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(ABSTRACT)

Let R be a commutative ring, I be an ideal in R and let M be a R/I -module. In this
thesis we construct a R/I -projective resolution of M using given R-projective resolutions
of M and I. As immediate consequences of our construction we give descriptions of the
canonical maps Ext'}t/I(M, N) — Ext%(M, N) and Tor®(M,N) - Torf/I(M, N) for # R/I-
module N and we give a new proof of a theorem of Gulliksen [6] which states that if I is
generated by a regular sequence of length r then [[72 Torf/ I(M ,N) is a graded module
over the polynomial ring R/I [X; - - - X,] with deg X; = —2, 1 < i < 7. If I is generated
by a regular element and if the R-projective dimension of M is finite, we show that M has
a R/I -projective resolution which is eventually periodic of period two. This generalizes a

result of Eisenbud [3].

In the case when R = (R, m) is a Noetherian local ring and M is a finitely generated
R/I -module, we discuss the minimality of the constructed resolution. If it is minimal we
call (M,I) a Golod pair over R. We give a direct proof of a theorem of Levin [10] which
states that if (M, ]) is a Golod pair over R then (Q%,,(M),I) is a Golod pair over R where
Y (M) is the nth syzygy of the constructed R/I -projective resolution of M. We show
that the converse of the last theorem is not true and if (Q} 1(M),I) is a Golod pair over

R then we give a necessary and sufficient condition for (M, I) to be a Golod pair over R.

Finally we prove that if (M,I) is a Golod pair over R and if a € I — mI is a regular
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element in R then (M, (a)) and (I/(a), (a)) are Golod pairs over R and (M, I/(a)) is a Golod
pair over R/(a). As a corrolary of this result we show that if the natural map = : R — R/I
is a Golod homomorphism ( this means (R/m,I) is a Golod pair over R ,Levin [8]), then

the natural maps 71 : R —» R/(a) and 7, : R/(a) — R/I are Golod homomorphisms.
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Chapter I. Introduction

We begin by defining the concept of a projective resolution of a module M over a
commutative ring R. Recall that a R-module F is called a free module if there exists a
subset {f;} of F such that every feF has a unique expression f = Y r;f; with r;eR. A
projective R-module is a direct summand of a free R-module and a projective resolution of

the R-module M is a sequence (possibly infinite) of R-modules and homomorphisms

"—’Qn:Qn—li""""QOiM"*O

such that

i) Qo, @1, ... are projective R-modules,

ii) eq is surjective and kere, = ime,11,n > 0, (i.e. the sequence is exact). We denote
the above resolution by (Q.,e.) and when Qq, @1, ... are free R-modules we say that (Q.,e.)

is a free resolution.

Using projective resolutions of the R-module M we define the projective dimension of
the R-module M as the smallest nonnegative integer n such that there exists a projective

resolution of length n as follows.
0— Qn i’ Qn-1— .. Qo i’ M-0

If M does not have a “finite resolution” as above then we say that projective dimension of

M is infinite.

The study of projective resolutions of a R-module M is sometimes useful in getting
some information about M or R. The projective dimension of M measures, in some sense,

how far M is from being projective.

For example if every R-module M has a resolution of the type

0o Q1 —5 Qo = M— 0
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then every ideal I in R is a projective R-module. Using projective resolutions of a R-module
M we define, R-modules, Tor®(M, N ), Ext}(M, N) for n > 0 which depend only on the

R-modules M and N, as follows.

Let (Q.,e.) be a projective resolution of a R-module M as above and consider the

following sequences of R-modules and homomorphisms,

ens1®1N e.®1n

v 2 Qn1®RN ——— Qun®RN ——— Qn_1®rN — ... - Qo®RrN

and

Homg(en+:,N) Hompg(e.,N)
M HomR(Qn+17N) D — HOIﬂR(Qn, N) A B— HomR(Qn—er) e HOIII(QQ,N)

which are complexes, i.e.

imep+1 ® 1§ C kere, ® 1y and imHom(e,, N) C ker (en41, N).

We now define Tor?(M,N) = Qo®rN/ime; ® 1y ~ M®gN and for n > 1 we define
Torf(M,N) =kere, ® 1y/ime 41 ® 1y

Similarly, we define Ext}(M,N) = ker Homg(eg, N) ~ Hompg(M,N) and for n >
1 Extj(M,N) = kerHompg(en+1,N)/im(e,, N)

The modules Tor(M, N) and Ext}(M, N) measure, how far the above complexes are
from being exact. They are sometimes useful in getting some information about M, N
and R. For example if Exth(M,N) = (0) for every R-module N then M is a projective
R-module.

Now assume that R is a commutative ring, I is an ideal in R and M is a module
over the ring R/I. The natural map R — R/I makes M into a R-module. We will be
considering projective resolutions of M as a R-module as well as of M as a R/I-module. We
call these resolutions respectively R-projective resolutions and R/I-projective resolutions
of M. In this thesis we construct a specific R/I-projective resolution (U ,k ) of M using
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given R-projective resolutions of M and I. As a first application of this construction we
give a description of the canonical maps

Torf(M,N) — Torp//(M, N) and Ext}, (M, N) - Ext}(M, N)

Another result which follows from our construction and some results of Eisenbud [3]
is the following theorem of Gulliksen [6]. Suppose I is generated by a regular sequence
z4,Z3,...,Z,. This means that z; is a nonzero divisor in R and the image of z; in R; =
R/(z1,...z;—1) is a non zero divisor in R;, 2 < i < r . Gulliksen’s theorem states that for
all R/I-modules M and N,

Tor.BI(M,N) = [I2, Torf/I(M, N)is a module over the polynomial ring R/I[ X1, ..., X,]
such that X; - Torf/ I(M ,N)C Torff Iz(M , N). Next we prove the following theorem which
was proved by Eisenbud [3] in the case when R is a regular local ring, (e.g.the ring of formal
power seriesover complex numbers). We show that if R is a commutative ring,] is an ideal
in R which is generated by a nonzero divisor z in R and if M is a R/(z)-module such
that projective dimension of the R-module M is n < oo, then M has a R/(z)-projective

resolution,

— Im}.x_ hp — —
o Upp1 — U — Uy > -2 Upg—>M—-0

such that for s > 0 7n_1+2, = ﬁn_l, _l-fn+2, = ﬁn, E,,H, = ﬁm l—zn+2,+1 = E,H_l.

[The above resolution is said to be eventually periodic of period 2.]

The remainder of the thesis is concerned with the applications of our construction to
the case when R = (R,m) is a Noetherian local ring (that is R is a ring with the unique
maximal ideal m and every ideal J C R is finitely generated), I is an ideal in R and M is a
finitely generated R/I-module. Let (Q ,e ) and (P ,e ) be minimal R-projective resolutions
of M and I respectively (this means, ime, C mQ,_1,imd, C mP,_;,n > 1). We then
investigate the question of minimality of the constructed R/I-projective resolution of M.
We say that (M, I) is a Golod pair over R if the constructed R/I -projective resolution of
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M is minimal. If M = R/m then we show that (M, I) is a Golod pair over R if and only if
I is a Golod ideal [8,9] . The notion of a Golod ideal was introduced by Golod [4] to study
the question of rationality of the Poincaré series of a local ring. Recall that the Poincare
series of a local ring (R, m) is the formal power series ) a,,z™ where a,, is dimension of the
R/m-vector space Torl I(R/ m, R/m) and it is said to be rational if it can be represented
as a quotient of two polynomials. Several classes of local rings have rational Poincaré series.
However Anick [1] constructed a local ring whose Poincaré series is not rational. We define
the Poincaré series of a finitely generated R-module M to be the formal power series Y b, 2"
where by, is dimension of the R/m-vector space Tor?(M, R/m) . In section 2 we give a direct
proof of a theorem of Levin [10] which states that if (M, I) is a Golod pair over R, (so that
the constructed R/I-projective resolution (U.,%.) of M is minimal), then (Qf/ I(M ),I)isa
Golod pair over R where af / I(M ) is the n** R/I-syzygy of M. We investigate the question
if (Q?/I(M),I) is a Golod pair over R is (M,I) a Golod pair over R ? Another result we
prove is that if h,(U,) C MU,_; then hy_o(Un_z) C MUn_4.

In Chapter IIT we assume we have a Noetherian local ring R and ideals J C I. We
study the relationship of the folowing properties:

i) (M,I) is a Golod pair (over R )

ii) (M, J) is a Golod pair (over R )

iii) (M,1/J) is a Golod pair (oi'er R/J)

We prove the following result in this case. If (M,I) is a Golod pair over R and if z is
a nonzero divisor in R then

(a) (M, (z)) is a Golod pair (over R)

(b) (I/(z),(z)) is a Golod pair (over R)

and

(c) (M,I/(z))is a Golod pair ( over R/(z) )

Chapter V contains the proof of the main theorem of Chapter II.
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Other than the generality of the main theorem and its consequences, our approach
leads to straightforward and elementary proofs of results that originally had less direct
proofs which usually relied on arguments requiring the use of spectral sequences.

We conclude the introduction with the basic fact that maps from projective modules
to epimorphic images lift. For completeness and clarity, we state this result without proof

(which can be found in any standard text on homological algebra).

LeMMA 0. Consider the following exact diagram of modules over a ring R.

0 0
[ I
0 —— A — B » C — 0
Tm Tpc
Py Pc
[ |
ker(pa) ker(pc)
I I
0 0

Assume that P4 and Pc are projective R-modules and let Pg = P4 |[ Pc. Then there

exists a surjective homomorphism pg : Pg — B such that the following diagram is exact.

0 0 0
I [ [
0 —— A _— B _— c — 0
TPA ‘FPB TPC
tnclusion projection

0O— P4 ——— Pp — P — 0
[ I I

0 —— ker(py) —— ker(pp) —— ker(pc) —— 0
I I I

0 0 0

Lemma 0. With the same notation as in the above lemma assume further that R is a
G-graded ring (where G is an abelian group), the R-modules A, B,C, P4, Pc are graded
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modules and py and pc are degree 0 maps, then Pg is a graded module and pg can be

chosen to be a degree 0 map.

ProoF: Note that in the above diagram pp can be replaced by themap Y a; — Y (pB(ay)),,

(ag € P§ the g** graded component of Pg).



Chapter II. General Results

Throughout this section we assume that R is a commutative (not necessarily Noethe-

rian) ring with 1, I is an ideal in R and M is an R/I-module. Fix R-projective resolutions

of M and I,
(Q.,e.) » Qn N Qn-1 b e » Qo °, M y 0
dy, do
(P.,d,) » P, + Pn_1 > oo » Py y I y 0

Our main result is the construction of an R/I-projective resolution of M

— [ — ho
s Uy — Upy —— -+ » Up » M » 0

from (Q.,e.) and (P.,d.). Not only do we completely describe the R/I-projective modules
U,. but we also provide information about the nature of the maps Fn : Upn = Upn_q and
l_lo :Uo— M.

Let Up = Qo and U; = @;. Inductively define U, for n > 2, by

Un:@Qn ]_[ (’i:[ (Pn-i-2 ®r Ui)) .

i=0
Note that, for 2 > 0, U; is a projective R-module. All tensor products will be over R unless
otherwise stated.
We now state the main theorem and present a proof in Section 4. In the case when
R = (R,m) is a local ring, M = R/m, a similar construction due to Eagon and Northcott

is given in (7).

THEOREM 2.1. Let R be a commutative ring with 1, I C R be an ideal and M be a R/I-

module. Suppose (Q.,e.) and (P.,d.) are R-projective resolutions of M and I respectively.
Let Up = Qo, U1 = Q1 and U, = Q,, H(H:::(P —i—2 ®Rr U;)) for n > 2. Then there exist

R-homomorphisms hy : U, - M — 0 and h; : U; — U;_y for i > 1 such that

A). L 7 B
....___.__;Un—)Un_l__)... ;Uo ;M ;0’

is a R/I-projective resolution of M denoted by (U.,h.), (“¢*” means R/I ®g *),
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B). The maps h,, satisfy,
(a) ho = eo, h1 = ey,

(b) for n > 2, if ¢y, is the following composition

inclusion ha ho_y
Po® Un-_2 » Un » Up-1 —— Un-2

and if ¢, is the following composition

do®lu,_, canonical tnclusion
PQUpna —— IQUp2 —— IUp3 ——— Un—2

then ¢p, = (—1)*t,, wheren = 2s orn = 2s + 1,
(c) forn > 2, hy(Uy,) = b2, (IUA-5)

(d) for n > 2 the composition

inclusion hn
n ¥ Un » Un—1

is equal to the composition

e, inclusion
Qn —_— Qn—l — Un-1

(e) for2<r<mn-1,n>3

r—2
h, (Qn ]__[ (]_I (Pp-i-2® Ui))) = kerh,_; |Q”_1 H(H"’(p”_‘._,@U,-))

=0 i=0

(f) for2 <r<n-1,n > 3 the composition

inclusion h, projection
Po.®U,_ » Uy, - Upoy —— P 10U,

isd,_,® 1y,_, : Pov®@Up2 = P v 10U,
(g) forn > 2, Y, = kerh,, has the filtration 0 C Y,,; C Y,2 C --- C Yn,. =Y, such
that

(i) Y1 = kerh, |q.,



(ii) for2<r<nYn,, = kerh, |Q T (IT:22(Pazsi-a0U))

(iii) for 2 < r < n the sequence

tnclusion projection
0 — Yn,r—l _— Yn,r

kerd,_, @ U, —— 0

induced by the exact sequence (for r = 2)

0 Qn ™ QI Pa2®Uo =2 Poy ® Up = 0

and (for r > 2),

P"J

0= Qu T (I3 (Prciz2 ® U2) ——s QuII (I3 (Paic2 ® T0)) —s Pay ® Uz =0

is exact,

(h) for2<r<mn-1,n> 4 the composition

stnclusion hn projection
wn— Upoy — P, ®U,_3

Pn—-r ® Ur-—-z

is equal (—1)"+11pn_, ®hr—2:Ppr®Us2—> P, ®U,_3,

(i) for n > 3 the composition

inclusion hn projection

P,® U, » Un » Upoy ——— Po® Upn-s

is (-1)"*!'1p, @ hpn_2 : Po® Upn—3 — Po ® Up_3s.

There is a graded version of the theorem.

TreoReM 2.1'. Let G be an abelian group, R a G-graded commutative ring with 1, I

a homogeneous ideal in R and M a G-graded R/I-module. Suppose that (Q.,e.) and

(P.,d.) are graded R-projective resolutions of M and I respectively (with degree 0 maps).

Then the conclusions of Theorem 2.1 hold with the additional requirement that the maps

hy, : U, — Un_1 and hp : Up = M are degree 0 maps. In particular

1®h, 1®ho
«« —— R/I®rU, —— R/I®rUn » R/I®r Uy - M » 0




is a G—graded projective R/I-resolution of M.

For the remainder of this paper, if (Q.,e.) and (P.,d.) are R—projective resolutions of

M and I respectively, (U.,k.) will denote the R/I-projective resolution of M

1®ho

1®h,
- —— R/IQrUn —— R/I®rUn_ » R/II®RrUp > M

given in Theorem 2.1.
We end this section with some applications of the theorem. First assume that we are

given two R/I-modules M and N. It is well-known that for each n > 0, there are natural

maps:
T, :Tor®(M,N) — Tor®/ (M, N) and

E, :Exth, (M,N) — Extjp(M,N).

Given R-projective resolutions of (Q.,e.) and (P.,d.) of M and I respectively we present

explicit descriptions of T,, and E,,. Consider the following diagram:

¢n+1®1 e,.@l
Qn+1 @rN — Qn ®RN — Qn—l ®r N

an+x®1l an@ll an-1®1l

Unt1®p i N —— Un®p N —— Un-1 ®ri1 N
hn-}-l@l h,.@l

where a, is the composition g inclusion U, canonical T, Theorem 2.1 B(a) and (d)

imply that the diagram is commutative. The commutativity of the diagram implies a, ® 1
induces a map 7, : ker (en, ® 1) — ker (A, ® 1) so that T, (im(en41 ® 1)) C im(hnyy ® 1).

Hence we get a description of the maps
T, : Tort®(M,N) - Tor®/I(M, N).

Similarly, Theorem 2.1 B(a) and (d) also imply the commutativity of the diagram

Hompg(en4:,N) Hompg(e,,N)
Hompg(@n+1,N) ——— Homg(Qn,N) «———— Hompg(Qn-1,N)
Homn(a,ﬂ_l,N)T Homn(a,,N)T Homn(a,._,,N)T
Homnll(in.ﬂ,N) Homn/x(in ,N)

HomR/I(—U-n-{—l: N) HomR/I(Un_l, N)

Hompg/;(Un, N)

10



and we get induced maps
E, : Exty (M, N) — Ext}(M,N).

Next we turn to the special case where I is a principal ideal generated by a nonzero
divisor.
THEOREM 2.2. Let R be a commutative ring, a be a nonzero divisor in R, and M be an
R/(a)-module. Let (Q.,e.) be an R-projective resolution of M and let (P.,d.) be the
following R-projective resolution of the ideal (a), 0 —» R % (a) — 0, where do(1) = a. Then
there exists an R/(a)-projective resolution, (U.,h.) of M, such that
A). Uy = Qo/aQo, U, = Q1/aQ, and forn > 2, U, = (@n/aQy) T,

B). the maps ho and hy are induced by eq and e, respectively, and, forn > 2 the composition

tnclusion — P — projection
0 — Qﬂ/aQn » Un » Upop ——m Qn_1/aQn_1

is equal to the map induced by e, : Qn — Qn-1,

C). there exists an exact sequence
0 — (ker(e;))/a(kere;) — kerhy — M — 0

D). there exist exact commutative diagrams

0 0

? I 1

0 —— (ker(e1))/a(ker(e;)) ——  ker(hy) —— M —— 0
I i
0 — Q2/aQ, L (Q2/aQ) [(To) 2= Ty —— 0

[ I I

0 — (ker(es))/a(ker(es)) ——  ker(R;)  —— ker(Fo) —— 0

[ [ [

0 0 0
11



and for n > 3,

: — P —

0 — Qn—l/aQn—l — Upy — Un-s3 — 0
TE” ‘Px.. A[T‘n—ﬂ
60 — Qn/aQn ';’ _ﬁn —p_"’ —U_n—2 — 0

I ] I
0 — (ker(en))/a(ker(en)) —— kergzn) —— ker(An_z) —> 0
I I

0 0 ‘ 0

Proo¥: Consider the following R-resolution of M

(Qre): > QnBQua— =@~ QoS M0,

Tensoring with R/(a) and noting that the R-projective dimension of R/(a) is 1 we obtain

exact sequences

0 — e7(aQ0)/(aQ1) > Q1/(aQ1) B M — 0

o Qn/(aQn) B Qno1/(Qno1) = -+ — Q3/(aQ3) B Q2/(aQ7)

Here, for n > 1, €, is induced by e,,.
The split exact sequence 0 — ker(e;) 5 e;'(aQo) > aQo — 0 induces a short exact

sequence of R/(a)- modules

0 — ker(e1)/(aker(e1)) — e*(aQ0)/(aQ1) — (aQo)/(aker(eq)) — 0

Put Up = Qo, Uy = Q1, ho = €g, and h; = e; and noting that aQo/aker(eo) = M we obtain
an exact sequence

0 — ker(e;)/(aker(e;)) — kerh; = M — 0

This proves (C).

12



Now coker(€3) = ker(e;)/(aker(e1)), hence we have the following exact diagram

0 0

[ I

0 —— ker(e;)/(aker(e;)) —— kethy —— M —— 0

I Ik

Q2/(aQ2) Uo
I [
kere, kerhg

I I

0 0

Applying Lemma 0 we get the following exact diagram

0 0 0
0 —— (kere;)/(akere;) —— kerh; — M — 0

[= % [

0 ——  QufaQ:  —— (Q2/aQa)[I(To) —— To — 0

[ T I

0 —— (kerey)/(akeres) — kerh, —— kerhg —— 0
0 0 0

This proves the first part of (D). Now assume (D) is true for n with n > 2. Thus we have

the following exact diagram

0 —  Qu/(aQn) —— Tn —s Tny —— 0

I [ |

0 —— ker(e,)/(aker(e,)) —— ker(h,) —— kerh,_; —— 0

Tzni—l TZ"_ 1

Qn+1/(aQn41) Una
13



Again applying Lemma 0 we get an exact diagram

0 —— Qn/aQ, ., U, _r, Upg —— 0
TEH+1 TZ,..H Tin—l
1 —_ P —_
0 — Qn+1/aQn+1 — Upyy — Upoy — 0

[ I T

0 —— (kerep+1)/(akereny1) L kerhny1 -, kerthn_y —— 0

[ [

0 0 0
This proves part (D) and the proof is now complete.

With the same notation as in the last theorem put X, = kereo and consider the

following exact sequence.
0 — aQo/aXo — Xo/aXo — Xo/aQo — 0

Note that aQo/aXo ~ M, Xo/aQo is the first R/(a)-syzygy of M (which we denote by Kj)

and that the following is a R/(a)-resolution of X¢/aXj.

> Qn/aQn 5 Qn-1/aQn-1 — - > Q1/aQ 5 Xo/aXo— 0

It follows easily from this, that for all R/(a)-modules N and foralln > 1, Tork/ (a)(Xo [aXo,N) =
Toer(M,N). Now rewrite the above exact sequence as 0 - M — Xo/aXo — Ko — 0.

Then applying Tor®/(3)( ,N) we get the following (well known) long exact sequence.

-+ = Torl (M, N) - Tor/)(M, N) - TorB(M, N) — TorR/®)(M,N) - - -

Note that in the above sequence the map Torfi(la)(M yN) - Torff (la)(M,N ) and
Tor®(M,N) — Tors/ (a)(M ,N) are the maps described in the next theorem and on the
page 9, respectively.

We now prove the following theorem of Gulliksen [6].
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THEOREM 2.3. Let R be a commutative ring, I be an ideal in R generated by a reg-
ular sequence zi,...,&, , and let M and N be R/I-modules. Then Tor.F/I(M,N) =
[ ol Torf/I(M, N) is a graded module over the polynomial ring R/I[X,, ..., X,] such that

deg X; =-2,1<i<r.

Proor: Let (Q.,e.) be a R-projective resolution of M and let (P,,d.) be the R-projective
resolution of I given by the Koszul complex. Thus P is a free R-module with a basis
fiy..y fr such that do : Pp — I maps f; to z;,1 < i < r. Now let (ﬁ,,ﬁ) be the R/I-
projective resolution of M given by Theorem 2.1. Note that

hn ho
s U — s Uy e Up — s M —— 0

is a lifting of the resolution (U, &.) to a sequence of R-modules and homomorphisms in the
sense of Eisenbud [3]. Let t? : U, — Uy_3 be the projection defined by t?(x, ..., %, > f; ® v/ _,) =
(-1)*u}_,,ifn=2sorn=2s+1and?; : Up — Upn_3 be the map induced by t?,1 < i < r.
Since the map d; : P; — Py is the zero map (”-” denotes mod I) it follows from Theorem
1.1 B(e),(i) that ¥ = (7) is a chain map of degree -2 on (U ,%.),1 < i < r . This means,
Bn_z0tr =T " ohn_y. The chain maps 7' induce maps of degree -2 on Tor.B/I(M, N') which
commute and are well defined by the results of section 1 in the cited paper of Eisenbud.

Since every module V' over a commutative ring R can be treated as a module over the

polynomial ring R[X;, ..., X,] with X;V = (0), 1 < i < r, we have the following corollary.

CoROLLARY 2.4. If V is a module over a commutative ring R then for every r > 1, and for
all R-modules N, Tor.B(V,N) = [[%2, Tor,(V, N) is a graded module over the polynomial
ring R[X,, ..., X,] with degX; =-2,1<i<r.

The next application generalizes a result of D. Eisenbud [3] where he assumed R is a

regular local ring.

ProrosITION 2.5. Let R be an arbitrary commutative ring with 1. Let a € R be a nonzero
divisor and suppose M is an R-module such that aM = (0). Suppose the R-projective
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dimension of M is < d, with d > 1, and

eq €4-1 €0

0 — Qq + Qd-1 —— -+ —— Qo » M » 0

is an R—projective resolution of M. Consider the R—projective resolution 0 — R = (a) — 0
of the ideal (a). Then the R/(a)-projective resolution, (U.,k.) of Theorem 1.1, is eventually

periodic of period 2. More precisely, there are natural isomorphisms
*

— . [ Ua_1, ifk is an odd nonnegative integer
Vatk=q & oy .
Ua, if k is an even nonnegative integer

Viewing these isomorphisms as identifications then

- hy_1, ifk is an odd nonnegative integer
hayi = oy .
hq, if k is an even nonnegative integer
Proo¥F: Since a is a nonzero divisor and aM = 0 it follows that the R—projective dimension
of M is at least 1. Thus d > 1. For k = 0 the result is immediate. Assume k > 0. Since

Q,=0if s>d+1and P, =0 for t > 1 we see from the definition of U, that

Uissk = Po @R Udk-2

Since Py = R, the first part of the result follows. Finally, recall Theorem 2.1 B(i) which

states

tnclusion hn projection
Po®r Un—3 — Upn » Uno1 ——— Po®rUn-3

is1®hyn o : Ph®rUpn_s = Po®r Up_a for n > 3. But in this case, the inclusion and
projection are the identity maps. Using the identification of U,._, with P, @ g Up,_2 the

result follows.

Next we prove a result which, in the local case, follows from [11], (although our approach
is different). Recall that if M is an R-module and (Q.,e.) is an R-projective resolution
for M we say the Poincaré series of M with respect to (Q.,e.) has polynomial growth if the
minimal number of generators of @,, is bounded by a polynomial in n.
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ProrosITION 2.6. Let R be a commutative ring with 1 and let I be an ideal generated by
a finite R—sequence. Suppose M is an R/I-module which has an R-projective resolution
whose Poincaré series has polynomial growth. Then there is an R/I-projective resolution

of M whose Poincaré series also has polynomial growth.

Proor: By induction, it suffices to show that the result holds if I is generated by a

nonzero divisor @ € I. Then I has an R-projective resolution 0 — R b, 1 S 0.

SuPPOSE...__.__.)Qn—;Qn_.l > e e e ;Qo ;M__,OisallR“‘

projective resolution of M. Let ¢, be the minimal number of generators of ), and suppose

that {g,}3%, has polynomial growth. By Theorem 2.1 there is an R/I-projective res-

olution y Ta ho = » To y M o such that

—_—) Uﬂ—l —_— v e

Un 2 R/I®R U, where Up = Qo, Uy = Q1 and U, = Qn ® Un—z. Thus if u,, is the number
of R/I-generators of U, then uo = qo, ¥; = ¢; and u, = ¢ + Un_z for n > 2. It follows

that if {g.}22, has polynomial growth then so does {u,}32,.

We end this section with some remarks on the injectivity of the maps T}, in case R
is a local ring. Let (R,m) be a local Noetherian ring, I an ideal in R and M an R/I-
module. Suppose (Q.,e.) and (P.,d.) are minimal R-projective resolutions of M and I
respectively. Let (U.,h.) be the R/I-projective resolution of M construct.ed in Theorem
1.1 with U, = R/I®RU, where Us = Qo, Uy = Q1, and U, = Q. [] (]_[;;‘:(P .2 ®R U,-))

for n > 2. We have the following interpretation of the injectivity of the the maps
Ty : Tor®(M, R/m) — Tor?!(M,R/m) .

We have Qf (M) = ker (e0)/IUo and Qf /(M) = h;1,(IUn-3)/(IUn-1), for n > 1
where Q% (M) is the n** syzygy of (U.,h.) (see Theorem 2.1).

Thus Tore!'(M, R/m) = Up/(mU,) and for n > 1, Torr! (M, R/m) =
h;Y(mUn-1)/(hn+1(Un+1) + mU,). Furthermore, for n > 0, Torf(M,R/m) = Qn/(MQy)
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and T, is defined by

Tn(Qn + an) = (q'm 0’ Y 0) + hn+1(Un+1) + mUn

where ¢, € Qn, for n > 1. Now T) is an isomorphism and 7} is injective if and only if
ho(U;) C mU;. For n > 2, T, is injective if and only if for every u,,; € Upn4; such that

hnt1(tnt1) € Qn [I(m(I1255 Pa-i-z ®r Us)) we must have hny1(unt1) € mU,.
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Chapter III. Applications to Local Rings: Golod Pairs

In this chapter we assume R is a Noetherian local ring with maximal ideal m. All
modules will be assumed to be finitely generated. If I is an ideal in R and M is an R/I-
module, we let Th = m/J and assume we are given R-projective resolutions (Q.,e.) and
(P.,d.) of M and I respectively. The basic question we consider is:

When is the R/I-projective resolution of M, (U.,h ) of Theorem 2.1 minimal?

We say (M, I) is a Golod pair over R if (U.,h.) is a minimal R/I-projective resolution
of M. We will shortly see that if M = R/m then (M,I) is a Golod pair if (and only if) I
is a Golod ideal.

If X is an R-module we let v(X) denote the minimal number of generators of X.

Recall that if ... __, g _* i S x — pisan

> Sp1 ——
R-projective resolution of X then the Poincaré series of X with respect of (S., f.), P&(X),
is

(>

) u(Si)7
i=0
where z is an indeterminant. If (S., f.) is a minimal R-projective resolution of X, we will

sometimes denote P&(X) as simply PR(X) and call it the Poincaré series of X.

From the description of Uy, U; and U,, in Theorem 1.1, it is easy to prove

P&.(M)

R/I _
5. M) = 1R

T.
Since 0 - I — R — R/I — 0 is exact, if we let P'. be

dn
+-— P, —— P, » Pp — R + R/I » 0

then we obtain,
P§.(M)

R/, p oy
Pg. (M) =
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If we have formal power series 3> ( a.2" and > > b,2", and if for n > 0, a, < by, we
write this as follows.

[ <] oo
Zanz" < anz"

n=0 n=0

. With the above convention, by the previous calculation we have shown

THEOREM 3.1. (Gover and Salmon [5])

PR(M)
PRIT(M) < T+ 2= 2PE(R/T)’

We see that our definition of Golod pair in the case M = R/m is the same as in the
literature [8,9]. Namely, if M = R/m, the following are equivalent:
(@) PR/I(M) = PR/ ().

(ii) (U.,R) is a minimal R/I-projective resolution of M.
(i) PRI(M) = 2okt
(iv) I is a Golod ideal.

Much of the literature in the area is concerned with the case when M = R/m. As
remarked above, in this case (R/m,I) is a Golod pair if and only if I is a Golod ideal.
Levin [8] showed that for n sufficiently large, m™ is a Golod ideal. Shamash [11] proved
that (M, (a)) is a Golod pair if a € mANN(M) where AN N(X) denotes the R~annihilator
of X. When M = R/m, this result was proved by Tate [12]. Avramov [2] has shown that if
z is a nonzero divisor in R and I is a proper ideal then (R/m,zI) is a Golod pair. Before
constructing new Golod pairs we make some preliminary observations.

Our first result is immediate from the definitions.

LEMMaA 3.2. Let (R,m) be a local Noetherian ring and I an ideal in R. Suppose M; and
M, are R/I-modules. Then

(i) (M1,I) and (M,,I) are Golod pairs if and only if (M, ][] M.,I) is a Golod pair.
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(ii) (R/I,I) is not a Golod pair and hence if (M,I) is a Golod pair then M; has no nonzero

free summands.

.ProposITION 3.3. Let (R,m) be a local Noetherian ring, I an ideal in R and M an R/I-
module. Suppose (Q.,e.) and (P.,d.) are minimal R-projective resolutions of M and I
respectively. Let (U.,h.) be the R/I-projective resolution of M constructed in Theorem
1.1 with Up = R/I@RUn where Uo = Qo, U1 = @1, and Un = Qu II (11223 (Pai-2 ®r Us))
for n > 2. Then the following statements are equivalent:

(i) (U.,h.) is a minimal R/I-projective resolution of M.

(ii) IUy C mker (ho), hnt1 : Uny1 — h;1(IUn-1) is an R—projective cover and

IU, C mh Y (IUn_y) forn > 1.

(iii) hp(U,) C TUy—y forn > 1.
(iv) hn(Un) C mUy,_y forn > 1.

(v) a. hy(U;) C mUj.

b. for2<r<n-1andn?>3.

(ol [soe) o o))

1=0

c. forn >3, hn(Po ® Un-2) C mUp_;.
Proor: The equivalences of (i), (ii), (iii) and (iv) are immediate from Theorem 2.1 and the
fact that h, = 1p /1® hs. The equivalence of (v) with (i) follows from Theorem 2.1B(e) and
().

The next result is not surprising.
ProrosiTioN 3.4. If (U.,h.) is a minimal R/I-projective resolution of M then (Q.,e.)isa
minimal R-projective resolution of M and (P.,d.) is a minimal R—projective resolution of
1.

Proor: Suppose that (U.,%.) is a minimal R/I-projective resolution of M. By Proposition
3.3 (iv), hn(Un) € mU,_;. In particular, by Theorem 2.1B (a) and (d) we must have that
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en(@n) C mQ,_; for n > 1. Hence (Q.,e.) is a minimal R-projective resolution of I. The
minimality of (P.,d.) follows from this and the construction of the resolution (U.,%.), (cf.

Section 4).

We now present a new proof of a theorem of Levin [10].

THEOREM 3.5. Let (R, m) be a local Noetherian ring. Suppose (M,I) is a Golod pair and
(U.,h.) is a minimal R/I-projective resolution of M. Then for n > 0 (Q’I‘J}(M),I) is also

a Golod pair, where ﬂ'l‘i'}';(M) is the (n + 1)* R/I-syzygy of M.

Proor: Let (U.,h) be the R/I-minimal resolution of M constructed in Theorems 2.1 and

2.2. Then

— zn+m+l —— zn+1 f— T4l
1
i — Un+m+1 E— n+m e » Un+1 B ?371'(M) — 0

is a minimal R/I-projective resolution of Q'I‘J}M , where 7,4, is the map induced by ﬁn“.

We now construct a minimal R-resolution of Q';/'} (M). Let Vo = Unt1, Vi = Up42 and

Vin = Qn+m+1 H(H?:O Pm+n—i—1 ®r Ul.) for m > 2.

Consider

fon fo
> Vin > Vin-1 > .o > Vo — Q';J}(M) —s 0 (*)

where fo: Vo — Q’;/‘II(M ) is the canonical composition

— Tnt1
Unt1 —— Unp1 —— Qff1(M)

fi : Vi — Vois hpya : Uny2a = Upyq and, for m > 2, f, : V,,, = V-1 is the map
induced from hpyint1 IQ,.+,..+; I
B(e), im(hmin+1 [v.) € Vin-1.

Now for n > 2, the exactness of (*) follows from Theorem 2.1 B(e). For n = 1

Pryo-i-1®aU:)’ Vin = Um4n since, by Theorem 2.1

Qg /I(M ) = kereg/IQo and again the exactness of (*) follows from Theorem 2.1 B(e) and
from the fact that fo = Q1 — kere;/IQo is induced from e; : @; — Qo. Thus (*) is an
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R-projective resolution of QB’;}(M ). Furthermore, Proposition 3.3 implies that (*) is a
minimal R-projective resolution of Qg}'}(M )-

To prove that (Q;J/’II(M ),I) is a Golod pair, we must show that the R/J-module resolu-

tion (W, A.) of Q'}‘:/'} (M) induced from (V ., f.) and (P.,d.) yields a minimal R/I-projective
resolution of M. So, by Theorem 2.1 and the remarks at the beginning of the section, we

must prove W, = R/I®RVim [T 52 (Pm-i-2®8&W:)) = Um4nt1, m > 2 where Wy = Vo,

1=

W1=Vla.nd

m-—2

Wi = Vin ®r (| | (Pm-i-2 ® W2)).
i=0

We proceed by induction. Since Vo = Upny1 and Vi = Up42 we see that Wo = ﬁ,.“

and W, = -Ifn.n. Assuming W; 2 Uy, ;11 we have

Won =Vou [ (L] (Prcicz ® W)

=0
n m-—2
2Qn+m+1 ]_I(I_I Pryn—i-1 ® U;)) ]__I( LI (Pm—-i-2 ® Unytit1))
=0 1=0
=Um+n+1

This completes the proof.

As a corollary to the last theorem, we obtain another characterization of Golod pairs.

CoRoLLARY 3.6. (M, I) is a Golod pair if and only if the n*®-syzygy of the resolution (U.,h.)

has no nonzero free summands for n > 0.

ProoF: Assume that (M, I)is a Golod pair. It follows from the last theorem that (QZ/I(M), I)
is a Golod pair. Thus, by Lemma 3.2(ii), % ,;(M) has no free summands.

On the other hand, if 0%, ;(M) has no free summands then the resolution (U.,k.) is
minimal. Hence (M, I) is a Golod pair.

Before investigating the converse of Theorem 3.5, we apply the remarks following The-
orem 2.1. It is clear from the construction of the maps that if (M, I) is a Golod pair then
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Tn : TorR(M,R/m) — Torf/I(M, R/m) is injective for n > 0. It follows from this and

Theorem 3.5 that if (M, ) is a Golod pair then for m > 1, ¢ > 0 the natural maps
T : Torf(QF (M), R/m) — Tor/!(QF, (M), R/m)
are injective. Coversely, Levin [10] proved that if
T : Tor®(M, R/m) — Tor®/!(M, R/m)

and

T3 : Tor®(Q (M), R/m) — TorB/(Q (M), R/m)

are injective for n > 0 then (M, ) is a Golod pair.
K T, : Tor?(M,R/m) — Torf/I(M, R/m) is injective then for n > 2 the image of the
following composition

inclusion hy

Q,.]_[(P —2@rUp) —— Up —— Un

is contained in mU,_; (or, more precisely, in m@Q, -1 [[(mP,-3 ®r Up) [] 0 ]_l . ]_[0 -
(S ————

n-3

Un-1)- In particular, we see that the R-projective resolution (*) of 0}, /I(M ) constructed
in Theorem 3.5 is minimal. If T, : Tor?(R/m, R/m)) — Torf/I(R/m, R/m) is injective
for all n > 0 then Avramov [2] calls I a small ideal. Thus, if I is a small ideal then we
have an explicit R-projective resolution of Q}{ / ;(R/m). Although the converse of Theorem
3.5 is false in general, (see remarks after Corollary 4.4 in the next section), the next result

provides a special case where the converse holds.

THEOREM 3.7. Let (R, m) be a Noetherian local ring, I an ideal in R and M an R/I-module.

Suppose (Q.,e.) is a minimal R-projective resolution of M and (P.,d.) is a minimal R-

projective resolution of I. Let K denote Q}, / 7(M). Then

(1) there is an R-projective resolution (Q'.,e'.) of K = ker(1® eg) : (R/I) ®r Qo —
(R/I)®Rr M) such that Qy = Q1 and fori > 1, Q! = Qi41 [1(Pi-1 ®r Qo), and
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2 ,I) is a Golod pair if and only i ,I) is a Golod pair an .,€'.) is a minima
(2) (M,I) is a Golod pair if and only if (K,I) is a Golod pair and (Q'.,¢'.) i inimal

R-projective resolution of K.

ProoF: The proof of part (1) follows immediately from (*) in the proof of Theorem 3.5. If
(M,I) is a Golod pair, it also follows from the proof of Theorem 3.5 that the R- projective
resolution (Q'.,¢'.) of K in (1) is minimal and that (K,I) is a Golod pair.

Finally, suppose that (K,I) is a Golod pair and (Q’.€’.) is a minimal R-projective
resolution of K. We wish to prove (M, I) is Golod pair. We prove this using Poincaré series
and equivalence of (M, I) being a Golod pair with P*/I(M) = PR(M)/1 + z — zPR(R/I).

We have PR/I(M) = v(Qo) + zPE/I(K). By assumption that (X, ) is a Golod pair, we get

PRI(M)
_ 2PR(K)
\ =(Qo)+ 75 2PR(R/I)
_¥(Qo) + v(Qo)z + 2(PR(K) — v(Qo)PR(R/I))
14z - 2PRE(R/I)
=v(Qo) + v(Qo)z + 2[(v(Q1) — v(Qo) +v(Q2)z + 1;(Q3)z2 + -]
1+ z - 2PR(R/I)

___ PRM)
1+ z-2PR(R/I)

where the third equality follows from (1). Hence (M, I) is a Golod pair.

CoroLLARY 3.8. Let (R,m) be a Noetherian local ring and M an R-module. Suppose
Q _" , M is a projective cover of M and K = kerm/zQ where z € ANN(M) is a
nonzero divisor in R such that zQ € mkerx. Then if (K, (a)) is a Golod pair then (M, (a))

is a Golod pair.
ProoF: Let (Q.,e.) be a minimal resolution of M. Then, since zQq is a projective R-

module, the following short exact sequence splits

0 —— kere; —— e} (zQo) =, zQo —— 0.
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It follows that we get a minimal R—projective resolution of K of the form

€q (e.,O) e
— Q4 » Qs — @2:][1Q0 — @1 —— K —— 0

where e} : Q2 [] Qo — Q1 is given by ¢’ = (egz) where g is the
inclusion

composition Qo . CII(EQO) » Qs with the first map being an isomorphism

Qo — Qo and then splitting of e;. The result now follows from Theorem 3.7.

The next result provides an interesting property of the R/I-resolution of M, (ﬁ.,ﬁ.).

PropositioN 3.9. Let (U.,h.) be the resolution of M constructed in Theorem 2.1 and let
m = m/]. If for some n > 2, E,,(ﬁn) Z ™lU,_, then 71,,...2(?,,4,2) 74 ﬁﬁ,ﬂ.l. Hence
if E(ﬁn) C mU,_; then ﬁn_z(ﬁn_z) C mU,-3 (where U, = M). In particular if

ﬁn(vﬂ) g Eﬁn_l and E-1(Tjn_1) g Eﬁn_z theu

— By —
Upoy — Upg —— +++ —— Ug — M —— 0

is the beginning of a minimal R/I-projective resolution of M.

ProoF: Suppose ﬁn(ﬁn) z mU,_;. It follows from Theorem 2.1(i) that the following
composition

P.anU inclusion — hnyz — projcctioz Po®rUn_:
ety — Untz — Unna " I(Po®rUn-1)

is +1pg ® hy,,, (where 1po ® hy, is the map induced by 1po ® hy, : Po ®r Un — Po ®r Un—1).

Hence
———( Po®rUn ) __< Po®R Un-1 )
1P0 ® hn [ g _F08RUn-1 )
P h"(I(P0®RUn) I(Po ®g Un-1)

In particular I—z,,+2(7n+2) ¢ ™Un41. The other implications follow immediately from this.

We now note the following result.

ProposITION 3.10. Let R be a Noetherian commutative ring (not necessarily local), I C R
be an ideal and let M be a finitely generated R/I-module. Let (Q ,e ) and (P ,d ) be R-free
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resolutions of M and I repectively. Let (U, h.) be the R/I-free resolution of M given by
Theorem 2.1. Choose bases B,, of the free modules U,, and suppose that hy, : Uy, — Up_; is
represented by a matrix [z7;] over R/I relative to these bases. Then the ideals J, = (z7;) in
R/I satisfy, J; C J3s C ..., and J; C J4 C ... . In particular if J° = Up, oddJIn, J® = Un cvendn
and if J = J°+ J° is a proper ideal then for each prime ideal p D J, the (R/1 )-projective
resolution (V.,k.) of M,, obtained by localizing the resolution (U.,h.) at p is minimal. In

particular (M, I,,) is a Golod pair over R,,.

ProoF: The first part of the proposition follows from Theorem 2.1 B(i). The second part

is obvious.

Unfortunately, the next example shows that we may have

— haoi h

hn—z
Upoiy —— Upg —— Q’I‘J}(M) — 0

a minimal R/I-projective presentation of ﬂ’l‘tﬁ(M ) and yet the resolution (U.,A.) of The-

orem 2.1 need not be minimal.

Example 3.11 Let R = K|[[z,y]] be a power series ring in two variables over a field K.

Let M = k and I = (2%,y%). A minimal R-projective resolution of M is 0 — A?R —

R? - (2%,y%) - 0. Thus Up © R, U; & R?, U, = A2R?[[(R? ®r R) and Us = (R? ®r

RY)II(A*R ®g R). In particular Uy is rank 1, U; is rank 2, U, is rank 3 while Us is rank 5.
Since the minimal R/I-projective resolution --- —» V3 — V3 —» V; — Vo » K —

0 of K has the property that the minimal number of R/I-generators of V; is i + 1 we

see that T, ks 7, b To v K ' 0 is part of a minimal R/I-projective
resolution of K while Ts hs , s hs y To v K , 0 is not.

We conclude this section with some remarks about construction of a minimal resolution
and about the Poincaré series in a special case. It follows from a theorem of Levin ([9], Thm
4.6, page 61) that for n >> 0, (R/m""!,m") is a Golod pair. Choose minimal projective
R-resolutions (Q.,e.) and (P.,d.) of R/m"~! and m™ respectively. Since (R/m"~!, m") is

27



a Golod pair, we have
T; : Tor}(R/m""', R/m) — Torf/m"(R/m -1, R/m)

is injective for j > 0. The following R-projective resolution of 2} /m,,(R /m*1) 2 mr-1/m"
is minimal
oV B Vit = - 5 Vo = O e (R/m™Y) = 0

(see (*) of Theorem 3.5). Recall that Vo = Q1 and V; = Qm+1 [[(Pm-1 ®r Qo) &
Qm+1 ]I Pmn—1. Thus we have a new construction of a minimal R-projective resolution
of a vector space of dimension dimp/py(m"™~!/m"). It follows that if P®(x) denotes the

Poincaré series of * in the indeterminate z, then

dimp/m(m™ ! /m*)PE(R/m) = PE(m"?) + zPR(m").
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Chapter IV. Further Results and Intermediate Ideals

In this section we continue to assume that (R, m) is a Noetherian local ring. If J C I
are ideals and M is an R/I-module, we consider the relationship of the following three
conditions:

(i) (M,I) is a Golod pair (over R)
(if) (M, J) is a Golod pair (over R)
(iii) (M,I/J) is a Golod pair (over R/J)

Gover and Salmon [5] showed that if I; C I, C --- C I, is a chain of ideals in R and
Z1,:,Zn is a sequence of elements in R such that z; is R-regular and for j = 2,---,n, z;j is
R/(z1L1 4+ - - -+ zj_1Ij-1)-regular then, setting k = R/m, (k,z15, + - -+ z,1,) is a Golod
pair over R. In particular, for 2 < r < n, (k,z151+---+2,I.) and (k, 211+ -+ 2,_11,_1)
are Golod pairs over R and (k, (211 + - -+ 2,.L.)/(z1]1 + - - - + 2,-11r_1)) is a Golod pair
over R/(z1Lv + -+ + 2p—11_y).

If X is a finitely generated R-module, we let v(X) denote the minimal number of

generators of X.

ProrosITION 4.1. SupposeJ C I C m C R and M is a finitely generated R/I-module such
that

(i) (M,I) is a Golod pair over R

(ii) (M,J) is a Golod pair over R and
(iii) (M,1/J) is a Golod pair over R/J.

Then v(I) = v(J) + v(I/J).

Proor: Suppose (Q.,e.), (P.,d.) and (P’.,d’.) are minimal R-projective resolutions of M, I
and J respectively. Suppose that (P.,d.) is a minimal projective R/J-projective resolution
of I/J. Using (Q.,e.) and (P’.,d'.), we apply Theorem 2.1 to get an R/J-resolution (U’., h’.)
of M. By hypothesis, (U’.,h'.) is minimal. Note that Uj = R/J ®r (Q2 [[(Ps ®r Qo))
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Using (U’.,k'.) and (P.,d.) we apply Theorem 2.1 to get an (R/J)/(I/J) ~ R/I-projective

resolution (U.,k.) of M. By hypothesis (U.,A.) is minimal. Note that

U, = (R/J)/(1/7) ® g1 (U3 | [(Po ®ry1 Ug)]

~ (R/1)/(1/J) @ry1 [R/T ®r [Q2 ] [(Ps ®r Qo)I | [[Ro ®r/1 (R/T ®R Q)]

Thus v(02) = v(Q2) + v(PL) - v(Qo) + v(Po) - v(Qo).
Finally, using (Q.,e.) and (P.,d.), we apply Thoerem 1.1 to obtain an R/I-projective

resolution (U.,h.) of M. Bj hypothesis (U., ) is minimal. Note that

U, =R/I®R(Q: ]_[(Po ®r Qo))-

Thus v(T3) = v(Q2) + v(Po) -v(Qo). By minimality of the resolutions, we conclude v(U;) =
v(U3) and hence v(Po) = v(P}) = v(Po). Again, by minimality of the resolutions (P.,d.),
(P’.,d".) and (P.,d.) we have v(Po) = v(I), v(P}) = v(J) and v(P,) = v(I/J) and we are
done.

In general the converse is not true. The next result is a partial converse for the case

where J is a principal ideal generated by a nonzero divisor of R.

THEOREM 4.2. Let (R,m) be a local Noetherian ring and (M,I) a Golod pair over R. Let
Z1, -, &4, 8 > 1 be a minimal set of generators of I and assume z, is a nonzero divisor in
R. Let J = (z1). Then

(i) (M, J) is a Golod pair (over R).

(ii) (I/J,J) is a Golod pair (over R).
(iii) (M, 1/J) is a Golod pair (over R/J).

ProoF: Let (Q.,e.) and (P.,d.) be minimal R-projective resolutions of M and I respec-
tively. Since (M,I) is a Golod pair, applying Theorem 1.1, we obtain a minimal R/I-
projective resolution (U.,h.) of M. We have v(Uo) = v(Qo), v(U1) = v(Q;) and, for
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n—2
v(Tn) = v(@n) + Y v(Paci—2)v(T5).

i=0

Next we construct an %:—:%—projective resolution of M, (V.,%k.). For this we need an
R/(z1)-projective resolution (W.,l.) of M and an R/(z1)-projective resolution (X.,m.) of
I/(1)-

Consider the short exact sequence 0 — (z,) — I — I/(z1) — 0. Choose a generating
set 1, -, ¥s of P such that dp(y;) = z;. Then we have the following commutative diagram
with exact rows and columns.

0 0 0
IS S R

o e e

0 — (y1) — Po —— Po/(y1) — O

[ I

0 —— 0 —— kerdg —— kerdy —— 0

[ [

0 0

~—r

Since Po = (y1) I Po/(y1), we see kerdg ~ kerdj. Thus we have a minimal R-projective

resolution (P’'.,d'.) of I/(z,) with v(P]) = v(Po) — 1 and v(P;) = v(F;) for i > 1. Using

0 y R 1, (z;) —— 0as the minimal R-projective resolution of (z;), we apply

Theorem 1.1 to (Q.,e.) to obtain a R/(z;)-projective resolution (W.,l.) of M and apply

Theorem 1.1 to (P’'.,d'.) to obtain an R/(z;)-projective resolution (X.,m.) of I/(z,). We

have that

(a) v(Wo) = v(Qo), v(W1) = v(Q1) and for n > 2 v(W,) = v(@n) + v(Qn-2) + - - - and

(b) v(Xo) = v(Pg) = v(Po)—1, v(X;) = v(P]) and for n > 2 v(X,,) = v(P.)+v(Pl_,)+---
Apply Theorem 2.1to (W.,1) and (X.,m.) to obtain an R/(z,)/I/(z1) ~ R/I-projective

resolution (V.,k.) of M. Since if V,, = R/(z1)/1/(21) ®r/(z) V then Vo = Wy, Vi = W,

31



andforn>2V, =W, ]_[(I_[;‘____o2 Xn—i-2 ®R/(z,) Vi) we get the formulas
v(—v.o) = ‘U(Wo), ‘v(_V-]_) = v(Wl)

and for n > 2

n—-2

v(Vy) = v(W,) + ZU(X —i—2)v(VQ).

i=0
Since (U.,A.) is a minimal R/I-projective resolution of M, to prove (M,I/(z,)) is a Golod
pair over R/(z,), it sufficies to show v(V,,) = v(Uy). Once this is done, by Proposition 3.4,
it will follow that both (W, l.) and (X.,m.) are minimal R/(z;)-projective resolutions and
hence both (M,(z;1)) and (I/(z,),(z1)) are Golod pairs.
It is easy to verify that v(V;) = v(U;) for i < 4 directly. We finish the proof by
induction. Assume v(V;) = v(U;) for i < n, and n > 4. We prove v(V,,) = v(U5,).

Consider v(V,,) — v(TUs,).

”(V-n) - "(D:n)

n—2 n—2
=U(Wn) - v(Qn) + zv(X _;_2)1)(7;) - Z:v(Pn_;_z)v(ﬁ;).

By induction we conclude

”(Vn) - "(ﬁn)

=o(Wa) = 0(@) + Y (o(Xi-z) ~ o Pai-a)o(T)
By (a)
”(Vn) - ”(ﬁn)
=(v(Qn—2) + v(Qn—4) +-- ‘) + Z[”(Xn—i-—Z) - V(Pn-i—z)]‘v(ﬁi)

+ [v(X1) — »(P1)]o(Un-3) + [v(Xo) — v(P1)]o(Un-2).

Now v(X;) = v(P;) and v(Xo) — v(Po) = —1. Furthermore, for n > 4, v(Xn—i—2) —
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v(Pp_i-2) = v(Xn_i-4). Thus we have

”(vn) - v(ﬁ,,)
n—4
=(v(Qn-2) + v(Qn-4)+--) + Z[v(xn-i—Z) - U(Pn-i—z)]’v(ﬁi)

_ 1=0
- ‘U(U,,_z).

Since v(Un—2) = v(Wn—2) + S reg v(Pn—i—a)v(T;) we conclude

v(Vn) = v(Un)

= (0(@nt) + 9(@ne) )+ S [0 (Knia) = 0(Pri_a)lo(T:).

=0
But this is the formula for v(V,_3) — v(Unh-2) and hence by induction, v(V,) — v(U,) = 0.
This completes the proof.
Recall that the canonical surjection 7 : R — R/I is a Golod homomorphism if (R/m, I)

is a Golod pair [8,9].

CoROLLARY 4.3. Let (R, m) be a local Noetherian ring and suppose an ideal I has a nonzero
divisor £ among a minimal set of generators. If the canonical surjection = : R — R/I is
a Golod homomorphism then the canonical surjections R — R/(z) and R/(z) — R/I are

also Golod homomorphisms.
ProoF: The result follows from Theorem 4.2 by setting M = R/m.

CoROLLARY 4.4. Let (R,m) be a local Noetherian ring, I an ideal in R and M an R/I-
module. Suppose (M,I) is a Golod pair. If z € I is a nonzero divisor of R then (M,(z)) is

a Golod pair.

Proor: If z € I — ml then the result follows from Theorem 4.2. If z € mJ then z €
mAN N (M) and the result follows from Shamash [11].

Next we show that converse to Theorem 3.5 is false. Suppose that (M,I) is a Golod
pair and z € I — ml/ is a nonzero divisor in R. Theorem 4.2 implies that (I/(z),(z)) is a
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Golod pair. Consider

0—I/(z)—> R/(z) > R/I - 0.

It follows that I/(z) = Q}i/(z)(R/I). But (R/I,(z)) is not a Golod pair. For example, if
R = K[[z,y]] and I = (z,y)?. Then it is not hard to show that I is a Golod ideal (i.e.
(K,I)is a Golod pair). Hence (I/(z?),(z?)) is also a Golod pair. Now I/(z?) is the first
R/(z?)-syzygy of R/I. Since I/(z)? can be generated by two elements a minimal R/(z%)-
projective resolution of R/I begins --- — R/(z?) [ R/(z®) —» R/(z?) — R/I — 0. But the
minimal R-resolution of R/I-begins ---R[[R][R — R — R/I — 0. Hence (R/I,(z?)) is
not a Golod pair.

Example 4.5 We construct a Golod ideal J in a zero dimensional Gorenstein local ring T
such that soc(T'), the socle of T, is properly contained in J.

Let (R, m) be a regular local ring of dimension r > 2 and let z4,- - -,z, be a system of
generators of m. As remarked in Section 2, for sufficiently large n, (R/m, m") is a Golod
pair. For 1 < i< rlet T; = R/(z?,- - -,z}). Let m; = m/(z},- - -,z*). By Theorem 3.2,
n+1

since z? € m"™ — m™™*, (R/m,m7) is a Golod pair over T;. Assuming (R/m,m}) is a

. . L ol n+1
Golod pair for i < r over Tj, since Z},; € m? — m;

where Z;1; = zi41 + (27, - -,2}),
Theorem 3.2 implies (R/m, m}, ) is a Golod pair over Ty;.
Now let T = T, and J = m is the required example.

We end this section with a result about Poincaré series.

THEOREM 4.6. Let (R, m) be a local ring, I an ideal in R and let 0 - A — B — C — 0 be
a short exact sequence of R/I-modules such that

i). (B,I) is a a Golod pair over R and

ii). PR(B) = PR(4) + PR(C),
then (A,I) and (C,I) are Golod pairs over R and PR/I(B) = PR/I(A) + PR/I(C).

34



Proor: We have

PR/II(B) < PRI(4) + PR/I(C)
< PR(A)/(1 4 2z - zPR(R/I)) + PR(C)/(1 + z - zPE(R/I)),  (by Theorem 2.1)
= [PR(A) + PR(C))/(1 + z - 2PR(R/I)

=PEB)/(1+ 2z - z2PR(R/I)). byii)
The two end terms of the above inequality are equal by i) and we have
[PR(A)/(1 4 2z — zPR(R/I) - PR/T(A)] + [ PR(C)/(1 + z - zPR(R/I)) - PR/I(C)] = 0.

It follows by Theorem 3.1 that each bracket is zero, or equivalently, that (A,I) and

(C,I) are Golod pairs. The last statement of the theorem now follows.
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Chapter V. Proof of the main theorem

In this section we prove Theorem 2.1. Throughout this section we assume that R is a
commutative ring, I is an ideal in R and M is an R/I-module. We introduce some new

notation that will be useful in the proof of Theorem 1.1. Fix R-projective resolutions of M

and I,
(Q"e') "'_’Qnﬁ"Qn—l—’"’—'QogM—'O
(P.,d.) ---—PP,,‘-i—'-')P,,_l-—-)-n—-)Pog?)I—)O

Let Up = Qo, Uy = @1 and for n > 2
n—-2
Un = Qn [ [(][(Pazicz @R TY))
1=0
be projective R-modules. Let U, , be the sum of the “first » components” of U, for 1 < r <
n. Thus U,y = Qrandfor2<r < n,Up, = Qn H(H:;:(P,,_.-_z ®r U;)). In particular,

Unn = Un. We restate and prove Theorem 2.1 using this notation.

THEOREM 2.1. Let R be a commutative ring with 1, I C R be an ideal in R and M be
an R/I-module. Suppose that (Q.,e.) and (P.,d.) are R-projective resolutions of M and I
respectively. Let Up = Qo, Uy = Q; and U, = Qp [[(II72(Pa-i-2 ®r U;)) for n > 2 be
projective R-modules. Set U, 1 = Qn and for 2 < r < n let Uny = Qn [I(I[22(Pn-i-2 ®r
U;)). Then there exists R-homomorphisms hg : Ug — M and h, : U, = Up_1 forn > 1
such that

A)

i Ty 2 Tpy oo o T M -0

is an R/I-projective resolution of M where “¢” denotes R/I ® g x for modules and
1g ®, * for homomorphisms. We denote this R/I-resolution of M by (U., ).
B). The homomorphisms h,, satisfy
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a) ho = eo and h1 = e,

b) for n > 2 if ¢,, is the composition

inclusion ha hp-1
Po®R Un-2 » Un » Uy —— Un—2
and if ¢,, is the composition
do®ly, _, canonical inclusion

Po®rUn2 —— I®prUn-2 — IUp_3 —— Un-2’

then ¢ = —1), and if ¢o_1 = —)n_1 then ¢, = (—1)"ty,, whereas if ¢,_1 = o then
&n = (=1)"*149,, (and hence if n = 2s or n = 2s + 1 then ¢, = (—1)*9,.).

c)forn > 2, ho(Uy,) = h;}l(IU,,_z),

d) if hy, , is the restriction of h, to Up, then hp p(Uns) C Up—1,for2<nand2<r<n
and hp.(Un,) = ker(hp_1,), for2<nand1<r<n-1,

e) hp1 = en,

f) forn > 3 and 2 < r < n — 1, the composition

inclusion h, . projection
P,._.®r Upog — Un,r — U, -1y — P 1QrU,_2

is dn-r ® ]-U,_z:

g) for 2 < n and 2 < r < n the sequence

inclusion projection

0 —— ker(hp,—1) — ker(h,,)

ker(dn-—r)®R Upg — 0
induced by the exact sequence

tnclusion projection
0 — Un,r—l — Uny — P v ®@rUr—2 — 0

is exact,

h) forn > 4 and 3 < r <n—1 the composition

snclusion hn,» projection

P, .®rU,_» — Un,r > Un—l,r —— P, ®rU,_3
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is (-1)"*'1p,__ ®R hr—2,

i) for n > 3 the composition

inclusion hy projection
Py ® Upn-2 » Un » Un-y —— Po®rUn-3

is (-1)"*11p, @ hn—2.

ProoF: Set hg = eg and h; = e;. To construct h, consider the following diagram of exact

rows and columns:

0 0
I I
inclusion h,
0 —— ker(hy) —— AT'(IU)) — IU, — 0
‘(-doslvo
Q: Py ®rUp
[ [
ker(ez) ker(do) ®r Uy —— 0
I I
0 0

Note that IUg C ker(ho) = hy(U;) and I @ g Up ~ IU,. Apply Lemma 0 to the above

diagram. We get the following commutative diagram of exact rows and columns:

0 0 0
L :
0 — ker(hy) =227 BSVIU,) 0 —s W, ——0
Tez Th, ’F—dn®1u.,
inclusion projection

0 — Q2 — Q:2[I(Po®rUy) —— P, ®rUy —— 0

[ I [

0 —— ker(e;) —— ker(h;) —— ker(dp) ®r Up
0 0 0
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Note that the bottom row of the above diagram is
0 —— kerhyy —— kerhyy, —— ker(dg)®rUpy —— 0.

It is now clear that h, satisfies b), c), d), e), and g). To construct hs, first consider the

following diagram of exact rows and columns:

0 0

I [

inclusion projection
0 —— ker(hy;) ———— ker(hs) ker(do) ® g Up —— 0

Tca de ®ly,

Qs P, ®r U

I I
ker(es) ker(d,) ®r Uo

I [

0 0

Again Lemma 0 yields the following commutative diagram with exact rows and columns

0 0 0
tnclusion ojection
0 — ker(hz1) ———y  Ker(hy) it ker(do) ® Uy — 0
Te. Ahs,z Td1®1vo
tnclusion projection
0 — Q3 — Ql(A®rU)) —— P,®rUy —— 0 (D)
0 —— ker(es) —— ker(hs2) —— ker(d1)®rUs —— 0
0 0 0
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Finally we consider the following exact diagram:

0 0
r l
0 ——  ker(hs) —T plgvy) 2 I, —— 0
The T-sore
Qs [1(PL®r Uo) Po®r Uy
I [
ker(hs,2) ker(do) ®r Uh
I I
0 0

As before we note that hy(U;) = hl'l(IUo) DIU;and IU, ~IQgrU;.
We now lift —dy® 1y, to h;l(IUl) and construct hz as in Lemma 0. Let 8 : Po,®grU; —
U1 be the map so that for pg € Py and vy € Uy,
B(po ® u1) = —do(po)us — h2(0,po ® hy(u1))

Since h, satisfies b) we have

h1(B(po ® u1)) = —do(po)h1(u1) + do(Po)hi(w) = 0.

Thus the image of 8 is contained in ker(h;). Let B be a lifting of B to Q; so that the

following diagram commutes:

N Po®r U1
B 1P
Q2 =2, ker(h1) -0

Then Py ®r U; (B, IP_"fhl) Q2 [1(Po ®r Up) is the required lift which we denote by a. This

makes sense since for po € Py and u; € U3

ha o a(po ® u1) = hz(a(Po ® u1),P0 ® hi(uy))
= ha(B(po ® 11),0) + h2(0,po ® h1(u1))
= ﬂ(Po ® "'1) + hZ(OaPD ® hl("’l))) by d)

= —do(po)us, by the definition of 8
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We now define

hs : (Us =)Qs ]_I(Pl ®r Uo) ]_I(Po ®r U1) — h71(IUy)

by requiring hs(z,y,2) = hsz(z,y,0) + a(0,0,z) where z € Q3,y € P, ®r Up and z €

Po®r Ur. As in Lemma 0 we have the following exact commutative diagram D’).

0 0 0
tnclusion ha
0 — ker(hz) — hI(IU) — 1U, — 0

Th.,, Th, T—duelu,

0 — Qs][(A®rU,) —— Us —— Py Q@rU; —— 0

[ I I

0 — ker(hs,2) ——  ker(hs) —— ker(dg)®rU; —— 0
0 0 0

It is immediate from the diagrams D) and D’) that hs satisfies the conditions b) through
h).

We finish the proof by induction. Assume that for n > 4 and 2 < i < n, h; is constructed
as desired. In order to construct h, we first costruct h,, : Un, — Un_1, by induction on
rfor 1 <r<n-1. Let h,; = e,. Construction of h,, is similar to the corresponding
construction in the case when n = 3 and we omit the proof. Now assume that h,,._; is
constructed for 3 < r < n — 1 such that f), g), and h) hold. Since the induction hypotheses
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imply that h,_; satisfies g), we have the following exact diagram:
0 0

[ [

tnclusion projection
0 — Ker(hn-15-1) o ker(hn-1,) ker(dn—y—1) ®R Up_ —— 0

Thn,'_x Tdn-'r@lv,_,

Unr-1 P, .,®rU,_>
I I
ker(hpp—1) ker(dn_,) ®r Ur—2
l I
0 0

Again we lift d,_, ® 1y,_, to ker(h,—1,) as follows. Define 8 : P,_, ® U,_3 — Upn—3, so

that for p,—, € Po—, and u,_3 € U,_»

ﬂ(Pn-f ® ur-—z) = (0, e ‘:0)(_1)n+lpn—r ® hr—z(ur—Z): dn——r(Pn—r) ® ur—z)

r—2

We claim that the image of h,_; , o B is contained in ker(hp_2,-3). fn=40rn > 4
and » = n — 1 this follows from b), d) and i). fn > 4 and 3 < r < n — 1, the desired

containment follows from the following argument.

hn—l,r ° ﬂ(Pn—r ® ur—2) = hn_1(0, -+ 0, (_1)n+1Pn—r ® h,_z(‘u,._z),O)
r—2
+ hn—l(os e ’aoadn—r(pn-r) ® 'u'n—r)
e, s’
r—1

= (*’ A *:(_1)n+1pn—r ® h—r—z(ur-2);0)

r—2

+ (*', ey *’, (—]_)"dn_,(pn_,)hf_z(un—r), dn_r-10 dn—f(Pn—r) ® Un-r

r—2

(This follows from the inductive hypothesis that h,_; satisfies f) and h) ).

=(x",---,%",0,0)
r—2
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The last element belongs to ker(hn_2,—2) since, by induction, h,_; satisfies d). Let ﬁ be a
lifting of hp,_1, 0B to U,_1,_2 as follows.

. Pn—r ®r Uf—2
ﬂ l hn-l,roﬁ

hn—l,?—z
Un—l,r—z — ker(hn—z,r-Z)
Now define a : Po_» @ g Ur—2 — Upn—1,» such that for p,—» € P,—, and u,_3 € U,_3 we

have
a(pn—r ® ur—Z) = (—E(Pn-—r ® ur—z), (_1)ﬂ+lpn—r ® hr—z(ur—Z)adn—r(pn—r) ® !l«r-z)-

It follows that a is the required lifting of d,,—, ® u,_3 to ker(h,_;,) since

hn—l,r o a(pn-r ® ur—Z) = hn—l,r('—ﬁ(pn—r ® ur—Z))O:O)

+ hﬂ-l,r(Oy B 01 (_1)ﬂ+1pﬂ—f ® hr—2("r—2); dn—r(pn—r) ® ur—Z)

r—2

= —hn-l,r—-2 ° B(Pn—r ® uf—2) + hn—l,r o ﬂ(pn—r ® ur—2)
= “‘hn—l,r ° ,B(pn—r ® ur—z) + hn—l,r ° ﬁ(Pn—r ® Ur—z)

=0

As in the proof of Lemma 0 we have the following exact commutative diagram

0 0 0
I I I
inclusi ojection
0 — ker(h,._l,,_l) M’ kef(hn—l,r) i ker(dn—r—1)®R Up.g — 0
Ihn,r—l ‘(hn,r Ad"“"elvr-3
inclusion projection
Un,r—l —_ Un,r — P, .,®rU,-2 — 0

T ; !

ker(hn,r—l) — ker(hn,r) — ker(d”_,) ®r U,_2

[ I [

0 0 0
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From the above diagram and the induction hypothesis for h,,_1 we see that h, , satisfies

conditions f), g), and h). This finishes the construction of h,, for 1 < 7 < n—1. Note that
hn,l = €n, hn,r—l = hn,rlU,.,,_n for2<r<n-1

We now construct h, in the case when ¢,_3 = —tn_1, (cf. b)). The proof in the

case when ¢,,_; = ¥,,_1 is similar and will only be indicated. Consider the following exact

diagram.
0 0
I I
inclusion hn_s
0 —— ker(hp_y) — h;il(IU —2) — IU, _, — 0
Tonans (A
Unn-1 Py ®rUn_2
I I
ker(hppn-1) ker(do) ® r Un-2
I I
0 0

We now lift (—1)"dp ® 1y, _, to h;2,(IUn-3) and construct

b i (Un =)nnot [[(Po®RUnc2) —— b1 (IUA-,)
as in Lemma 0.

Define f: Po ® g Un—2 — Un—2 such that for po € Py and u,_» € U,,_2 we have
B(Po ® un—2) = (~1)"do(Po)tn—2 — An-1(0," - +,0,(=1)"*'po ® hn_2(tn—2))

Since ¢n-1 = —9n_1 we have h,_3 0 B(po ® un—2) = 0 so that the image of 8 is contained
in ker(h,-3).

Let B be lifting of B to Up_1 n-2 as follows.
Py®rUpn—2
B 18
hn—l.n-!
Un—l,n—z — ker(hﬂ—2)
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Now choose the required lifting a of (—1)"do ® 1y, _, as follows.

a(po ® Un—3) = (ﬁ(po ® tn—2),(—1)"*1po ® hn_2(un—_32) as in the case n = 3. [In the case

when ¢,_1 = ¥n_1, in order to lift (—1)**1dy ® 1y,_, we define

B(po ® tn—2) = (—1)" ! do(Po)tin-2 — Bn-1(0,- - -,0,(~1)"'po ® hpn—2(tn—2)).

The rest of the proof is similar.] We now have the following exact commutative diagram by

Lemma 0.

0 0 0
L :

0 —— ker(hnoi) —2 bl (I0,,) —h g/ — 0
Thaer Th s,

inclusion projection

0 — Uppy —— U, —— Py®rUp, — 0
I [ I

0 — ker(hppn_1) —— ker(h,) —  ker(do) ®g Un—2
[ | [
0 0 0

Here h,, is defined by hn(21, -, 2n) = Bpn-1(1,**,Zn-1) + (0, -,0,2,). It is clear from
the above diagram and the construction of h, n_; that h, satisfies conditions b) through i).

This completes the proof.

We note that Theorem 2.1’ can be proved similarly, using Lemma 0’ instead of Lemma
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