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(ABSTRACT) 

We develop the thermodynamic formalism for a large class of maps of the interval 

with indifferent fixed points. For such systems the formalism yields one-dimensional 

systems with many-body infinite range interactions for which the thermodynamics is 

well defined while the Gibbs states are not. (Piecewise linear systems of this kind 

yield the soluble, in a sense, Fisher models.) 

We prove that such systems exhibit phase transitions, the order of which depends 

on the behavior at the indifferent fixed points. We obtain the critical exponent 

describing the singularity of the pressure and analyse the decay of correlations of the 

equilibrium states at all temperatures. 

Our technique relies on establishing and exploiting a relationship between the 

transfer operators of the original map and its suitable (expanding) induced version. 

The technique allows one to also obtain a version of the Bowen-Ruelle formula for 

the Hausdorff dimension of repellers for maps with indifferent fixed points, and to 

generalize Fisher results to some non-soluble models.
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Chapter 1 

Introduction 

1.1 General Remarks 

The Thermodynamic Formalism [33, 36] proved to be a powerful tool in the ergodic 

theory of hyperbolic and, in particular, expanding maps [34]. A central role is played 

here by the transfer (or Ruelle-Perron-Frobenius) operator. That the map is expand- 

ing allows one to express thermodynamic and statistical characteristics of the system 

(free energy, equilibrium states, etc.) in terms of the transfer operator resulting in 

regularity properties of both. In particular, one obtains a Statistical Mechanics sys- 

tem with a fast decaying interaction and, correspondingly, a transfer operator with 

compactness properties which allows for quite a complete analysis of such systems. 

Consequentially, one has fast convergence to the thermodynamic limit and smooth- 

ness of the thermodynamic functions (no phase transitions). 

These regularity properties disappear when one passes to non-hyperbolic maps, as



has been demonstrated convincingly in recent works, mostly by theoretical physicists. 

Numerical analysis and calculations in some soluble models exhibit both singularities 

and slow convergence to the thermodynamic limit [8, 9, 14]. Some insights have 

been gained into the origin of the singularities, in particular by relating the phase 

transitions to that of Fisher Models [23, 37, 40, 41]. 

On the other hand, in a number of mathematical works, the method of induc- 

ing and its variants have been used to investigate absolutely continuous invariant 

measures for non-hyperbolic maps of the interval [1, 5, 20, 28]. 

Apart from a remark of Walters [39] on a relation between pressures of a soluble 

system and its induced version, I am aware of no work relating thermodynamics and 

transfer operators of a system and its induced version. 

The aim of this dissertation is to establish such a relation and to show that it 

yields a complete version of the Thermodynamic Formalism for almost expanding 

maps with an indifferent fixed point with good insight into the nature of singularities 

in such systems; this relation can be considered a version of the Renormalization 

Group concept. 

Maps with indifferent fixed points arise in a number of different problems. They 

exhibit the phenomenon of intermittency [30], as the dynamical system is at the 

transition point from a periodic state to a chaotic one. The time evolution of an in- 

termittent system is characterized by long “laminar” phases, interrupted by “chaotic 

outbursts”. The Farey map, one of the examples treated here, arises in phenomena 

as mode-locking of coupled nonlinear oscillators [21], and has been investigated as a 

model for intermittency in [12]. Using the thermodynamic formalism on a linearized



version of intermittent maps, the statistical mechanics of the system has been inves- 

tigated by [40, 41, 37]. This linearization gives rise to Fisher models, i.e. reduction of 

the interaction to single-cluster interactions. However, in these approximations the 

discarded parts of the interactions are not small in any obvious sense, as they have 

infinite “energy norm”. 

Our method extends these results to a larger class of maps, also including the 

smooth fixed points of the intermittency renormalization (see Chapter 3). 

Chapter 1 reviews the thermodynamic formalism for continuous transformations 

of compact metric spaces, especially the connection between the topological pressure 

and the transfer operator £ and the existing results for expansive and expanding 

mappings. We conclude this chapter with the introduction of the function class C, 

which we wish to investigate. 

In Chapter 2 we present the necessary modifications of the above formalism for 

piecewise continuous mappings in order to deal with this function class. Further, 

the concept of inducing is defined and a modified transfer operator M, for the in- 

duced system is introduced. Relations between the modified transfer operator and 

the transfer operator of the original system are presented here as well. 

Chapter 3 develops needed results on asymptotics of iterations near the indifferent 

fixed point. These are of interest in their own right as they give insight into the 

behavior of the intermittency renormalization transformation near its fixed point. 

Chapter 4 applies the formalism of Chapter 2 to the function class C, with specified 

interaction —@ log |f’|. The existence of a phase transition at @ = 1 is proven using 

the relation between Ma, and Lg.



Chapter 5 gives the asymptotic expansion of the topological pressure at the phase 

transition and the computation of the critical index. 

Appendix A serves as a reference for notations and general definitions. 

1.2 Review of the Thermodynamic Formalism for 

Continuous Mappings 

Before we introduce the class of functions which we will be interested in, we will review 

the thermodynamic formalism as it exists for continuous mappings (5, 33, 35, 38]. 

Let f bea continuous transformation of a compact metrizable space X with metric 

The set M(X) of all probability measures on the o-algebra of Borel subsets of X 

is a convex set which is compact in the weak*-topology and the subset M(f) of all 

f-invariant probability measures is a closed subset of M(X). 

We call f (positively) expansive if and only if there exists a 6 > 0 such that 

axy => dIneN: d(f"2, f’y) > 6. (1.1) 

This is equivalent to the existence of an open cover A of X such that (P,) cl(f~"Ai, ) 

contains at most one point whenever A;, € A. Ais then called a (one-sided) gener- 

ator. 

f is expanding if and only if there exists a 6 > 0 and a Ap > 1 such that 

d(z,y) <6 => d( fx, fy) > Aod(z, y). (1.2)



An expanding map is expansive. 

For a finite open cover A of X write diam(A) = supyc,sup,,ca a(2,y) and 

An = { As, N fA; M flO VA; : Ai, € A, 7= 1,...,n}. 

1.2.1 The Entropy 

Given m € M(f), for a finite partition A of X, the entropy of A is defined as 

H(A) = — ¥> m(A) log m(A) 
AEA 

and the entropy of f with respect to A is defined as 

Finally, the entropy h,, of the transformation f is given as 

hm = sup{Hy(f,A): A finite partition of X}. (1.3) 

If f is expansive then h,, is upper semi-continuous. 

1.2.2 The Pressure Function 

Given a continuous “interaction” » € C(X,R), write 

n-1 ; 

Sula) = ¥ ol fiz). 
7=0 

Then define the partition function 

P,(yp, A) = inf S| supexp S,y(z): aC A, finite subcover of x} 
A€a zCA



and 

1 
P(y, A) = lim — log P,(y, A) 

n— oo n 

Finally, the (topological) pressure P(y) is defined as 

P(y) = sup{P(y,A): Aopen cover of X}. (1.4) 

P(0) is equal to A(f), the (topological) entropy. P(y) is finite if and only if h(f) is 

finite. Then, P : C(X, R) — R is convex and continuous. 

If f is expansive then h(f) is finite. If, in addition, A is a generator for f then 

the pressure is given by 

P(p) = lim ~ log Pp(p, A). (1.5) 
n—0o Tn 

1.2.3 The Variational Principle and Equilibrium States 

Given y € C(X,R), then 

Ply) = sup {hn(f) +m(y)}- (1.6) 
me M(f) 

pw € M(f) is called an equilibrium state for » if and only if the above supremum is 

attained for m = p: 

P(p) = A,(f) + w(¢). (1.7) 

If f is expansive then each y € C(X,R) has equilibrium states. In this case one also 

has a converse variational principle. For p € M(f), 

hif)= sup {P(y~)—m(y)}. 
pec(x,R) 

If f is expanding and y Holder-continuous then there is a unique equilibrium state.



1.2.4 The Transfer Operator 

Given y in C(X,R), the transfer operator L, acting on C(X) is defined as 

Ly®(x)= D) exp p(y) ®(y). (1.8) 
fy=2 

As a motivation for the study of the transfer operator, we remark that iteration of 1 

gives 

Lyi(z)= >> exp Srv(y). (1.9) 
f"y=z2 

This can again be seen as a partition functton, and the dependence on z can be 

interpreted as boundary conditions. The close resemblence of this partition function 

(1.9) to the above definition (1.4) of the pressure might motivate that definition. Due 

to this correspondence, we might expect P(y) = lim, 3 log £91. 

The spectral properties of L, govern the behavior of CQ. In the case of expanding 

f and Holder-continuous y € C%, we have the following result [34], where C, acts on 

C*(X). 

Theorem 1.1 exp P(q) ts equal to the spectral radius of L,, and the essential spectral 

radius is strictly smaller. exp P(y) is a simple eigenvalue of L, (resp. Li), and it 

has a strictly positive etgenfunction ® (resp. a nonnegative measure p). All other 

etgenvalues have strictly smaller modulus. 

Thus, we have a spectral gap for £, which implies exponential convergence of 

+ log £31 to the pressure P(y). Moreover, p(&) is the unique equilibrium state for ¢. 

We will show that this is no longer the case if one admits an indifferent fixed point 

of f,i.e. violates the expanding property of f. 

7



1.2.5 Analyticity of the Pressure 

Introducing the real parameter 8 (temperature), we clearly have continuity of the 

map 2 +> P(Gy). It is natural to investigate analyticity properties of this map, as 

the non-analyticities can be interpreted as phase transitions. 

If the transfer operator Cg, has an isolated leading eigenvalue that can be identi- 

fied with the pressure, then, by standard perturbation theory [22], the analyticity of 

the interaction By gives rise to analyticity of P(@y). 

Thus, in the case of expanding f and Holder-continuous y, Theorem 1.1 implies 

real-analyticity of P(@y) in B, so that there are no phase transitions. 

In the statistical mechanics interpretation, Holder-continuity of y corresponds to 

exponential decay of interactions. 

However, in our setting this is not the case, as we have long-range interactions, 

the origin of which is the influence of the indifferent fixed point on the dynamics. 

1.3 Continuous Maps of the Interval 

Choose X to be the interval J = [0,1] and the interaction y = —log|f'|. Then, the 

transfer operator Cg (omitting ») is 

=> _ By) | 

Ze 
This is a generalization of the Perron-Frobenius operator (for @ = 1) which is used to 

describe densities of invariant measures of f. (Note that Cir, = wy for up, Lebesgue 

measure on !.)



The expanding property of f is equivalent to |f’| > A) > 1. By Theorem 1.1, an 

expanding f € C'*t@ leads to a spectral gap of Lg on C*(X) and, thus, analyticity of 

the pressure P(@) for all . 

In this dissertation, we want to investigate what happens if one weakens the 

expanding property of the map f and, in particular, admits an indifferent fixed point 

for f where the slope of f approaches 1. We will show that this gives rise to a phase 

transition of P(), the order of which depends crucially on the behavior of f near the 

indifferent fixed point. 

1.4 The Class of Functions C, 

In extension of the above formalism, we wish to consider certain piecewise monotone 

transformations of the interval [0,1] with an indifferent fixed point at the boundary. 

The technical difficulty which arises through requiring only ptecewise continuity 

will be dealt with in the next chapter. Of more interest is the existence of the 

indifferent fixed point, as it considerably alters the behavior of the dynamical system 

under iterations as opposed to the expanding case. 

We specify the considered class of functions as follows. The functions will have 

two branches, one of which contains the indifferent fixed point and is responsible for 

the “laminar” phase. The asymptotic behavior in the neighborhood of the fixed point 

influences this laminar behavior and will turn out to be crucial for the dynamics. The 

other branch is the “chaotic” branch which facilitates reinjection into the “laminar” 

phase.



A typical f € C, is shown in Figure 1.1. 

More specifically, for r > 0 we define 

Definition 1.1 A function f of the interval belongs to class C, if 

1. f is a map of the interval I = [0,1] with fized point 0, i. e. 

f: [0,1] — [0,1], (0) =9, 

2. there exists an a €]0,1[ such that 

f[0,a[= [0,1[, fla, 1] = [0, 1], 

3. fltoal extends to a C'-diffeomorphism fo on K = (0,a], and fi, = f\jaj ts a 

C'-diffeomorphism on J = [a,1], then the inverses are denoted as 

fy = fi, t= 1, 2, 

4. f ts almost expanding, 

|f'|>1 on ]0,a| and Ja, 1|, 

5. for technical reasons (to guarantee that the induced system on J is expanding, ) 

lf’| > Ao > 1 on fo"fa, 1], 

6. and that the asymptotic behavior of f near the fixed point 0 ts given by 

f(z) =2+c2r'*"(1+r(zx)) (1.10) 

with exponent 1+ r> 1, some constant c > 0, and 

r(x) = O(2*""), «0 

for some a> 0. (Without loss of generality, we will assume that a <r.) 

10
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The last property implies for the inverse function 

Fo(z) = 2 — cx**"(1 + R(z)) (1.11) 

with R(x) = O(«%"'), « > 0. 

(Note that f'(z) = O(z*%"') for c — 0 implies f(x) = O(a%) for x — 0 whereas 

the converse is only true under additional assumptions, e. g. if f’ is monotone in a 

neighborhood of 0.) 

Later, we will also consider Fy and F, with suitable Holder-continuity of their 

derivatives. Taking into account the asymptotic behavior of Fy, we demand 

z~"(Fo'(x) — 1) € C*(J) and Fy’ € C*(J) 

for some € < a. Equivalent to the first condition, we can write x R(x) € C*(I) where 

the multiplication with z compensates for the O(2%~') behavior of R’(z). 

Further, we write 

an = Fo”(1), ne No; b, = F,Fy"~*(1), ne N. (1.12) 

1.4.1 Example: Piecewise Linear Map 

Lacking the smoothness required above, the below defined map f does not belong to 

C, itself. However, it can be seen as an exactly solvable toy model [40, 41, 37]. As 

stated in the introduction, this linearization gives rise to Fisher models with cluster 

interaction. The essential features of this model can be transfered to the case of 

smooth mappings. Due to its simplicity, it is instructive to include this example in 

our exposition. 

12



Given a sequence (a,,) of real numbers such that 

ao = 1, @,@2,... \, 9, 

we define the piecewise linear map f such that flan) = @,_; forn EN: 

(2) ay + (@ — Ony1) Gra, Qn41 S U2<ad,, NEN 
+) = 

vw a 
1—-T—o a,<2<l1 

Writing the magnitude of the slopes of f on Jan, an41] as 

An-1 —~ & 

tn Gay? “EN d. = n n+1 
nm 

1 — 
T— az? n= 0 

this simplifies to 

. On + dn(®—4n41), Ong <2 <a,n, nEN 

f(z) = 
1 — do(x — ay), a,<2<1 

and the inverses are given as 

Fo(a) = aGniit+(e@—a,)/d,, a,<e<a,1, neN 

Fi(z) = 1-—2/do, O0<@a¢<l. 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

The asymptotic behavior of f close to the origin is given by the asymptotic behav- 

ior of the sequence (a,,). In particular, if the sequence (1.13) is given by (1.12) for a 

function f € C, we can interpret f as a linearized version of f in C,. By construction, 

we have a, = Fo"(1) and (1.12) implies 

b, =l- (1 _ 1 )Gn—1- (1.17) 

As we will show later, for a function in C, we have an asymptotic behavior of (a,) as 

a, ~(ren)-*, noo. 

13 
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1.4.2 Example: The Farey Map 

The Farey map [12], whose significance we mentioned in the introduction, is defined 

z/(1l— 2), 0O<2< 1/2 ne) | 2/08) <¥ 
(l—a)/z, 1/2<a<1 

with the inverses 

Fo(z)=2/(l+2), K(#)=1/(1+2) 

The Farey map is in class C, for r = 1. 

  

Here, 

EN b ~ EN an = ——, n= 
n+1 " ° n+1’ " 

so that its piecewise linearized version is given by 

n+2, _ 1 1 1 

jey- | * 7M riy wHESe Swe MEN 
1 — 22, se 

The inverses are given as 

i _ n 1 1 ] _ 
Pole) = ata4tm@ei(etay atIS*<m r=N 
F(z) = 1 — $e, O0<2r<1. 

The Farey map and its linearized version are shown in Figure 1.2. 
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Chapter 2 

The Thermodynamic Formalism 

for Piecewise Continuous 

Mappings 

Following [3, 18], we introduce the class of piecewise continuous mappings of the inter- 

val and adapt a suitable version of the thermodynamic formalism for these mappings 

by embedding the interval J into a larger space X in which the transformation be- 

comes continuous. A suitable function space for the transfer operator £ is the space 

of functions with bounded variation BV(X) resp. BV(J), as one has identification of 

log r(£) with the pressure [3]. Moreover, the extension of I to X does not change the 

spectral properties of £ significantly. In the space BV, we also have a formula for 

the essential spectral radius re.,(L) [3]. 

In order to prepare the investigation of the existence of a spectral gap, we then 

introduce a mod:fied transfer operator M, for the induced map on a subinterval J C I. 

16



We show that there is a natural extension M,* of this operator to BV(J) and that 

there are operator relations connecting M, with £L. Using this new formalism, it is 

possible to get information on spectral properties of £ through the investigation of 

M,. 

2.1 Piecewise Continuous Mappings 

Let I be a closed interval and suppose that f is a piecewise monotone transformation 

of J, i.e. there is an at most countable partition Z = {Z;: 1 © T} of J into intervals 

—1 

Zi ’   such that, foreach Z € Z, f|z is strictly monotone and continuous. Write F; = f 

1 € I. Moreover, suppose that Z is a generating partition for f. A typical piecewise 

monotone map is shown in Figure 2.1. 

Out of convenience, we would like to view f and F; as being continuously extended 

to each cl(Z;) respectively cl(f Z;). 

Technically, this involves the investigation of the dynamical system on a somewhat 

larger space [18]. One doubles all boundary points of the partition inside the interval 

and their preimages as follows: 

Write OZ = Uz,cz 0Z;. Substitute each x € Uy f-*(OZ) \ OI by two points 2~ 

and z* and denote this new space by X. Settingu< a7 <2t<vinX ifu<a2r<v 

in J extends the order to A, and the order topology on X is compact. 

The space X, enlarged by at most countably many points, has a “Cantor set” -like 

structure. The partition Z consists of closed intervals. 

Now, f extends in an obvious way to a continuous transformation on X: f(z~) = 

17
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limy 72 f(y), f(a*) = limy,2 f(y). (s extends in a similar way.) 

A nonatomic measure on J can be lifted to X and the resulting dynamical system 

still has the same spectral properties as the original one. Also, any measure on X 

induces a measure on J. 

2.2 The Essential Spectrum and a Decomposition 

Theorem 

Before we introduce the transfer operator for this dynamical system, we need to 

recall some spectral properties of operators. Let A be a bounded linear operator on 

a Banach space B. 

We define 

Definition 2.1 The essential spectrum Ges,(A) ts the set of all X € o(A) such that 

one of the following holds: 

t) the range of (A — ) ts not closed. 

tt) Ure. ker((A — A)") ts of infinite dimension. 

tit) A ts a limit point of o( A). 

The essential spectral radius is defined as 

Tess(A) = sup{|A|: A © cess(A)} . 

19



Nussbaum [27| has shown that r.4,(4) can be computed by an approximation with 

compact operators as follows: 

Tess( A) = dim (inf {||A" — K||: K compact})’/”. 

This means that outside the essential spectral radius the spectrum of A is like the 

spectrum of a compact operator, as stated in the following theorem. 

Theorem 2.1 (Lemma VIII.8.2 of [11]) We have the following spectral decompo- 

sition of A: 

For each © > fess(A), the operator A can be decomposed as 

N(®) 

A= > AiP;A; + PA, (2.1) 
i=l 

where P;, fort =1,...,N(O), and P are mutually orthogonal projections commuting 

with A such that P + yi) P; =Id. For eachi = 1,...,N(O), we have |d,| > O, 

rank(P;) < oo, and A; = P; + N;, where N; is nilpotent and P;N; = N;P; = Nj. 

Finally, ||PA™||py < const -O™. 

(It may happen that 0 = r(A), the spectral radius of A. In this case, N(©) = 0.) 

2.3 The Transfer Operator CL 

Definition 2.2 Given a function s € BV(I) such that 

d Ilsllz, < 09, (2.2) 
ZiEZ 

the transfer operator £ is defined as 

L:BV(I)> BV(I), Ly(z)= SY) s(y) vy) = >) s0 F(z) PpoR(z). (2.3) 
fy=a ZiEZ 
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Condition (2.2) in connection with s € BV(J) ensures that ||C||,y(,) is finite, 

since we have 

oll; Ss (3: oa [Pll (2.4) 
ZiEZ 

var(Ly) < vary(s)||yl|y + |ls|lpvarr(v). (2.5) 

Again, it would be convenient to have F; and so F; continuously extended to 

clf(Z;), so that we will not have to bother with the endpoints of the partition. Tech- 

nically, we therefore have to consider £ on BV(X) instead of BV(I). (We will write 

£ in both cases.) 

However, the following theorem shows that this does not change the spectral 

properties of £ outside the essential spectral radius r,,,(L). 

We write 

wx0 if {2 : (x) £ 0} is at most countable. (2.6) 

Theorem 2.2 (Baladi, Keller [3]) Let Y be I or X and let £L act on BV(Y). 

(1) If there exist k > 1 and X > 1(L) such that (LC — A)F » = 0 andy ~ 0, then 

w(z) = 0 for allee X. 

(2) If there exist k > 1 and X # 0 such that (L — r)* » = O, then there is y, € 

BV(X) such that p, ~ w and (L—A)F y, = 0. 

Theorem 2.2 in particular says that there are corresponding eigenvalues and eigen- 

functions of £in BV(X) in BV (J). 
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Corollary 2.1 (a) Suppose that, for ~; € BV(I) and dA € C, Ly, = AY. Then 

there exists a function px € BV(X) such that Lpx = Avx. 

(b) Suppose that, for px € BV(X) andrA EC, Lyx = Ax. Then there exists a 

function ; € BV(I) such that Cy, = Ayr. 

Moreover, in both cases we have y, = wx with wp; being the natural embedding of 

yr in BV(X). 

PROOF: Suppose, for ~; € BV(I), Cyr = Ady. Then the trivial embedding wy; of py 

in BV(X) fulfills Cy) ~ Aw;, and by Theorem 2.2 we have the existence of py ~ ¥} 

such that Lax = Avy. 

Conversely, if CLpy = Avx for px € BV(X), then any restriction py of py in 

BV (J) fulfills Cpy ~ Ay, and by Theorem 2.2 we have the existence of py = wy 

such that Cy, = AW. Clearly, for the embedding 7; of p, in BV(X), we have also 

vx ey, 

For convenience, we introduce 

8,(v) = 3(f" *2)-...-3(fz) s(z). (2.7) 

Then we can write powers of £ as 

Lry(z)= ) snly) ¥(y). (2.8) 
f"(y)=e 

The following theorem gives a formula for the essential spectral radius of CL. 

Theorem 2.3 (Ibid.) Let Y be I or X and let L act on BV(Y). The essential 

spectral radius Tess(L) ts given by 

Teee(L) = inf ||Sn||y”. (2.9) 
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Corollary 2.2 r.4,(£) is equal for £ acting on BV(I) and BV(X). 

PROOF: Clearly, ||sn||; = ||Sn|| by construction of the extension to X. O 

The next theorem establishes a connection between properties of £ and the pres- 

sure of the dynamical system. In particular, it shows that the space of functions with 

bounded variation is indeed suitably chosen. 

Theorem 2.4 (Ibid.) Suppose sz, is continuous for each Z; € Z. Then 

P(f, log |s|) 2 r(L). (2.10) 

Suppose that additionally s > 0. Then 

P(f, log |s|) = r(L), (2.11) 

and X = r(L) ts an eigenvalue of L, provided r(L) > Tess(L). 

We add a theorem with a more detailed result on the largest eigenvalue. 

Theorem 2.5 Suppose s > 0 and r(L) > te,(£L). Then \ = r(L) ts an eigenvalue of 

multiplicity 1 with a positive ergenfunction WV, bounded away from 0. 

PROOF: Choose 0 4 W, € BV(J) with LV, = AV). Then 

L(RY,) = RLY) = RAW)) = AR(V)) 

and we can assume WV), to be real. 

Suppose V\(z) > 0 for some z € J. Z generates, whence YW, > 0 on a dense 

subset Q(x) C I, given by all inverse images of z. 
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Ifin addition ¥)(y) < 0 for some y € J, then V) < 0 on the dense subset Q(y) C I. 

For ¥, € BV(J) left and right limits exists. Taking these limits over N(x) and 0(y) 

must give the same result, thus all the left and right limits are 0. Hence WV) ~ 0, and 

by the above theorem we see that ¥, = 0 on J. 

Thus, ¥, > 0. Assume that WV) is not bounded away from zero, i.e. there is 

(z,) € I such that WY (z,) — 0. Then there are y and a subsequence z,, — y with 

WV \(tn,) 2 0. 

Thus, Q(y) consists of points where the left or right limit of Y, is equal to 0. 

Now, for each x € I there is a sequence (yn) C Q(y) that converges to y and there 

are sequences (a'%)) Cc I converging to y, with W,(2\%) converging to 0 for each n. 

Then the diagonal sequence (x‘%)) converges to z, and W)(x'%)) converges to 0. 

Choosing (y,) suitably, we get that all left and right limits are equal to zero. Hence, 

WV, ~ 0 in contradiction to Vy > 0. 

So far we have proven that V, > a > O for any eigenfunction WV) of £ with 

eigenvalue \ = r(L). Now, using a standard argument [29], suppose that there is a 

v, 4 Wy’ € BV(L) with LY)’ = AW)’. Again, we can pick V,' real, and we choose 

t € R such that V, —tW)' > 0 with W(x) = tW)'(x) for some z € J. Repeating the 

above argument, we see that V, = tW)’, i.e. the eigenvalue A is simple. © 

At this point, one would also like to show the existence of a spectral gap for L, i.e. 

that the following holds for res5(L) < r(L): 

sup {|A|: r(L) 4A € o(L)} < r(L). (2.12) 

For this to hold, it is enough to show that there are no other eigenvalues of £ with 
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magnitude equal to r(£). However, in general it is only possible to show that the set 

of eigenvalues with magnitude equal to r(L) is cyclic (see e.g. [11]). 

Thus, we are left with two questions. First, one would like to know under what 

conditions one has a leading eigenvalue or, equivalently, when r,,,(£) < r(£) holds. 

Second, even if this is shown one still has to investigate separately whether C has a 

spectral gap. 

(In a different setting [33], Ruelle has shown that this is always the case for an 

expanding map f with Hélder-continuous interaction log s.) 

In order to accomplish this task, it will be convenient to investigate certain transfer 

operators in induced subsystems as outlined in the next section. 

2.4 The Induced Map and the Modified Transfer 

Operator M, 

Let J C I be a closed interval. We define 

Jn = {veEJ: file) ¢J,i=l,....n—-1, f(zyeJ}, ne N (2.13) 

K, = {xeJ: fi(z)¢J,i=1,....n-1} = Us,  neN (2.14) 
kon 

Z is generating for f, hence 

Joo = J \ U J (2.15) 
k=1 

is at most countable. Now, define 

niz)=n if wed,z, nENU {oo}. (2.16) 
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After this preparation, as in [31], we define 

Definition 2.3 The induced or first-return map ts the mapg: J\ Jo —- J \ Joo 

given by 

g(x) = fr(z). (2.17) 

Defining g(x) arbitrarily on J... we extend g to all of J. Due to the fact that 

f is piecewise continuous, each J, can be written as an at most countable union of 

intervals. The partition of J into these intervals is generating for g. (In the special 

case of functions in C, and inducing on J = |a, 1], each J, is itself an interval. Then 

we will write G, = gly, *-) 

Thus, both f and g are piecewise continuous mappings of the interval with gen- 

erating partitions. 

Now, we can proceed to introducing a new transfer operator for the induced 

dynamical system. We define the modified transfer operator as follows: 

Definition 2.4 For z € C ands € BV(I), the modified transfer operator M, is 

defined as 

M,: BV(J)—> BV(J), Md) = SY 2 sny(y) oy) (2.18) 
g(y)=z 

= yo 2" > ~~ nly) Cy). 
n=1 — g(y)=2, yEJn 

Thus, M, is an operator-valued power series in z, 

M,= > 2"M,, (2.19) 
n=1 
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with 

Mrz) = » 5n(y) oy) (2.20) 
g(y)=2, ye’, 

which has a radius of convergence equal to r = limy_... Mall avo: 

For functions in C, and inducing on J = [a,1|, we can write the operator as ( g , 1], P 

Mu$(2) = $n 0 Ga(2) 60 Ga(2).) 

Analoguous to above, we extend J to an enlarged space Y and extend L by 

continuous extension along the inverse branches of g. 

Theorem 2.3 can be applied to M,, as we have a piecewise monotone transfor- 

mation of the interval with a generating partition. (Naturally, the conditions on M, 

still have to be verified.) 

Denoting n,(y) = (m1,...,n%), where g’'y € Jn,, i =1,...,k, we write 

Sn, (y)(Y) = bn, (gy) w 16. Sn, (gy )3n,(y)- 

Using |n,| = (m1,...,74), the formula for the essential spectral radius is 

, 1/k 
Tess(M,) = inf [2 Mlsn. cw) | (2.21) 

2.5 The Extension M,* of M, 

In order to relate the operators M, and £ to each other, we must analyze M, further. 

We decompose 

Lb = L(xsb) + Ler) = Lod + Lid (2.22) 

Then one can check that 

Md = L"(x5,¢) = xsLo” Lid (2.23) 
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holds. Here we see that multiplication with y, alone is “responsible” for the restriction 

to BV(J). Thus, it is natural to define an extension M,* of M, by omitting the 

xz. This leads to 

M,,*¢ = L”(xK,) = Lo” Lid (2.24) 

and we define 

M,t = > 2"M,"*. (2.25) 
n=1 

(We will use M,* both for the operator mapping BV(J) into BV(J) and for the 

operator acting on BV(J).) 

Relations (2.23) and (2.24) imply 

Lemma 2.1 The radii of convergence for both M, and M,* are bounded below by 

1/r(Lo). 

Unfortunately, the extension M,* is no longer given by a piecewise monotone 

transformation, so that Theorem 2.3 does not apply in this case. (However, a theorem 

of Ruelle [35], generalizing Theorem 2.3, can be applied and gives an upper bound on 

Tess( M,*).) 

Still, we can get information on the eigenvalues of M,* through the following 

Lemma. 

Lemma 2.2 Suppose that M,* is bounded. Then 

op(M.) \ {0} = op(M.") \ {0} 
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and the geometric multiplicity of the eigenspaces to an eigenvalue A # 0 are identical. 

Moreover, the corresponding eigenfunctions @ of M, andy of M,* are related by 

Ap=M."¢, b= Hy. 

PROOF: Suppose ¢ € BV(I) is eigenfunction of M,* with eigenvalue A. Then, 

M,¢3 = (M,t¢s)3 = (M.*¢)s = Abs, Moreover, 6; # 0, for, if dy = 0 then 

@ = rA1M,*¢ = M,*¢; = 0. Thus, ¢; is eigenfunction of M, with the same 

eigenvalue. 

Conversely, suppose that » € BV (J) is an eigenfunction of M, with eigenvalue X. 

Then, extending to 6 = \-1M,'y, ¢ is nonzero and eigenfunction of M,* with the 

same eigenvalue, for we have dy = \~1(M,*%); = ¥ and thus, M,*¢ = M,+d¢, = 

M,tpy=Ad. OU 

Thus, we can restrict ourselves to the investigation of eigenfunctions of M,. 

2.6 Operator Relations between M, and L 

Now, the following operator relations emerge: 

Theorem 2.6 

(1—2L))(1-M,*)p=(1-2L)¥, ye BV(I) (2.26) 

(1—2L)M,+¢=2L:)(1—-M,)¢, $€ BV(J). (2.27) 

PROOF: On BV(J) we have 

(1—zLl))(1-M,*) = (1—2L5)(1— 3 z"Lo"*L;) 
n=1 
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= |- zLy + SS 216 6"Ly _ > 2"Ly" 'Li 

n=1 n=1 

= 1 — 2Ly5 — zl =l1-2L 

and on BV(J) 

2Li(1—-M,) = 2L£(xs(1—-xsM,*)) 

= 2£,(1—M,*) 

= zk, —_ zk, > z™£L"*L) 

n=1 

_— \- 2"Ly” 'L _ > 21 65"L, _ zl > z"£L" Ly) 

n=1 n=1 n=1 

= (1 — zLKo — 2L£1) > z"Lo"*L1) 

n=1 

= (1-—2z£L)M,*.0 

Remark 2.1 The proof of the operator relations is purely algebraic and thus inde- 

pendent of the specific choice of function spaces. 

2.7 Ejigenvalues of L 

The operator relations of Theorem 2.6 provide a method to show the existence of 

eigenvalues and eigenfunctions of £. It is exactly this new relation which will enable 

us to investigate the behavior of the transfer operator in Chapter 4. 

Theorem 2.7 Suppose 0 # |z| < 1/r(Lo). Then z7' € o,(L) if and only if 1 € 

o,(M,). Moreover, the geometric multiplicity of the eigenvalues 1 and z~' are the 

same and the corresponding eigenfunctions w of L and @ of M, are related by 

~ = M,* ¢. 
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PROOF: Suppose M,¢ = ¢. Then, extending Y = M,*¢ and applying (2.27), we 

have 

(1 — zL)p = (1 — 2L)M,*¢6 = 2£,(1 — M,)¢ = 2z£L,0 = 0. 

Thus, w is eigenvector of £ with eigenvalue z7!. 

Conversely, suppose zly = w. Then, applying (2.26) we have 

(1 —2z£o)(1- M,*)p = (1— zl) = 0 

and thus, (1— M,+)w = 0. Restricting ¢ = yy, clearly ¢ is an eigenfunction of M, 

with eigenvalue 1. 

As M,* uniquely extends ¢ to y = M,*¢, the geometric multiplicity of the 

corresponding eigenvalues is the same. UO 

2.8 Generalizations of the Formalism 

Note that the above developed formalism still holds in a more general setting. For- 

mally, for an arbitrary transformation f of a set J, the notion of the induced map g 

along with the definition of the sets J, and K,, holds for any subset J. Choosing a 

suitable topology on J and a “nice” subset J, £ and M, make sense on suitable func- 

tion spaces, so that one can expect to relate their properties via the operator relations 

of Theorem 2.6. Thus, this method enjoys a wide range of possible applications. 

31



Chapter 3 

Asymptotics of Iterations 

We investigate the iteration of a function Fo with indifferent fixed points. First, 

we present the relation of this iteration to the intermittency renormalization. Next, 

the relation to Abel’s equation and the theory of iterative functional equations is 

explored. The asymptotic behavior of a solution of Abel’s equation is used to get 

sharp bounds on the asymptotics of the iteration of Fy. Moreover, these estimates 

enable us to show convergence of the intermittency renormalization. 

3.1 Intermittency Renormalization and Abel’s 

Equation 

We want to be able to control the iteration of functions f € C,. This is closely related 

to the investigation of the intermittency renormalization transformation (see e. g. 
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[19].) This is the transformation 

Tyg(x) = y9°(2/7) (3.1) 

with intermittency boundary condition 

g(9)=0, g(0) =1. (3.2) 

The fixed point g = T,g of this transformation is explicitly known, 

g(a) = {2" +a} (3.3) 

with 7 = 27. The expansion at z = 0 yields 

g(x) = 2 — ~ att 4+ O(2**1), 20 (3.4) 

which coincides with the expansion (1.11) of Fo(z) for a = cr if Fo is given by a 

function f € C,. 

We will see that iterates of fo converge against iterates of this fixed point g. More 

specifically, we need an uniform asymptotic estimate of the difference between iterates 

of Fo and iterates of the fixed point. 

In order to get this estimate, we utilize a connection of the renormalization trans- 

formation to Abel’s functional equation, 

G(Fo(x)) — G(x) = 1. (3.5) 

(For a review of the theory of iterative functional equations, see e. g. (25].) Solving this 

equation for G for given Fy makes it possible to explicitly determine higher iterates 

of this function by 

Fy"(z) = G-*(n + G(z)). (3.6) 
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The advantage of this formula is that it explicitely contains the number of iterations 

nN. 

The connection to Abel’s equation emerges out of a smooth conjugation of Fo to 

the fixed point g: 

h( Fo(z)) = g(h(x)) (3.7) 

with h being a C''-diffeomorphism such that h(0) = 0 and A(1) = 1. Rewriting this 

equation we get 

(h(Fo(2)))7 = (B2))" +a. 
Choosing G(x) = 4(A(z))~’, this is equivalent to Abel’s equation (3.5). 

Thus, we see that if Fo is equal to the fixed point g = T,g then Abel’s equation is 

Tr 

explicitely solvable with G(x) = +27” and iterates of g are given by G-'(n + G(z)), 

1.e. 

g(x) ={x "+ na}7*. (3.8) 

3.2 Abel’s Equation and Asymptotics of Itera- 

tions 

For convenience, we now define the function Fo explicitely instead of relating Fy to 

f EC,: 

Definition 3.1 

Fo : [0, 1] md 0, a] 
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is a C'-diffeomorphism with 

0< Fy <1 on 0,1] 

and asymptotic behavior 

~ 

Fo(x) = {a + re(1+ R(zx))} 
—4 

Tr (3.9) 

with r,c > 0 and 

R(x) = O(2*"1), 2 30 

for some a> 0. (Without loss of generality, choose a < r.) 

Remark 3.1 For f € C, the asymptotic behavior (3.9) is equivalent to (1.11) with 

R(x) — R'(z) = O(2""') for 2 > 0. 

Along the ideas outlined in the previous section, we now derive the asymptotic 

behavior of Fo"(x). The main result of this chapter is 

Theorem 3.1 The following asymptotic expressions hold untformly in n for x — 0. 

Fo"(z) = g(x) {1 + O({9"(z)}")} (3.10) 

(Fo")'(x) = (g")(x) {1 + O(e*)}. (3.11) 

This will be proven by determining the existence of a solution G to Abel’s equation 

for Fo. The explicit formula for this solution is given and used for a derivation of 

an asymptotic expression for G. Using this result, we get the desired asymptotic 

estimation of iterates of Fo directly in terms of iterates of the fixed point of the 

intermittency renormalization (3.8). 
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Theorem 3.1 is also the basis for a precise statement about the convergence under 

intermittency renormalization: 

Corollary 3.1 For y = Q7 and g given by (3.3), we have 

T,"Fo > g and (T,"Fo)’ > g’ (3.12) 

untformly on [0, 1]. 

PROOF: We have 

T"Fo(z) = "Fo" (y"#) 

= 7g? (ye) {1 + O({9"(9-*2)})} 
= g(z) {1 + O({y*g"(z)}*)} 

uniformly in n and z. Thus 

T,"Fo(2) — g(z) = O(1)y""*,  n — 00 

with y > 1. Similarly, 

(Ty"Fo)'(z) = (Fo"")'(y-"2) 

= (g")(y 72) {1 + O({y-"2}*)} 

= g'(z) {1+ O({y*2}*)} 

uniformly in n and x. Thus, also 

(T,"Fo)'(2) ~ g'(2) = O(L)y"*, n+ 0. 0 

In order to prepare the proof of Theorem 3.1, we first need some inequalities: 
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Lemma 3.1 Fo” 1s bounded by 

{x-" + nrc(1 + a2)}7* < Fo"(z) < {e-7 + nre(1 + a;)}-* 

with 

a, = inf R(x) >-1 and a,=sup R(z). 

Moreover, for (Fo")' we have 

1 — Cx nv 1+ Ca* —— <(F")'(2) < — 
{1+ nrc(1 + a2)x"}* {1 + nrc(1 + a,)x7}r 

    

and 
n-1 ; C 
\(R 0 Fy')'(2) < —g (tro) 

i=0 c     

for some constant C > 0. 

PROOF: We have 

Fy"(x) = {2 tre (n + sa 0 rie)] \ | 
2=0 

Thus, with a; and a, given by (3.14), we have the bounds (3.13). 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

Clearly 1+ a, > 0 due to the asymptotic behavior of Fo(z) in connection with 

Fy'(x) < 1. 

Differentiating (3.17), we get 

  

(Fy")\(x) = Loew cee (Ro ie) 
{1 + reat (n + 39 R(Fo'(x))) yen 

In order to get bounds on this expression, we have to estimate the sum 

R,(2) = ca"*? SR o Fo’)’(z). 
i=0 
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We have from (3.18) 

(1 —|Rn(x)|) {1 + mre(1 + ag)e"}* < (Fo")'(2) 

< (1 + |Rn(x)!) {1 +nre(1+ a,)a"} , (3.20) 

The asymptotic behavior of R’ implies that 

4 
a= 2° R(2)| < 00 (3.21)       

and we can estimate 

|Rn(@)| lA
 a! grt} Ur ‘(r)) ~~ 1 ( Fo’ \'(z) 

Ol 

< ca’2”* ¥ {2~” +arc(1 + a)} . (Fo')’(x) 

  

1 + a ina n-1 
lea 

< (; + *) ca'2"t® > {1 + irc(1 + a, )x" } r (Fo')'(2). (3.22) 

“1 i=0 

In the last estimation 

1 <su 1+ nrc(1 + a2)x” < l+a, 

me L-+nre(1 + a,)a° 1+a; 
  

was used. The bound 

  

n-1 nr —a 

S\ {1+irc(1+a,)2"} < 1+ / {1 + tre(1 + a;)a"} > dt 
1=0 0 

1 r+l—-a 

< 1+ 1l+nrce(1+ a,)z ry 
_ c(l1+a;)(r+1-—a)z* rt ( }e"} 

and 0 < (Fo")' < 1, implies along with (3.22) the initial estimate 

|Ra(w)| < Agx™ (1 + {14+ nre(1 + a;)x"}" ) (3.23) 

with some positive Apo. 
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Next, we proceed iteratively. Inserting (3.20) into (3.22), we get 

  

ima n—1 

|Ra(z)| < (; - =) ca'a’t* S~ (1 + |Ri(z)|) {1 + ire(1 + a,)e"}~"** (3.24) 
a i=0 

Inserting 

n~1 oo r+a 

Si {l+ire(l+a)e}o* < 14 / {14 tre(1 + a,)0"}"#* dt 
1=0 0 

= 1+ : 
7 c(1 + a,)ax" 

into (3.24), we get 

_ n-1l _ rta 

|R,»(z)| < Bu ( + a” > |R;(v)| {1 + ire(1 + a,)a™} > * (3.25) 
1=0 

With some positive constant B. Assuming that for some 6 and positive A we have 

the bound 

\R,(@)| < An® (1 + {14 nre(1 +ay)e"}), (3.26) 

we insert this into the (3.25) in order to improve the bound. 

|Ra(z)| < 
n—-1 n~1 f-—a 

< Bzr* ( + Ax’** {So {1 + irc(1 + a,)e"} + > {1 +irc(1+ ajo} 
1=0 1=0 

1 
< 1,4 Arte 1+ —————_ 

< 3 ( rae ( ‘ara? 
+ (1 + [ {1 + tre(1 + a,)z"}" dt) h) , (3.27) 

0 

First, suppose that 6 > a—r. Then we can estimate 

\R,(x)| < A'x® (1 + {l4nre(1 +a;)2"} *) | (3.28) 

(if 6 = a—r, simply choose a slightly larger 6 to avoid the logarithm in the integra- 

tion). Thus, the estimate (3.26) has been improved by 6’ = 6 — a. We can repeat 

this step finitely many times until 6’ < a—r. 
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Now suppose that 6 < a—r. Then the right expression is bounded by a constant 

and we get a bound independent of n, 

|Rn(z)| < Cx, (3.29) 

as the final estimate which directly implies the bounds (3.16) and (3.15). O 

Whereas the proof of Lemma 3.1 was still quite straightforward, we will have to 

use results related to Abel’s equation (3.5) in order to get even sharper results. 

Lemma 3.2 Abel’s equation (3.5) has a real solution G on (0, 1] which can be written 

as 

re 

with y constant, the last term being of order O(x%) for z > 0. Moreover, an exzpres- 

sion for its derivative is given by 

1 es ; 
G'(#) = —se + S°(Ro Fo')'(z). (3.31) 

+=0 

Demanding that 

lim 2”t'G'(2) (3.32) 

exists, this solution 1s unique (up to an additive constant). 

PROOF: Write 

G(n) = +27" + [ ot + Gy(z). (3.33) 

Inserting this into Abel’s equation (3.5) leads to 

Gi(Fo(2)) — G(x) = h(z) (3.34) 
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with 

h(x) = fo FO) ive) (3.35) 
Fy(x) t — Fo(t) 

Showing that h(x) is “small enough” for small x will enable us to get an explicit 

expression of Gj(z). 

We recall that R(x) is given by 

~ a 
Fo(z) = {a7 + re(1+ R(x))} "=a2—er't"(1+ R(a)). (3.36) 

Applying the mean value theorem, for some y € [Fo(x), 2] one can write 

e—F(e) =. =, aftiR(x) _ Rte 

y — Foy) ~ Rlz) = Ry) AR(y) R(z) (3.37) 

= O(1){R(y) — R(z)} + OL Ry) — R(x)} + O(1)e” Ra), 2-0. 

h(z) = R(yy——— 

Moreover, |R(z) — R(y)| < (x — Fo(2)) supye[r(#),2] |R'(y)|. Using R’(x) = O(2%"') 

for x — 0, one can also show that 

R'(y) = O(#%"1) for 230 and y € (F(z), 2]. (3.38) 

The same consideration applies for |R(z) — R(y)|. Inserting this into (3.37), we have 

h(x) = O(1)2"**2%"" + O(1)2"2* = O(2"**), 2 > 0. (3.39) 

Using (3.39) in connection with the upper bound (3.15) on iterates of Fo, we can 

show the existence of a solution G,(z) of (3.34) and that its asymptotic behavior is 

Gi(z) = O(z*) «0. (3.40) 

Inserting 

G,(z) = Th h( Fo"(z)) = lim Tne ot _ y AF" 2))] (3.41) 
n=0 N-+00 Fo n=0 
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into (3.34), one checks that this is a solution, provided the sum converges. Indeed, 

using (3.13) for fixed z, each term is of order 

rta 

h( Fo"(z)) = O(n" ©), 

thus making the sum convergent. The sum can further be estimated by 

Gi(z) = "+nc(1 +a;)}*)" 

= O(1) moles s n “| = O(1) (Net*4N-*). 
n=N+4+1 

—T Choosing N = z~’, we get 

Gi(z) = O(1)x* 

which implies the asserted asymptotic behavior of the solution (3.30). 

Next, we show that G’(z) is given by direct differentiation of (3.30). Differentiating 

without taking the limit yields 

  

ae) 4 (SRR Ye 4 ae h'e)) . 

The sum has already been estimated in Lemma 3.1. Fixing z and using the bounds 

for Fy” and (Fo")' from Lemma 3.1, we get that the last term converges to zero as 

(m7) (nF) aa, 

Thus, we get (3.31) in the limit. 

A direct computation shows that this expression fulfills the differentiated Abel 

equation, 

G"( Fo(x))Fo' (x) ~ G(x) = 0. (3.42) 
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Now, assume (3.32), ie. that lim,_.92"t'G'(z) = A exists. Then 

A = fim (Fo"(2)7G'R2)) = fim "(2)"? — oe (F"V(2) 
n—-1 _ ~(4+1) 

= G'(z) lim {2 + re (n + (Ro rive) | x 
i=0 

~ 1 
{1 + rex” (n + or R(Fo'(2))) 

x = 
1 — catt1 S20 (Ro Fy')'(z) 

_ 2 'G'(2) | | (3.43) 

1 — ca™+} 0% (Ro Fo')'(2) 

  

  

Thus, G’(x) is determined by (3.43) up to a multiplicative constant, which is uniquely 

fixed by demanding that G(z) solves (3.5). O 

It immediately follows that 

Corollary 3.2 

G(x) = -a(1 + O(x%)), 2 —» 0 (3.44) 

and 

G(x) = a9 (I + O(z%)), 2 30. (3.45) 

PROOF: For an asymptotic estimate for the integral, write 

[ R(t) ,- 227 _ Rly) y € (x, xo] 
t—Fo(t) (1+ R(y)) y 

with fixed positive 7. R(y)y~" is at most of order O(z~"t*) for x — 0, whereas the 

other terms on the right hand side are bounded away from zero and infinity. The 

second equation follows directly from (3.16). O 

We also need information about the asymptotic behavior of the inverse G™!. 
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Lemma 3.3 Let G(x) be a solution of Abel’s equation (3.5). Then G~* exists, and 

we have the asymptotic expressions 

_ _4 _ 
G>'(y) = (rey)"* (1+ O(y"*)), y > 00 (3.46) 

and 

(G~*)'(y) = —e(rcy)7*7) (1 + O(y-*)) , ¥— oO. (3.47) 

PROOF: The existence and asymptotic behavior of G(x) are given by Lemma 3.2. 

Also, by virtue of the asymptotic behavior, G’(x) < 0. For, if it were zero for some 

aq then it would be zero for all Fo"(zo). This is a clear contradiction to (3.45) which 

implies that G'( Fo"(zo)) is negative for n large enough. 

Thus, the inverse G~’ exists. Clearly, G~'(y) = O(1)y7*, y — oo, but we need 

more. Write 

G(z) = a2" {1+ ¢4(z)} with (x) = O(2%), 20 (3.48) 

and 

G*(y) = (rey)"* + ¥(y). (3.49) 

Then, 

2 =(G-0G)(2) =2(1+4(2)) P48 (<2 {14 4(2)}). (8.80) 

Thus, in order to get an estimation for U(x), we have to get an estimate on the 

expression U(y + h) — U(y). Using Lemma (3.1), write for0 <r <y< 1 

IG-(G(z) +n) -G-(G(y)+n)| = [Fo™(x) — Fo"(y) 

< |e —y| sup (Fo")'(€) 
€€]z,y| 

(1+C)y 

lA
 

  . 3.51 
{1+ nre(1 + ay)a? ts (351) 
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Denote G(x) = s and G(y) =t, (this implies s > t). Then, using G~"(y) = O(1)y7* 

we continue (3.51) 

  

t+ sity 
G(s +n) — G-U(t +) = O11) ——_-—_ = 0(1) ———_ (2 +n) ~ Gt n) = ON ar = Or 

This leads to 

h —n)+2 h 

Gy +h) — E'Uy) = op -W 42) = 01) (3.52) (y—n)r(y +h) (y+ byte 
The last step follows from choosing a suitable n. Clearly, the estimation (3.52) remains 

true uniformly for general h > —y, as long as y — h remains suitably bounded away 

from zero. Thus, for —h/y > 6 > 0 with some 6 > 0, instead of (3.52) we can write 

h 
  

  

  

Oy +h) ~ Oy) = OS. (3.53) 

Now, (3.53) implies the desired estimation. Write 

-1 -1 1 a 1 _t Vy +h)— Wy) = {Gy +h)- GW} - {oy + hy? ——y th 
h h 

= OA +O) (3.54) 

and insert (3.54) into (3.50): 

2=(G'oG)\(z) =2(1+ p(x))7* +0 (=2~) + O(1)x¢(z). 

Thus, we get 

v (<2) = O(1)z¢(z). 
TC 

Writing y = +2~* and using ¢(x) = O(2%), this finally leads to 

This implies (3.46). 
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The asymptotic formula (3.47) for the derivative can be derived directly by use of 

the asymptotic formulas (3.46) and (3.45) for G’ and G™!: 

~1 

(G"\(y) = (G'oG*(y)) 

= ~e(G-y))" (14+ O()E(y)) 

= ~e(rey)7 +7) (1 + O(l)y-*)"™ {1 4 O(1)y-* } 

1 

= ~e(rcy) +7) {1 + O(1)y"*}, yoo. 0 

Having arrived at this point, we can deduce a short Lemma about the conjugation 

between Fo(x) and g(z). 

Lemma 3.4 There exists a unique C'-diffeomorphism h of the interval [0,1] conju- 

gating Fo and g, t.e. h( Fo(z)) = g(h(x)). Asymptotically, 

A(z) =14+ O(2*), «0 

and 

(h-*)'(z) = 1+ O(2%), 20. 

PRooF: As shown in Section 3.1, each function A satisfying A(Fo(x)) = g(h(ax)) 

corresponds one-to-one to a positive solution of Abel’s equation (3.5), and we have 

h(x) = (rceG(x))7=. 

Demanding that lim, 9 h’(xz) exists and is nonzero, we get the uniqueness condi- 

tion (3.32) of Lemma 3.2. This determines G(x), and the additive constant is uniquely 

fixed by 1 = A(1) = G(1). 
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Due to the properties of G(x), h~'(x) exists. Moreover, using the asymptotic 

behavior of G(x) we see that h(x) and h~'(a) are in C'(0, 1] and get their asymptotic 

behavior: 

(a) = (rey *(-2)(C(@))G() 
= (re\-*(-=) (Se "(1 + O(2"))) oe (—<2- (1 + O(2"))) 

= 14+0O(2*), 2-0 

and 

(h*Y(2) = (67a) (-Se te) 
= oe)? (1+ O(2")) (<2) 
= 14+O(a#*), 250.0 

Using Lemmas 3.2 and 3.3, we now conclude this chapter with 

PROOF OF THEOREM 3.1: Using the asymptotic behavior of G(x), we can write 

Fo"(2) = G-'(n + G(2)) = 
= {ren +27" (1+ O(1)2%)}" (1 + O(1) {ren + 2-7 (1+ o(1je")}") 

atte 

= fren ta} 14 (yy (1+ O(1) {ren + 2°} *) 
—T+a a = fron + ay (1 +0(1) (= + {ren + -y*)) 

( 1+ O(1) {ren + or\* ({1 + rena" }o + 1)) 

and 

G"(z) 
(Fo”)'(z) GFo%(a)) 
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_ (Ae) 1+ O(a%) 

1+ O({Fo"(x)}*) 

  - (eo) (4 O({s"(@)}) 
= (9°) (2) {1 + O({g"(2)}* +2")} 
= (g(a) (1+ O(2*)}. 

These asymptotic estimates are uniform inn. O 
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Chapter 4 

Inducing and Phase Transitions 

In this chapter we apply the thermodynamic formalism to the functions in class C, 

with interaction —G log |f'|. The existence of the indifferent fixed point is shown to 

imply a phase transition. This is done by using an expanding induced subsystem 

on which the modified transfer operator M,, has “nice” properties. The spectral 

properties of Mg, give information on the spectrum of fg, in particular on the 

existence of a leading eigenvalue. It is shown that this eigenvalue depends analytically 

on 2 for B < 1 and approaches the essential spectral radius 1 at @ = 1. For 6 > 1, 

t(Lg) = Tess(Lp) = 1, so that we have a phase transition at 8, = 1. A typical graph 

of r(Lg) = exp P(8) is depicted in Figure 4.1, where our numerical results for the 

Farey map are presented (repeating the calculations of [14].) The two examples of 

the piecewise linear map and the Farey map are worked out further. 
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4.1 Definition of Cz and Mz, 

Specifying the theory of Chapter 2, we are interested in the case where the function s 

in the definition (2.2) of the transfer operator L is given by the derivative of the trans- 

formation f. More specifically, if f is piecewise C! we introduce the real parameter 

GB and set s = |f'|~*. 

Thus, for functions in class C,, we are interested in investigating the transfer 

operator Lg given as 

_ v(y) Ley(x) = oe Fy) e (4.1) 

Using the inverse functions, this leads to 

  

Lad =|Fo' Poo t+ |F'P yok. (4.2) 

(Here, we redefine the transfer operator at the point z = 1, which only has one inverse 

image under f, by using the continuously extended inverse functions. However, due to 

the remarks in Chapter 2 it is clear that this does not change the spectral properties 

of La.) 

In an analogous way, we write the modified transfer operator M,, on a subinterval 

J CI: sy is equal to |g'(x)|~8|z, = |(f")'(x)|-8, and thus 

  

Ay) Ma.9(2) = zrly) A 4.3 
(#) on lg’(y)|? (43) 

If we choose inducing on J = [a,1] the induced map g is expanding, as we have 

|f’| => A» > Lon f7'J by definition of C,. The operators Log and Lig are given as 

Loeb =|Fy'P po ko, Ligh =|F,'P poh (4.4) 
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and the sets J, and K,, are intervals, given as 

Jn =[bny basil, Kn = [ns Ol. (4.5) 

The inverses of g = f" on J, are F,Fo"™' and extend continuously to J. Thus, Maz 

takes the simple form 

Ma:¢ = d- 2"|Gn'P 60 Gn (4.6) 
n=1 

and its extension M3, is gained by extending G, = F, Fo"! to all of J. 

Summarizing, we define 

Definition 4.1 Given f € C, for some r > 0 and B € R, the transfer operator 

associated with f is 

Le: BV(I)—> BV(I), Load = |F'h bo Pot |Fy'P wo k,. (4.7) 

For z € C, the modified transfer operator associated with the induced functton g on 

J is 

Mg.: BV(J) > BV(J), Ma. = >- 2"|Ga'l? $0 Gy. (4.8) 
n=1 

with 

Gz: InJ, G,=hKF"', neéN. (4.9) 

The extension of Mg, to I is 

Maz: BV(J)—> BV(I), Mad = >. 2"|Gn'l? 60 Ga. (4.10) 
n=1 

For conventence, we use the same notation for 

M3,: BV(I)—> BV(I), Mi. = Mi.(xs-¥). (4.11) 
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Later, we will need the following estimations: 

Lemma 4.1 

var(|Gn' |?) [lea acs(|f"1-2) (4.12) 
AIHA 

r "1B IGnF \-B vary(|Gn'l") < noe varr(|f'|~”). (4.13) 
WF Flly 

PROOF: We have 

vary,(|(f")'1-") = vars(\(FiFo™ *)’‘/?) 

< varg(|Fy/Fo"|?)|||(Fo" 7) + 
n-1 

4 - (Fi Fo" tt)’ oO F,' . (Foo *)'(6|| vars(| Fo’ Fo" *|?) 

i=l 

n— vary | Fi! Fo"~*|F a vary(|Fo Fi 18 
< ||(Fi Fo "lL 43 ( - n—-1 =) » . U ! oD 

infy(|Fy'Fo"" |?) = fy infy(| Fo’ Fo" |?) 

lIGn'F |, ipn-118 a ipi-1|6 
WIFI, vary(|Fy Fo | ) + S- vary(|Fo Fo | ) 

I ; 

and the expression in parentheses can be estimated by 

w=1 

n-1 

vary(|Fy' Fo” * |?) + > vary(|Fo’ Fo’ *|") 
t=1 

n—-1 

= var p,»—1(3)(|Fi’|?) + » var p,i-1(3)(|Fo'|?) 

t=1 

<  var;(|Fi'\°) + varz(|Fo'|*) 

f'|-*)   = vars(|f’|~*) + varye( 

= varz(\f'l*). 

Repeating this estimation with J instead of J, we get 

! IGn'? ! = iy 
vars(|(f”) |-*) < eo {vari(IF Fy"*|P) +- Ss vary(|Fo np} 

i=l 
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Gn’ 1A ea "1B 
= FI var pn-1(7)(|Fi | ) + S- var p,i-1(1)(|Fo | ) 

I t=1 

      nee aos LF) +n vase} FFA 
<9 ee an If"). < FAL, 

The essential difference is that the sets int(Fp”~'(J)) are mutually disjoint, whereas 

Fo"(1) C Fy" (1). 0 

We also will need the asymptotic behavior of G,’. 

Lemma 4.2 There extst constants c,,c2 such that 

an (te < IGn'(x)| < con (+5) zeJ (4.14) 

cyn-* < |F,(0) —G,(x)| < con, ceJ (4.15) 

and 

qn tt) < IG, '(z)| < 1, rel (4.16) 

cnt <|F,(0) —G,(2)| <0, xe. (4.17) 

Remark 4.1 Note that G,,'(0) = F,'(0) and G,(0) = F,(0) are independent of n. 

PROOF: A direct application of Theorem 3.1. 0 
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4.1.1 Example: Piecewise Linear Map 

Given the map f defined by (1.16) through sequence (a,) from (1.13), the transfer 

operator is 

Lop(a) = dn W(an41 + (x ~ a,)/dn) + dy "(1 ~ «/do), an < zt < An-1) ne N. 

(4.18) 

Of particular interest is the subspace of piecewise constant functions, 

W|\an,an—1] = Pn- (4.19) 

This leads to the space of sequences (p,) of bounded variation 

n=1 

{(0): pn €C Solo ~ possl < ooh. (4.20) 

Here, Le has the simple form 

LpPn = dy? pnt + dy" px, nme N. (4.21) 

The advantage of f becomes clear when we induce on J = [a;,1]. Here, the 

functions G,, turn out to be linear, and we get 

G, (x) =bj41—Qgn(e@—a1), nEN (4.22) 

with 

bai — bn 
i =, neN (4.23) 

ag — aj 

so that the modified transfer operator on J can be written as 

Ma-9(2) — » 2" b(On41 — Gn(z — ay)). (4.24) 
n=1 
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Inducing on the above defined subspace leads to an even simpler form. Here, Msg, 

reduces to a multiplication by a constant, 

oo 

MazP: = ApePr, with Age = DY. 2"¢8. (4.25) 
n=1 

For the sake of completeness, we state the formulas for the extension Mi,. Using 

G,(2) = FLFR ‘(2) we get 

Ga(z) = baim — Qnm(@—Gm), Im << 2<am1, MEN (4.26) 

with 

Daim — On4m- 
dnm = ON EN. (4.27) 

Am-—1 — Im 

Thus, we can write 

M3, 4(z) = > 27 qh P(bn+m —Gnm(@—Gm))) Om <@<am_1, MEN. (4.28) 
n=l 

On the subspace of piecewise constant functions, we get 

Qo 

(Mé,P)m =Age'pr, with Agr = \> zg. (4.29) 
n=1 

Clearly, the action of Mi, on p is only dependent on py. 

The fact that the subspace of piecewise constant functions is an invariant subspace 

for Lg and Mi, reflects the reduction to cluster interaction. Since the single clusters 

do not interact with each other, we get piecewise constant densities on intervals 

corresponding to clusters. 

4.1.2 Example: The Farey Map 

For the map f given by (1.19), the transfer operator is 

LoW(z) =(1 +2) {¥ (=) +e (—)} | (4.30) 
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In the computation of Mg,,, this example shows its full algebraic beauty. Inducing 

  

  

yields 

G,(2)=1-— G,(2) = -——— (4.31) 
me) line? > "77 (1+nz)? 

so that 

_— = n —28 _ v ) Maz 9(2) = S>2"(1 + ne) (1 =). (4.32) 
n=1 

The extension Mi, can be written identically. 

Inducing for the Farey map and its linearized version are shown in Figures 4.2 

and 4.3. Note in Figure 4.3 that the branches of g are piecewise linear inbetween the 

dashed lines. 

4.2 Analysis of Mg, and M3, 

4.2.1 Boundedness of Mg, and M45, 

Lemma 4.3 Mg, and Mi, are power sertes tn z with radius of convergence 1. 

  At the radius of convergence |z| = 1, Ma, ts bounded for 8 > ~—. 

For z = 1, Mg, ts unbounded tf 8 < 7. Moreover, Mir ts unbounded for all G. 

PROOF: We write 

Mg: = x 27M,g,™ with Md = |Gn'P do Gn. (4.33) 

and compute | Mi (|| BY(a) . We have 

Me lav = 
57
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= sup max {||| vary(MP)¢),} 

IPllevcsy=1 

< sup max{|{|Gn'lP |] Jlidlly, vars(IGn' PIMs + |[IGn'l*|| vars(9)} 
Idllav¢sy=! 

Ss 21/1’ ll aviay 

Moreover, 

lave) 2 MP avy = Ull@="Pllaveay 
Thus, the radius of convergence for Mg, is given by 

—1f/n 
avin’ (4.34) Jim, [InP 

Using the asymptotic behavior of |Gn'|? = O(1)n~90+*) on J, the radius of conver- 

gence for Mg, is equal to 1. 

The same argument carries through for M3, due to the fact that |G,’|° = O(1) 

on I for B > 0 and |G,’/F = O(1)n-80'+*) on I for B < 0. 

For |z| = 1 we have 

IIMazllav(sy < > 2 En" Lave < O(1) yon A+) 

n=l n=1 

which is convergent for 8 > ;7,. Also, 

  

Mpil(2) = Y>|Gn'(x)P > er Son Pt) (4.35) 
n=1 n=1 

is divergent for 8 < ;7;. However, 

M$1(0) = 5 1F'(0)/P (4.36) 
n=1 

is divergent for all 8. O 

We recall that by Lemma 2.2 we can relate the nonzero eigenvalues and the corre- 

sponding eigenfunctions of Mg, and Mj,, whenever M3, is bounded. Therefore, in 
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order to investigate eigenfunctions of Mj,, we only need to consider eigenfunctions 

of Maz. 

4.2.2 The Essential Spectral Radius of Mg,, and the Exis- 

tence of a Leading Eigenvalue 

One way to show the existence of a leading eigenvalue is the comparison of r(Mg,) 

and Tess(Mg,), as stated in Theorem 2.4. Therefore, we provide explicit formulas for 

each. We use Theorem 2.3 for Mg,. 

Theorem 4.1 Suppose that 

(a) |z| <1 or 

  (b) |z] =1 and B > TE. 

Then, writing Ga, = Gn, 0Gn, 0...0Gp,, we have 

    

/ 

Tess( Maz) = inf (sur {|2|!! Ga ,}) * (4.37) 

PROOF: In order to apply Theorem 2.3, we have to check whether s = 2(*)( f"(x))'(a) 

is in BV(J) and whether condition (2.2) holds for s. 

By Lemma 4.1, 

varj(s) < Bre 

var,(|f'|"®) 
~ (LEIA Tr 

      Gn! | J 
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which is finite by Lemma 4.2. The same holds for condition (2.2), as 

Y lisils, = dle [len |. 
n=1 n=1 

Now, the formula (4.37) follows directly from (2.21). O 

A direct consequence of this theorem is 

Corollary 4.1 r1...(Mg,,) < Iz|Ao”. 

Now, we give a formula for r(Mag,). 

Lemma 4.4 Suppose that 

(a) 0<z<lor 

(6) z=1andB> i   

        

  

Then 1/k 

t(Mgz) = inf y> zlG,'P (4.38) 
Ny J 

PROOF: We have 

r(Mpe) = int ||Moe| acy) 2 int |Mpe*l|[ oc) 2 int || Moet) 

which is equal to the r.h.s. of formula (4.38). Moreover, 

|| MosY ||, < [Mac] lhblly < |[Mae*ll],IlMllavc 
and one checks that 

vary(Mg."p) < |[Mg"1|| vars(p) + sup (zlvary(|Gp,'!) ||. 
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By Lemma 4.1, vary(|Gn,'|?) < Cl|IGn,'P|   
, and thus 

J 

Mos"     In,’ ||).   
k ln, | 

avn Ss Maz 1, + C sup (2 . 

Now, taking the limit of the k-th root, the second term of the r.h.s. converges 

to fess(Ma,) < r(Mg-_), so that we are left with the upper bound IIMeell avis) < 

1/ke 
lim, |Maz*1||." . Due to submultiplicativity, we can replace the limit over k by the 

infimum. 0 

Another way of showing the existence of a positive eigenfunction is to use addi- 

tional smoothness of f'. Furthermore, smoothness of f’ implies smoothness of this 

eigenfunction as well. 

Lemma 4.5 Suppose that 

(a) 0<z<lor 

(6) z=landB> zh.   

Moreover, suppose that F,' € C*(I) and x-*(Fy'(z) — 1) € C*(I) for some € < a. 

Then Mag, has a positive etgenfunction Vg, with positive ergenvalue Ag,. More- 

over, Vg, 1s Holder-continuous and sattsfies 

llog ¥a,(x) — log ¥a.(y)| < Clz — yl" 

for some C > 0. 

PROOF: 

This proof uses a method of [29]. In contrast to [29], our specific setting imposes 

bounds on the exponent e€ of the Holder-continuity. 
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Suppose 

C. = sup |log |(FiFo""")' 
  €,J 

is finite. Define 

C. he = {¥ € BV(A)| 0<%, IWIl=1, (2) < wyyenn (See — at) b. 

Ag is equi-continuous, hence its closure in supremum norm, Ag, is compact. 

Now, for functions » € Ag we have 

Maz(2) < 

lA
 

lA
 

1A
 

8 wp 0 F, Fy" '(2) 

po Fy Fo" '(y) 
(Fi Fo""*)'(z) 
(Fi Fo"”*)'(y) 
  Ma¥(y) 

wy 0 F, Fo"~*(z) 

po Fy Fo”~*(y) 

  
sup | 

exp (AIC. le — al") sup | 
  

May) 

  exp (|8|C.|x — y|*) sup {exp (Ns |F, Fo" *(x) — ARS) Ma.(y) 

IA|C. PAS Aotte — alt) May exp (4|C.|x — y|*) exp ( 

  

Ce 
exp (ENS jz — u) Moa:¥(y). 

Define Mg, via 

Mab = ||Mez¥||7' Mad. 

Mg, maps Ag into itself. By the Schauder Tychonoff theorem there exists a fixed point 

of Ma, in Wg, € Ag such that Mg,¥a; = Wg, and hence, with Ag, = ||Mg.¥a:\|,; 

M.¥p2 = Ap. Vaz. 

By being in Ag, this eigenfunction naturally fulfills the smoothness condition stated 

in the Lemma with C = -222. We also have a lower bound on the eigenvalue A,,, 
1—Ay* 

2 z —2 7€ lee = Maz ¥eells x, exp( Ale 
|Wazll, 7 1— Ag‘ 

). 
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Concluding the proof, we show that C, is indeed finite. We have 

< llog |(F, Fo" *)'| _   

n-1 

< flog Fo" || + 30 flog |FoFo' || 
, i=1 , 

n—-1 

< flog lalla rrmecy [FPO], + 3 Mog lelhy memos) Fo, 
, w= ’ 

Now, |log |z||, < ||1/a#|| and ||1/F/||, < ||f'||,. Thus, we can continue 

| 
n—-1 

< Flr | Flamer [Fon] + 0 |Folemi yy [Fo 
, t=1 

< log (AF" YI), <   

  < UF ll [FFo" "| + 3 [Fer 
, i=1 

  

€ 

1,J 

n—-1 

J + 2 Pole, Fyi-1() |For")! 

        5 
ist) (142 

< IFW pCo {Flare nts) 4 > \Foleryi-t(ay # wen} (4.39) 
t=1 

< If'll {Flamer Rrty 

The last step uses the asymptotic behavior of the iterates of Fo. Further, using 

boundedness of |2~"(Fo'(x) — 1)|,, and ||e~"(Fo'(x) — 1)||,, we get 

|Fo l_Foi(J) 

|n"|     
< |(Fo- 127 

  
r f —-r . 

Fyt3 (J) lz Il e§4(0) + (Fe - 1)x Fy'—*(J) ¢,Fy'~1(J) €, 

1 F,**} (J) 
* 

      
< (FS —1)z2" 

  2" lea) + ||(Fo — Ye"), |]r2" || ay |   | et 

< {i 4 ion/r-G- 944) — C, {7 4 i Pre(t4 7) 

Thus, the terms in the sum of (4.39) behave as 

O(i-1-0+5)) + O(i-”) 

whence the sum is uniformly bounded in n. O 
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4.2.3. The Spectral Gap for Mg, 

Lemma 4.6 Suppose that 

(a) 0<z<lor 

  (b) z=landf> 7h. 

Further assume that tesg( Maz) < 1(Mg.). Then Mg, has a spectral gap, t.e. there 

is a0 <1(Mg,) such that the only part of the spectrum outside the disk with radius 

6 is the leading eigenvalue rg, = 1(Maz_). 

PROOF: Since Tegs(Mgz) < t(Maz), Agz is a simple eigenvalue with positive eigen- 

function Vg, bounded away from 0. Consider the normalized operator 

1 

Apz Vez 

  

Nazt = Meaz-(Vezv) 

(i.e. Ng,l = 1). Then we need to show that 1 is the only eigenvalue of Ng, with 

magnitude equal to 1. 

Suppose VW € BV(J) is eigenvector to an eigenvalue |y| = 1 and choose ||V|| = 1. 

Then we have 

|¥(z)| = Nez ¥(2)| 

  

  

_ RICA) Ve Onl) yo 0, 
7 . Naz Vaz(2) ¥ 0 Gale) 

’ (x)|F Oo r 

Seay Me Gnle) 
x)|? Vg, 0 G(x) 

rp2Vp2(x) 
  

< Ho IGal 
n=1 

| —
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There exists an x2’ € J such that V(x) > 7’ with |7'| = 1 forz \, 2’ orz / 2’. 

Without loss of generality, assume that y’ = 1. Then, taking one of these limits in 

the above inequality, the left hand side converges to 1. This only happens if, for all 

n, VoG,(z) — y. Repeating the argument, we see that for all k = 0,1,2,... and for 

all ny,...,m, = 1,2,..., 

WoGn, 0 Gn, 0...0 Gy, (2) > 7* for z\, 2 or «2 7/2", 

If y # 1, this leads to an infinite variation vary(V), whence 7 = 1. Thus, there is 

no other eigenvalue with magnitude equal to 1 and we have a spectral gap. O 

Remark 4.2 I/f in the above proof the partition were finite, it could still suffice for 

y to be a root of 1. Therefore, this proof ts not applicable for Lg and we will have to 

argue differently, invoking the operator relations between Lg and Ma,. 

4.2.4 Examples: Piecewise Linear Map and Farey Map 

For the piecewise linear map f, we directly get 

(Maz) = » 2" qh > sup 2" qh = Tese( Mz). 
n=1 

Thus, we have a leading eigenvalue and a spectral gap. (We already know that the 

eigenfunction was the constant function.) 

For the Farey map f given by (1.19), we estimate 

(1+n)-? <|G,'] < (1+n/2)? 
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so that 

Tess( Mg.) < sup z"(1+ n/2)~74 <l 

and 

(Mz) > do 2"(1+n)-8. 
n=1 

In particular, for z large enough and § close to 1, Tes(Mg.) < r(Ma,) and again 

we have existence of a leading eigenvalue and a spectral gap. As |f'| is piecewise 

Lipshitz, the corresponding eigenfunction is Lipshitz as well. 

4.2.5 Some Inequalities for Mg, 

Later, we will need relations between Mg, and Mg, for z' complex with |z’| = z. 

These are given by the next Lemma. 

Lemma 4.7 Suppose that 

(a) 0<z<1andB>0 or 

(6) z=1 andf > zh.   

If |z'| = z then 

Tess( Maz!) = Tess( Maz). 

If, in addition, z' # z and Teug(Ma,z) < t(Meg,) holds, then 

t(Maz') < t(Mg,). 

PROOF: The first equality is straightforward, as the formula for the essential spectral 

radius (4.37) is independent of arg(z). 
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Now, if ress(Maz) < 1(Mg,,) then r(Mg,) is eigenvalue of Mg,. We only need to 

show that there is no eigenvalue of Mg, with magnitude equal or larger to r(Mg,). 

Consider the normalized operator 

1 

Ap: V pz 

  Naz = Meaz'( Vp?) 

where Wy, is eigenvector of Ma, with eigenvalue Ag,. Clearly, |Ng.b| < Neel||Y|| = 

\|||. Thus, there is no eigenvalue with magnitude larger than 1. 

Assume that there is an eigenvalue |y| = 1 of Ng,. Then, for an eigenvector 

W € BV(J) with ||¥|| = 1, 

|Y(x)| = [Nae ¥(x)| <1. 

Arguing as in the previous proof, we see that for some 2’ € J and for alln = 1,2,..., 

(z')"VoG(2z)->y for ec, 2 or z« 72". 

Now, G,(z) converges uniformly to 1 for n — oo. Pick a sequence x, — 2’ such 

that (z’)” © oG,(a,.) — 7 for k — oo. Then G,(tn) — 1 and Wo G,(z,,) converges 

due to © € BV(J), whence (z')""y must converge for n — oo. Therefore, z’ = z in 

contradiction to the above assumption. 

Thus, no eigenvalue of Mg,’ is in modulus equal to Ag, = 1(Mg,), and the spectral 

radius r(Mg,,) has to be strictly smaller. O 

Moreover, the following inequalities hold. 

Lemma 4.8 Suppose that 

(a) |z|} <1 and 8 >0 or 
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  (6) |z]=landB> 
1+r° 

For |z'| < |z| we have 

[2"| 
Tess(M g,") < Ta] et Mee): 

If, in addition, z,z' are real then 

2! 

(Maz) S$ >1(Maz). 

Also, for B' < B we have 

Tess(M gr, ) 2 MBP rees( Maz). 

If, in addition, z is real then 

(Marz) > Ap? (Maz). 

  (Here, 8,8’ > == for |z| = 1.) 

PROOF: The inequalities follow directly from the formulas (4.37) and (4.38) for 

Tess(Mg,) and r(Mg,), along with |Gp,'| < Ag”. O 

Remark 4.3 Thus, we have shown that 1(Mg,) is strictly increastng in z and strictly 

decreasing in 3. 

We end this section with considering the special case M1. 

Lemma 4.9 We have r(Mj,,) = 1. 1 is a simple leading eigenvalue with positive 

ezgenfunction and M,, has a spectral gap. The Lebesgue measure jy, 18 an eigenmea- 

sure of Mj, with eigenvalue 1. 
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PRooF: For each function ¢ € BV(J), 

pr(Mnd) = y IGn'(a)| 60 G,(e)de = » [, oe)de = f oe)de = ux(4). 

Thus, py is eigenmeasure of M,, with eigenvalue 1 and it follows that r(M1i,) = 

1(Mj,) > 1. Since tess(Mii) < 1/Ao < 1, Aur = (M11) is a simple eigenvalue with 

positive eigenfunction V,,. It follows that 

0 < pr (Yir) = we(Mir Vir) = Arm (¥ 11), 

whence r(M,,)=Ay =1. O 

4.3 The Spectrum of Lz 

4.3.1 The Essential Spectral Radius of Lz 

Lemma 4.10 Suppose 8 > 0. The essential spectral radius ress(L) ts equal to 1. 

PROOF: The conditions for the application of the theorem are fulfilled: 

f is a piecewise monotone transformation of [0, 1] with a finite generating partition 

Zz = {[0, a), [a, 1}}. 

3(z) is given by 

s(x) =| f'(2)|-® 

and is in BV(J). The condition Y°z,¢z ||s||z, < oo. is trivially fulfilled.



We need to compute the essential spectral radius. For § > 0, we have 

Sn(z) = [fF tw)... LF Fe) (2)? 

= |(f")"(2)I-? 

<1, 

where equality holds at the indifferent fixed point x = 0. Thus, 

tes(La) = lim ||s,||"" = 1. 0 

4.3.2 The Existence of a Leading Eigenvalue 4g and a Spec- 

tral Gap of Lg for 0< 8 <1 

Here, we apply the previously derived relations between £L and M,. According to 

Theorem 2.7, eigenfunctions of Mg,, with eigenvalue 1 are also eigenfunctions of 

Lp with eigenvalue \ = 1/z, provided that |A| > r(Log) = 1. Now, the radius of 

convergence of Mg, as well as res,(£g) are equal to 1, so that we control the whole 

region |\| > 1 through Mg,. Figure 4.4 shows the relation between the spectra of 

Ma.) (a) and Lg (b) for 8 < 1: 

(a) The essential spectral radius of Mg,,,g) is strictly smaller than 1, with only 

isolated eigenvalues outside. The leading eigenvalue Amini axe) is isolated from 

the rest of the spectrum by a spectral gap. Moreover, z((@) is chosen such that 

this leading eigenvalue is equal to 1. 

(b) Thus, the leading eigenvalue of Lg is equal to 1/z(@). Here, the essential spectral 

radius is equal to 1, with only isolated eigenvalues outside. Again, the leading 

eigenvalue is isolated from the rest of the spectrum by a spectral gap. 
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We will first show that 

Theorem 4.2 Let 0 < 8 < 1. Then Lg has a leading etgenvalue Ag > 1. This 

eigenvalue is simple and the corresponding eigenfunction positive. 

PROOF: We have fess(Mag,) < \z|A9° which is less than 1 unless @ = 0 and |z| = 1. 

Now, by Lemma 4.8 we have r(Mg;) > 1(M.,) = 1 for 8 < 1. Using monotonicity of 

Meg; in z, for each 8 < 1 we can choose a z > 0 such that r(/M,,) = 1. Then, Mg, 

1 . 

has a simple eigenvalue 1 with positive eigenfunction, which implies that A = z~° is 

a simple eigenvalue of £, with positive eigenfunction. 

Moreover, since we have r(Mg,') < r(Mg,) for |z'| < z, there is no eigenvalue 

of Lg with |A| > 277. O 

Finally, we get 

Lemma 4.11 Lg has a spectral gap for B < 1, t.e. there is a 9 < r(Lg) such that 

the only part of the spectrum outside the disk with radius @ 1s the leading eigenvalue 

Ag = (Le). 

PRoor: Let z = 43’. Then, we have by Lemma 4.7 r(Mg,') < r(Mg,) for |z’| = z, 

z' # z, so that there is no other eigenvalue 4 of Lg with |A| = Ag. 

Moreover, as 1 = Tegs(L) < Ag, all other eigenvalues of Lg have to be in a disk 

with radius strictly smaller than Ag. O 

4.3.3 Analyticity of \g for0< 68 <1 

Lemma 4.12 The leading eigenvalue Ag of Lg is real-analytic in GB > 1. 
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PROOF: We have to show that z(@), defined by r(Mg,a)) = 1, is analytic. As 

Tess( Mz) < 1, this is a simple eigenvalue. Since Mg, is jointly analytic in |z| < 1 and 

3, standard perturbation theory of simple eigenvalues ([22], Chapter VIJ, Theorem 

1.9) applies, by which there are at most finitely many solutions to r(Mg,) = 1. Thus, 

2(@) is unique in a small neighborhood of in a small neighborhood of {@, z(@)} and, 

by [22], Chapter VII, Theorem 1.8, consists of a branch of an algebraic function. 

Thus, z(8) is analytic. O 

For the piecewise linear map, z(f) can be estimated in a particularly simple way. 

It is given implicitly by the equation 

4.3.4 The Phase Transition at B= 1 

Lemma 4.13 For 6B > 1, r(Lg) = 1 

PROOF: r(Lg) is decreasing in 8. Furthermore, r(£,) = 1 and r,,,(£g) = 1. O 

Thus, it follows immediately that 

Corollary 4.2 r(Lg) ts analytic in B <1 and 8 > 1 with a non-analyticity at B = 1 

Thus, we have accomplished a complete description of the pressure function, as 

depicted in Figure 4.1. 

At the phase transition @ = 1, we still have an eigenfunction ¢ of M,,. However, 

the extension Mj, is unbounded and computing M,;¢ leads to a singularity at the 

75



origin. Using the asymptotics of G,,’ along with the positivity of ¢ in J, we can show 

that 

Lemma 4.14 

Miip(e)~2", 2-0 

PROOF: Theorem (3.1) implies 

y Gn(z)|6oGr(z) = LIA ")'(e)(1 + 0(1))(¥(1) + o(1)) 

= |Fi'(0)]6(1)(1 + 0(1)) ) (1 + nest) i 

Estimating the sum by the corresponding integral, we see that it diverges as x” for 

zg—-0. O 
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Chapter 5 

Asymptotic Behavior at the Phase 

Transition 

Now, we compute the asymptotic behavior at the phase transition @ = 1. In the 

first section, perturbation theory is used to get the expansion. This expansion will 

be done in terms of a function ,(z). The second section provides the asymptotics 

for n,(z) and, combining these expansions, we get the desired result. 

In the following estimations, we need Holder-continuity of the leading eigenfunc- 

tion of Mg,. Thus, we suppose throughout this chapter that f € C, is Holder- 

continuous as in Theorem 4.5, i.e. F,' € C*(I) and 2~"(Fo'(x) — 1) € C*(I) for some 

E<aQ. 
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4 

5.1 Perturbation Expansion at the Phase Transi- 

tion 

First, we summarize our knowledge of Mg,. For @ close to 1, the map 

(8, z) and Maz 

is continuous in 0 < z < 1 and #, and analytic in @. For z close to 1, we have an 

isolated simple eigenvalue Ag, = 1(Mg,,) with a positive Holder-continuous eigenfunc- 

tion Wg,, both being continuous in z < 1 and analytic in G. Moreover, A; = 1, and 

the Lebesgue measure p41; = py is an eigenvector of Mj, with eigenvalue 1, i.e. for 

all » € BV (J), 

Hi(Miuy) = ari(). 

Also, Ag, is strictly increasing in z and strictly decreasing in § with a unique solution 

z(@) of Ag.ia) = 1 which is analytic for 8 < 1 and strictly increasing. 

Let 

Age = y An(z)(1—- 8)" and Mg, = we — pyM,™. (5.1) 
n=0 n=0 

be the expansions of Ag, and Mg, for 6 close to 1 and z < 1. z + A,(z) is continuous 

and A9(1) = 1. Analyzing the perturbation series, we see that Ap(z) = Aj, is the 

largest eigenvalue of 

M,) = Mi. 

With P,, denoting the spectral projection of M,, corresponding to the eigenvalue 

Az and Wy, being the positive eigenvector of M,, normalized to 

Hu(¥n) = 1, (5.2) 
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we choose the left and right positive eigenvectors j1,, and V,, of My,, as 

U1,=PyVy, and pu, = pnPy. (5.3) 

Then, A1(z) is given by 

A1(z)i12(V12) = pz(M,"),,). (5.4) 

We note that since 

M,W(2) = Y> "(G4 (2)|(—log |G (2)|)¥ o Gal), (5.5) 

the finite limit (1) of Ay(z) as z 7 1 is strictly positive: 

Ai(1) = par(M 11) = pp(log |g/|¥11) > 0. (5.6) 

In order to describe the asymptotics of 4,, and of 2(@), we define for r > 0 

  

oo 1 — 2” 

Tr(Z) = » it (5.7) 
n=] 7 

nr(z) \, 0 as z 7 1. A more precise description of the behaviour of 7,(z) will be 

given in the next section. 

Now we can proceed to show 

Lemma 5.1 We have the asymptotic expression 

Az =1- C,1r (2) + O(nr/(14+e)(Z)) 

with 

Cc 
Cp = (re)i+1/r |F1'(0)|Vir(1). 
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PROOF: We note that since 

M,,¥12 = A122 and HuMy = f11 

we have 

(Ai. — 1) pri (V2) = bMul(Mi, _ M11)¥12). (5.8) 

We will show that V,, can be replaced by Wj, to leading order and that taking into 

account the normalization (5.2) one has 

Ay = 14+ pu((Mi. — Mir) ¥i1) + O(n,(z)’). (5.9) 

To prove (5.9) we first note that 

IMz— Malley) S 2 -2")|Mallaviy 
n=1 

oo “ 1-2" 
< Ch — 27) Gal] < C">O ini = On(z)) 

n=1 n=1 

for some C,C'' > 0. By the spectral properties of M,, this implies that for the 

spectral projections 

|Paz — Pulleys) = O(m(2)) 

also holds and that therefore ||Wi, — Yi1|lpy(y) = O(m-(z)). This together with (5.8) 

leads to 

Bar((Miaz — Mis) Wis) + oar ((Miz — Mir)(Yi. — Vir)) 

1+ pui(Wi. — Yir)) 

Har((Miz — Mi) ¥i1) + O(n-(z)’) 
1 + O(m,(z)) 

which in turn implies (5.9), since also wii((Miz — Mi1)V11) = O(n,(z)). 

  Aiz = 1+ 

  — {+4 

Next, we estimate 6 = pii((Mi — Mi,)Vi1). One gets 

§ = [OU 2)1G, (2) 0 Gale)de 
n=1 

= a2") [ Wii(z)da, (5.10) 
n=1 In 
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where J, = G,(J) has boundary points F; Fo”(1) and F,Fo"~*(1). Denoting a primi- 

tive of W,, by V, one can write (5.10) as 

§= \((1- 2") [Wo A A™(1) — ¥o FF" (1)]. (5.11) 
n=1 

By Theorem 4.5, V4, is C*, so that W is C'**. Since F, is C!+¢ by assumption, we 

see that Vo F, is C)+€ as well. 

Using a, = Fo"(1), we have 

§ = S3(1= 2") [Wo A F(an1) -— Vo Fy(an_1)| 

SL 2") (Ho HY(E)| lana — Fo(an1)] 
n=1 

where €, € [Fo(@n_1), @n-1]. Using R(x) of (1.11), we write 

§ = a — 2") (Go Fy'(En)| e(ana)'*"(1 + R(an-1)). (5.12) 

Holder-continuity leads to the estimate 

(Wo F,)(x) = Fi(z)¥y 0 F(x) = Fi(0)¥ir(1) + O(e'), 

and Theorem 3.1 implies 

dn—1 = (mre)-* {1+ O(n-@/")} 

Inserting this and R(x) = O(x*) into (5.12) we can write 

6 = ra — 2”) { |F"(0)|Wr(1) + O(n-</)} c(nrc)717* {1 + O(n-2/*)} 

= Cy (1 — z”) {n-t-s 4 O(n-t-O+9)/r) + O(n -O+ay/ry 

= cpm (z) + O(mejitay(z)) + Olmeatey(2)), 2 71. 

81



Combining this with (5.9) and « < a we obtain the lemma, since 

O(n. (2)") = O(m-(z)) = O(mej140)(z)) = One yare(2)), 2 71.0 

From this lemma, the desired result follows immediately. 

Theorem 5.1 As§ /1 

T 

Ay (8) = 95" (22a) f+ on) 

PROOF: Combining Lemma 5.1 with the expansion (5.1) of Ag, gives 

1 = Ag. = 1 — cm, (z) + O( Me (r4ey(2)) + (1 — B)A1 (1) {1 + o((1 — z)°)}{1 + O(1 — B)}, 

whence 

m(z) + o(m(2)) = Aa — ) + 0((1 - 89"), 
Hence, 7,(z) = O(1 — 8) and, thus, 

n(2) = MDa — py + o(1 ~ 8). 
Tr 

Applying 77’ on both sides implies the theorem. O 

5.2 Asymptotic Estimation 

We now investigate the asymptotics of n,(z) as z 7 1. In order to obtain an integral 

representation of 7,(z), we use 

Lt boone gy _Td+5) r) 
ate 
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Then, for z < 1 one obtains 

-t 3 z” _ 1 fre ze dt 

nit? T(14++4) 4 l—zet ’ 
  

  

  

n=1 71 

and hence, 

_ z 
mr(z) = maa tet[— t 1 —ze-t at 

1 _¢ 1—z = a1 tre 
r(1 * *) (1-e-*)\(1— ze) 

oo tt 1 € “et I _ 5.13 raph areca" e19) 
where 

1—e? z 
g(t) = ; and (=T     

We will investigate the asymptotic behavior of (5.13) as ¢ — oo. It will be convenient 

to split up the integral as follows: using the identity 

    

1 
=e ; z> 0, (5.14) 

and setting 

we can write 

jt-18 “t 1 

m2) = rasp a1 cay” * 
aay a C7 [f° tr 7ab(t jae — CWO at! 

The first integral in the square brackets is finite for all r and the last one can be 

majorized by 

  en 5 I tt ab(t)dt 
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so that we are left with estimating the integral 

1 1_4 et 1 9,(2) = | On (5.15)   

We first consider the case of 0 < r < 1. Here, we again apply (5.14) and get 

0(z)=¢) iL t?~?y(t)dt — [ OW a eat . 

The first integral is bounded and the second one is majorized by 

1 4 ¢ 1 feet — “ont | pi?t________d, 
0 el+(¢t(l—e)/e e 0 1+r(1—e)/e 

= O(6'*) + O(¢7). 

Here we performed the change of variables 

    

r= Ct. (5.16) 

Hence, 

ye — te fete ~ min{+,2} me) = Fae f, Pwd + 0(6 } 

In the case of r = 1 we write 

3 a 
2) = | WHIM)” 

_ “| Vien tlt 1 1 ¢ en é 1 2 

~ bh BGO 1+ rar” Ah BOI t rar | 

The first integral converges to f> a = log2 as ¢ — oo. Applying (5.14) to the second 

integral, we write it as 

weld), we) 1 
I T d ! T Ty rare) (5.17) 
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The second integral in (5.17) is O(1). Performing the change of variables (5.16) in 

the first integral, we can write it as 

[ P(E) ae 
1/¢ ot 

Since p is analytic at the origin and (0) = 1, then p(t) = 1+ty,(t) with 4, bounded 

at the origin. Therefore, for (5.17) we obtain 

1 

] t)\dt og6 + fal \dt + O(1) 

and thus, 

1 
m(z) = Tess log ¢ + O(¢7"). 

For r > 1, we use the change of variables (5.16) in (5.15) and obtain 

  

ar e7/¢ 1 

=o fit Wr 1+ rhr/O) 
The integrand can be written as 

1 1. tk (14 Fealnir/0)] 
  where |¥2(7,7/C)| is uniformly bounded for r € [0,(¢]. Since JS 2 dr = O(¢*), we 

deduce 

  v,.(z) = (ot [ rr ar $6) 

as ¢ > oo. Thus, 

ma=apye tf 

Summarizing, we obtain that as ¢ — co 

  pp tT FOO” ). 

RIS Lo? ew (t)dt + OCC GH), O<r <I 

  

  

m(z) = ron log ¢ + O(¢"*), r=1 (5.18) 

Tass ° Soe a dr + O(¢~*), r>l. 
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This leads to the final result on the asymptotic behavior of Ag for @ / 1 and, 

thus, for the pressure P(( log |f'|). 

Theorem 5.2 The asymptotic behavior of the pressure P(@log|f'|) for functions 

f €C, 1s given as 

d,(1—)[1+o(1)], O<r<l 

PBlog|f'|)= 4 doaeesli+o(1)], r=1 

d,(1— @)"[1+o0(1)], r>1 

for B 71. Here, 

P(1-+2)8@) (pe et(isinh £)-7dt), O<r<1 Cr 2 

d, = “uN ’ r=] 

(r( + 4)22)" (ee ear), n> 

with 

C= Tarra '(O)I¥ax(1) 

and 

di(1) = f Vii(w)log |g'(2)|de. 

ProoF: This follows from (5.18) along with Theorem 5.1, using P(@log|f’|) = 

—logz(8) and —logz = ¢7! + O(¢-?). Inverting n,(z) for r = 1, we use that 

—y logy = x implies y = —2—~(1 + O( lest—'e2)))_ O 
~—logz (log a)? 
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Appendix A 

Notation and General Definitions 

Here, we list some notation and general definitions for reference. 

A.1 Notation 

We use the following symbols: 

Z the set of integers {...,—2,—1,0,1,2,...} 

No the set of non-negative integers {0,1,2,...} 

N the set of positive integers {1,2,...} 

R. the set of real numbers 

C the set of complex numbers 

intD the interior of the set D 
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clD the closure of the set D 

OD the boundary of the set D 

D* the complement of the set D 

O(g) means that ma is bounded 

= o(g) means that lim; ra) = 0 

f ~g means that lim; mo) =l,i.e. f(t)= g(t) + o(g(t)) 

A.2 General Definitions 

For a complex-valued function V on the interval J = [a, 6], let ||¥||, denote the usual 

supremum norm, 1. e. 

Pl], = sup |¥(z)|. 
rel 

The space of continuous functions, equipped with the supremum norm, is denoted by 

C(I). We further denote 

var,(W) = sup{>|¥(a,) —W(a;_,)|:n>1, ag9<a,<---<a,, a; € JH, 
i=1 

lleva) = varr(¥) + |[¥ll,, 

and define 

BV(1)={¥:I>C: ||¥8lpyn < x}, 

the space of functions with bounded variation on the interval J. 

We note that for functions of bounded variation the one-sided limits exist, i. e 

limaz\y U(a) for y € [a, b| and lim, », Y(z) for y Ela, b]. 
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Moreover, for functions f and g on J, 

var;(|f|) < var7(f) 

var;(f +g) < var;(f) + varz(g) 

vary(f -g) < fll rvarr(g) + varr(f)||gllz, 

and, for functions f on J and g on J = f(J), 

var;(go f) = var,(g). 

We also need the notion of Holder-continuous functions. For a complex-valued 

function V on J, denote for some 0 < e€ <1 

Hx) — Wy) 
lx — y|é z,yeé Tl, seu}. {Vl.7 = sup 

Naturally, |W|i7 < ||'||;. For reference, we also note that for functions f and g 

on I, 

lf +gler < |Ffler + gles, If -gler < WF llrlgler + |Fflerllglly, 

and, for functions f on J and g on J = f(J), 

Igo fler < lgles(lFlea)° e<6<1. 

In particular, choosing 6 to be € or 1, we get 

9° Fler < |gles (Far); 9° fler < lglialflesr- 

Denoting 

Mller = max{||Yllp, [Vler}, 

89



the space of Holder-continuous functions is given by 

C(I) ={¥:13C: [IV], < oo}. 

In particular, we will also deal with the space C'**(I) of functions on I whose 

derivative is in C(I), equipped with the norm ||¥||,,., = max{||¥||,, ||Y'l|.,}- 

We omit the reference to the interval J whenever the choice of J is clear out of 

the context. 
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