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by 
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Civil Engineering 

(ABSTRACT) 

A two-dimensional analysis is applied to the vibrations of inflatable dams under overflow condi- 

tions. The static analysis yields the equilibrium state for both the free surface profile and the shape 

of the dam. The dynamic analysis investigates the small vibrations of the inflatable dam about the 

equilibrium state. 

The dam is inextensible, air-inflated, and has two anchored points. The base width, curved per- 

imeter, and internal air pressure are given. The overflow is incompressible, inviscid, and 

irrotational, and the total head is specified. 

In the static analysis, the self-weight of the dam is neglected, and the equations of equilibrium from 

membrane theory are solved by a multiple shooting method. The boundary element method is 

used to solve Laplace’s equation defined on the overflow domain. An iterative scheme is adopted 

to obtain the shape of the dam, as well as the location of the free surface. 

From the equilibrium state, the dynamic analysis is established by a finite difference form of the 

membrane’s equations of motion and the velocity potential problem is formulated by the boundary 

element method. After the eigenvalue problem is solved, the eigenvalues and eigenvectors obtained 

are employed to describe the vibrations of the dam. The effects of the dam‘s density and damping 

coefficient are illustrated.
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Chapter 1 

INTRODUCTION 

Inflatable dams were invented by N. M. Imbertson in the 1950s with the trade name of ”Fabridam” 

and have been used worldwide extensively ever since. About two thousand inflatable dams have 

been constructed in the United States, Japan, Thailand, Taiwan, and many other countries. 

This type of dam is basically a flexible tube, made of rubberized fabric, fixed along its longitudinal 

base across a river, and inflated by air, water, or a combination of the two. It can be inflated to the 

required height or deflated on the foundation when not in use. 

At the present time, the height of an inflatable dam can be up to 17.8 feet and the length can be 

up to 393.7 feet (Bridgestone, 1991). The life of serviceability 1s expected to be over 30 years while 

the cost of design, installation, and maintenance is considered to be lower than that of ordinary 

earth or concrete dams. 

The applications of inflatable dams include tidal barriers, wave attenuators, flashboard replacements 

and reservoir providers. They are used to restrain mud, tide, flood, and salinity, to prevent beach 

erosion, to handle combined sewage flows, to divert underground flows, to regulate tunnel surge



and tailwater, to serve as emergency check valves, to raise heights of existing spillway, to increase 

storage capacity, to raise intake head, to maintain lake level, and to impound water for irrigation, 

plant cooling, pumping station, and recreational purposes. Installing these dams on the top of an 

existing dam or spillway or replacing a damaged dam by an inflatable dam 1s fairly common. 

Inflatable dams may be operated under conditions with or without overflow. The overflow con- 

dition is considered more likely to cause the vibrations of inflatable dams and therefore the stability 

problem. Bridgestone Engineered Products Co. limits the maximum overflow water height of their 

standard rubber dam to be two-fifths of the dam height (Bridgestone, 1991). The collapse of the 

inflatable dams in Pakistan in 1967 (Binnie et al., 1974) and Australia in 1969 (University of Sidney, 

Civil Engineering Laboratories, 1969) under overflow conditions indicates that the study of the vi- 

brations is indispensable. 

In this study, the inflatable dam is inflated with air and fixed at two anchored lines along its longi- 

tudinal direction (Figure 1.1). The vibrations of inflatable dams under overflow conditions are 

treated as a two-dimensional problem (see Figure 1.2) with the base width (4), the curved perimeter 

(so), the inflated air pressure (go), and the total head for the flow domain (e) given. The dam is 

described as an inextensible membrane and the vibrations are assumed to be small. The overflow 

domain is regarded as a hydrodynamic condition with subcritical flow upstream and supercritical 

flow downstream. The flow is bounded by a level bed, the inflatable dam, and a free surface with 

atmospheric pressure. The velocity potential theory prevails in the overflow domain. 

The equilibrium state is obtained with the help of the boundary element method and a multiple 

shooting method. The shape of the dam and the profile of the free surface are obtained as the result 

of the static analysis. The vibrations about the equilibrium state in the dynamic analysis are in- 

vestigated using the finite difference forms of the equations of motion for the dam and the boundary 

element method for the flow domain. Examples with various damping coefficients and water/dam 

density ratios are demonstrated. The eigenvalues and eigenvectors serve to depict the vibrations 

of the inflatable dams.



Conclusions and suggestions are presented in the last chapter. It is the goal of this study that the 

vibrations of inflatable dams under overflow conditions can be better understood, further research 

can be pursued, and assistance can be provided for the design codes, construction process, and 

maintenance work of the inflatable dams.
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Figure 1.1 An Inflatable Dam under Overflow



  

  

    

    

Figure 1.2 A Two-dimensional Cross-section 

 



Chapter 2 

LITERATURE REVIEW 

The overflow condition for inflatable dams is considered similar to the cases where flow passes over 

cylinders, broad-crested weirs, and spillways. Section 2.1 is a review devoted to the steady solutions 

of such rapidly-varied flow problems. On the other hand, the developments in the analyses of 

inflatable dams, either for static analysis or dynamic analysis, are presented in Section 2.2. 

2.1 REVIEW OF SOME RAPIDLY-VARIED FLOW PROBLEMS 

The rapidly-varied flow problems, such as the flow over weirs, spillways, and other kinds of ob- 

stacles, are characterized by the influence of gravity and the unknown location of the free surface. 

The governing equation for such flows in a steady sense is an elliptic partial differential equation. 

With the total energy head given, the flow rate is solved as part of the solution, or vice-versa. 

It was pointed out by von Karman (1940) that the analysis of gravity-driven free-surface flows 

carries inherent difficulties not only from the nonlinear character of the boundary condition, but 

also from the fact that the boundary is not known a prion. Southwell and Vaisey (1946) traced the



location of the initially unknown free streamline, where a double boundary condition applies, by 

finite differences (relaxation methods) with hand calculation. Two iterative methods were intro- 

duced by making the value of the stream function constant or by specifying the gradient of the 

stream function on the assumed free surface, respectively. It was claimed that an essential instability 

makes any tentative solution liable to diverge and that abnormally fine nets are necessitated by the 

rapid curvature of free streamlines. The finite differences employed by Cassidy (1965) are applied 

to the slopes at the nodes instead of the stream functions at the nodes. A rectangular mesh can 

be established by mapping the physical boundaries into the complex-potential plane. It was ob- 

served that the computed free surface ordinates became progressively smaller when the flow rate 

or total head was too large. An opposite trend occurred when the flow rate or total head was too 

small. 

In terms of the velocity potential, Luke (1967) presented a variational principle for a fluid with a 

free surface. The Lagrangian in his functional was equal to the pressure term, which leads to a full 

set of boundary conditions for the classical water wave problem. This Lagrangian is also compared 

with the more usual expression which results from the difference of kinetic energy and potential 

energy. Chan et al. (1973) employed a variational principle to solve the Laplace’s equation for a 

sharp slot flow. On the free surface, the velocity potentials are specified according to the Bernoulli 

equation and the normal velocities are calculated. From the tangential and normal velocities, the 

slopes at the free surface nodes are determined. Then, a series of cubic polynomials is adopted to 

fit through each set of three consecutive nodal points, which yields the adjustment of the free sur- 

face location. To minimize computational cost, a low initial free surface is recommended. Ikegawa 

and Washizu (1973) applied a special case of Luke’s variational principle to a spillway problem, and 

used the finite element method. The flow in a spillway problem is subcritical upstream and 

supercritical downstream. There exists a transition region (the so-called control section) near the 

crest where mathematical difficulty may occur. They found that Southwell and Vaisey’s two iter- 

ative methods can be used to obtain the subcritical and supercritical regions, but not the transitional 

region. Their experience in numerical computation shows that if the flow rate is larger than the



exact solution, the free surface converges to a profile with broken segments near the crest. If the 

flow rate is smaller than the exact solution, the free surface displays a divergent behavior near the 

crest. The flow rate which causes the smoothest convergent free surface profile is taken as the sol- 

ution. 

Varoglu and Finn (1978) developed a variational principle that preserves the nonlinear free surface 

boundary conditions by adding two free surface integral terms to the first variation of the kinetic 

energy. The iteration scheme is an inverse finite element procedure in which the location of a set 

of streamlines with assumed stream function values is to be calculated. Thus, the addition or de- 

letion of nodes and elements, which may happen in Ikegawa and Washizu’s formulation, can be 

avoided and the flow rate is able to be obtained directly from the iterations. Betts (1979) explained 

that Luke’s variational principle is less well suited to problems of steady flow under the influence 

of gravity, since the values of velocity potential on the free surface boundary are not known be- 

forehand. Therefore the formulation in terms of stream function is more convenient to solve a two- 

dimensional steady flow problem. It was also found that Ikegawa and Washizu incorrectly neg- 

lected an integral along the free surface in Green’s identity. Betts used a functional mn the form of 

kinetic energy minus potential energy for the variational principle. A combination of this vari- 

ational principle and an iteration method similar to [kegawa and Washizu’s (performed by finite 

elements) was claimed to work well regardless whether the Froude number of the flow is less or 

greater than unity, or only a crude initial guess of the free surface is available. 

Bettess and Bettess (1983) used the same functional as Betts in the variational principle and applied 

isoparametric elements for the finite element mesh. The mesh allows the free surface and the bed 

to be curved rather than piecewise straight. Like Ikegawa and Washizu’s work, the flow rate which 

yields the smoothest free surface profile was selected as the solution, which also corresponded to a 

minimum of the square of the error in the Bernoulli equation integrated along the free surface in 

their study. Underestimates of the depth in supercritical flow were found always to converge, as 

do overestimates in subcritical flow. Overestimates of the depth in supercritical flow, however, 

might tend towards the subcritical solution. Castro-Delgado and Celik (1986) considered that Betts



ignored the term for the variation of the stream function at a space-fixed point. They added one 

free surface integral term to the first variation of the functional of kinetic energy and potential en- 

ergy, which results in the same variational principle as in Varoglu and Finn (1978). The principle 

was applied to the flows past overflow gates in which a free jet trajectory exists, by the inverse finite 

element method devised by Varoglu and Finn. It is shown that the influence of viscosity can be 

neglected in this class of rapidly accelerating flows. 

Cheng et al. (1981) made use of the boundary integral equation method and perturbation-based 

iteration schemes to solve a sluice gate and a spillway problem. For the spillway, there is a zone 

of uncertainty where a change in the water surface level has a negligible effect on the Bernoulli 

values. A perturbation matrix was established by displacing, in turn, each free surface node a small 

distance from its assumed value and computing the change in the Bernoulli values at all free surface 

nodes due to this displacement. Then the adjustment of the free surface was determined from the 

perturbation matrix and the errors in Bernoulli values of the free surface nodes by a Newton- 

Raphson method. Some pseudo-nodes were inserted between the free surface nodes with the ele- 

vation and velocity interpolated, for the perturbation matrix, so that the error in the Bernoulli 

constant was minimized at a larger number of nodes instead of only at the real nodes. The free 

surface was adjusted only at the real nodes with some limits or damping in order to make the ad- 

justment always reasonable. Jovanovic (1987) followed Cheng et al. and used linear elements and 

pseudo-nodes along the free surface in the boundary element formulation. A step factor or damping 

factor applied to the elevation adjustment of the free surface appeared to be problem- dependent 

and was determined empirically. An automatic adjustment of this step factor at each iteration 

would improve the rate of convergence. In one of the cases studied, there is an averaged 10 percent 

error on flow velocity after 150 iterations with a step factor of 0.2. For the same case, no conver- 

gence could be obtained after 200 iterations. It was pointed out that the gradient method might 

be an alternative approach when it was employed on an error function which is the sum of the 

squares of the errors in the Bernoulli constant at all the free surface nodes.



For a semi-circular obstacle, Forbes (1988) worked on the domains of stream function and velocity 

potential instead of x and y-coordinates for the free surface problem. Complex variables, conformal 

mapping, Newton’s method, and the integral equation derived by Forbes and Schwartz (1982) were 

employed. The variations of the downstream speed, the upstream Froude number and the profile 

of the free surface with the radius of the semi-circle were illustrated. A difficulty in the convergence 

of solution was pointed out when the radius (or height) of the semi-circular obstacle was more than 

half the far upstream inflow depth. It was also the case that the downstream portion of the flow 

became shallow and fast, which could cause the formation of a hydraulic jump. 

2.2 REVIEW OF STUDIES ON INFLATABLE DAMS 

The inflatable dams are usually considered as membrane structures with the resistance in the form 

of tension. The loads applied on the inflatable dams include the internal inflated pressure (air, 

water, or their combination) and the external water or atmospheric pressure. The external water 

pressure can be hydrostatic pressure (without overflow) or hydrodynamic pressure (in overflow 

conditions). 

Anwar (1967) performed the calculations for water-inflated dams under hydrostatic conditions, and 

air-inflated dams under both hydrostatic and steady overflow conditions. The results were com- 

pared with an experimental model investigation. Under the assumptions that the self-weight of the 

dam was negligible and the inflated pressure was proportional to the storage head, the hydrostatic 

shape of an inflatable dam (inflated by air or water) was derived partly in terms of elliptic integrals 

and partly in terms of an equation of a circle from the equilibrium of forces. No restrictions were 

set for the perimeter and the base length of the dam. For the hydrodynamic case, the flow on the 

downstream face of the air-inflated dam was assumed to be fully aerated. Therefore, the pressure 

applied on the downstream face due to the overflow was atmospheric and the downstream dam 

shape was part of a circle. By a set of power series approximations for the vertical coordinate, the 

pressure, and the horizontal force distribution, an ordinary differential equation was established and 

numerically solved for the upstream dam shape. A parabola was found to be a good approximation 

10



in the power series formulation. A model test was set up with the height of the dam equal to 12 

in. in the static case and 9 in. in the overflow case. A trip rod or wire placed near the crest of the 

dam prevented the flow from clinging to the downstream face and reduced the skin vibration con- 

siderably, provided the nappe was fully aerated. There was no sign of flow separation when the 

dam was operating without a trip wire, in which water followed the profile of the dam over the 

major part of the downstream face. It was observed that an inflatable dam was not suitable for a 

high overflow condition. 

Harrison (1970) studied air-inflated dams and water-inflated dams subjected to hydrostatic pressure 

from both the upstream and downstream heads. The two-dimensional membrane section was 

considered as composed of a finite number of small elements with concentrated loads acting on the 

ends of elements only. The base width and curved perimeter were specified. A Newton’s method 

was employed to improve the shape of the dam and to match the specified positions of the an- 

chored points. For a rising upstream head, an air-inflated dam was found to reduce the membrane 

tension more than a water-inflated dam. Air-inflated dams might entail more risk of an explosive 

failure if the membrane was damaged, but may be more economical. Binnie (1973) dealt with 

water-inflated dams impounding water at the crest level. Besides the problem of the unrestricted 

curved perimeter and base width, it was mentioned that the anchorages of the upstream and 

downstream faces should not be at different levels as in Anwar (1967). Assuming that the mem- 

brane was weightless and inextensible, a solution for the shape of the dam was obtained, with the 

upstream face being part of a circle and the downstream face expressed by an equation in terms of 

elliptic integrals, and this shape corresponded to the anchored points at the same level. The draw- 

back is that the inverse formulation was not performed so that the curved perimeter and base width 

would be part of the solution instead of input quantities, while the tension in the membrane and 

the slope at the downstream anchored point were given. 

Parbery (1976) derived the differential equations of equilibrium using membrane theory and solved 

those equations with a fourth-order Runge- Kutta method and the Newton-Raphson method for 

the inflatable dams under hydrostatic conditions. The self-weight and the modulus of elasticity of 

11



the membrane were considered, as well as the restrictions on the base width and the curved per- 

imeter. In his second paper (Parbery, 1978), the weight and the elasticity of the membrane were 

found to have minor influences on the shape of the dams for the hydrostatic conditions. For a 

given base width, the major influences resulted from the inflated pressure, the inflation method, the 

impounded head, and the curved perimeter. Watson (1985) dealt with the theoretical calculation 

of the shapes of the water-inflated or air-inflated dams impounding water at the crest level (without 

overflow) in a way similar to Anwar (1967) and Binnie (1973). The weight and the modulus of 

elasticity were ignored. Design charts for various loading parameters and fabric length/anchorage 

spacing ratios were presented. Parachute dams in which the upper end of the membrane was fixed 

to a floating boom and restrained by guys were also discussed. 

Fagan (1987) investigated the effect of the self-weight of the membrane on the vibrations of the 

air-inflated dams. For the equilibrium shape of the dams, a Runge-Kutta-Verner fifth and sixth 

order method and a bisection iteration algorithm were employed to solve the simultaneous ordinary 

differential equations derived from membrane theory in Parbery (1976). The analysis of vibrations 

was performed by applying an eigenvalue solution approach to the finite difference form of the 

equations of motion for the membrane under small vibrations. The weight of the membrane was 

found to have an insignificant impact on the static shape of the dams as long as the extensibility 

of the membrane was neglected. The tension in the membrane increased when the self-weight de- 

creased or the base to perimeter length ratio increased. For the dynamic case, the weight of the 

dams tended to lower the tension and vibration frequencies for the membrane, but the effect was 

much less than other factors, such as the base width. The vibration modes were not affected by the 

weight of the dam significantly, as well (Plaut and Fagan, 1988). 

Leeuwrik (1987) analyzed the vibrations of air-inflated dams by the Galerkin approximation with 

one term or two terms of sine functions, and a Runge-Kutta-Verner method. The dams were as- 

sumed to be weightless, inextensible, and sufficiently long so that a two-dimensional analysis was 

acceptable. In some cases, the inflatable dams were found not to oscillate about the equilibrium 

state, but about a position with some displacement from the equilibrium shape. The frequencies 

12



of vibrations were reduced by such a displacement, but not much (which was a result of the non- 

linear terms in the equation of motion). Moreover, solutions were not guaranteed by the method, 

thus either more terms of approximation functions or an alternate solution routine was needed. 

A comparison between this numerical solution and the result of the asymptotic analysis (the 

method of multiple scales) was given in Plaut and Leeuwrik (1988). It was confirmed that the vi- 

bration frequencies tended to decrease as the amplitude of motion increased. 

Hsieh (1988) considered the free vibrations of both air-inflated dams and water-inflated dams, and 

the forced vibrations of water-inflated dams impounding upstream water at the crest level, with the 

weight of the dams neglected. A finite difference method was used for the membrane equation of 

motion and the water domain was analyzed by a boundary element method. For the water-inflated 

dam without water outside, the vibration frequencies increased as the internal water head increased, 

the perimeter/base width ratio decreased, or the water/dam density ratio decreased (see also Hsieh 

et al., 1989). When there existed impounded water outside, the water/dam density ratio displayed 

similar effects on the vibration frequencies, but it was not always true that the external water head 

lowered the vibration frequencies. In Hsieh and Plaut (1990), it was further clarified that the fre- 

quencies increased when the internal and the external water heads increased simultaneously. If the 

external head increased with the internal head fixed, the frequencies decreased at the beginning, then 

some of them started to increase.



Chapter 3 

STATIC ANALYSIS 

3.1 INTRODUCTION TO STATIC ANALYSIS 

The static equilibrium shape of an inflatable dam under a steady overflow condition is to be cal- 

culated in this chapter. 

The dam is assumed to be inextensible, with negligible weight. The governing equations for the 

shape of the dam are based on membrane theory and solved by a multiple shooting method. For 

a given base width (the linear distance between the fixed points in a two-dimensional point of view) 

and a given curved perimeter of an inflatable dam with given internal air pressure, the shape of the 

dam is determined as soon as the external pressure is known. The information on the external 

pressure comes from the result of the overflow analysis. 

The overflow is treated as an incompressible, inviscid, and irrotational flow problem, in which 

Laplace’s equation prevails. With the total head of flow given, the Laplace’s equation and the 

corresponding boundary conditions are solved by a boundary element method if the location of the 

free surface is assumed and the boundary of the dam-flow interface (the shape of the dam) is known. 

14



The free surface can be found when the double boundary conditions are satisfied at the same time. 

Thus, the external pressure for the dam can be computed by the Bernoulli equation applied to the 

dam-flow interface. 

An alternating iteration approach is used to perform the two iterations on the dam shape which 

supplies part of the boundaries for the flow analysis and the free surface to generate the external 

pressure for the dam analysis. The solution is considered to be reached when both the changes of 

the dam shape and the free surface in successive iterations are within preset tolerances. 

3.2 THE POTENTIAL FLOW PROBLEM 

For analyzing the hydrodynamic overflow problem, the overflow was first considered to be sepa- 

rated after passing the crest of the dam. Potential flow theory was applied in the overflow domain 

before the separation point and the static backwater prevailed after the separation point. This 

scheme was not successful due to the difficulty of locating the separation point and providing suf- 

ficient information in the backwater region for the vibration analysis. Therefore, the whole over- 

flow domain is assumed to be described by Laplace’s equation without any separation. 

The overflow problem is a gravity-driven flow problem with double boundary conditions applying 

on the free surface. Moreover, sharp corners may exist at the upstream and downstream anchored 

points of the inflatable dams. Various solution schemes have been attempted, which involved the 

following: 

1. Either the stream function or the velocity potential as the dependent variable in Laplace’s 

equation; 

2. The flow rate, the upstream inflow depth, the Bernoulli constant (the total head), or the 

velocity potential difference between the upstream inflow surface and downstream outflow 

surface as the given datum for the overflow domain; 

15



3. Dirichlet boundary conditions or Neumann boundary conditions for the free surface, up- 

stream inflow surface, and downstream outflow surface (also mixed boundary conditions for 

the free surface); 

4. The use of polynomials (third to tenth order), or sine and cosine functions (two to eight 

terms), for the profile of the free surface; 

5. Direct iteration from the Bernoulli equation, which 1s similar to the two iterative methods 

introduced by Southwell and Vaisey (1946); 

6. The cubic-polynomial-smoothing algorithm for the free surface adjustment of the sharp slot 

flow as used in Chan et al. (1973); 

7. The iteration for the free surface with the help of the calculation of the perturbation matrix 

in Cheng et al. (1981). 

There was no noticeable difference observed as convergence was concerned when using either the 

stream function or the velocity potential for Laplace’s equation. The velocity potential is selected 

for the sake of consistency in the formulations of the static analysis and the dynamic analysis. The 

choice for the given datum of the overflow domain depended on the iteration scheme. Most studies 

use the flow rate or the Bernoulli constant (the total head), though Cassidy (1965) implied that not 

every total head will yield a convergent solution for a given shape of the obstacle. As for the types 

of boundary conditions, it was observed that a discontinuity of the velocity potential and its deriv- 

atives existed if mixed boundary conditions are used on the free surface (Dirichlet for upstream and 

Neumann for downstream); otherwise, the choice depends on the iteration method, too. The ex- 

perience of using polynomials or other mathematical functions to describe the profile of the free 

surface showed no benefits because they generated an unnecessary wavy shape far upstream or far 

downstream (especially when using higher order terms) or were not capable of following the high 

curvature near the downstream anchored point. 

The direct iteration from the Bernoulli equation for computing the free surface location is easy to 

employ, but may converge to the subcritical solution for both upstream and downstream regions 

(or, supercritical for both regions) while the solution needed is subcritical upstream and supercritical 
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downstream. Besides, kinky shapes may occur and convergence is not guaranteed. The algorithm 

in Chan et al. (1973) is appropriate for subcritical flow problems, but abnormal slopes (positive 

slopes or rising elevations) were experienced when calculating the upstream profile of the free sur- 

face with this overflow condition. The perturbation matrix approach in Cheng et al. (1981) was 

tested with the original node configuration, as well as with various polynomials and other functions. 

It was found to be time-consuming to calculate the elements in the perturbation matrix when lifting 

the elevation of the free surface by a small amount, node by node. It was still unclear how to decide 

on the moment when the perturbation matrix did not change much and need not be recalculated, 

and how to modify the elevation changes of the free surface with some ‘limits or damping’ to make 

them ‘always reasonable’. The divergence encountered by Jovanovic (1987) which followed Cheng 

et al. (1981) was experienced in this study, too. In some cases, an acceptable solution exists at a 

certain iteration cycle, but it becomes divergent in a later iteration cycle. 

There were some studies performing finite element analysis together with a variational principle, 

e.g., Varoglu and Finn (1978), and Ikegawa and Washizu (1973), and claiming success in the free 

surface flow problem. Nevertheless, a variational principle applied to the boundary element method 

in this study would be difficult, although the boundary element method has the advantage of 

smaller number of nodes and less computing effort, compared with the finite element method. 

Gradient methods might be considered as promising (Jovanovic, 1987), but they would lead to a 

similar situation as for the perturbation matrix. 

For this overflow problem, the conclusion was to use the boundary element method, with the ve- 

locity potential as dependent variable, the Bernoulli constant (total head) given, a Neumann 

boundary condition on the free surface, and a modified direct iteration method (described in Section 

3.4). This procedure attempts to obtain calculation efficiency, as well as solution accuracy. 
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3.3 GOVERNING EQUATIONS FOR THE MEMBRANE 

In the two-dimensional analysis, the shape of the dam is an arc fixed at the two anchored points 

and has unit depth in the direction into the paper. This arc is expressed by a set of neighboring 

membrane elements with unit depth. Figure 3.1 shows a membrane element under consideration. 

The self-weight of the inflatable dam and the corresponding membrane elements is ignored. With 

small slope change between the two ends of the element assumed and the higher order terms neg- 

lected, the equations for the equilibrium of the forces are 

d6y Po — 4 
a ip (3.1) 

dty 
= _ (3.2) 

where s is the curved coordinate; @5 is the slope of the membrane; fs is the external pressure times 

the unit depth; g is the internal inflated pressure times the unit depth; and & is the uniform tension 

per unit depth for the membrane. The subscript 0 is used for the variables in the static analysis. 

From geometry, we have 

dXxy 

a cos 85 (3.3) 

Ayo . 
a 7m A (3.4) 

in which dxp and dy) are the projections of the membrane element onto the x and y axes, respec- 

tively. 

With 5) being the given curved perimeter, 4 being the given base width of the dam (see Figure 1.2), 

and y being the specific weight of the fluid in the overflow, the following nondimensional variables 

are introduced: 
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j= 5 = 20 yao. — _ 50 
hy ’ 0 lh ’ Q ly ’ 0 A 

_ - lo _ Po —_ 90 Q=09; b= i M=—i H=— (3.5) 0 VP 9 ply 9 vy 

— Po= 4% (3.6)   

ay (3.7) 

dX - 
a cos 8 (3.8) 

YG 
de = sm Ao (3.9) 

There are two fixed ends for the membrane, and the boundary conditions for Equations (3.6)-(3.9) 

are 

X(0)=0; Fo(0)=0; RlH)=1; Tol) =O (3.10) 

The four simultaneous ordinary differential equations accompanied by the four boundary condi- 

tions (Equations (3.6)-(3.10)) can be solved if p> is known (either from an initial guess or the result 

of the flow analysis). We use a multiple shooting method named DBVPMS in IMSL (IMSL, 1989) 

in which Runge-Kutta-Verner fifth-order and sixth-order methods, Jacobian evaluation, and 

Newton’s method are employed. The initial guess for DBVPMS will be discussed further in Section 

3.5. 
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3.4 POTENTIAL FLOW ANALYSIS 

The problem of an overflow passing over an inflatable dam is similar to the one with overflow 

passing over a spillway crest, which is characterized such that the flow in the upstream portion is 

subcritical, while the flow in the downstream portion 1s supercritical (e.g., see Ikegawa and Washizu, 

1973). For a given total head and a specified dam shape, the profile of the free surface (including 

the subcritical and supercritical transition phenomenon) and the flow rate are part of the solution. 

In order to do the flow domain analysis, there are two fictitious boundaries which need to be 

specified: the upstream inflow and the downstream outflow boundaries. According to Hsieh (1988), 

the upstream boundary has to be several times the base width away from the dam to cause good 

convergent results in the dynamic analysis. In the case of the overflow here, the upstream inflow 

and downstream outflow boundaries are set at six times the base width away from the dam instead 

of five times as in Hsieh’s work. The domain of the flow is displayed in Figure 3.2. Laplace’s 

equation is adopted to describe the overflow, so that 

    

V'°¢9=0 in Flow Domain (3.11) 

o? oe? ; . . wo 
where V? = ax? + ay and ¢o is the velocity potential for the flow. The boundary conditions 

are 

go = 0 on Inflow Boundary (3.12) 

oo = dog on Outflow Boundary (3.13) 

$9, n= 0 on Bed Bottoms and on Dam — Flow Interface (3.14) 

do, n= 0 on Free Surface (3.15) 

2 
P($p, s) 

Vo + = = on Free Surface (3.16) 
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where 7 is the unit outward normal to the surface enclosing the flow domain; y is the y-coordinate 

of the free surface; ¢o,, is the flow velocity along a streamline; p is the density of the fluid in the 

& 

specified total head. Equations (3.12) and (3.13) indicate that the upstream inflow and the down- 

flow, which equals the specific weight divided by the acceleration of gravity, ; and @é is the 

stream outflow velocities are perpendicular to the inflow and outflow cross-section, respectively. 

The uniform velocity potential is chosen to be zero at the inflow boundary and ¢po, at the outflow 

boundary, where ¢oz is part of the solution. Equation (3.14) shows that the impenetrable fixed 

bed boundaries and dam-flow interface are part of streamlines. In Equation (3.15), the free surface 

is also part of a streamline so that ¢o,,=0 ; moreover, it is subjected to constant atmospheric 

pressure (set to zero) and carries a simpler form of the Bernoulli equation (Equation (3.16)). 

Double boundary conditions are observed at the free surface. 

The following nondimensional variables are introduced: 

5a, 7-2. j=—-: yas ! = 3 $ = ft, . 
Lu , hy ’ ly ’ 0 ’ 0 ly ’ Od ~/ y 2 Od» 

bo => go $o,3= > {0 33 do, z= 4/> i oe n (3.17) 

where yw is the mass per unit area of the membrane, which is a constant. Equations (3.11)-(3.16) 

become 

Vb =0 in Flow Domain (3.18) 

$y = 0 on Inflow Boundary (3.19) 

bo = $04 on Outflow Boundary (3.20) 

bo, 7=0 on Bed Bottoms and on Dam — Flow Interface (3.21) 

0, 7=0 on Free Surface (3.22) 
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P(bo, 3) 
Jor — = & on Free Surface (3.23) 

For a given free surface and a velocity potential at the outflow boundary , Gow (either from the initial 

guess or the result of the previous iteration), Equations (3.18)-(3.22) form a complete set of the 

potential problem. The potential problem is solved by a boundary element method using linear 

elements (Liggett and Liu, 1983) so that the velocity potential at the free surface is obtained. The 

flow velocity along the free surface ( bo, ; ) can be calculated from the velocity potential by a finite 

difference method, which usually does not satisfy the Bernoulli equation (Equation (3.23)) simply 

because it does not come from the correct free surface. For the free surface location, } , and the 

result of the boundary element method applied to Equations (3.18)-(3.22), the flow velocity ob- 

tained is % ; for the same free surface location, the flow velocity calculated directly from Equation 

(3.23) is % (= $0, 3). We have 

  Uy = + 17% for Subcritical Flow (3.24) 

Uy — uy 
a 
  U, = Uy + for Supercritical Flow (3.25) 

where % is the flow velocity to be used in Equation (3.23) to compute the new jp for the next it- 

eration; and « is an adjustment parameter, in general between 10 and 30 (Li et al., 1989). The lo- 

cation where the flow is divided into the subcritical and supercritical regions is determined by the 

Froude number: 

uy F.= (3.26) Ja 

where d (nondimensionalized by 4) is the difference between the elevation of a free surface node 

  

and that of another node which carries the same value of velocity potential but is located at the bed 

bottom or at the dam/flow interface (e.g., Chow, 1959). Chow used somewhat different formulas 
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for the energy coefficient (which was applied to the velocity term) to account for logarithmic or 

linear velocity distribution along the depth of water. It is found that using the energy coefficient 

does not improve the convergence in this study, so the simpler form (Equation 3.26) 1s adopted. 

Starting from the most upstream node on the free surface, the first node with the Froude number 

which is greater than unity is taken as the critical point. By experience, the elevation change of the 

calculated free surface has to be multiplied by a deduction factor to keep the change small, and a 

smooth curve-fitting may be used on those nodes near the critical point determined by Equation 

(3.26), especially at the first several iterations. 

The external pressure for the dam at the dam/flow interface, from the Bernoulli equation, is 

_ _  _ ldo, J 
Po = & — Jo — se (3.27) 

3.5 THE ALTERNATING ITERATION AND AN EXAMPLE 

The alternating iteration method applied here is basically performing an iteration once for the dam 

shape immediately after one iteration for the free surface is executed. An initial guess for both the 

free surface and the dam shape has to be established before the iterations begin. The following 

example can serve to demonstrate how the alternating iteration works. 

We have an inflatable dam with 5 equal to —, and inflated by an air pressure term, 9 , of 2% (twice 

the total head). The base of the inflatable dam carries unit width and is anchored at xX) = 0 and 

X) = 1 in the two-dimensional point of view (Figure 3.3). The fictitious upstream and downstream 

boundaries for the inflow and outflow of the fluid domain are set at x) = — 6 and X) =7 , respec- 

tively, which are both six times the base width away from the anchored points of the dam. The 

total head (Bernoulli constant) is given as @& = 0.6060 . 

Before the first iteration takes place, we assume the initial guess for the dam shape to be half a circle, 

which is the shape for the dam under the condition of the internal inflated pressure acting alone. 
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For the free surface profile, the initial guess looks like that in Figure 3.3, with the upstream inflow 

depth higher than that of the downstream outflow (subcritical and supercritical, respectively). 

A hundred nodes are distributed along the boundary of the fluid domain for the boundary element 

analysis, while 21 of them also belong to the configuration of the membrane structure (20 elements) 

for the multiple shooting method (the subroutine DBVPMS in IMSL, 1989). The one hundred 

nodes are clockwise numbered as 2, 3, ..., 101 just because of the convenience for the programming 

of the boundary element method, where Nodes 12-32 are on the dam surface (Figure 3.3). Node 

numbers are indicated by being enclosed with small circles. In the bottom half of Figure 3.3, only 

those nodes which fall into the range between Xp = — 0.5 and X= 1.5 are shown. The distances 

between consecutive nodes are smaller where the curvatures are larger. Not many nodes are found 

near the two sharp corners (anchored points) because they are replaced with four special elements 

(see next paragraph). 

The boundary element method used is a modified version of the programs “GM8&” and “GM9 in 

Liggett and Liu (1983). The modification made on “GM8” is to include the codes for the Neumann 

Problem where the velocity potential is not uniquely determined, and the codes allow the formu- 

lation for the nodes with the velocity potentials unknown but the outward normal derivatives of the 

velocity potentials at both sides given and discontinuous. The modification done to “GM9” is to 

expand the use of the 16-point Gaussian quadrature in six panels for a single element (Liggett and 

Liu, 1983) for sharp comers of any angle. In this work, the boundary elements used for the fluid 

domain are linear elements with the exception of four special elements at both sides of the anchored 

points (sharp comers with angles to be determined). 

The alternating iteration method uses a number of iteration cycles. Each iteration cycle consists 

of an iteration for the free surface elevation followed by an iteration for the dam shape. By the 

boundary element method and the free surface adjustment scheme displayed in Section 3.4, the it- 

eration for the free surface in each cycle is operated with the dam shape fixed. The external pressure 

for the dam then can be calculated by Equation (3.27). On the other hand, with the free surface 
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fixed and the external pressure information, we can perform the iteration for the dam shape as in 

Section 3.3 by the multiple shooting method, and obtain the new dam shape for the next iteration 

cycle. 

When the alternating iterations are performed, it is noticed that the adjustments made either for the 

elevations of the free surface nodes (x-coordinates fixed) or for the displacements for x and y- 

coordinates of the membrane nodes have to be scaled down at most iterative cycles. Otherwise, the 

multiple shooting method may fail (no solution for the state of the external pressure distribution) 

and the free surface may exceed the total head, penetrate the dam, fall below the bed level, or have 

iter 

100 

iter is the sequence number of the iteration cycle. The scaling factor is kept less than or equal to 

  large kinks. In this example, a scaling factor of is used for all the coordinate changes, where 

one, and the value equals one after the 100th iteration cycle (no scale-down). Besides, an expo- 

nential form is employed whenever there is a small region of discontinuity around the crest at the 

free surface and smoothing is needed. 

The initial guess and the result at the 100th iteration cycle are detailed in Table 3.1. An initial guess 

of the velocity potential at the downstream outflow surface, doz, is made by successively applying 

the Bernoulli equation over the free surface elements: 

91 

boa= » ASj/ 2€ — Yor — Vo. 141 (3.28) 
i= 52 

where jo; and jp,;,1 are the y-coordinates of Nodes i and i+ 1 , respectively; AS; is the distance be- 

tween Nodes i and i+ 1 ; 52 and 91 are the first and the last element numbers on the free surface. 

Equation (3.28) is based on the assumption of linear variation of ¢» over each free surface element 

under the conditions of zero atmospheric pressure, zero velocity potential at the upstream inflow 

surface, and zero outward normal derivative of the velocity potential for a given free surface profile. 

The value ¢oq in each iteration cycle is also obtained from Equation (3.28) and the corresponding 

free surface location. 
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The dashed lines shown in Table 3.1 mean that the data do not change or there are no applicable 

data. From Columns 2-5, the shapes of the dam and the free surface for the initial guess and the 

result at the 100th iteration cycle are illustrated in Figure 3.4. The dam shape bends to the night 

and carries the x-coordinate of the crest to X) = 0.5279 . The overflow depth at the crest is 0.0811, 

which is 16% of the height of the dam (0.5036) and is less than the maximum overflow (40%) 

suggested by Bridgestone (1991). This overflow depth is 82% of the overflow head (far upstream 

water depth minus the height of the dam), which is higher than the 70% that Alwan (1988) pro- 

posed. 

Column 6 in Table 3.1 is for the velocity potential, which is used to generate the flow velocity on 

the two streamlines (the free surface and the dam/bed combination) in Column 8. From Columns 

5 and 8 (the terms regarding the elevation head and the velocity head), Bernoulli values can be 

calculated at the free surface nodes (Column 9), with the target value of 0.6060. There are 6 nodes 

with errors over 3% on the Bernoulli evaluation, as pointed out in Figure 3.5. It is found that the 

nodes right over the crest of the dam or around the downstream sharp corner on the free surface 

yield the larger Bernoulli errors. 

The outward normal derivatives of the velocity potential found in Column 7 for the inflow and 

outflow fictitious boundaries are employed to calculate the flow rate. At Nodes 2 and 52, the ¢o,; 

is for the derivative on the side approaching the nodes, while at Nodes 42 and 92, the oa is for the 

derivative on the side leaving the nodes (clockwise). A linear variation for ¢o,< is used in the ele- 

ments and the average of the flow rates obtained at the inflow and the outflow surfaces is taken as 

the flow rate for the system, which is 0.0368 in the example. For the height of the dam and the 

overflow water depth in this result, the formula from Bridgestone (Bridgestone, 1991) gives 0.0335 

for the flow rate in the case of no downstream water (for the dams with fins). The difference is 

insignificant. 
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The pressure distribution on the dam (from Equation (3.27)) is displayed in Figure 3.6, as well as 

in Table 3.1, Column 10. The maximum pressure appears at the anchored points (stagnation 

points) and some negative pressure exists beyond the crest of the dam. 

An error function is introduced for the free surface: 

91 —- = 2 
_. Yotvoi-1 po 

tp = ’ AS;(€p - a _ > $03, FP) (3.29) 

i= 52 

where or, ; is the velocity for Element i (a linear element has a uniform velocity) and other variables 

are defined as in Equation (3.28). The error function has the value of 0.0010 at the 100th iteration 

cycle (Figure 3.7). 

Figure 3.8 shows the variation of velocity potential at the downstream outflow surface, dog , with 

time. Its value is 7.3700 at Cycle 100. The maximum displacement in the same cycle among the 

nodes on the dam surface is 0.0027. The location of the critical point stays at either Node 57 or 

Node 58 (Xo = 0 or X = 0.25 , right before the crest of the dam). If the iteration process becomes 

divergent, it is very often found here that the critical point shifts to a downstream region (after the 

crest). If the momentum theorem is applied, the sum of the forces in the x-direction is 0.0520 and 

the net flow rate of momentum through the surfaces of the domain is 0.03745. This error may re- 

sult from the fact that oz is quite different at Nodes 2, 92, 42, and 52 from the values at the rest 

of the inflow and outflow boundary nodes. The rest is pretty uniform (see Table 3.1) either up- 

stream or downstream. 
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Table 3.1 Result at Iteration Cycle 100 (Part 1 of 2) 

  

  

  

  

    

        
  

  

  

  

    
  

  

  

  

    
  

    

      

      
  

    

  

  

  

    

    
  

      

  

  

    
  

  

  

        

      

  

        
    
    
  

  

  

                    

| Initial Guess Result at Iteration Cycle 100 
Node | = — — — a Zz 7 | o> Bermoulli on [Pressure on | 
No. X, L Vo Xp Yo %, Poin Po FS. Dam 

2 7.0000, 0.0000 . - 7.3700] 0.5490 - - - 
3 1.9000, 0.0000 - - 1.9100 0.0000 1.0700 - - 
4 1.8000 0.0000 - - 1.8000 0.0000 1.0900 - - 
5 1.7000 0.0000 - . 1.6900 0.0000 1.0800 - - 
6 1.6000 0.0000 - - 1.5900 0.0000 1.0700) - - 
7 1.5000 0.0000 - - 1.4800 0.0000! 1.0500 - - 
8 1.4000! 0.0000 - - 1.3800 0.0000} 1.0700 - - 
9 1.3000 0.0000 - - 1.2700 0.0000) 1.0800 - | - 

10 1.2000 0.0000 - - 1.1600 0.0000 1.0700 - - 
11 1.1000 0.0000 - - 1.0500 0.0000 1.0600 - - 
12 1.0000 0.0000 1.0000 0.0000 0.9870 0.0000 0.0000! - 0.6060 
13 0.9940 0.0782 0.9995 0.0785 0.9440 0.0000 0.5540, - 0.3740 
14 0.9760 0.1550 0.9896 0.1563 0.8680 0.0000 0.9860} - | 0.0364 
15 0.9460 0.2270 0.9667 0.2314 0.7950 0.0000 0.9540 - 0.0805 
16 0.9050 0.2940 0.9303 0.3008 0.7290 0.0000 0.8640 - | -0.0680 
17 0.8540 0.3540 0.8818 0.36251 0.6700 0.0000 0.7620 - 0.0468 
18 0.7940 0.4050 0.8230 0.4144, ~— 0.6200 0.0000 0.6460 - 0.0171 
19 0.7270 0.4460 0.7560 0.45521 (0.5790 0.0000! 0.5180 - 0.0166 
20 0.6550 0.4760 0.6831 0.4840 0.5460 0.0000 0.4180 - | __(0.0346 
21 0.5780 0.4940 0.6063 0.5002 0.5160 0.0000 0.3920) - | 0.0290 
22 0.5000! 0.5000 0.5279 0.5036 0.4850 0.0000 0.3940) - 0.0248 
23 0.4220! 0.4940 0.4501 0.4942 0.4560 0.0000 0.3670 - 0.0445 
24 0.3460 0.4760 0.3747 0.4724 0.4310! 0.0000 0.3230) - |: 0.0814 
25 0.2730 0.4460 0.3036 0.4392 0.4100 0.0000 0.2680 - | 0.1309 
26 0.2060 0.4050 0.2382 0.3959 0.3940 0.0000 0.2100 - | 0.1881 
27 0.1460 0.3540 0.1796 0.3437 0.3810 0.0000 0.1610 - | (0.2493 
28 0.0955 0.2940 0.1284 0.2842 0.3720 0.0000 0.1220 - | 0.3144 
29 0.0545 0.2270 0.0849 0.2188 0.3650 0.0000) 0.0902 - | 0.3831 
30 0.0245 0.1550 0.0493 0.1489 0.3600 0.0000! 0.0633 - | 0.4551 
31 0.0062 0.0782 0.0211 0.0756 0.3560 0.0000! 0.0398 - 0.5296 
32 0.0000 0.0000 0.0000 0.0000 0.3560 0.0000] 0.0000 - | ___ 0.6060 
33|  -0.1000 0.0000 - - 0.3540 0.0000 0.0197, - [| - 
34] — -0.2000 0.0000 - - 0.3500 0.0000 0.0357) - [ - 
35|  -—0.3000' —-0.0000 - - 0.3460/ 0.0000 0.0448, - | - 
36] -0.4000| __0.0000 - - 0.3410| —0.0000/_——0.0501 - | 
37;  -0.5000) 0.0000 - - 0.3350 0.0000| 0.0533 - 4 - 
38]  -0.6000 0.0000 - - 0.3300 0.0000 0.0552 - | 
39] — -0.7000 0.0000 - - 0.3240 0.0000 0.0564 - | - 
40| 0.8000 0.0000 - - 0.3180 0.0000] 0.0572! - | - 
41 -0.9000 0.0000 - - | 0.3130 0.0000! 0.0578 - - 
42} — -6.0000 0.0000 - 0.0000] 0.0000) —_-0.0904) - - - 
43} -6.0000 0.0600 - 0.0608 0.0000 — -0.0634 - | - - 
44| 6.0000 0.1200 - 0.1220 0.0000 -0.0663 - - - 
45|  -6.0000 0.1800 - 0.1830 0.0000] — -0.0652 - | - - 
46| — -6.0000 0.2400 - 0.2430 0.0000: — -0.0650 - - - 
47; -6.0000 0.3000 - 0.3040] 0.0000) -0.0649 - . - 
48, 6.0000 0.3600 - 0.3650' 0.0009 ~—- -0.0649 - - - 
49} — 6.0000 0.4200 - 0.4260, 0.0000] ~—_ -0.0649 - ~ pe 
50|  -6.0000 0.4800 - 0.4870 0.0000' — -0.0656 - - | - 
51 6.0000 0.5400 - 0.5470 0.0000] 0.0635 - - of   
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Table 3.1 Result at Iteration Cycle 100 (Part 2 of 2) 

  

  

    

  

      

      
  

    
  

  

  

  

  

  

  

  

  

  

  

  

  

    
  

  

      
    
  

  

      

    
  

  

    
  

  

  

  

  

  

      
        

  

      
  

    
  

      
  

    

Initial Guess Result at Iteration Cycle 100 
Node — _ _— _ Tz Zz Tz Bemoulli on | Pressure on 

No. Xo | Xo Xo yo up Po bos Es. Dam 
52 6.0000 0.6000 - 0.6020 0.0000! —_-0.0824 - | - - 
53 -3.0000 0.5940 - 0.6020 0.1860 0.0000 0.0620] 0.6039 - 
54 -1.0000 0.5820 - | 0.6020 0.3060 0.0000 0.0600 0.6038 - | 
55 -0.5000 0.5790 - | 0.6020 0.3360 0.0000 0.0600 0.6038. - 
56, --0.2500 0.5770 - 0.6020, 0.3520 0.0000 0.0640 0.6040] ~~ 
57 0.0000 0.5740 - 0.5970, 0.3710 0.0000 0.1360) 0.6062) - | 
58 0.2500, 0.5720 ~ | 0.5920) 0.4060, ~——-0.0000]_ 0.2730; 0.6293 | - 
59 0.5000 0.5700 - | 0.5880 0.4740 0.0000 0.3520 0.6500 - 
60 0.5420 0.5680 - | 0.5830 0.4890 0.0000 0.3640 0.6492 - 
61 0.6040 0.5580 - 0.5790 0.5110 0.0000 0.3420 0.6375 - 
62 0.6670 0.5390 - 0.5720 0.5330 0.0000 0.2980 06164 - 
63 0.7080; 0.5220 - 0.5650 0.5450 0.0000 0.2700 0.6015] - 
64 0.7290 0.5110 - 0.5550 0.5520 0.0000! 0.3080: 0.60245 = 
65 0.7500 0.5000 - 0.5420 0.5590 0.0000 0.3270 0.5955 - 
66 0.7710 0.4870 - 0.5290 0.5670 0.0000 0.3640 0.5952 - 
67 0.7920 0.4720 - 0.5100 0.5780 0.0000 0.4120 0.5949 - 
68 0.8130 0.4560 - 0.4920 0.5890 0.0000 0.4600) 0.5978 - 
69 0.8330 0.4380 - 0.4710 0.6030 0.0000 0.5080! 0.6000: - 
70 0.8540 0.4180 - 0.4510 0.6170 0.0000 0.5490 0.6017 - 
7] 0.8750 0.3960 - 0.4290 0.6340 0.0000 0.5920 0.6042 - 
72 0.8960 0.3700 - 0.4070 0.6520 0.0000 0.6340 0.6080 - 
73 0.9170 0.3410 - 0.3800 0.6730 0.0000 0.6730 0.6065 - 
74 0.9380) 0.3060 - 0.3540 0.6960 0.0000! 0.7210 0.6139 - 
75 0.9580 0.2640 - 0.3210) 0.7240! 0.0000 0.7616: 0.6106 - | 
76 0.9790 0.2060 | 0.2860! 0.7550) 0.0000 0.8210 0.6230 - 
77 1.0000] 0.1350 - | __0.2350] 0.8000 0.0000) 0.8580] 0.6031) - 
78 1.0100 0.0631 - 0.2010 0.8310 0.0000 0.9200 0.6242 - 
79 1.0300 0.0631 - 0.1400 0.8890 0.0000 0.9540 0.5951 - 
80 1.0400 0.0631 - 0.0571 0.9680 0.0000 1.0500, 0.6084! - 
81 1.0500 0.0631 - 0.0308) 0.9990 0.0000 1.0900) 0.6249 - 
82 1.1000 0.0631 - 0.0315, 1.0500 0.0000} 1.0500) 0.5828 - 
83 1.1500 0.0631 - 0.0285 1.1100 0.0000, —-1.0900/ «0.6226 - 
84 1.2000 0.0631 - 0.0282 1.1600 0.0000] 1.0600 0.5900: - | 
85 1.2500 0.0631 - 0.0292 1.2100 0.0000 1.0800 0.6124) - 
86 1.3000 0.0631 - 0.0269 1.2700 0.0000 1.0700 0.5994] - 

87 1.3500 0.0631 - 0.0295 1.3200 0.0000 1.0800 0.6127; - 
88 1.4000 0.0631 - 0.0260 1.3800] 0.0000 1.0700 0.59851 - 
89 1.5000 0.0631 - 0.0304: 1.48001 0.0000! 1.0700) 0.6029! - 
90 2.0000 0.0631 - 0.0193 2.0200 0.0000 1.0800 0.6025 - 
91 4.0000) 0.0631 - 0.0342 4.1700 0.0000 1.0700 0.6067 - | 
92 7.0000) 0.0631 - 0.0342, 7.3700 0.6330 - | - - 
93 7.0000, 0.0568 - 0.0307} 7.3700 1.0300 - | - | - 
94| 7.0000] 0.0505 - 0.0273| 7.3700 ~—_—0.9890 - | - | 
95 7.0000 0.0442 - 0.0239) 7.3700 1.0000 - | - | - 
96 7.0000 0.0378 - 0.0205 7.3700 1.0100 - - - 
97 7.0000 0.0315 - 0.0171 7.3700! 1.0100 - - | - 
98 7.0000 0.0252 - 0.0137 7.3700 1.0000 - - - 

99 7.0000} 0.0189 - 0.0102 7.3700 1.0000 - - | - 
100 7.0000 0.0126 - | 0.0068 7.3700 0.9810 - - | - 
101 7.0000 0.0063 - | 0.0034 7.3700 1.0300 - | - -               
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Figure 3.1 A Membrane Element in Equilibrium 
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Figure 3.2 The Flow Domain 
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Figure 3.7 Error Function on the Free Surface with Iteration Cycle 
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Figure 3.8 Velocity Potential at Downstream Outflow Surface with Iteration Cycle 
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Chapter 4 

DYNAMIC ANALYSIS 

4.1 INTRODUCTION TO DYNAMIC ANALYSIS 

For an inflatable dam under an overflow condition, the static equilibrium shape of the dam, as well 

as the external pressure distribution over the dam surface and the location of the free surface for the 

overflow found in Chapter 3, afford the fundamentals for a dynamic analysis. 

Small vibration about the equilibrium state is assumed and the equations of motion based on 

membrane theory prevail in the dynamic analysis. Besides, the membrane of the dam is inextensible 

and the internal inflated pressure of dam is constant. The overflow is governed by Laplace’s 

equation with gravitational wave propagation neglected and the domain of the flow unchanged as 

the dam performs vibrations with or without structural damping. An eigenvalue system is estab- 

lished by combining the boundary element method applied on the fluid domain and the membrane 

equations of motion employed for the displacements of the dam. The vibration modes and vi- 

bration frequencies of this eigenvalue system provide the information on how the dam vibrates and 

if the oscillation is associated with stability, divergence, or flutter. 

38



4.2 EQUATIONS OF MOTION FOR THE MEMBRANE 

The shape of the inflatable dam in this two-dimensional analysis is treated as a series of membrane 

elements with unit depth (in the direction into the paper). One of these membrane elements for 

the dam in vibration is shown in Figure 4.1. By membrane theory (Firt, 1983) with structural 

damping, the equations of motion in the tangential and outward normal directions for the mem- 

brane element can be expressed as 

LV,,,a5 + Bv,.ds = (t+ t,,ds) cos dO —t (4.1) 

uw,,,ds + Bw,,ds = (21 + t,,ds) sin g + ds (4.2) 

where yw is the mass per unit area of the membrane, which is a constant; B is the structural damping 

mass 
time « length? 

nate; v(s, t) and w(s, t) are the tangential and outward normal displacements of the membrane, 

coefficient per unit depth and has units of ( ) ; t 1s the time; s 1s the curved coordi- 

respectively, about the equilibrium state, which are assumed to be small; ¢(s, +) is the total tension 

per unit depth in the membrane; @(s, 1) is the total slope of the membrane; and ¢(s, 1) is the total 

outward pressure (including internal and external pressure) applied on the membrane, times the unit 

depth. 

In the dynamic analysis, the terms ¢, 0, and q are ‘total’ because they are the results of the addition 

of static solutions and dynamic solutions (caused by the membrane vibration). That is to say 

t= +t, (4.3) 

6=0)4+ 8; (4.4) 

7 = Gq — (Py + Pi) (4.5) 

where & is the tension per unit depth in the membrane in the static analysis, which is uniform along 

the curved coordinate; 4(s, t) is the additional tension caused by the membrane vibration per unit 
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depth; @(s) is the slope of the membrane in the static analysis; @,(s, 7) is the additional slope of the 

membrane caused by the membrane vibration; q is the internal inflated pressure times the unit 

depth, which is a constant; p)(s) is the external pressure times the unit depth in the static analysis; 

and p,(s, t) is the additional external pressure caused by the membrane vibration, times the unit 

depth. 

The equations of motion for the membrane element, Equations (4.1) and (4.2), can be simplified 

since d@ is assumed to be small and the higher order terms are neglected: 

MVseq + By, = bs (4.6) 

uW,,, + Bw,, = 16,,+¢ (4.7) 

Solving Equation (4.7) for ¢, differentiating ¢ with respect to s, substituting ¢,, back into Equation 

(4.6), and multiplying Equation (4.6) by @,? , we obtain the following equation: 

2 2 
HO, Vien + BE,5%,, =— 9, s(UWr2¢ + Bw,, ~ q) + 8, (UW 524 + BW, 5, ~ 915) (4.8) 

Following Henrych (1981), for small dynamic displacements the term @,, in Equation (4.8) can be 

approximated by 

2 
o,.= os + Wyse (Go, s)wt A, ss (4.9) 

where @,, is the curvature of the dam shape (in the two-dimensional point of view) in the static 

analysis. By the inextensibility of the membrane, the tangential and the outward normal displace- 

ments are related by 

W=Vi9= 0. VY. = Oo My (4.10) 

where the approximation in Equation (4.10) is the result of ignoring the higher order terms in 

Equation (4.9). 
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From the expressions for @,, and w in Equations (4.9) and (4.10), and the derivatives of them, 

Oiss y Wiss Wess) Wysss > Woe» Wise» Wier and w,,,, , Equation (4.8) can be rewritten as follows after 

the higher order terms are ignored: 

pay Vyeq + Ay BVs54¢ — Vss5e2) + B(a; Vy_ + Gy AV,5. — VY ssc) 

—\ 
= (Ay + V+ A5Vy5 + GV 55 + AVys55 + Ay Vissss)G (4.11) 

—] 

— (Ay + QV + OgV,, + AgVyos + A Vises) 4s 

in which 

ay = 5; M4535 BAD s, MAA 5; 

as = — 6a; a; + 6a, ana; - a; "ay + 2a; 

& = 6a, >a? — 3a, 7a; +435 @= — 3a; 7@ ; 

dg = 2a; as _ a, a; +4; a= - 2a; a, (4.12) 

In Equation (4.11), the terms g and g,, can be put in a more explicit form by recalling Equations 

(4.5) and (3.8): 

J = 9 — (+ P}) (4.5) 

Iq _ o- 4) 3.8) 
—_— 

ds b 

The terms g and g,, thus become 

q=— A — Pp; (4.13) 

Fis =— Hy —Pi,s (4.14) 

where a, and a are defined in Equation (4.12). From Equations (4.13) and (4.14), assuming that 

P; 1s of the same order as v , and neglecting the higher order terms, we rewrite Equation (4.11) as 
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LD Vie + byVysn¢ ~ Visser) + B(Dyy,, + BV 56 —_ Vss5x) 

= lo(Dgv + bgry5 + BsVis5 + OgVisss — Vossss) + Opp) + OgPy, 5 (419) 

where 

b, =a; ; b= 2ay la ; 6; = a — 4) 43; 

bg = Gg — a) a5 = 8a, a _ Tay ana; + apa, — a; ; 

bs = dnd — a5 = — Baya} + Bay ay — a7 ; 

be = ay a — a;a, = 4a) a; b=—-—a; b=a, (4.16) 

In order to nondimensionalize the equation of motion, Equation (4.15), the following set of vari- 

ables is introduced based on 4 (the base width of the dam), y (the specific weight of the fluid in the 

overflow), and u (the mass per unit area of the dam material): 

  

i lo . p Pj — Pi,s 

0 — ? 17 3 li ’ 
vi, vb y 

— ve ose. eB 
v= h Vse=VWos Vise = Disses Wiss¢=]Miss93  VogsTF = ODM sss 
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~ /H1,. 5_. /# . oe fH . BENT De MAA GT Mori Mae 7 Yosser 3 

— Lu _ Lu - 
Vite = “yh Veg Viste = yp Vogers Yasser = LY issee (4.17) 

After nondimensionalization by Equation (4.17), Equation (4.15) turns into 

bi + be — Vice t+ BOI + DV — Ve) 1" ott Stt SSTT 1" or ST SST (4.18) 

= Ig(byi + big + BsWs5 + Beh s53 — Pass5z) + Oey + beh, 5 

By the assumption of harmonic motion for v and p, , and the application of separation of variables, 

<-> At v(s, tT) = Vis)e (4.19) 

DAG, %) = P@e”* (4.20) 

Equation (4.18) becomes 

(2? + BAY, V + BV! — VV") = ig (byV + BgV! + b,V" + BEV — VI") + DP + BP! (4.21) 

where the primes mean the ordinary derivatives with respect to 5 . 

Since there is no tangential or outward normal displacement at both fixed ends (anchored points), 

with the use of w = 0,,v,, (see Equation (4.10)), the boundary conditions for Equation (4.21) are 

VO=0; VO=0; ViH)=0; V'(5)=0 (4.22) 

where 5) is the nondimensionalized curved perimeter of the membrane, which can be calculated 

from the given curved perimeter, 5) , and the base width, 4 , according to Equation (4.17). 

The discretization of Equation (4.21) and the corresponding boundary conditions, Equation (4.22), 

is performed by dividing the curved perimeter into m+ 1 equal-length elements (Figure 4.2) with 
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Equation (4.21) satisfied approximately at all the m internal free nodes using a finite difference 

scheme. The discretized equations of motion and the boundary conditions are 

(2? + Bay(By iV; + by Vi — Vi) 
7h L Lh ’ ower ee L j. ' (i= 1, 2, ..., m) 

= [9(D3Vit daVi + d5V i" + Dg Vi" — Vi") + bP + bg ,P; 

(4.23) 

Let A be the uniform curved spacing length between neighboring nodes on the dam. A finite dif- 

ference scheme which is based on a central difference of order O(A 2) , with exceptions where forward 

and backward differences are needed at Node I and Node m (shown in Appendix A), is applied to 

those terms with derivatives of V; and P; , the coefficients (bi, bai, aesy bs,) in the equations of mo- 

tion, Equation (4.23), and the boundary conditions, Equation (4.24). From Equation (4.24), 

The terms V_; and V,,,2 do not physically exist but they help establish the following equations of 

motion. From Equations (4.23), (4.25) and the finite difference scheme in Appendix A, 

m m m+ 

(+ BA) DBM = DIM + D, De wa rPe (i= 1,2, ...m) 

(4.26) 

where the index k is different from the index j since the additional external pressure caused by the 

membrane vibration contributes at Nodes 0 and m+ | (fixed points), too. Semicolons (;) are used 

between the subscripts to avoid confusion wherever arithmetic operations appear as part of the 

subscripts, e.g.,— 1, i+ 1, for the coefficients in Equation (4.26), B,;, C;;and D,, ,4., , as shown 

below: 
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B; PT OG 

Burm But Se 

Bi, eth 

Other B; ; = 0 

Cs, anit -) 

G1 = = arta) 

C= by Be a 

_ by bs; = Bes 
C141 = lS 4 Sy Set Se) 

-, bi ] 
Cr ig or ~ Ga) 

~~ 2b be 
C11 = f(s ~ 9 Sa za Cram = (43m 

Other C; ;= 0 

D,y= — 2 > Deigy =bns Dp i4.=—= 
2h , , 

Other D; ;= 0 

(i = 2, 3, wesy m 

(4.27) 

(i = 3, 4, eeay m) 

(i= 2, 3, ..., m) 

(i= 2,3, ...,m— 1) 

bem 7 

2h? ht 

(4.28) 

(i = l, 2, ones m) 

(4.29) 
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where 

5 we. Pp aot. pPegwiag.. 
bya ays yy 2 5 bay = hay — ajay 

Jd 

a aay, a ~ 2 LU 2 293) ap 
bay = Ajay — 4 jA5j = 8 —- — 1 te jay 3 

Qj aj i 

—2 _ 
a5; ay; = - — -~ — ij Ho 

bsj = jg; — Ay jp; = — 8 - + 3S — yj; 
Vi V J 

_ & ay - _ jim = i, os, _- 
bey = yj = 4S 5 by = — Ay, Dg = ay; 

V lj 

(j= 1, 2, ..., m) (4.30) 

according to Equations (4.16) and (4.17). The equations for a; (k= 1,2,3,4; j= 1, 2,..., m) are 

shown in Equations (A.4)-(A.7) in Appendix A. 

The pressure term (the last term on the right hand side) in the discretized equations of motion, 

Equation (4.26), needs to be further related to the displacement terms (the other two terms in the 

same equation) in order to finish setting up an eigenvalue problem. This is accomplished by taking 

account of the Laplace’s equation and the Bernoulli equation for the overflow domain shown in 

the next section. 

4.3 FLOW DOMAIN ANALYSIS 

As the inflatable dam performs small vibrations about the equilibrium state, the velocity potential 

of the fluid in the domain of analysis changes with time accordingly. By the assumption of 

incompressible, inviscid, and irrotational flow, the Laplace’s equation applies to the overflow 

problem in the dynamic analysis, as it does in the static analysis in Chapter 3. By superposition, 
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the total velocity potential can be expressed as the sum of the velocity potential obtained in the 

static analysis, ¢y , and the additional one caused by the membrane vibration, ¢, : 

$= Go+ >) (4.31) 

The Bernoulli equation for the potential flow in the dynamic analysis which relates the additional 

pressure, p, , and the additional velocity potential, ¢; , is 

dixt dy + (P+ bet 5 — 1 +9 = % (4.32) 

where p is the density of the fluid, which equals the specific weight divided by the acceleration of 

gravity, + ; x and yp are the x and y coordinates of the fluid particle, respectively; p is the total 

pressure in the flow; ¢,, is the time derivative of the total velocity potential of the flow; ¢,, and 

¢,y are the total flow velocities in the x and y directions, respectively; and e is the specified total 

head, which is a constant. In this Bernoulli equation, the right hand side which has to be space 

independent (e.g., Sabersky et al., 1989) takes the value of the given total head. Let yp and y, be 

the y-coordinates of the fluid particle in consideration from the static and dynamic analysis, re- 

spectively, and we can rewrite Equation (4.32) with the help of Equation (4.31). This gives 

($0, x+¢1, x7 — (bo, y+ 41, y)” + {Po + Pit el $0, 261, $a te tm tna (433)   

where the variables with the subscript 0 refer to those in the static analysis while the variables with 

the subscript | refer to the additional variations caused by the membrane vibration. On the other 

hand, the Bernoulli equation in the static analysis is 

1 $6 $6 > x , = Lm + (G+) 14-90 = 6 (4.34)     

Subtracting Equation (4.34) from Equation (4.33), recalling that ¢o,, is zero, and neglecting the 

highest order terms in ¢, , we find that the Bernoulli equation becomes 
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Loi + ($s, ++ 40, x1, x + 0, 1, ) J+ =0 (4.35) 

Since the Laplace’s equation holds for the additional velocity potential as well as the total velocity 

potential (Equation (4.31)), the following Laplace’s equation and boundary conditions (see Figure 

4.3) for ¢; are used in the dynamic analysis: 

V7¢,=0 — in Flow Domain (4.36) 

$, =0 on Free Surface (4.37) 

o, =0 on Inflow Boundary (4.38) 

¢, =0 on Outflow Boundary (4.39) 

¢1 ,=9 on Bed Bottoms (4.40) 

Pi, n=— (+ Po, sys) 

—1 -—2 —1 (4.41) 
=—[ay V5,+¢9, 6 — 4 “Q%5+ 4, Vss)] | on Dam — Flow Interface 

where 7 is the unit outward normal to the surface enclosing the flow domain and ¢y,, is the flow 

velocity along the curved coordinate, s , in the static analysis. Compared with the Bernoulli 

equation (Equation (4.35)), Equation (4.37) indicates no y-coordinate change (wave motion) on the 

free surface with fixed atmospheric pressure; Equations (4.38) and (4.39) show that the effect on 

¢; due to the membrane vibration diminishes at the far upstream inflow and far downstream out- 

flow boundaries; Equation (4.40) verifies that the fixed bed is part of the streamlines; and Equation 

(4.41) shows the compatibility condition (kinetic boundary condition) between the movements of 

the membrane and the fluid particles in the normal direction (Bisplinghoff and Ashley, 1962). The 

relation between v and w in Equation (4.10) is used again to make the second equal sign in 

Equation (4.41). 
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In addition to Equation (4.17), the following variables are introduced in order to nondimensionalize 

the Bernoulli equation (Equation (4.35)), the Laplace’s equation (Equation (4.36)), and the corre- 

sponding boundary conditions (Equations (4.37)-(4.41)) for the overflow problem: 

pL , I’ I? ly’ 1] b ’ 

    

$1, x= F Eos By 5- NF Thuy O1,2>—7 41,4 (4.42) 
70 

Thus, 

Pr +3 (dy zt bo, xb, z+ 9p, 51, 5) + y, =0 (4.43) 

Vd, = 0 in Flow Domain (4.44) 

oy = 0) on Free Surface , Inflow Boundary , Outflow Boundary (4.45) 

oy, 7=0 on Bed Bottoms (4.46) 

$1, a=—l s + $0, 3(- a + “a J on Dam — Flow Interface (4.47) 

1 

The additional potential caused by the membrane vibration, $1 , is assumed to be in the same ex- 

ponential form as that for v (see Equation (4.19)) when separation of variables applies: 
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$y(X1 Jy t) = O(X, pe (4.48) 

By Equations (4.19) and (4.48), the potential problem (Equations (4.44)-(4.49)) becomes 

Vv’) =0 in Flow Domain (4.49) 

D = 0 on Free Surface , Inflow Boundary , Outflow Boundary (4.50) 

P,- = 0 on Bed Bottoms (4.51) 

Vv" 

®,=-[ it = ~ 4 do, 7 - V+ a? ] on Dam — Flow Interface (4.52) 
] 

a 

ze 
ay 

After discretization, the boundary conditions (Equations (4.50)-(4.52)) turn into 

®-=0 = on Free Surface ; ®,;=0  onInflow Boundary ; 

Dog=0 on Outflow Boundary 
(4.53) 

DPey,7=9 on Upstream Bed Bottom ; Ppp 7=9 on Downstream Bed Bottom (4.54) 

7 dy; vi 

®, 7 = -[A=— - + doj, - = V+ —)] 

a 
m ! (= 0, 1,..., 7+ 1) 

= > (Misa; et AN 41, )V_ on Dam — Flow Interface 
k= 

(4.55) 

where ©, ®;, D7, Do, Pgy, and Dgp are the M values designated at the nodes of the section of the 

membrane, the free surface, the inflow boundary, the outflow boundary, and the two bed bottoms 

(upstream and downstream), respectively. , represents the value of ® at Node j of the membrane 

section. The equations for M and N are shown in Appendix A. 
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A boundary value problem is established by Equations (4.49) and (4.53)-(4.55) and solved by a 

boundary element method using linear elements (Liggett and Liu, 1983). By Equation (2.34) on 

Page 25 in Liggett and Liu (1983), the system equation from the boundary element method 1s 

[RID gy 0, Of G9 gp)" 
T 

=CLIL® 7 Ogu 7 P57 O77 Pon Vzp, 71 »” 

(4.56) 

where R and L are the coefficient matrices for ® and ® ; , which are calculated by the node coor- 

dinates in the static solution and the boundary element method, with the first node set at the most 

downstream node on the dam and with the remaining node numbers counted clockwise. Moving 

the unknowns to the left hand side and exchanging the corresponding rows between A and L with 

appropriate sign changes, we have the new matrices, R and L , and Equation (4.56) becomes 

— T 
[RIL® Opy O75 Ope Og x Ppp] 

=(LIlo- © ®, 0, O, © r G97 =[(LIL® ; BU, A I F O Bp, iJ 

Since this is a mixed boundary value problem (Neumann and Dirichlet), the inverse of R in 

Equation (4.57) exists and we have 

[L® py Or 7 VF Ppp 1" n 
—_—-|].— 

=[R] [LILO 5 gy 57 0 Pf % gp 5)" (4.58) 

= CQIL D nr Day, nr QD; Or Po Den, =)’ 

where [0] =[R]-'[L]. From Equations (4.53) and (4.54), the elements of the last matrix on the 

right hand side in Equation (4.58) are zero except for ® z (see Figure 4.3). Therefore, 

m+] 

O= > Ons 41%, (§=0, 1, m+ 1) 
j=0 

(4.59) 
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Only the first 2+ 2 rows and the first 7+ 2 columns in Q which correspond to the nodes on the 

membrane are used in the formulation of Equation (4.59). Combining Equations (4.55) and (4.59), 

we have 

m+lom 

o;= >, Ora je Mats et Aig, 74 N41; ME 
J=0k=1 

(i= 0, l,..., m+ 1) 
mi 

= > Mas, at AN 41; DV 
k= 

(4.60) 

m+] m+) 

where Miss; i= 2 Oi+; j+1M; +1; x and Nia r= DY Oia; p+ Njas ke 
i= f=0 

Now that ® and V are related by Equation (4.59), we have to further relate ® and P in order to 

solve the equation of motion for the membrane (Equation (4.26)), with the help of the Bernoulli 

equation. The Bernoulli equation derived at the beginning of this section (Equation (4.35)) is 

+ Lo + lbs, 2+ 40, x41, x + $0, ys, y) +91 =0 (4.35) 

When the Bernoulli equation is employed on the interface of the dam membrane and the flow, the 

term y; , the additional dynamic displacement of the fluid in the y direction, can be related to v and 

w , the tangential and normal displacements of the membrane, as follows: 

y, =vsin 65 + woos 6) = v sin 8) + a; 'v,, COS 8 (4.61) 

where @, is the slope of the dam shape, and aj! is defined in Equation (4.12), both of which are 

known from the result of the static analysis. For small vibrations, the velocity terms in Equation 

(4.35) are 

bo, x1, x + bo, yi, y = 0, nP1, n+ $0, sf, s= Fo, sPi, 5 (4.62) 
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since ¢o, , = 0 at the interface in the static analysis. By Equations (4.61) and (4.62), Equation (4.35) 

becomes 

= CPi + p($1, 2+ $0, shi, s) J +¥ sin A + ay V5 cos 8) = 0 (4.63) 

Using the nondimensionalized variables listed in Equations (4.17) and (4.42), Equation (4.63) be- 

comes 

cos 8% 

P, + D(b1, z+ bo, 51, 9) + F sin Oy + z P= 0 (4.64)   

By separation of variables (Equations (4.19), (4.20) and (4.48)), 

cos A 
  P+ pM + by 5,3) + Vsin Oy + Vv =0 (4.65) 

a; 

By discretization, Equation (4.65) turns into 

_ — > cos : 
P+ pAQ; + $oj, 5), 3) + Vj sin Oo; + —=— Vi = 0 (i= 0, 1,..., m+ 1) 

li 

  

(4.66) 

where ®, ; and other terms with ordinary or partial derivatives can be calculated by a finite differ- 

ence method displayed in Appendix A. After the execution of this finite difference method, 

Equation (4.66) becomes 

m+i m 

P,=—[ pa; + » Ai 1; 7419) + > Kai] (i=0,1,..., m+ 1) 
j=0 j=1 

(4.67) 

where H and K can be found in Appendix A. 
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4.4 EQUATION ASSEMBLING 

One equation of motion for the membrane (Equation (4.26)), one equation from Laplace’s 

equation (Equation (4.60)), and one equation from the Bernoulli equation (Equation (4.67)) were 

derived in the last two sections and are ready to be assembled. Replacing the P in Equation (4.26) 

with the one in Equation (4.67), we have 

m 

(P+ Ba > BiK= DG, 
m+ 

- dP i; e+ Kea; Vy 

—_
 

m 

j=1 

m+ m+) 

—?p (ADs. p44 > Dy. 4 le 4 15 74 1); 
j k=0 So

 

m m+) 

= DG MAF DY, OD 541+ Fy 4 0%) 
j=l j=0 

m+} m+) 

where Cj; =C,;— 2 Di e+ 1 Ky 41; j and Hi, 1 2 Di peat crear tis 

(4.60) into Equation (4.68), and obtain 

m+ i 

2 
S245 YD, ee Nee: p 
j=l k=0 

m+) 

+ AL BB +p x (Di et Mess st Ae ea Neti; p 4 

m+) 

+@), Fi, x4 Meats 3— Gd) =0 
k=0 

which can be written in the form 

(4.68) 

Then we substitute Equation 

(4.69) 
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. | 
> (PE + Fy + GV) =0 (i= 1,2,...,m) 
j=l 

(4.70) 

mt+il — — m+ —_— — — 

where Ei;= By tp Dd Dis csiNesay; Fi; = BB +p Dd (Dis ea iMasa + Ai ei Nee sd ; and 
k=0 k=0 

m+1lo — 

Gij=p 2 Hs ce Mass Ci; . 
k= 

4.55 EXAMPLES 

Introducing a variable Z, 

Z) = AV; (j= 1,2,...,m) 

(4.71) 

we can rewrite Equation (4.70) as 

m 

>. (AE, jZj + FijZj + Gj¥j) =0 (i= 1,2,..., m) 
=] 

(4.72) 

The eigenvalue system established by Equations (4.71) and (4.72) doubles the size of the 

eigenvectors in the original problem (Equation (4.70)), and the order of 4 is reduced by one. Then 

a subroutine, named DGVCRG (IMSL, 1989), can be used to solve for all the eigenvalues and 

eigenvectors. 

The examples shown here are based on the result of the static analysis of the example in Section 

3.5. There are two variables which need to be assigned certain values, p (the fluid/dam density ratio 
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parameter), and # (the structural damping parameter) in the coefficients of V; and Z, in Equation 

(4.72). 

4.5.1 Example: p = 1.0; B = 0.1 

According to Equation (4.19), the tangential displacement of the membrane is 

(5, 7) = Vie* 

Let the solutions for V and A be 

V=V,+iV; (4.73) 

=A, + id; (4.74) 

Both of these come from the result of eigenvalue analysis. We have 

v= e***( V,cos At — V; sin Aft) (4.75) 

after discarding the imaginary part of ¥ . 

From the relation of w and v in Equation (4.10) and the use of the nondimensionalization and finite 

differences, we can obtain w , which is the nondimensionalized outward normal displacement of the 

membrane. Combinations of the projections of v and w onto X and jp give the displacements on 

these two axes for the membrane during vibration: 

AXp = ¥ cos 0) — W sin Oy (4.76) 

Ay =¥ sin Oy) + W cos Gy (4.77) 

where @, is the slope of the membrane. 
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In the first example, p = 1.0 and B = 0.1. There are 19 free nodes on the membrane and thus 38 

eigenvalues (Equations (4.71) and (4.72)). All 38 real parts of the eigenvalues (/,) are found to be 

negative, so this system is stable. The eigenvalues come in conjugate pairs if the imaginary parts 

are not zero. We arrange the eigenvalues in the order of increasing absolute values of the imaginary 

parts, and assign the mode number accordingly (a conjugate pair is regarded as one mode only). 

The eigenvalues for the first four modes are 

Mode 1: —0.02492 + i(1.8250) 

Mode 2: —0.02857 + i(3.4290) 

Mode 3: —0.02217 + i(5.0640) 

Mode 4: —0.02468 + i(6.5370) 

The period of vibration for each mode is computed by the following equation: 

T= i=1,2,... (4.78) 

With the eigenvalues, eigenvectors (for V), and the method mentioned earlier in this section, we 

show the displacements of the membrane during vibration for Mode 1 in the first cycle in Figure 

4.4. The dotted lines shown are for the equilibrium state. Figures 4.5 and 4.6 show the contrib- 

utions of the real parts and the imaginary parts of the eigenvectors ( V, and V; ), respectively, to the 

displacements of the four modes. In other words, Figure 4.5 depicts the shapes at t = 0 and Figure 

4.6 gives the shapes at T= —~- . These modes are not classical modes, and it is not necessarily true 
2A; 

that the first mode has one node, the second mode has two nodes, and so on, at all times. 

4.5.2 Example: p = 12; B = 1 

This is another stable case with the eigenvalues for Modes 1-4 as follows: 

Mode 1: —0.0397 + i(0.9986) 

Mode 2: —0.0956 + i(2.0930) 
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Mode 3: —0.0719 + i(3.2540) 

Mode 4: —0.1396 + i(4.5300) 

Figures 4.7-4.11 show the displacements of the membrane in the first five cycles (t= 0 — ara Ti ) 

for Mode 1. A similar pattern is displayed in these figures. It is found that the shape of the dam 

moves toward the static solution (equilibrium shape, dotted line) as time goes on since the mode 

is asymptotically stable. Vibrations of Modes 2-4 during the first cycle are shown in Figures 

4.12-4.14. More complicated shapes appear than those in Mode 1. 

Figures 4.15-4.17 give time histories for the outward normal displacements at Nodes 27, 22, and 

17 in Mode 1. These nodes are the three which divide the curved perimeter of the membrane into 

four sections of equal curved length, in the direction from upstream to downstream (see Figure 3.3). 

Since the real parts of the eigenvalues are negative, w vibrates with decreasing amplitude at all of 

the nodes. 

45.3 Example: p = 50; B = 1 

This is an example with instability: 

Mode 1: —0.0927 

Mode 2: 0.5399 

Mode 3: 0.0109 + i(0.9023) 

Mode 4: 1.1710 + i(1.6670) 

Mode 5: —0.2704 + i(1.8050) 

There is stability without oscillation in Mode 1, divergence in Mode 2, flutter in Modes 3 and 4, 

and stability with oscillation in Mode 5. The displacement diagrams are shown in Figures 4.18-4.22 

for Modes 1-5, respectively. In Figures 4.20-4.22, the vibration is still for the first cycle, but in 

Figures 4.18 and 4.19, some arbitrary time values are used since the periods for these two modes 

are infinity. 
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The outward normal displacements at Nodes 27, 22 , and 17 in Mode 3, which is a flutter mode, 

are shown in Figures 23-25, respectively. The dam undergoes vibrations without limits. If we focus 

on the middle node (Node 22), w decays in Figure 4.26 (Mode 1, stability without oscillation), 

becomes divergent in Figure 4.27 (Mode 2, divergence), flutters in Figure 4.28 (Mode 4), and ex- 

hibits stability with oscillation in Figure 4.29 (Mode 5). 

4.5.4 Variation of 4 with B 

In Example 4.5.1, 8 has to be greater than or equal to 0.06 for the system to be stable ifp=1; 

otherwise, positive real parts of the eigenvalues will appear. Similar lower bounds exist for Exam- 

ples 4.5.2 and 4.5.3, which are 0.9 (if @ = 12) and infinity (if p = 50). That is to say, there is no 

stable solution for p = 50 in this study. 

In Sections 4.5.4 and 4.5.5, the modes are arranged somewhat differently. The order of increasing 

absolute values of the imaginary parts still applies, but all the eigenvalues are grouped pair by pair, 

including those with zero imaginary parts. The pair of eigenvalues with the smallest absolute values 

of the imaginary parts are assigned Mode A, the second smallest as Mode B, etc. The reason why 

this new arrangement is used is that if the imaginary parts become zero from nonzero values by 

changing either p or B , the number of modes affected will be an even number. 

The imaginary parts (A;) and the real parts (4,) of the eigenvalues change when f changes at 

p = 1,5, and 12 as in Figures 4.30-4.35 (the first four modes are shown). Generally speaking, in- 

creasing B causes decreasing A; (Figures 4.30 and 4.32, for example). The real parts become de- 

creasing for increasing B as well; but for the lower modes (Modes A and B in Figures 4.31 and 4.33), 

4, bifurcates when the imaginary parts reach zero. For Mode B in Figure 4.34, 4; hits zero but re- 

turns to the positive side immediately (at BX 9). At the same B we find that 4, for Mode B 

intersects that for Mode A (Figure 4.35). Since this is where Mode B has zero imaginary parts, a 

bifurcation does exist for J, (see the enlargement picture at the bottom half of Figure 4.35). Modes 

A and B merge right after the bifurcation for 4, of Mode B. 
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4.5.5 Variation of A with p 

In Example 4.5.1, 7 has to be less than or equal to 1 for the system to be stable if 6 = 0.1; other- 

wise, positive real parts of the eigenvalues will appear. Of course, p can not be zero, which is the 

case that the density of the water is zero or the density of the dam material is infinity. A similar 

upper bound for @ in Examples 4.5.2 and 4.5.3 (both with 6 = 1) is 13. The highest 7 found to 

correspond to a stable vibration in this study is 26 at a very large B (1,000,000). 

The variations of the imaginary parts and the real parts of the first four eigenvalues with p when 

B =0.1, 1, and 10 are shown in Figures 4.36-4.41. When # is small (0.1 or 1) increasing p brings 

decreasing J; (Figures 4.36 and 4.38) and increasing 4, (Figures 4.37 and 4.39). Ali the first four 

modes carry positive real parts of the eigenvalues when 7 is greater than 2.3 in the case 6 = 0.1, 

which means instability. 

Modes A and B in Figure 4.40 have zero A, for quite a range of p but the Mode B curve rises at 

p = 10.5 while the Mode A stays zero. Moreover, A, at the same p in Figure 4.41 displays a merging 

behavior for Mode B, which is similar to that in Figure 4.35. 

The bifurcation of the real part of an eigenvalue appears when the corresponding imaginary parts 

are driven from a positive number to zero. On the contrary, merging happens for the real parts 

when an imaginary part resumes its nonzero status. 
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Figure 4.1 A Membrane Element in Vibration 
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Figure 4.2 Membrane Node Setup 
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Figure 4.3 The Flow Domain in Dynamic Analysis 
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Figure 4.4 Example 4.5.1, Mode 1, Displacement with Time 
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Figure 4.5 Example 4.5.1, Contribution of Real Parts of Eigenvectors 
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Figure 4.6 Example 4.5.1, Contribution of Imaginary Parts of Eigenvectors 
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Figure 4.7 Example 4.5.2, Mode 1, Displacement with Time (First Cycle) 
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Figure 4.8 Example 4.5.2, Mode 1, Displacement with Time (Second Cycle) 
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Figure 4.9 Example 4.5.2, Mode 1, Displacement with Time (Third Cycle) 
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Figure 4.10 Example 4.5.2, Mode 1, Displacement with Time (Fourth Cycle) 
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Figure 4.1] Example 4.5.2, Mode 1, Displacement with Time (Fifth Cycle) 

71



    

0.2 7 

            

  
    

0.2 4 

            

  
Figure 4.12 Example 4.5.2, Mode 2, Displacement with Time 
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Figure 4.13 Example 4.5.2, Mode 3, Displacement with Time 
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Figure 4.14 Example 4.5.2, Mode 4, Displacement with Time 
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Figure 4.15 Example 4.5.2, Mode 1, Radial Displacement at Node 27 
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Figure 4.16 Example 4.5.2, Mode 1, Radial Displacement at Node 22 
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Figure 4.17 Example 4.5.2, Mode 1, Radial Displacement at Node 17 
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Figure 4.18 Example 4.5.3, Mode 1, Displacement with Time 
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Figure 4.19 Example 4.5.3, Mode 2, Displacement with Time 
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Figure 4.20 Example 4.5.3, Mode 3, Displacement with Time 
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Figure 4.21 Example 4.5.3, Mode 4, Displacement with Time 
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Figure 4.22 Example 4.5.3, Mode 5, Displacement with Time 
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Figure 4.23 Example 4.5.3, Mode 3, Radial Displacement at Node 27 
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Figure 4.24 Example 4.5.3, Mode 3, Radial Displacement at Node 22 
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Figure 4.25 Example 4.5.3, Mode 3, Radial Displacement at Node 17 
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Figure 4.26 Example 4.5.3, Mode 1, Radial Displacement at Node 22 
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Figure 4.27 Example 4.5.3, Mode 2, Radial Displacement at Node 22 
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Figure 4.28 Example 4.5.3, Mode 4, Radial Displacement at Node 22 
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Figure 4.29 Example 4.5.3, Mode 5, Radial Displacement at Node 22 
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Figure 4.31 Real Parts of Eigenvalues with 6 as p= 1 
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Figure 4.33 Real Parts of Eigenvalues with 8 as p= 5 
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Figure 4.36 Imaginary Parts of Eigenvalues with 6 as f# =0.1 
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Figure 4.37 Real Parts of Eigenvalues with p as # =0.1 
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Figure 4.38 Imaginary Parts of Eigenvalues with p as f= 1 
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Chapter 5 

CONCLUSIONS AND SUGGESTIONS 

5.1 CONCLUSIONS 

The analysis of the vibrations of inflatable dams under overflow conditions is performed in this 

dissertation. The base width, curved perimeter, and internal air pressure of the dam are given, as 

well as the total head of the overflow. 

The static analysis makes use of the alternating iterative approach which combines the boundary 

element method for the flow domain and the multiple shooting method for the shape of the dam. 

The profile of the free surface, the shape of the dam, and the external pressure distribution over the 

dam surface are obtained in the iterative scheme. The example in the static analysis displays good 

accuracy for the Bernoulli values (total head) for the free surface. 

Based on the result of the static analysis and with the use of the equations of motion for the 

membrane (in finite difference form) and the velocity potential formulation by the boundary ele- 

ment method, the eigenvalue problem is solved. Information on the eigenvalues and eigenvectors 

provides the description of the behavior of the dam, and the mode shapes for several examples are 
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demonstrated. The effects of the water/dam density ratio and the damping coefficient parameter 

on the eigenvalues of the system are examined. These two parameters both involve the density of 

water, as well as the density of the dam (see the definitions of 8 in Equation (4.17) and 7 in 

Equation (4.42)). Under some conditions, the dam is unstable. Instability may be of the flutter 

type or the divergence type. 

5.2 SUGGESTIONS 

For the static problem, the free surface analysis is difficult. Possible improvements which can be 

made to the existing method include the free surface adjustment criteria, the initial guess of the free 

surface, the node setup, the scale-down factor for the change of the position, the curve-fitting be- 

tween the subcritical and the supercritical flow regions, and the alternating iterative scheme. The 

other promising approaches for the free surface flow problem may be the inverse method (working 

on the stream function and the velocity potential domain instead of x and y-coordinates), a com- 

bination of finite element and boundary element methods, and determination of the free surface 

from experiments. 

In the dynamic analysis, we have the additional velocity potential caused by the membrane vi- 

bration equal to zero on the free surface, inflow boundary, and outflow boundary in this study. 

Other boundary conditions can be tried, e.g., the wave equation on the free surface. Taking account 

of the viscosity of the flow domain needs more effort, but it may be worthwhile. 

The analysis of other forms of inflatable dams may give interesting results, such as the one with a 

fin beyond its crest which reduces the vibrations and the possibility of negative pressure on the 

downstream face of the dam. The fin generates separation and therefore introduces additional dif- 

ficulty to the analysis of the overflow problem. There is also a type of dam with only a single fixed 

line along its longitudinal direction, which is more like a balloon, and an analysis of this type needs 

different assumptions and formulation. 
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Appendix A 

THE FINITE DIFFERENCE SCHEME 

The finite difference scheme developed here is utilized to solve the equation of motion for the 

membrane (Equation (4.23)), the boundary condition at the dam-flow interface (Equation (4.55)), 

and the Bernoulli equation at the dam-flow interface (Equation (4.66)). A uniform interval, A , 

specifies the curved spacing length between neighboring nodes on the dam throughout the formu- 

lation in which central differences, forward differences, backward differences, and their combina- 

tions are employed. 

A.1 FINITE DIFFERENCE FOR EQUATION (4.23) 

In Equation (4.23), the derivatives of V; , P; and 6; (in the form of br, k= 1,2,...,8 3 see Equations 

(4.30), (4.17), (4.16), and (4.12)), (i= 1, 2, ..., m) are to be put in finite difference form. For the 

derivatives of V; , the following central differences of order O(h 2) are used (e.g., see Mathews, 1987): 
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,__l n__1 , 
ae Vj eee 

ee 1 

2h 

arte l 

(i= 1,2,..,m) (4.1) 

where the terms %, V_1, V,,., and V,.,. can be replaced as follows with the help of the boundary 

conditions (Equation (4.25)): 

1 ' l Vy= 
2h 2h 

ov) 1 a | 
VY 1= Fz (a~ 20); VY n= ay (- Vy, + Vn-v3 

Vjiv= 7 (4 - 2V,- VA); VI" = = (V4 — 2V34+2V,); 

ont 1 ter } 
ve m= ay Vim + 2h in 1 — Vin 2) Vv m—1= 533 (— in + 2h in — 2 — Vin — 3) 2h 2h 

Wy" = (Va 4V,4+7V,); V1" = He (Va V4 + 6¥9— 4Y)); 

nee I 
Vv m= ym — Aim — 1 + Vim ~2) 

titi ] Vv mai = Fa (— Wn + Vin 1 = Vin 2 + Vn 2) (A.2) 

The central differences of order O(h2) are used for the first derivative of P, as well: 

= (Pi — P;_1) 
A 
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(i=1,2,...,m  (A.3) 

For the derivatives of @; , first we apply the central differences of order Oh 2) to Equation (4.12) 

with the help of the nondimensional forms in Equation (4.17): 

- 1g A Z,=-—-( oe) 43 = 5 Go; 4.1 — 80; 1-1) 4) = 7 Oo,241 ~ out Fo; 1-1) 

I 
a= 3 o; 142 — 280; 141 + 200,11 — 90,1-2) 3 

_ of. = 5 _ ag 3 44 = Fy Oo, i+2— 480; 141 + O80; — 480; 1-1 + 90; 1-2) 

(i=2,3,..,m—-1) (4.5) 

Then a combination of forward differences of order O(h ) and central differences of order O(h 2) 1s 

used on a3; and a : 

— pe 
03} == (a2 — %}) = Fy 03 — 3892 + 389; — Ap0) ; 

— te 2. dds oe ee 
4, = G (432 — 4}) = Fa (Foe — 2893 + 3892 — 2891 + > Foo) (4.6) 

The quantities @;,, and a, are expressed partly by backward differences of order Oth ) and partly 

by central differences of order O(h?) : 

- 1.  - la 5 5 
43m =F am — %; m— = Fy Go; m41 ~ 380m + 380; m—1— 90; m— 2) 

_ 1 - _ 
dam = (4am — a3. m—1) 

=+(46 2m + 36 26 +8 a = Fa (4 O; m+1—_ Om + 0; m—-1 7 0;m—-27 75 0; m—3) 
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Equations (A.4)-(A.7), and Equation (4.30) which provides the relations between @,; and bi; 

(k= 1,2,3,4; i=1,2,...,8; j= 1, 2,...,m) , give b, in Equation (4.23). Moreover, the derivatives 

of V; and P, are replaced with Equations (A.1)-(A.3) to obtain Equation (4.26). 

A.2 FINITE DIFFERENCE FOR EQUATION (4.55) 

In Equation (4.55), V,’, Vand a@;, @; (j= 1,2, ..., 77) are the same as those in Equations (A.1), 

(A.2) and (A.4); however, the terms defined at the fixed ends ( j= 0 and j= m+ 1 ) need different 

formulations. For the derivatives of Vp and V,,41, 

1 l 
V/(==(V,-V =—=V,; 0 i 1— Vp) 3 

' l l 
Mim =F Uma ~ m) = — = Vin (A.8) 

where the forward and backward differences of order O(h ) and the boundary conditions (Equation 

(4.25)) are used; 

et ] ] 

Vo" = =z (V, — 2¥y + Vy) = 57 2M); 

1 
Vin -2— 2M in 4 3 + Vm) =F 7 (2¥ m) (4.9) 

where the central differences of order O(h 2) and the boundary conditions (Equation (4.25)) are used. 

For 4@;0, @;m+1, 40, and @, ,4,, we have 

_ ~ = _ l= ~ 
ay. 9 = = (891 — 0); 4; m1 = = 0, m+1— Pom) i 

>
i
)
—
 

~ 1 - = 1 oa 5 5 
H; 9 = (411 — a9) = SAe (P02 — 289; + 89) ; 
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- ~ 1 4 5 4G 
(41; m1 ~ Mim) = ao; m+ — Pom + 80; m—1) (A.10) 

=
|
-
 

4. m+ 

where the forward and backward differences of order O(h) are used and the central differences of 

order O(h?) for @, and a, in Equation (A.4) are recalled for a, 5 and @, n1; . 

The terms $y; (= 0, 1, ..., + 1) are expressed by the forward differences of order O(h) except 

that forms 1, 7 takes the backward difference of the same order: 

(bo. j+17— do) G= 0, 1,..., m) 

>
i
[
—
 

Poy, 5 

($0. m+1— ¢om) (4.11) Po:m+1,F= 

From the finite differences in this section, the coefficients M;.,,, and Nji1;, for V; in Equation 

(4.55) can be written as follows: 

  

    

    

  

by, 3 Foy, 34 1 
M, (7279 =7-=— — — —__——. ; WN; ee (j= 2, 3, ..., ™) 
PEO" Way ha, Pt BINT oha,, 

2$o) 5 

i+1;j> ha; , i417 = 9 ¢G= 1, 2, , M) 

j 

boj,3  $oj, 3, 1 . 
Mgt pap Soe tt OM ee (j= 1,2,..., m—1) 
AUS Way ha, PtuIFN aha, 

2600 = 2b =m My = — oe 00, $42; 0 | Nj=-—2 

ha ha h a. 9 ay. 9 1,0 

00, 54; 0 1 

2ha}. 9 
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Po,m+1, 5%; mt ; _ l 

  

Mmn42:m+1= = ’ Nmn+2; m41= 7 Lo 

Qhat. m4 1 2h), m+ 

260. m +1, 5 200: m+1, FD; m+1 2 
Mn 42; m4+2= 7 —2— ~ =~ ’ Nm +2; m+2 = Fo 

hea, m+ hay mt lmtl 

Other Mj 4.1, .=9; Other Nj 41. p= 0 (A.12) 

where dy, ; is defined in Equation (A.11). 

A.3 FINITE DIFFERENCE FOR EQUATION (4.66) 

For Equation (4.66), $o;, ; and V’ are the same as those in Equations (A.11) and (A.1)-(A.2), (A.8), 

respectively. This gives H+, ;41; 11 Equation (4.67): 

  

Poi, F Poi, § 
Mig 1 Aig. i42= oh (i= 1, 2, ..., m) 

00, F $00, § 
My, =-—— 3) Ay) = 

b0:m41,5 bo:m41,5 
Am42;m+1= 7 ~ ’ An42m4+2= h 

Other Hi 4.3. 74.1 =0 (A.13) 

where 5, ; is defined in Equation (A.11). Also, 

cos Bo; 

2ha,; 
  

Kig te t-1= 7 

Ki 4.1; j= sin Oo; (f= 1, 2, ..., m) 
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cos Bo; 

- (i= 1,2,...,m—1) 
2ha; 

Kigasi41= 

Other K; , ), ; = 9 (A.14) 
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