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(ABSTRACT) 

This dissertation addresses the task of updating finite element models with 

frequency response data acquired in a structural dynamics test. Standard statistical 

techniques are used to generate statistically qualified data, which is then used in a 

Bayesian statistics regression formulation to update the finite element model. The 

Bayesian formulation allows the analyst to incorporate engineering judgment (in the 

form of prior knowledge) into the analysis and helps ensure that reasonable and 

realistic answers are obtained. The formulation includes true statistical weights 

derived from experimental data as well as a new formulation of the Bayesian 

regression problem that reduces the effects of numerical ill-conditioning. 

Model updates are performed with a simulated free-free beam, a simple steel 

frame, and a cantilever beam. Improved finite element models of the structures are 

obtained and several statistical tests are used to ensure that the models are improved.
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Chapter 1: Introduction 

1.1 MODEL UPDATING 

When accounting for the dynamic behavior of a structure in engineering design, it 

is helpful to have a finite element model of the structure available for prediction 

purposes. This enables the designer to determine the effects of changes made to the 

structure without having to actually build a modified structure. Indeed, this is one of 

the main objectives of using the finite element method. 

However, finite element models of structures do not always accurately predict the 

behavior of the structure. This can happen if there are modeling errors present in the 

finite element model. Examples of such errors include the use of inaccurate estimates 

of material properties, the use of poor thickness or dimension estimates, or improper 

modeling of the boundary conditions of the system. If errors are present in the model, 

then errors will be present in predictions made by the model. The model will not be 

suited for quantitative behavior prediction; at best, it can only be used for qualitative 

behavior prediction. In extreme cases, it may not even be good for qualitative predic- 

tion purposes. 

Unfortunately, it is not easy for the analyst to create a sufficiently accurate finite 

element model of a given structure. This is especially true when there is considerable 

uncertainty present in the modeling parameters used to build the finite element. For 

example, the elastic modulus of the structure material may not be precisely known, or 
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the boundary condition model that should be used to model a clamp holding the struc- 

ture may not be known. 

One method of dealing with these difficulties is to update the modeling parameters 

using data from a structural dynamics test. An effective model update procedure will 

cause the revised model to better predict the experimental data acquired in the test. 

Additionally, the model update procedure should provide evidence that the model has 

genuinely been improved, as opposed to having been manipulated to fit only the 

specific set of data used to perform the model update. 

Using Bayesian Statistics with frequency response data is a particularly suitable 

framework for performing such model updates. Bayesian statistics provides a formal 

methodology for incorporating prior knowledge about a system into the model update 

process, and it also provides a framework for describing how good the results of the 

model update process are. These considerations help ensure that reasonable and 

realistic changes are made to the finite element model. 

A significant amount of research has been dedicated to this problem in the past, 

but most of it has been oriented around approaches utilizing the results of experiment- 

al modal analysis. An overview of relevant literature on the FE update problem is 

presented in Chapter 2. While most of the techniques in the literature work with 

modal test data, the use of frequency response data lends itself more easily to a 

formal statistical analysis, as will be shown in Part II of the dissertation. 
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1.2 RESEARCH GOALS 

The primary goal of the research presented in this dissertation is to substantially 

improve the predictive capability of a finite element model by updating the model with 

frequency response data acquired in a structural dynamics test. However, the process 

of updating a model with test data is not simple, and there are a number of questions 

that must be addressed. A list of these questions is given in Table 1.1. 

Table 1.1: Key Questions for Model Updating 

  

How can the test data be used most effectively? 

How can the quality of the model update be described? 

Is there a way to compensate for highly variable noise levels in the data? 

How can “engineering judgement” be included? 

Is there a way to ensure that the predictive capabilities of the model go beyond 
simply predicting the specific data set used to update the model? 

Does the model update procedure provide unique/consistent answers? 

Does the model update reflect physical reality?     
  

The issues of Table 1.1 comprise the secondary goals of this dissertation. If the 

answers to these questions are incorporated into the model update process, the analyst 

will be much more confident that the model has been truly improved. 

1.3 RESEARCH HYPOTHESIS 

The fundamental hypothesis of this research is that analytical models of structures 

can be effectively updated if the update problem is formulated as a Bayesian regres- 

sion problem in which estimates of modeling parameters are updated. Comparisons 

are made directly between frequency response measurements and analytical predic- 
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tions of those same measurements, with statistical weights being used to make the 

comparison as efficient as possible (minimizing errors in the final parameter esti- 

mates). Prior information concerning the design parameters is also incorporated, 

helping ensure that parameter estimates are reasonable and realistic. The Bayesian 

formulation also provides a framework for describing the quality of the updated 

parameter estimates and for performing statistical tests that help ensure the validity of 

the model update. 

1.4 RESEARCH OBJECTIVES 

In order to meet the goals of this research, a number of objectives must be 

achieved. The bulk of the work is oriented around the model update problem formula- 

tion with a Bayesian statistics framework. Also, consideration is given to the para- 

meter selection and modeling process. 

Identify Design Parameters 

The identification of erroneous modeling parameters is perhaps the most important 

part of the model update process. These modeling parameters typically concern struc- 

ture size and shape, material properties, and boundary conditions. Unfortunately , 

there are no simple guidelines for selecting the parameters to be updated, and the 

issue must be addressed on a case-by-case basis. 

Comparing Test Results to Analysis 

The method used to compare test data to finite element model predictions is the 

defining characteristic of a model update algorithm. In this research, Bayesian statis- 
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tical theory is used to develop a weighted sum-of-squares error term that represents 

the differences between the test and analysis. The resulting formulation for estimating 

modeling parameter values is called a Bayesian regression formulation. 

incorporate Sources of Uncertainty 

The model update formulation will be most effective if it accounts for as many 

sources of uncertainty into the process as possible. These sources include variable 

noise levels on the data and uncertainty in parameter estimates used to generate the 

initial model. Statistical tools such as the multivariate delta method are used to gener- 

ate estimates of mean and variance for the data, while Bayesian priors contain esti- 

mates of the mean and variance of the initial parameter estimates used to generate the 

model. A lack-of-fit analysis is used to compensate for sources of uncertainty that 

may have been neglected, such as miscalibration errors or model form errors. 

Describe Quality of Results 

The Bayesian regression formulation provides standard methods for computing 

confidence intervals and correlation matrices for the updated parameter estimates. 

Visualization techniques are also developed in order to demonstrate how well the 

model predicts the shape and amplitude of the dynamic response of the structure. 

Verify Results 

Methods of verifying the model update include performing data quality tests and 

cross-validation tests. Specifically, time-invariance tests are performed before the 

model update to ensure that the data used is valid. Cross-validation techniques are 
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used after the model update to ensure that the updated mode is capable of fitting other 

data sets beyond the specific set used to perform the model update. Parameter consist- 

ency checks are also performed after the model update to help ensure that reasonable 

and realistic parameter estimates have been obtained. 

Perform Model Updates on Actual Problems 

The Bayesian regression formulation developed in this dissertation is used on three 

different model update problems. The first problem is a simulated beam in which 

boundary condition parameters are updated. The second is a steel frame in which joint 

stiffness and beam cross-section parameters are updated. The third problem is a 

cantilever beam in which boundary condition parameters representing a clamp are 

updated. 

1.5 SCOPE OF RESEARCH 

The potential scope of research involving model updating is very broad. However, 

the research performed for this dissertation was strategically restricted in order that 

the most relevant research items could be investigated thoroughly. 

Structure complexity 

The test articles used in this research were of relatively simple geometry, i.e., 

beams or simple frames. Updating a finite element model of a more complex structure 

would have been more interesting and intellectually satisfying, but for purposes of 

testing a new model update methodology, it was best to start with simple and well- 

understood problems. 
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Modeling technique 

The only modeling technique used in this research was the finite element method. 

Transfer matrix methods or Rayleigh-Ritz methods could also have been used, but the 

basic model update formulation would not have changed. 

Testing methodology 

Data was obtained from the test structures using broad-band FRF testing (accomp- 

lished with an impact from a modal test hammer) and single frequency sine-dwell 

testing (accomplished with a sinusoidally driven electromagnetic shaker). Other testing 

techniques such as swept-sine testing or burst-random testing could have been used, 

but these would not have changed the model update formulation. 

Transducer types 

Data was acquired from structures using either accelerometers or a scanning laser- 

Doppler vibrometer (SLDV). Other types of experimental data, such as strain gauge 

measurements, could have been incorporated but were not due to time considerations. 

Parameter types 

The update parameters included isotropic material properties, beam cross-section 

properties, and structural damping coefficients. Boundary condition parameters were 

also included. While this is a fairly complete list, most of these parameters focus on 

global properties of the structure. An element-by-element model update (requiring one 

or more parameters for each element) would be very useful for damage detection pur- 

poses, as would a thickness-profiling study based on spline control-point parameters, 
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but these problems are large and complex enough to be addressed in dissertations of 

their own. They are not addressed here. 

1.6 CONTRIBUTIONS OF RESEARCH 

Development of a True Bayesian Statistics Formulation 

The Bayesian statistics regression formulation has appeared in numerous papers in 

the literature. However, many of these methods are done only in a Bayesian statistics 

“style” rather than in a true Bayesian formulation. Specifically, the Bayesian statistics 

approach requires weighting matrices for both data and prior information. In much of 

the literature, arbitrary weighting matrices such as W=J are used, or the issue of 

weighting matrices is ignored entirely. In this research, the data weighting matrix 

comes from the initial signal processing done on the raw time signals, while the 

weighting matrix for the Bayesian priors comes from variance estimates describing the 

initial quality of the parameters used to model the system under study. Other measure- 

ments taken from the system can also be incorporated into the analysis. | 

Using a data-based weighting matrix is statistically optimal in the sense that it uses 

the data as efficiently as possible, providing minimum variance parameter estimates. 

Additionally, it allows the analyst to use data with highly variable noise levels without 

user intervention. This capability is particularly useful with working with scanning 

laser-Doppler vibrometer (SLDV) data and shaker-based FRF data. In the case of 

SLDV data, time-domain response signal drop-outs can be a problem, while 

Chapter 1: Introduction 9



frequency-domain force autospectrum drop-outs can be a problem in shaker-based 

FRF data. 

Statistics for Multi-Frequency Sine-Dwell Data 

A second major contribution of this work is the development of statistically 

qualified response coefficients that are used to describe time-series data coming from 

a structural dynamics test in which multiple excitation frequencies are used. Prior 

work has focused on cases in which only a single excitation frequency is used. 

Reformulation of the Bayesian Statistics Problem 

In order to implement the Bayesian regression formulation on a computer, the 

problem has to be reformulated to alleviate the effects of ill-conditioning. This is 

accomplished with the use of modern matrix decompositions and a reformulation of 

the Bayesian regression problem that makes it numerically equivalent to an ordinary 

least-squares problem. 

Development of a Lack-of-fit Testing and Compensation 

A third contribution of the work presented in this dissertation is the lack-of-fit 

test. This test provides a statistically rigorous method of determining whether or not it 

is possible to better fit the data. If the test statistic comes out as insignificant, the 

analyst can conclude that the model fits the model as well as can possibly be expect- 

ed, and that there is no point in trying to further refine the model. However, a signifi- 

cant test statistic indicates that there may still be a model that better matches the data. 
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Additionally, it is possible to downweight data residuals in the Bayesian regression 

formulation to compensate for the presence of lack-of-fit. This ensures that the prior 

information provided by the analyst still has an effect in the analysis and that 

unrealistically small confidence interval sizes are not computed. This is particularly 

important in evaluating the model in cases where the number of data points over- 

whelmingly outnumbers the number of pieces of prior information. 

Model Update Verification Procedures 

A fourth area of contribution includes two model verification tests used to ensure 

that the model update is valid. The first test is a time-invariance test performed on the 

test data before the model update, which helps ensure that the data are valid. The 

second is a cross-validation test performed after the model update to ensure that the 

model has predictive capabilities that go beyond the specific data set used to update 

the model. 

1.7 STRUCTURE OF THE DISSERTATION 

This dissertation is broken into five major parts: (I) introduction and literature 

review; (II) basic statistical theory used to update models; (III) issues concerning 

“quality control,” including computer implementation issues and statistical techniques 

used to verify the model update; (IV) model update case studies, both simulated and 

experimental; and (V) conclusions and recommendations. 

Part I of the dissertation consists of Chapter 1 (this introductory chapter) and 

Chapter 2, the literature review. In the literature review, an overview of the many 

Chapter 1: Introduction 11



model update algorithms that exist is presented. Particular attention is paid to those 

algorithms that address statistical issues. | 

Part II deals with the basic statistical theory used to update finite element models. 

Specifically, Chapter 3 provides an introduction to the use of Bayesian statistics in 

regression problems, which is the basic framework on which this dissertation is 

based. Chapter 4 provides an explanation of the update parameters typically used in a 

model update approach based on Bayesian statistics. This chapter also explains what 

statistical priors are and how they are obtained. Chapter 5 discusses how time-series 

data from a sine-dwell test is processed to generate statistically-qualified (having both 

mean and variance information available) frequency response data to be used by the 

model update algorithm. Chapter 6 presents similar results for broad-band frequency 

response function (FRF) data. Finally, Chapter 7 discussed how the finite element 

method is used to compute analytical predictions of the test data along with parameter 

sensitivities of the predictions. 

Part III of the dissertation deals with “quality control” issues, both numerical and 

Statistical. Chapter 8 discusses a number of computational and numerical concerns 

relating to the computer-based implementation of the Bayesian statistics model update 

formulation. Chapter 9 presents a number of statistics-based tools for testing the 

quality of the input data and for determining whether or not the updated model has 

been improved. Finally, Chapter 10 presents a number of visualization statistics that 

help provide insight into the changes made to the model. 

Chapter 1: Introduction 12



Part IV of the dissertation presents three case studies, one using simulated data 

and two using experimental data. Chapter 11 presents a simulated study in which 

boundary condition parameters are estimated using sine-dwell data. A Monte Carlo 

study is also performed to confirm variance estimates. Chapter 12 presents an 

experimental study in which joint stiffness parameters used in a finite element model 

of a frame are updated using both sine-dwell data and FRF data. Chapter 13 presents 

an experimental study in which boundary condition parameters representing the effects 

of a steel clamp on a cantilever beam are estimated using sine-dwell data. This study 

is more complete than the steel frame study of Chapter 12, as more of the statistical 

tests of Chapter 9 are used here. 

Part V, consisting of only Chapter 14, provides a brief summary of conclusions 

and a list of recommendations for future work. 
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Chapter 2: Literature Review 

INTRODUCTION 

The subject of updating finite element models using experimental test data is well 

represented in the literature, with hundreds of papers being available on the subject. 

In this chapter, a general overview of these various model update techniques is pre- 

sented, followed by a more detailed discussion concerning recent work in this area. 

The chapter concludes with references to other works relating to the research present- 

ed in this dissertation. 

2.1 MODEL UPDATE CATEGORIZATION 

The numerous model update procedures discussed in the literature can be categor- 

ized according the type of algorithms used. Specifically, there are three basic charac- 

teristics that can be used to categorize a model update algorithm: (1) the type of test 

data used; (2) the means by which test data are compared to analysis; and (3) the 

methodology used to updating the finite element (FE) model. The primary options for 

each of these selections is shown below in Figure 2.1. Highlighted in gray are the 

options used in this disseration. 
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Figure 2.1: Categories of Model Updating Algorithms 
    

  

Types of Test Data 

Modal test data, typically coming in the form of the modal parameters w, (natural 

frequency), € (viscous damping ratio), and o,, (mode shape) are perhaps the most 

common type of data used in model updating. Modal parameters are usually obtained 

from a polynomial-based fit of FFT-based frequency response function (FRF) data. 

Many other model update algorithms work directly with the FRF data. Finally, a few 

algorithms work directly with raw time-series data. This last category of algorithms is 

much less common and is typically restricted to problems found in controls. 

Test-Analysis Comparison Techniques 

If the data to be used in the model update is comprised of modal parameters, there 

are a number of options for comparing the model to the test data. An older technique 

(less commonly used now except for visualization purposes) is the cross-orthogonality 

matrix Z given in Eq. (2.1). If the test and analysis match perfectly, the matrix Z 
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will equal an identity matrix. A model update algorithm used here would have the 

objective of minimizing the differences between Z and J (most often in a Frobenius 
n, Nn, 

norm sense, i.e., minimize SSE = © x (z,-5,) where 6,,=1 for i=j and 6, =0 
i=1je1 

for 1 #/). 

Z= Dig M Dory (2.1) 

It should be noted that using Eq. (2.1) requires that the test and analysis degrees- 

of-freedom (DOF) be matched, since there are normally many more analytical DOF 

(which include both translation and rotation values at FE nodes) than experimental 

DOF (which typically include only translation measurements from small number of 

accelerometer locations). Degree-of-freedom matching is accomplished with either 

modal expansion, which expands the test data to match the analysis DOF, or with the 

use of model reduction, which collapses the finite element DOF to match those of the 

test. This will be discussed in more detail in Section 2.3. 

Another comparison technique that can be used is the dynamic force residual. This 

comparison takes advantage of the fact that the excitation force and system response 

are related by the fundamental equation of motion of the system. For modal parameter 

data there are no applied loads, since modes correspond to free vibration. Thus, the 

force residual vector g,, defined in Eq. (2.2) for mode r , should be zero. Force resi- 

duals can also be computed for dynamic response shapes u, , which can be extracted 

directly from the FRF at frequency w, with an applied force of F, at the appropriate 

location. This response-based force residual is defined in Eq. (2.3). 
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g, =(K- w,M)o, ~0 | (2.2) 

g, = (K+iw,C - o,M)u, - F, ~ 0 (2.3) 

As with the cross-orthogonality matrix of Eq. (2.1), the objective of a model 

update algorithm would be to minimize the vector g, typically by minimizing (g'g) 

in a least-squares fashion. Again, degree-of-freedom matching is required via either 

modal expansion or model reduction. 

A third approach to comparing test data to the finite element model is to directly 

compare model predictions to the test data, typically in a sum-of-squares error 

fashion. In a modal approach, this might involve direct comparisons between natural 

n, 

frequencies, e.g., (Wgaa ~ © rem) 
r=] 

comparisons between natural frequencies, mode shapes, and damping ratios simul- 

2 or a more generalized approach involving direct 

taneously. With FRF data, analytical FRFs predicted using the model would be direct- 

ly compared to the measured FRFs. Time-series data can compared to analysis in this 

fashion as well. In many direct comparison techniques, the residuals are weighted. 

Model Update Methodologies 

The final option used to categorize model update methods is the means by which 

the finite element model is updated. Many of the simplest update methods make direct 

modifications to individual entries of the FE mass and stiffness matrices. These 

methods are usually very efficient computationally, but have fallen somewhat out of 

favor because the results of direct matrix updates are difficult to interpret. The ever- 
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increasing power of computers has also reduced the need for such computationally 

efficient algorithms. | 

An alternative to direct mass and stiffness matrix updates are methods that update 

models at the finite element level. These algorithms are most often used for damage 

detection purposes. The computational expense is increased, but the results are easier 

to understand. 

A final approach to updating finite element models is to update modeling para- 

meters such as material modulus or thickness. Many different algorithms for para- 

meter estimation exist, but most involve the use of an optimization algorithm or a 

regression algorithm to solve a least-squares type minimization problem. There are 

three types of least-squares formulations possible, as shown in Figure 2.2, with the 

research choices used in this dissertation being highlighted in grey. 

  

     

  

( Ordinary Least-Squares ] [ Weighted Least-Squares } (Bayesian ares.,) 

no variance info used data variance info used data variance info used 
Prior info on parameters used 

  

      

  
Weighting Matrix made 

up by Analyst      

  

  

  

Priors made up 

by Analyst 

Figure 2.2: Regression Analysis Choices 

      
  

Ordinary least-squares has been used a number of times in the literature, but a 

weighted least-squares analysis can be used if data variance information (necessary for 
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computing weights) is available. Furthermore, if prior information is available for the 

parameters being estimated, a Bayesian statistics analysis can be used. 

2.2 RECENT WORK IN THE LITERATURE 

Overviews of Model Updating 

Imregun and Visser [1] presented an extensive overview of model updating that 

began with common comparison techniques such as the modal assurance criterion 

(MAC) [2] and the coordinate modal assurance criterion (COMAC) [3], along with 

different model reduction and data expansion techniques. Direct FE matrix update 

methods were discussed, followed by methods using force residuals and orthogonality, 

and then by sensitivity-based parameter update methods. A preference for FRF-based 

parameter update approaches was indicated, since the FRF contains information on 

out-of-band modes and the lengthy modal analysis procedure is eliminated. 

Baker [4] presented an overview that included test-analysis comparison techniques, 

model reduction techniques, direct matrix update algorithms, and parameter update 

algorithms. The bulk of the methods discussed involve the use of modal data, but 

reference was also made to methods using FRF data. The paper concluded with a 

number of practical suggestions for performing model updates with modal test data 

and recommended that model updates be used with simple, rapidly-solved models 

rather that large, detailed models. 

Mottershead and Friswell [5] provided a very extensive survey of model updating 

that included direct matrix updates and various least-squares type analyses for use 

with both modal and FRF data (including the Bayesian statistics approach). The 

Chapter 2: Literature Review 19



survey also included discussions of error localization techniques, which are used to 

identify erroneous parameters or regions in a finite element model: incompleteness 

issues, where effective linear dependencies present in the data can interfere with 

effective parameter estimation; and weighting matrices to be used in weighted and 

Bayesian regression techniques. The paper ended with recommendations that more 

research be performed with larger, complex models, along with more research 

concerning the selection of a “most suitable” initial model from a set of candidate 

models. A slight preference for parameter estimation approaches that utilitize 

regularization and error localization techniques was indicated. 

Link [6] provided an extensive list of possible sources of error in model update 

procedures. Experimental errors can arise from wrong measurements (perhaps caused 

by defective or miscalibrated tranducers), the influence of test equipment on results 

(such as tranducer mass-loading effects), inaccurate measurements (caused by random 

noise), and incomplete measurements (typically caused by insufficient spatial DOF or 

excitation frequencies). Modeling errors can arise from discretization errors, invalid 

element connectivity, improper modeling of a non-linear system as linear, physical 

modeling errors (such as incorrect material properties, inertias, and stiffnesses), and 

mismatched boundary conditions between the test and the model. All of these prob- 

lems must be eliminated if good results are to be obtained, and statistics techniques 

can deal only with random noise in measurements and physical modeling errors. 

Dascotte [7] discussed some of the issues that must be addressed in updating finite 

element models using modal test data. The importance of matching mode shapes from 
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test and analysis was stressed. A preference for model update methods that use design 

parameters instead of direct matrix updates was also indicated, as these methods 

provide more physical insight into the changes made. It was also recommended that 

sensitivity analyses be performed with the modeling parameters in order to determine 

which parameters should be excluded from the model update process. 

Natke [8] presented an overview of model update techniques based on Bayesian 

statistics. Data types included FRF data, FRF-based dynamic force residuals, modal 

test data, and mode-based dynamic force residuals. The importance of having 

Statistical weights was stressed, but no discussion of where weighting matrices might 

come from was included. Zhang [9] showed how update methods based on direct 

comparisons of modal data or FRF data can be formulated similarly, and how other 

approaches based on dynamic force residuals and orthogonality coefficients can also 

be formulated in a consistent fashion. 

Degree-of-Freedom Matching 

Although the research presented in this dissertation does not utilitize a degree-of- 

freedom (DOF) matching technique, many model update algorithms do and they are 

thus discussed here. DOF matching typically is needed for algorithms utilize cross- 

orthogonality measurements or dynamic force residuals, as mentioned in the previous 

section. The DOF matching techniques can be broken into two categories: (1) finite 

element model reduction techniques, and (2) experimental mode shape expansion 

techniques. 
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Model reduction techniques generate reduced finite element matrices that are 

called test-analysis models (TAMs), referring to the fact that the reduced model has 

degrees-of-freedom that correspond exactly with the test. The oldest model reduction 

method is the static TAM, developed by Guyan [10]. This method produces exact 

results for static loads, but errors are generated for dynamic loads. Kammer [11] 

developed the modal TAM, in which the analyst picks mode shapes from the original 

analytical model that the reduced model will match exactly. Kammer later updated the 

modal TAM to account for mode shapes not included in the reduced model by includ- 

ing mode shapes from the static TAM [12]. O’Callahan [13] developed the improved- 

reduced system (IRS) TAM, which is similar to the static TAM but includes correc- 

tion terms that account for the inertial effects of the missing DOF. Gordis [14] 

studied the IRS TAM and concluded that it was most effective when the natural 

frequencies of the omitted DOF are higher than those of the DOF included in the 

reduced model. 

Freed and Flanigan [15] compared the static, modal, hybrid, and IRS TAMs using 

two numerical and two experimental case studies. They concluded that the IRS and 

hybrid TAMs work best, achieving accuracy and robustness more often than the other 

two. The topic of test-analysis models was studied further by Avitabile and Foster 

[12], who investigated test-analysis models in the context of performing comparisons 

with the MAC, COMAC, enhanced COMAC [16], and cross-orthogonality matrix. 

An alternative approach to model reduction is mode shape expansion, where the 

DOF of the test data are expanded to match those of the finite element model. Lieven 
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and Ewins [17] discussed three expansion techniques: (1) using cubic splines for 

interpolation; (2) modeling the test modes as linear combinations of FEM modes; and 

(3) inverting the static reduction process. The inverted static reduction process proved 

most effective. O’Callahan et al [18] later developed the System Equivalent Reduction 

Expansion Process (SEREP), which is a more generalized procedure that can be used 

for either data expansion or model reduction. The process was later extended such 

that expanded mode shapes were smoothed consistently [19]. 

Update Methods using Modal Data 

Model update techniques which use modal test data are the most common. Earlier 

techniques performed direct updates of the finite element mass and stiffness matrices, 

resulting in very efficient algorithms that often matched the test data perfectly. Baruch 

and Bar Itzhack [20] developed one of the earliest direct matrix update algorithms, 

which did not preserve the structure of the original FE matrices. Kabe [21] developed 

an improved technique that preserved the connectivity of the finite element model but 

sometimes resulted in a loss of positive definiteness in the FE matrices. O’Callahan 

[22] presented four different direct matrix update techniques which updated mass and 

stiffness matrices based on various combinations of mode shape and natural frequency 

data. Aiad ef al [23] used simulated complex-valued mode shapes and natural 

frequencies to perform global updates of finite element matrices. Conti and Bretl [24] 

developed a direct matrix update approach for using experimental modal data to 

determine the rigid-body properties in addition to mount stiffnesses. A more recent 
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work by Ahmadian et al [25] utilized a formulation that preserves the connectivity 

between nodes and retains the positive definiteness of the FE system matrices. 

Analysts using orthogonality-based model update approaches include Niedbal and 

Luber [26], who combined orthogonality products and energy methods with 

substructuring techniques to perform model updates. 

Analysts using least-squares type analyses (sometimes called inverse 

eigensensitivity techniques) include Jung and Ewins [27], who updated design 

parameters using direct eigenvalue and eigenvector comparisons. Ladeveze et al [28] 

used a similar approach, except that the residuals were downweighted by response 

magnitudes. Nobari and Ewins [29] discussed the effectiveness of using only natural 

frequencies in a least-squares type analysis rather than using both natural frequency 

and mode shape information. Lindholm and West [30] used only mode shape ~ 

information in an ordinary least-squares context to determine boundary condition 

parameters. 

Farhat and Hemez [31] used a least-squares type analysis with mode-based 

dynamic force residuals. FE models were updated using an element-by-element 

approach designed for damage detection purposes. Hemez [32] later updated the 

approach to use FRF data, and then extended the approach further [33] to also include 

Static test data. 

Bayesian Approaches using Modal Data 

As shown in Figure 2.2, an alternative to the ordinary least-squares regression 

formulation is the Bayesian regression formulation, which is sometimes called extend- 
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ed weighted least-squares, regularized least-squares, or maximum a posterior estima- 

tion. Hasselman [34] provided an explanation of the philosophy behind Bayesian 

statistics in addition to providing detailed guidelines for interpreting the results of a 

Bayesian statistical analysis. Topics discussed included model improvement vs. 

manipulation, uniqueness of solutions, and qualification of the model for future use. 

Beliveau [35] provided formulations for using Bayesian Statistics with modal data, 

FRF data, and raw time-series data. Sensitivity results were developed for all three 

data types. Link [36] discussed some issues concerning the Bayesian statistics 

formulation, including discretization errors, faulty modeling assumptions, and 

inconsistent boundary conditions. Dascotte et al [37] presented a number of different 

options for weighting matrices to use in a Bayesian statistics style formulation. 

Hasselman and Chrostowski [38] used the Structural System Identification (SSID) 

code (developed at Sandia National Laboratories to update models with a Bayesian 

Statistics formulation [39]) to perform model updates with modal test data coming 

from a large space truss. Martinez et al [40] discussed the use of different optimiza- 

tion algorithms within SSID to perform parameter estimation using Bayesian statistics. 

Other work using the SSID code was performed by Nefske and Sung [41], who 

updated joint stiffness parameters in a model of an engine cradle. 

Antonacci and Vestroni [42] used the Bayesian statistics approach to update 

lumped-mass models of civil engineering structures. Link et al [43] updated a bridge 

model using a Bayesian statistics formulation with modal test data. Alvin [44] 

generalized the element-by-element formulation of Farhat and Hemez [31] to a 
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Bayesian statistics parameter update approach. Variance estimates on the original 

modal data were carried through the modal expansion procedure and transformed to 

determine variance estimates for the computed dynamic force residuals. 

Update Methods using FRF Data 

As shown in Figure 2.1, FRF data can be used for model updating instead of 

modal test data. Authors using direct FE matrix updates with FRF data include 

Larsson and Sas [45], who used a reduced model to generate a dynamic stiffness 

matrix (DSM) which was compared to the inverse of an FRF matrix generated from 

multi-frequency FRF data. Kritzen and Kiefer [46] used QR decomposition techniques 

with FRF data to localize errors in the FE mass and stiffness matrices. A more recent 

direct matrix update method presented by Zimmerman et al [47] uses rank-one modi- 

fications of the FE stiffness matrix for purposes of damage detection. 

Berger et al [48] used dynamic force residuals, as given in Eq. (2.3), with 

expanded mode shapes to localize and correct errors in substructures. Missing DOF in 

the experimental data were filled in using static deflections in an expansion approach 

similar to an inverse of Kammer’s hybrid TAM [12]. Also using FRF-based force 

residuals were Yang and Brown [49], who used a model reduction technique to study 

different methods of reducing the sensitivity of the model update process to the 

presence of damping in the structure, which is often difficult to model accurately. 

Schulz et al [50] used dynamic force residuals coming from FRF data in a weighted 

least-squares formulation to update a model of a truss. A similar formulation was 

presented by Schulz et al (51] for purposes of structural damage detection. 
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Friswell and Penny [52] used FRF data with the Kammer’s modal TAM in a 

weighted least-squares problem in which damping and joint stiffness parameters were 

updated. A similar technique was developed by Conti and Donley [53], who used a 

TAM with FRF data to develop a linear least-squares model update formulation. 

Imregun [54] compared model update results obtained with modal test data (using 

the inverse eigensensitivity technique of Zhang et al [55]) to model update results 

obtained with FRF data (using the dynamic force residual method of Visser and 

Imregun [56]). The effectiveness of each method was dependent on which modes or 

FRF lines were selected for use as data. Hybrid approaches, in which one technique 

was used to find preliminary parameter estimates for the other, were also investi- 

gated. The approach was expanded by Imregum ef al [57] to utilize complex-valued 

FRF data in an element-by-element approach and was tested by Imregum ef al [58] in 

a joint stiffness parameter estimation problem. 

Cogan et al [59] presented a least-squares approach to updating finite element 

models with FRF data in which residuals were scaled by the original FRF magni- 

tudes. This approach is equivalent to a weighted least-squares formulation in which 

noise levels are assumed to be proportional to magnitude. The importance of having a 

good initial model was particularly stressed. 

Reix et al [60] predicted global damping coefficients using a two-staged weighted 

least-squares formulation that directly compared measured FRF data to the analytically 

predicted FRF. In the first stage, global mass and stiffness properties such as modulus 

and density were manually updated to make the model match the results of modal 
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parameters fitted from the FRF. The FRF data was then directly used in a weighted 

least-squares analysis to obtain the damping coefficients. 

Bayesian Approaches using FRF Data 

A couple of the papers using modal data in a Bayesian formulation also discussed 

how FRF data would be used in a Bayesian formulation. These included the works by 

Beliveau [35] and Link et al [43]. Additionally, Mottershead and Foster [61] used the 

Bayesian statistics approach with FRF data to improve the conditioning of a weighted 

least-squares process developed to estimate element stiffnesses in a cantilever beam. 

Update Methods using Time-Series Data 

Ibrahim et al [62] developed a method which used displacement, velocity, and 

acceleration measurements at a few instants in time to directly update the system 

matrices of the FE model. Harmonic excitation is used in order that velocity and 

displacement data can be derived directly from acceleration data. Bronowicki et 

al [63] proposed a Bayesian statistics formulation in which time-series data was 

directly used to update a model. Eigensolutions coming from the finite element model 

were used to predict the time-series data. Koh and See [64] use the extended Kalman 

filter (a controls-based time-series formulation that is equivalent to the Bayesian 

Statistics formulation [65]) to estimate structural parameters from time-series data. 

Their procedure incorporated an adaptive filter that adjusted data variance estimates to 

ensure statistical consistency and to prevent underestimation of confidence interval 

sizes. 
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Model Updates with Other Types of Data 

Mahnken and Stein [66] used strain measurements instead of displacement 

measurements for purposes of estimating viscoplastic damping parameters. The 

problem was initially formulated as a weighted least-squares problem, but regulari- 

zation terms were then added that made the problem equivalent to a Bayesian statistics 

formulation. 

2.3 COMMENTS ON THE LITERATURE 

To summarize, there are many different model update methodologies described in 

the literature. However, there does seem to be a “common” model update technique 

that is used most often. A schematic of this approach is given below in Figure 2.3. 

| Time-Series Data | | Finite Element Model | 

(FFT analysis, easy) (eigenvalue analysis, easy) 

| Frequency Response Data] | Analytical Modal Data | 

\ (polynomial fit, hard) (TAM transformation, hard) go 

Experimental Modal DOF-matched Analytical 
Analysis Data Modal Data 

(statistics difficul: 

Mode Matching via 
Cross-Orthogonality or MAC 

(may require reduced FE matrices) 

Compare via Cross-Orthogonality, 
Force Residuals, or MAC 

(Statistics?) (requires reduced FE matrices) 

Figure 2.3: Model Updates using Modal Data 

  
  

  

        

    

    

        
  

  

  

    
  

  

    
      
  

In Figure 2.3, the term “easy” means that a small number of well-understood 

algorithms are available for the purpose required. This does not mean that obtaining 
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unbiased FRF estimates from time-series data and computing eigensolutions for 

massive FE system matrices are trivial tasks. Indeed, there are several methods for 

estimating FRFs and several algorithms for computing the eigenvalues of large scale 

matrices, and these must be used properly. However, a competent analyst should be 

able to obtain correct results for these parts of the problem for almost any system. 

The “hard” tasks, on the other hand, can become intractably difficult for certain 

systems. Extraction of modal parameters is typically performed with a polynomial- 

based fit, and a large number of algorithms exist for the purpose of performing that 

fit. These algorithms work quite well for many systems, but systems that have densely 

packed modes, nearly coupled modes, or heavy/non-proportional damping can cause 

modal analysis algorithms to fail. Additionally, only a few modal analysis algorithms 

carry through the statistics necessary to describe of the quality of the modal 

parameters extracted. One algorithm that does so was presented by Yoshimura and 

Nagamatsu [67]. 

Likewise, performing effective model reductions or test mode expansions can be 

very difficult for real-world structures. A poorly implemented TAM can fail to 

predict the natural frequencies and mode shapes of the original model; it can even 

introduce spurious modes into the analysis. This is particularly likely to happen if data 

is not acquired at a sufficient number of spatial locations or at improper locations. 

Mode shape expansion algorithms have similar problems. A final difficulty with the 

“common” approach is that it is difficult to carry statistical measures of quality all the 

way through the update process. 
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The approach being presented in this dissertation is somewhat simpler, as shown 

in Figure 2.4. The steps of experimental modal analysis, FE model reduction, and 

mode matching have all been eliminated. Additionally, it is relatively straightforward 

to carry statistics through the entire analysis. 

| Time-Series Data] | Finite Element Model | 

(FFT analysis, easy) (dynamic response, easy) 

| Frequency Response Data| | Analytical Response Data | 

(statistics included) (FE interpolation, easy) J 

Transducer-matched 
Analytical Response Data 

  

  

  

        

    

  

      
  

Direct Frequency 
Response Comparison 

(statistics included) (does not require reduced FE matrices) 

Opti 

    

mize 

        | Statistical Post-processing | 

Figure 2.4: Model Updates using FRF Data 

  

  

Many of the works presented in this literature review also utilitize a similar 

approach. Many analysts even use the same Bayesian statistics formulation that is 

used as the basis for the work of this dissertation. However, it appears that nobody (to 

the best of the author’s knowledge) has used estimated weights for the purpose of 

updating a model, though Yoshimura and Nagamatsu [67] did use estimated weights 

for the purpose of estimating modal parameters from FRF data. Indeed, many authors 

simply assume W,,,=1, while others do not address the issue at all. A number of 

authors, such as Beliveau [35], Dascotte et al [37], Link et al [43], Alvin [44], Schulz 
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et al [50], and Koh and See [64], address the issue of weighting matrices in 

considerable detail and present a number of schemes for generating them, but none 

describe how to estimate weights directly from experimental data. 

2.4 OTHER RELEVANT WORK 

A key step in obtaining experimentally estimated weights is a statistical analysis of 

frequency response data. For sine-dwell data, this was addressed by Montgomery and 

West [68], who developed a method of variance estimation for frequency response 

coefficients coming from a sine-dwell test. Excitation and response signals are 

analyzed separately and then combined into statistically qualified relative response 

coefficients using the multivariate delta method. Montgomery et al [69] later verified 

the results using Monte Carlo simulations. Zeng and Wicks [70] compared the use of 

discrete Fourier transform techniques and linear regression techniques to fit sine-dwell 

data. Lopez Dominguez [71] also studied the issue of fitting sine-dwell data, using 

robust regression techniques to deal with time-domain drop-outs in time-series data 

coming from a laser Doppler vibrometer. A triggering strategy was used to estimate 

phase angle information. 

Other authors have addressed the issue of estimating variances for FRF data. 

Bendat [72] developed a large number of formulae for estimating variances for FRF 

magnitude, phase angle, and coherence for the H, FRF estimator. Yoshimura and 

Nagamatsu [67] derived similar variance estimators for the 1, FRF estimator, though 

only for magnitude. The results were used as a source of statistical weights in a 

weighted least-squares modal parameter estimation procedure. Cobb [73] studied the 

Chapter 2: Literature Review 32



statistics of a three-channel FRF estimator in addition to providing guidelines on when 

certain variance estimators broke down. | | 

Deaton et al [74] wrote a significant work on the use of estimated error variances 

in regression problems. They provided guidelines for when estimated weights should 

be used in a regression analysis and when they should not be used. Other works on 

this subject include papers by Williams [75] and Jacquez and Morusis [76]. Both 

provide guidelines for using estimated weights in least-squares problems. 

Other basic references used in this work include a reference on basic statistics by 

Walpole and Myers [77], a reference on statistical regression techniques by Myers 

[78], a reference on parameter estimation by Beck and Arnold [79], a reference on 

large-scale matrix computations by Golub and Van Loan [80], a reference on signal 

processing techniques by Bendat [81], a reference on modal analysis by Ewins [82], a 

reference on the Monte Carlo method by Rubinstein [83], and references on the finite 

element method by Przemieniecki [84] and Bathe [85]. 
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Chapter 3: Bayesian Statistics 

INTRODUCTION 

As discussed in the introduction, this dissertation is concerned with the task of 

updating finite element models with experimental data. More specifically, modeling 

parameters are to be updated using direct comparisons between experimentally 

acquired frequency response data and FEM-based analytical predictions of that same 

data. To this end, there are three common regression techniques that can be used to 

obtain statistically qualified parameters estimates: (1) ordinary least-squares regres- 

sion; (2) maximum likelihood estimation (which is also known as weighted least- 

squares regression); and (3) maximum a posterior estimation (which is also known as 

Bayesian regression or regularized regression). 

3.1 ORDINARY LEAST-SQUARES 

Basic Theory 

Ordinary least-squares estimation is the most common regression technique used in 

Statistical parameter estimation. The objective of this methodology is to find the 

vector of parameter values p that minimize a sum-of-squares error function, given in 

Eq. (3.1) in both scalar and vector form. The data vector y comes from the experi- 

ment, and the prediction vector ¥ (a function of f) comes from the FE model. 

ny 

SSE = ¥" v,-¥i) = 0-0-9) (3.1) 
i=] 
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Clearly, it is preferable that the SSE quantity be small rather than large, since this 

indicates less difference between experimental measurements and predictions based on 

the analytical model. The p vector that minimizes the SSE quantity is known as the 

least-squares estimate. 

To solve for this estimate, the parameter iteration of Eq. (3.2) can be used. The 

matrix X is a sensitivity matrix, where x, = dy,/dp,. Gauss-Newton iteration can 

converge quite quickly, particularly if X is nearly constant or if the initial guess for p 

is close to the minimizing least-squares estimate. 

Ap = (X™X)"(X"(y - 9) (3.2) 

If the statistical properties of the errors present in the data are known or are 

assumed to be known, it is possible to make inferences concerning the estimated 

parameters p. Specifically, if measurement errors on the data values are independent 

of each other and come from a common normal distribution (with zero mean and 

standard deviation 0), then the variance-covariance matrix Var|p| that describes 

potential errors in the parameter estimates is given in Eq. (3.3). The true error 

variance o” is usually unknown, but the estimated error variance s”, given in 

Eq. (3.4), can be used in its place. 

Var [pf] = 0?(X™X)" (3.3) 

2 (3.4) 
ny-n,) 
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The diagonal elements of Eq. (3.3) consist of variances that describe the amount 

of potential error in each individual parameter estimate. The off-diagonal elements are 

covariances that describe how much the potential errors are related between different 

parameter estimates. The diagonal elements can be used to generate confidence 

intervals for the true values of each parameter, e.g., D,,; © P; + 1.96,/ Var[p];, for 

standard 95% confidence intervals on normally distributed parameters. Clearly, it is 

preferable for the entries of Var([p] to be as small as possible. 

It is also possible to generate a correlation matrix describing the relationships 

between the various parameters. This is accomplished by pre- and post-multiplying 

Var([p| by a diagonal rescaling matrix, @, given in Eq. (3.5). The resulting 

correlation matrix is given in Eq. (3.6). 

q;, = 1/,/ Var|p]; inj = 9 (3.5) 

Corr[f] = QVar([p]O (3.6) 

3.2 MAXIMUM-LIKELIHOOD ESTIMATION 

Basic Theory 

Ordinary least-squares is a very powerful parameter estimation technique, but it 

can perform poorly when the data do not meet the assumptions of independent and 

identically distributed normal errors. In particular, if a subset of the data has errors 

that are significantly larger than the errors in other data, then the ordinary least- 

squares loses efficiency, meaning that potential errors on the estimated parameters 

become larger than ideal. Additionally, the ability to accurately estimate the variance- 

covariance matrix Var|p| of the parameter estimates is adversely affected. 
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The solution to this problem is to use weighted least-squares. Appendix A shows 

how weighted least-squares is derived using maximum likelihood theory. This theory 

shows that a weighting matrix should be used, as defined in Eq. (3.7), where Var[y| 

is the variance-covariance matrix describing errors on the data. 

W, = Var‘ [y] (3.7) 

The weighting matrix fits into the sum-of-squares expression, as shown in 

Eq. (3.8), and fits into the parameter iteration process as shown in Eq. (3.9). The 

estimated parameter vector f generated by this iteration is called the maximum 

likelihood estimate. The variance-covariance matrix given in Eq. (3.10) describes the 

quality of this estimate. 

  

"Ny fy -y\? 

SSE =" Y - v1) Yew Vif =O -IFW,0-9) (3.8) 
t= vj i= 

Ap = (X™W,X)" (XW, (y -9)) (3.9) 

Var[p]=(X'W,X)" (3.10) 

Regression Example 

To demonstrate the effectiveness of using weighted least-squares, the data set 

given in Table 3.1 is used. It should be noted that the variances in this data set are 

not uniform, with the last data point having a variance 100 times as large as the 

variance of the errors in the other data. 
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Table 3.1: Data for Regression Example 

    

  

      

Y rue, i 1 i 9 5, 
7.8 0.0 2.6 0.1 

11.6 1.0 3.2 0.1 

15.4 2.0 3.8 0.1 

19.2 3.0 44 0.1 

23.0 4.0 5.0 0.1 

28.0 5.0 6.0 0.1 

34.2 6.0 7.4 0.1 

40.4 7.0 8.8 0.1 

46.6 8.0 10.2 0.1 

52.8 _ 9.0 11.6 10.0 | 
    

The ten data points are used to estimate two parameters p, and p, using both 

ordinary least-squares regression and weighted least-squares regression. The model 

used to fit the data is given below in Eq. (3.11), which can alternatively be expressed 

in matrix form as given in Eq. (3.12). 

Y= PX, ;+ PX); (3.11) 

= Xp (3.12) 

    

A Monte Carlo study was performed with these numbers. In each trial, the data 

points y, were created by adding Gaussian random numbers (with zero mean and 

variance oy) to the true solution, i.e., y,=y,,,,+N [0, |. This “noisy” data was 

then used to estimate the parameters p, and p,. This process was repeated 2000 

times, and 2000 sets of parameter estimates were obtained. Equations (3.2), (3.3), 
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and (3.4) were used for the ordinary least-squares analysis, while Eqs. (3.8), (3.9), 

and (3.10) were used for the weighted least-squares analysis. | 

Figure 3.1 below shows a scatter plot of the solutions obtained using ordinary 

least-squares. The scatter around the true solution p,,, , = 2.00 and p,,, . = 3.00 is 

caused by the noise in the data. The expression (p - pf)! Var '[p](p - p) = 3.0.99 

defines a 99% confidence region that shows where the scatter points should be 

according to the estimate of Var[p] computed using Eq. (3.3). It can clearly be seen 

that the confidence ellipse does not overlap the scatter points. 

  4.0 

3.5 [ 

P2 

3.0 } 

    

  

2.5   
15 Pp; 20 25 

Figure 3.1: Ordinary Least-Squares Solutions 

This discrepancy can be quantified by determining a “measured” variance- 

covariance matrix from the Monte Carlo trials [83], which can be compared to the 

estimate Computed using Eq. (3.3). As shown in Eqs. (3.13) and (3.14), the estimate 

does not match the results provided by the Monte Carlo study. Individual entries in 

the matrix of Eq. (3.14) are off by more than a factor of five. 
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p 0.0207 -0.0093 
Var| _ | | (3.13) 

Pali co [70-0093 +0.0080 

p +0.1316 -0.0998 
Var| -s2xy'-| | (3.14) 

By. -0.0998 +0.0777 

    

If a weighted regression analysis is used according to Eq. (3.9), different results 

are obtained. A scatter plot of weighted regression solutions is shown in Figure 3.2. 

It is apparent that the scatter around the true solution p,,, , = 2.00 and p,_, , = 3.00 

has been substantially reduced. This is indicative of an improved estimation process. 

Additionally, the 99% confidence ellipse computed using the estimate of Var(p] from 

Eq. (3.10) overlaps the scatter points. 

  4.0 .s _ v me ¥ —_- = 

3.5 [ 

P2 

3.0 + 

  

    2.5 Lo 
15 Pp, 20 2.5 
  

Figure 3.2: Weighted Least-Squares Solutions 

As with the ordinary least-squares solutions, it is possible to determine a “meas- 

ured” variance-covariance matrix using the Monte Carlo trials, which can be 
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compared to the estimated variance-covariance matrix obtained using Eq. (3.10). 

Equations (3.15) and (3.16) below provide the resulting comparison. Here, the 

estimated matrix matches the “measured” matrix to nearly the fourth decimal place. 

A 

    

p 0.0135 -0.0101 Var| | | | (3.15) 
Pali coup {70.0101 +0.0079 

p +0.0136 -0.0102 Var| =a W,x)" =| | (3.16) 
Pl. -0.0102 +0.0080 

    

Clearly, using weighted regression provided a substantial improvement over 

ordinary least-squares in this case. The larger variance of the 10" data point of 

Table 3.1 caused a noticeable increase in the variance of the parameter estimates 

obtained using ordinary least-squares, which can be clearly seen when Figure 3.1 is 

compared to Figure 3.2. Additionally, the parameter variance-covariance matrix com- 

puted using Eq. (3.3) was incorrect, meaning that the effects of the 10" point variance 

were not even properly accounted for. 

3.3 MAXIMUM A POSTERIOR ESTIMATION 

Basic Theory 

An additional improvement that can be made to weighted regression is the 

inclusion of prior knowledge concerning the parameters. When this is done, the 

parameter estimation problem becomes a Bayesian statistics problem, which provides 

three benefits: (1) reduced variances in parameter estimates; (2) reducing instability in 
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the update process caused by ill-conditioning; and (3) reduced correlation between the 

final parameter estimates. | 

To use Bayesian statistics, the analyst must have prior information concerning the 

parameters. Strictly speaking, this prior information comes in the form of a probabil- 

ity distribution function, but for normally distributed parameters the information can 

be summarized with an estimated means and variances, which together are called 

priors. In some cases the analyst may know little or nothing at all about the likely 

value of some of the parameters. In this case, non-informative priors should be used 

for the poorly understood parameters, meaning that the corresponding estimates of 

variance are set to infinity. 

The SSE quantity for a Bayesian statistics analysis is given below in Eq. (3.17). 

The data weighting matrix is defined as W,= Var[y]’ and the weighting matrix for 

the vector of priors p, is W, = Var|[Po| The iteration that minimizes SSE is given in 

Eq. (3.18). The estimated parameter vector f generated by this iteration is called the 

maximum a posterior estimate, as discussed in Appendix A. The variance-covariance 

matrix describing the quality of this estimate is given in Eq. (3.19). Both data and 

priors are assumed to come from multivariate normal distributions. 

2 

    

sse-5) NE a (3.17) 

=(y -$)' W,(y - 9) + (Do - B)'W, (Py - B) 

Ap=(X™W,X+W,\'(X'W (y -9)+ W, (po - B)) (3.18) 

Var[p] = (X'W,X+W, i. (3.19) 
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Regression Example 

In this regression example, the data of Table 3.1 is used again along with prior 

knowledge concerning the two parameters. Table 3.2 provides the mean and variance 

estimates that summarize the prior information distributions. This information can also 

be expressed using the vector/matrix notation of Eq. (3.20). 

Table 3.2: Priors for Regression Example 
Ts 
  

  

        

parameter mean . variance confidence bounds 

P, 2.05 0.001 +0.062 

P» 3.25 0.020 +0.277 

2.05 +0.001 0.0 
= V = (3.20) 

Po sel arlPol"| go somo 

    

It should be noted that the prior estimates p, do not match the true solution 

Prue, = 2-00 and p,,, . = 3.00. This will usually be the case. If the prior knowledge 

was always perfect, there would be no point is using experimental data to obtain new 

estimates of the modeling parameters in the first place. 

Figure 3.3 below shows results from a single weighted least-squares regression 

analysis obtained using Eqs. (3.9) and (3.10). The parameter estimates, given in Eq. 

(3.21), do not match the true solution, which is not unexpected since there is noise 

present in the data. A 99% confidence region is again defined by the expression 

(P rue ~ P)' Var [6 |(P ye - P) = X2,099- Note that the shape of the ellipse in Figure 3.3 

is the same as that shown in Figure 3.2, and that the true answer does lie within the 

ellipse. 
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2.1185 Vv +0.0136 -0.0102 (3.21) 
= a = : « 

Pus | 5 8660 TIP lw) 9.0102 +0.0080 

4.0 , . — . — ’ r 

3.5 

P2 

estimate obtained 

from a single 
3.0 + Monte Cario trial 

true answer 

25 a an hh 

15 p; 20 2.5 

Figure 3.3: Confidence Region from Weighted Regression 

A similar ellipse can be plotted for the priors using the definition of Var [Po| from 

Table 3.2. This ellipse, plotted along with the ellipse generated from the weighted 

regression results, is shown in Figure 3.4. 

  4.0 r T r r r T a 

3.5 7 

P? 

3.0 + 

  

    25 fs 
15 Pp, 20 2.5 
  

Figure 3.4: Confidence Region from Prior Knowledge 
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In Figure 3.4, it can be seen that there is a region where the confidence region 

based on the prior information distribution overlaps the estimated confidence region 

coming from the regression results. The true answer lies within this overlap region. 

If a Bayesian statistics solution is computed using Eqs. (3.18) and (3.19), the 

results of Eq. (3.22) are obtained. It is worth noting that the variances are much 

smaller and that the parameter estimate is much closer to the true solution than either 

the prior estimate or the estimate obtained using weighted least-squares alone. This is 

particularly evident when the estimate and confidence region coming from the 

Bayesian regression analysis are plotted on top of the other two confidence regions, as 

shown in Figure 3.5. 

+0.00091 -0.00067 - 3.22 
aT1P lee nae? +0.00078 e2) 

2.0434 

bayes 19.9271 

  4.0 ¥ —_ — — r me ~ e r ms 

3.57 

3.0 

    2.5 — 
1.5 
  

  

Figure 3.5: Confidence Region from Bayesian Regression 

It is interesting to note that the estimated confidence region coming from the 

Bayesian regression analysis is located where the two other confidence regions over- 
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lap. This means that the Bayesian estimate is consistent with both the prior informa- 

tion and the data-based information coming from the weighted regression analysis. 

Conclusions 

Clearly, using Bayesian regression can be an improvement over even weighted 

least-squares, particularly if there is ill-conditioning present in the problem. Ill- 

conditioning can be characterized by computing the condition number of the 

correlation matrix of Eqs. (3.5) and (3.6). A high condition number indicates the 

presence of ill-conditioning in the problem, which tends to inflate parameter estimate 

variances, as seen in Eq. (3.21). It is also the source of the high degree of eccen- 

tricity seen in the confidence region ellipse of Figure 3.3. 

For the weighted regression example, this condition number turned out to be 

109.1, which is quite high for a two-parameter problem. For the Bayesian statistics 

analysis, however, the condition number is only 8.9, which resulted in the substan- 

tially reduced variances of Eq. (3.22) and the less eccentric ellipse of Figure 3.5. 

3.4 ADDITIONAL COMMENTS ON STATISTICS 

Data and Parameter Scaling 

A major advantage of using Bayesian statistics is that weighting matrices make the 

entire formulation independent of data and parameter scaling. Thus, switching from 

S.I. units to English units would have no effect on the analysis, nor would scalings 

used to convert from acceleration data to velocity data have any effect on the analysis. 

Also, the use of statistical weights provides the proper balance between data and 
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priors. Without the weights, the analyst would have to assign a scaling coefficient to 

the residuals from the priors to ensure that they influence the analysis sufficiently. 

Normality of Data 

In all three types of parameter estimation (ordinary least-squares, weighted 

regression, and Bayesian regression), the errors on the data are assumed to come 

from a multivariate normal (Gaussian) distribution. If this assumption is not met, it 

decreases the efficiency of the estimation process and renders the parameter variance- 

covariance matrix estimators of Eqs. (3.3), (3.10), and (3.19) inaccurate. Rarely do 

we have any guarantees that the errors on raw time-series data meet this assumption. 

However, if a large amount of data is available (as is the case with structural 

dynamics testing results), the central limit theorem [77] indicates that statistical 

quantities based on linear combinations of the data will approach normality, even if 

errors on the data are not normally distributed. Typically, 30 or more data points 

must be used for this approximation to hold. 

As will be described in later chapters, the data used in the model update procedure 

described in this dissertation are not actually raw time-series data, but are rather the 

results of signal processing performed on the time-series data. In this signal process- 

ing, a large amount of time-series data is condensed into a few numbers that effective- 

ly describe the time-series data. For low noise levels, this data condensation process 

is effectively linear, meaning that the results of signal processing become normally 

distributed. This normality of the signal processing results indicates that a sum-of- 

squares error is the appropriate quantity to use for comparison purposes. 
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Other Measurable Quantities 

Typically, the data used for parameter estimation consists of processed dynamic 

response data. However, there may be other measurable quantities that can be 

included as well. For example, if the mass of the test structure is known to weigh 

15.05 + 0.05 kg, then the FE model should predict a weight within that range. Strain 

gauge measurements could be used as well. These additional quantities, z , can be 

included in the problem as shown in Eq. (3.23). The data weighting matrix is defined 

by W,= Var"'[y], the weighting matrix for prior information is defined by 

Wi Var"'[Po| , and the weighting matrix for the additional measurements is defined 

by W, = Var"[z]. 

ny 
  

    

_w\2 2” _w lt % _s \ 
SSE=¥° Yi~Y; +y Pom ~ Po ye 2-2 m 

izi| oy m=1\ 9%, k=1| (3.23) 

      

=(y -9)'W,(y - 9) + (Py -B)'W, (Po -P) + (z - 2) W, (2-2) 

Of course, measurements of quantities can be considered simply as additional 

data, as the y vector does not have to be restricted to signal processing results. 

Therefore, the z vector can be appended to the y vector, and the W, matrix can be 

appended to the W,, forming a generalized y vector and W, matrix pair as shown in 

Eq. (3.24). This means that Eq. (3.17) can be used in place of Eq. (3.23). 

y Varly] 0 
Veins “|"} Vat) penn" ; vate (3.24) 
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Comparing Different Models 

The Bayesian statistics formulation for solving regression problems is also well- 

suited for comparing how different models fit the same data. This can be accom- 

plished by simply determining which model provides the smallest SSE value, as 

defined in Eq. (3.17). The model with the smallest SSE value will be the model that 

best fits the data. 

3.5 THE CORE EQUATIONS 

To summarize this chapter, there are four equations that describe the Bayesian 

Statistics approach for updating parameters in a model. As mentioned in Section 3.1, 

the FEM-based 9 data prediction vector is computed using the parameter estimate 

vector f. A vector f of force amplitudes (to be described in Chapters 5 and 6) is also 

required. Equation (3.17) gives the objective function that is to be minimized. 

Equation (3.18) provides the basic iteration that is used to perform the function 

minimization/parameter estimation. Equation (3.19) gives the variance-covariance 

matrix that describes the quality of the resulting parameter estimates. 

At the beginning of each chapter in this section, these four equations will be listed 

again, along with a description of which vectors/matrices have already been derived, 

which ones are being derived in that particular chapter, and which ones remain to be 

derived in later chapter. 
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Chapter 4: Update Parameters 

THE CORE EQUATIONS 

  

data vector: 

I=IWDS) 

objective function: 

SSE = (y - §)" Wy -9) + (Po - DB)" W, (Po -P) 

iteration for parameter estimation: 

Ap =(XTW,X+W,)(X'W,(y -9) + W, (Po - B) 

variance-covariance matrix for parameters: 

_ {yt -1 Var[p] = (X'W,X+W,)   
  

To be derived here: Pp _updated parameters estimates 
P) _ Prior estimates of parameters 
W, weighting matrix for priors 

Remaining to be derived: = y data vector 
f excitation vector 
W, data weighting matrix 
y FE prediction of data vector 
X _ sensitivity matrix of FE prediction vector 

4.1 MODEL UPDATE PARAMETERS 

As discussed in the introduction of Chapter 1, the subject of this research is a 

parameter-based methodology for updating finite element (FE) models with frequency 

response data. The primary advantage of using a parametric approach is that the 
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updated parameters provide insight into the changes made to the model. Clearly, one 

of the main tasks the analyst initially has (in addition to building the initial FE model) 

is to pick the parameters that are to be updated. The parameter vector p contains one 

entry for each parameter to be updated. The updated parameter estimates that come 

from the regression analysis are designated pf, with the “hat” indicating that they are 

estimated quantities. 

Since finite element models can be used to model a wide range of systems, there 

are virtually no restrictions on what constitutes a valid parameter, aside from the fact 

that they must be independent. For example, if the analyst is modeling a beam with a 

solid rectangular cross-section, he cannot select width b, thickness h , and cross- 

section area A, since A = bh. Unfortunately, this lack of independence will not 

always be obvious to the analyst. 

Additionally, it is preferable that the parameters consist of values that are easily 

measured or interpreted. Parameters such as these include material parameters such as 

density and elastic modulus, global geometric properties such as length and thickness, 

and boundary condition values such as effective mass and effective stiffness. An 

example of parameters that are difficult to measure or interpret are individual entries 

in the finite element mass and stiffness matrices. 

Trade-offs can sometimes be made between parameter ease-of-use and intuitive- 

ness. For example, when working with a rectangular cross section of a beam (with a 

fixed width), it is easier to work with the area moment of inertia J , since the FE 

stiffness matrix is linear with respect to J]. However, it is more intuitive to work with 
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thickness ¢ and width w, since these are the parameters that the analyst can actually 

measure and are the quantities that would be modified in a design change. Parameters 

that required remeshing of the FE model should be avoided, since repeatedly remesh- 

ing the FE model greatly increases the expense of performing the model update. In 

the research of this dissertation, choices between intuitiveness and ease-of-use went 

both ways. 

Ideally, the set of parameters will be as small as possible, while being complete 

enough to include the dominant sources of uncertainty in the model. Thus, when the 

parameters are properly updated, the uncertainty in the model will have been signifi- 

cantly reduced and the predictive capability of the model will have been improved. 

4.2 BAYESIAN PRIORS 

An additional benefit of using design parameters is that the update problem can be 

formulated as a Bayesian statistics problem. In this statistical framework, any prior 

knowledge the analyst has concerning the values of the design parameters can be 

formally incorporated into the update process. This knowledge, usually consisting of 

independent measurements of the the parameters, is called prior information. 

In the Bayesian statistics approach, prior information is described by the a priori 

probability distribution function (PDF). This PDF is typically summarized with esti- 

mates of mean and variance for parameters coming from a normal distribution. The 

estimated mean and variance together are called a prior. 

If the update parameters are selected properly, priors can be easily obtained. For 

example, if one of the parameters is thickness, the analyst can measure the thickness 
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with a ruler, perhaps obtaining a prior of 0.25 + 0.03 in. (assuming that measure- 

ments are accurate to the nearest half increment on the measuring device). Alterna- 

tively, the analyst could measure the thickness with a micrometer, obtaining a much 

more accurate prior of 0.2605 + 0.0005 in.. Material property priors can sometimes 

be obtained from reference books. 

In cases involving estimation of joint stiffness or boundary condition parameters, 

the analyst may know little or nothing at all about the likely value of a parameter. In 

this case, prior information is not included in the analysis for the parameter. This can 

alternately be expressed as a non-informative prior, which is a prior having a variance 

estimate of infinity. 

The actual] quantities used in the Bayesian statistics analysis are the vector of 

initial parameter estimates p, and the weighting matrix W, that represents the quality 

of the initial parameter estimates. W,, is the inverse of the variance-covariance matrix 

Var [Po| that directly describes the distribution of potential parameter values. 

Table 4.1 below shows an example of prior information for three parameters: 

thickness ¢ , width w, and joint stiffness k. In this particular example, the first two 

parameters can be measured directly to obtain the priors, but no prior information is 

available on the third. It is thus expressed as a non-informative prior. 

Table 4.1: Example of Prior Information 

      
  

      

parameter mean confidence interval 

t 0.050 m +0.002 m 

w 1.200 m +0.020 m 

k ?? ?? 
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If the confidence intervals are interpreted as 95% confidence intervals on normally 

distributed variables, this implies that the standard deviation for parameter p, can be 

  computed as a, = —= [77]. This implies that o, = 0.001 m and a, =0.010 m. 

Since no prior value is available for k , a value should arbitrarily be assigned to it, 

such as k = 1.0 x 10° N/m. The standard deviation assigned to it should be much 

larger, representing the fact that the value assigned to the parameter is very uncertain. 

Perhaps o, = 1.0 x 10° N/m could be used. 

At this point, the vector p, and matrix Var|Po| should be assembled. Equations 

(4.1) and (4.2) provide these quantities for the sample data given in Table 4.1. The 

weighting matrix W, given in Eq. (4.3) is simply the inverse of Var|Do|- 

Ng 0.020 m 
Po= Ly |= 1.200 m (4.1) 

ky 1.0 x 10° N/m 

% 9 Of [19x%10% m2 0 0 
Var[p]=|0 o, 0|= 0 1.0x 10“ m? 0 (4.2) 

006 0 0 1.0 x 10'° N?/m? 

1.0 x 106 m 0 0 
W, = Var"'[py|= 0 1.0x 10* m * 0 (4.3) 

0 0 1.0x 10° m?/N? 
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Chapter 5: Sine-Dwell Statistics 

THE CORE EQUATIONS 

  

data vector: 

¥ =I.) 

objective function: 

SSE = (y -§)'W,(y -9) + (Py - B)' W,, (Po -P) 

iteration for parameter estimation: 

Ap =(X"W,X+W,)'(X"W,(y -9) + W, (Po - 8) 

variance-covariance matrix for parameters: 

- {yr -1 Var[p]=(X'W,X+W, ) 

  

Already derived: updated parameters estimates 
prior estimates of parameters 

weighting matrix for priors <
3
 

data vector for sine-dwell data 

excitation vector for sine-dwell data 

data weighting matrix for sine-dwell data 

To be derived here: 

y
o
 

FE prediction of data vector 

sensitivity matrix of FE prediction vector 
Remaining to be derived: 

be
 S
s 

5.1 SINE-DWELL TEST DATA 

This chapter discusses how linear regression techniques are used to compute 

elements of the data vector y and how the multivariate delta method is used to 

generate elements of the weighting matrix W,. The chapter concludes with a 
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discussion of when the multivariate delta method approximation breaks down, along 

with the acceptance criterion used to determine whether or not a data point should be 

incorporated into the model update analysis. 

Sine-dwell testing 

Sine-dwell testing is a technique often used in structural dynamics testing. In this 

technique, a sinusoidally applied excitation force is applied at a specific frequency to 

the structure, usually with an electromagnetic shaker. The resulting response (either a 

displacement, velocity, or acceleration) is then measured at one or more points on the 

structure. If the structure exhibits Jinear behavior, the response of the structure will 

also be sinusoidal. Sample time-series data from excitation signal e(t) and response 

signal r(t) are shown below in Figure 5.1. 
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Figure 5.1: Sample Time-Series Data 
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From Figure 5.1, it can be seen that the force signal has an amplitude of about 

2.1 units zero-to-peak, while the response signal has an amplitude of about 0.7 units 

zero-to-peak. Furthermore, the response signal lags the excitation signal by a 60° 

phase angle, or about 2.5 time units. 

Single Frequency Time-Series Modeling 

The statistics resulting from the signal processing of the time-series data is a key 

part of updating modeling parameters using a proper Bayesian statistics analysis, as 

they are the source of the data and weighting matrices used in the regression 

formulation. Equations (5.1), (5.2), and (5.3) show the equations used to model time- 

series data from single-frequency excitation signal e(t), response signal r(t), and 

relative response signal r,,(t). Allowances for DC offset are included. The real- 

valued scalars c, and c, are the real and imaginary components, respectively, of a 

complex-valued representation of the frequency response of the system. Measured 

time-series data blocks e, r, and r,,, are assumed to be equal to time samples of the 

true signals plus random errors coming from a Gaussian distribution of unknown 

variance. 

Cie (t) = Ag+ A COS(Wt- by) = ay+ a, COS(Wt) + a, sin (Wt) (5.1) 

Tmue(t) = Dy+ BCOs(w t~ y- ,,,) = by+ b, cos (wt) + b,sin (wt) (5.2) 

Tret mue(t) = p+ CC0S(wt-,) = cy+ c, cos (wt) +c,sin(w?) (5.3) 
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Multi-frequency Time-Series Modeling 

The formulation of Eqs. (5.1), (5.2), and (5.3) can be expanded to account for 

multiple frequency components in the time-series data. This allows the analyst to test 

for harmonic distortion in a single frequency experiment, or perhaps to acquire data 

more quickly by using several frequencies in the excitation signal simultaneously. 

Equations (5.4), (5.5), and (5.6) show how the time-series data (excitation and 

response) is modeled for a signal containing n, total harmonics. 

n, n, 

Cmue(t) =4y+ )A;COS(W;t- Yo ;) = Ag+) @p;_,COS(W,t) + a,,Sin(w,t) (5.4) 
i=] i=] 

nh n, 

Time (t) = Dy+ Y B;COS(W,t~ Op ;~ Dyes ;) = Dg + Y- by;-1C08(w;t) + b,,8in(w,t) (5-5) 
i=] i=l 

np ny 

ret mue(t) = €9+ ¥, C,COS(w,t- 1 ;) = Co+ ¥. Ca;-1CO8(W,t)+C,,Sin(w,t) (5.6) 
i=l i=l 

Of course, the “perfect” time signals, e,_(¢) and r,(t), are not available in an 

actual experiment, which means that the true coefficient values cannot be obtained. 

However, estimates of these parameters can be found using linear regression tech- 

niques. The estimated coefficient vector ¢ = {Cos C19 Cay oy Con,} (along with a variance- 

covariance matrix Var|¢| describing its quality) becomes the data for the Bayesian 

regression formulation used to perform the FE model update. 

To obtain the estimates of ¢ and Var|é] (one set for each combination of data 

acquisition location, fundamental excitation frequency, and excitation location), the 

excitation and response time-series data must first be analyzed separately using 
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ordinary linear regression. The results of each analysis are then combined together 

using the multivariate delta method, as described in Section 5.2. 

5.2 RELATIVE RESPONSE STATISTICS 

Individual Time Signal Analysis 

To obtain estimates of ¢ and Var[é], the time-series data blocks acquired from 

excitation and response signals (each of length n,) must first be analyzed individually. 

This is accomplished using ordinary least-squares, as described in Chapter 3. This 

provides the estimated vectors @ = {do, d,,4,, ~»o,,} and 5 = {bo by, Ba, «5 Bon} 

representing excitation and response, respectively, along with variance-covariance 

matrices describing the quality of the estimated vectors. 

To perform the regression for n, harmonics, the regressor matrix X is first 

defined as given in Eq. (5.7). Since the problem is linear, the iteration of Eq. (3.2) is 

not required. Vectors a and b can be directly computed using Eqs. (5.8) and (5.9) 

using excitation data vector e and response data vector r , respectively. 

1 cos(W,t,) sin(@,t,) .. COs(@,,, £1) sin(@, £,) 

y- 1 cos(@,t,) sin(@,t,) ... Cos (W,,, £5) sin(,,t2) (5.7) 

1 COS (1, ) sin(©,t,, ) -- COS(O,, f, | sin(©,, t,,) 

a, e(t,) 

i, me-ty| &(E2) 1 
G = = (X™X)'X a (X™X) 'Xe (5.8) 

Gon, e(, 
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B= 7" | =cxtxytx| 8?) = (xx) xr (5.9) 

Pan, r(Fn,)     
As described in Chapter 3, estimated variance-covariance matrices for @ and b 

can be computed using Eqs. (3.3) and (3.4). This provides the results of Eqs. (5.10) 

and (5.11). 

-6\"(p- 
e=xa 522-978) Varig) =5?(xTx)" (5.10) 

n,-2n,-1 

f=-X6 s°= (r-#)'(r-F) Var(b] =s,(X™x)" (5.11) 
n,-2n,-1 

Relative Response and Amplitude 

With the individual analyses of the excitation and response time-series data 

available, it becomes possible to compute amplitude vectors A and B, for excitation 

and response respectively, as given in Eqs. (5.12) and (5.13). The coefficient vector 

é that represents the frequency response of the system relative to excitation, is 

computed as given in Eq. (5.14). 

[4 | a A, 0 
A a+a 

A-| l- — (5.12) 

An, Gon,-1* Fn         
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r A rp 3 b 

B, 0 
- be + Be 

B _ | _ 7 2 
(5.13) 

a a2 2) 

B.. Don,-1 2n, | 

fé, | [DC offset’ 0 | a | | Re, 6,6, +4,6,)/A, 
Fae i ee GU ea (5.14) 

C; Re, (4, 5 +a, », LA, 

C. Im,, 7 ). I ) { | 2p | | , (4on,-1P2n, ~ 8, Pant) !Any,     
Multivariate Delta Method 

Obtaining the variance-covariance matrices for 4, B, and ¢ is accomplished with 

the multivariate delta method [85]. A summary of this method is given below in 

Table 5.1. 

Table 5.1: The Multivariate Delta Method 

  

If there is a vector quantity y that can be written as a function of another 
vector quantity x, then the multivariate delta method can be used to estimate 

the variance-covariance matrix of the new vector y in terms of the variance- 
covariance matrix of the original vector x. Specifically, if y = f(x), with 
= = Var[x], then Var[y]= A™ZA where the elements of A are 6, =(dy,/x)). 
Because of the linearization used in the formulation, the results are 
asymptotically correct. This means that they are perfect for data sets containing 
an infinite amount of low variance data. For finite data sets with higher 

variance levels, the results are approximate.     
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In this case, variance-covariance matrices of the excitation amplitude vector A, 

response amplitude vectors B, the relative response vector ¢ (all of which are 

functions of excitation and response estimate vectors @ and 6) can be estimated in 

terms of the variance-covariance matrices of @ and b. 

The amplitude estimate variances are easiest to compute since A is independent of 

5 and B is independent of @. The delta matrices for these two vectors are given 

below in Eqs. (5.15) and (5.16). Equation (5.17) shows how these delta matrices are 

used to compute estimates of Var|A| and Var|#] using the estimates of Var{d] and 

Var|6| from Eqs. (5.10) and (5.11), respectively. 

[4 

0 

SO 
oO
 

&
 

  
Var|A] = A} Var[4] 

0 

a,/A, 

a,/A, 

a a 

b/B, 
b,/B, 

A 

0... 

0... 

0 0 

0 0 

. 0 0 

0 d,, /A,, 

0 dy, |An 

0 0 

0 0 

. 0 0 

. 0B, 4/8, 

0 5, /B, 

Var|B] = A; Var|b] A, 
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(5.15) 

(5.16) 

(5.17) 
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A similar process is used to compute Var(¢|. The delta matrix for this vector is 

given in Eq. (5.18), and the resulting variance-covariance matrix computation is given 

    

in Eq. (5.19). 

OQ 0 0 0 0 : 

0 -(4,6,/A, (d,¢,/A? 0 ° 
0 (4,¢,)/A," -(4,6,)/A," ° ° 

a o ; 2 7 { * 0 0 0 ™ “(42n, (on, VA, (42n, Cony 1 "4, 

a 
2 ; * { ? 

A. 0 0 0 wee (42n,-1©2n,\/An, ~(42n,-1©2n,-1 An, (5.18) 

0 4,/A, -d,/A, 0 ° 
0 G,/A, a, /A, “ 0 ° 

0 0 0 . Gon, 1 IA, “Fan, An, 

0 0 0 . dy, A, bany-1!An, 

Var|@ 0 var(e]= a7 [a] A (5.19) 
0  Var|b] 

    

It is worth noting that the vector entries A,, B,, and ¢, pertain to zero-frequency 

(static) information in the preceding expressions. When the response data come in the 

form of velocity or acceleration measurements, B, and ¢, have no meaning and 

should not be included in the model update analysis. Additionally, not all load cells 

used in to measure force in structural dynamics tests can measure static loads, which 

means that A, may be meaningless as well. However, all of the zero-frequency 
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entries are included in the sine-dwell statistics analysis in case there is a DC offset 

introduced by the test equipment used to acquire the data. 

5.3 Is SINE-DWELL DATA NORMALLY DISTRIBUTED? 

Preliminary Discussion 

For the sum-of-squares error formulation presented in Chapter 3 to be valid, the 

errors on the data (composed of ¢ vectors) must come from a multivariate normal 

distribution. If the errors do not, the formulation becomes non-optimal and generates 

parameter estimates with higher variances. Additionally, the introduction of bias error 

becomes possible, and parameter variance estimators become inaccurate. 

The Central Limit Theorem 

To address this issue, the central limit theorem [77] is used. It states that a linear 

combination (usually a sum) of random variables of amy distribution will approach a 

normal distribution as the number of variables included in the combination increases. 

Normally, 30 or more random variables are required. This theorem can be used to 

demonstrate that the vectors ¢ and 6 have normally distributed errors. 

Since these two vectors are linear combinations of the excitation data vector e and 

the response data vector r , as shown in Eqs. (5.8) and (5.9), they can be treated as 

normally distributed data, even in cases where e and r contain errors that are not 

normally distributed. The vector €, on the other hand, is a non-linear combination of 

the data vectors e and r (via vectors @ and 6). For the vector ¢ to be normally 
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distributed, the linearizations used in Eq. (5.17) and (5.19) must be valid. To test the 

validity of the linearization, a Monte Carlo study was performed. 

The Monte Carlo Study 

The purpose of the Monte Carlo study implemented here is to compare estimates 

of Var/¢] obtained using the multivariate delta method to measurements of Var|¢| 

obtained from Monte Carlo trials in which ¢ vectors are generated. In each trial, 

Gaussian noise of a known amplitude is added to perfect data vectors e and r. The 

vectors @ and 6 are computed for each time-series data block using Egs. (5.8) and 

(5.9), and the vector ¢ is generated using (5.14). 

In the example given here, both excitation and response signals have only a single 

frequency component with amplitude 1.0 and relative phase angle of 60°. A total of 

64 time-series samples are taken at a rate of 16 samples per waveform. Figure 5.2 

below shows Monte Carlo results for o,=0.1 and o,=0.3. 
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Figure 5.2: Monte Carlo Simulations, Set #1 
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It can be seen from Figure 5.2 that the ellipse predicted from Eq. (5.19) matches 

the scatter points generated in the Monte Carlo simulation well. Indeed, if a variance- 

covariance matrix Var(¢] is computed from the Monte Carlo trials, it can be seen 

from Eqs. (5.20) and (5.21) that the results match the predictions of Eq. (5.19) to 

almost five decimal places. Because the matrix Var/¢] can be predicted accurately, 

the data here is suitable for use in the Bayesian regression formulation. 

  

y Cy +0.00306 “camer (5.20) 
ar = ° 

C5 -0.00013 +0.00287 
Monte Carlo 

y Cy +0.00305 eel 6.21) 
ar = . 

C, -0.00013 +0.00289 
Delta Method 

    

However, if the excitation signal is very noisy (0, = 0.6), while the response 

signal is much less noisy (0, = 0.01), then the multivariate delta method approxima- 

tion can be shown to break down. Figure 5.3 below shows that the predicted ellipse 

coming from Eq. (5.19) does not match the scatter points generated in the Monte 

Carlo simulations. There is some curvature present in the Monte Carlo results, which 

is a strong indication of non-normal errors in the estimates of ¢. 
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Figure 5.3: Monte Carlo Simulations, Set #2 

If a variance-covariance matrix Var[é] is computed from the Monte Carlo trials 

in this case [83], it can be seen from Eqs. (5.22) and (5.23) that the results match the 

predictions of Eq. (5.19) only to three decimal places. Because the matrix Var|¢] 

cannot be predicted accurately and because there is evidence of non-normality, the 

data here is not suitable for use in the Bayesian regression formulation of Chapter 3 

and must be dropped from the analysis. 

    

y Re=c, +0.00832 ee (6.22) 
ar = . 

Im =c, |, -0.00475 +0.00280 

y Re =c, +0,00844 ieee (6.28) 
ar = 2 

Im =c -0.00487 +0.00282 
2 | Delta Method 
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Data Acceptance Criteria 

From the discussion in the previous section, it is apparent that some test data and 

statistical weights (some of the vectors ¢ and corresponding matrices W = Var ![é]) 

may not be suitable for use in a least-squares type formulation. To determine whether 

or not data from a particular point (data acquisition location/excitation location/ 

frequency set combination) is valid, the criteria of Eqs. (5.24) and (5.25) must be 

met. In these equations, the quantities A, and B, are the elements of the A and B 

vectors of Eqs. (5.8) and (5.9) corresponding to the /“ harmonic. The corresponding 

variances are the /"" diagonal entries of the two variance-covariance matrices given in 

  

      

    

        
  

Eq. (5.17). 

vain 
/ a co. (5.24) 

A, 

- 2 [| 5] 5 VarlA, - /Var/B, (5.25) 

A, B, 

    

The first rule, Eq. (5.24), is a limit that ensures that phase angle errors are not 

too large and do not cause too much curvature. The second rule, Eq. (5.25), ensures 

that curvature effects caused by errors in the excitation signal are small enough to be 

masked by effects caused by errors in the response signal. These criteria came from 

observations of many Monte Carlo studies in which different noise levels were tested 

on both the excitation and response data. 
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In practice, the easiest way to eliminate a point from the statistical analysis is to 

assign it a weight of zero. This corresponds to a variance of infinity and effectively 

removes the point from the Bayesian regression analysis. 

5.4 ASSEMBLING SINE-DWELL DATA 

Assembling the Data Vector and Weighting Matrix 

The preceding analysis describes how to analyze a block of time-series data 

representing excitation and response signals. This data would come from a single 

spatial location on the structure, using a single set of excitation frequencies at a single 

excitation location, and the analysis of the data will yield a single € vector and 

Var[é] matrix. A full structural dynamics test, however, will often feature multiple 

data acquisition locations, multiple excitation locations, and multiple excitation 

frequency sets. The signal processing described in the previous section must be 

performed on each set of data coming from all combinations of data acquisition 

location, excitation location, and excitation frequency. 

To gather all of the response data into a single place, it is necessary to concatenate 

all of the € vectors into a single y vector. It is important to note that these sine-dwell 

response coefficient estimates are treated as data in the larger-scale Bayesian regres- 

sion formulation for updating models. Thus, the notation y is used instead of ¥. 

Figure 5.4 below shows how the y vector is assembled. This vector will have a total 

number of elements n, = n,n,n,,n, . ef" m 
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rc i= Re, ] 
excit. loc #1 base freq #1 meas. loc #1 cy =Im 

1 
excit. loc #2 base freq #2 meas. loc #2 Ca = Re, 

Y = | excit. loc #3 base freq #3 meas. loc #3 C4 = Im, 

excit. loc #n, base freq #n¢ meas. loc #n_, C2n, = Ren 

“2n, = Nh     
Figure 5.4: Sample y Vector from Sine-Dwell Data 

Assembling the global weighting matrix W, is accomplished in a similar fashion. 

The process is too large to show in a figure such as Figure 5.4, but sets of Var™'(é] 

are placed on the diagonal of the main matrix, forming a very large block diagonal 

matrix, with each block having dimensions (2n,)x(2n,\. It is almost essential that 

some form of sparse or banded matrix storage scheme be used here, as W,, has 

dimensions n,n, and can be very large. 

Assembling the Excitation Vector 

Assembling the global excitation amplitude vector f is done differently than 

assembling the global response vector y . The reason this is done is that excitation 

amplitude should remain constant for a given excitation location/excitation frequency 

set combination. Response data can be acquired from a number of different measure- 

ment locations, but as long as the excitation location and excitation frequencies do not 

change, there is no reason to expect the excitation amplitudes to change during that 

portion of the test. 
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Therefore, instead of using an A vector from each excitation location/frequency 

set/data acquisition location combination, it is best to take an average of the 4 

vectors corresponding to ali data measurement locations for each excitation location/ 

frequency set combination. 

A simple arithmetic average can be used here, but it is somewhat more robust to 

take a weighted average of the excitation amplitudes, particularly in resonance 

situations were force amplitudes are very low. The formulation for finding this 

weighted average is presented in Eqs. (5.26) and (5.27). 

W,= Var"! (A, | (5.26) 

(5.27) A a= 

  

Nn “1 Ain 

Sw] [$04 
j=l j=l 

  

As with the multiple ¢ vectors that must be concatenated into a global y vector, 

the multiple 4 ag Vectors must be concatenated into a global f vector. This can be 

accomplished according to Figure 5.5. This vector will have a total number of 

elements n.n,N,. 

            

| excit. loc #1 | | base freq #1 ] TA, = avg. excit. amp #1 | 

f= excit. loc #2 base freq #2 A, = avg. excit. amp #2 

excit. loc #3 base freq #3 A, = avg. excit. amp #3 

excit. loc #n, base freq #n, A, = avg. excit. amp #n, 
L - L - L - 

Figure 5.5: Sample f Vector from Sine-Dwell Data 
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Chapter 6: Frequency Response Function 
Statistics 

THE CORE EQUATIONS 

  

data vector: 

¥=IOS) 

objective function: 

SSE = (y -§)"W,(y -9) + (Py - B)' (Po -P) 

iteration for parameter estimation: 

Ap =(X"W,X+W,) (XW, -9)+ W, (Po -B)) 

variance-covariance matrix for parameters: 

— {yt -1 Var|p|= (X WX + W,)   
  

Already derived: Pf _updated parameters estimates 
Py) Prior estimates of parameters 

W, weighting matrix for priors 

To be derived here: y data vector for FRF data 
f excitation vector for FRF data 
W, data weighting matrix for FRF data 

Remaining to be derived: ff FE prediction of data vector 
X _ sensitivity matrix of FE prediction vector 

6.1 FRF Test DATA 

An alternative to discrete frequency sine-dwell testing is broad-band frequency 

response function (FRF) testing. This chapter discusses how signal processing 
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techniques and standard FRF estimators are used to compute elements of the FRF data 

vector § and how a statistical analysis of the FRF estimate is used to generate the 

associated weighting matrix W,. The chapter concludes with a discussion of when the 

variance estimators for the FRF break down, along with the acceptance criterion used 

to determine whether or not a data point should be included in the Bayesian regression 

formulation for updating models. 

Frequency Response Function Testing 

The excitation used for broad-band FRF testing typically comes from a modal test 

hammer impact or burst-random excitation coming from an electromagnetic shaker. 

Standard FFT-based signal processing routines are used to generate a complex-valued 

FRF along with a coherence function that describes the quality of the FRF (81, 82]. 

As with the sine-dwell results, the FRF and measures of its quality become the data 

for the Bayesian regression formulation for updating models. 

Basic FRF Signal Processing 

When acquiring data for FFT-based signal processing, a number of blocks of 

time-series data (n, = 30+) are normally taken such that averages can be computed. 

Equations (6.1), (6.2), (6.3), and (6.4) show the relationships used to compute auto- 

and cross-spectra estimates, FRF estimates, and coherence estimates at frequency 

f =(j-1)At/n, (At = time sample interval, n, = block size of FFT) [81]. 

X, and F, are results from the k™ spectral line of FFT results obtained from the 

response data vector r and the excitation data vector e , respectively. Gy ke Gy ke 
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Geek 9 

The H, FRF estimator is intended for use with test data in which uncorrelated content 

and G,, , are auto- and cross-spectra estimates computed using the FFT results. 

is present only on the response signal, while the H, FRF estimator is intended for use 

with data in which uncorrelated content is present only on the force signal. The term 

y* represents coherence, a correlation-based measure of quality of the FRF estimate 

that can have values between zero and one. Other FRF estimators include the H, 

estimator [86], which is a weighted average of the H, and H, estimators, and the H. 

estimator [87], which uses a third correlated signal to eliminate the need for comput- 

ing potentially biased autospectra estimates. 

F,,=k™ spectral line of FFT(e) of m™ time series block 

    

th . th a: . (6.1) 
X,=k"™ spectral line of FFT(r) of m"™ time series block 

Cpa do Fn Fi Ci = mx 

(6.2) 

Gay FX Go = mk 

G G 
H,,=—2* = H,,=—z# (6.3) 

1,k Gey 2,k Gry 

yp= esSae - Ai (6.4) 
Ge Gur Ah, 

6.2 FRF STATISTICS 

Magnitudes and Phase Angles 

Of course, to use the Bayesian regression formulation, variances of the FRF 

estimates must be available as well. Bendat [72] and Yoshimura and Nagamatsu [67] 
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each discussed this problem in detail, but the answers they provide are different. 

Bendat obtained expressions based on a derivation that yielded the variance of the H, 

magnitude estimate squared as an intermediate result, i.e., Var{|H, if]. Equation 

(6.5) presents the final results of the derivation. 

  

1- ¥ i- v 

Vary, j= & eal a Var[,]= NE e°) 

Yoshimura and Nagamatsu derived a different formulation based on the eigenvalue 

analysis used to compute the H,, which yields the results presented in Eq. (6.6). 

These results were stated to be valid for the H, estimator also. The formulas differ 

from Bendat’s by a factor of two in the denominator and the use of (n, - 1) instead of 

(n,). The issue of phase angle variance estimates was not discussed. 

VarjH,,j= ONE vary j= OH (6.6) 
¥;,(",~ 1) ¥;,(",-1) 

To determine which formula was correct, Monte Carlo simulations were 

performed. In these simulations, synthetic data was generated for a 512-frequency 

FRF on a two-mode system using H,,, , given in Eq. (6.7). The force input into the 

system was assumed to be pseudo-random white noise. 

1 -1 
nt a 7 IT 2 (6.7) 

-@,+ 1(0.15-170.7) 0, + (170.7) = -w,+1(0.05-341.3) w, + (341.3) 
  

Gaussian noise was added to the excitation signal and/or the response signal. The 

FRF estimation formulas given in Section 6.1 were used to compute FRF estimates. 

Chapter 6: Frequency Response Function Statistics 76



This was performed for 2000 trials, from which variance estimates of the FRF were 

determined [83]. 

The formula given by Yoshimura and Nagamatsu overestimated variances by a 

factor of 2, while the formulas given by Bendat slightly underestimated variances 

when fewer than 30 blocks of time-series data were used for averaging. Correct 

formulas for estimating FRF variances are given in Eq. (6.8). In these expressions, 

the denominator contains 2(n,-1) instead of just 2 or (n,-1\. They should be valid 

for both the H, and H, FRF estimators. 

Var[|H,||- (i-wa)Faf Var[,]= _[tn) (6.8) 
24 (",-1) 24 (7, ~1) 

Figure 6.1 below shows sample results from one of the Monte Carlo simulations. 

In this particular example, 30 time-series data blocks were used to generate each of 

the 2000 FFT averages computed, and Gaussian noise was only added to the response 

signal (in keeping with the H, assumption used by Bendat). The FRF plotted in 

Figure 6.1 contains an average of the 2000 averages, which makes it equivalent to an 

FFT generated using 60000 averages, which explains why the plot is so smooth. 

(Note: The small amount of bias error present in the lower right-hand portion of the 

magnitude plot is due to numerical discretization error, which effectively add noise to 

the excitation signal as well as the response signal, thus causing a minor violation of 

the H, assumption.) 

Chapter 6: Frequency Response Function Statistics 77



  

   

     

  

  

  

    

  

  

  
  

    

® 401 slight bias error due 
3 to discretization | 
= 
& 10° 
E 

GS 1071 __ _ __ 2 __ 8 af 4 it ts _| —_ 

0 50 100 150 200 250 300 350 400 450 500 

¥ 4 v Te qv a ' oF ¥ r ¥ 

=< ‘ 

2 r \ ; 

oO) 
c oO c PN 

g -2 bh a 

2 4 ll 2 a | ll a nil ll a | ell 2S 

QO. 0 50 100 150 200 250 300 350 400 450 500 

—10 oO a T T 

® 
Oo 

5 0s - : 
he 
® 

6 
Oo 0.0 oval 4 1 mull. 4 anal ft ail | | 

Oo 50 100 150 200 250 300 350 400 450 500 

freq [rad/s] 

Figure 6.1: FRF Monte Carlo Results 

The 2000 FFT averages were also used to determine “measured” variance 

estimates, which were compared to estimates computed using Eq. (6.8). As can be 

seen from Figure 6.2, the analytical estimates matches those generated from the 

Monte Carlo simulations quite closely. 
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Figure 6.2: FRF Variance Comparison 
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The variance estimation formulas of Eq. (6.8) also worked well when synthetic 

data was generated with noise on excitation signal only (the H, assumption) or when 

noise was added to both signals. Even when an inappropriate FRF estimator was used 

and bias errors were present, variances were accurately estimated. Strictly speaking, 

however, the results of Bendat [72] and Yoshimura and Nagamatsu [67] were derived 

for only the H, and H, estimators. There may be difficulties in using the variance 

estimator of Eq. (6.8) in Hf, estimator situations that were not revealed by this Monte 

Carlo study. 

Real and Imaginary Components 

If errors in the magnitude and phase angle estimates from Eq. (6.8) are assumed 

to be uncorrelated, it can be shown with an application of the multivariate delta 

method that these results imply the relationships of Eq. (6.11). 

Fal |F 

            

Re, Im, 6.9 

A Re,Im,k = H (6.9) 
et Pal 

Im, Re, 

Re, Var(|H,|| 0 
V = 6.10 ar Im, A Re,im,k 0 Var|,] Are. im,k (6.10) 

| (1 ~ Ye) AP 0 

Re 2yu(n -1 
Var| | =| 7k (6.11) 

m 0 (1 Yi)}ef 
2y;(n,-1) |     
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Bendat [81] shows that Cov/|G,.,4> o, |; Cov]|G¢, «|» o; |; Cov||G,,,> ar 

Cov||G,,|, ,] are all zero for H, ,, with , being the phase angle of #, . Since 

H, , is simply the cross-spectrum estimate G, , rescaled by the real-valued 

autospectrum estimate Gy , the off-diagonal terms of the Var||FT, ,|, o,,| matrix are 

zero. This happens because rescalings of uncorrelated random variables do not cause 

correlation between the variables. Thus, for the H, FRF estimator (and perhaps the 

H,, estimator), the Cov |i, kl? o, | =( assumption that went into the multivariate delta 

analysis has been verified. However, the estimator H, , is the autospectrum estimate 

G,,,, divided by the complex-valued cross-spectrum estimate G,,,. This is not a 

simple rescaling, and thus, the assumption of Cov/|H,|, $,|=0 is probably not true 

for the H, estimator. 

These results are valid for information coming from a single spectral line of the 

FRF. It is also desirable to show that there are no correlations between results coming 

from different spectral lines. This is done by showing that the basic FFT algorithm is 

equivalent to a orthogonal least-squares fit of sine and cosine terms (see Appendix B), 

which in turn implies that errors in the FFT results are uncorrelated from one spectral 

line to the next. 

It is important to note here that these FRF statistics are valid only for signal 

processing performed with a rectangular window. If other data windows (such as the 

Hanning) are used, it is likely that the statistics of the problem will be altered. Using 

pseudo-random or periodic chirp excitation would eliminate the need for windowing. 

The effects of leakage on FRF statistics are also unknown. 
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6.3 Is FRF DATA NORMALLY DISTRIBUTED? 

Preliminary Discussion 

As with the sine-dwell data of Chapter 5, it is necessary to establish that errors in 

the elements of the data vector y come from a normal distribution. This is 

accomplished by examining Eqs. (6.1) through (6.3). If errors on the time-series data 

themselves are normally distributed, then X, and F, of Eq. (6.1) will have normally 

distributed errors, since the FFT operation is a linear operation. Linear operations 

performed on normal data preserve the normality. 

Even if the errors on the time-series data are not normally distributed, the 

summation of Eq. (6.2) will cause errors on the auto- and cross-spectra estimates 

G 
G fe,k? xx,k? 

G fk? and Gy , tO approach normality for 30 averages or more as 

predicted by the central limit theorem [77]. If errors on these auto- and cross-spectra 

terms are small enough, the non-linear division operation used to generate H,, of 

Eq. (6.3) can effectively be linearized (via a Taylor series expansion). This means 

that errors on the FRF estimate will be normally distributed, as they are effectively 

linear combinations of the errors on the auto- and cross-spectra estimates. 

Data Acceptance Criteria 

Cobb [73] performed an extensive study of the statistics of FRF estimators, noting 

that the distribution of [FY «| approaches the Rayleigh distribution (the distribution of 

z= \xr +x? , where x, and x, are Gaussian random variables with mean zero and 

variance One) as variance levels increase on the real and imaginary parts of the FRF 

estimate. In high noise cases, this causes the FRF estimates to exhibit non-nommality 
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and causes the approximations used in computing Eq. (6.5) to break down. The FRF 

data will not be properly suited for the Bayesian regression formulation of Chapter 3 

and should not be included in the analysis. 

To determine whether or not data from a particular data acquisition location/ 

excitation location/spectral line combination is valid, the criterion of Eq. (6.12) must 

be met. Var||H «| should be estimated using Eq. (6.8). The acceptance criterion alter- 

natively can be written as shown in Eq. (6.13), which can be derived by plugging 

Eq. (6.8) into Eq. (6.12). Thus, for n, = 30, ve would have to have a value of at 

least 0.63 for the results from the k‘ frequency bin to be included in the Bayesian 

regression formulation for updating FE models. 

  

    yVar LE <0.1 (6.12) 

FA, | 

y > ——! 
*" (1 +0.02(n, - 1)) 

  

(6.13) 

6.4 ASSEMBLING FRF DATA 

Assembling the Data Vector and Weighting Matrix 

As with the sine-dwell data, the FRF results obtained at different data acquisition 

locations using different excitation locations must be assembled into a single data 

vector y. Here, however, the basic unit of data comes in much larger pieces, as the 

FRF contains a real and imaginary part for each of n, spectral lines. These subsets of 

data are assembled into a global y vector as shown in Figure 6.3. 
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excit. loc #1 meas. loc #1 spectral line #1 real response 

excit. loc #2 meas. loc #2 spectral line #2 imag response 

excit. loc #3 meas. loc #3 spectral line #3 

excit. loc #n, meas. loc #n,, spectral line #n, 

Figure 6.3: Sample y Vector from FRF data 

With FRF estimates, assembling the data weighting matrix W, is very straight- 

forward. Since results in different frequencies bins have uncorrelated errors and since 

errors in the real and imaginary parts are also uncorrelated (at least for H,), the 

matrix Var/y| becomes diagonal when the H, estimator is used. This in turn implies 

that W, = Var"'|y] is diagonal. The weights located on the diagonal come from the 

reciprocals of the variance estimates given in Eq. (6.11). The structure of this matrix 

makes it easy to use in a computer-based implementation of the Bayesian regression 

formulation. 

Assembling the Excitation Vector 

The excitation vector f that is assembled for FRF testing looks the same as it 

does for sine-dwell testing, with there being a single force amplitude for each excita- 

tion location/data acquisition location combination. However, since FRFs are by 

definition normalized, amplitudes are always one. Figure 6.4 shows how f is 

assembled for FRF data. 
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excit. loc #2 

excit. loc #3 

excit. loc #n,   

Texcit. loc #1 | 

  

meas. loc #2 

meas. loc #3 

meas. loc #n,,   

Tmeas. loc #1 

  

spectral line #1 | 

spectral line #2 

spectral line #3 

spectral line #n,     
Figure 6.4: Sample f Vector from FRF data 
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Chapter 7: Finite Element Predictions 

THE CORE EQUATIONS 

  

data vector: 

¥ =F) 

objective function: 

SSE = (y -§)"W,(y - 9) + (Py) -B)'W,, (Pp -B) 

iteration for parameter estimation: 

Ap = (X"W,X+ W,) (XW, -J)* W,(Po -P)) 

variance-covariance matrix for parameters: 

_/{yT -1 Var |p} = (X W X+ W,,) 

  

Already derived: updated parameters estimates 
prior estimates of parameters 

weighting matrix for priors 
data vector 

excitation vector 
data weighting matrix SO

s 
SE
 

To be derived here: FE prediction of data vector 
sensitivity matrix of FE prediction vector be

 S
S 

Remaining to be derived: <none> 

7.1 FINITE ELEMENT MODELING 

As stated in Chapter 1, the main purpose of the work presented in this dissertation 

is to update finite element (FE) models using frequency response data such that the 
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predictive capability of the model is improved. To this end, it is necessary to be able 

to compute a response prediction vector § (which is of the same form as the y 

vectors of Chapters 5 and 6) along with a response sensitivity matrix X . With linear 

FE models (composed of the mass, damping, and stiffness matrices M, C, and K), a 

direct dynamic stiffness approach can be used for this task. 

Equations (7.1) below gives the fundamental equation of motion coming from a 

linear finite element model. If the system is excited harmonically at a single excitation 

frequency w, the steady-state response of the system can be described in the frequen- 

cy domain by modeling the FE force vector F,(t) as Fe'®‘ and the FE response 

vector U,(t) as ue'®’. This results in the complex-valued frequency-domain formula- 

tion of Eq. (7.2). Many analysts include a structural damping coefficient y in the 

frequency-domain formulation as well, as shown in Eq. (7.3). Structural damping is 

used to model energy losses that are proportional to displacement rather than velocity. 

The viscous damping matrix C alone cannot model these types of energy losses. 

Mii, (t) + Cu,(t) + Ku,(t) = F(t) (7.1) 

(-w?M+iwC+K)u=F (7.2) 

(-w?*M +iwC +(1+iy)K)u=F (7.3) 

To solve for wu, a dynamic stiffness formulation is used. The dynamic stiffness 

matrix K,, is defined below in Eq. (7.4), which is then used to solve for u (assuming 

that F is given) as shown in Eq. (7.5). 

K y= (-w?M + iwC + (1+ iy)K) (7.4) 
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K,u=F wu=K)F | (7.5) 

The dynamic response vector uw is complex-valued, with the real part representing 

the portion of the response that is in phase with the excitation force and the imaginary 

part representing the portion that is out of phase with the force. Note that the vector 

u may provide several displacements (both translational and rotational) at a single 

nodal DOF. If velocity or acceleration predictions are required, u must be multiplied 

by iw or -w’, respectively. 

7.2 GENERATING THE PREDICTION VECTOR 

In order to compare the predictions of the finite element model to the data 

collected in a structural dynamics test, a data prediction vector ~ must be computed 

from the model that corresponds exactly to the y vector that comes from the signal 

processing results described in Chapters 5 and 6 (see Figure 5.4 and Figure 6.3). 

Additionally, the model must be built according to the current values of the estimated 

modeling parameters p. 

If data was acquired from the structure at spatial locations corresponding to finite 

element nodal points, then construction of the prediction vector ¥ is straightforward. 

First, a force amplitude A ,, (corresponding to the j™ excitation location and the 7" 

harmonic of the k“ excitation frequency set) must be extracted from the force vector 

f of Figure 5.5 or Figure 6.4. This amplitude must then be placed in the entry of the 

F vector of the FE model that corresponds to the excitation location. 
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For the given excitation frequency ,, a response vector u is computed using 

Eg. (7.5). The real and imaginary parts of this vector are then placed in the y vector 

according to Figure 5.4 or Figure 6.3 with corrections being made for sensor orienta- 

tion. For example, the beam system shown below in Figure 7.1 has measurements 

taken with three transducers and is modeled using two finite elements. Degrees-of- 

freedom (DOF) 1, 3, and 5 are translational DOF, while DOF 2, 4, and 6 are 

rotational DOF. 

t 

——_—> qa Accel #1 Node #3 ® DOF 5, 6 
excitation 

location and 
direction 

Element #2 

Laser Beam #3 

a oe 

Accel #2 aii pee ones @ DOF 4 

Element #1 
Beam       
  WITT —> * Node #1 @ DOF 1,2 

Figure 7.1: Sensor Orientation Example 

Suppose that the beam has been excited at the top at a frequency of 10 rad/s with 

amplitude A,. Accel #1 measures translational acceleration at node #3 while Accel #2 

and Laser Beam #3 (coming from a laser Doppler vibrometer) measure a component 

of the translational acceleration and velocity, respectively, at node #2. After 

frequency response data is computed using the sine-dwell statistics of Chapter 5, the 

data vector y might appear as given in Eq. (7.6). 
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[Re from accel #1 | | -98 m/s? 

Im from accel #1 -9.7 m/s” 

Re from accel #2 24 2 
subset{y}=| pl" m/s (7.6) 

om acce 2.3 m/s? 
Re from laser #3 0.22 m/s 

| Im from laser #3 | -2.2 m/s |         
Accel #2 is mounted in the negative x direction and that the laser beam comes in 

at a direction of {n,, n,,N1,} = {-0.866, - 0.500, 0.000}. This directional information 

must be taken into account when computing elements of the ¥ vector. For example, 

suppose that for w, = 10 rad/s (with excitation force applied at DOF #5) the response 

vector u, given below in Eq. (7.7) is obtained. 

. 0.000 + 0.000: | 

0.000 + 0.0001 

0.250 + 0.0251 
u = come (7.7) 

0.050 + 0.0051 

1.000 + 0.1001 

| 0.100 + 0.0103 |     
The FE displacement vector uw has a different form than the data vector y. 

Therefore, u must be rearranged to match it. The resulting prediction vector ¥ is 

formulated using directional displacement information from the FE model as shown in 

Eq. (7.8), with terms such as @, ,, referring to a prediction of the x-direction 

acceleration at measurement location #1 (which happens to come from u,, which is 

located at FE node #3). All of this information is compiled directly from the nodal 

displacements, as shown in Eq. (7.9), yielding a final estimate of the subset of y. 
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(4, #1) pe 

(4, 91 ) ion 

(-4,, #2) 
subset { ¥} = / Re (7.8) 

(4, #2) 5 

(-0.866¥,, 4, - 0.5009, #3) pe 

(-0.866¥, 4, - 0.5000, #3) in 

Re ((-w7u (-o?4) a 
Im (-w7u, )) -10 

| Re(-(-w*u 25 
subset { 9} = ( ( 3)) _ (7.9) 

Re(-(-w7u,)) 2.5 

Re (- 0.866 (iw u, ) - 0.500(0) + 0) 0.2165 
~2.165 

Im (- 0.866 (iw x, ) - 0.500(0) +0), . ,     
If data were acquired at non-nodal points on the structure, the finite element 

interpolation functions would have to be used to find {u,; uy, u,} at each measurement 

location. This would moderately increase the complexity of the problem, but it was 

not necessary in this work since all data was acquired at the locations of the finite 

element nodes. 

This ¥-subset assembly procedure would have to be repeated for each frequency 

(or harmonic) in the frequency set, yielding a larger subset of the y matrix. The 

larger ¥-subset assembly procedure would then be repeated for all excitation 

location/frequency set combinations, yielding a global prediction vector y. 
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7.3 GENERATING THE SENSITIVITY MATRIX 

In addition to the ¥ matrix, it is necessary to compute a sensitivity matrix X, 

which has entries x,, = (dy;/dp ,). One method of computing this matrix is to use the 

finite difference method. Equation (7.10) below shows how this matrix would be 

assembled. The term ¥,,,, , refers to a ¥ vector computed for a p,,,, ; parameter 

vector, where p, is replaced with (p,- Ap,). The term ¥,,,, ; would be computed 

similarly, except with (p ;+ Ap) in place of p;. 

Snigh,1 Siow, 

ZAP, 
X= 
  

___ [Sait ~Ftowsny (7.10) 
2 Ap, 26, 

        

[a ~Siow,2 

The finite difference method is simple and robust. The only input required by the 

analyst is the selection of the finite difference steps Ap,. Unfortunately, the finite | 

difference method is also expensive computationally, making it worthwhile to seek an 

alternative for computing X. 

This other alternative is to compute analytical derivatives. The basic theory for 

this analysis comes directly from Eq. (7.3). If this equation is differentiated with 

respect to p,, the expression of Eq. (7.11), or alternatively, Eq. (7.12), results. 

Simply premultiplying Eq. (7.12) by K, yields the desired expression of (ou/op i) 

found in Eq. (7.13). Note: (@F/dp;) is usually zero. 

0? OM gg 2E 4 (1+ iy) SK u + (-w?M +iwC + (1+ iy)K) 2H = OF (7.11) 
Op; = OP; Op; Op, Op, 

OK 
—?u+K Ou _ OF (7.12) 
8, OP, OP, 

Chapter 7: Finite Element Predictions 91



OKy aF 
u+— 

Ou -1 
K _ 

| Op, Op, a 

Op; 

(7.13) 
  

    

Of course, the expression (ou /op;) is not precisely what is needed to generate the 

X matrix; rather, (dy /ap i) is required. Therefore, it is necessary to use the entries of 

each (du/dp;) vector to compose (o¥/op;), just as the entries of u were used to 

compose y. This includes selecting the appropriate DOF and making corrections for 

sensor orientation, just as was shown in Egs. (7.7), (7.8), and (7.9). 

Finding expressions such as (0K/dp;,) is highly dependent on how the problem is 

formulated. For certain systems, the FE system matrices can be factored into “ele- 

mentary” matrices. For example, if K can be expressed as a sum of the matrices K), 

K,, and K,,, as shown in Eq. (7.14), then matrix partial derivatives can be found 

quite easily as demonstrated in Eq. (7.15). 

3 

K= 27K, +k, K, +K, (7.14) 

    

OK Eh? OK Ebh? OK OK 
— = —=K 

Ky K, Ok, 1 Ok, K, a 12° oh 4 - (7.15) 

This type of FE matrix formulation allows the FE matrices K and M (and deriva- 

tives of these matrices) to be calculated easily and quickly. However, if the formula- 

tion of the FE system matrices is more complex, it may be necessary to perform the 

differentiation at the matrix entry level. This can be substantially more expensive 

computationally, at which point the finite difference method may become the more 

attractive alternative. 
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7.4 CONCLUDING REMARKS 

With the completion of this discussion on ¥ and X, all parts of the Bayesian 

regression formulation have been defined, and the basic theory of the model update is 

complete. This work included the Bayesian statistical theory used to formulate the 

regression problem, the sources of prior information used in the analysis, the signal 

processing necessary to generate statistically qualified frequency response data, and 

the use of a dynamic stiffness formulation to quickly and effectively generate finite 

element predictions of the data. 

In the next part of the dissertation, Part III, a number of “quality control” issues 

are discussed, including computational issues, update verification statistics, and visual- 

ization Statistics. 
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Chapter 8: Computational Issues 

THE CORE EQUATIONS 

  

data vector: 

I=ID.f) 

objective function: 

SSE = (y -§)"W,(y ~9) + (Py) -B)' W, (Po -B) 

iteration for parameter estimation: 

Ap = (XTW,X+W,)'(X"W,(y -9) + W, (PB) 

variance-covariance matrix for parameters: 

_~ {yt -1 Var|p] = (x Wx + W,)   
  

Already derived: p updated parameters estimates 
Py) _ Prior estimates of parameters 
W, weighting matrix for priors 
y data vector 
f excitation vector 
W, data weighting matrix 
y FE prediction of data vector 
X _ sensitivity matrix of FE prediction vector 

INTRODUCTION 

In Part I of this dissertation, a complete Bayesian regression formulation for 

updating finite element models was presented. If infinite precision arithmetic were 

available on the computer used to implement the formulation, the formulation would 
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be complete. However, with only finite precision arithmetic available, several 

computational issues must be addressed. These issues include proper use of modern 

matrix decompositions, parameter rescaling, reformulation of the problem to use 

matrix decompositions, step size determination, and convergence testing. The chapter 

concludes with a discussion of computation times. 

8.1 MATRIX DECOMPOSITIONS 

There are two modern matrix decompositions that are used in implementing the 

Bayesian regression formulation of Chapter 3. The first is the Cholesky decomposi- 

tion. With this decomposition, a symmetric positive-definite matrix W,,,, is repre- 

sented with an upper triangular matrix C where W=C'C. This decomposition is 
nxn? 

often used in solving certain systems of simultaneous linear equations (such as linear 

FE statics problems) and has applications in statistics as well. This will be discussed 

in more detail in Section 8.3. 

The second decomposition is the QR decomposition. Here, the rectangular matrix 

X xn (with n <m) is represented by the orthogonal matrix Q and the upper 
men 

triangular matrix R where X= QR . Since Q is orthogonal, Q'Q=T,,.,. 
nxn? 

Equations (8.1), (8.2), and (8.3) show how QR decomposition is used to solve an 

ordinary least-squares regression problem. 

Ap = (X'X)'X"(y -¥) = (R'OTOR) RQ" ly -¥) (8.1) 

Ap = (RTR)'R'Q"(y -§) = R'R™R'Q'(y -J) (8.2) 

Ap = R'Q"\y -9) (8.3) 
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Performing the regression using the QR decomposition provides several numerical 

benefits. First and foremost is the fact that R can be inverted instead of (X'X). R is 

considerably better conditioned than (X'X). Indeed, it can be shown that the condition 

numbers of R and (X'X) are related by the expression Cond (R) = ¥Cond(X'X). This 

reduces the number of significant digits required for matrix computations by half. 

Additionally, R is an upper triangular matrix, which means that a simple back- 

substitution algorithm can be used to solve for Ap instead of using a more complex 

algorithm for solving linear systems. 

An added benefit of using QR decomposition is reduced computation time in cases 

where multiple regression problems are to be solved using the same X matrix. In this 

Situation, the QR decomposition can be computed and stored ahead of time, to be 

used with all regression problems having the same X matrix. The sine-dwell statistics 

of Chapter 5 were implemented with LAPACK [88] using this strategy. The QR 

decomposition is also used in the reformulation of the Bayesian regression procedure 

discussed in Section 8.3. 

8.2 PARAMETER RESCALING 

A second computational issue which must be addressed is parameter rescaling. 

When working with parameters that represent engineering quantities, large variations 

in scale sometimes result. For example, in Chapter 12, the density parameter p has a 

value of 7.85 x 10° Mg/mm?° while the rotational joint stiffness parameter k, , has a 

value of 2.53 x 10° N-mm. These values differ in scale by more than 16 orders of 

magnitude. Variations such as this cause extreme ill-conditioning in the X matrix. 
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Even a QR decomposition-based regression algorithm may fail due to numerical 

difficulties in this case. An algorithm based on the inversion of (X'X) will almost 

certainly fail. 

To deal with this problem, the parameters must be rescaled. One possible 

rescaling would consist of dividing all of the parameters by their nominal values (the 

prior values of Chapter 4), which would be p; = o The scaled parameters fp” would 

then represent the fraction change in the parameters p. 

An alternative rescaling is to use parameters p’ that represent the number of 

standard deviations the parameters is away from its nominal value. This rescaling was 

used in the computer implementation of the Bayesian regression algorithm. Eq. (8.4) 

gives the formal definition of the parameter rescaling. A more general formulation is 

given in Eq. (8.5), where C p is the Cholesky decomposition of the inverse of the 

prior variance-covariance matrix, i.e., Cyc p= W,= Var" [Po]- Equation (8.5) is only 

necessary if there is correlation between prior estimates, which normally is not the 

case. When Var"[Po| is a diagonal matrix, the two expressions yield identical results. 

at (P; ~ Po.) 
P; oO (8.4) 

p= C (8 - Po) (8.5) 

With this rescaling, the vector of normalized prior estimates pj (corresponding to 

prior estimate vector p,) becomes zero. The matrix Var|po | becomes an identity 

matrix, as shown in Eq. (8.6). 

Chapter 8: Computational Issues 98



Var|p"] = C,Var[p]C, = C,C,C,, Ch = Ih xn (8.6) 

8.3 BAYESIAN REGRESSION REFORMULATION 

One problem with using QR decomposition to solve regression problems is that it 

was not designed to include weighting matrices or prior information. To use QR 

decomposition with all aspects of the Bayesian regression formulation of Chapter 3. 

Specifically, the problem must be reformulated such that an ordinary least-squares 

algorithm based on QR decomposition can be used. To this end, a new X” and y’ are 

defined as given in Eqs. (8.7) and (8.8). C, is the Cholesky decomposition of the 

data weighting matrix W,, i.e., C,C,=W, = Var"[y], and C, is again the Cholesky 

decomposition of the prior weighting matrix W,, i.e., cic >= W,= Var™"[po|- 

c.xc'| {ce xc 
x=| 7 "I ; , (8.7) 

CC, n,Xn, 

Cyy | |C,y| Ie C,y | |e 
ye} 7 fel fe) 2? J (8.8) 

C,C,Po| | Po 0 ‘Ic (Coe | r 

                    

If these expressions are plugged into the standard ordinary least-squares iteration 

shown in Eq. (8.9), it can be shown the process is mathematically equivalent to the 

Bayesian regression iteration shown in Eq. (3.18) of Chapter 3. This is demonstrated 

in Eqs. (8.10) through (8.14). The expansion J = C, C5C,C, is used as a part of this 

derivation. 

Ap =(X TX XT (y* -¥*) (8.9) 
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C,Ap= (C, X'C,C,XC, +I) (C,X"C,C,(y - 9) +C, (D9 - p)) 

C,Ap=(C,X"C\C,XC, +(C, C,C,C, \" 

(Cy X™C,C,(y -9) + (Cp C,C,Cy )C,(Py - B))} 

C,Ap=[C,'(X7C,C,X+C5C,)C, |" 

Cp [ACC -9) + CC, (Po B) 

C, AP =C,(X'W,X+W,)'C,C, (XW, (y - 9) + W, (Po -B)) 

Ap = (X'WX + W,)" (TW, ~¥)+W,(Po “B)) 

been greatly reduced. 

given below in Eqs. (8.15) and (8.16). 

p= Cr + Po 

Var[p] = C;, Var[p" JC, 

Chapter 8: Computational Issues 

(8.10) 

(8.11) 

(8.12) 

(8.13) 

(8.14) 

Note that the final result, shown in Eq. (8.14), is exactly the same as the standard 

Bayesian regression iteration given in Eq. (3.18) and in the core equations, which is 

the desired result. The reformulated X” and y* should be used with QR decomposi- 

tion to obtain Q’R’ =X". The iteration Ap” = R*'Q"'(y* - y*) can then be used to 

obtain parameter estimate vector p” and an estimated variance-covariance matrix 

Var|p" |=(R*™R’). In addition, the effects of numerical ill-conditioning will have 

At the end of the parameter estimation process, it is necessary to transform back 

to the original parameters p. Expressions for f and its variance-covariance matrix are 

(8.15) 

(8.16) 
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8.4 STEP SIZE DETERMINATION 

The final computational issue that must be addressed is that of iteration conver- 

gence. If the matrix X" is constant (not a function of p”), then the iteration of 

Eq. (8.10) converges in a single step to the value of p* that minimizes SSE. 

However, if X” is not constant (meaning that the regression problem is nonlinear), 

multiple steps will be required to reach the minimum. If the non-linearity is extreme 

enough, the p* vectors generated by the iteration Ap* = R"™!Q*'(y* -y*) may not 

reduce the SSE value at all, in which case the iteration will fail to converge. It should 

be noted that the model update formulation of Part II of the dissertation is nonlinear 

despite the fact that the finite element model is assumed to be linear. This is caused 

by use of the inverse of the dynamic stiffness matrix K, of Chapter 7. 

To ensure convergence, one must first note the fact that the step defined by 

Eq. (8.10) always points in a direction (in normalized parameter space) that reduces 

SSE, in other words, it is a descent direction. However, this direction is only 

guaranteed to be a descent direction at the f° at which X° is computed. If X* changes 

enough over the course of the step, the SSE values may rise instead. 

Therefore, when a step is generated that increases the SSE value, the step size 

should be reduced, as shown in Eq. (8.17). This expression is the same as found in 

Eq. (8.10), except that a step size modifier B , which always has a value less than 

one, has been included. Similar results are given for the QR decomposition based 

iteration from Eq. (8.18). 

Ap’ = B(X™X) XT (y* -y) (8.17) 
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Ap’ = BR™Q"(y" -y") | (8.18) 

A number of different schemes exist for determining the optimal f [89]. 

However, it is sufficient to repeatedly halve 6 until the SSE value obtained has been 

decreased. Additionally, it is sometimes desirable to limit the initial step size before 

checking to see if the new p* yields a reduced SSE value. This is particularly true in 

systems where the X” matrix is ill-conditioned, which can potentially generate large 

parameter changes. The expression given in Eq. (8.19) provides a restriction on the 

initial size of the step, effectively limiting the average change (in an RMS sense) in a 

parameter to one standard deviation. 

if (Ap*? Ap*) > n,, then f, = ——+ , else B,=1 (8.19) 
Ap 4 

8.5 CONVERGENCE TESTING 

When using any iterative least-squares procedure, the analyst should run the 

procedure multiple times with different initial parameter estimates (which is not the 

same as different prior estimates, as described in Chapter 4). If all of the initial 

estimates converge to the same final parameter estimate, the analyst can be confident 

that the unique SSE-minimizing estimate has been obtained. Unique in this context 

means unique for the Bayesian regression formulation with a particular set of data and 

set of prior information. It does not mean that all other model update formulations 

and data sets would give identical answers. 
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If the different initial estimates converge to two or three different final parameter 

estimates, the analyst may be having difficulties with local minima, which are points 

in parameter space that appear to be error-minimizing solutions, but are not. The 

analyst can choose the best of the different parameter estimates simply by picking the 

one that provides the lowest SSE value, as given in Eq. (3.17). 

If the regression iteration never converges to a final parameter estimate, or 

converges to a different estimate every time, then there is a problem with either the 

model update formulation (typically poor parameter choices) or a defect in the Bayes- 

ian regression implementation or the FE model. In this case, the analyst must re- 

examine everything carefully. 

8.6 COMPUTATION TIME 

One disadvantage to using a Bayesian statistics formulation over some other model 

update formulations (e.g., direct matrix update methods) is a greatly increased need 

for computing power. In these iterative approaches, the finite element is rebuilt and 

resolved repeatedly, sometimes hundreds of times. This is particularly true when the 

dynamic response of a structure is computed at multiple frequencies, as described in 

Chapters 5 and 6. Indeed, a dynamic response must be computed for each frequency. 

This can represent a significant amount of computational work, particularly when 

FRF data is used. 

Of course, it is possible to significantly reduce computation times with strategic 

use of matrix decompositions [80]. A modal summation approach for FRF predictions 

might also be worth considering. In this approach, an eigensolution would be com- 
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puted for the finite element model, providing natural frequencies and mode shapes. 

This is expensive to compute, but once it is finished, standard modal summation can 

then be used to quickly predict FRF values at as many frequencies as desired [82]. 

However, there are three difficulties with this approach: (1) modal truncation becomes 

an issue; (2) computation of FRF sensitivities becomes more complex; and (3) the 

types of damping models that can be used in the finite element model are restricted. 

None of these difficulties is intractable, but all represent disadvantages over the direct 

computation of frequency response. In cases in which sine-dwell data excitation is 

used, it is probably not cost effective to use modal summation. 

8.7 CONCLUDING REMARKS ON NUMERICAL ISSUES 

Clearly, there were a number of numerical concerns in the Bayesian statistics 

formulation that were addressed in the course of performing this research. However, 

all of these steps were necessary to ensure rapid and reliable convergence of the 

Bayesian regression iteration. The parameter rescaling and step size determination in 

particular were very important. The use of the QR and Cholesky decompositions with 

the reformulated X” and y" further increased stability and computation speed. 

The issue of frequency response prediction computation times was not handled as 

well in this work. All of the examples presented in this dissertation were implemented 

in MATLAB [90], which is a high-level programming environment that provides 

many routines for use with general matrices. However, MATLAB does not provide 

routines for optimal use of matrix decompositions (especially routines that take 

advantage of certain matrix properties, such as symmetry, bandedness, or positive 
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definiteness). An implementation that used a modern matrix computation library such 

as LAPACK [88] would run faster and provide more accurate results. However, the 

amount of programming and debugging required would be greatly increased as well. 
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Chapter 9: Model Update Verification 

Once the model update has been accomplished, it is desirable to perform a number 

of tests to ensure that the updated model is representative of the behavior of the 

structure. There are four different categories of tests available: (1) data stationarity 

testing; (2) lack-of-fit testing and compensation; (3) parameter consistency testing; and 

(4) cross-validation testing. These tests increase confidence that data was acquired 

correctly, that the model fits the data, that the updated model parameters make sense, 

and that the model is capable of predicting other data sets besides the specific set used 

to update the model. 

9.1 TIME-INVARIANCE TESTING 

There are two implicit assumptions that are made whenever a model update is 

performed with experimental data: (1) the data is acquired correctly; and (2) the 

dynamic properties of the structure/test apparatus do not change over the course of 

testing. Ensuring that data is obtained correctly is best accomplished by using proper 

experimental technique. If the structure does not change over the course of testing, 

the data should be time-invariant, which means that the statistical properties of the 

data do not change over time. An autocorrelation test can be performed as a test of 

this characteristic [77]. 
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Specifically, if data is acquired in a sequential fashion during a discrete-frequency 

test (usually a scanning LDV test), a large amount of force data can be obtained. 

Clearly, the amplitude of this force signal should remain constant for the entire 

duration of the test. If it does not, the structure or test equipment has probably 

experienced some change, often due to changes in the ambient temperatures 

surrounding the system [91]. 

The Durbin-Watson Statistic 

During the course of a laser-Doppler vibrometer test, a block of excitation data is 

acquired with each block of response data. This means that if a block of velocity 

measurements is taken at each of 45 data acquisition locations, 45 blocks of force data 

will be available as well. 45 estimates of force amplitude A, (each corresponding to 

data acquisition location () can be computed according to Eq. (5.12). 

These 45 A ; vectors should all be the same (if the system is time-invariant), plus 

or minus some small error caused by noise on the excitation time-series data. Addi- 

tionally, the errors in the estimates should be uncorrelated, since the errors present in 

one time-series data block should be completely unrelated to errors present in another 

time-series data block. 

To estimate the errors in the 45 force amplitude vectors A ;» the average force 

amplitude vector 4 ag is computed, as described in Eq. (5.27), and then subtracted 

from each of the A, vectors. If the true force amplitude is not constant, there will be 

a trend to the residuals. The top plot of Figure 9.1 shows uncorrelated errors (with no 
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trend present), while the bottom plot shows positively correlated errors (with a 

downward trend present). 
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Figure 9.1: Force Amplitude Residuals 

Equation (9.1) below gives the definition of the Durbin-Watson statistic [78] used 

to test for positive correlation between residuals. It is designed for use with scalar 

residuals (in this case, e,=A,-A ag ‘rom single frequency-excitation results). The 

Statistic d will have a value of approximately 2 when the residuals are normally 

distributed and uncorrelated. 

  

n -1)4 (;-e4) 
‘-| m | (9.1) 
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Table 9.1 below shows some critical values for the Durbin-Watson statistic for 

different numbers of data acquisition locations. If d <d, , then the analyst can firmly 

conclude that autocorrelation exists. If d >d,,, then the analyst can firmly conclude 

that autocorrelation does nor exist. If d, sd <d_,,, then the results are inconclusive. 

Table 9.1: Durbin-Watson Critical Values 

  

  

| Nm da, dy 

30 1.26 1.61 

60 1.47 1.66 

100 1.61 1.71         
The Durbin-Watson statistic, when used on the 45 data points shown in 

Figure 9.1, generates a value of 1.854 for the top plot (clearly indicating that auto- 

correlation is not present) and 0.129 for the bottom plot (clearly indicating that 

autocorrelation is present). 

The Modified Durbin-Watson Statistic 

If more than one excitation frequency is being used (or multiple harmonics of the 

main excitation frequency are being fitted), then a more generalized form of the test 

can be used, as given in Eq. (9.2), where the vector e,=(4,-A,,,\ is computed 

instead of a scalar. The /‘ element of the modified Durbin-Watson statistic vector d 

(corresponding to the harmonic excitation frequency w,) is computed using Eq. (9.2) 

and would be tested using Table 9.1 just as the statistic d of Eq. (9.1) was tested. 
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A similar test can be performed on the driving point response (if it is available), 

except that ¢ vectors are used in place of the A vectors. The real and imaginary 

components of the frequency response should exhibit time-invariance, which is 

equivalent to requiring that magnitude and phase angle exhibit time-invariance. 

Other Comments on Time-invariance 

Performing these tests to ensure that the structure has not changed during the 

course of data acquisition is relatively easy. However, it is more difficult to ensure 

that the structure does not change between tests. The only way to statistically test for 

changes of this sort is to repeat at least a portion of all previous tests (same excitation 

frequency, force levels, and response measurement locations) and compare statistical- 

ly. Both the force and response signals should be the same for repeated portions of 

the tests. Unfortunately, this significantly increases the amount of work required and 

was not done in this research. 

9.2 LACK-OF-FIT TESTING 

Once it has been established that data was taken properly and that the structure did 

not change during the course of testing, the model update can be performed. After the 

model update, a lack-of-fit (LOF) test can be performed. This test determines whether 
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or not the updated model fits the data as well as possible. This test can only be 

performed in the context of a weighted least-squares formulation in which estimated 

weighting matrices (like those of Chapters 5 and 6) are used. 

The lack-of-fit statistic is the SSE term of Eq. (3.17). With proper weights, the 

SSE term becomes equivalent to a sum of independent z* statistics, where z is a 

Gaussian random variable with zero mean and unit variance [77]. A z? is equivalent 

to a chi-squares statistic with one degree of freedom, i.e., Xi: If n of these 1 

statistics are added together, a chi-squares statistic with n degrees of freedom results, 

1.€., x. [77]. When a degree-of-freedom for each fitted parameter is subtracted off, 

the relationship of Eq. (9.3) results, which means that the SSE term comes from a Xn, 

distribution. Because of this, the relationships of Eq. (9.4) also apply. 

2 
XLor = SSE = (y -yWy J) + (Po - py W,@, - Pp) 

2 2 
~ Xny+n,-n ~ Xn 

P y 

(9.3) 

E[SSE]=n, Var(SSE]=2n, (9.4) 

For a large number of data points (n, > 30), the distribution of the SSE/LOF 

Statistic approach normality, as predicted by the central limit theorem [77]. Knowing 

this, the statistic can be normalized into a z-score, as shown in Eq. (9.5). 

(SSE ny) 
i (9.5) 

2n 
y 

If Z, or has a value in excess of some critical z, value (1.96 for 97.5% confi- 

dence), the model can be said to exhibit lack-of-fit. This means that the model is not 
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fitting the data as well as could be expected, and that the SSE value has been 

artificially inflated. This lack-of-fit can be the result of model form errors, data 

acquisition errors unaccounted for by the signal processing statistics, or poor/incom- 

plete parameter selection. Examples of modeling form errors include bad boundary 

condition models and discretization errors, while data acquisition errors might be 

caused by misplaced or miscalibrated transducers, FRF leakage, or over-filtering of 

time-series data. 

If Z, or <2, there is no statistical evidence for lack-of-fit and no statistical reason 

to expect that amy model could fit the data any better. Unfortunately, the power [77] 

of the LOF test becomes very great for a large n,, which means that even the 

slightest lack of agreement between the model and data will cause a z, 5, greater than 

1.96 to be generated. Only if the FE model, data acquisition procedure, and signal 

processing technique are all perfect will lack-of-fit not be detected by the test. Thus, 

instead of insisting that a model pass the lack-of-fit test (which is virtually 

impossible), it is better to compensate for lack-of-fit. 

When lack-of-fit occurs, the quantity SSE, = (y - yt W, y -9) is artificially inflated 

relative to the priors, “drowning out” SSE, = (p - py W (Pp - p). This keeps the priors 

from influencing the analysis as much as they should. To compensate for this SSE 

inflation, the data residuals can be downweighted, restoring the effect of residuals 

from the priors. Equations (9.6), (9.7), and (9.8) show how the sum-of-squares error, 

the Gauss-Newton step, and the estimated parameter variance-covariance matrix are 
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reformulated with the downweighted data. The lack-of-fit compensation coefficient a 

has value less than one. 

SSE = ay - $)'W,(y - 9) + (Pp - BP) Wo - B) (9.6) 

Ap = (0?2X"W, X+W,)'(0?X"W,(y - 9) + W, (pp - B)) (9.7) 

Var[p]=(0?X*W,X+W,)" (9.8) 

Two reasonable schemes for computing « exist, each developed with a slightly 

different objective in mind. The first coefficient, given in Eq. (9.9), eliminates the 

artificial SSE inflation by appropriately scaling down the data residuals. Koh and 

See [64] used a similar downweighting scheme in a Kalman filtering context. The 

second coefficient, given in Eq. (9.10), keeps confidence intervals from becoming 

arbitrarily small (even in the presence of infinite data) by downweighting the data 

more strongly as more data is included. Both of the lack-of-fit compensation 

coefficients were tried in the case studies of Chapters 12 and 13. 

a. = a (9.9) 
' \| SSE 

z+1 
u (9.10)   a, = 

Zor * 1 

9.3 PARAMETER CONSISTENCY TESTING 

As mentioned above, using Bayesian statistics is supposed to generate a parameter 

estimate that is consistent with both data and prior information. This statement can be 
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tested with the statistical tests given in Eqs. (9.11) and (9.12), with 7 p being the 

number of parameters and Xnp1-a being a critical chi-squared value. (Note: Strictly 

speaking, an F-test should be used when comparing to data-based parameter esti- 

mates. However, the chi-squared test becomes an increasingly good approximation as 

the number of data points used in the regression increases [78]. Typically, at least 30 

data points must be used for the approximation to be valid. Thousands of data points 

are often used in model update problems.) 

. 2 

if (P hayes ~ P data) W data (B bayes ~ B data) > Xing. 1-a> (9.11) 
then declare inconsistent with data 

if (P sayes Po) W p(B tyes ~ Po) > Ange tw (9.12) 
then declare inconsistent with prior 

The quantity p,,,, Tefers to a parameter estimate obtained without using any prior 

information (computed using the weighted least-squares iteration of Eq. (3.9)), while 

P ayes refers to the normal Bayesian regression parameter estimate. The data 

weighting matrix W,,,, is equal to (X7 WX y , and the prior weighting matrix is 

again W, = Var" '[Po| , as described in Chapter 4. Table 9.2 below provides critical 

values for Xing It for different values of n, at the 95% significance level [77]. 

Chapter 9: Model Update Verification 114



Table 9.2: Critical Chi-Squared Values 

  

n x. n x. P Patty, 0.05 P Mos 0.05 

1 3.841 7 14.067 

2 5.991 8 15.507 

3 7.815 g 16.919 

4 9.488 10 18.307 

5 11.070 11 19.675 

6 12.592 12 21.026 |               

Of course, it was mentioned in Chapter 3 that using Bayesian statistics provides a 

parameter estimate that is consistent with both data and prior information. The only 

situation in which the Bayesian estimate does not provide consistent estimates is when 

confidence regions from the data and confidence regions from prior information do 

not overlap at all. The Bayesian formulation will nevertheless come up with an 

average estimate located between the two, but it will be located in a region of 

extremely low probability and will thus register as inconsistent. 

9.4 CROSS-VALIDATION TESTING 

A final model verification technique that can be used is the cross-validation test. 

The premise of the test here is very simple but very powerful. In a cross-validation 

test, a portion of test data (usually half or more) is used to update the model. The 

updated model is then used to predict the portion of the data not included in the model 

update. If the new predictions fit the unused data as well as the model fit the original 

data, the model has passed a cross-validation test. Once the test is passed, it is 

reasonable to repeat the model update using all of the test data. If the cross-validation 
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test is not passed, there is probably a model form error or an important parameter has 

been left out of the analysis. | 

An acceptance criterion for determining if an updated model (based on fitted data 

subset #1) effectively predicts a different set of data (unfitted data subset #2) is given 

in Eq. (9.13). The selected critical value of 2.0 provides a small allowance for varia- 

tions in relative noise levels in the data sets. The ideal result of Eq. (9.13) is 1.0, 

while results much larger than 2.0 mean that the model is incapable of predicting data 

beyond the specific set used to update the model. 

ny subset #1 

SSE subset #1 

      

SSE spset #2 | < 9 (9.1 3) 

ny subset #2 
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Chapter 10: Visualization Statistics 

The model update procedure described in Part II of this dissertation is complete. 

The only statistical quantity strictly required for interpreting the results is the sum-of- 

squares error term of Eq. (3.17). However, it is helpful to have a number of test- 

analysis visualization statistics available. These statistics allow the analyst to better 

understand the results of the model update. They can also be used as tools to locate 

problems with the model and/or data, either in terms of spatial location or excitation 

frequency. 

Three visualization schemes are presented in this chapter. The first two are 

intended for use with sine-dwell test data, while the third is intended for use with 

broad-band FRF data. 

10.1 SINE-DWELL VISUALIZATION STATISTICS 

The Correlation Coefficient 

In order to better determine how well an updated model predicts sine-dwell test 

data, two visualization statistics were developed. The first is a correlation coefficient 

re. Here, a subset of the data measurements, y,, is compared to a prediction of the 

same subset, ¥,, using the correlation function given in Eq. (10.1). Values for r, can 

fall between zero and one. 

72 = ly; Wid ) 
k (10.1) 
VM IIe MI) 
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A variety of subset definitions can be used, but the most useful way to break 

down the data is by frequency. Thus, y, would correspond to the subset of the data 

that was generated with the excitation frequency w,. The purpose of the test would 

then be to compare response shapes, independent of scaling. If the results of test and 

analysis match perfectly, ry will have a value of 1.0. Values less than one indicate 

response shape discrepancies at the excitation frequency W,. 

Using the r, Statistic in this manner makes it very similar to the modal assurance 

criterion (MAC) [2] commonly used in modal testing to compare mode shapes. With 

the MAC, results are often compared between different frequencies as well, since 

mode shapes corresponding to different natural frequencies are expected to be 

orthogonal. However, there is no point in computing these off-diagonal terms in a 

dynamic response setting, since there is no reason for any given pair of response 

shapes to exhibit orthogonality. When used in this context, the term r, is Called the 

frequency response assurance criterion (FRAC) [41]. 

The Scaling Factor 

A second comparison that can be made is one between measured and predicted 

response amplitudes. Again, this can be done with any subset of the data, but it is 

most useful to have y, and ¥, correspond to the data and predictions generated using 

excitation frequency w,. The statistic that is computed here is the scaling factor c, 

given in Eq. (10.2), which effectively gives the constant by which the actual data y, 

would have to be multiplied to have amplitudes comparable to the predicted data J, . 
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As with the correlation coefficient, c, will have a value of 1.0 if the model 

matches the data perfectly. Values other than one indicate a response amplitude 

discrepancy. It should be noted that there is no restriction on the possible values for 

C,, as there are with the correlation coefficient ry. Any value can potentially be 

obtained. This type of comparison is normally not done with mode shapes, since they 

are usually rescaled according to some normalization criterion, but it can be a 

valuable statistic to use with dynamic response shapes. 

10.2 FRF VISUALIZATION STATISTICS 

It is possible to compute r? and c, statistics for FRF data, but a much simpler 

means of visually comparing test and analysis is to plot FRFs from both test and 

analysis on the same chart. This can be done with real and imaginary components of 

the FRF, but it is usually more intuitive to look at magnitude and phase angle, since 

the positive-valued magnitudes can be plotted on a semi-logarithmic chart. 
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Chapter 11: The Simulated Beam 

11.1 SIMULATION OVERVIEW 

This study of a simulated beam was performed for the purpose of testing the 

Bayesian regression formulation presented in Chapter 3. The objective of the study 

was to study the stability of the model update process and to verify confidence 

interval estimates coming from the variance-covariance matrix of Eq. (3.19). 

The Beam 

Figure 11.1 below shows a schematic of the beam model used in the confidence 

interval verification study. Ten Euler-Bernoulli beam elements (with consistent mass 

matrices) were used to model the beam. All material properties and beam dimensions 

were held fixed and thus not included as parameters in the study. Also, the beam was 

assumed to have a 0.1% structural damping. 

data acquisition/ 

driving point 

data acquisition points 

ryy eed dt 
  

  

  

Figure 11.1: Analytical Beam Model 
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The four unknowns in the problem consisted of the springs and dampers shown in 

Figure 11.1, which might represent an elastic shock cord suspending the beam and a 

metallic stinger connecting a shaker to the top of the beam. The four parameters c_, 

c,, k,, and k, are estimated using the Bayesian regression formulation of Chapter 3. 

Obtaining “Experimental” Data 

In order to obtain “experimental” data, it was necessary to first choose “true” 

values for the four update parameters. The values shown in Table 11.1 below were 

selected. The stiffness values were based on previous research [92] concerning the 

particular beam and suspension system under test, while damping values were 

arbitrarily picked such that damping effects were noticeable (but not dominant) in a 

driving point FRF. 

Table 11.1: Update Parameter Target Values 

  

Translational stiffness, k, = 87.56 Nim (0.50 Ibf/in) 
Translational damping, c, = 3.503 N-s/m (0.020 Ibf-sec/in) 
Rotational stiffness, k, = 0.339 N-m/rad (3.0 lbfin/rad) 
Rotational damping, c, =0.0Nm-s/rad (0.0 Ibf in-sec/rad) 

   
     

“Experimental data” was generated analytically by computing the dynamic 

response of the system at eight different excitation frequencies using Eq. (7.5), and 

then adding a known level of Gaussian noise to the response shapes obtained. The 

excitation frequencies of Table 11.2 were used. 

Table 11.2: Excitation Frequencies 

| near mode 1 [Hz] | near mode 2 [Hz] | near mode 3 [Hz] | near mode 4 [Hz] ] 

17.30 17.35 | 47.55 4852 | 93.20 95.09 | 154.07 157.18 | 
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Specifically, the “experimental” data was generated by adding Gaussian noise to 

each of the 11 displacement DOF coming from FE dynamic response predictions 

(both on the real and imaginary parts). The RMS amplitude of the noise was 4% of 

the RMS amplitude of the noise-free analytical response, meaning that the effective 

signal-to-noise ratio of the data was approximately 25-to-1. It should be noted that 

simulating the data in this manner bypassed the sine-dwell analysis of Chapter 5. The 

data described here are equivalent to what would be produced by that analysis. The 

rotational DOF of the FE model were excluded from the data set, since rotation data 

are normally not available in a structural dynamics test. 

Selections of priors 

Since the model update algorithm is based on Bayesian statistics, prior information 

is needed. Normally, these estimates would come from independent measurements, 

engineering judgement, etc., but the priors of Table 11.3 were specifically chosen for 

illustrative purposes. Variances are given in 95% confidence interval form, i.e., 

yt + 1.960 for normally distributed parameters [77]. A comparison between 

Table 11.1 and Table 11.3 reveals that the prior estimates are not correct. However, 

this is the situation that will most likely occur in real-world situations. 

Table 11.3: Prior Knowledge about Parameters 

= (0.40 + 0.20 Ibf/in) 
= 1.751 + 0.175 Ns/m (0.010 + 0.001 Ibf-sec/in) 
= 0.4518 + 0.113 N-m/rad (4.0 + 1.0 Ibfin/rad) 

c, = 0.0000 + 0.0123 N-m-s/rad (0.00+0.10 Ibfin-sec/rad) 
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11.2 SIMULATION RESULTS 

Table 11.4 presents results for a single data set in which all eight response shapes 

(with noise added) were fitted simultaneously. The Bayesian regression formulation 

was used first without including the prior information of Table 11.3, and then it was 

used a second time with the prior information. The confidence interval estimates were 

extracted from the diagonal elements of Var[p], as described in Chapter 3. 

Table 11.4: Simulated Model Update Results 

  

param. units | target | prior 95% C.l.| data-only 95% C.l. | Bayesian 95% CLI. 

k Nim | 87.56 | 70.05 +35.0 | 87.42 +158 | 91.24 +5.57 
t 

C, N-sim | 3.503 | 1.751 +0.175| 3.534 +0.0665/ 3320 +0.0583 

kK,  N-mirad | 0.3390 | 0.4518 +0.113} 0.8035 +121 | 0.4560 +0.112 

c,  Nmrsijrad} 0.0 0.0 = +0.0113) -1.82e-3 +2.44e-3| 3.88e-3 +2.30e-3| 

  

              

A Monte Carlo study was performed to verify the confidence interval estimates of 

Table 11.4. In this study, 500 trials were run in which random noise was added to the 

true response shapes. The model update algorithm was used in each trial (on all eight 

noisy shapes simultaneously) to obtain updated parameter estimates. A “measured” 

Var([p] was determined from the Monte Carlo trials [83]. Again, studies were run 

both with and without the use of prior information, and in both cases the measured 

variance-covariance matrix Var[p| matched the estimate coming from Eq. (3.19) to 

three significant figures. 

It should be noted that the confidence interval sizes coming from the Bayesian 

analysis were the smallest for all parameters. The use of prior information prevented 

a meaningless k, estimate from being generated, as happened in the data-only case. 
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Also, the Bayesian regression iteration of Eq. (3.18) was extremely stable for this 

problem. Even if initial parameter guesses were as far as five standard deviations 

away from the prior estimates, the iteration of (3.18) always converged to same 

answer in less than 20 iterations, requiring less than a minute of CPU time on a 

Hewlett-Packard 9000/715 workstation. 

Visualization Statistics 

As described in Chapter 10, it is possible to compute a correlation coefficient 

(FRAC diagonal) r? and a scaling factor c, for each excitation frequency w,. 

Figure 11.2 below shows these statistics for the results of Table 11.4 before the 

model update, where the FE model was assembled using prior information alone. It is 

apparent from Figure 11.2 that the model breaks down the most at low frequencies. 

This happened because the incorrectly modeled end conditions influence the low 

frequency behavior of the beam more than the high frequency behavior. 
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Figure 11.2: Visualization Statistics before Update 
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These same statistics were computed after the model update as well, as shown in 

Figure 11.3. Clearly, better results were obtained. In the top plot of Figure 11.3, the 

line representing re is so close to 1.0 that it cannot be distinguished from the top 

border of the plot. 
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Figure 11.3: Visualization Statistics after Update 

Model Update Verification Results 

Since the data used here was entirely computer generated, there was no need to 

perform time-invariance testing or lack-of-fit testing. However, it was possible to 

perform a parameter consistency check. The result of the two consistency checks are 

given below in Eqs. (11.1) and (11.2). 

Kata = (B paves ~ P data * W deta (P tenes ~ B sata) = 39-87 (11.1) 

Xprior = (P hayes ~ Po)" W p(B payes ~ Po) = 310.14 (11.2) 
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Clearly, both of these results exceed the critical chi-squared value Xi. 0.05 = 9-488 

coming from Table 9.2, which means that the parameter consistency test was failed. 

As described in Chapter 9, this indicates some sort of problem in the model update. 

In this case, at least on one of four things has gone wrong: (1) the model is incorrect 

(too few elements, neglected mass, bad boundary condition model, etc.) and is 

causing errors in the parameter estimates; (2) the data is defective (miscalibrated or 

mislocated) and is causing errors; (3) an important parameter has been left out of the 

analysis; or (4) the prior information provided by the analyst is wrong. 

Because this study is based on simulated data, options (1), (2), and (3) can be 

ruled out. However, a careful comparison of Table 11.1 and Table 11.3 reveals that 

the prior estimate for c, is grossly incorrect, and that the prior estimate for k, is of 

marginal quality. This bad prior information has skewed the results of the entire 

analysis. Indeed, computation of a third chi-squared statistic, given in Eq. (11.3), 

shows that the final Bayesian estimates are inconsistent with the true target parameter 

values. Note: This third parameter consistency test can be performed only with 

simulated data. It cannot be done in the “real world.” 

2 Ww Xiarget = (P payes ~ P target) W ayes (P vayes ~ P target) = 46-52 (11.3) 

If better prior information is used, as given in Table 11.5, the results improve 

considerably, as shown in Table 11.6. New chi-squared statistics are shown in 

Egs. (11.4), (11.5), and (11.6). All are well below the critical chi-squared value of 

9.488. This means that the parameter estimates obtained using Bayesian regression are 
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consistent with the data, with prior information, and most importantly, with the true 

values. Indeed, this is the entire point of the exercise. 

Table 11.5: Improved Prior Knowledge 
   

          

     

  

  

k, = 70.05 + 35.0 N/m (0.40 + 0.20 Ibf/in) 
c, = 3.590 + 0.175 Ns/m (0.0205 + 0.0010 Ibf-sec/in) 
k, = 0.3953 + 0.113 N-m/rad (3.5 + 1.0 Ibfin/rad) 
c, = 0.0000 + 0.0123 Nms/rad = (0.00+0.10 Ibf in-sec/rad) 
  

  

Table 11.6: Update Results from Improved Priors 
————— 

param. units | target | prior 95% C.|.} data-only 95% C1. Bayesian 95% C.I. 

k, Nim | 87.56 | 70.05 +35.0 | 8742 +158 | 91.24 +5.57 

C, N-sim | 3.503 | 3.590 +0.175| 3.534 +20.0665| 3.320 +0.0583 

k. = N-mirad | 0.3390 | 0.3953 20.113 | 0.8035 +121 | 0.4560 +0.112 

c,  Nmrsijrad; 0.0 0.0 +0.0113| -1.82e-3 +2.44e-3/ 3.88e-3 +2.30e-3 

    

  

              

Xaata new = (P rayes,new ~ P data)" ¥ data bayes, new ~ P daw ) = 0-49 (11.4) 

Xprior,new = (hayes, new ~ Po)" © p(Bhayes, new ~ Po) = 1-93 (11.5) 

Xearget,new = (Poayes,new ~ P target)’ Wayes (Preys, new ~ P targer) = 6-79 (11.6) 

These results support the hypothesis of Chapter 1, which states that the use of 

Bayesian statistics is an effective framework for performing updates of finite element 

models. In this simulated study, the inclusion of prior information considerably 

improved the quality of the parameter estimates obtained. Additionally, the statistical 

tools of Chapter 9 were used to detect a problem with the model update, which was 

eliminated when improved prior information was used. 
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Chapter 12: The Sandia Test Frame 

This chapter contains the results of two model updates performed on a single finite 

element model of a test frame used in research at Sandia National Laboratories [44]. 

The first update was performed with sine-dwell data taken from the structure, and the 

second was performed with FRF data taken from the structure. Issues relating to both 

update problems are discussed initially, with sine-dwell and FRF results following. 

The chapter concludes with a comparison of the two sets of update results. 

12.1 PRELIMINARY ISSUES 

The Test Structure 

The Sandia test frame was a frame built specifically for the purpose of developing 

joint models in structures made of tubular steel. A schematic of the test frame is 

shown in Figure 12.1. The frame was approximately one meter tall and weighed 

approximately 20 kg. 

main beam section —,     
            

Figure 12.1: Sandia Test Frame 
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Test Configuration 

To acquire dynamic response data, sixteen sets of triaxial accelerometers (for a 

total of 48) were mounted on the frame as shown in Figure 12.1 and Figure 12.2. 

Two dynamic response tests were performed. The first utilized harmonic excitation 

delivered through an electromagnetic shaker, generating data appropriate for the sine- 

dwell statistical analysis of Chapter 5. The second utilized broad-band excitation 

delivered through the impact of a modal test hammer, generating data appropriate for 

the FRF statistical analysis of Chapter 6. All excitation was delivered from the rear 

the frame in the positive z direction. Details on data acquisition are presented in the 

individual sections concerning the sine-dwell results and the FRF results. 

Also, the weight of test frame was measured twice (once each on two different 

scales), generating two additional pieces of data to be used according to Eq. (3.23). 

The measurements were 20.06 + 0.11 kg and 20.18 + 0.11 kg. 

The Finite Element Model 

A finite element model of the frame was built in NASTRAN using beam elements. 

Figure 12.2 shows the node and element locations (units are in mm). Also shown are 

the four double node locations at which four sets of six springs (three translational 

and three rotational) were inserted between the beam elements. These springs 

represent the effective joint stiffness of the welds. The elements between the double 

nodes and main beam sections were assigned zero mass, since the connecting beams 

do not reach to the neutral axes of the main beam sections. To account for the effect 

of the accelerometers being offset from the neutral axes of the beams, rigid elements 
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were used in the finite element model to generate an additional node at the center of 

each accelerometer, for a total of 624 degrees-of-freedom. Point masses 

corresponding to the accelerometers were added at each additional node. 

  

  

      
  

400 — . , Y — 

& 2 ~o- > a wo 

300 + ® ° - 

6 8 
a 8 

© ° massless elements ° 
—_ 100 L 9 ° 7 

o 
c 6 ° 

ob OF a a , 
o _—” . double nodes e 

¢ -100 fF triaxial accels ° conected by ° : 
0 springs ° . 

-200 [+ \: \ c 

300 g ° / 
= gy =i} o. —> eo 

-400 — , _ — — 4 — 

-800 -600 -400 -200 0 200 400 600 800 

xcoordinate 

Figure 12.2: NASTRAN Model of Frame 

Parameter selection 

In order to update the model of the frame, modeling parameters affecting the 

behavior of the structure had to be selected. Additionally, the parameters had to be 

chosen such that the NASTRAN beam model could be modified based on changes in 

the parameters. As discussed in Chapter 4, it is best to have estimates of mean and 

variance for each parameter. This information is required to assemble the prior 

estimate vector p, and weighting matrix W,, as discussed in Chapter 4. 

Chapter 12: The Sandia Test Frame 131



The 16 parameters listed in Table 12.1 were selected as possible parameters to be 

used in the model update process. These parameters can be broken up into five 

groups: joint stiffness parameters, cross-section property parameters, material 

property parameters, damping parameters, and a force miscalibration adjustment 

parameter. Also listed with the parameters are the nominal values and confidence 

intervals (estimated means and variances) that define the prior for each parameter. All 

four joints were assumed to be the same, thus requiring only 6 parameters for joint 

modeling instead of 24. Parameters such as J, and J, were used instead of thickness 

and width parameters because the NASTRAN system matrices were linear with 

respect to J, and I,. This made interfacing with NASTRAN and computing sensitiv- 

ity matrices significantly easier. Also, these were the same parameters as used in 

prior research [44] concerning the test frame. 

Table 12.1: Sandia Test Frame Update Parameters 

  

bn
eg

 

  
2: minor area moment of inertia 

J : torsional moment of inertia 

E: modulus of rigidity 
p: density 
a,: damping proportional to K 

  

k,,: translational joint stiffness 6.01e6 N/mm (+20000%) 
k, ,: translational joint stiffness 6.01e6 N/mm (+20000%) 
k,,: transiational joint stiffness 6.01e6 N/mm (+20000%) 
k, ,: rotational joint stifiness 2.53e8 N.mm (+20000%) 
ky: rotational joint stiffness 1.96e8 N.mm (+20000%) 
k, ,: rotational joint stiffness 4.80e8 N.mm (+20000%) 
A: cross-section area 737 mm? (+3%) 
I,: major area moment of inertia 3.11e5 mm* (+6%) 

5.89e5 mm* (+6%) 
6.15e5 mm* (+15%) 
2.07e5 N/mm? (+5%) 
7.85 Mg/mm? (+5%) 
0.00 (+0.002) 

a,,: damping proportional to M 0.00 (+20) 
y : Structural damping ratio 0.00 (+0.2) 
c: force miscalibration factor 1.00 (+0.05) 
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The a, and o,, parameters are used to form a proportional viscous damping 

matrix C= a,K+a,,M, while y is used to form a complex stiffness matrix (1+i7)K 

for structural damping. The force miscalibration correction factor is included to 

account for a possible miscalibration of the force transducer. If miscalibrated force 

signals are used, bias errors in all other parameters could result. Ideally, a calibration 

parameter would be included for every transducer used in the test, but this would 

result in far too many parameters (and extreme ill-conditioning) when 48 accelero- 

meters are used. 

If the parameters of Table 12.1 are considered carefully, it becomes evident that 

changes in certain parameters may have nearly (or even exactly) the same effects that 

changes in other parameters have. This would be manifested in the X matrix of 

Chapter 7 as a linear dependency which will cause the Bayesian regression formula- 

tion to fail. Because of this, it is probably not possible to realistically update the 

model by changing all 16 parameters. Indeed, in preliminary testing, all 16 para- 

meters were used and completely unrealistic updates were obtained, even though the 

data was fitted well. Thus, the set of parameters was restricted, as explained below. 

Since the effects of material property changes were highly correlated with the 

effects of beam cross-section property changes, the material property parameters were 

excluded from the study. Similarly, a, and a,, have effects highly correlated with y 

effects and were also left out. Finally, the force miscalibration correction factor c 

was excluded because it was likely to be highly correlated with many of the 

parameters. After these parameters were dropped, the six joint stiffnesses, four cross- 
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section properties, and one structural damping ratio remained, leaving a total of 11 

parameters to be updated. 

12.2 SINE-DWELL STUDY 

The NASTRAN model of the frame was first updated using sine-dwell test data. 

The sine-dwell statistics developed in Chapter 5 were used to provide statistically 

qualified data (estimates ¥ and weights W,) for the model update algorithm. A 

summary of the test and the analysis follow. 

Data Acquisition 

There are basically two “categories” of excitation frequency for sine-dwell exci- 

tation. The first is near-resonance, where a small force generates a large response. 

The response at near-resonant frequencies is very sensitive to most structural para- 

meters, including damping and any parameters that might shift natural frequencies. 

The second category is off-resonance, where a large force generates a small response. 

The response at off-resonance frequencies is less sensitive to most structural 

parameters. In particular, damping has almost no effect on off-resonance behavior. 

Table 12.2 below lists the 13 excitation frequencies used in the test, along with the 

category into which each frequency fits. 
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Table 12.2: Excitation Frequencies 

  

1. 70 Hz off-resonance 

2. 94 Hz near-resonance (slightly low) 
3. 99 Hz near-resonance (slightly high) 
4. 140 Hz off-resonance 
5. 190 Hz off-resonance 
6. 245 Hz near-resonance (slightly low) 
7. 275 Hz near-resonance (slightly high) 
8. 425 Hz off-resonance 
9. 493 Hz near-resonance (slightly low) 
10. 503 Hz near-resonance (slightly high) 
11. 900 Hz off-resonance 
12. 940 Hz near-resonance (slightly low) 
13. 950 Hz near-resonance (slightly high)       

The frame was excited with an electromagnetic shaker at the locations shown in 

Figure 12.1. Time-series data were acquired from the force gauge and 47 of the 

accelerometers simultaneously. For each excitation frequency, 256 time samples per 

channel were acquired at a rate of 4096 samples per second. The 48" accelerometer 

was not used because the data acquisition equipment was limited to 48 channels total 

(47 accels and 1 force gauge). This process was repeated for each of the 13 excitation ~ 

frequencies of Table 12.2. 

The data were processed using the sine-dwell statistics of Chapter 5. Data points 

were accepted or rejected on the basis of Eqs. (5.24) and (5.25). All 1196 data points 

were accepted. The resulting data can be viewed as 13 complex-valued operating 

shapes, each with 47 spatial degrees-of-freedom. The task of the model updating 

process effectively becomes that of simultaneously fitting the 13 response shapes. 

For illustrative purposes, a histogram of response data variances (the diagonal 

elements of Var(y|) is shown in Figure 12.3. The bars toward the left end of the 
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histogram represent the number of data points with little “noise” or uncertainty, while 

bars on the right represent the number of data points with greater noise or uncertain- 

ty. This plot is not required for any type of numerical data analysis, but it does show 

why a weighted least-squares analysis is required for experimentally-acquired 

frequency response data. If weights were not used, the high variance data would 

completely dominate the regression analysis. 
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Figure 12.3: Variances of Sine-Dwell Data 

The ratio of highest variance to lowest is approximately 470-to-1, with the bulk of 

the variances covering a two order-of-magnitude span. This is comparable to the 100- 

to-1 variance ratio presented in the example of Chapter 3. These variance ratios, 

combined with the fact that n, = 256 data points were used to compute each variance 

estimate, means that estimated weights should be here, according to the criteria 

established by Deaton et al [74]. 
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It should be noted that variance matrix Var[y] computed here is approximate, 

since the signal processing of Chapter 5 was developed for a single-input/single-output 

(SISO) system instead of a single-input/multi-output (SIMO) system. Correlations 

arise between data points in a SIMO system when there is noise on the force signal. 

This is not accounted for in the SISO signal processing, making the resulting statisti- 

cal analysis approximate. The lack-of-fit compensation procedure of Chapter 9 helps 

compensate for this approximation. It should also be noted that the time-invariance 

testing of Chapter 9 was not performed because of the simultaneous nature of the data 

acquisition. 

Updating Results with Visualization Statistics 

Figure 12.4 below show visualization statistics (from Chapter 10) from the initial 

model. It is quite apparent that the model does not fit the data well. Correlations are 

poor, and amplitudes predictions are even worse. Also, the initial model predicted a 

' structural weight of 20.69 kg, which is a statistically significant 3% heavier than the 

measured 20.13 kg. 
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Figure 12.4: Visualization Statistics from Initial Model 

As a first trial on updating the model, all 13 response shapes were used to update 

all 11 parameters. Unfortunately, this worked poorly; the high frequency response 

shapes predicted by the model were completely inaccurate. The reformulated Bayesian 

regression iteration of Chapter 8 effectively “got lost,” becoming trapped in a local 

minimum in parameter space that yielded unrealistic parameter estimates. 

To deal with this difficulty, a subset of the parameters was updated using only low 

frequency data. Specifically, only the cross-section property parameters and structural 

damping ratio were updated using only the 70 and 94 Hz response measurements. As 

shown in Figure 12.5, results were improved considerably. The SSE value was 

reduced from 1.50 x 10° to 1.66 x 10° (a factor of 9). It also reduced the subset SSE 

(for 70 and 94 Hz only) from 5.47 x10’ to 3.71 x 10° (a factor of 150). (Note: In 
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Chapter 9, data down-weighting schemes to compensate for lack-of-fit were discussed. 

The lack-of-fit compensation coefficient a, from Eq. (9.9) was used. Using «, from 

Eq. (9.10) downweighted the data to the point where they had no effect. As a result, 

the prior information almost completely dominated the analysis, leaving the model 

essentially unchanged.) 
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Figure 12.5: Visualization Statistics after Preliminary Update 

The results from this preliminary analysis were used as the starting point for a 

second analysis which included more frequencies. This was done repeatedly until the 

first ten frequencies were relatively well fitted. Attempts were made to include the 

last three frequencies, but the model became inaccurate at such high frequencies, 

probably due to discretization error. Nevertheless, the results for the first ten 
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frequencies were good, as Figure 12.6 shows. SSE values were reduced from 

1.50 10° to 1.7710’ (a factor 85) over the frequencies used. 
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Figure 12.6: Visualization Statistics after Intermediate Update 

The parameter estimates from this reduced parameter analysis were then used as 

the starting point for an analysis that included all 11 parameters and the first 10 

frequencies. Results improved further as shown in Figure 12.7, although it remained 

impossible to obtain a good fit on the final three frequencies. The SSE value was 

reduced from 1.50 x 10° to 4.77 x 10° (a factor of 320). It should be noted that the 

structural weight predicted by the updated model was 20.22 kg, a statistically insignif- 

icant 0.45% away from the measured 20.13 kg. Total CPU time for the model update 

process (including all stages of adding frequencies and parameters) was approximately 

20 hours. 200 iterations were typically required for each Bayesian regression solution. 
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Figure 12.7: Visualization Statistics after Final Update 

Sine-dwell Parameter Estimates 

Table 12.3 contains a final list of updated parameter estimates. In the case of the 

translational stiffness parameters, the sizes of the confidence interval were significant- 

ly larger than the parameter estimates themselves. This occurs because the response of 

the structure was very insensitive to changes in those parameters. Since meaningless 

estimates were obtained for the k, parameters, they were arbitrarily reset to their 

original values. Indeed, this was done when the plot of Figure 12.7 was generated. 

No meaningful difference in the SSE quantity was obtained. 
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Table 12.3: Parameter Estimates from Sine-Dwell Test 

  

  

  

  

    
As mentioned earlier, the confidence intervals given in Table 12.3 were computed 

        

Parameter prior 95% C.I. | data-only 95% C.l. | Bayesian 95% Cll. 

k, x 10° Nimm 6.01 +1176.00) 219.51 +8530.07; 4.31 + 1175.88 

k, y 10° Nimm 6.01 +117600; O01 +2761.38| 1.79 +675.21 

k, 2 10° Nimm 6.01 +1176.00) 299.52 +4690.60) 22.71 +1175.55 

k,. 10° N-mmirad| 2.53 +588.00 | 0.93 +0.05 0.90 +0.03 

ky 10° N-mmirad| 1.96 +392.00 | 20.84 +2.42 9.87 +0.91 

k, 2 10° N-mmirad| 4.80 +980.00 1.06 + 1.02 1.06 +0.09 

A mm’ 737 +20 693 +13 720 +10 

IL 10° mm‘ 3.11 +0.20 2.80 +0.05 2.94 +0.04 

L, 10° mm‘ 5.89 +0.39 7.62 +0.75 6.29 +0.34 

J 10° mm‘ 6.15 +0.98 5.76 +0.31 7.50 +0.14 

Y 0.00% +20% 0.27%  +0.08% | 0.61% +0.06% 
  

using lack-of-fit compensation coefficient a, from Eq. (9.9). The alternative 

downweighting coefficient a, was tried as well, but it downweighted the data to the 

point where the priors completely dominated the analysis. 

A careful examination of the results of Table 12.3 reveals that the rotational joint 

stiffnesses were important to the analysis and were estimated accurately, while the 

translational joint stiffnesses were not. Slight improvements were made to the beam 

cross-section property estimates, which improved the weight estimate of the beam in 

addition to improving the predictive capability of the model. Also, a reasonable 

estimate of structural damping was obtained. 

If the insignificant parameters (those dominated by the Bayesian priors) are 

dropped from the analysis, the same results are obtained. Table 12.4 summarizes 

these results. 
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Table 12.4: Reduced Parameter Results: Sine-Dwell 

— eee See = 

Parameter prior 95% C.J. | data-only 95% C.l. | Bayesian 95% CLI. 
  

  

  

kK 110° N-mmijrad} 2.53 +588.00) 0.93 +0.05 0.90 +0.03 

k 10° N-mmirad} 1.96 +392.00 | 20.84 +2.42 9.87 +0.91 

k. 110° N-mmjrad} 4.80 +980.00} 1.06 + 1.02 1.06 +0.09 

A mm? 737 +20 693 +13 720 +10 

rx 

ny 

V,Z 

I 10° mm‘ 3.11 +0.20 2.80 +0.05 2.94 +0.04 

I 10° mm‘ 5.89 +0.39 7.62 +0.75 6.29 +0.34 

J 

Y 

N
o
 

10° mm‘ 6.15 +0.98 5.76 +0.31 7.50 +0.14 

0.00% +20% 0.27%  +0.08% | 0.61% +0.06% 
a ee _ 

                
Model Update Verification 

Parameter consistency checks were performed to ensure that the parameter 

estimates provided by the Bayesian statistics parameter update methodology were 

consistent with both data and prior information. Equations (9.11) and (9.12) were 

used to compute parameter consistency statistics of 17.052 and 4.036, respectively, 

which were below the critical chi-squared value of 131,005 = 19.675 from Table 9.2. 

This meant that the parameter consistency checks were passed and that realistic 

parameters had been obtained from the model update. 

A cross-validation test was also performed to ensure that the model’s predictive 

capability went beyond that of the data used in the model update. In this test, 

parameter estimate f,. (obtained using only the first nine excitation frequencies of 

Table 12.2) was used to compute a response shape for the 10" frequency. The cross- 

validation ratio (Se) [2 | from Eq. (9.13) came out at 1.43, which was below the 
My 19 J\ SSE, 5 

critical value of 2.0, indicating a successful cross-validation test. 
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A second cross-validation test was performed in which p,_,, (the same as given in 

Table 12.3) was used to compute response shapes for the 11", 12", and 13" frequen- 

cies (900, 940, and 950 Hz). In this case, the cross-validation ratio (Ses) [22 

came out at 280, failing the test. These results imply that the predictive capability of 

the model is valid up to 500 Hz, but does not go much beyond that. A finer FE mesh 

or improved joint model would probably be required for accurate higher frequency 

predictions. 

12.3 FRF Stupy 

A second test was conducted on the Sandia test frame with impact excitation (from 

a modal test hammer) being used instead of harmonic excitation. Statistically-qualified 

FRF data (coming from the H, signal processing discussed in Chapter 6) was 

acquired from the same 48 accelerometers. The same 11 parameters were updated. 

Data acquisition 

A modal test hammer was used at four points on the structure, as shown in 

Figure 12.1 and Figure 12.2. Thirty averages were taken at each point. With each 

impact, 9192 time samples were taken on each channel at a rate of 4096 samples per 

second. This allowed for FFT computation of H, FRF estimates with 0.5 Hz resolu- 

tion up to 2048 Hz. Due to time considerations, however, only a subset of the 

frequency lines was used. Specifically, one out of every 32 lines (every 16 Hz) was 

used up to 500 Hz, with the upper frequency limit being based on the results of the 

sine-dwell study of Section 12.2. However, there is no fundamental theoretical reason 
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that all of the spectral lines up to 500 Hz could not be used. Better data handling 

techniques and FRF prediction algorithms would have helped in this regard by 

reducing computation times. 

With this data, the task of the Bayesian regression problem effectively became 

that of fitting (4 impact sites) * (48 accels) = 192 FRFs, each with 32 frequency 

lines. The FRF data and coherence estimates were generated by the data acquisition 

software (I-DEAS Masters’ Series) used to collect the time-series data. Data points 

were accepted or rejected on the basis of the criterion given in Eq. (6.12), and a total 

of 2216 out of 12288 data points were thrown out due to excessive variance levels. 

Variances for the real and imaginary components of the FRF were computed using 

Eq. (6.11), as described in Chapter 6. 

Again, it is possible to show the range of variances obtained using a histogram, as 

shown in Figure 12.8. Here, the ratio of maximum variance to minimum variance 

was 2400-to-1. However, most of the variances lay within a two order-of-magnitude 

span, which again was comparable to the span of the example given in Chapter 3. 

The range of variances seen in the FRF data is primarily due to the variability of the 

magnitude of the FRF. For a given coherence Y; , the variance of the FRF magnitude 

Hi, is proportional to the square of the FRF magnitude, as indicated by Eq. (6.11). 

Since 30 averages were used in computing the FRF estimates, statistical weights 

should be used with this data according to the guidelines established by Deaton et 

al [74]. 
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Figure 12.8: Variances of FRF Data 

It should be noted that an exponential window was applied to the data to reduce 

the effects of leakage. Unfortunately, this probably affected the statistics of the FRF 

obtained from the data, but it is reasonable to expect that errors in the variance 

estimates were relatively small, especially when compared to the 100-to-1 variances 

ratios seen in Figure 12.8. As a source of relative weightings, the variance estimates 

served well, although they were no longer statistically optimal (in terms of mini- 

mizing parameter estimate variances). Confidence interval estimation might have also 

been affected, but the lack-of-fit compensation coefficient «, of Eq. (9.9) helped 

compensate for the use of these approximate weights. 

FRF Results 

The updating of the model using FRF data was performed in a manner similar to 

that used in the sine-dwell study. Initially, a subset of the update parameters (the same 
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subset as with the sine-dwell data) was used with only low frequency test data. The 

amount of frequency data included in each successive stage was increased, with 

parameter estimates from one solution being used as the starting point for the next. 

This was repeated three times until a reasonable frequency range was spanned (in this 

case, from zero to 500 Hz), and then all 11 parameters were included in the model 

update. Total CPU time was approximately 50 hours, with approximately 200 

iterations being required per Bayesian regression solution. 

Figure 12.9 and Figure 12.10 show two FRFs (out of 192 total) predicted using 

the initial model plotted with the FRFs measured from the frame. It is apparent that 

the initial model does not predict the data well, particularly at higher frequencies. 

Zz 
2 
n 
~~ 

E 
E 
® 
3 
2 
€ 
D 
@ 
E 
Le 
va 
uw 

Impact site 3 Accelerometer 30 
™ 107   

  

1 i i. nll. 4S = nll nll 5 nll 

Oo 50 100 150 200 250 300 350 400 450 500 

[———"measured] ene = preated 
— 

j     

  

   

  

a 

6 

    
        

     

  

   
FR

F 
ph
as
e 

an
gl

e 
[r

ad
] 

2
 

S
T
 

    3 a A ell ell anil ll ell anit 

O SO 100 150 200 250 300 350 400 450 500 
frequency 

Figure 12.9: Initial Model FRF Comparison 
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Figure 12.10: Additional Initial Model FRF Comparison 

After the model updating was completed, the predicted frequency response 

functions became considerably more accurate, as the SSE of Eq. (3.17) was reduced 

from 1.64 x10? to 2.47 x 10’ (a factor of 67). The frequency response functions plots 

are shown again in Figure 12.11 and Figure 12.12 using updated parameter estimates. 

The estimated weight dropped to 20.08 kg, a statistically insignificant 0.27% away 

from the measured 20.13 kg. 
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Table 12.5 below shows the updated parameters obtained from the FRF fit. Again, 

parameters with confidence interval sizes larger than the parameter estimate itself 

were arbitrarily reset to their initial values, as was done in generating the FRF plots 

of Figure 12.11 and Figure 12.12. 

Table 12.5: Parameter Estimates from FRF Test 

  

  

  

      

| Parameter prior 95% C.l. | data-only 95% C.I. | Bayesian 95% CLI. 

ky 10° Nimm 6.01 +1176.00) 12.54 +4641.12) 2.42 1172.17 

ko 10° Nimm 6.01 +1176.00; O03 +1356.82| 2.34 +273.91 

k, 3 10° Nimm 6.01 +1176.00| 76.15 +2671.64) 17.91 +1165.12 

k, 10° N-mmirad} 2.53 +588.00 | 0.909 +0.013 | 0.906 +0.012 

k, 2 10° N-mmirad| 1.96 +392.00 9.33 +0.12 9.38 +0.11 

k, 5 10° N-mmirad| 4.80 + 980.00 1.03 +0.05 1.03 +0.05 

A mm’ 737 +20 713 +4 715 +3 

L, 10° mm‘ 3.11 +0.20 2.80 +0.01 2.92 +0.01 

L, 10° mm‘ 5.89 +0.39 7.62 +0.19 6.25 +0.17 

J 10° mm‘ 6.15 +0.98 5.76 +0.04 7.38 +0.04 

y 0.00% +20% 0.50%  +0.01% | 031%  +0.01%           
As with the sine-dwell results of Section 12.2, using FRF data in the Bayesian 

regression formulation of Chapter 3 yielded accurate estimates of the rotational joint 

stiffnesses used to model the welded joints in the test frame, as seen in Table 12.5. 

The translational joint stiffness parameters could not be estimated accurately, as the 

response of the system was almost completely insensitive to these parameters. 

Improvements were again made to the beam cross-section property estimates, which 

again improved the estimate of the weight of the beam. The confidence intervals for 
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the rotational joint stiffnesses and cross-section properties overlapped the intervals of 

Table 12.3 coming from the sine-dwell test. | 

However, the confidence intervals for structural damping did not overlap. A nega- 

tive structural damping coefficient was obtained with FRF data, which is not a mean- 

ingful result. The application of an exponential window to the data or leakage effects 

may have caused this, but the true source of the negative damping coefficient estimate 

remains unknown. 

If the insignificant parameters (those dominated by the Bayesian priors) are 

dropped from the analysis, nearly identical results are obtained. Table 12.6 

summarizes this second set of results. 

Table 12.6: Reduced Parameter Results: FRF 

Parameter 

k,, |10°Nmmirad] 2.53 +588.00] 0909 +0.012 | 0906 +0.011 

  

  

2 [10° Nmmirad| 1.96 +392.00} 933 +005 | 9.38 +£0.04 
3 [10° N-mmjrad} 4.80 +980.00]} 103 +0.01 1.03 +0.01 

k, 

k, 

A mm’ 737 +20 713 +4 715 +3 

I 

I, 
J 

  

10° mm‘ 3.11 +0.20 2.80 +0.01 2.92 +0.01 

10° mm‘ 5.89 +0.39 7.62 +0.15 6.25 +0.13 

10° mm‘ 6.15 +0.98 5.76 +0.02 7.37 +0.02 

0.00% +20% | -0.50%  +0.01% | 0.37%  +0.01% 
              :     

Model Update Verification 

As with the sine-dwell results, parameter consistency checks were performed on 

the p vector obtained using the FRF data. Equations (9.11) and (9.12) were again 

used to compute the chi-squared statistics 17.771 and 2.086, respectively, which were 
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less than the critical chi-squared value of 171,005 = 19.675 from Table 9.2. Thus, the 

Bayesian parameter estimates passed the parameter consistency check. 

Since only a subset of the FRF data was used in the model update, performing a 

cross-validation test here was even easier. The original data came from frequency set 

#1, which consisted of the frequencies {5 Hz, 17 Hz, 29 Hz, -., 497 Hz}. The results 

from this set were used to predict FRF values at frequency set #2, which consisted of 

the frequencies {7 Hz, 19 Hz, 31 Hz, --, 499 Hz}. The cross-validation ratio 

(==) [ze] of Eq. (9.13) came out at 1.002, which is a nearly ideal result that 

easily passes the cross-validation test. For frequency interpolation purposes, this 

updated model is almost ideal. 

12.4 CONCLUDING REMARKS ON SANDIA TEST FRAME 

If the results from Table 12.5 are compared to those of Table 12.3, it will be 

noticed that the confidence intervals obtained from the FRF data are smaller than 

those obtained from the sine-dwell data. The smaller size of the confidence intervals 

is due primarily to the increased amount of data available for the update (10072 points 

vs. 974 points). As pointed out in Chapter 9, however, ever-increasing amounts of 

data will cause confidence intervals to become arbitrarily small, possibly around the 

wrong answer if there is a significant lack-of-fit problem with the model. The lack-of- 

fit compensation factor «, was developed to deal with this problem, but the compen- 

sation it provided was too strong, effectively eliminating the data from the analysis. 

Therefore, only «, was used, possibly resulting in Table 12.5 having smaller confi- 

dence intervals than it should. 
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Fortunately, even if the sizes of intervals are off somewhat due to lack-of-fit, they 

are still correct relative to each other. This helps the analyst determine which vari- 

ables are most important to the model update analysis and which are not. Fortunately, 

the confidence intervals from both studies overlapped (except for the structural 

damping coefficient y ) in this study, which adds credibility to the results. 
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Chapter 13: The Cantilever Beam 

INTRODUCTION 

This chapter contains the results of finite element model update performed on a 

cantilever beam. The purpose of the study was to investigate how closely the clamp- 

ing apparatus (used to hold the beam) approximated fixed boundary conditions at the 

end of the beam. It is more complete than the Chapter 92 study of the Sandia test 

frame, as all of the data verification tests of Chapter 9 were used. 

13.1 PRELIMINARY ISSUES 

The Test Beam 

Figure 13.1 below shows a schematic of the beam used. The beam had dimensions 

0.00635 m x 0.0381 m x 0.6096 m (0.25 in x 1.50 in X 24.00 in) and was made of 

steel. The beam was bolted vertically into a clamping bracket such that 400 mm was 

exposed. Two transducers (a force gauge and accelerometer) were attached to the 

beam 6.5 mm from the top. An electromagnetic shaker was attached to the force 

gauge with a thin metallic stinger. 
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Figure 13.1: Cantilever Beam Setup 

Figure 13.2 below shows a more detailed schematic of the clamping brackets used 

to hold the beam, since they were the focus of the study. Each bracket was composed 

of 10 mm steel plates welded together. The beam was positioned between the two 

brackets, which were then clamped together using four 10 mm bolts. The entire 

assembly was then bolted to a large concrete block. 
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force gauge Seng point 
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Figure 13.2: Clamp Schematic 
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The Finite Element Model 

The beam was modeled using 65 Euler-Bernoulli beam elements (each with two 

nodes and four degrees-of-freedom). Consistent mass matrices were used. When 

assembled, the resulting FE model had 66 nodes and 132 degrees-of-freedom, as 

shown in Figure 13.3 below. Note: the nodes were assembled essentially as if there 

were 64 elements in the model. An extra element and node were inserted 6.5 mm 

from the top of the beam at the location where the two transducers were located. 

Because the shaker was attached to the force gauge, this also was the location of the 

driving point. The entire model was implemented using MATLAB m-files, with beam 

element definitions coming from Przemieniecki [84]. 

special node with the 

_— driving point location and 
15 data acquisition locations the transducer masses 
for laser Doppler vibrometer 

RRARARARRAEARE, 
LEE TTT YT) 

65 finite elements 
    

  

  

springs representing stiffness 

of mounting bracket 

Figure 13.3: FE Model of Cantilever Beam 

The two springs in Figure 13.3 represent the effective stiffness of the clamping 

brackets used to hold the beam. Obtaining good estimates for k, and k, was the 

objective of this study. A lumped mass and rotatory inertia, 0.01385 kg and 

4.248 x 10° kg-m? respectively, were placed at the extra node to represent the mass 
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loading effects caused by the force gauge and accelerometer. The sources of the 

estimates for these numbers are given in Appendix E. 

Since data was to be acquired at frequencies near the natural frequenciés of the 

first three modes, it was decided that the finite element model must be converged up 

to at least the fourth mode. A number of different mesh densities were tried, and 65 

elements were sufficient to converge the 4" natural frequency to within 0.01 Hz. 

Parameter selection 

In building this model, ten parameters were used to construct the finite element 

model, as listed in Table 13.1. These can be broken up into five groups: effective 

clamp stiffness parameters, material property parameters, beam cross-section property 

parameters, and lumped mass/stiffness parameters. Also listed with the parameters are 

their priors, which are estimates of mean and variance summarizing the quality of the 

initial estimates. The material property numbers came from a materials 

reference [93], while the other priors came from careful measurements of the system 

as described in Appendix E. 

Table 13.1: Cantilever Beam Update Parameters 

  

  

  

k_: translational clamp stiffness 6.00e7 Nm/rad (+1000%) 
k,: rotational clamp stiffness 3.00e5 N/m (+1000%) 
E: modulus of rigidity 2.00611 N/m? (+5%) 
p: density 7860 kg/m? (+5%) 
y : structural damping ratio 0.0003 (+100%) 
t : thickness 0.00640 m (+0.31%) 
w: width 0.03810 m (+0.53%) 
m,: effective transducer mass 0.01385 kg (+20%) 
I: effective transducer rotatory inertia 4.24e-6 kg-m* (+20%)     
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Data Acquisition 

As with the Sandia test frame of Chapter 12, two categories of excitation 

frequency were used for sine-dwell excitation. The first was near-resonant, where a 

small force generates a large response, while the second was off-resonant, where a 

large force generates a small response. Table 13.2 below lists the 12 excitation 

frequencies used in the test, along with the category into which each frequency fits. 

Table 13.2: Excitation Frequencies 

  

    

1 15 Hz off-resonance 
2 26.25 Hz near-resonance (slightly low) 

3 28.25 Hz near-resonance (slightly high) 
4 50 Hz off-resonance 
5 90 Hz off-resonance 
6 170 Hz near-resonance (slightly low) 
7. 180 Hz near-resonance (slightly high) 
8. 250 Hz off-resonance 

9 400 Hz off-resonance 
10 450 Hz near-resonance (slightly low) 
11 470 Hz near-resonance (slightly high) 
12 530 Hz off-resonance 
  

Blocks of time-series data were acquired from the force gauge, the accelerometer, 

and the scanning laser Doppler vibrometer (SLDV) for each of the 45 data acquisition 

points, as shown in Figure 13.4. The y-axis values were picked such that data was 

acquired at FE nodes {#5, #9, #13, --, #61} (one in every four FE nodes), while 

X-axis values were arbitrarily set at {-12.7 mm, 0.0mm, 12.7 mm}. Appendix D 

describes how the SLDV was registered in space relative to the beam and how 

scanning angles were computed to hit the desired points. For each excitation 

frequency, 250 time samples were acquired at a rate of 2000 samples per second. 
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Figure 13.4: Data Acquisition Pattern 

The data was processed using an LAPACK-based [88] implementation of the sine- 

dwell statistics of Chapter 5. Three additional harmonics were fitted along with each 

fundamental excitation frequency for the purpose of detecting harmonic distortion. 

Harmonic distortion was detected in the 26.25 Hz and 28.25 Hz results, probably due 

to distortion in the amplifier system used to drive the electromagnetic shaker rather 

than nonlinear behavior in the beam. The extra information coming from the 

additional harmonics was not included in the model update process, since it failed the 

variance requirements of Eqs. (5.24) and (5.25). 

For informational purposes, a histogram of data variances (the diagonal elements 

of Var[y]) is shown below in Figure 13.5. As in Chapter 12, this plot is unnecessary 

for the data analysis, but it does show why a weighted least-squares analysis is 

required for experimentally acquired frequency response data. 

Chapter 13: The Cantilevered Beam 159



  

180P _ : ] 

160°r 

140r 

1207 a 

n
u
m
b
e
r
 

of
 
da

ta
 
po
in
ts
 

wb
 

8 
8 

8 
8 

                    
] 

dl breecetict | 
0.001 0.003 0.01 0.03 0.1 03 1 100 

Var[yJ * 10° 

Figure 13.5: Variances of Data from Cantilevered Beam 

Specifically, the ratio of the highest variance to the lowest is approximately 

27000-to-1, with the bulk of the variances covering a four order-of-magnitude span. 

This is much larger than the 100-to-1 ratio of the example presented in Chapter 3. 

These ratios, combined with the fact that 250 points were used to compute each 

variance estimate, means that a weighted least-squares formulation should be used 

with this data according to the guidelines established by Deaton et al [74). 

The reason that the histogram of Figure 13.5 is “tail-heavy” is because of a 

phenomenon known as “drop-outs” in the laser-Doppler vibrometer data. Drop-outs 

occur when the laser beam strikes an optically rough point on the surface of the 

structure, reducing the strength of the reflected laser beam. If the reflected beam 

becomes too weak, the demodulator in the laser system is unable to produce a 

meaningful velocity signal and spikes are produced in the time-series data. This 

increases the variance associated with a least-squares fit of the time-series data. 

Fortunately, drop-outs happened at only a few points on the structure. 
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Ensuring Data Quality 

In order to ensure that the frequency response data generated using the signal 

processing of Chapter 5 were valid, variance testing was performed. Data points from 

the SLDV, consisting of real and imaginary response components from each data 

acquisition location/excitation frequency combination were accepted or rejected on the 

basis of Eqs. (5.24) and (5.25). Sixteen of the 990 total data points were rejected and 

thus excluded from the Bayesian regression analysis. 

Tine-invariance testing was also performed on force amplitudes and driving point 

response components for each of the 12 excitation frequencies using the modified 

Durbin-Watson test described in Chapter 9. Table 13.3 below show the modified d, 

values computed for the fundamental excitation frequency using Eq. (5.17). 

Table 13.3: Time-invariance Testing Results 
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frequency d, for d, for d, for 
{Hz] force amopl. real(accel) imag(accel) comments 

15 1.49 1.41 2.09 inconclusive 

26.25 2.07 1.96 2.45 inconclusive 

28.25 1.67 1.51 1.86 inconclusive 

50 2.01 2.59 1.79 passed 

90 2.34 2.07 1.37 inconclusive 

170 2.47 2.26 1.93 passed 

180 1.77 1.53 1.99 inconclusive 

250 2.20 2.19 2.66 passed 

400 1.72 2.60 2.33 passed 

450 0.12 0.03 2.53 failed strongly 

470 1.38 1.64 1.74 inconclusive 
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Only 6 of the 12 sets of dynamic response data completely passed the test. Careful 

examination of the 5 inconclusive sets revealed no perceptible pattern to the residuals. 

The set corresponding to 450 Hz excitation, however, failed strongly. Figure 13.6 

below shows the force amplitudes and driving point response components from this 

particular set. Clearly, there is a trend to the data, which is probably due to a change 

in the settings of the charge amplifiers used to power the force gauge and accelero- 

meter. Insufficient time was allowed for the units to settle. As a result of this analy- 

sis, the data set corresponding to 450 Hz was discarded from the analysis. 
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Figure 13.6: Evidence of Time-Variation in 450 Hz Data 

Additionally, the data set corresponding to 470 Hz was thrown out since the beam 

was exhibiting torsional behavior at that frequency, an effect for which the beam 

elements of the FE model could not account. Thus, after the signal processing was 

complete and data points/sets thrown out, 10 complex-valued response shapes were 

available, each with 45 spatial degrees-of-freedom (minus the few DOF excluded due 
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to variance considerations). The task of model updating effectively became that of 

simultaneously fitting the 10 response shapes. 

Data acquired from the accelerometer was also included in the model update 

process. Instead of using multiple accelerometer-based ¢ vectors, an average response 

vector was computed for each excitation frequency using Eq. (5.27), where accelero- 

meter-based ¢ vectors were used instead of @ vectors). A measurement of the weight 

of the beam, 1158.5+0.3 g, was also included. 

13.2 MODEL UPDATING RESULTS 

The procedure that was used to estimate parameters for the Sandia test frame was 

used again with the cantilevered beam. Initially, only a subset of the frequency 

response data was used with a subset of the parameters; in this case, it was the first 

five excitation frequencies with parameters k,, k,, E, and p. More frequencies were 

added until all 10 shapes had been fitted, and then all 10 parameters were included. 

The SSE term of Eq. (3.17) was reduced from 4.57 x 10° to 5.20 x 10° (a factor 

of 880). 

Total computing time required was on the order of 3 hours. A small convergence 

study was performed by plugging different numbers (up to five standard deviations 

away from the priors for all parameters except clamp stiffnesses) in at the beginning 

of the process. This was performed 10 times, and the results converged to the same 

result all 10 times, although the number of iterations required for convergence 

differed in each case. 
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The results of the model update are given in Table 13.4. Unfortunately, the 

problem was so poorly conditioned without the priors that it was impossible to obtain | 

data-only results as was done for comparison purposes back in Chapters 11 and 12. 

To quantify this ill-conditioning, the condition number of the correlation matrix 

Corr[p] of Eqs. (3.5) and (3.6) was computed for the parameter estimates of 

Table 13.4. A condition number of 1.73 x 10* was obtained, which is a reasonable 

number for a ten parameter problem. If the correlation matrix is also computed for an 

estimate of Var[f] without using W, , then a condition number of 1.82 x 10'° is 

obtained, which effectively means that the system is singular, having a linear 

dependency present. 

Table 13.4: Parameter Estimates from Cantilever Beam 

    
  

  

  

  

  

Parameter prior only 95% Cul. Bayesian 95% 

k, 10° Nim 1.35 + 135.00 0.052 +0.005 

k. 10° N-mirad 2.80 +280.00 | 0.458 +0.008 

E 10° Nim? 200 +10 201.3 +2.8 
p kgim’ 7860 +393 7794 +46 
Y -- 0.030%  +0.030% | 0.020%  +0.030% 

t mm 6.40 +0.02 6.40 +0.02 

w mm 38.1 +0.2 38.1 +0.2 

mM, 9 13.85 +2.50 13.26 +0.88 

I, 10° kg-m? 4.25 +0.85 3.92 +0.84 

k, N-mirad 0.328 +0.066 0.323 +0.065   

  

      

As with the Sandia test frame model update, the lack-of-fit compensation coeffi- 

cient «, from Eq. (9.9) was used to downweight the data and to adjust the confidence 

intervals sizes. It is quite apparent from the results of Table 13.4 that prior informa- 
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tion dominated several of the parameter estimates. The five parameters t, w, y, J,, 

and k, were influenced by the priors the most, having confidence interval sizes little 

or no smaller than the original confidence interval sizes. If these five parameters are 

held fixed at their original values and left out of the analysis entirely, an identical 

reduction of the SSE term is obtained. The results for the reduced parameter analysis 

(in which parameters tf, w, y, J,, and k, were dropped) are given in Table 13.5. 

Confidence interval sizes dropped since some of the parameters that were eliminated 

had effects that were correlated with the effects of the parameters left in the analysis. 

Table 13.5: Reduced Parameter Results: Cantilever Beam 

  

  

  

        

Parameter prior only 95% C.l. | Bayesian 95% C.l. 

k, 10° Nim 1.35 +13500 [ 0052 +0.003 
k. 10* N-mirad 2.80 +280.00 | 0.458  +0.006 

E 10° Nim? 200 +10 201.4 +1.0 
p kgim’ 7860 +393 7794 +1.3 

mM, g 13.85 +2.50 13.23 +0.50       

In both analyses, the estimates for E and m, did not change significantly, but the 

confidence interval sizes did drop. This indicates that confidence in the E and m, 

estimates has been increased. The parameter p was changed significantly, improving 

the estimate of the weight of the beam. Finally, new estimates for the parameters k, 

and k, were obtained, which was the main purpose in performing the model update. 

These estimates are a considerable improvement over the crude estimates of 

Appendix E and represent a success of the Bayesian regression formulation for 

updating FE models. 
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Visualization Statistics 

As with the study of the Sandia test frame of Chapter 12, visualization statistics 

can be used to provide insight into how model predictions compare to the test data. 

Correlation coefficients and scaling factors, from Eqs. (10.1) and (10.2) respectively, 

are shown for the initial model in Figure 13.7. 
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Figure 13.7: Visualization Statistics from Initial Model 

From Figure 13.7, it is apparent that the shapes of the dynamic response predicted 

by the model are closely matched, but the relative amplitudes are not. Additionally, 

the predicted weight of the beam was 1168.3 g, a statistically significant 0.88% 

higher than the measured 1158.5 g. 
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Visualization statistics from the improved model are shown below in Figure 13.8. 

The measured response shapes again were again matched well, and the response 

amplitudes became much more accurate. The predicted weight of the beam dropped to 

1158.4 g, a Statistically insignificant 0.008% lower than the measured 1158.5 g. 
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Figure 13.8: Visualization Statistics after Final Update 

A second method by which the results can visually examined is the generation of 

response shape plots. This was impossible with the Sandia test frame of Chapter 12 

due to the limited spatial resolution of the data and the complexity of the structure. 

However, response shape plots are quite easy to generate with the cantilever beam. 

Figure 13.9 and Figure 13.10 below show measured and predicted response shapes at 

both low and high excitation frequencies. 
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Figure 13.9: Low Frequency Response Shape 
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Figure 13.10: High Frequency Response Shape 
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It is clear from the low frequency plot of Figure 13.9 that the updated FE model 

is capable of predicting the behavior of the beam quite well at low frequencies. 

However, at the highest excitation frequency, there is a slight difference between the 

measured and predicted mode shapes. In particular, the model predicts more motion 

at the clamped end of the beam than was actually measured. This reason for this 

discrepancy is unknown, but it is probably due to the clamp exhibiting wave-like 

behavior of its own at the higher frequencies. When this happens, the simple 

translational and rotational spring system used to model the effect of the clamp on the 

beam becomes insufficient. Additionally, it is possible that a defect or irregularity in 

the beam caused the assumption of uniform beam properties to be invalid. 

Model Verification 

Parameter consistency checks were performed on the Bayesian parameter estimates 

to ensure that the results were consistent with the prior information. As mentioned 

earlier, results could not be obtained for the data-only case because of extreme ill- 

conditioning present in the problem. The chi-squared statistic of Eq. (9.12) came out 

at 5.50, which is well below the critical value of X40,0.08 = 18.307 for a 10 parameter 

analysis. This means that the updated parameter estimates are reasonable and realistic, 

making sense in light of the prior information. 

A cross-validation test was perform in the same manner that the cross-validation 

test was performed for the sine-dwell results of Chapter 12. Here, the first nine 

frequencies were used to predict the response shape of the 12" excitation frequency. 

The cross-validation ratio (2) [ came out at 1.37, indicating a moderately 
ny 2 SSE 1-9 

Chapter 13: The Cantilevered Beam 169



successful cross-validation test. This means that the model can be trusted to generate 

accurate dynamic response predictions at least up to 400 Hz. No further statements 

can be made about the predictive capability of the model without additional data. 

Fortunately, there was additional data available on the cantilever beam. Early in 

the lab setup process, an HP FFT analyzer was used to roughly measure the first four 

natural frequencies of the beam. These results were compared to those computed 

using the updated modeling parameters. These results are given in Table 13.6. For 

verification purposes, natural frequency results were also computed using BEAM VI 

[94], an analysis package that can solve beam problems using both Euler-Bernoulli 

beam theory and shear deformation beam theory. The results between the FE model 

and the BEAM VI Euler-Bernoulli results match quite closely, as would be expected. 

In inclusion of shear deformation effects did not have a significant effect on the 

natural frequency estimates. The differences are quite small compared to the changes 

caused by the model update. 

Table 13.6: Cantilever Beam Natural Frequencies 
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from beam [Hz] | before update [Hz] | after update (Hz] | 

mode BEAM Vi | BEAM Vi 

measured FE model FE model Euler- shear 

Bernoulli | deformation 

1 27.20 + 0.25 30.64 27.20 27.20 27.20 

2 174.50 + 0.50 192.83 174.08 174.08 173.99 

3 476.00 + 1.00 540.64 483.64 483.64 483.08 

4 956.00 + 1.00 1058.25 915.58 915.57 913.86   
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From Table 13.6, it is apparent that the updated model predicted the natural 

frequencies of the first two modes much more accurately that the original model did. 

However, the updated model does not predict the natural frequencies of the third and 

fourth modes very accurately. Curiously, it overpredicted the third natural frequency 

and underpredicted the fourth natural frequency. As with the response shape plots, the 

reason for the inaccurate frequency predictions is not known, but they are probably 

due to wave-like behavior in the clamp or irregularities in the beam. It should be 

noted that the response shape plot of Figure 13.10 comes from an excitation 

frequency that is above the third natural frequency, which is a high enough frequency 

for the model to begin breaking down. The resulting difference between test and 

analysis can be seen in this plot. 

13.3 CONCLUDING REMARKS ON TEST BEAM 

The use of the Bayesian regression model update formulation appeared to work 

quite well for the cantilevered beam. Accurate estimates for unknown parameters k, 

and k, were obtained, which was the primary purpose of the exercise. Additionally, 

estimates for E, p, and m, were either improved or verified. The data provided 

little information on the parameters y, ¢ , w, J,, and k,, but the use of prior 

information prevented the Bayesian regression formulation from generating meaning- 

less estimates for these parameters. Indeed, leaving these parameters out of the 

analysis did not change the results, except to drop confidence interval sizes somewhat. 

Time-invariance tests were used to determine whether or not the data were 

suitable for use in the model update. Parameter consistency checks were used to 
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ensure that the parameter estimates obtained were reasonable and realistic. The cross- 

validation test was used to confirm that the model did more than just predict the 

specific data set used in the model update. 

The net conclusion of these tests was that the model could be used to predict the 

behavior of the cantilever beam up to 400 Hz. However, a study of the first four 

natural frequencies of the beam revealed that the model broke down at higher 

frequencies. The reason for this breakdown is unknown, but it is probably due to 

wave-like behavior in the clamp or irregularities in the beam. Nevertheless, for low 

frequencies, the predictive capability of the beam model was substantially improved. 
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PART V: 

Conclusions and Recommendations 
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Chapter 14: Conclusions and 
Recommendations 

14.1 CONCLUSIONS 

Comments on Model Updating 

This dissertation presented a Bayesian regression formulation for updating the 

modeling parameters used to build a finite element (FE) model. The model update 

procedure yields a model with substantially improved predictive capability along with 

Statistically-qualified estimates of the updated modeling parameters. 

With this information available, the analyst can determine whether or not the 

updated model is sufficiently correct for the modeling task at hand. If it is sufficiently 

correct, the analyst will have an improved basis on which to perform structural 

modification or optimization. If it is not sufficiently correct, the analyst knows that 

more modeling work or experimental work will be required to obtain a sufficiently 

correct model. 

Summary of Dissertation 

In Part I of this dissertation, the Bayesian regression formulation for model 

updating was introduced and placed in context with other model update formulations. 

In Part II, the complete Bayesian regression formulation was presented, covering the 

basic Bayesian regression theory, the signal processing techniques used to generate 

statistically-qualified frequency response data (both sine-dwell and FRF), and the 
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modeling techniques used to make finite element predictions of the data. Part III 

presented the numerical and statistical issues that must be addressed to develop a 

robust computer implementation of the model update process and to ensure that a 

valid model update is obtained. 

Part IV of the dissertation provided three case studies involving implementations 

of the Bayesian regression formulation. The first study, which involved the successful 

update of a beam model using simulated data, was performed to verify confidence 

interval estimation procedures. In the second study, joint stiffness and beam cross- 

section parameters in a finite element model of a steel frame were updated to improve 

its predictive capability. Good results were obtained with both sine-dwell and FRF 

data. In the third study, stiffness parameters representing a clamp holding a cantilever 

steel beam were updated, as were other modeling parameters used to build the beam 

model. Significant improvements were made to several of the parameters, while the 

Bayesian regression formulation prevented the regression procedure from generating 

meaningless estimates for the non-significant parameters. 

Contributions to the Field 

Advancements made in this work include: (1) the formulation of a true Bayesian 

statistics analysis; (2) the use of experimentally-derived statistical weights; (3) the 

development of lack-of-fit compensation procedures; (4) the matrix-decomposition 

based reformulation of the Bayesian regression problem to improve numeric condi- 

tioning; and (5) the development of time-invariance tests and cross-validation tests. 
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Final Comments 

To summarize, most of the goals of this research were met. The primary goal of 

updating finite element models with frequency response was accomplished success- 

fully. Key to this goal were the sine-dwell and FRF statistics of Chapters 5 and 6, and 

with the Bayesian regression reformulation of Chapter 8. Without these parts of the 

research, none of the results of Chapters 11 through 13 would have been possible. 

The visualization and model verification statistics also worked well, although the 

performance of the lack-of-fit compensation coefficients of Chapter 9 was not entirely 

satisfactory. 

It was discovered in the course of this research that parameter selection is 

extremely important to the task of model updating. Poor parameter selection can cause 

numerous difficulties when estimating parameters. It is also helpful to having accurate 

prior information. 

14.2 RECOMMENDATIONS FOR FUTURE WORK 

Expand Sine-Dwell Statistics 

The sine-dwell statistics presented here were formulated for unscaled real and 

imaginary components of the single frequency response. A different formulation 

would use an amplitude/phase angle representation instead of the complex number 

representation. This formulation would work better in the resonance situations where 

the complex number formulation fails (see Chapter 5). However, dealing with phase 

angle wraparound becomes an issue, and the task of computing response sensitivities 

become more difficult. Scaled sine-dwell statistics (in which the response is divided 
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by the force amplitude) would also be worth investigating, as would multi-input multi- 

output (MIMO) formulations. These formulations would enable the analyst to use data 

many different form in additional to providing for more accurate data acquisition. 

Expand FRF Statistics 

A second area of investigation concerns statistics of the FRF. Bendat [72] and 

Yoshimura and Nagamatsu [67] addressed this issue in considerable detail, but the 

effects of leakage and data windowing techniques on variance estimates were not 

addressed. These considerations would allow proper weighting matrices to be used in 

the Bayesian regression formulation, instead of the approximate weighting matrices 

used in the FRF study of Chapter 12. 

Lack-of-Fit Compensation 

Another potential area of investigation would be techniques used to compensate 

for lack-of-fit. Two data rescaling coefficients were presented in this dissertation (see 

Chapter 9). Coefficient «, clearly worked better than «, in the case studies 

presented in Chapters 12 and 13, but coefficient «, has more “philosophical appeal.” 

Resolving this difficulty might require alternative approaches to adjusting the data 

weighting matrix or even alternative approaches to computing confidence intervals. 

Incorporate Robust Regression Techniques 

The use of robust regression techniques [71] to fit time-series data coming from a 

sine-dwell test would also be worth investigating. The ordinary least-squares fit 

described in Chapter 5 works quite well for data having errors that are approximately 
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Gaussian. However, the scanning laser Doppler vibrometer (SLDV) can sometimes 

generate dropouts, which are brief duration spikes in the data having variances levels 

much greater than that found in the rest of the data. The use of robust regression 

techniques would increase the quality of the fit and reduce parameter variance esti- 

mates, allowing the data to contribute more to the Bayesian regression formulation. 

Incorporate Spatial Error 

Before a scanning LDV can be used to acquire test data from a structure, it must 

be registered in space relative to the structure. Specifically, this means determining 

the position and orientation (three translations and three rotations) of the SLDV 

assembly in structural coordinates. Earlier works by Zeng et al [95] and Montgomery 

and West [96] used a direct solution technique in which estimated ranges play in key 

role in solving this problem. Later works by Zeng [97] and Lindholm [98] use non- 

linear regression to estimate six laser locations parameters (three translations and 

three rotations). Because there are errors in the data used to estimate the position and 

orientation of the SLDV, estimates of where the laser beam measures velocities and 

the direction at which is measures can also have errors. A more complete model 

update algorithm would account for these potential sources of error. 

Use Non-Gaussian Priors 

In this dissertation, all prior information was assumed to come from Gaussian 

distributions. However, for parameters such as damping coefficients, more realistic 
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distributions such as the chi-squared or Weibull [77] might be useful, as they restrict 

allowable parameter values to positive numbers. | 

The primary disadvantage of using non-Gaussian priors is increased complexity in 

the Bayesian regression implementation. The SSE term of Eq. (3.17) would gain 

terms significantly more complicated than the squared/weighted residuals, and the SSE 

minimization would require a constrained optimization algorithm substantially more 

sophisticated than the simple parameter iteration of Eq. (3.18). 

Final Comments 

Of the recommendations for future work, incorporating spatial error is probably 

the most important. Spatial error is the most significant source of uncertainty not 

addressed in the research presented in this dissertation. The use of non-Gaussian 

priors and improved lack-of-fit compensation would also be a substantial improve- 

ments. The other recommendations are minor modifications to the Bayesian regression 

formulation that would enable the analyst to use test data more efficiently or to collect 

it more quickly. 
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Appendix A: Estimation Methodologies 

MAXIMUM LIKELIHOOD (ML) ESTIMATION 

In a regression problem, we typically have a data vector y that we are trying to fit 

using a parameter vector p. If the measurements errors are additive and come from a 

known multivariate normal distribution described by the variance-covariance Var|p}|, 

we can define a probability distribution function (PDF) for the data as a function of 

the parameter vector p,_, (which provides the true data vector y,,). This PDF is 

given in Eq. (A.1), where W, = Var™'[y]. The notation f(y|p) indicates a conditional 

probability, where we have the PDF of y given a fixed p [79]. 
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(2ary" 
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In regression, we approach this problem in reverse. Instead of knowing the true 

parameter vector p,,, and looking for possible data sets, we try to find an estimated 

parameter vector f using only the single data set that we have measured. We are 

therefore looking for the vector pf that is most likely to have given us the actual data 

that was measured, i.e., we want to maximize the likelihood function L (DY ,,24s) 

(which has the same form as f(y|p), except that f is variable while y is fixed). 

Equation (A.2) gives the appropriate likelihood function, where ¥ is a function of p. 
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Maximizing Eq. (A.2) is not an easy task because it contains a matrix exponential 

and is very poorly conditioned in regions away from the solution. However, we can 

find the maximum of L(p|y,,..,) by instead maximizing the natural logarithm of 

L(P\Y meas)~ Equation (A.3) shows this simplified objective function. 

In(L (f|y)) = -=(n,In(2m) - In(det(W, )) + (¥ meas I) Wy(¥ meas F))  (A-3) 1 
2 

Most of the terms of Eq. (A.3) are constant. To maximize L(p | Y meas)? it is only 

necessary to minimize (y,..,-¥)'W,(¥ meas J)» Which is the term minimized in 

standard weighted least-squares. Because W, is positive definite (always the case in 

statistics problems), the minimization can be easily accomplished using a number of 

different optimization algorithms. The estimated parameter vector f is known as the 

maximum likelihood estimate. 

MAXIMUM A POSTERIOR (MAP) ESTIMATION 

If we have prior knowledge concerning the parameters, we can combine this 

information with the data-based PDF to obtain results with Bayesian statistics. The 

fundamental theorem used to derive Bayes’ rule is the conditional probability 

statement given in Eq. (A.4). If we rearrange Eq. (A.4), we can generate an alternate 

form of f(b | Y meas) Which includes prior knowledge f(p), as opposed to using the 

likelihood function of Eq. (A.2). This results in the PDF of Eq. (A.5). Instead of 
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assuming a fixed parameter vector, we assume that it is a random variable, just as we 

do with the data vector. The “reversal” in thinking used with the maximum likelihood 

approach is no longer necessary. 

F(E\Y meas )F(Y meas) = F(Y meas |P) FP) (A.4) 

F(P|Y meas) = Powtl (A.5) 

Again, the PDF f(Y jas |) has the exact same form as Eq. (A.2). The PDF F(p) 

(representing our knowledge of the parameters before analyzing any data) is given 

below in Eq. (A.6), where W, = Var" [po]. The parameters are assumed to come 

from a multivariate normal distribution. The vector p, and matrix Var [Po| specify a 

set of estimated means and variances that comprise our prior knowledge. This is also 

called a priori knowledge. 
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Bayes’ theorem combines information coming from the data with the prior know- 

ledge to form the a posterior distribution. If we find the parameter vector that maxi- 

mizes the values of this PDF, we will have found the maximum a posterior estimate. 

Again, this can be accomplished most easily by taking the natural logarithm of Eq. 

(A.5), as shown in Eg. (A.7). 

In(f(p|y)) = -3[(n, +7, in(2x) - In(det(W,)) - In(det(W,) 

* (Vmeas I)" Wy (¥ meas ~ 9) * (Po - BW p(Po -B)]| - nif) 
(A.7) 
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And again, most of the terms in this expression are constant with respect to the 

parameters. Therefore, to maximize f(p|y), we need to minimize only the expression 

(Y meas 3)" W,(Y meas ~3)* (Po ~ P\'W, (Pp - P), which can be readily accomplished 

using a number of different optimization algorithms. 
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Appendix B: FFT Orthogonality 

INTRODUCTION 

In Chapter 6, a statement was made that the FFT algorithm was equivalent to an 

orthogonal least-squares fit of sine and cosine terms. This subject was also addressed 

by Zeng and Wicks [70], who reached the same conclusion. A MATLAB [90] script 

file that shows this equivalency is given below in Table B.1. 

Table B.1: FFT / Least-Squares Equivalency Script 
  

%& perform fft on random data using fft and least-squares 

n = input (‘length of vector? ‘); 
y = randnin,1) % time series data 

X = zeros(n,n); 
X(:,1) = ones(n,1); 

x = [0:(2*pi/n) : ((2*n-2) *pi/n)]'; 
X(:,2) = cos(n*x/2); 
for i = 1: (n/2-1) 

X(:,2*i+1) = cos (i*x); 
X(:,2*1+2) = sin(i*x) ; 

end 
outfft = fftly), * basic fft result 
outls = X\y, % least-squares coefficients 

& rearrange each result to get the other 

outls2 = zeros(n,1); 
outls2(1) = real (outfft (1) /n); 
outls2(2) = real (outfft (n/2+1) /n) ; 
for i = 1:(n/2-1); 

outls2(2*i+1) = real (outfft (i+1))*2/n; 
outls2 (2*i+2) = -imag(outfft (i+1))*2/n; 

end 

outls2, % least-squares coefficients coming from fft results 

outfft2 = zerosin,1); 
outff£t2(1) = outls(1)*n; 
outfft2(n/2+1) = outls(2)*n; 
for i = 1: (n/2-1); 

outff£t2(i+1) = (outls2(2*i+1) - sqrt (-1) *outls2 (2*i+2))*n/2; 
outfft2(n¢+1-i) = (outls2(2*i+1) + sqrt (-1) *outls2 (2%i+2))*n/2; 

end 
outfft2, & fft results coming from least-squares coefficients     
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In MATLAB, the apostrophe mark indicates a matrix transpose, and the expres- 

sion “p = X\y” is equivalent to “p = inv(X’*X) *X’*y”, except that a more 

efficient and accurate QR-decomposition based algorithm (described by Golub and 

Van Loan [80] and in Chapter 8) is used. 

The coefficients coming from the least-squares analysis (vector out1s) do not 

initially look like the numbers coming from the FFT (vector out ff£t). However, if 

the numbers are rearranged and rescaled as given by vectors out1s2 and out fft2, 

they are shown to be equivalent. Sample output of the MATLAB script for a four 

point data vector is shown in Table B.2. 

Table B.2: Equivalency Script Output 
  

-0.6965 
1.6961 
0.0591 
1.7971 

outfft = 

2.8558 
-0.7556 + 0.10091 

-4.1307 
-0.7556 - 0.10091 

outils = 

0.7139 
-1.0327 

-0.3778 
-0.0505 

outls2 = * based on outfft 
0.7139 

-1.0327 

-0.3778 
-0.0505 

outfft2 = & based on outils 
2.8558 

-0.7556 + 0.10091 
-4.1307 

-0.7556 - 0.10093     
  

If the matrix inv (X‘*X) is computed, it always comes out to be a diagonal 

matrix. This implies that the coefficients coming from the least-squares fit are 
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statistically independent, meaning that potential errors from one coefficient to the next 

are uncorrelated. This, in turn, means that terms coming from an FFT analysis will 

also have uncorrelated errors, even between real and imaginary parts. 

Because FFT results corresponding to a given frequency are never recombined 

with results corresponding to any other frequency during the signal processing compu- 

tations, each spectral line bin of the resulting FRF remains statistically independent 

from all other spectral lines. This argument cannot be applied to the real and 

imaginary parts from a single spectral line, since they are multiplied together during 

the signal processing computations. However, using arguments from Bendat [81], it 

can be shown that the final real and imaginary components of the FRF are statistically 

independent for the H, FRF estimator, as was done in Chapter 6. 
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Appendix C: Model Update Algorithm 

INTRODUCTION 

Chapters 3 and 8 together in effect describe an algorithm for estimating design 

parameters using a Bayesian regression approach. This appendix lists pseudo-code 

code is given below in Table C.1. 

Table C.1: Bayesian Regression Parameter Estimation Algorithm 

  

  

input: z_input (input parameter vector) 
y_meas (measured data vector) 
cy (cholesky decomposition of data weighting matrix) 
Cp (cholesky decomposition of prior weighting matrix) 
alpha (data downweighting coefficient) 

subroutines: FEM (compute response vector y hat) 
FEM _grad (compute response sensitivity matrix X) 
SSE (compute Bayesian sum-of-squares error) 

Copyright : Brian E. Lindholm, 1996. 

z_old = z_ input; 
y_hat = FEM(z_ input) ; 
X = PEM _grad(z input); 
I_n = eye(num_vars); % identity matrix 
zeros _n = zeros(num_vars, 1); * vector of zeros 
y_meas_star = {alpha * C_y * y meas; zeros_n]; 

while (not done) and (count < maxiters) 

X_star = [alpha * C_y * X_old * inv(C_p); I_n]; 
y_hat_star = [alpha * C_y * y_hat; z_old); 
step = X_star \ (y_meas_star - y hat_star); 

if (norm(step) > sqrt (num_vars) ) 
step = step / norm(step) * sqrt (num_vars); % restrict initial step 

endif 
z_new = z_old + step; count = count + 1; 
done = (norm(step) < tolerance) ; 
reduced = (SSE(z_new) < SSE(z_old); 

while not (reduced or done) 
step = step / 2; 
z_new = z old + step; count = count + 1; 
done = (norm(step) < tolerance); % test for convergence 
is_reduced = (SSE(z_new) < SSE(z_old); * test for SSE reduction 

endwhile 

z_old = z_new; 
y_hat = y_new; 
X = FEM_grad(z_new) ; 

endwhile 
return(z_old, X_star’*X_star); 

extracted from the actual MATLAB [90] script file used for this purpose. The pseudo- 
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As mentioned in Appendix B, in MATLAB the apostrophe mark indicates a matrix 

transpose, and expressions similar to “step = X\y” are equivalent to the least- 

squares “step = inv(X’*X) *X’*y”, except that MATLAB uses a more efficient 

_ and accurate QR-decomposition based algorithm (described by Golub and Van Loan 

[80] and used in Chapter 8) instead of matrix inversion. 

The algorithm given in Table C.1 utilizes line searches, parameter rescaling, and 

the QR decomposition algorithm. It is quite robust and will always converge to a 

solution, although the solution can sometimes be a non-optimal local minimum rather 

than the global minimum. 
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Appendix D: Using the Scanning LDV 

SCANNING LDV REGISTRATION 

In order to use the scanning laser-Doppler vibrometer (LDV) for data acquisition 

purposes (as was done in Chapter 13), it is necessary to register the location of the 

LDV unit in space relative to the test structure. Without this information, it is 

impossible to determine at what point on the structure data is being acquired or at 

what angle the laser beam is striking the structure. This information is required if 

predictions are to be made of what the laser beam “sees.” 

To locate the LDV in space, the laser beam was “manually” aimed at seven 

different points of known location on the structure. The scanning angle pair for each 

point was carefully recorded and used to estimate the location of the LDV in space 

relative to the structure. This was accomplished with a MATLAB-based implemen- 

tation of a registration algorithm developed by Lindholm [98] 

Once this was done, it became possible to use the registration information to com- 

pute the scanning angles required to hit other points on the structure, as also 

described by Lindholm [98]. In Chapter 13, this procedure was used to acquire data 

at points on the structure corresponding a subset of the FE model nodal points. 

Table D.1 below shows the results of the LDV registration procedure. 
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Table D.1: LDV Registration Results 

  

    

  

    

location parameter “value C.l. 

Xp 0.003 m +0.009 m 

Yo 0.587 m +0.013 m 

2 2.013 m +0.005 m 

d, -0.189 rad +0.013 rad 

d, 2.781 rad +0.006 rad 

, 2.962 rad +0.012 rad   
  

As can be seen in Table D.1, the position and rotation the LDV assembly (as 

measured in the structural coordinate system given in Figure 13.1 and Figure 13.2) 

has been measured quite accurately. There were no perceptible errors in where rays 

hit when aimed at points on the beam. 
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Appendix E: Cantilevered Beam Priors 

INTRODUCTION 

In Chapter 13, priors for several parameters had to be obtained. These included 

the effective translational stiffness k, and rotational stiffness k, of the clamp, beam 

thickness ¢ and width w, the effective mass m, and rotatory inertia J, of the 

transducers, and the effective rotational stiffness k, of the stinger. 

EFFECTIVE CLAMP STIFFNESSES 

To find the effective translational stiffness of the clamp, k,, the clamp was 

crudely modeled as a pinned-pinned beam (length 0.1 m, width 0.05 m, thickness 

0.015 m) with a load applied in the center. For a material modulus of elasticity of 

2.0 x 10'' N/m?, an effective translational stiffness of 1.35 x 10° N/m is obtained. 

For the effective rotational stiffness of the clamp, k,, the clamp was crudely 

modeled as a cantilever beam of the same dimensions. In this case, an effective 

rotational stiffness of 2.8 x 10* N-m/rad was obtained. These results were summar- 

ized below in Eq. (E.1). It should be noted that these estimates are quite rough and 

probably cannot be trusted to be accurate within even a factor of 10. Thus, confidence 

interval sizes of +10000% were assigned to these parameters. 

k, = 1.35 x 108 N/m (+ 10000 %) 
E.1 

k, = 2.8 x 10* N-m/rad (+ 10000 %) 1) 
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BEAM THICKNESS AND WIDTH 

The thickness of the beam (nominally 0.25 in.) was carefully measured with a 

micrometer at a number of locations, while the width of the beam (nominally 

1.50 in.) was measured with a tape measure. The results are given in Eq. (E.2), with 

confidence interval sizes assumed to be half the size of the smallest increment on the 

measuring devices. 

t = 0.00640 m (+0.00002 m) 

w = 0.0381 m (+0.0002 m) 
(E.2) 

TIP MASS AND ROTATORY INERTIA 

The mass of the force gauge was measured to be 23.1+0.1 2g, while the mass of 

the accelerometer was measured to be 2.3+0.1g. In a standard test configuration, 

half of the force gauge mass is isolated from the system because it is on the other side 

of the piezoelectric core of the transducer. Thus, only half of the force gauge mass is 

added to the tip of the beam, while the entire mass of the accelerometer is added. Out 

of these considerations comes the prior estimate given in Eq. (E.3) below. The broad 

confidence interval of +20% was arbitrarily picked as a safe estimate of how far the 

true effective mass of the force gauge might be away from a perfect 50% effective 

mass. 

m, = 0.01385 kg (+ 20%) (E.3) 
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A small experiment was performed (after the model update of Chapter 13 was 

complete) to obtain an independent measure of the tip mass. The test configuration of 

Figure E.1 was used. 

  

accelerometer 

electromagnetic shaker      

force gauge 

Figure E.1: Test Configuration for Effective Mass Testing 

This test yielded a effective mass (of force gauge and accelerometer combined) of 

m, = 0.0132 kg. This is somewhat lower than the estimate given in Eq. (E.3), but 

compared well with the estimate given in Table 13.4 of Chapter 13. 

The rotatory inertia was computed by assuming that the force gauge (radius 8 mm 

and height 8 mm) and accelerometer (radius 4 mm and height 9 mm) were cylinders 

of uniform density rotating about the neutral axis of the beam. Each cylinder rested 

on the surface of the beam, separated from the neutral axis by a distance of 3 mm), 

which yielded the effective rotatory inertia given in Eq. (E.4). 

I, = 4.25 x 10° kg-m? (+20%) (E.4) 

Again, a fairly broad confidence interval was assigned to the rotatory inertia 

estimate, primarily because of uncertainty about how mass is actually distributed 

within the transducers, as opposed to the assumption of uniform density. The 
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assumptions of perfectly cylindrical geometry and the rough dimension measurements 

were also potential sources of error in the estimate. 

STINGER STIFFNESS 

For purposes of estimating rotational stiffness, the metallic stinger used to attach 

the electromagnetic shaker to the force gauge was modeled as a cantilever beam with 

a@ moment applied at the end. With a cylindrical cross-section (diameter 1 mm) and a 

length of 32 mm, the estimated rotational stiffness of the stinger was computed, 

yielding the result given in Eq. (E.5). Again, a confidence interval size of +20% was 

assigned. 

k, = 0.328 N-m/rad (+20 %) (E.5) 

Appendix E: Cantilevered Beam Priors 204



Vita 

Brian Eric Lindholm was born November 8, 1967 in Jacksonville, Arkansas. His 

early childhood was spent in Chattanooga, Tennessee, while his later childhood years 

were spent in Midlothian, Virginia. He graduated from Clover Hill High School in 

June of 1986. 

He then enrolled at Virginia Tech, where he completed his B.S. degree in 

Mechanical Engineering in May of 1991. He continued at Virginia Tech and com- 

pleted his M.S. degree in Mechanical Engineering in September of 1994 and his 

Ph.D. degree in Mechanical Engineering in August of 1996. Later that month, he 

began work with the Corporate Research and Development division of the General 

Electric Company in Schenectady, New York. 

Vita 205


