in this research. Assuming no interaction in the true relationship, 

the design criterion is given by 

    

  

      

. 168287 P PR. 
Var[By2] = aie los) loa rr 

2 

| 1 . 4(,/P,Ps + f@-P))G-=P3)) . 1 

mP,d-Py) (1-1, -13),/PyP3(1—P,)(1—P3) —3P3(1—P3) 

(7.2.1) 

where N is the total sample size, P; and P3 are the lower and upper design probabilities 

respectively, and r; and r3 are the sample proportions allocated to the design points on the 

lower and upper ED’s. The middle probability Pz can be expressed as a function of P; and 

P3 as given in (2.4.1). Minimizing the VarlB 91 expression in (7.2.1) with respect to Pj, 

P3, rj, and rz yields the optimal solution 

P, = 0.008173, P, = 0.5, P3 = 0.991827, 

ry =1f3 = 0.423704, and = r2 = 0.076296, (7.2.2) 

where r2 is the sample proportion for each point on P). 

Compared to the D optimal factorial design, which is given by ED; 6, EDs, and 

EDo 4, the optimal design for Var[B 19] has more extreme lower and upper probabilities. 
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This is in line with what has been observed from the hyperbola-based designs and once 

again suggests that emphasizing the interaction coefficient in the design criterion tends to 

stretch out the design to a wider range. 

Unlike the D optimal design, which has equal sample sizes, the optimal design for 

Var[Bi0] has almost 85% of the experimental runs allocated to the extreme ED’s and 

only about 15% to the middle ED. This seems to be another consequence of the additional 

“stretching out” mentioned above. 

§7.3. Parallel-Line Design 

The parallel-line design for minimizing Var[B 2] assumes the same structure as 

shown in figure 2.1.1. Assuming no interaction in the true relationship, the design 

criterion is given by 

2 

Var[Bj2] = Ba 
P -2 1 1 

Net 
ND? f(k)? —P, rP, 1— P,) * (l—r)P, 1 — Pp) 

    },   

Py log(—4~) - 1 log P, OB 

(7.3.1) 

where D, is a distance shown in figure 2.1.1 and characterizes the length of the ED edges, 

By r is the sample proportion allocated to P;, k is the slope of the ED lines given by Bo. 
2 

and the function f(k) is defined in (2.5.2). As explained in §2.5, a rectangular parallel-line 

design leads to a singular information matrix for fitting an interaction model when the 

linear effects are equal in the sense k = +1. To avoid this, the convention set in §2.5 has 

been applied here. Namely, the design is rectangular when k # +1 and has horizontal non- 

ED edges if k = +1. 
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Minimizing the criterion in (7.3.1) gives the optimal results 

P, = 0.083222, Pz = 0.916778, and r=0.5. (7.3.2) 

These optimal solutions for the parallel-line design are identical to those for the 

hyperbola-based design. As far as optimization is concerned, the effective part of the 

criterion expression in (7.3.1) is identical to that in (7.1.1) for a hyperbola-based design. 

Consequently, both designs are characterized by the same optimal ED’s while their 

structures are totally different. 

Compared to the D optimal design, which is given by ED)7.¢ and EDg» 4, the 

optimal design for VarlB >] has more dispersed ED’s. This has been observed in all three 

designs addressed in this chapter. There seems to be remarkable evidence that focusing 

on the estimation of interaction rather than balancing among all the parameters tends to 

stretch out the design to more extreme ED’s. Namely, the interaction effect might be 

better estimated with a more dispersed design. 

§7.4 Efficiency of Factorial Design 

The factorial design by Brunden et al. is derived by assuming no interaction. 

When interaction is indeed present, the asymptotic variance Var[ B, 2] due to the design is 

no longer given by the expression in (7.2.1) and is expected to be higher in general. 

Comparing this asymptotic variance to that of the optimal hyperbola-based design, which 

is obtained by assuming the presence of interaction, leads to the relative efficiency 

defined as 

Var(B 9) from design B 

Var(B19) from design A 

  (7.4.1) 

where design A is currently the factorial design and design B the hyperbola-based design. 
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Let P; denote the actual response probability at the im point of the factorial 

design and r; the sample proportion given to the i” point. It can be shown that 

    
s S5oL SoL 

4 $)S9L9 +—-(L, -~ (Bo +L, +2) 
1 2 1 Ag 2 2 

+ > > |—e * 1 * * = 
izit,P)/d-P,) %  s)=-1,1s,=-1,1] 

  

S] 82     

L L 5 Bo +L +2) 
(7.4.2) 

where Lo is the upper optimal logit 4.79871 for the factorial design, r; and rz are the 

optimal sample proportions given in (7.2.2), Ap is the logit distance between the origin 

and the hyperbola center given by (4.2.2), and L, is a logit type index of the design 

location and was discussed in detail in §4.3. 

The relative efficiency defined in (7.4.1) can be expressed as 

  

  

{ 

Li - 
EFF = Fi, As, Ly) = 2- (743) 

LAG | 
i=l 1 P; ad _ P.’) 

where P is the upper probability 0.916778 for the hyperbola-based design and L =logit(P). 

Due to the symmetries 

(1) F(Bo, As, Lx) = F(-Bo, -As, -L) 

and (2) F(Bo, As, Lx) = F(Bo, As, - Bo - Lx), 

Bo only cases of By<0 and L,2 - 3 will be considered. The efficiency is evaluated in table 

7.4.1. Conditions with maximum efficiencies are listed in table 7.4.2. The efficiency 

given each Bp is plotted versus Ag and L, in figure 7.4.1. 
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Table 7.4.1 Efficiency of factorial design for estimation of interaction 

  

As 
Bo =x 10 -5 -2 <1 1 2 5 10 

0 0 015 042 .054 012 012 .054 .042 .015 
1 016 .045 .040 .001 .001 .040 .045 .016 
2 016 .036 .001 .000 .000 001 .036 016 
3 013 .009 .000 .000 .000 .000 009 .013 
4 007. .001 .000 .000 .000 .000 .001 .007 

-1 05 018 .061 .136 .070 001 015 .026 012 
1.5 019 .063 .062 .001 .001 .019 .029 013 
2.5 019 045 .002 .000 .000 .002 029 .013 
3.5 015 .012 .000 .000 .000 .000 .009 011 
4.5 008 .001 .000 .000 .000 .000 .001 .006 

2 1 022 .082 .270 .168 .000 .003 015 .010 
2 022 .083 .097 .002 .000 .005 017 .010 
3 022 .056 .002 .000 .000 .002 021 O11 
4 018 .012 .000 .000 .000 .000 .009 .010 
5 009 .001 .000 .000 .000 .000 001 .006 

5 2.5 028 .119 .081 .000 .000 .000 .001 .003 
3.5 030 .127 .123 .000 .000 .000 .002 .004 
4.5 032 .113 .030 .000 .000 .000 .003 .004 
5.5 030 .033 .000 .000 .000 .000 .005 .005 
6.5 017 .004 .000 .000 .000 .000 .002 .005   

Table 7.4.2 Maximum efficiencies of factorial design for estimation of interaction 

  

  

Bo Max EFF Lx Ap 

0 0.063371 + 0.745772 +2.83113 

-] 0.136175 0.5 -1.92800 

-2 0.300293 1 -1.52606 

-5 0.305351 1.65593, 3.34407 -2.70623 

Global Max: 

-3.28776 0.485127 1.64388 -1.86346 
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(1) Bo =0 (2) Bo =-1 

     -5 
0) 

Delta-beta 

10 

  

(3) Bo =-2 (4) Bo =-5 

Figure7.4.1 Efficiency of factorial design for estimation of interaction 
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The above results indicate that the factorial design is very inefficient in estimating 

the interaction effect compared to the hyperbola-based design. The relative efficiency is 

often close to zero, while the best case is only near 0.5. Similar to what has been observed 

with the D optimal designs, the design is more inefficient when As>O than it is when As 

<0, especially if IBol is large. Given that Bo<O is currently discussed, this means that the 

performance is worse when the design center lies further away from the hyperbola center. 

From the conditions associated with a maximum efficiency in table 7.4.2, the best 

location(s) for the design center is indicated by values of L, either equal to or symmetric 

about - Fo. Regarding the above comments, similar discussion with more details is given 

in §4.3 which deals with the D optimal designs. 

Due to the closeness to zero of its efficiencies, the factorial design for minimizing 

Var[B}>] does not seem to be an effective simple alternative to the hyperbola-based 

optimal design. 

§7.5 Efficiency of Parallel-Line Design 

Based on similar motivation, the relative efficiency of the parallel-line design can 

also be found using the definition in (7.4.1). The parallel-line design is assumed to have 

an equal area to that of the hyperbola-based design. Let P; denote the actual response 

probability at the i point of the parallel-line design. It can be shown that 

4 1 
Looe 8 + 

$839 +, (Lx + 

x x& Le 
S$] =—1,1 $9 =~-1,1 $3 =~—1,1 

Sj     
L L 
5 *.(1+f(k))+s2Ag (Bo -L + 5 *.(1-f(k))-s2Ag) 

(7.5.1) 
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where Lg is the upper logit of the parallel-line design, which is the same as that of the 

hyperbola-based design, As and L, remain the same as in §7.4, and the function f(k) is 

given by (2.5.2) where k =: ft. The efficiency of the parallel-line design is given by 
2 

1 

P(1—P) 

14 1 
7 = * * 
4 inj P.(1-P.) 

  

EFF = F(k, Bo, As, Lx) = f(k)* (7.5.2) 

Due to the symmetries 

(1) F(k, Bo, Ap, Lx) = F(k, -Bo, - As, -L), 

(2) F(k, Bo, Ap, Ly) = F(-k, Bo, As, L,), 

and (3) fork #+1, F(k, Bo, As, L,) = FO, Bo, As, - Bo - Lx), 

the efficiencies will be investigated for the restricted parameter space Ikle (0,1] A Boe (-», 

0]. The user selected design location is reflected by the scale free index L,, which was 

discussed with more details in §4.3. As all previous efficiency analyses suggest that good 

results tend to occur at or near L, = - Fo, the efficiency will be examined for a range of 

L, symmetric about - Fo. Table 7.5.1 contains the efficiency for the above cases. Figure 

7.5.1 shows the efficiency plots versus Ap and L, for given Bo at Ikl = 0.5. The plots for 

other values of k look roughly the same. Situations producing maximum efficiencies are 

summarized in table 7.5.2. 
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Table 7.5.1. Efficiency of parallel-line design for estimation of interaction 

  

  

As 

(kl Bo Lx -3 -2 -1 05 05 1 2 3 

0.2 0 -1.5 00 =6.000 »3=— .000-—'—(«iw00—t—‘zOOsSCi‘é OS ~=SsCiétB——s«i«éOL 
-0.5 006 012 019 O10 627 458 191 069 
0 023 063 159 208 208 159 063 .023 
0.5 069 191 458 627 010 019 012 006 
1.5 019 023 005 .000 000 000 000 ~~ 000 

-1 -1.0 000 .000 000 000 001 019 041 025 
0 009 025 O77 155  .121 181 129.053 
0.5 037 126 525 921 018 .057 039 017 
1.0 098 291 553 .155 001 007 008 .004 
2.0 | 015 015 002 .000 000 000 000 ~§©.000 

-2 -0.5 001 .001 001 .000 030 085 067 034 
0.5 017 .066 421 295 003 .040 093 .046 
1.0 069 295 973 061 .001 019 031 015 
1.5 147. 404 421 021 000 .004 006  .003 
2.5 013 012 001 .000 000 .000 #000 000 

-5 1.0 | 011 .079 007 .000 000 000 .005 032 
2.0 286 ©6419 001 000 000 000 86.005 = .041 
2.5 706 ©.498 001 .000 000 000 006 ~~ 021 
3.0 494 478 001 .000 .000 .000 .006 .006 
4.0 024 027 .001 .000 000 000 .000 ~~ .000 

0.5 0 -1.5 | 000 §6©.000 §=636.000 )3S .000S-(«001.—i(i‘iéiéiaO2S—(si«iétBO).—Cté=é‘—«#tO’“' 
-0.5 007 019 046 040 224 ~ 261 155.055 
0 025 076 176 090 090 176 076 025 
0.5 055 155 261 .224 040 046 .019 007 
1.5 014 030 025 001 .000 000 000 ~~ .000 

-] -1.0 001 001 001 .000 021 .050 029 013 
0 012 039 173 .282 015 .078 099 8.042 
0.5 040 147 463 287 005 056 047 019 
1.0 082 253 495 .282 003 O17 012 .005 
2.0 016 028 010 .000 000 .000 000 ~§ 000 

-2 -0.5 001 .003 .007 O10 .024 031 026 012 
0.5 022 100 466 .035 000 013 .067 036 
1.0 075 318 556 ©.013. = .000 Ss 012,s—s«036—S—«—O16 
1.5 131 386 466 .011. 000 007. 010  .005 
2.5 | 018 .026 .007 000 000) §©6©.000 ©0000 ~§=.000 

-5 1.0 018 098 .001 .000 000 ©0000 6002 #8011 
2.0 318 .232 000 ©6000 §6©—.000 )§=63.000 Ss .002-——s«=#029 
2.5 610 .306 .000 .000 000 .000 004 8.022 
3.0 465 320 .000 .000 .000 .000 005 008 
4.0 038 .052 000 000 000 000 000 ~§.000 
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Table 7.5.1 (continued) 

  

  

As 

kl Bo Lx -3 -2 -1 05 05 1 2 3 

0.8 0 -1.5 000 .000 000 000 6.006 ©6005) =&.-.002_—~Ss«=O*O01 
-0.5 003 009 024 .010 013 035 023 008 

0 008 .023 041 O10 010 .041 023 .008 
0.5 008 023 035 013 .010 024 009 .003 
1.5 001 002 005 006 000 000 000 000 

-j -1.0 000 001 002 003 001 002 001 ~~ 001 
0 005 018 066 .035 001 .010 .014 006 
0.5 012 043 091 032 001 012 015 006 
1.0 012 041 078 035 001 008 006 002 
2.0 001 .004 O11 003 000 000 000 § .000 

-2 -0.5 001 .002 012 020 000 001 001 001 
0.5 009 .042 082 .002 000 002 010 .005 
1.0 022 083 093 001 000 002 011 005 

1.5 021 .073 .082 001 .000 002 005 002 
2.5 002 .008 .012 001 .000 .000 000 ~§ 000 

-5 1.0 010 019 000 000 000 000 000 001 

2.0 091 043 000 .000 000 000 000 ~ .005 
2.5 133 060 .000 .000 000 000 001 .006 
3.0 105 .053  .000 .000 .000 000 001 ~—-.003 
4.0 015 017 .000 000 .000 000 000 ~ .000 

oo eee eee eee eee ee paca nn anne nn anne nnn enn n ene mene nen ene 

1 0 -1.5 016 018 .003 000 .000 ©6000 86.000 ~=.000 
-0.5 066 181 444 461 005 014 010 005 

0 021 .056 135 183 183 135 056 .021 
0.5 005 010 014 005 461 444 181 066 
1.5 000 .000 .000 000 .000 003 018 016 

-1 -1.0 013 012 001 .000 000 000 000 000 
0 093 270 461 .090 .001 005 .006 004 
0.5 034 «4.112 «468 ~=« 1 019 049 035 015 
1.0 008 021 057 090 180 197 .124 051 
2.0 | 000 .000 000 000 000 012 034 =. .023 

-2 -0.5 011 .009 001 000 000 §©.000 ©6000 ~—.000 
0.5 138 368 «337. «=.019 = 000 )S «.003.——(«€00S—Ss«—«003 
1.0 063 266° 1 089 §=6.001_ = 019. «027—S—«—«013 
1.5 015 056 337 461 005 049 092 045 
2.5 | 000 «= .0Ot—(i(ic—ss«d00D.—“‘“—‘aOl2)=.066 Ss 065 — 05 

-5 1.0 020 021 001 000 .000 000 000 ~~ .000 
2.0 461 484 001 .000 .000 000 .006 005 
2.5 675 537 001 000 000 000 006 § .020 
3.0 258 461 001 .000 000 000 005 §©.042 
4.0 009 064 012 .000 000 000 .006 .038 
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Table 7.5.2 Maximum efficiencies of parallel-line design for estimation of interaction 

  

  

Iki Bo Max EFF Ly Ag 

0.2 0 0.852060 0.287814 -0.259669 

-| 0.964767 0.594040 -0.603448 

-2 0.984445 1.03727 - 1.06476 

-5 0.990601 2.50609 -2.53572 

0.5 0 0.363788 0.739006 -0.401120 

-1 0.526365 0.840148 -0.865938 

-2 0.662670 1.08987 -1.26558 

-5 0.725659 2.51485 -2.65208 

0.8 0 0.044105 0.133029 -1,.21365 

-1 0.092291 0.539684 -1.10619 

-2 0.127309 1.01219 -1.38246 

-5 0.145704 2.50589 -2.72261 

1 0 \* O* O* 

-1 0.5 -0.5 

-2 1 1 -1 

-5 ] 2.5 -2.5 

*: The values with asterisks are meaningful only in the limiting sense since As by definition is not 

allowed to be 0, i.e. for |kl = 1, the efficiency approaches 1 as Bo, Ly, and Ap all tend to zero ina 

manner such that Ly = -Bo/2 and Ag = B)/2. 

Similar to every previous case in the efficiency studies of this research, the type of 

interaction with As<O can cause much better performance than the best cases with As>0, 

especially for large IBol. Given Bo<0 is assumed, this roughly means that the parallel-line 

design would be less inferior when the kind of interaction renders the hyperbola-based 

design closer to the center of the parallel-line design. More insight regarding Ag can be 

found in §4.2 and §4.3. From table 7.5.2, the best value of L,, which determines the 

Bo 
design location, is either close or equal to - 5 Based on the efficiencies, the parallel- 
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line design does not seem to offer comparable performance with respect to the hyperbola- 

based design in estimating interaction. 

Compared to the factorial design, the parallel-line design offers better efficiencies 

but over smaller regions of the parameter space. In conclusion, based on the low 

efficiencies of both simple designs, the overall impression suggests that the hyperbola- 

based design is still a superior choice over the factorial and parallel-line designs for 

estimation of interaction. 
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CHAPTER 8 

Q OPTIMAL DESIGNS 

The D optimal designs and the designs minimizing Var[ B19] studied in the 

previous chapters are both driven by parameter estimation. As discussed in the 

introduction, another goal of design optimization focuses on the prediction of response. 

One such criterion is Q optimality. A Q optimal design minimizes the average scaled 

variance of a predicted response. For the logistic model, Q optimality can be defined as 

either minimizing the average scaled asymptotic prediction variance of the response 

probability 

Min APV[ p | 
§ 

or minimizing the average scaled asymptotic prediction variance of the logit 

Min APV[logit(p )]. 
5 

In this chapter, optimal designs are derived by addressing the above two criteria separately 

for the two-variable logistic model containing no interaction. Relative efficiencies between 

the designs based on the logit and those based on the response probability show that the 

two types of designs are fairly close in their performance. Q optimal designs addressing 

the logit are also obtained for the interaction model. 

§8.1 Parallel-Line Design Based on Logit 

A Q optimal design minimizes the average scaled prediction variance over a 

preselected region in the design space and hence is region dependent. For the no- 
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interaction model, consider a rectangular region R bounded by EDj oop; and ED loop; and 

a rectangular parallel-line type design falling on EDjqgp, and ED jqop, . The region and 

design arrangement are illustrated in figure 8.1.1. The region centers at (xjc, X2-) while the 

design at (xio, X29). The region center is a user’s choice whereas the design center is 

subject to no initial constraint. Equal sample sizes are assumed for the design points on the 

same ED. 

  
  

Figure 8.1.1 Region and design arrangement for Q optimal parallel-line design 

The Q optimality criterion is derived in appendix A and is given below: 
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Li +L! Li +L ; (L, - C 22, - “ 22 

APV[logit(p )] = xl + ] 
(L> -Ly) rP(1- P)) (1—r)P2(1- Py) 

(L5 - Li)” 1 1 
  + + | 
12(Ly -Ly)? tPy-Py)  (1-1)Py(1- Py) 

1 Ly hg LY +L A 
—z [10 -x “1( yr + D2 10 Ic — 2 3D2 

, PI 
Bip) OPT PD 

  

  

(8.1.1) 

where L; = logit(Pi), Lj= logit(P/ ), i= 1, 2, a= Be + B3 , f is the sample proportion on 

ED j oop, , D; is a design distance defined in figure 8.1.1, and A; is the corresponding 

region attribute also shown in figure 8.1.1. 

The first optimization result concerns with the design center. Minimizing 

APV{logit(p )] in (8.1.1) immediately leads to 

By L,+L Li+L 
x10 = X1e + (= 2. | 2) 

2 2 
  

which further implies that 

  
Bz (Litly Uy th) 

X20 = X2¢ + 
2 2 

(8.1.2) 

Regardless of what the design logits are, the optimal location for the design center must 

satisfy (8.1.2). In fact, it can be shown that the condition in (8.1.2) holds if and only if the 

center of the design falls on the straight line that goes through the region center (X1¢, X2c) 

and the midpoints of the two region boundaries on ED gop; and EDjop; . This feature is 

shown in figure 8.1.2. Two examples of optimal design center are given, denoted D and 

D*. Both points lie on line / that goes through the middle of the region. As a result, the 
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design center, initially free in the two-dimensional space, is now confined on a one- 

dimensional line. Within the central line of the region, its journey will end up at a point 

which has to be determined by the optimal design logits. 

  
Legend L}, L4 : region logits 

Lj, Lz : design logits 

Li, L}: design logits 

Cc : region center 

Mj, M2: midpoints of region edges on Lj and L4 

D : optimal design center for the design on L and Ly 

D* : optimal design center for the design on L} and L> 

f : line formed by points Mj, Mo, and C 

Figure 8.1.2 Optimal location of design center for Q optimal parallel-line design 

For a design with its center satisfying (8.1.2), the Q criterion reduces to 

APV[logit(p)] = Q(Pi, P2, r| Py, P3, g) 
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Li +L! Li +L! 
pg Py - 

= [ + 
(Ly-L,)* Py - Py) (1—r)P5 (I~ Po) 

, _ , 2 , (y-L) 1 | 
]+ 

12(Ly -L,)* Py(-Py)  (-r)Pa(1-Po)” 3g? [rP,(1- Py) +1 — Po (1— Py) 

(8.1.3) 

where g is the ratio of the length of the ED edges for the design relative to that for the 

. \D? +D3 
region, or Z£ TS 

yy +3 

width relative to the region width along the direction of the ED lines. Orthogonal to this 

D, 

Ay 

_|D2 AL In short, g is a ratio that describes the design 
2 

      

direction, the size of the design relative to that of the region is characterized by the design 

logits given the region logits. 

As anticipated from intuition, the expression in (8.1.3) indicates that the Q 

criterion always improves as g increases. When g goes to infinity, the Q criterion of a 

parallel-line design approaches that of a two-point design for the one-variable logistic 

model, which is given by 

L,+L 1 la - u-, L1,+L5.2 

[ 2? 
(Ly-L,)?—- ™ (1- Py) (1—r)P2 (1~ P2) 

APV{logit(p)] = 

(L - Li) 1 1 + + 
1AL-L,)? rPy(1-Py) = (i-r)P)(1- Py) 
  }. (8.1.4) 

The Q optimal designs are found for given Pj, P3, and g, where Py and P45 correspond 

to a user selected region of interest while g is a user preferred “design to region” ratio. 

For symmetric regions, the Q optimal designs are given in table 8.1.1. These 

designs have symmetric ED’s with equal sample sizes. When the region is broad, the 

design stays within the region. As the region shrinks, the design also becomes narrower 
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but does not contract quickly enough to catch up with the region. Consequently, the 

design tends to cross over the region boundaries when the region becomes too small. 

Similar to the D optimal designs, the two-variable Q optimal design also has smaller 

dispersion than the corresponding one-variable design. As g increases, the design is 

stretched out and will eventually approach the one-variable solution. The Q criterion 

improves as the span of the region shrinks or the “design to region” ratio g increases. 

For asymmetric regions, one needs to recognize a property of the Q criterion: 

Q(P:, Po, r| Py, P5, g) = Q(-P2, 1-Pi, 1-r| 1-P3, 1-P/, g). (8.1.5) 

From the practical perspective, an asymmetric region of interest often spans over a 

relatively small range either above or below EDs. Due to the property in (8.1.5), optimal 

designs are given only for lower asymmetric regions. These results appear in table 8.1.2. 

The designs still have symmetric ED’s but with uneven sample allocation much more 

weighted toward the side of the region. 

For asymmetric regions, conditional optimal designs are also found by restricting 

equal sample sizes. These designs are given in table 8.1.3. As expected intuitively, the 

ED’s of these designs turn out to be asymmetric and shift toward the side of the region. 

The reason is that the sample allocation, which would otherwise have the priority, is not 

allowed to make the necessary adjustment required by the asymmetry of the region. 

To construct a Q optimal parallel-line design, the design center first needs to be 

obtained from the optimal design logits L; and Lz using the equations in (8.1.2). The 

design points can then be computed using the design matrix in (2.1.7), with -L and L 

replaced by L) and Lz in case of asymmetric design ED’s. 
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Table 8.1.1 Q optimal parallel-line designs based on logit, symmetric regions 

  

Region g Design Weighting(%)  APV{logit(p)] 

0.01-0.99 1/3 0.188929-0.811071 50-50 47.7 

1/2 0.166422-0.833578 50-50 36.4 

1 0.145518-0.854482 50-50 28.4 

2 0.138550-0.861450 50-50 26.7 

0.05-0.95 1/3 0.229003-0.770997 50-50 33.8 

1/2 0.204459-0.795541 50-50 24.0 

1 0.179999-0.820001 50-50 17.5 

2 0.171377-0.828623 50-50 15.8 

0.10-0.90 1/3 0.255802-0.744198 50-50 28.4 

1/2 0.231136-0.768864 50-50 19.4 

1 0.205620-0.794380 50-50 13.6 

2 0.196353-0.803647 50-50 12.0 

0.15-0.85 1/3 0.276962-0.723038 50-50 25.4 

1/2 0.252794-0.747206 50-50 16.9 

1 0.227152-0.772848 50-50 11.4 

2 0.217647-0.782353 50-50 10.0 

0.20-0.80 1/3 0.296267-0.703733 50-50 23.3 

1/2 0.272957-0.727043 50-50 15.1 

] 0.247716-0.752284 50-50 9.9 

2 0.238202-0.761798 50-50 8.6 

0.25-0.75 1/3 0.315279-0.684721 50-50 21.6 

1/2 0.293 149-0.70685 1 50-50 13.8 

1 0.268756-0.73 1244 50-50 8.8 

2 0.259428-0.740572 50-50 75 

0.30-0.70 1/3 0.335089-0.664911 50-50 20.2 

1/2 0.314505-0.685495 50-50 12.7 

l 0.291444-0.708556 50-50 7.9 

2 0.282505-0.717495 50-50 6.7 
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Table 8.1.2 Q optimal parallel-line designs based on logit, asymmetric regions 

  

Region 2g Design Weighting(%) APV{logit(p)] 

0.10-0.20 1/3 0.212136-0.787864 85.4-14.6 29.5 

1/2 0.181592-0.818408 89.9-10.1 19.0 

1 0.156318-0.843682 93.1- 6.9 11.9 

2 0.149966-0.850034 93.6- 6.4 9.9 

0.30-0.40 1/3 0.338725-0.661275 90.6- 9.4 18.5 

1/2 0.329578-0.670422 89.8-10.2 11.1 

] 0.319657-0.680343 88.4-11.6 6.5 

2 0.315742-0.684258 87.8-12.2 5.3 

0.05-0.25 1/3 0.200904-0.799096 80.5-19.5 33.6 

1/2 0.172204-0.827796 83.9-16.1 22.7 

1 0.144484-0.855516 86.8-13.2 15.2 

2 0.135500-0.864500 87.5-12.5 13.1 

0.10-0.30 1/3 0.229930-0.770070 84.7-15.3 27.2 

1/2 0.204772-0.795228 87.3-12.7 17.4 

1 0.182802-0.817198 88.6-11.4 11.0 

2 0.175788-0.824212 88.8-11.2 9.3 

0.20-0.40 1/3 0.291191-0.708809 86.5-13.5 21.2 
1/2 0.274995-0.725005 86.6-13.4 13.0 

] 0.258933-0.741067 85.9-14.1 7.9 

2 0.252998-0.747002 85.5-14.5 6.6 

0.05-0.40 1/3 0.217413-0.782587 78.5-21.5 31.1 

1/2 0.191396-0.808604 80.6-19.4 20.9 

1 0.166158-0.833842 82.1-17.9 14.1 

2 0.157493-0.842507 82.4-17.6 12.2 

0.05-0.50 1/3 0.226539-0.773461 76.2-23.8 30.2 

1/2 0.201421-0.798579 77.7-22.3 20.3 

1 0.176572-0.823428 78.6-21.4 13.8 

2 0.167832-0.832168 78.8-21.2 12.0 
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Table 8.1.3. Q optima! parallel-line designs based on logit, asymmetric regions, 

restricted weighting: 50%-50% 

  

Region g Design APV[logit(p )] 

0.10-0.20 1/3 0.105384-0.387876 32.4 

1/2 0.083810-0.254532 21.1 

1 0.073824-0.225784 13.2 

2 0.070139-0.220717 11.1 

0.30-0.40 1/3 0.27593 7-0.448919 18.6 

1/2 0.262076-0.450570 11.1 

1 0.246508-0.455550 6.5 

2 0.240352-0.457987 5.4 

0.05-0.25 1/3 0.134647-0.601954 38.0 

1/2 0.068895-0.338729 28.3 

] 0.047408-0.236282 20.4 

2 0.043343-0.222482 18.1 

0.10-0.30 1/3 0.126783-0.432345 29.1 

1/2 0.099213-0.349239 19.2 

1 0.081097-0.308734 12.6 

2 0.075471-0.299552 10.8 

0.20-0.40 1/3 0.205389-0.457025 21.6 

1/2 0.183429-0.443735 13.3 

1 0.161456-0.436042 8.2 

2 0.153380-0.434092 6.9 

0.05-0.40 1/3 0.137089-0.570642 33.9 

1/2 0.106282-0.511391 24.6 

1 0.071489-0.382338 18.4 

2 0.064242-0.355220 16.7 

0.05-0.50 1/3 0.147533-0.587017 32.3 

1/2 0.123330-0.569796 23.1 

1 0.098736-0.518179 17.3 

2 0.089137-0.486875 15.8 
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§8.2  Parallel-Line Design Based on Response Probability 

Given the region and design arrangement shown in figure 8.1.1, the Q optimality 

criterion based on the response probability is derived in appendix B. The result in appendix 

B indicates that the best location for the design center again satisfies the condition in 

(8.1.2). The same feature as illustrated in figure 8.1.2 applies here. Once the design center 

satisfies the condition, the Q optimality criterion becomes a function of the design 

attributes P;, P2, and r given the user specifications Pj, Pj, and g in the form 

APV[p] = Q(P1, Po, r| Py, Ps, g) 

l 

3(Ly - Li (Ly -Ly)” 

  

PS? (3 —2P5 (Lh —L2)* -P{?(3-2P{\(Ly -L2)* 
t 2rP, (1 — P;) 
  

. PSG -2Ph Ls - Li)? - PG 2P/)L} - Ly)” 
2(1 —r)P)(1— P) 

4 P2A— Ps Ld ~L2)~ PIA Py) —L2) 
TP; (1 — Pj) 

  

  

, Po —Po (Lo —Lbi)— Pid — Py) ~L1) 
(1—r)P2(1— P2) 
  

    

    

  

. Ly Ly 1-P5 

(FG-Pi)  G=nP,0=Py) TP 

- | ! » pry fly _L 
(Pd-P) + danp, dP) 3 Py Sy ek dL) ] 

' Ps? (3 - 2P3)- Pi?(3-2P)) 
18g7(L4 —Lj)[rP)(1—P))+(1-r)P2 (1-2 )} 

(8.2.1) 
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The criterion always improves as the “design to region” ratio g increases. 

Therefore optimal designs are found for selected values of g. 

Table 8.2.1 gives Q optimal designs for symmetric regions. The designs have 

symmetric ED’s with equal sample weights. Similar to the Q optimal designs based on the 

logit, these designs also become broader as the region broadens or the ratio g increases. 

However, unlike the logit case, the Q criterion APV[p] will increase when the region 

begins to contract from the extreme (e.g. 0.01-0.99) and reach the worst point when the 

region is somewhere around 0.25-0.75 to 0.30-0.70. Additional study shows that APV[p] 

will then start to improve as the region continues to decrease. 

Since the Q criterion APV[p] also possesses the property described by (8.1.5), 

only lower asymmetric regions are evaluated. The corresponding designs are given in table 

8.2.2. These designs have symmetric ED’s but uneven sample sizes weighted toward the 

side of the region. Designs subject to the constraint of equal sample sizes are given in table 

8.2.3. These designs lose the symmetry in the ED’s, which are shifted much closer to the 

regions. Restricting equal sample sizes only slightly hurts the Q criterion value. 

Comparing the results of this section to those in §8.1, a design based on the 

response probability always falls inside the corresponding design based on the logit 

whenever the designs have symmetric ED’s. For symmetric regions, the discrepancy is 

greater for larger regions. In the case of restricted sample sizes, the design based on the 

logit has slightly more extreme ED’s toward the region than the corresponding design 

based on the response probability. In general, the two types of designs appear to be quite 

similar. 
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Table 8.2.1 Q optimal parallel-line designs based on probability, symmetric regions 

  

Region g Design Weighting(%) APV[p] 

0.01-0.99 1/3 0.266305-0.733695 50-50 0.486 

1/2 0.241826-0.758174 50-50 0.327 

] 0.216171-0.783829 50-50 0.225 

2 0.206756-0.793244 50-50 0.198 

0.05-0.95 1/3 0.271767-0.728233 50-50 0.727 

1/2 0.247433-0.752567 50-50 0.486 

] 0.221766-0.778234 50-50 0.331 

2 0.212297-0.787703 50-50 0.290 

0.10-0.90 1/3 0.281589-0.71841] 50-50 0.890 

1/2 0.257593-0.742407 50-50 0.588 

1 0.232004-0.767996 50-50 0.394 

2 0.222478-0.777522 50-50 0.344 

0.15-0.85 1/3 0.293256-0.706744 50-50 0.996 

1/2 0.269789-0.730211 50-50 0.649 

1 0.244454-0.755546 50-50 0.428 

2 0.234929-0.765071 50-50 0.370 

0.20-0.80 1/3 0.306496-0.693504 50-50 1.064 

1/2 0.283782-0.716218 50-50 0.683 

1 0.258943-0.741057 50-50 0.443 

2 0.249506-0.750494 50-50 0.380 

0.25-0.75 1/3 0.321444-0.678556 50-50 1.104 

1/2 0.299763-0.700237 50-50 0.698 

l 0.275738-0.724262 50-50 0.444 

2 0.266509-0.733491 50-50 0.378 

0.30-0.70 1/3 0.338521-0.661479 50-50 1.119 

1/2 0.318235-0.681765 50-50 0.697 

] 0.295448-0.704552 50-50 0.435 

2 0.286596-0.713404 50-50 0.368 
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Table 8.2.2 Q optimal parallel-line designs based on probability, asymmetric regions 

Region g Design Weighting(%) APV[p] 

0.10-0.20 1/3 0.216340-0.783660 86.1-13.9 0.446 

1/2 0.186568-0.813432 90.6- 9.4 0.285 

1 0.163232-0.836768 93.3- 6.7 0.177 

2 0.157349-0.842651 93.7- 6.3 0.148 

0.30-0.40 1/3 0.340411-0.659589 90.5- 9.5 0.948 

1/2 0.331294-0.668706 89.6-10.4 0.565 

1 0.321360-0.678640 88.3-11.7 0.332 

2 0.317432-0.682568 87.6-12.4 0.273 

0.05-0.25 1/3 0.220958-0.779042 83 .2-16.8 0.389 

1/2 0.194372-0.805628 86.1-13.9 0.253 

1 0.170436-0.829564 87.9-12.1 0.163 

2 0.162808-0.837192 88.2-11.8 0.139 

0.10-0.30 1/3 0.243740-0.756260 85.7-14.3 0.587 

1/2 0.221148-0.778852 87.7-12.3 0.371 

l 0.201367-0.798633 88.4-11.6 0.231 

2 0.194821-0.805179 88.4-11.6 0.195 

0.20-0.40 1/3 0.299439-0.700561 86.1-13.9 0.875 

1/2 0.283837-0.716163 86.0-14.0 0.535 

1 0.267985-0.732015 85.1-14.9 0.325 

2 0.262046-0.737954 84.6-15.4 0.271 

0.05-0.40 1/3 0.258036-0.741964 79 .8-20.2 0.566 

1/2 0.235727-0.764273 80.7-19.3 0.364 

] 0.213491-0.786509 80.8-19.2 0,234 

2 0.205497-0.794503 80.7-19.3 0.200 

0.05-0.50 1/3 0.276110-0.723890 74.7-25.3 0.667 

1/2 0.254074-0.745926 74.9-25.1 0.429 

] 0.23 1029-0.768971 74.6-25.4 0.277 

2 0.222489-0.777511 74.4-25.6 0.238 
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Table 8.2.3. Q optimal parallel-line designs based on probability, asymmetric regions, 

restricted weighting: 50%-50% 

  

Region g Design APV[p] 

0.10-0.20 1/3 0.109430-0.374987 0.485 

1/2 0.090823-0.264587 0.312 

] 0.080396-0.237939 0.194 

2 0.076507-0.233153 0.163 

0.30-0.40 1/3 0.278043-0.450684 0.952 

1/2 0.264196-0.452605 0.568 

1 0.248630-0.457783 0.334 

2 0.242472-0.460283 0.275 

0.05-0.25 1/3 0.120302-0.458019 0.423 

1/2 0.087142-0.342813 0.287 

1 0.068933-0.290361 0.193 

2 0.063758-0.279305 0.168 

0.10-0.30 1/3 0.142891-0.428458 0.615 

1/2 0.118043-0.373359 0.396 

1 0.098667-0.342781 0.254 

2 0.09228 1-0.335247 0.217 

0.20-0.40 1/3 0.216399-0.464869 0.887 

1/2 0.194689-0.455400 0.546 

] 0.172496-0.450466 0.334 

2 0.164247-0.449349 0.280 

0.05-0.40 1/3 0.164146-0.511976 0.587 

1/2 0.133923-0.479207 0.387 

1 0.108013-0.446569 0.260 

2 0.100004-0.436038 0.227 

0.05-0.50 1/3 0.19393 1-0.560732 0.681 

1/2 0.163838-0.551092 0.445 

1 0.135746-0.537898 0.297 

2 0.126630-0.532341 0.258 
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§8.3. Comparison of Designs Based on Logit and on Response Probability 

Q efficiencies can be computed to verify that the designs based on the logit and 

those based on the response probability indeed offer similar performance. The Q efficiency 

of a design based on the logit relative to the corresponding design based on the response 

probability is defined as 

APV/[p] of the design minimizing APV[p] 

APV[p] of the design minimizing APV[logit(p)] _ 

On the other hand, the Q efficiency of a design based on the response probability relative 

  (8.3.1) 

to the corresponding design based on the logit is defined as 

APV[logit(p)] of the design minimizing APV[logit(p)] 

APV{logit(p)] of the design minimizing APV[p] 
  (8.3.2) 

Q efficiencies defined from the above two perspectives are evaluated in tables 

8.3.1. and 8.3.2 respectively. Extremely high efficiencies are seen in most cases for both 

types of Q efficiency. The efficiency is often around 95% to 99%. The few worst cases 

still reach above 85%. A common trend revealed in both tables is that the efficiency 

increases as the region becomes smaller in tts probability span. The efficiencies evaluated 

in both ways indicate that the parallel-line design based on the logit and the one based on 

the response probability perform roughly the same in terms of either APV[p] or 

APV[logit(p )]. 

The prevailing high efficiencies in the comparison of the two types of designs 

provide convincing evidence that the Q optimality criterion based on the logit and the one 

based on the response probability are likely to produce fairly close results in design 

optimization for the logistic model. Using the logit instead of the response probability 

significantly reduces the complexity of the design work dealing with Q optimality, 

especially for a relatively complicated model such as the two-variable model containing 

interaction. Meanwhile the logit itself bears its practical importance as it intrinsically 

relates to the concept of tolerance in the study of binary responses. Q optimal designs for 
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Table 8.3.1 Q efficiency of design based on logit relative to design based on probability 

  

  
  

g 
1/3 1/2 1 2 

0.01-0.99 0.8935 0.8866 0.8863 0.8884 

0.05-0.95 0.9662 0.9627 0.9608 0.9607 

0.10-0.90 0.9877 0.9860 0.9848 0.9846 

Symmetric region 0.15-0.85 0.9951 0.9944 0.9937 0.9935 

0.20-0.80 0.9981 0.9978 0.9974 0.9973 

0.25-0.75 0.9993 0.9992 0.9990 0.9990 

0.30-0.70 0.9998 0.9997 0.9997 0.9997 

0.10-0.20 0.9990 0.9981 0.9961 0.9950 

0.30-0.40 0.9999 0.9998 0.9997 0.9997 

0.05-0.25 0.9840 0.9773 0.9650 0.9581 

Asymmetric region 0.10-0.30 0.9934 0.9899 0.9837 0.9807 

0.20-0.40 0.9980 0.9971 0.9957 0.9951 

0.05-0.40 0.9604 0.9468 0.9253 0.9148 

0.05-0.50 0.9496 0.9333 0.9091 0.8979 

0.10-0.20 0.9990 0.9962 0.9915 0.9896 

0.30-0.40 0.9999 0.9998 0.9997 0.9997 

Asymmetric region 0.05-0.25 0.9788 0.9878 0.9402 0.9194 
(restricted 0.10-0.30 0.9948 0.9886 0.9761 0.9704 

weighting: 0.20-0.40 0.9980 0.9969 0.9952 0.9944 

50%-50%) 0.05-0.40 0.9730 0.9772 0.9592 0.9376 

0.05-0.50 0.9686 0.9726 0.9799 0.9761 

Table 8.3.2 Q efficiency of design based on probability relative to design based on logit 

g 
1/3 1/2 1 2 

0.01-0.99 0.8595 0.8632 0.8749 0.8811 

0.05-0.95 0.9580 0.9560 0.9563 0.9572 

0.10-0.90 0.9855 0.9841 0.9833 0.9833 

Symmetric region 0.15-0.85 0.9945 0.9938 0.9932 0.9930 
0.20-0.80 0.9979 0.9976 0.9973 0.9972 

0.25-0.75 0.9993 0.9991 0.9990 0.9989 

0.30-0.70 0.9998 0.9997 0.9997 0.9997 

0.10-0.20 0.9989 0.9980 0.9960 0.9950 

0.30-0.40 0.9999 0.9998 0.9997 0.9997 

0.05-0.25 0.9809 0.9733 0.9621 0.9569 

Asymmetric region 0.10-0.30 0.9925 0.9890 0.9834 0.9809 

0.20-0.40 0.9979 0.9970 0.9957 0.9951 

0.05-0.40 0.9501 0.9382 0.9231 0.9166 

0.05-0.50 0.9364 0.9235 0.9076 0.9011 

0.10-0.20 0.9989 0.9963 0.9923 0.9906 

0.30-0.40 0.9999 0.9998 0.9997 0.9997 

Asymmetric region 0.05-0.25 0.9781 0.9874 0.9652 0.9564 

(restricted 0.10-0.30 0.9938 0.9892 0.9804 0.9765 

weighting: 0.20-0.40 0.9979 0.9969 0.9954 0.9947 

50%-50%) 0.05-0.40 0.9630 0.9674 0.9705 0.9681 

0.05-0.50 0.9540 0.9591 0.9705 0.9746   
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the interaction model in the two-variable logistic case are derived based on the logit in the 

following section. 

§8.4  Hyperbola-Based Design 

Given the two-variable logistic model containing interaction, constant response 

probabilities fall on hyperbolic ED curves. Consider a region R which is a parallelogram 

with the vertices on EDjggp, and EDjogp; . The opposite vertices on a common ED are 

symmetric about the hyperbola center. The preliminary design layout is a hyperbola-based _ 

design on EDjoop, and EDjoop, . The design points on a common ED are symmetric 

about the hyperbola center and assumed to have equal sample sizes. Figure 8.4.1 

illustrates the region and the design in the centered space. 

Z,/\ 

  
  

     t Uy 

(211. -Z21) 

ED} oop}   ED joo! 

Figure 8.4.1 Region and design arrangement for Q optimal design, interaction model 
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Given the centered levels of the design and region vertices as shown in figure 

8.4.1, define two sets of ratios: 

  

  

    

          

  

  

  

GQ) =f, y= 8 gy = (FY, (8.4.1) 
Z12 Z12 Z\) 

and (2) t= |74, th = PN gy = 2 (8.4.2) 
222 Z22 221 

The Q optimality criterion is derived in appendix C and is given by 

APV{logit(p )] = N 1 

12[t(L2 — Bo) - (Li ~ Bo) 

1 t * , * t * ’ ' * 

T(r -B5) - 2(L4-B5))" + (La -B3) - 4-83) 
o; & t gt t 

l 1 * 1 Rn¥\\2 1 * woe * \\2 
+ + (—C1 -Bo) - 8CL4-Bo + (C1 -Bo) - st’(L 3 -Bo YI 

o, 8 gt 

N l s, 1 * *, 1 * + 1 (La -Bo) - SL -BO))" + La -BO) - 3(L3 -BON) 2 
4(L, ~L)) Oo; 

+ 5G -85)- (4 -BO? + Li -B5)- 304-BO 
o> 

+ —* $4 + yy + Ly- 285) + (¢'(L4-BS) + S(L}-B)"I 
6(L2-L))" oy 93 ' 

(8.4.3) 

where Bo= Bo - ee L, = logit(P)), Lo = logit(P2), L{= logit(P{), and L4= 
12 

logit( P5 ), o = n,P)(1-P)), oF = myP2(1-P2), and the ratios t, t’, and g can be given by 

either set (1) in (8.4.1), ie. t =t), t’ = t}, and g = gj, or set (2) in (8.4.2), 1.e. t = tz, t' = 

t5, and g = go. Essentially, the Q criterion in (8.4.3) can be viewed as a function of the 

parameter Bg, the region attributes P{, P}, and t’, the design attributes P), Po, r, and t, 
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and the “design to region” ratio g, where r is the sample proportion allocated to EDy op, . 

The Q criterion in (8.4.3), if denoted by F(Pi, P2, 1, g, t, t’, Pi, P4, Bo ), possesses the 

property 

t’ 1 1 * 
F(P1, Po, r, g, t, t’, Py, P35, Bo) = F(1-P2, 1-P), 1-r, 7 . oe 1-P5, 1-P), -Bo). 

(8.4.4) 

The “design to region” ratio g specifies the relative magnitude of the centered 

design level compared to the centered region level at the respective vertex. Algebraic 

work shows that an optimal solution for the ratio g does exit and can be expressed as 

1 

* * 4 (14 )fo} (Ly - Bo)? +1703 (Lo - B5)?] 
g= t . (8.4.5) 

2 

(of +p — BG)? +t/2(L4 - BO)" I 

  

On the other hand, numerical work confirms that minimizing APV[logit(p)] given Bo, 

Pj, P5, and t’ leads to extreme values of t, 1.e. t > 0 or t > o. Similar to the D optimal 

design, the Q optimal design again will be assumed to have t = 1. To preserve the 

resemblance between the region and design structures, the region is assumed to have t’ = 

1. With t =t’ = 1, both the region and the design possess the kind of geometry displayed in 

figure 2.2.2. 

With t = t’ = 1, the Q criterion is simplified to 

APV[logit(p)]= Q(P1, Pa, r, g|P{, P4, BO) 

_ 1 

7 ans 
6(L, -L}) 

(eacp'G (Lz -B§) - a(L4-B5)) + (V3 (Le -BO) - ay (L- -Bg)y 
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+ (=(Lp Bh) - B(L5-BA)Y + (V3 (La -BA)- Je(L4-BO))I 
g 3 

tla. pty. 1 Q*y2 ety. tps pty? 

* Typ do P) et Bo) - BLI-Bo” + (13a -Bo) - Te L4-Bo)) 

+ (ACL) -B4) - g(L5-B4)) + (V3(Ly -B4)- (5 -BO 
£ 3 

  

  

1 1 , , * 

ARP) * Trpma Py Mt * Ha 2RO) 
(8.4.6) 

The expression for the optimal g reduces to 

1 
2 [ot (Ly ~ Bo)? +03 (Ly -Bo)”] } | 8.47) 

(of +03 )[(L4 - Bo)” + (L4 - Bo)? 
The property in (8.4.4) is rewritten as 

QP), Pa, rg |P{, PZ, Bo) = Q(I-Pa, 1-Pi, It, g|1-PY,1-P§,-Bo). (8.4.8) 

The property suggests that solutions of optimal designs for By <0 can be easily extended 

to the solutions for By <0. Therefore the designs are found only for the Bo <0 case. The 

selected values of Bo 0, -1, -2, and -5 correspond to the response probabilities 0.5, 

] 
  0.2689, 0.1192, and 0.0067 at the hyperbola center, which are given by P5 = =. 

1+e Po 

These probabilities serve as easy references as to where the obtained optimal design falls 

with respect to the hyperbola center. Minimizing Q(P), P2, r, g |P{, P35, Bo) given the 

parameter By and the region specifications P{ and P5 yields the optimal design attributes 

P;, Py, r, and g. The optimal value for g from numerical minimization agrees with the 

analytical result given by (8.4.7). 
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Table 8.4.1 gives the optimal designs for symmetric regions. These designs have 

symmetric ED’s but uneven sample sizes slightly weighted toward the direction of the 

response probability Pg at the hyperbola center. The APV improves as the region 

dispersion decreases or as Bo draws close to 0, which means that the centered axes 

approach EDs. 

The optimal designs for lower and upper asymmetric regions are given in tables 

8.4.2 and 8.43 respectively. These designs also have symmetric ED’s. The ED’s for a 

lower tail region are not really the same as those for the opposite upper tail region. The 

sample weights are driven on one hand toward the direction of Pg and on the other hand 

toward the side of the region. Consequently, given Pg <0.5, the lower asymmetric regions 

sometimes yield fairly unbalanced sample sizes weighted at the lower ED due to the 

combining forces of Po and the region. However, the upper asymmetric regions often lead 

to only slightly uneven sample weights as the central probability Pg and the region at the 

opposite tail counteract each other in driving the sample weights. Only when Bo = 0, the 

lower and upper regions give equally shifted sample sizes weighted on opposite sides. 

Designs subject to equal sample sizes are also obtained and given in tables 8.4.4 

through 8.4.6 for the symmetric, lower asymmetric, and upper asymmetric regions 

respectively. In a majority of the cases, the designs have slightly asymmetric ED’s that are 

shifted away from Po and the region. In a few cases with lower tail regions where the 

optimal sample weights used to be the most unbalanced in the unrestricted minimization, 

the design under the equal sample size restriction does not follow the above pattern and 

settles down with highly asymmetric ED’s in a neighborhood closely around the region. 

The few exceptions are possibly because the equal sample size condition deviates too far 

from the optimal structure for the design to maintain its balance by minimal adjustment 
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Table 8.4.1 Q optimal designs for interaction model, symmetric regions 

Bo Region Design Weighting g APV 

(%) 

0 0.01-0.99 0.176430-0.823570 50-50 0.57905 27.4 

0.05-0.95 0.2003 15-0.799685 50-50 0.68567 18.2 

0.10-0.90 0.216949-0.783051 50-50 0.76431 14.5 

0.15-0.85 0.230692-0.769308 50-50 0.83327 12.3 

0.20-0.80 0.243834-0.756166 50-50 0.90355 10.8 

0.25-0.75 0.257457-0.742543 50-50 0.98191 9.5 

0.30-0.70 0.272509-0.727491 50-50 1.07652 8.4 

-] 0.01-0.99 0.149156-0.850844 57.4-42.6 0.63161 36.0 

0.05-0.95 0.157610-0.842390 57.5-42.5 0.76455 26.9 

0.10-0.90 0.161748-0.838252 57,5-42.5 0.86180 23.4 

0.15-0.85 0.164303-0.835697 57.4-42.6 0.94267 21.5 

0.20-0.80 0.166157-0.833843 57.3-42.7 1.01763 20.2 

0.25-0.75 0.167586-0.832414 57,2-42.8 1.08959 19.2 

0.30-0.70 0.168708-0.83 1292 57.0-43.0 1.15847 18.5 

-2 0.01-0.99 0.120036-0.879964 57.8-42.2 0.71934 59.5 

0.05-0.95 0.122222-0.877778 57.5-42.5 0.85296 50.0 

0.10-0.90 0.123105-0.876895 57.3-42.7 0.93383 46.5 

0.15-0.85 0.123584-0.876416 5$7.1-42.9 0.98958 44.6 

0.20-0.80 0.123897-0.876103 57.0-43.0 1.03244 43.4 

0.25-0.75 0.124116-0.875884 56.9-43.1 1.06642 42.5 

0.30-0.70 0.124274-0.875726 56.9-43.1 1.09324 41.9 

-5 0.01-0.99 0.092834-0.907166 54.7-45.3 0.88325 211.9 

0.05-0.95 0.092998-0.907002 54.5-45.5 0.95602 200.7 

0.10-0.90 0.093053-0.906947 54.5-45.5 0.98562 196.9 

0.15-0.85 0.093080-0.906920 54.4-45.6 1.00136 195.1 

0.20-0.80 0.093096-0.906904 54.4-45.6 1.01139 194.0 

0.25-0.75 0.093 107-0.906893 54.4-45.6 1.01826 193.2 

0.30-0.70 0.093 115-0.906885 54.4-45.6 1.02310 192.7 
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Table 8.4.2 Q optimal designs for interaction model, lower asymmetric regions 

Bo Region Design Weighting g APV 

(%) 

0 0,10-0.20 0.132271-0.867729 57.8-42.2 1.01189 35.5 

0.30-0.40 0.207121-0.792879 58.2-41.8 1.42163 11.5 

0.05-0.25 0.126277-0.873723 57.4-42.6 0.93296 42.8 

0.10-0.30 0.141688-0.858312 58.0-42.0 1.04008 29.0 

0.20-0.40 0.178102-0.821898 58.3-41.7 1.22365 16.0 

0.05-0.40 0.136386-0.863614 57.5-42.5 0.93711 34.0 

0.05-0.50 0.143863-0.856137 57.5-42.5 0.92555 29.7 

-1 0.10-0.20 0.153315-0.846685 72.1-27.9 1.32102 17.5 

0.30-0.40 0.220697-0.779303 72.1-27.9 1.67359 9.1 

0.05-0.25 0.141689-0.858311 69.2-30.8 1.10881 23.3 

0.10-0.30 0.171822-0.828178 75.2-24.8 1.26910 13.8 

0.20-0.40 0.230403-0.769597 81.3-18.7 1.39256 8.2 

0.05-0.40 0.159028-0.840972 71.7-28.3 1.02987 18.2 

0.05-0.50 0.170662-0.829338 72.9-27.1 0.96220 16.3 

-2 0.10-0.20 0.142236-0.857764 87.1-12.9 1.73908 12.8 

0.30-0.40 0.137027-0.862973 62.6-37.4 1.30056 27.1 

0.05-0.25 0.133563-0.866437 85.0-15.0 1.27624 16.0 

0.10-0.30 0.147457-0.852543 78.9-21.1 1.44948 15.7 

0.20-0.40 0.142346-0.857654 66.4-33.6 1.35196 22.7 

0.05-0.40 0.142014-0.857986 79. 4-20.6 1.15070 17.8 

0.05-0.50 0.143111-0.856889 75.2-24.8 1.10058 19.8 

-5 0.10-0.20 0.096432-0.903568 59.2-40.8 1.25413 108.8 

0.30-0.40 0.094354-0.905646 55.7-44.3 1.09478 158.4 

0.05-0.25 0.096614-0.903386 60.2-39.8 1.27197 101.9 

0.10-0.30 0.096017-0.903983 58.3-41.7 1.20346 119.2 

0.20-0.40 0.094883-0.905117 56.4-43.6 1.12352 145.7 

0.05-0.40 0.096163-0.903837 58.8-41.2 1.19782 115.1 

0.05-0.50 0.095827-0.904173 58.1-41.9 1.1594] 123.5 
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Table 8.4.3. Q optimal designs for interaction model, upper asymmetric regions 

Bo Region Design Weighting g APV 

(%) 

0 0.80-0.90 0.132271-0.867729 42.2-57.8 1.01189 35.5 

0.60-0.70 0.207121-0.792879 41.8-58.2 1.42163 11.5 

0.75-0.95 0.126277-0.873723 42.6-57.4 0.93296 42.8 

0.70-0.90 0.141688-0.858312 42.0-58.0 1.04008 29.0 

0.60-0.80 0.178102-0.821898 41.7-58.3 1.22365 16.0 

0.60-0.95 0.136386-0.863614 42.5-57.5 0.93711 34.0 

0.50-0.95 0.143863-0.856137 42.5-57.5 0.92555 29.7 

-1 0.80-0.90 0.114885-0.885115 48.3-51.7 0.90366 64.5 

0.60-0.70 0.141320-0.858680 51.4-48.6 1.11429 29.6 

0.75-0.95 0.111959-0.888041 48.2-51.8 0.85929 73.9 

0.70-0.90 0.119142-0.880858 48.7-51.3 0.93021 55.3 

0.60-0.80 0.132880-0.867120 50.3-49.7 1.04065 36.4 

0.60-0.95 0.116808-0.883 192 48 6-51.4 0.87771 61.6 

0.50-0.95 0.120205-0.879795 49.1-50.9 0.88320 55.2 

-2 0.80-0.90 0.103674-0.896326 50.8-49.2 0.87473 106.3 

0.60-0.70 0.114919-0.885081 53.6-46.4 1.02209 59.5 

0.75-0.95 0.102188-0.897812 50.5-49.5 0.84375 118.0 

0.70-0.90 0.105709-0.894291 51.3-48.7 0.89748 94.3 

0.60-0.80 0.111665-0.888335 52.7-47.3 0.97676 69.0 

0.60-0.95 0.104577-0.895423 51.1-48.9 0.86405 102.1 

0.50-0.95 0.106174-0.893826 51.5-48.5 0.87367 93.6 

-5 0.80-0.90 0.090240-0.909760 52.1-47.9 0.89230 314.7 

0.60-0.70 0.091993-0.908007 53.4-46.6 0.97526 230.3 

0.75-0.95 0.089948-0.910052 52.0-48.0 0.87533 333.9 

0.70-0.90 0.090604-0.909396 52.4-47.6 0.90792 294.0 

0.60-0.80 0.091545-0.908455 53.1-46.9 0.95292 248.5 

0.60-0.95 0.090395-0.909605 52.3-47.7 0.89242 306.7 

0.50-0.95 0.090673-0.909327 52.5-47.5 0.90212 291.7 
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Table 8.4.4 Q optimal designs for interaction model, symmetric regions, 

restricted weighting: 50%-50% 

  

Bo Region Design g APV 

0 0.01-0.99 0.176430-0.823570 0.57905 27.4 

0.05-0.95 0.2003 15-0.799685 0.68567 18.2 

0.10-0.90 0.216949-0.783051 0.76431 14.5 

0.15-0.85 0.230692-0.769308 0.83327 12.3 

0.20-0.80 0.243834-0.756166 0.90355 10.8 

0.25-0.75 0.257457-0.742543 0.98191 9.5 

0.30-0.70 0.272509-0.727491 1.07652 8.4 

-] 0.01-0.99 0.158915-0.866536 0.65461 36.6 

0.05-0.95 0.165564-0.856199 0.79456 27.5 

0.10-0.90 0.168347-0.850154 0.89579 23.9 

0.15-0.85 0.169903-0.846044 0.97943 21.9 

0.20-0.80 0.170956-0.842878 1.05664 20.6 

0.25-0.75 0.171728-0.840333 1.13057 19.6 

0.30-0.70 0.172312-0.838277 1.20121 18.8 

-2 0.01-0.99 0.133601-0.896506 0.74425 60.6 

0.05-0.95 0.135488-0.893786 0.88143 50.8 

0.10-0.90 0.136122-0.892479 0.96409 47.2 

0.15-0.85 0.136424-0.891702 1.02098 45.3 

0.20-0.80 0.136601-0.891166 1.06468 44.0 

0.25-0.75 0.136715-0.890774 1.09931 43.2 

0.30-0.70 0.136791-0.890484 1.12664 42.5 

-5 0.01-0.99 0.100526-0.914887 0.89360 213.1 

0.05-0.95 0.100470-0.914502 0.96684 201.7 

0.10-0.90 0.100439-0.914360 0.99664 197.9 

0.15-0.85 0.100422-0.914287 1.01247 196.0 

Q.20-0.80 0.100410-0.914242 1.02256 194.9 

0.25-0.75 0.100402-0.914212 1.02948 194.1 

0.30-0.70 0.100396-0.914191] 1.03435 193.6 
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Table 8.4.5 Q optimal designs for interaction model, lower asymmetric regions, 

restricted weighting: 50%-50% 

  

Bo Region Design g APV 

0 0.10-0.20 0.146911-0.884892 1.01430 36.2 

0.30-0.40 0.179695-0.751582 1.40151 11.7 

0.05-0.25 0.140403-0.889785 0.93454 43.5 

0.10-0.30 0.155718-0.875488 1.04341 29.6 

0.20-0.40 0.176495-0.819571 1.22267 16.5 

0.05-0.40 0.150294-0.880123 0.93950 34.7 

0.05-0.50 0.156759-0.871908 0.92830 30.3 

-| 0.10-0.20 0.183284-0.906176 1.50169 20.6 

0.30-0.40 0.130650-0.557858 1.61849 9.9 

0.05-0.25 0.171086-0.907615 1.22149 26.1 

0.10-0.30 0.192550-0.889727 1.51179 17.1 

0.20-0.40 0.127237-0.445787 1.28620 8.8 

0.05-0.40 0.184294-0.897857 1.17676 21.3 

0.05-0.50 0.187788-0.882456 1.12362 19.5 

-2 0.10-0.20 0.049178-0.232565 1.35819 16.9 

0.30-0.40 0.157988-0.891840 1.38688 28.4 

0.05-0.25 0.042787-0.214400 0.92936 22.9 

0.10-0.30 0.188093-0.93 1842 1.75324 20.0 

0.20-0.40 0.167834-0.896818 1.47985 24.7 

0.05-0.40 0.183085-0.933857 1.39445 22.5 

0.05-0.50 0.179010-0.921518 1.28755 23.8 

-5 0.10-0.20 0.112083-0.919398 1.28498 111.1 

0.30-0.40 0.103841-0.915182 1.11057 159.7 

0.05-0.25 0.113825-0.920803 1.30677 104.6 

0.10-0.30 0.109965-0.918069 1.22958 121.3 

0.20-0.40 0.105539-0.915842 1.14183 147.2 

0.05-0.40 0.111030-0.918859 1.22572 117.3 

0.05-0.50 0.109474-0.917947 1.18403 125.6 
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Table 8.4.6 Q optimal designs for interaction model, upper asymmetric regions, 

restricted weighting: 50%-50% 

Bo Region Design g APV 

0 0.80-0.90 0.115108-0.853089 1.01430 36.2 

0.60-0.70 0.248418-0.820305 1.40151 11.7 

0.75-0.95 0.110215-0.859597 0.93454 43.5 

0.70-0.90 0.124512-0.844282 1.04341 29.6 

0.60-0.80 0.180429-0.823505 1.22267 16.5 

0.60-0.95 0.119877-0.849706 0.93950 34.7 

0.50-0.95 0.128092-0.843241 0.92830 30.3 

-1 0.80-0.90 0.111624-0.881748 0.89922 64.6 

0.60-0.70 0.143842-0.861533 1.12056 29.6 

0.75-0.95 0.108441-0.884411 0.85480 74.0 

0.70-0.90 0.116653-0.878268 0.92659 55.4 

0.60-0.80 0.133412-0.867697 1.04169 36.4 

0.60-0.95 0.114170-0.880446 0.87414 61.7 

0.50-0.95 0.118359-0.877854 0.88059 55.3 

-2 0.80-0.90 0.105105-0.897825 0.87718 106.3 

0.60-0.70 0.121563-0.892352 1.03655 39.7 

0.75-0.95 0.103 142-0.898809 0.84531 118.0 

0.70-0.90 0.107970-0.896673 0.90149 94.3 

0.60-0.80 0.116635-0.893688 0.98678 69.2 

0.60-0.95 0.106499-0.897445 0.86732 102.1 

0.50-0.95 0.108823-0.896629 0.87828 93.7 

-5 0.80-0.90 0.093702-0.913232 0.89693 315.1 

0.60-0.70 0.097577-0.913604 0.98344 231.0 

0.75-0.95 0.093 116-0.913228 0.87949 334.2 

0.70-0.90 0.094474-0.913276 0.91319 294.4 

0.60-0.80 0.096543-0.913465 0.96007 249.1 

0.60-0.95 0.094056-0.913276 0.89733 307.1 

0.50-0.95 0.094661-0.913325 0.90751 292.1 
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without a drastic change in its ED’s. In virtually every case, restricting equal sample sizes 

only causes minimal or negligible increase in the APV. 

Either restricting or not restricting equal sample sizes, the APV is considerably 

worse for the upper asymmetric regions than for the lower ones. Given Bo <0, this means 

that a region close to the centered axes in terms of the logit or ED’s generally allows 

better possible results. In all cases, the optimal “design to region” ratio g is usually found 

in a vicinity around 1. 

To construct a hyperbola-based Q optimal design, the equidistant design level 

needs to be obtained from (8.4.1) or (8.4.2) using the region vertices and the optimal ratio 

g. The design points can then be computed using the design matrix in (2.2.7), with -L and 

L replaced by L; and Lz in case of asymmetric design ED’s. 
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CHAPTER 9 

SUMMARY AND FUTURE RESEARCH 

The primary goal of this research was to develop and study efficient and practical 

experimental design procedures for fitting the two-variable logistic regression models. 

D and Q optimalities were addressed in this work. Within each criterion, the 

presence or absence of interaction plays a role in separating the design work into two 

categories. For each model, unlike the one-variable case, different design structures can 

be assumed in the two-dimensional design space. For example, the hyperbola-based 

design and the modified ray design were proposed for the interaction model. The 

equivalence property of a D optimal design was studied in several cases. The efficiencies 

of various designs, including some by other authors, were investigated versus the 

hyperbola-based design in the presence of interaction. 

Designs were also developed to optimize specifically the estimation of the 

interaction coefficient. Comparison of different designs were presented through their 

relative efficiencies. 

Robustness to parameter misspecification was studied for various D optimal 

designs. In an effort to better cope with poor parameter guesses, Bayesian design 

procedures were explored using D optimality. For a reasonable cost of losing some 

advantage under perfect parameter knowledge, the Bayesian designs were found to have 

improved robustness over the conventional D optimal designs. 
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Design work dealing with two variables and their possible interaction for a 

nonlinear model such as the logistic case may involve diverse issues. Some areas of 

extension and interest arising from this research are given below. 

(1) In addition to the three level designs considered with the Bayesian procedure, 

designs with more than two ED levels can also be studied more thoroughly in the non- 

Bayesian environment. As suggested by other optimal design work, designs with multiple 

levels tend to be more robust and are often more appealing to practitioners. Nevertheless, 

for the no-interaction model, a four-point design on two ED’s in the two-variable case 

seems to have better value compared to a two-point one-variable design. The two-variable 

design, even with only two ED’s, still offers one lack-of-fit degree of freedom for testing 

interaction. 

(2) In this research, D optimality received primary attention in the robustness analysis 

and the development of the Bayesian procedures. Bayesian designs can further be 

explored for the interaction model. In addition, the same directions of robustness analysis 

and robust design procedures can also be pursued with other design criteria such as Q 

optimality, which applies to the designs in chapter 8. 

(3) Additional design criteria could be studied. For instance, G optimality optimizes 

the prediction variance through a minimax approach rather than averaging. However, it is 

anticipated that the G optimal design work is likely to require more constraints and may 

have to involve frequent numerical approximation. 

(4) As stated earlier, a one stage design at its best can only achieve a customized 

trade-off between favoring good parameter knowledge and being insensitive to poor 

parameter guesses. One approach that does so is the Bayesian design procedure. To better 

avoid the trade-off, two-stage designs in the two-variable case might be considered. 
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Conceptually, a two-stage design procedure should more effectively separate the 

goals addressing good versus poor parameter knowledge. The first stage emphasizes 

robustness to parameter misspecification while the second stage strives at being highly 

efficient given the relatively more reliable knowledge about the parameters obtained from 

the first stage data. The remaining compromise is partly reflected in the sample allocation 

between the two stages. A two-stage procedure gains its advantage over the one-stage 

design by alleviating some of the dependence on the parameter guesses. Based upon other 

two-stage design work for the one-variable logistic model by Myers, Myers, and Carter 

(1994), a two-stage procedure in general is expected to yield efficient designs which are 

often considerably more robust than the single stage designs. With the two-variable 

logistic models, detailed constraints might be required in a study of two-stage designs. 

(5) The two-variable design work should be extended to other nonlinear models. The 

primary interest normally lies in the generalized linear models for responses from the 

exponential families such as Poisson or exponential distributions. 
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Appendix AQ Optimality Criterion Based on Logit for Parallel-Line Design 

Given the parallel-line design in figure 8.1.1, the model matrix for fitting the no- 

interaction model is given by 

X=ZA (Al) 

where 

1 -1 -l 
1-14 1 X19 X29 

ZL= j j 1 and A=|0 D, D> ; (A2) 

Od d 
11 1 ro 

where the design center (X19, X29) and the distances D;, D2, dy, and dy are as shown in 

figure 8.1.1. The variance-covariance matrix of the response vector from the four design 

points is given by 

of 0 0 0 
2 0 r= 0 07 ", (A3) 

0 0 of 0 
0 0 0 o3 

where oF = n,P)(1-P;) and os = nN7P>(1-P2), where n; and nz are the sample sizes at each 

point on ED ;ggp, and ED j gop, respectively. 

Since logit(p) = x’B and I(B) = X’=X , the Q criterion can be written as 

APV[logit(p)] = ~ ! x’(X’EX) ‘x dx = N-Trace[I(B) 'S] (A4) 

where N is the total sample size, R is the region of interest, K is the area of R, and S is the 

region moment matrix given by 

1 X4 X9 

1 , 1! 
S= (Sida = i | xX ORE SJ} x, x? X4Xq |dxydx2. (A5) 

K 
&) XQ XyXQ x5 
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Due to (Al), (py can be written as 

(BY = (Vij)yg =A (LEZ) (AY. (A6) 

It can be shown that 

  

_ , , : 
\ _ (2X10 , B1*20) Ly +L2 — 289 

aD, , aD 4 Ly -Ly 
- 2 A'=|0 2 _ Pi (AT) 

aD, 1) _ L, 

2 
0 Bi 2B2 

aD, Ly-Ly     
where L = logit(P;), Lz = logit(P), and « = B? +B; and that 

  

i 0 1 1 

of 94 55 Of 
11 4 

(LEZ) == 0 = 0 (A8) 
8 0} +09 

1 1 1 4 
— O — +—_— 

}o5 Of Si 93]   
Substituting (A7) and (A8) into (A6) yields the elements of (py! given by 

2 2 
Viz i : (Lg —Po) , =Po) 

A(Ly-Ly)? 0 

L,+L L,+L 
(rg — ELSE? — By xa —F2 EL 2 — Bo) 

2(07 +05)D,D) 
’ 

Be 1 4 p4 
= ay ta) + 2 th?” 2(Ly-L))" oO; 65 2(07 +059 )a~ Dj 

Bs io p4 
WLy-Ly)* 0? 6% 2Aof +05)a0°D5 
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2,, _ By Ly+L2 By L>—By  Ly-By, P2'X10- | - Bod] 
Vi2= Var =- i a ae Or) 2(L» -Ly) CO} O75 2(07 +07 )aDj 

2 Bo Li +L 
xX — ———_ — 

Vig= Vy, 2-2 La Bo , Lx Bo) Pils2o “yy Bo) 
13 - ¥31- 2 2 2 ) 2 2 2 > 

2(L, — Ly) 07; 0, 2(6} +65)aD5 

2n2 
1 1 V3 = V30= BiB 2 s(= +—)+ ; Pipa 

2(L, —L}) 0; 0, 2(0j + 05 )O D,D>5 

(AY) 

To obtain the region moment matrix S, which involves integration over the region 

S|} | By Bo|} x1 

eels fet ae 

According to the theory of calculus, the integration of the function f(x;, x2) over the 

R, define the transformation 

region R in the (x1, X2) space is equivalent to the integration of the function f(x;(s, t), 

X2(s, t)) over the corresponding region R’ in the (s, t) space, i.e. 

Sf (x1, x9) dxjdxo = JJ f(xy(s, 6), x0(s, t)) ur! ds dt, (All) 
(R) (R’) 

where |Jl is the determinant of the Jacobian matrix given by 

os Os 

Ox; 9X2} | By By 
at dt | |-Bo By 

OX OX 

  

Sl = = a (A12) 

  

      
and xj(s, t) and x,(s, t) are given by the inverse transformation 

x} }_ 1} Bi —B2 }]}s 

eI ot . . a ue 
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t=- Boxe + BiX2¢ and tA =- BoAy + By A> ; (A14) 

where the region center (X1¢, X2-) and the region distances A; and A» are as shown in 

figure 8.1.1. In fact, ta =- Diy = 42 yy. Let 
2 &#B 

s} = Li - Bo and so = L4- Bo (A15) 

where L; and L% are the logits on the region boundaries, i.e. Lj = logit( Pj) and L4 = 

logit( P5 ). Let 

ty =t.-ta and ty=to + ty. (A16) 

The region R’ in the (s, t) space is given by R’ = {(s, t): se[s}, So] M te[t), to)}. The 

equation in (A11) can be rewritten as 

Jf £0x1, x2) dx,dx> = i fp JS f¢x1(s, t), x9(s, t)) ds dt . (A17) 
(R) Qa ¢l 5] 

With (A17), the area K of the region R is found to be 

1 2A 2A 
K= JJ dx,dx,= — J? I? ds dt=-=—1(1L4 - Lj) =*(15 - Li). (A18) 

(R) an B> 1 

The elements of the region moment matrix S are given by the following integrations: 

1 
= — dx,dx> , S11 x X1QX9 

    

  

  

(R) 

S12 = $21 = i lJ X1dx,;dx> = | pia f° (Bis - Bot) ds dt 
K (R) a2K ty Sj > 

_. _! __ | ft, psy S13 = S31 =] I X2dx)dx2 = 5K Je Je (Bos + Bit) ds dt, 

] 2 to [s 2 
Soy = — JJ x¢dxidx. = J? J® (Bys - Bot)” ds dt , 

K (R) 1 o?K ty Si 

| 2 1 to ¢s 2 
$33 = — JJ xodxjdx> = J? [2 (Bos + Bit)” ds dt, 

K (R) 2 aeK ty S} 
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$23 = $32 = — = 1 X1X2dx dx» = 35 oui Ie (Bis - Bot)(B 98 + Byt) ds dt. 
0° 

  

  

  

K (R) 

(A19) 

The integrations in (A19) yield the following results: 

$1] = 1 ; 

$12 =S21 = Pri, + S2) - Bay 
20 oO 

S13 = 83) = Ba is, + So) + Bia 
20 OL 

Br 2 2 ru B35 2,142 
S97 = —-—~ (S17 +58]89+ 5S t.(Sj #89) + t* +-A“, 22 3a 182 + $5) - c(S1 + S2) oe 13! 

Bs 2 2, , BiB Br 2 ly 
833 = —> (Sv + S182 + 85) + t.(S} +89) + —t7+-M%, 392°) arr G2 °° oe & 3 2 

BiB. 2 2, , Bi -B3 Biba 2 
$73 = 832 = 5 (Sj + S}S9 + S5) + 7 telS1 +9) - cota ta, Ad 

30 20 3 

(A20) 

Let (py 'S = (mij),,;- Multiplying the elements of i given in (AQ) by the 

elements of S leads to the diagonal elements of (py 's expressed in the form 

1 Ge2=Bo)” , Ly =Bo)* $1 +89 =H Bo , Li- Po 
    

  

my, = ) 
ALy-L))? oF A(Ly-L))? a} Os 

1 L,+L 2 L,+L 
+ — exo - Pe Et - 8, + 2 tO9- Bi Litls gy, 

2(07 +05 )D; oO 2 Oo oO 

52 
Si; +S L, - sy +8189 +S, | 1 

man tm =~ RAED Os ry +a) 

2 1 L,+L + ™ ttao- phe Ltt By + £2 24 bay, 
267 +05)D; & 2 oO 
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The trace of (py 'S is given by 

Trace[I(B)’'S] = my, +M2+mM33 

I (2 =Bo” , (iia Boy" 
ALyg-L)* ot or 
  

2 

  

2 2 
sj+sy_ Lo-Bo , Li-~Bo,, Sr FSi82*% 1 | 1 - + ) 

2(Ly -L,)* oF Os 6(Ly -L,)* oF oS 

1 L 1 

+ 53 (X10 - Bi af utte - Bo)) + Bo a + — A] 
2(07 +05 )D; 2 oO 3 

(A22) 
Substituting s,s, and t, with their expressions in (A14) and (A15) leads to Trace[I(B) 'S] 

expressed solely in the design and region parameters as 

L, +L L, +L 1 ; (Ly - 5 22 (Ly - SS 22 

Trace[I(p) S] = 5 [ 5 + 5 ] 
2(Ly _ L;) O07 09 

» e-y 
2 ee 2 

24(L5 _ L,) 0; Oo 

1 Lj+lL, U+l 1 
+ ry [10 > Xt" Pi ditt,  Li+ts ) + =A4]. 

2(0; +05 )D; a 2 2 3 

  

  

(A23) 
Substituting (A23) into (A4) leads to the Q criterion expressed as 

Li} +L: L), +L ; (L,- 4)? a,- - 22 

APV[logit(p )] = [ + | (L>-L,)2 Py - Py) (1—r)P,(1—P5) 

(L5 - Li)? 1, 1 

12(L5-L,)* Py-Py) = (1—r)P)(1— Py) 

1 A ithe Lithia, At 
—z (X10 ~ X1 — 
D} c- 2 3D? 

  

  | 

  

+   

Rac RT —r)P>(1-P,) 

(A24) 

where r is the sample proportion allocated to ED 100P, » Orr = 2n,/N. 
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  Appendix BQ Optimality Criterion Based on Probability for Parallel-Line Design 

Using the Delta method, the Q criterion based on the response probability can be 

written as 

APVIp] = z § p°(1-p)” x’(X’EX) x dx = N-Trace[I(B)'S*] (B1) 
R 

where p is the response probability at the point x and S* is a matrix containing 

integrations over the region R in the form 

* Ly, 2. 2, S* = (Si)5.3 = KP (1-p)” x x’ dx 

pr(i-p)* — p*(I=p)?xy_— p*(1-p)* x2 
1 

=< p?(1-p)*x, p*(1—p)?x? p*(1—p)?x)x5 dx; dx . 

(R) 21 p)2 2 2 21 n\2 y2 
po(i-p)"x2  p°(—p)" xx. p° Up)" x9 

(B2) 

Applying the transformation in (A10) leads to 

1 

P= Teor) (B°) 

Using the relationship in (A17), the elements of S* can be written as integrations in the 

(s, t) space: 

* _ l to $9 2 2 11 = oe Ie Ie p (1-p)’ ds dt, 

* lt 2 2 Sia = 81 = ae Sr IY Pi CL-py Bis - Bat) ds at, 

* ok 1 to (So 2 2 
$13 = $31 = aig st Is p (1-p)” (Bos + Bit) ds dt, 

« _ 1 ¢ty ¢s 2 2 2 99 = oar Sy J? p'(1-p)” (Bis - Bat)” ds dt, 
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1 pty psy 2 2 2 a . J? p’(1-p)” (Bos + Bit)’ ds dt, 

$93 = 839 = ag J [2p (1-p)” (Bis - Bzt)(Bos + Bit) ds dt , 

(B4) 

where $j, So, ty, tg, &, and K are as defined in appendix A. In finding the elements of S*, 

the following indefinite integrations are frequently used: 

1 
J p°(1-p)’ ds = ; p°(3-2p) , 

| p°(1-p)’s ds = 2 [p’(3-2p) s + p(1-p) + log(1-p)] 

        

and | p(1-p)’s” ds = = [p°(3-2p) s” + 2p(1-p) s - 2p - 2Bo log(1-p) - 2 et dL]. 
+e 

(B5) 

Define h = P57(3-2P3)- Py*(3-2P), 

hy = 8) PS" (3 - 2 PS) - 5, P/7(3-2P/), 

and hy = s5 P5?(3-2P5)-s°P{7(3-2PY). (B6) 

Making use of (B5), it is shown that 

' h 
$4, = , ry? 6(L5 - Li) 

* os By 1-P3, Bo st, = 85, = —— + _[ hy + PS (1- Pf) - P’(1-P/) + log( t+ )- 2th], 
12 24 6a(L4 — Li) , 1-Pr” By 

$13 = 831 -— 2? ths HCL P5)- P/(I- Pf) + log(—2 IP) Bhd, 
6a(L4 —L}) -Py” By 

e Bt B; 12. a AyAd 
899 = ay FAG Mtg - Garg) 

6a°(L5 —L}) B; 3B 1B. 

~P3 
24201 + PEC PS) - Py (1- Pf) + log(- = )) + hy 

1 1 

+ 25,5 (I-P§) -2s1 P{(I-Pf)-2P5 +2P/- 2Bolos(- a 210? ; — dL], 
_ +e 
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«BR PL (2 2 a AyAd 

33 © 60.7 (L5 -L4) BS 3B 1B. 

  

+21 Eh + PECL PS) - PY(L- PY) + log(- = )) +hy 

    

  

    

2 1 

+ 2sq P§ (1- P3) - 2s, Py (1- Py) - 23 +2P/- 2Bolog(- oP 217? L dL J, 
1-Py 1 j+e7 

2 
a“~A,A 

$53 = 835 = —Pibo _ ; [- h(t? - 12 ) 
6a“ (Ly -L}) 3B 1B. 

—P5 
+2t( BL - Bo — \(hy + P5 (1- P5) - Py (1- Pf) + log(- 2 yy +h 2 

Bo By -P; 

, , , , , , — Ps L + 2s Pf (1- PS) - 2s) Py (1-P/) - 2 PS + 2P/- 2Bolog(- ) 21} ~dL}, 
1-Py l+e” 

(B7) 

where L}= logit( P/), L4= logit( P5), t. is defined in (A14), and A; and Ap are region 

distances as shown in figure 8.1.1. 

Let (py 'S* = (mjj),,,- Multiplying the elements of (py! given in (AQ) by the 

elements of S* yields the diagonal elements of (By) 'S* expressed as 

  

    

  

Lo -8,)2 Re \2 

my = ———*»___;2-Pov" , G1-Po)" 12(L4 — Li (Ly - Ly) GF Os 

L2-Bo , Hi=Po 
2 , 

0} @ , , , , 1—P5 - [hy + PS (1-P¥)- PY(1-P/) +]o ] IL Lip -L,2 rt PoC Po)- PUP ( IP ) 

. h 

12(L4 - Li (a? +. 03)D? 

L,+L L,+L [oxo - BL Lt - By 4 Fe te(xio- PL t2 - gyy1, 
a 2 oO 2 
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L>-By L,- g2(b2 Poy 1 ‘Poy 

Gj 03 

  

  

  

  

  

  

  

  

  

  

m22 = - , oT 2 
120(L5 —Li)(Lo —-L)) 

—P3, Bo hy + PS (1-P3)- Py(1- P’) + log(t —2)- 2 thy 
1-Py By 

1 1 
Bi (5 +) 

+ L_O2 hy + 2sy PS (1-PS) - 2s; Pf (1-P/) 
120(L3 ~L{)(L2 - Ly) 

~ Ps L 
-2P3 +2P/ - 2Bolo Z 2I? dL 2 i - 2Bo a(- rap i Taek 

+242 Nm + P5(1-P5)- P/(I- Pf) + log(— . 7) I 
1 

2 2 

+ p2 —> 5 n¢P2 124 142) 
120(L4 —Lj)(oj +05 )Dj Oo 

L,+L 
+ F2 tch(aro- PL ELEE2 - Bo 

a 2 

L,+L 
PL Gio. Pelee 172 -Bo)) + £2 te) 

oO 2 

_ Pp 
- (hy + P35 (1-P5)- P/(- PY) + log( =p I: 

L>—- L,- p32 Poy 1 Po) 

0} 09 
M33 = - 

120(L4 -L{)(Ly -L,)” 

- (hy + Pf (1-P5) - Py (1- Pf) + log(—= Py + Pliny 
-Pr By 

1 I 
B3( +>) 

0} 04 , , , , + 5 [ hg + 287 P5 (1- Py ) - 28; Py (1- Py) 
120(L5 —Li)(Ly -L}) 
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-2 fg + 
“Py 

-2P, +2P/ - 2Boloa(- — dL 
1p? Ly yet 

  

  
£2t(PL yh, + Ps (1-P5)- Py (1- Pf) + log(—— ~ y I 

2 

2 2 

Bi inebe? + 345) + i) 
120(L5 —-L})(o; +03)D3 CE 

- BL th(ag - B2 i - Bo)) 
a a 

- B2 busy - Bo) - PX t.) 
oO 2 

“(hy + P3(1-P3)- P/(1- PY) + log(- = ))]. 
“ti 

  

(B8) 

It follows from (B8) that the trace of I(B)'S* is 

Trace[I(B)'S*] = m,1 + m2 + m33 

  

  

  

  

  

  

  

_ h (hz = Bo)” l= Bo)" 
12(L5-Li)\(Ly-L})?> oy os 

Lz —Bo , Li-Bo 
o7 of —P5 

- - 7 Thy + Py (1-P3)- Py - Pf) + log(- 2] 
6(L5 -Li (Ly -Ly)? 1— Py 

1 1 
—_— + — 

2° 2 
Oo] 09 , , , , , , 

+ [ha + 2s P5 (1- Ps) - 2s; Py (1- Py) - 2 P5 +2P, 

12(L5 - Li (Ly - Ly) 

P5 L - 2Bolog(t—*2.) - 2 fL2 dL Bo oe) tf or 

h L,+L 
+ —s 5 lio - FL SLE 2 -Bo)) + F2 tg ye Aady. 

12(L4, - Li )(o? +063 )D? 2 3 

(B9) 
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Simplifying (B9) leads to 

1 
Trace[I(B) 'S*] = 5 

6(L5 — Lj (Lo -)) 
  

ag(L5 — Ly)" ~ay(Lj Ly)”, ag(Lg - Ly)? ~ay(Lj - Ly)” 
  “[ 
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, Da(hy ~Lby)— by(Ly ~ Lg) , by(hy ~ Ly) — by (Li = Ly) 
2 2 

Oj 02 

L L 1-P5 1 1 L, L 
-(—2 + 1 )log( —~ ) - (+ 5) PS - P+ J? dL) ] 

oF 55 1-P oy OS Lt j4e7b 

ay—a L,+L L7+L5 2 1 
+ 4. _, ~[(10- X1e- PL a2 | 12)" + <A] 

12(L5 — Lj, )(O7 +09 )Dj Ot 2 2 3 

(B10) 

where a, = py? (3-2 P;), a) = P53? (3-2 P5), 

b; = Py(1-P/), and by = P3(1-P5). (B11) 

The Q criterion is then given by (B10) multiplied by N. Minimizing this criterion 

requires that the best location for the design center satisfy 

Fi eitte 1452) <0, (B12) 
X10~- Xic- 

© 2 2 

which corresponds to the condition in (8.1.2). This condition guarantees the presence of 

the same feature as illustrated in figure 8.1.2 regarding the design center. When the above 

condition holds, the Q criterion is reduced to 

APV[p] = Q(Pi, Pz, 1! Py, Pa, g) 

1 

3(L4 — Lj (Lp - L)” 
  

Ps? (3—2P3)\(L5 —L,)* — P/2(3—2P/)(Lj -L>)? 
21rP, (1 —- P,) 

  ‘[ 
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 PSB—2PS)(L5 Ly)? -P/23- PLY - Ly)? 
2(1—r)P2(1—P,) 
  

+ P3(1— P45 )(L5 —L2)-P((— P/)(L{ —- Lp) 

rP; (1—P,) 

  

, PAU P3(L3 - Ly) - PiU P/ML} - Ly) 
dl _— r)P, ad _ P,) 

  

L> Ly 1— Ps 
  

  

  

  

  

(Pd —P) * (l-pP,0—-P;) e 1- Py? 

| ] L, L 
- + P3 - P/+ 7? dL 
P,d-F) (=P, UP») » 2 OL 14 eb | 

. Ps? (3—2P3)— P{*(3—2P/) 

18g7(L5 —L})[rP| 1—P,) + —r)Py (1— Pp) 

(B13) 

When the region is symmetric, the Q criterion can be further simplified to 

APV[p] = Qi (Pi, Po, r! P’, g) 

  ! , , y2 L5 Lj = [(2P’ - 1)(1 + 2P” - 2P7\ + 
rP, (1 — P,) (1—r)P,(1—P,) 

= ) 
12L’(Ly - L,) 

  

  

  

1 1 
+( + ) 

rP, 1 — P;) (1—r)P)(1—- P,) 

72 , , r2 ‘pp , , L5 L (L"(2P’-1)(1 + 2P” - 2 P*) + 4L’ P(1- P’) - 22-1) - 2], —dL)] 
! {+e7 

(2P’—1)(1+2P’—2P’7) 

36g7L[rP, (1— P,) + (1—r)P> (1— Py) ] 

(B14) 

where P’ is the upper probability of the region and L’ = logit(P’). Using (B14) to find the 

Q optimal design for a symmetric region can greatly reduce computational intensity. 
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Appendix C Q Optimality Criterion Based on Logit for Hyperbola-Based Design 

Similar to (A4), the Q criterion for the interaction model can be written as 

APV[logit(p)] = N-Trace[I(B) 'S] (C1) 

where I(B) = X’XX and S is the region moment matrix given by 

1 Xy Xy  X4Xo 

2 2 

S = (sidaa=— 1xx’dx=— JJ 5 5 |dxydx2. (C2) 
KR K(R)|  X5  X4Xy XQ XY XB 

X 1X4 X{X, K 1X5 xix 

where K is the area of the region R. 

The model matrix X contained in I(8) can be written as 

  

  

X=ZC (C3) 

1 -1 -!l ] 

1 -l 1 -l 
where Z= (C4) 

1 1 -1 -l 

1 1 1 1 

r 7 
7192 — 7112 

| X10 X20 X19X29 + 12-22 Had 5 Ln 

Z14,+Z Z99 —Z Z77) — Z Z4,+Z4 9 4 2 2 21 2 21 xy t C 2 x59 

and C= ; (C5) 
0 Z12—=2Z11 «221 +222 «9221 + Z22 212 — 241 

X19 +—~——~ X20 
2 2 2 2 

0 0 0 211221 + 212222 

L 2 J     
where (X10, X20) is the hyperbola center and Z;;, i, j = 1, 2, are the centered design levels as 

indicated in figure 8.4.1. It follows from (C3) that 

IB) =(X’EX)Y' =C'(ZEzZ)'C'y (C6) 

where 
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2,22 222 
0; +60 0 0 05-0 2 0 0 j +69 2 —- Oj 

2 0 67 +03 03-02 0 
ra| 2 OF °, 0 | and Z’EZ =2 pe wee) (C7) 

0 0 oF °, 0 05-07 07 +05 0 
0 0 0 Oo 

2 05-07 0 0 of +04 

where oF = n,P,(1-P;) and o5 = nzP2(1-P2). It is found that 

  

    

- 
, —*1o{%21+222)=*20(412-Z1) X10(222-22)-X20(411 212) 2%10%207 (212222 -211221) 

21 1222+212221 2) 1222*212721 2)1221+212222 

0 __ 7214222 ____ 2227221 2x29 
cl. 211222 +212221 Z11222+212221 Z1 1221 +212222 

0 _ 7127711 2114212 ___ 2X10 
22} 1292+242221 2112224212221 21 1291+212229 

0 0 0 4 
L Zj 12214242299 J 

(C8) 

of + o5 0 0 of - o3 

perl 1 0 of +03 o7 ~0o3 
and (Z XZ) = 9D 5 5 5 5 (C9) 

80; 0,5 0 Of -05 Of +05 0 

o? - 03 0 0 of + 04 

Let vp)! = (Vij)4.4- Substituting (C8) and (C9) into (C6) leads to (By expressed with its 

  

    

    

elements 

1 ( ~ yr ¢ + 2 _ Z12Z97 — X19X20 211Z21 + X10X20) 

2(Z4 1221 + 242202) oj o5 

1 ( - yr + )? + pi%10222 X90212 + %10221 + X20211 | 
2 2 2 , 

2(Zy 1222 + Z12271) 0; or 

2 2 2 
X 1 1 1 Zz Z 

Vo = 20 (> +—=)t (2+), 
2 2 2 

2(Z44Z9] + Z19Z97) 0; or 2(Z11Z92 + 219291) 0; Oo» 
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2 2 2 

    

  

  

  

  

  

  

  

  

  

  

x 1 1 1 Z Z 
V33 = - x(—z +=) +t 5( +h), 

2(Z1 1221 + Z12Z97) 07 05 2(211Z99 + 219291) 0, 0, 

] 1 1 
V4 = x(a +7): 

2(Zy 1221 + 219292) 0; 0, 

X Z19Z99 — K19X Z11Z91 + X19X Vi2=Vo = 20 5 (712222 —X10%20 _ Zaya1 + *10%20 

2(Z 1294 + 242292) om S5 

+ | . Z22(%10%22 = X20212) _ 21 (X10221 + X20211) | 
2 2 2 

2(2Z) 1222 +2 2221) 0; O75 

X 219299 — X19X% 241291 + X1pX Vi3= V3) = 10 ,(Ziztea—*10%20 _ 211721 ¥ %10%20 5 

2(Z) 1221 + 212222) oF 55 

+ | 212 %10222 —%20212) | 211(X19221 + X20211) | 
2 2 2 

2(Zj 1209 + 242221) Oj oF 

] Z19Z99 — X19X Z11Z91 + X19X Via = Vay = | [- 712222 —*10%20. 4, Zi * S10%20 7 

2(2) 1221 + 212222) 0; 05 

X10X 1 1 
V23 = V32 = 1920 s(t) 

2(Z4 4201 +2Z42Z92)" Gy Gy 

] Z19Z Z44Z + (- 72222. 4. 721, 

2(Z1 1222 + 212221) oF O5 

x l 1 
V24 = Va2 = - 0 x(a + —z)> 

2(Z1 4221 + 219292) O71 05 

X 1 1 
V34 = V43 = - 10 (+ +7). 2 ee 

2(Z 14294 + 249299) 01 0, 

(C10) 

Let R’ denote the region in the centered (z;, z2) space corresponding to the region 

R in the (x1, X2) space. Define the transformation from the (z, Z2) to (u, v) space 
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Ul | 2444+292 244-242 || 24 
= 4 , / , (Cl 1) 

Vv Z221— 222 211 +212 |L22 

where 2;;, i, j = 1, 2, are the centered levels at the region vertices as displayed in figure 

8.4.1. The Jacobian matrix has determinant 

  

          

du du 
25, +250 24,-Z} i= [21 Oa) Par F222 71712) _ op (C12) 

Vy} [2217-222 211 +242 
dz} dZ9 

where 

h = 241299 + 2229). (C13) 

The inverse transformation is given by 

Zz 1$2Z4)+2Z}9 219 -Z} u 

Z9 2h Z92 —2Z9, Z21,+2Z99 Vv 

The parallelogram region R’ in the (z;, Z2) space is projected into a square region in the 

(u, v) space, which can be written as 

R” = {(u, v): ue [-h, h] © ve [-h, h]}. (C15) 

The property from calculus given in (A11) allows an integration over R’ in the (z1, Z2) 

space to be expressed as an integration over R” in the (u, v) space in the form 

iJ fla, 22) dardag = 5 — Ih, JM, flai(u, v)z2(0, VY dudv. (C16) 
(R’) 

Using (C16), the area K of the region R is found to be 

K= ff dxjdx,.= Jf dzydz,=—J", jh, dudv=2h. (C17) 
(R) (R’) 2h 

Also from (C16), it follows that any odd moment in z, and/or zz is zero, e.g. 

z,dz,dz2 = - JJ zodz,dz» = z 22dz\dz9 = 212dz\dz9 = 0. 4 ty ty 
K (R’) (R’) K (R’) K (R’ 

(C18) 
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Using the centering relationship in (C3) and the property in (C18), the region moment 

matrix S defined in (C2) can be rewritten as 

1 x49 X29 Z1Z2 +X19X20 

2,.2 245 2 
1 Zp +X1g 2122 tX19X29 = —-X20Z7 + 4X19Z1Z2 + X19%20 

S=— f 1 5 5 dz,dz> 

K (R’) Z2 + X39 X19Z2 +2X992Z1Z2 +X 19X20 
2.2 2.2,..22,.2.2 

21 Z2 +4X4QX29Z4Z2 +X29Z7 + X10Z2 + Xj0%X20 

(C19) 

where the lower diagonal elements are omitted due to the matrix being symmetric. Using 

=e the even moments involved in S are found to be 

1 , , = dh? , z+ dz;dzy = aaj + zi3) , 

I f z2dz,d29 = 12 + 7’) K Ry 7 ee ge 21 227? 

! 1 , , , , 

K j VAVAXCVATOV A) = G0712 722 - 211221) ’ 

(R’) 

I 2,2 W242 gt 4 72 7? 
K J zy £7 d2\d2q => ap (Oe) 2! 1 1 + 62152 0 + Z142 2 + ZZ 4 - 4251242251299) - 

(R’) 

(C20) 

Substituting the region moments in (C20) into (C19) yields the elements of S 

Sy=l, 

2 
$22 = a2 + 2) +X 

12.2, 2 
$33 = a + Zn) + X59; 

72 2 7 12 
ap (ri 12222 + 211222 + 2422 m1 - 4241217233297) i 25, + 6215 

2 , 1 9 2 ] 2 x2 
+ 3 10X20(212222 ~ 244291) + 6 Xi10(221 + Zing) += 6% 500244 + 215) + X19 X99 + 

$12 = $21 = X10, 
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S13 = 831 = X20» 

I , 7 , 

S14 = S41 = 823 = 832 = (212222 - 241221) + X10X20 » 

_.._! 12, 22, , 1 bor oe 2 
S24 = S42 = 6011 +25) + 3 x 10(Z12 Z99 - 241221) + XjoX205 

_. 1 2, 2, , 1 rot ot ot 2 
834 = $43 = gx l0l221 + Zn) + 3 X20(Z12222 ~ Z114Z94) + X10X4q - 

(C21) 

Multiplying py” given in (C10) and S gives the diagonal elements of I(B)'S, the 

sum of which leads to 

  

l 1 , 2 2 
[5 2] 1222 + 291212) + (242222 - 2992%12)") Trace[I(B)'S] = 5 

12(Zy 4299 +242201)" Oj 

1 2 2 
+ 5 (242221 + 292211)” + (244221 - 221211) 7] 

  

%% 

1 1 1, ,.2 1 2 + yz (@rrta2 + 3211221) + (212202 - 3 242722)') 
4(Z) 1221 +2 42222)" 9} 3 

] 1 > rp <2 I rr \2 
+ x (211221 + 3 212222) + (Z14Z2) - 3211220) ) 

  

op) 

1 1 1 ? , , 2 , ? , 2 

+ 5 (> + He NM(2 12222-21122) (241 222- 212291) I. 
6(21 4291 + 219292) 0, or) 

(C22) 

Based on §2.2, it can be seen that 

L, —Bo Ly —Bo Z\1Z21=-————,, 212222 = ————, 
Bio Bio 

, Lj ~ Bo , , Ly ~ Bo 
Z41 29) =- —>——, Z}2 222 = >, (C23) 

Bio Bio 
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where Bo = Bo - a L; = logit(P)), Ly = logit(P2), Ly = logit(Py), and Ly = 
12 

logit( P5 ). Define two sets of ratios 

  

  

  

  

  

Zi] , _ 141) Z (1) t= , tp = 4, gy = (4, (C24) 
Z12 Z12 Z14 

Z Z- Zz 
and 2) tPA t=, gat (C25) 

Z22 222 294         

  

  

The coordinates in Trace[I(B)"'S] can be expressed in terms of the logits in (C23) and the 

ratios in (C24) or (C25). Substituting Trace[I(B) 'S] into (C1) leads to the Q optimality 

criterion expresses as 

  

  

APV{[logit(p )] = N i 

I2[t(Ly — Bo) = Ly — Bod? 

1 * * * ’ * 1 (Edy - BS) - 214-85) + 4 -B5) - 24-8} 
07} g t gt t 

1 1 * , * 2 1 * , , * 2 

+ (= (Ly -B9) - g(L}-Bo))” + (Li -B9) - st’(L5-B9)) 
o, & gt 

N 1 * ! r_ Q*y2 _p* i r_p*y2 Wo (((L2 Bo) - 3(L4-Bo)” + (La -Bo) - 3(L2-Bo)) 

1 1, 1, 
+ (Li -Bo) - (L4-Bo))” + (Li -Bo) - 5(L4-BoW)) 

Oo 
2 

N ! , , , , 1 , + (+ I(L} + L4- 289)" + C(L4-BG) + SL} -BG)] 
6(L4 —-L}) 0; 0, t 

(C26) 

where the ratios t, t’, and g can be given by either set (1) in (C24), ie.t=t), t= tj, and g 

= gj, or set (2) in (C25), ie. t= ty, t’ = t>, and g = go. 
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