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(ABSTRACT)

We develop the thermodynamic formalism for a large class of maps of the interval
with indifferent fixed points. For such systems the formalism yields one-dimensional
systems with many-body infinite range interactions for which the thermodynamics is
well defined while the Gibbs states are not. (Piecewise linear systems of this kind

yield the soluble, in a sense, Fisher models.)

We prove that such systems exhibit phase transitions, the order of which depends
on the behavior at the indifferent fixed points. We obtain the critical exponent
describing the singularity of the pressure and analyse the decay of correlations of the

equilibrium states at all temperatures.

Our technique relies on establishing and exploiting a relationship between the
transfer operators of the original map and its suitable (expanding) induced version.
The technique allows one to also obtain a version of the Bowen-Ruelle formula for
the Hausdorff dimension of repellers for maps with indifferent fixed points, and to

generalize Fisher results to some non-soluble models.
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Chapter 1

Introduction

1.1 General Remarks

The Thermodynamic Formalism [33, 36] proved to be a powerful tool in the ergodic
theory of hyperbolic and, in particular, expanding maps [34]. A central role is played
here by the transfer (or Ruelle-Perron-Frobenius) operator. That the map is expand-
ing allows one to express thermodynamic and statistical characteristics of the system
(free energy, equilibrium states, etc.) in terms of the transfer operator resulting in
regularity properties of both. In particular, one obtains a Statistical Mechanics sys-
tem with a fast decaying interaction and, correspondingly, a transfer operator with
compactness properties which allows for quite a complete analysis of such systems.
Consequentially, one has fast convergence to the thermodynamic limit and smooth-

ness of the thermodynamic functions (no phase transitions).

These regularity properties disappear when one passes to non-hyperbolic maps, as



has been demonstrated convincingly in recent works, mostly by theoretical physicists.
Numerical analysis and calculations in some soluble models exhibit both singularities
and slow convergence to the thermodynamic limit [8, 9, 14]. Some insights have
been gained into the origin of the singularities, in particular by relating the phase

transitions to that of Fisher Models [23, 37, 40, 41].

On the other hand, in a number of mathematical works, the method of induc-
ing and its variants have been used to investigate absolutely continuous invariant

measures for non-hyperbolic maps of the interval [1, 5, 20, 28].

Apart from a remark of Walters [39] on a relation between pressures of a soluble
system and its induced version, I am aware of no work relating thermodynamics and

transfer operators of a system and its induced version.

The aim of this dissertation is to establish such a relation and to show that it
yields a complete version of the Thermodynamic Formalism for almost expanding
maps with an indifferent fixed point with good insight into the nature of singularities
in such systems; this relation can be considered a version of the Renormalization

Group concept.

Maps with indifferent fixed points arise in a number of different problems. They
exhibit the phenomenon of intermittency [30], as the dynamical system is at the
transition point from a periodic state to a chaotic one. The time evolution of an in-
termittent system is characterized by long “laminar” phases, interrupted by “chaotic
outbursts”. The Farey map, one of the examples treated here, arises in phenomena
as mode-locking of coupled nonlinear oscillators [21], and has been investigated as a

model for intermittency in [12]. Using the thermodynamic formalism on a linearized



version of intermittent maps, the statistical mechanics of the system has been inves-
tigated by [40, 41, 37]. This linearization gives rise to Fisher models, i.e. reduction of
the interaction to single-cluster interactions. However, in these approximations the
discarded parts of the interactions are not small in any obvious sense, as they have

infinite “energy norm”.

Our method extends these results to a larger class of maps, also including the

smooth fixed points of the intermittency renormalization (see Chapter 3).

Chapter 1 reviews the thermodynamic formalism for continuous transformations
of compact metric spaces, especially the connection between the topological pressure
and the transfer operator £ and the existing results for expansive and expanding
mappings. We conclude this chapter with the introduction of the function class C,

which we wish to investigate.

In Chapter 2 we present the necessary modifications of the above formalism for
piecewise continuous mappings in order to deal with this function class. Further,
the concept of inducing is defined and a modified transfer operator M, for the in-

duced system is introduced. Relations between the modified transfer operator and

the transfer operator of the original system are presented here as well.

Chapter 3 develops needed results on asymptotics of iterations near the indifferent
fixed point. These are of interest in their own right as they give insight into the

behavior of the intermittency renormalization transformation near its fixed point.

Chapter 4 applies the formalism of Chapter 2 to the function class C, with specified
interaction —Qlog |f’|. The existence of a phase transition at 3 = 1 is proven using

the relation between Mg, and Lg.



Chapter 5 gives the asymptotic expansion of the topological pressure at the phase

transition and the computation of the critical index.

Appendix A serves as a reference for notations and general definitions.

1.2 Review of the Thermodynamic Formalism for

Continuous Mappings

Before we introduce the class of functions which we will be interested in, we will review

the thermodynamic formalism as it exists for continuous mappings [5, 33, 35, 38|.

Let f be a continuous transformation of a compact metrizable space X with metric

The set M(X) of all probability measures on the o-algebra of Borel subsets of X
is a convex set which is compact in the weak*-topology and the subset M(f) of all

f-invariant probability measures is a closed subset of M(X).

We call f (positively) ezpansive if and only if there exists a § > 0 such that
r#y = dneN: d(ftz, ffy) > 4. (1.1)

This is equivalent to the existence of an open cover A of X such that N2, cl(f"A4;,)
contains at most one point whenever A; € A. A is then called a (one-sided) gener-

ator.

f is ezpanding if and only if there exists a § > 0 and a Ay > 1 such that

d(z,y) < § = d(fz, fy) > dod(z,y). (1.2)



An expanding map is expansive.

For a finite open cover A of X write diam(.A) = sup 4¢ 4 sup, 44 d(,y) and

A, = {Ai1 Nf1A;,nN ...f_("'l)/-l,-n A €A = 1,...,n}.

1.2.1 The Entropy

Given m € M(f), for a finite partition A of X, the entropy of A is defined as

Hn(A) = — 3 m(4)logm(4)

AcA

and the entropy of f with respect to A is defined as
H(f, A) = lim H(An).
Finally, the entropy h,, of the transformation f is given as

hm =sup {Hn(f, A): A finite partition of X}.

If f is expansive then h,, is upper semi-continuous.

1.2.2 The Pressure Function

Given a continuous “interaction” ¢ € C(X,R), write
n-1 .
Snp(z) = ) o(f'z).
i=0
Then define the partition function

P.(p, A) = inf { Y supexp Spp(z) : @ C A, finite subcover of X}
A€o €A

(1.3)



and

1
P(p, A) = lim —log Pu(p, A)

Finally, the (topological) pressure P(yp) is defined as
P(¢) =sup{P(¢,A): A open cover of X}. (1.4)

P(0) is equal to h(f), the (topological) entropy. P(yp) is finite if and only if A(f) is

finite. Then, P : C(X, }~2) — R is convex and continuous.

If f is expansive then h(f) is finite. If, in addition, A is a generator for f then

the pressure is given by

P(p) = lim ;1;105 P.(p, A). (1.5)

n— 00

1.2.3 The Variational Principle and Equilibrium States
Given ¢ € C(X,R), then

Pp)= sup {hn(f) + mle)}. (16)
meM(f)

p € M(f) is called an equilibrium state for ¢ if and only if the above supremum is

attained for m = u:
P(p) = hu(f) + n(e). (1.7)

If f is expansive then each ¢ € C(X,R) has equilibrium states. In this case one also

has a converse variational principle. For p € M(f),

hu(f) = sup_ {P(p) —m(p)}.
»€C(X,R)

If f is expanding and ¢ Holder-continuous then there is a unique equilibrium state.



1.2.4 The Transfer Operator

Given ¢ in C(X, R), the transfer operator £, acting on C(X) is defined as
L,B(z) = ) expp(y)®(y). (1.8)
fy==
As a motivation for the study of the transfer operator, we remark that iteration of 1
gives

Lrl(z) = ) expSnp(y). (1.9)

fry=z

This can again be seen as a partition function, and the dependence on z can be
interpreted as boundary conditions. The close resemblence of this partition function
(1.9) to the above definition (1.4) of the pressure might motivate that definition. Due

to this correspondence, we might expect P(p) = lim,_,o = log L1

The spectral properties of L, govern the behavior of L. In the case of expanding
f and Hélder-continuous ¢ € C*, we have the following result [34], where £, acts on

C*(X).

Theorem 1.1 exp P(y) is equal to the spectral radius of L,, and the essential spectral
radius is strictly smaller. exp P(p) is a simple eigenvalue of L, (resp. L), and it
has a strictly positive eigenfunction ® (resp. a nonnegative measure p). All other

eigenvalues have strictly smaller modulus.

Thus, we have a spectral gap for £, which implies exponential convergence of

11log L71 to the pressure P(p). Moreover, u(®) is the unique equilibrium state for ¢.

We will show that this is no longer the case if one admits an indifferent fixed point

of f, i.e. violates the expanding property of f.
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1.2.5 Analyticity of the Pressure

Introducing the real parameter B8 (temperature), we clearly have continuity of the
map B — P(B¢). It is natural to investigate analyticity properties of this map, as

the non-analyticities can be interpreted as phase transitions.

If the transfer operator Lg, has an isolated leading eigenvalue that can be identi-
fied with the pressure, then, by standard perturbation theory [22], the analyticity of

the interaction By gives rise to analyticity of P(B¢p).

Thus, in the case of expanding f and Holder-continuous ¢, Theorem 1.1 implies

real-analyticity of P(B¢) in 3, so that there are no phase transitions.

In the statistical mechanics interpretation, Holder-continuity of ¢ corresponds to

exponential decay of interactions.

However, in our setting this is not the case, as we have long-range interactions,

the origin of which is the influence of the indifferent fixed point on the dynamics.

1.3 Continuous Maps of the Interval

Choose X to be the interval I = [0,1] and the interaction ¢ = —log|f’|. Then, the
transfer operator Lg (omitting ¢) is

‘Cﬂ@ Z ‘fl

fy=z
This is a generalization of the Perron-Frobenius operator (for @ = 1) which is used to

describe densities of invariant measures of f. (Note that Ljuy, = py, for pg, Lebesgue

measure on [.)



The expanding property of f is equivalent to |f'| > Ag > 1. By Theorem 1.1, an
expanding f € C'** leads to a spectral gap of Lg on C*(X) and, thus, analyticity of

the pressure P(3) for all §.

In this dissertation, we want to investigate what happens if one weakens the
expanding property of the map f and, in particular, admits an indifferent fixed point
for f where the slope of f approaches 1. We will show that this gives rise to a phase
transition of P(f3), the order of which depends crucially on the behavior of f near the

indifferent fixed point.

1.4 The Class of Functions C,

In extension of the above formalism, we wish to consider certain piecewise monotone

transformations of the interval [0, 1] with an indifferent fixed point at the boundary.

The technical difficulty which arises through requiring only ptecewise continuity
will be dealt with in the next chapter. Of more interest is the existence of the
indifferent fixed point, as it considerably alters the behavior of the dynamical system

under iterations as opposed to the expanding case.

We specify the considered class of functions as follows. The functions will have
two branches, one of which contains the indifferent fixed point and is responsible for
the “laminar” phase. The asymptotic behavior in the neighborhood of the fixed point
influences this laminar behavior and will turn out to be crucial for the dynamics. The
other branch is the “chaotic” branch which facilitates reinjection into the “laminar”

phase.



A typical f € C, is shown in Figure 1.1.

More specifically, for » > 0 we define
Definition 1.1 A function f of the interval belongs to class C, if

1. f is a map of the interval I = [0, 1] with fized point 0, i. e.
f:10,1] = 0,1}, f(0)=0,

2. there exists an a €]0, 1] such that
fl0,a[=10,1[, fla,1]=][0,1],

3. flioal extends to a C'-diffeomorphism fo on K = [0,a], and f; = f|a1) is a

C'-diffeomorphism on J = [a, 1], then the inverses are denoted as
F,=f1 i=1, 2,
4. f s almost expanding,
|f'|>1 on ]0,a] and ]|a,1],
5. for technical reasons (to guarantee that the induced system on J is ezpanding,)
If/| > X >1 on fa,l1],
6. and that the asymptotic behavior of f near the fized point 0 is given by
f(z) =z + ce'*"(1 + r(z)) (1.10)
with ezponent 1 + r > 1, some constant ¢ > 0, and
r(z) =0(z*"), -0
for some o > 0. (Without loss of generality, we will assume that a < r.)

10
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The last property implies for the inverse function
Fo(z) = z — cz't"(1 + R(z)) (1.11)

with R'(z) = O(z> '), ¢ — 0.

(Note that f'(z) = O(z*!) for ¢ — 0 implies f(z) = O(2*) for # — 0 whereas
the converse is only true under additional assumptions, e. g. if f' is monotone in a

neighborhood of 0.)

Later, we will also consider F, and F; with suitable Hélder-continuity of their

derivatives. Taking into account the asymptotic behavior of Fy, we demand
g "(Fy'(z) — 1) € C<(1) and  Fy' € C<(I)

for some € < a. Equivalent to the first condition, we can write zR'(z) € C*(I) where

the multiplication with z compensates for the O(z*~!) behavior of R'(z).

Further, we write

a, = F*(1), n € No; b, = F1F,""'(1), n€N. (1.12)

1.4.1 Example: Piecewise Linear Map

Lacking the smoothness required above, the below defined map f does not belong to
C. itself. However, it can be seen as an exactly solvable toy model [40, 41, 37]. As
stated in the introduction, this linearization gives rise to Fisher models with cluster
interaction. The essential features of this model can be transfered to the case of
smooth mappings. Due to its simplicity, it is instructive to include this example in

our exposition.

12



Given a sequence (a,) of real numbers such that

a0 = 1,a1,a,,... \, 0,

we define the piecewise linear map f such that f(an) = @,_1 forn € N:

f() an+(m_an+1)gi;_1;T:1_’q: Any1 S T < Ay, neN
r) =

r—a
1-]—__E:‘, a1_<_z§1

Writing the magnitude of the slopes of f on lan, @Gny1] as

ap_1 — a
%, n €N
d = an Ant1
n - 1 )
T-e ™70

this simplifies to

. @n+ dn( — ant1), Gny1 <z <a, neN
f(z) =

1 —do(z — ay), a;<z<l1

and the inverses are given as

FO(:E) = an+1+(w'_an)/dns a, <z < a3, neN

Fi(z) = 1—=z/d,, 0<z<1.

(1.13)

(1.14)

(1.15)

(1.16)

The asymptotic behavior of f close to the origin is given by the asymptotic behav-

ior of the sequence (a,). In particular, if the sequence (1.13) is given by (1.12) for a

function f € C, we can interpret f as a linearized version of f in C,. By construction,

we have a, = Fy"(1) and (1.12) implies

bn =1- (1 - al)an_l.

(1.17)

As we will show later, for a function in C, we have an asymptotic behavior of (a,) as

an ~ (rcn)_%, n — oo.

13
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1.4.2 Example: The Farey Map

The Farey map [12], whose significance we mentioned in the introduction, is defined

z/(1 —z), 0<z<l1/2
f(z) = /t ) se<t (1.19)
(1-z)/z, 1/2<z<1

with the inverses

Fo(z) = z/(1 + z), Fi(z)=1/(1+=z) (1.20)

The Farey map is in class C, for r = 1.

Here,
1 n
n=—"-, No; b, = N 1.21
Sy MO0 nt1 "© (1.21)
so that its piecewise linearized version is given by
nt2, <z<o neN
f(=) = Ul T (1.22)
1 2, F<z<l.
The inverses are given as
7 _ n 1 1 1 _
F=) = s vt ainmsey »frs®<a =N
F’l(:c) = 1—%:1:, 0<z<l1.

The Farey map and its linearized version are shown in Figure 1.2.

14
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Chapter 2

The Thermodynamic Formalism
for Piecewise Continuous

Mappings

Following (3, 18], we introduce the class of piecewise continuous mappings of the inter-
val and adapt a suitable version of the thermodynamic formalism for these mappings
by embedding the interval I into a larger space X in which the transformation be-
comes continuous. A suitable function space for the transfer operator £ is the space
of functions with bounded variation BV (X) resp. BV(I), as one has identification of
log r(L£) with the pressure [3]. Moreover, the extension of I to X does not change the
spectral properties of L significantly. In the space BV, we also have a formula for

the essential spectral radius (L) [3].

In order to prepare the investigation of the existence of a spectral gap, we then

introduce a modified transfer operator M, for the induced map on a subinterval J C I.

16



We show that there is a natural extension M,* of this operator to BV(J) and that
there are operator relations connecting M, with £. Using this new formalism, it is
possible to get information on spectral properties of £ through the investigation of

M.

2.1 Piecewise Continuous Mappings

Let I be a closed interval and suppose that f is a piecewise monotone transformation
of I, i.e. there is an at most countable partition Z = {Z; : ¢ € T} of I into intervals

-1
Z;

such that, foreach Z € Z, f|z is strictly monotone and continuous. Write F; = f
1 € I. Moreover, suppose that Z is a generating partition for f. A typical piecewise

monotone map is shown in Figure 2.1.

Out of convenience, we would like to view f and F; as being continuously extended

to each cl(Z;) respectively cl(fZ;).

Technically, this involves the investigation of the dynamical system on a somewhat

larger space [18]. One doubles all boundary points of the partition inside the interval

and their preimages as follows:

Write 8Z = Uz,ez 0Z;. Substitute each ¢ € U2, f*(8Z) \ 81 by two points z~
and z* and denote this new space by X. Settingu <z~ <zt <vin Xifu<z <wv

in [ extends the order to X, and the order topology on X is compact.

The space X, enlarged by at most countably many points, has a “Cantor set”-like

structure. The partition Z consists of closed intervals.
Now, f extends in an obvious way to a continuous transformation on X: f(z~) =

17
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lim, ~, f(y), f(z*) = limy,~ , f(y). (s extends in a similar way.)

A nonatomic measure on I can be lifted to X and the resulting dynamical system
still has the same spectral properties as the original one. Also, any measure on X

induces a measure on 1.

2.2 The Essential Spectrum and a Decomposition

Theorem

Before we introduce the transfer operator for this dynamical system, we need to
recall some spectral properties of operators. Let A be a bounded linear operator on

a Banach space B.

We define

Definition 2.1 The essential spectrum oc.(A) is the set of all A € o(A) such that

one of the following holds:

i) the range of (A — A) is not closed.
i) Unzo ker((A — X)) is of infinite dimension.

i11) A is a limit point of o(A).

The essential spectral radius s defined as

ress(A) = sup {[Al 1 A € dess(A)}.

19



Nussbaum [27] has shown that r,(A) can be computed by an approximation with

compact operators as follows:

Tess(A) = lim (inf {||A" — K|[: K compact})'/™.
This means that outside the essential spectral radius the spectrum of A is like the
spectrum of a compact operator, as stated in the following theorem.
Theorem 2.1 (Lemma VIIL.8.2 of [11]) We have the following spectral decompo-
sition of A:

For each © > 1.,(A), the operator A can be decomposed as

N(®)
i=1
where P;, fori=1,..., N(®), and P are mutually orthogonal projections commuting

with A such that P + Zﬁ(le) P; =1d. For eachi =1,...,N(0O), we have |A;| > O,
rank(P;) < oo, and A; = P; + N;, where N; is nilpotent and P;N; = N;P; = N;.

Finally, ||PA™||gy < const - O™,

(It may happen that 8 = 1(A), the spectral radius of A. In this case, N(©) =0.)

2.3 The Transfer Operator L

Definition 2.2 Given a function s € BV(I) such that

> lsllz; < oo, (2.2)

Z{EZ

the transfer operator £ is defined as

£:BV(I)~ BV(I), L¥z)= Y s()9(s)= Y s0Fle) poFifa). (23)

fy== Z;€Z

20



Condition (2.2) in connection with s € BV/(I) ensures that |[L[[gy is finite,

since we have

||£¢”I < (Z ||-9Hz.~) ||¢H1 (2.4)

Z;e2
var(L9) < varr()[9lly + llll vars(sh). (25)

Again, it would be convenient to have F; and s o F; continuously extended to
clf(Z;), so that we will not have to bother with the endpoints of the partition. Tech-
nically, we therefore have to consider £ on BV(X) instead of BV (I). (We will write

L in both cases.)

However, the following theorem shows that this does not change the spectral

properties of L outside the essential spectral radius re,s(L).

We write

Y=0 if{z:¢¥(z)F#0}is at most countable. (2.6)
Theorem 2.2 (Baladi, Keller [3]) Let Y be I or X and let L act on BV(Y).

(1) If there exist k > 1 and A > (L) such that (L — A)* ¢ = 0 and ¢ =~ 0, then
Y(z) =0 forallz € X.
(2) If there exist k > 1 and A # 0 such that (L — A\)* ¢ =~ 0, then there is v, €

BV (X) such that ¢, ~ ¢ and (L — A)* 4, = 0.

Theorem 2.2 in particular says that there are corresponding eigenvalues and eigen-

functions of £ in BV(X) in BV(I).
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Corollary 2.1 (a) Suppose that, for 1 € BV(I) and A € C, Ly; = A¢;. Then

there ezists a function Yx € BV(X) such that L1Yx = Mpx.

(b) Suppose that, for yx € BV(X) and A € C, Lpx = Apx. Then there exists a

function ¢y € BV(I) such that L1 = AyYy.

Moreover, in both cases we have ¢} = ¢x with ¥} being the natural embedding of

¥r1 in BV(X).

PROOF: Suppose, for ¥y € BV(I), L5 = Ar. Then the trivial embedding 11 of 91
in BV(X) fulfills L4} =~ Ay}, and by Theorem 2.2 we have the existence of ¥ x = 1}

such that Ly = Ay

Conversely, if LyYx = Apx for px € BV(X), then any restriction ¢ of ¥x in
BV (I) fulfills L4 ~ AY%, and by Theorem 2.2 we have the existence of ¥; =~ ¥

such that Ly5 = AyY;. Clearly, for the embedding ¥} of 41 in BV(X), we have also

Yx ¢ O
For convenience, we introduce
sa(z) = s(f*'z) ... s(fz) s(z). (2.7)

Then we can write powers of L as

LrP(e) = Y saly) (). (2.8)

f™(y)==

The following theorem gives a formula for the essential spectral radius of L.

Theorem 2.3 (Ibid.) Let Y be I or X and let L act on BV(Y). The essential

spectral radius 1.(L) s given by

Tews(L) = inf |[sn|[3/". (2.9)

22



Corollary 2.2 r.4(L) is equal for L acting on BV (I) and BV (X).

PRrOOF: Clearly, ||s,||; = ||s||x by construction of the extension to X. O

The next theorem establishes a connection between properties of £ and the pres-
sure of the dynamical system. In particular, it shows that the space of functions with

bounded variation is indeed suitably chosen.

Theorem 2.4 (Ibid.) Suppose sz, ts continuous for each Z; € Z. Then
P(f,log|s|) > =(L). (2.10)
Suppose that additionally s > 0. Then
P(f,log]s|) = t(L), (2.11)

and A = 1(L) is an eigenvalue of L, provided 1(L) > ress(L).

We add a theorem with a more detailed result on the largest eigenvalue.

Theorem 2.5 Suppose s > 0 and r(L) > 1e,s(L). Then A = 1(L) is an eigenvalue of

multiplicity 1 with a positive eigenfunction ¥y bounded away from 0.
PROOF: Choose 0 # ¥, € BV(I) with L¥y = A¥,. Then
L(RT,) =R(LY,) = R(AT,) = AR(T,)

and we can assume V¥, to be real.

Suppose ¥,(z) > 0 for some z € I. Z generates, whence ¥, > 0 on a dense

subset Q(z) C I, given by all inverse images of z.
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If in addition ¥,(y) < 0 for some y € I, then ¥, < 0 on the dense subset Q(y) C I.
For ¥, € BV(I) left and right limits exists. Taking these limits over Q(z) and Q(y)
must give the same result, thus all the left and right limits are 0. Hence ¥ = 0, and

by the above theorem we see that ¥, = 0 on I.

Thus, ¥, > 0. Assume that ¥, is not bounded away from zero, i.e. there is
(zn) € I such that ¥y(z,) — 0. Then there are y and a subsequence z,, — y with

\I’/\(‘cnk) — 0.

Thus, Q(y) consists of points where the left or right limit of ¥, is equal to 0.
Now, for each = € I there is a sequence (y,) C (y) that converges to y and there

are sequences (2"} C I converging to Yn with ¥, 2} converging to 0 for each n.
q k ging k ging

Then the diagonal sequence (z{¥»)) converges to z, and ¥,(z{¥)) converges to 0.
Choosing (y») suitably, we get that all left and right limits are equal to zero. Hence,

¥, =~ 0 in contradiction to ¥y > 0.

So far we have proven that ¥y > a > 0 for any eigenfunction ¥, of £ with
eigenvalue A = r(L). Now, using a standard argument [29], suppose that there is a
Uy # ¥, € BV(I) with L¥,' = A¥,’. Again, we can pick ¥,’ real, and we choose
t € R such that ¥, — t¥,' > 0 with ¥,(¢) = t¥,'(z) for some z € I. Repeating the

above argument, we see that ¥y = t¥,’, i.e. the eigenvalue ) is simple. O

At this point, one would also like to show the existence of a spectral gap for L, i.e.

that the following holds for re,s(L) < 1(£):
sup{|A]: (L) # A € o(L)} < r(L). (2.12)

For this to hold, it is enough to show that there are no other eigenvalues of £ with
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magnitude equal to r(£). However, in general it is only possible to show that the set

of eigenvalues with magnitude equal to r(L£) is cyclic (see e.g. [11]).

Thus, we are left with two questions. First, one would like to know under what
conditions one has a leading eigenvalue or, equivalently, when r.,(£) < r(£) holds.
Second, even if this is shown one still has to investigate separately whether £ has a

spectral gap.

(In a different setting [33], Ruelle has shown that this is always the case for an

expanding map f with Hélder-continuous interaction log s.)

In order to accomplish this task, it will be convenient to investigate certain transfer

operators in induced subsystems as outlined in the next section.

2.4 The Induced Map and the Modified Transfer

Operator M,

Let J C I be a closed interval. We define

Jo = {z€d: fi)¢J i=1,...,n—1, fi(z) €T}, neN (213)

Ko = {z€J: f@)¢di=1,...,n—1} = Uk neN (219

k=n

Z is generating for f, hence

Joo = J \ U Jr (2.15)
k=1
i1s at most countable. Now, define
n(cy=n if ze€J,, neNU{oo} (2.16)
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After this preparation, as in [31], we define

Definition 2.3 The induced or first-return map s the map g : J \ Joo = J \ Joo
given by

9(z) = (). (2.17)

Defining g(z) arbitrarily on J,,, we extend g to all of J. Due to the fact that
f is piecewise continuous, each J, can be written as an at most countable union of
intervals. The partition of J into these intervals is generating for g. (In the special
case of functions in C, and inducing on J = [a, 1], each J, is itself an interval. Then

we will write G, = g, ")

Thus, both f and g are piecewise continuous mappings of the interval with gen-

erating partitions.

Now, we can proceed to introducing a new transfer operator for the induced

dynamical system. We define the modified transfer operator as follows:

Definition 2.4 For z € C and s € BV(I), the modified transfer operator M, is

defined as

M,: BV(J) = BV(J), M.d(z) = 3 2"Wany(y) ¢(y) (2.18)

g(y)==
=Y Y () )

n=1 g(y):a.', UEJn

Thus, M, is an operator-valued power series in z,

M, =Y "M, (2.19)
n=1
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with

Mad(®) = > 3a(y) ¢(y) (2.20)

g(y)=z, yEJp

which has a radius of convergence equal to r = lim,,_, ||M,,||,;§,’(",)

(For functions in C, and inducing on J = [a,1], we can write the operator as

Mu(x) = 3 0 Gn(z) $ 0 Gn(2).)

Analoguous to above, we extend J to an enlarged space Y and extend L by

continuous extension along the inverse branches of g.

Theorem 2.3 can be applied to M,, as we have a piecewise monotone transfor-
mation of the interval with a generating partition. (Naturally, the conditions on M,

still have to be verified.)

Denoting n4(y) = (n1,...,nk), where g' "'y € J,,;, i = 1,..., k, we write
55, )(¥) = 8nu (65 7W) - 8my ()5, (v).
Using |n,| = (n4,...,n), the formula for the essential spectral radius is
, n 1/k
Fews(M.) = inf || 220 s 5 ()] (2.21)

2.5 The Extension M," of M,

In order to relate the operators M, and L to each other, we must analyze M, further.

We decompose
Ly = L(xs¥) + L(xsw) = Lo + Lat. (2.22)
Then one can check that
M = L7(x5,9) = xsLo" L1 (2.23)
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holds. Here we see that multiplication with x s alone is “responsible” for the restriction
to BV(J). Thus, it is natural to define an extension M,* of M, by omitting the

xJ- This leads to

M o= LM xK. @) = Lo L16 (2.24)
and we define
M, = Z "M, T, (2.25)
n=1

(We will use M,* both for the operator mapping BV (J) into BV(I) and for the

operator acting on BV(I).)

Relations (2.23) and (2.24) imply

Lemma 2.1 The radii of convergence for both M, and M,* are bounded below by

1/1(Lo).-

Unfortunately, the extension M," is no longer given by a piecewise monotone
transformation, so that Theorem 2.3 does not apply in this case. (However, a theorem

of Ruelle [35], generalizing Theorem 2.3, can be applied and gives an upper bound on

Tess( M. 1))

Still, we can get information on the eigenvalues of M, " through the following

Lemma.

Lemma 2.2 Suppose that M," is bounded. Then

op(M:)\ {0} = (M. 7)\ {0}
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and the geometric multiplicity of the eigenspaces to an eigenvalue A # 0 are identical.

Moreover, the corresponding eigenfunctions ¢ of M, and ¢ of M, are related by

MW =M"¢, =1

PROOF: Suppose ¢ € BV(I) is eigenfunction of M,* with eigenvalue A. Then,
M,p; = (M, ¢5); = (M, Yd)s = Ads, Moreover, ¢; # 0, for, if ¢; = 0 then
¢ =AM, 6 = M,T¢; = 0. Thus, ¢; is eigenfunction of M, with the same

eigenvalue.

Conversely, suppose that ¢ € BV(J) is an eigenfunction of M, with eigenvalue A.
Then, extending to ¢ = A" M, " 1), ¢ is nonzero and eigenfunction of M,* with the
same eigenvalue, for we have ¢; = A" (M, ¢); = ¥ and thus, M, ¢ = M,t¢; =

M, Ty =2¢. O

Thus, we can restrict ourselves to the investigation of eigenfunctions of M,.

2.6 Operator Relations between M, and L

Now, the following operator relations emerge:

Theorem 2.6

(1 —2Lo)(1 =M, W =(1-2L), o€ BV() (2.26)

(1—2L)M, ¢ = 2L,(1 — M,)p, ¢ € BV(J). (2.27)

PRrOOF: On BV(I) we have

(1 —2Lo) (1~ M, %) = (1—2L0)(1— i 2"Lo" L)

n=1
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= 1- ZCQ + Z Zn+1£0n£1 - Z chon‘—lﬁl

n=1 n=1

= 1—-2Lp— 2L, =1—2L
and on BV(J)

2L(1-M,) = 2L(xs(1 - xsM. "))
= 2L4(1 - M, 1)

= 2Ly — 2L, Z 2"Lo" 1 Ly)

n=1

= Z z"ﬁo""lﬁl — Z Zn+1£0n£1 — ZL:I Z Znﬁon—lﬁl)

n=1 n=1 n=1
= (1 - ZE() - Zﬁl) Z Znﬁon_lﬁl)
n=1
= (1-z2L)M,*. O

Remark 2.1 The proof of the operator relations is purely algebraic and thus inde-

pendent of the specific choice of function spaces.

2.7 Eigenvalues of [

The operator relations of Theorem 2.6 provide a method to show the existence of
eigenvalues and eigenfunctions of £. It is exactly this new relation which will enable

us to investigate the behavior of the transfer operator in Chapter 4.

Theorem 2.7 Suppose 0 # |z| < 1/1(Ly). Then z7' € o,(L) if and only if 1 €
0p(M,). Moreover, the geometric multiplicity of the eigenvalues 1 and 27! are the

same and the corresponding eigenfunctions ¥ of L and ¢ of M, are related by
'»b = Mz+¢-
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PROOF: Suppose M,¢ = ¢. Then, extending ¢y = M,"¢ and applying (2.27), we

have
(1—2L) =(1—-2L)M, b= 2L,(1 — M,)¢p = 2£,0 =

Thus, 9 is eigenvector of £ with eigenvalue 271

Conversely, suppose 2Ly = 3. Then, applying (2.26) we have
(1—2L)(1-M, ) =(1-2L)Yp =0

and thus, (1 — M,*)y = 0. Restricting ¢ = 9, clearly ¢ is an eigenfunction of M,

with eigenvalue 1.

As M.t uniquely extends ¢ to ¥ = M,* ¢, the geometric multiplicity of the

corresponding eigenvalues is the same. O

2.8 Generalizations of the Formalism

Note that the above developed formalism still holds in a more general setting. For-
mally, for an arbitrary transformation f of a set I, the notion of the induced map g
along with the definition of the sets J,, and K,, holds for any subset J. Choosing a
suitable topology on I and a “nice” subset J, £ and M, make sense on suitable func-
tion spaces, so that one can expect to relate their properties via the operator relations

of Theorem 2.6. Thus, this method enjoys a wide range of possible applications.
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Chapter 3

Asymptotics of Iterations

We investigate the iteration of a function F, with indifferent fixed points. First,
we present the relation of this iteration to the intermittency renormalization. Next,
the relation to Abel’s equation and the theory of iterative functional equations is
explored. The asymptotic behavior of a solution of Abel’s equation is used to get
sharp bounds on the asymptotics of the iteration of Fy. Moreover, these estimates

enable us to show convergence of the intermittency renormalization.

3.1 Intermittency Renormalization and Abel’s

Equation

We want to be able to control the iteration of functions f € C,. This is closely related

to the investigation of the intermittency renormalization transformation (see e. g.
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[19].) This is the transformation

T,9(z) = v9°(z/7) (3.1)
with intermittency boundary condition
9(0) =0, ¢'(0)=1. (3.2)
The fixed point g = T, g of this transformation is explicitly known,
g(e) = {=" +a}™ (3:3)
with v = 2. The expansion at ¢ = 0 yields
g(z) ==z — g—:::”1 + O(z*t), = -0 (3.4)
which coincides with the expansion (1.11) of Fy(z) for a = cr if Fp is given by a

function f € C,.

We will see that iterates of Fj converge against iterates of this fixed point g. More
specifically, we need an uniform asymptotic estimate of the difference between iterates

of Fy and iterates of the fixed point.

In order to get this estimate, we utilize a connection of the renormalization trans-

formation to Abel’s functional equation,
G(Fo(z)) — G(z) = 1. (3.5)

(For a review of the theory of iterative functional equations, see e. g. [25].) Solving this
equation for G for given Fy makes it possible to explicitly determine higher iterates
of this function by

Fo*(z) = G Y(n + G(z)). (3.6)
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The advantage of this formula is that it explicitely contains the number of iterations

n.

The connection to Abel’s equation emerges out of a smooth conjugation of Fy to

the fixed point g:
h(Fo(z)) = g(h(z)) (3.7)

with h being a C'-diffeomorphism such that A(0) = 0 and A(1) = 1. Rewriting this

equation we get
(R(Fo(2))™" = (h(2)) " +a.
Choosing G(z) = 2 (h(z))™", this is equivalent to Abel’s equation (3.5).

Thus, we see that if Fj is equal to the fixed point g = T, g then Abel’s equation is
explicitely solvable with G(z) = 227" and iterates of g are given by G(n + G(z)),
1.e.

g"(z)={z7" + na}_%. (3.8)

3.2 Abel’s Equation and Asymptotics of Itera-

tions

For convenience, we now define the function Fy explicitely instead of relating Fy to

fecC.:

Definition 3.1

FO: [Ovl] - [070']
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is a C-diffeomorphism with
0< Fyg<1on]0,1]

and asymptotic behavior

Fo(z) = {m_' +re(l + R(:c))}

-1
p

(3.9)

with r,¢ > 0 and

R(z) = 0(z""), 2 =0

for some a > 0. (Without loss of generality, choose a < 7.)

Remark 3.1 For f € C, the asymptotic behavior (3.9) is equivalent to (1.11) with

R'(z) — R'(z) = O(z"" 1) for ¢ — 0.

Along the ideas outlined in the previous section, we now derive the asymptotic

behavior of Fy"(z). The main result of this chapter is

Theorem 3.1 The following asymptotic expressions hold uniformly in n for z — 0.

Fo™(z) = g"(2){1+O0({g"(2)}*)} (3.10)

(Fo")(z) = (¢")(=){1+0O(=*)}. (3.11)

This will be proven by determining the existence of a solution G to Abel’s equation
for Fy. The explicit formula for this solution is given and used for a derivation of
an asymptotic expression for G. Using this result, we get the desired asymptotic
estimation of iterates of Fy directly in terms of iterates of the fixed point of the

intermittency renormalization (3.8).
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Theorem 3.1 is also the basis for a precise statement about the convergence under

intermittency renormalization:

Corollary 3.1 For v = 2+ and g given by (3.3), we have
T,"Fo — g and (T,"Fp) — 4 (3.12)

uniformly on [0,1].

PRrRoOOF: We have
T, Fo(z) = y"Fo’ (v "z)

= """ (v ") {1+ O({g"(v "=)}*)}

g(=) {1 + O({y™"g"(2)}*)}

uniformly in n and z. Thus
T,"Fo(z) — g(z) = 0O(1)y™, n —> oo
with v > 1. Similarly,

(T,"F) (z) = (Fo¥)(y "z)
= (¢")(v ") {1+ 0({r"z}*)}
= ¢(=) {1+ 0({y™2}*)}

uniformly in n and z. Thus, also

(T,"Fo)'(2) - g'(a) = O(1)y ™, n— c0. D

In order to prepare the proof of Theorem 3.1, we first need some inequalities:
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Lemma 3.1 Fy" s bounded by

{7 +nre(1 + az)}_% < F'(z) < {z7" +nrc(l + al)}"%

with

a, = inf R(z) > -1 and a, = sup R(=).
Moreover, for (Fy") we have

1-Cz < (B")(2) < 1+Cz

{1+ nre(l+ag)ar P = (Ut nre(l + ag)ar}

and
n—1 . . C
S (Ro RyY(a)| < Lo-titr-a),
i=0 ¢

for some constant C > 0.

PROOF: We have

Fo™(s) = {z-’ bre (n + 3 (Ro Fo‘)(a:)) }—, .

1=0

Thus, with a; and a; given by (3.14), we have the bounds (3.13).

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

Clearly 1 + a; > 0 due to the asymptotic behavior of Fy(z) in connection with

Fgl(w) S 1.

Differentiating (3.17), we get
1— ezt Y (R o Fo')(z)
~ ., Laq-
{1 + rca” (n + ¥ R(Fo’(m))) }'+1

(Fo"Y(2) =

In order to get bounds on this expression, we have to estimate the sum

Rn(z) = cz™*! 'i(é o Fy')' ().

1=0
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We have from (3.18)

(1= 1Bn(@)]) {1 + nre(1 + a2)a"} ™ < (Fo") (@)

< (1 + an(‘”)D {1 +nrc(l+ al)m’}—}# . (3.20)
The asymptotic behavior of R’ implies that

2! R(2)| < oo (3.21)

and we can estimate

Ra()] < ¢ ”“Z (@) (Fo') (=)

< ca'z™! Z {z" +irc(l + az)}L'_ (Fo')'(z)

1=0
1 iza n-1 .
& 1=0

In the last estimation

] < sup 1+ nre(l + ay)z” <1+a2
ne 1+nrc(1+a1) 1+ a,

was used. The bound

n-1

S {1 tire(l+a)z"} T < 1+/ {1+ tre(l + ap)e”} " dt
1=0 0
1 r1oa
< 1+ {1 +nre(l+ay)z"} C ,

- (14 a)(r+1—a)r

and 0 < (Fo")' <1, implies along with (3.22) the initial estimate
|Ra(2)] < Aoz (1 + {1+ nre(l + a)x"} lr%) (3.23)

with some positive A,.
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Next, we proceed iteratively. Inserting (3.20) into (3.22), we get

|Bo(2)] < (1 + “2) RS (14 1Ri(=)]) {1 +ire(1 + a)a’} 5. (3.24)

1 +a =0
Inserting
n-1 00 rta
z:{l+i7'c(1—|—al):t:"}_+ < 1+/ {1+trc(1+a1)m'}~+ dt
i=0 0

1

- 14—
+c(1+a1)aw'

into (3.24), we get

|ﬁn(z)| < Bz* (1 + w""g: |R,(a:)| {1 +ire(1+ al)m"}_%g> (3.25)

With some positive constant B. Assuming that for some § and positive A we have
the bound

B, (2)] < Az (1 + {1+ nre(l+ al)mf}Lrﬂ) , (3.26)

we insert this into the (3.25) in order to improve the bound.

|Ra(2)] <

n—1 n-1 i—a
< Bz* (1 + Az™t* {Z {1+ 2rc(1 + al)w'}_+ + 3 {l+irc(l+ al)m'}T})

1=0 1=0

1
< Ber*l|14+ Az™t> 14—
= 0 ( A {( +c(1+a1)aw')+

+ (1 +/0"{1 +tre(l + ay)a’} 5 dt) }) (3.27)

First, suppose that § > a — r. Then we can estimate

r4é—a )
)

|Bo(2)] < A'z (1 + {1+ nre(l + a))z"} (3.28)

(if § = a — r, simply choose a slightly larger § to avoid the logarithm in the integra-
tion). Thus, the estimate (3.26) has been improved by §' = § — a. We can repeat

this step finitely many times until §' < a — r.
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Now suppose that § < a — r. Then the right expression is bounded by a constant

and we get a bound independent of n,
|Rn(z)| < Cz*, (3.29)

as the final estimate which directly implies the bounds (3.16) and (3.15). O

Whereas the proof of Lemma 3.1 was still quite straightforward, we will have to

use results related to Abel’s equation (3.5) in order to get even sharper results.

Lemma 3.2 Abel’s equation (3.5) has a real solution G on (0, 1] which can be written

as

G(z) = iaz—r + /:ﬂdt + lim (g R(Foi(m)) - /m %dt) (3.30)

t — Fo(t) n—oo Fr=) t — Fo

with v constant, the last term being of order O(z*) for # — 0. Moreover, an ezpres-

sion for its derivative is given by

1 © .
G'(z) = —;m'(’“) + Y (Ro Fo')(=). (3.31)
1=0
Demanding that
lim "G (z) (3.32)

exists, this solution is unique (up to an additive constant).

PROOF: Write

1 ., [ R
G(z) v + ¢ = Fot) + G1(z) (3.33)

Inserting this into Abel’s equation (3.5) leads to
G1(Fo(z)) — Gi(z) = h(z) (3.34)
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with

Fy

= R(t) =
hz)= [ —dt— Rx) 3.35
@)= [ gt - f@ (339
Showing that h(z) is “small enough” for small & will enable us to get an explicit

expression of G;(z).

We recall that R(z) is given by

- ~1

Fo(z) = {2~ + re(1 + R(z))} ~ = — cz'*"(1 + R(z)). (3.36)

Applying the mean value theorem, for some y € [Fy(z), z| one can write

o= Fo(e) g g HRE) po
)~ @) = R s - Rle) (3.37)

h(z) = R(y)——— Ry
= O(1{R(y) — R(=)} + O(1){R(y) — R(z)} + O(1)z"R(z), = — 0.

Moreover, |R(z) — R(y)| < (z — Fo(2)) supye(py(a).e] |R'(y)|. Using R'(z) = O(z>")

for z — 0, one can also show that
R'(y)=0(z*') for z 0 and ye€ [Fy(z)zl (3.38)
The same consideration applies for |R(z) — R(y)|. Inserting this into (3.37), we have
h(z) = O(1)z™ 2> + O(1)z"z™ = O(z™**), = — 0. (3.39)
Using (3.39) in connection with the upper bound (3.15) on iterates of Fp, we can
show the existence of a solution G;(z) of (3.34) and that its asymptotic behavior is
Gi(z) = O0(z*) = — 0. (3.40)

Inserting

Gie) = - 3 h(Fo(z)) = lim (/ _RW ZR ) (3.41)

n=0 N—oo \JRN(z) t — Fo(t)
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into (3.34), one checks that this is a solution, provided the sum converges. Indeed,

using (3.13) for fixed z, each term is of order

h(Fo"™(z)) = O(n

thus making the sum convergent. The sum can further be estimated by

r+a

Gi(z) = O(1) i( +nc1+a1)}_%)

= (N:v”"‘—{— Z n _t'g) =0(1) (N:c'+°‘+N_%).

n=N+1

-7

Choosing N = z™7, we get

Gy(z) = O(1)z*
which implies the asserted asymptotic behavior of the solution (3.30).

Next, we show that G'(z) is given by direct differentiation of (3.30). Differentiating

without taking the limit yields

ey @(ﬁpﬂf),(m) 4 Fon(fff'}ifn)ﬂl(w)<F°">’<m>) |

The sum has already been estimated in Lemma 3.1. Fixing z and using the bounds

for Fy™ and (Fo") from Lemma 3.1, we get that the last term converges to zero as

a

(n'%)"n_%"l(n_%)_'_l =n"r.
Thus, we get (3.31) in the limit.

A direct computation shows that this expression fulfills the differentiated Abel
equation,

G'(Fo(z))Fy'(z) — G'(2) = 0. (3.42)
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Now, assume (3.32), i.e. that lim, ,o2"t'G’(z) = A exists. Then

G'(x)

A = lim (R ()G (Fo()) = lim (Fo™(=))" T Y (=)

n— oo

n-1

_ ~(3+1)
= G'(m)Jl_{r{}o {a:—’ +re (n + Z(R o Fo")(a:))} X
1=0
{1 + rez” (n + ?;1 ﬁ(Foi(z))) };+1
X = -
1 —czrt1 Y (Ro Fo')(z)
r+1o11

- Z1G=) (3.43)

1 —cemt1 32 (Ro Fy')(x)

Thus, G’(z) is determined by (3.43) up to a multiplicative constant, which is uniquely

fixed by demanding that G(z) solves (3.5). O

It immediately follows that

Corollary 3.2

G(z) = iw“'(l + O0(z%)), ¢ —0 (3.44)

and

G(z) = —-%:c"('“)(l +0(27)), z - 0. (3.45)

PROOF: For an asymptotic estimate for the integral, write

= R(t) _ z-7 Ry
/” t"F"(t)dt—c(lJrR(y)) y y € [z, 0]

with fixed positive v. R(y)y™" is at most of order O(z~"**) for £ — 0, whereas the
other terms on the right hand side are bounded away from zero and infinity. The

second equation follows directly from (3.16). O

We also need information about the asymptotic behavior of the inverse G 1.
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Lemma 3.3 Let G(z) be a solution of Abel’s equation (3.5). Then G~' exists, and

we have the asymptolic expressions
-1 ~1 _g
G(y) = (rey)* (1+0(y™ 7)), y— oo (3.46)

and

(G (y) = —c(rey) " (1+0(y7%)), ¥ — oo. (3.47)

PROOF: The existence and asymptotic behavior of G(z) are given by Lemma 3.2.
Also, by virtue of the asymptotic behavior, G'(z) < 0. For, if it were zero for some
xo then it would be zero for all Fy™(zo). This is a clear contradiction to (3.45) which

implies that G'(Fo"(zo)) is negative for n large enough.

Thus, the inverse G~ ! exists. Clearly, G™'(y) = O(l)y‘%, y — 00, but we need

more. Write
G(z) = ;—1;:1;_' (1+d)} with ¢(z)=O0(2"), = — 0 (3.48)
and
G l(y) = (rey)™* + ¥(y). (3.49)
Then,

2= (G oQ)(2) = 2(1+(z) % + ¥ (;1;.1,-* +d}).  (350)

Thus, in order to get an estimation for ¥(z), we have to get an estimate on the

expression ¥(y + h) — ¥(y). Using Lemma (3.1), writefor 0 < z <y < 1

G(G(z)+n) - G (G(y) +n)| = |[Fo™(z)— Fo"(y)|
< |z —y| sup (Fo")'(¢)
€],y
< (L+Cly (3.51)

{1+nre(1 + a,z)m"}”'% -
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Denote G(z) = s and G(y) = t, (this implies s > t). Then, using G~(y) = O(1)y"*
we continue (3.51)

¢t s+t

{1+ ns-1}1ts N

G Ys+n)— G (t+n)=0(1)

This leads to

(y + b —n)t*s :O(l)——h——.
(y —n)(y + h)HH+ (y + h)*e

Gy +h) -G (y) = 0(1) (3.52)

The last step follows from choosing a suitable n. Clearly, the estimation (3.52) remains
true uniformly for general h > —y, as long as y — h remains suitably bounded away

from zero. Thus, for —h/y > § > 0 with some § > 0, instead of (3.52) we can write

h
Gl y+h)-G'(y) = 0(1)y1+l (3.53)
Now, (3.53) implies the desired estimation. Write
_ - 1 _ 1 _
W+ h) -2 = {6+ -6} - {—+nTt -t
h h
= 0(1)y1+% +O(1)y1+-} (3.54)

and insert (3.54) into (3.50):

This implies (3.46).
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The asymptotic formula (3.47) for the derivative can be derived directly by use of

the asymptotic formulas (3.46) and (3.45) for G’ and G™*:

(@) = (oG ()"
= —(e7'w)™" (1+ oG (@)~

o

= —c(rey) ) (14 0(1)y%)" {1+ 0(1)y#)

[+ 3

= —c(rcy)—(H%) {1 + O(l)y—7}, y —o00. O

Having arrived at this point, we can deduce a short Lemma about the conjugation

between Fy(z) and g(z).

Lemma 3.4 There ezists a unique C'-diffeomorphism h of the interval [0, 1] conju-
gating Fy and g, i.e. h(Fo(z)) = g(h(z)). Asymptotically,

K(z)=1+0(z*), -0
and

(h"Y(2) =14 O(z*), = — 0.

PROOF: As shown in Section 3.1, each function h satisfying h(Fo(z)) = g(h(z))

corresponds one-to-one to a positive solution of Abel’s equation (3.5), and we have

h(z) = (reG(z))"".

Demanding that lim,_,o h'(z) exists and is nonzero, we get the uniqueness condi-
tion (3.32) of Lemma 3.2. This determines G(z), and the additive constant is uniquely

fixed by 1 = h(1) = G(1).
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Due to the properties of G(z), h~!(z) exists. Moreover, using the asymptotic
behavior of G(z) we see that h(z) and h~*(z) are in C'[0,1] and get their asymptotic

behavior:

K@) = (re) ()G DE ()
. ~(1+3)
(re)H(-3) (soa (14 0GE)) (<3271 +0("))

= 140(z%), >0

Il

and

(Y(2) = (67 () (~Ze0w)

C

_ _c(w-r)-%—l (1+0(z%)) (__ 1w—(r+1))

C

= 1+0(z%), #— 0.0

Using Lemmas 3.2 and 3.3, we now conclude this chapter with
PROOF OF THEOREM 3.1: Using the asymptotic behavior of G(z), we can write

Fo'(z) = G Y(n + G(=)) =

= {ren+a7(1+0(1)e")} (1 +0(1) {ren + 277 (1 + O(l)m")}_%>

il }-% (1+O(1) {rcn+:v"} g

r+a _a
ren + 77 )

and

iy G'(z)
(Fo™)'(z) = R (2))
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_ (Fo"(:z))ﬂr1 14+ 0(z%)
z 14+ O({Fo"(z)}>)

_ (@)™ nigneyy LT 0@
_ ( ( ) (1+ 0N T orss
- (@)@ {1+ 0 (@) + )}

= (9" (=) {1+ 0(=")}.

These asymptotic estimates are uniform in n. O
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Chapter 4

Inducing and Phase Transitions

In this chapter we apply the thermodynamic formalism to the functions in class C,
with interaction —@log |f’|. The existence of the indifferent fixed point is shown to
imply a phase transition. This is done by using an expanding induced subsystem
on which the modified transfer operator Mg, has “nice” properties. The spectral
properties of Mg, give information on the spectrum of Lg, in particular on the
existence of a leading eigenvalue. It is shown that this eigenvalue depends analytically
on @ for 8 < 1 and approaches the essential spectral radius 1 at 8 = 1. For 8 > 1,
1(Lg) = 1ess(Ls) = 1, so that we have a phase transition at ., = 1. A typical graph
of 1(Lg) = exp P(P) is depicted in Figure 4.1, where our numerical results for the
Farey map are presented (repeating the calculations of [14].) The two examples of

the piecewise linear map and the Farey map are worked out further.

49



‘Jojedado Jajsued) ayj} Jo Y anjeausadis }saflel ayj jo souspuadsp—g sy

Figure 4.1:

50



4.1 Definition of L3 and Mg,

Specifying the theory of Chapter 2, we are interested in the case where the function s
in the definition (2.2) of the transfer operator L is given by the derivative of the trans-
formation f. More specifically, if f is piecewise C' we introduce the real parameter

B and set s = |f'|A.

Thus, for functions in class C,, we are interested in investigating the transfer

operator Lg given as

2y = ¥(y)
Lg( )‘,3)2, TP (4.1)

Using the inverse functions, this leads to
Lo = |F'IPypoFo+ |R)P ok (4.2)

(Here, we redefine the transfer operator at the point z = 1, which only has one inverse
image under f, by using the continuously extended inverse functions. However, due to
the remarks in Chapter 2 it is clear that this does not change the spectral properties

Of £5)

In an analogous way, we write the modified transfer operator Mg, on a subinterval

J C I: s, is equal to |g'(z)|™2|;. = |(f")'(z)|~?, and thus

2) = () #(y)
Mﬁzd’( ) g(§=m ‘g;(y)v-}' (4'3)

If we choose inducing on J = [a,1] the induced map g is expanding, as we have

|f'| > Ao > 1 on f7'J by definition of C,. The operators Log and L5 are given as

Log = |Fo'IP Yo Fy, Ligyp=|F'|°poF, (4.4)
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and the sets J, and K,, are intervals, given as
Jn = [bm bn+l[) K, = [bnyo[' (45)

The inverses of g = f™ on J,, are Fy Fo" ! and extend continuously to J. Thus, Mg,
g B

takes the simple form

Mp.$ =3 "G $0G, (4.6)

n=1

and its extension Mz,', is gained by extending G, = F; Fy" ! to all of I.

Summarizing, we define

Definition 4.1 Gwen f € C, for some r > 0 and B € R, the transfer operator
associated with f 1s
Ls: BV(I)— BV(I), Lg=|F'|PvoFo+|F'|°¢oF. (4.7)
For z € C, the modified transfer operator associated with the induced function g on
J s
Mg, : BV(J)— BV(J), Mgd=> 2G| ¢oG,. (4.8)
n=1
with

G,: I-J, G,=FF"" n € N. (4.9)

The extension of Mg, to I is
Mg, : BV(J)— BV(I), Mgé=> 2"G./|° ¢0Gn. (4.10)
n=1

For convenience, we use the same notation for

M;z : BV(I) - BV(I)> Mgz"/) = ME:(XJ ’ "b) (411)
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Later, we will need the following estimations:

Lemma 4.1

|
vars(1G) <y ren(£17) (4.12)
B
VarI(’Gﬂl|ﬁ) < |'|||’f’| |E’|||IV?LI‘ (If' ﬁ) (413)

PROOF: We have

vary, (I(f*)7°) = var,(|(FiFo™ ) P)

< VafJ(|F1'Fon_l|ﬂ)H|(Fon_1)'|ﬂHJ+
+’§ ”I(F1Fo"—l—i)' o Fy' - (Foi—l)llﬁl|JvarJ('F0/FO;_1|3)
i=1
<

Hl(F ") |ﬁ” vary(|Fy Fo™ ' f) nijl VarJ(|Fo'F0f—1|ﬁ)
1 T Linfy(|FFP) S infs(|Fo Fo 7 P)

’Gnllﬁ n—-1 .
< _}||“f/,—B”J {VafJ(|F1'Fo"_l|ﬁ) +> "afJ(|F0'F0'—1|ﬁ)}
I i=1

and the expression in parentheses can be estimated by

n-—1
vary(|Fy' Fo" ' |P) + Yy, vars(|Fo' Fo'™'|?)

=1
n-—1
= VarFO"-I(J)(|F1'|ﬁ) +3 VafFO‘-l(J)(|F0'|ﬂ)
=1
vary(|FyP) + vars(| Fo' )

f178)

VAN

= vars(|f'|7?) + var(

= varg(|f'|™*).

Repeating this estimation with J instead of J,,, we get

/ |Gn”ﬁ n-1 .
vary(|(f")|7?) < H {Varf(lFl'Fon—”ﬁ) +2 Var1(|Fo'Fo’"1|ﬁ)}
I i=1
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|G"I|ﬁ ‘I "B = "B
- AR VarFo""l(I)(lFl |7} + Z VaI'F"i—-l(I)(|F0 ?)
I t=1

Ga'1P ,

< -8 |I varg(|Fy'|°) + n VafI(|Fo'|ﬂ)}
171211,

< nll_G’ﬂLvarI('ﬂ—ﬁ)'

17l 1

The essential difference is that the sets int(Fp""'(J)) are mutually disjoint, whereas

F*(I) € Fmi(I). O

We also will need the asymptotic behavior of G,,’.

Lemma 4.2 There exist constants c;,cy such that

an 0+ <G,/ (2)] < e+, zeJ (4.14)

ein™7 < |Fi(0) — Gu(z)] < can™, zeld (4.15)
and

an~ ) < |G/ (2)] < 1, cel (4.16)

en™* < |F(0) — Ga(z) <0, zel (4.17)

Remark 4.1 Note that G,'(0) = F;'(0) and G,(0) = Fy(0) are independent of n.

PROOF: A direct application of Theorem 3.1. O
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4.1.1 Example: Piecewise Linear Map

Given the map f defined by (1.16) through sequence (a,) from (1.13), the transfer

operator is

Eﬂd’(“’) = dn_ﬂ¢(an+l + (213 - an)/dn) + dO_ﬂ¢(1 - m/dO)) Qn S T S n_1, MNE N.

(4.18)
Of particular interest is the subspace of piecewise constant functions,
Yllanan-s] = Pr- (4.19)
This leads to the space of sequences (p,,) of bounded variation
{(pn) : P €C, Y |pn— pnp1l < 00} : (4.20)
n=1
Here, [:,3 has the simple form
Eﬁpn = dn—ﬁpn+1 + do—ﬁpl, nc N. (421)
The advantage of f becomes clear when we induce on J = [@1,1]. Here, the
functions G,, turn out to be linear, and we get
Gu(2) = bpy1 —gn(z —a,), neN (4.22)
with
bn - bn
gn = =22 n€N (4.23)
ag — a4y
so that the modified transfer operator on J can be written as
Ma.d(z) = 3 2"l (bns1 — gn(z — @1)). (4.24)
n=1
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Inducing on the above defined subspace leads to an even simpler form. Here, qu,

reduces to a multiplication by a constant,

©o

Ma.py = Agopr,  with Ag, =3 2”8 (4.25)

n=1

For the sake of completeness, we state the formulas for the extension ng Using

Gn(z) = FLFg () we get

Gn(z) =bpym — gum(z — ), am<z<am.i, meN (4.26)
with
brtm — bnim_
o = ———E22 e N. (4.27)
Am-1 — Am

Thus, we can write
Mﬂt E z qn,md’(bn‘Hﬂ - qﬂ,m(z - a’m))) am < T S Ay —1, m € N. (428)

On the subspace of piecewise constant functions, we get

(Mﬁzp) = /\( )pl, with )\g:) =y z"qgm. (4.29)

n=1

Clearly, the action of M on p is only dependent on p,.

Z

The fact that the subspace of piecewise constant functions is an invariant subspace
for [:5 and ./qu reflects the reduction to cluster interaction. Since the single clusters
do not interact with each other, we get piecewise constant densities on intervals

corresponding to clusters.

4.1.2 Example: The Farey Map

For the map f given by (1.19), the transfer operator is

Eﬁ¢(x)=(1+m)"ﬂ{¢<1+ )+¢( T)} (4.30)
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In the computation of Mg,, this example shows its full algebraic beauty. Inducing

yields
Guale) = 1- —2—, ,Gal(e) = ——— (4.31)
m) = 1+na ' on\7 (1 + nz)? '
so that
— .- n -28 . z )
Mg d(z) ';z (1 + nz) ¢(1 s/ (4.32)

The extension Mgz can be written identically.

Inducing for the Farey map and its linearized version are shown in Figures 4.2
and 4.3. Note in Figure 4.3 that the branches of g are piecewise linear inbetween the

dashed lines.

4.2 Analysis of Mg, and Mj,

4.2.1 Boundedness of Mg, and MEz

Lemma 4.3 Mg, and M;;z are power series tn z with radius of convergence 1.

At the radius of convergence |z| = 1, Mg, is bounded for f > 1.

For z =1, Mp, is unbounded 1f B < ;1. Moreover, M;l ts unbounded for all 3.

PROOF: We write

Mg, = i "Mp,™  with MP¢ = |G,'IP ¢o G, (4.33)
and compute HM&B)HBV(J). We have
M|y 0, =
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= sup max{HMffa)(ﬁHJ, VafJ(MSLE)qs)J}

||4’||13V(J)=1
< sup max{|[IG.I||,I18ll,, vars(IG1°)IIll, + [|IGA"17 ,vars(4) }
lléll gy (=1
< 2HIG"l|ﬁ|IBV(J)'
Moreover,
’|M£‘E)HBV(J) 2 HMS'/S)“BV(J) - H'G"IVSHBV(J)'

Thus, the radius of convergence for Mg, is given by

-1/n

avin (4.34)

i 0.

n— oo

Using the asymptotic behavior of |G,'[® = O(1)n=8(1+2) on J, the radius of conver-

gence for Mg, is equal to 1.

The same argument carries through for M}, due to the fact that |G/ IP = 0(1)

on I for 8> 0 and |G,’|? = O(1)n=P(+3) on I for 8 < 0.
For |z| = 1 we have
M2l gy () < 2 2 H'G"’IﬂHBV(J) < 0(1)§n~ﬂ(1+%)

which is convergent for 8 > 7. Also,

Mal(2) = 3 |G (@)F 2 ¢ 2 n 80+ (4.35)

n=1 n=1
is divergent for § < {1=. However,
Mj10) = 3 IR O)F (4.36)

is divergent for all 8. O

We recall that by Lemma 2.2 we can relate the nonzero eigenvalues and the corre-

sponding eigenfunctions of Mg, and ME:: whenever MZ; is bounded. Therefore, in
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order to investigate eigenfunctions of M} A»» We only need to consider eigenfunctions

of Mag,.
4.2.2 The Essential Spectral Radius of Mg, and the Exis-

tence of a Leading Eigenvalue

One way to show the existence of a leading eigenvalue is the comparison of r(Mpg,)
and ress(Mg,), as stated in Theorem 2.4. Therefore, we provide explicit formulas for

each. We use Theorem 2.3 for Mg,.

Theorem 4.1 Suppose that

(a) |2| <1 or

(b) |2 =1 and B > =

147’
Then, writing G,, = Gn, 0 Gp, 0...0 Gy, we have

1/k
Tess(Mp.) = il;f (S’lllp {|z||’—"=|| |Gﬂhllﬁ“.]}) : (4.37)

PROOF: In order to apply Theorem 2.3, we have to check whether s = z"(®)(f*(z))(z)

is in BV (J) and whether condition (2.2) holds for s.
By Lemma 4.1,

f: 2 Pvar(|(F) .

Va-fl |f |

T ’3H1 n=1

IN

var(s)

|
J
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which is finite by Lemma 4.2. The same holds for condition (2.2), as
S Hlslly, = 3 1217|1617
n=1 n=1

Now, the formula (4.37) follows directly from (2.21). O

A direct consequence of this theorem is
Corollary 4.1 r.,(Mpg,) < |z|]A5”.
Now, we give a formula for r(Map,).

Lemma 4.4 Suppose that

(a) 0<z<1or

() z=1and B >

147

Then k
(Mg,) = illtf Zzlﬂ"lIGm'W (4.38)
n, J
ProOF: We have
) = g 2 4, = g

which is equal to the r.h.s. of formula (4.38). Moreover,

[Mako|, < [[Ma1]|l111; < [[Ma 1| 191151y,

and one checks that

vary(Mg,*y) < HMﬁzH”JVMJ(lﬁ) +sup (t2lvary (|Ga,"1°) 1]
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By Lemma 4.1, vars(|Gy,'|?) < C’llGnk,,ﬁHy and thus

k

|Gﬂk'lﬁ“1) '

15y < 11+ o (s
Now, taking the limit of the k-th root, the second term of the r.h.s. converges
t0 Iess(Mp:) < 1(Mpg,), so that we are left with the upper bound ||Mp,||BV(_,) <
limy ”Mg,"lH;/k. Due to submultiplicativity, we can replace the limit over k by the

imfimum. O

Another way of showing the existence of a positive eigenfunction is to use addi-
tional smoothness of f'. Furthermore, smoothness of f’ implies smoothness of this

eigenfunction as well.

Lemma 4.5 Suppose that

(a) 0<2z2<1or

(b) 2=1and B> -

1+r°

Moreover, suppose that F\' € C¢(I) and z~"(Fy'(z) — 1) € C(I) for some € < a.

Then Mg, has a positive eigenfunction Vg, with positive eigenvalue Ag,. More-

over, ¥g, 1s Holder-continuous and satisfies
|log ¥g.(z) — log ¥p.(y)| < Clz —y[*

for some C > 0.

PRrROOF:

This proof uses a method of [29]. In contrast to [29], our specific setting imposes

bounds on the exponent € of the Holder-continuity.
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Suppose

Ce = sup log (R Fm )

is finite. Define

do={pe V] 0w Wil=1 o) < vwes (Esie ) |

Ag is equi-continuous, hence its closure in supremum norm, Ag, is compact.

Now, for functions 1 € Ag we have

Mﬂz"p(z) <

<

<

IA

IA

A 1[) o] FlFon—l(:L‘)
Yo FiFy™ (y)

Sup{ (P ") (2)
(Fan 1) (y)

exp (1BIC. |2 —yr)sup{“” o™ (”)}Mﬁzw(w

} Mp:%(y)

Yo FiFo" ()

exp (910,12~ yP)sup {exo (1R A(6) - R F) | Makt)

exp (|B|Ce|z — y[*) exp llﬂIC Aoz —y|>Maz¢(y)

C.
eXP(llfl/\e —y|) Mg p(y

Define Hg, via

Mp. 9 = || Mp. 9|3 Mp..

M s, maps Ag into itself. By the Schauder Tychonoff theorem there exists a fixed point

of Mg, in g, € Ag such that My, ¥s, = g, and hence, with Ag, = [|Mp¥a.|l;,

Mg, Vg, = Ap. ¥g,.

By being in Ag, this eigenfunction naturally fulfills the smoothness condition stated

in the Lemma with C = 2% We also have a lower bound on the eigenvalue Ag,,

1=, ¢

IMe: ¥l o ~21BIC

Ag, = 2 expl—— =}
g 1%a.11, %)
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Concluding the proof, we show that C, is indeed finite. We have

log I(FFo™ Y|, <

n-1
S llOg |F1’F0n_1||e.f + Z ’108 iF(;FO‘—I‘LJ
] l‘___l y
n—1
' -1 ! i-1
S 'log|m“1,F{F"n—l(‘]),FIF() LJ",‘ Z|log|w||1,F'(:Foi_l(J)|F1F0 |€J.
il i:l y
Now, [log |z||, < ||1/z|| and |[1/F}||; < ||f'||;- Thus, we can continue

<

llog [(FLF™ Y| g S

n-1
RIS T
! 1=1 !
n-1

< £, {1F{|€,F‘].._1(,) ‘Fon—l!l,_, + ; | Fole myi-1(0) |Fo"1 u}

n—-1
< [1fIl; {|F;ve,,.~,,n-xm NEY + E1Rlepimen (R }

/ —€ L o / + — €| L

< ”f,HICO {|F1|5,F(,"—1(J) n~U+7) 4 Z |Fo|e,Fo"~‘(J)’ (1+')} . (4-39)

=1

The last step uses the asymptotic behavior of the iterates of Fy. Further, using

boundedness of |z~"(Fo'(z) — 1)|, ; and ||z (Fo'(z) — 1)||;, we get

|F(;|¢,F(,i—l(1)

|

|

< |(Fg—-1)2

r ' e
e, Fo'~1(J) 2 HF"""(J) + H(FO — 1)z Foi-1() 17 leFot=1(9)

Foi—l(J)

|1—c

=]
I

< |- 1= .

N lgyimr 0y + (75 = 1)

Thus, the terms in the sum of (4.39) behave as
O(i—l—e(H-l;)) _1_0(1_2)

whence the sum 1s uniformly bounded in n. O
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4.2.3 The Spectral Gap for Mg,

Lemma 4.6 Suppose that

(a) 0<z<1or

(b) z=1and 8> 1.

Further assume that re,(Mg,) < 1(Mp,). Then Mg, has a spectral gap, i.e. there

is a § < 1(Mpg,) such that the only part of the spectrum outside the disk with radius

6 is the leading eigenvalue Ag, = r(Mag,).

PROOF: Since re,s(Mpg,) < 1(Mpg,), A, is a simple eigenvalue with positive eigen-

function ¥4, bounded away from 0. Consider the normalized operator

1

Nﬂz")b = /\ﬁz ‘Ilﬂz

Mﬁz(‘pﬂz¢)

(i.e. Ng,1 = 1). Then we need to show that 1 is the only eigenvalue of N, with

magnitude equal to 1.

Suppose ¥ € BV(J) is eigenvector to an eigenvalue |y| = 1 and choose ||¥|| = 1.

Then we have

¥(2)] = |[Np:¥()|
= |Go(=)l ¥gs 0 Gu(z)

n

¥ o Gu(x)

2, |G(2)]P ¥, 0 Gu(x)
o] As:¥p.(x)
= |G (2)]P g, 0 Gn(2)

n=1 /\ﬁzwﬂl(m)

|¥ o G,(z)|
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There exists an ¢’ € J such that ¥(z) — 4’ with |[y'| =1 for z \ 2’ or ¢ " 2"
Without loss of generality, assume that 4’ = 1. Then, taking one of these limits in
the above inequality, the left hand side converges to 1. This only happens if, for all
n, ¥ oG,(z) — v. Repeating the argument, we see that for all k = 0,1,2,... and for

all ny,...,np=1,2,...,

Vo0Gp 0Gp,0...0G, () >~ for zN,2' or z &

If 4 # 1, this leads to an infinite variation var;(¥), whence 4 = 1. Thus, there is

no other eigenvalue with magnitude equal to 1 and we have a spectral gap. O

Remark 4.2 If in the above proof the partition were finite, it could still suffice for
v to be a root of 1. Therefore, this proof is not applicable for Lg and we will have to

argue differently, invoking the operator relations between Lg and Mg, .

4.2.4 Examples: Piecewise Linear Map and Farey Map

For the piecewise linear map f, we directly get

—~— —~

I(Mﬁl) = Z znqg > SIrlup zan = ress(Mﬁz)-

n=1
Thus, we have a leading eigenvalue and a spectral gap. (We already know that the

eigenfunction was the constant function.)

For the Farey map f given by (1.19), we estimate

(1+n)7 <G| < (1+n/2)7
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so that

Tess(Mp;) < 5171‘p 2"(1+ n/2)—2ﬁ <1

and

o0

1(Mg,) > Z (1+n)"%

In particular, for z large enough and f close to 1, res(Mp.) < 1(Mp,) and again
we have existence of a leading eigenvalue and a spectral gap. As |f’| is piecewise

Lipshitz, the corresponding eigenfunction is Lipshitz as well.

4.2.5 Some Inequalities for Mg,

Later, we will need relations between Mg, and My, for z' complex with |2/| = z.

These are given by the next Lemma.

Lemma 4.7 Suppose that

(a) 0<z<1landfB >0 or
(b) z=1and B > ;.
If |2'| = z then

Tess(Mpz') = Tess(Mp:)-

If, in addition, z' # z and 1es(Mp,) < 1(Mpg,) holds, then
I.'(Mﬁz') < r(Mgz).

PROOF: The first equality is straightforward, as the formula for the essential spectral

radius (4.37) is independent of arg(z).
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Now, if Iees(Mp,) < 1(Mg,) then r(Mpg,) is eigenvalue of Mg,. We only need to

show that there is no eigenvalue of Mg, with magnitude equal or larger to r(Mpg,).

Consider the normalized operator

1
Aﬂ,‘l’ﬁz

Ngp = Mg (Pg.9)

where Uy, is eigenvector of Mg, with eigenvalue Ag,. Clearly, [N, | < N, 1||¢]| =

[|¥||. Thus, there is no eigenvalue with magnitude larger than 1.

Assume that there is an eigenvalue |y| = 1 of Ng,.. Then, for an eigenvector

¥ € BV(J) with ||¥]| =1,
[¥(z)| = [Np¥(2)| < 1.
Arguing as in the previous proof, we see that for some z’ € J and foralln = 1,2,.. .,
(2 ¥oGp(z) >y for z & or z 2

Now, G,(z) converges uniformly to 1 for n — oo. Pick a sequence z, — &' such
that (2')* ¥ o G,.(zk) — v for k — co. Then Gn(z,) — 1 and ¥ o G,(z,) converges
due to ¥ € BV(J), whence (2')"™y must converge for n — oo. Therefore, z' = z in

contradiction to the above assumption.

Thus, no eigenvalue of Mg, is in modulus equal to Ag, = 1(Myg, ), and the spectral

radius r(Mg;) has to be strictly smaller. O

Moreover, the following inequalities hold.

Lemma 4.8 Suppose that

(a) |z| <1 and B >0 or
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() |2l =1and B > =

147"

For |2'| < |z| we have

Ed
rcss(Mﬂz’) S '|_z—|'ress(Mﬁz)'
If, in addition, z,z' are real then
zl
r(Mﬁ,:) S ;I‘(Mﬂ,).

Also, for B’ < B we have
Teaa(Mpz) > N7 Teua(Ms).
If, in addition, z is real then
(Mg) 2 20 H(Mg.).

(Here, 8,8’ > {35 for |z2| =1.)

PROOF: The inequalities follow directly from the formulas (4.37) and (4.38) for

Tess(Mg;) and £(Mp,), along with |G, '| < Ag*. O

Remark 4.3 Thus, we have shown that r(Mpg,) is strictly increasing in z and strictly

decreasing in (.
We end this section with considering the special case My;.

Lemma 4.9 We have r(My;) = 1. 1 is a simple leading eigenvalue with positive
ergenfunction and My, has a spectral gap. The Lebesque measure puy, is an eigenmea-

sure of M7, with eigenvalue 1.
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PRrROOF: For each function ¢ € BV(J),

pp(Mud) = /J i_ojl G,/ (2)] ¢ 0 Go(e)de = 2/1 #(z)de = /Jqs(z)dm = pi(9).

Thus, p is eigenmeasure of M;; with eigenvalue 1 and it follows that r(My;) =
(M) > 1. Since ress(Mi11) < 1/A¢ < 1, Ay = £(My;) is a simple eigenvalue with

positive eigenfunction ¥,;. It follows that
0 < pr(¥i) =pr(Mu¥1) = Aapr(¥11),

whence t(My;) = A =1. O

4.3 The Spectrum of Lg

4.3.1 The Essential Spectral Radius of L4

Lemma 4.10 Suppose 8 > 0. The essential spectral radius re,(Lg) is equal to 1.

PROOF: The conditions for the application of the theorem are fulfilled:

f is a piecewise monotone transformation of [0, 1] with a finite generating partition
Z ={|0,a), [a,1]}.

s(z) is given by
s(z) = | f'(=)|™°

and is in BV(I). The condition Y7,z ||3]l5 < oo. is trivially fulfilled.



We need to compute the essential spectral radius. For # > 0, we have

sa(z) = |F(F )P F ()P f ()] 7P
= |(f") (=)™

< 1
where equality holds at the indifferent fixed point £ = 0. Thus,

Tews(Lp) = lim |lsal"™ = 1. O

4.3.2 The Existence of a Leading Eigenvalue A3 and a Spec-

tral Gap of Lgfor 0 < B < 1

Here, we apply the previously derived relations between £ and M,. According to
Theorem 2.7, eigenfunctions of Mg, with eigenvalue 1 are also eigenfunctions of
Lp with eigenvalue A = 1/z, provided that |A| > r(Leg) = 1. Now, the radius of
convergence of Mg, as well as r.s(Lg) are equal to 1, so that we control the whole
region |A| > 1 through Mg,. Figure 4.4 shows the relation between the spectra of
Mg,p) (a) and Lg (b) for B < 1:

(a) The essential spectral radius of Mg, g is strictly smaller than 1, with only
isolated eigenvalues outside. The leading eigenvalue Amin(a sx(6)) is isolated from
the rest of the spectrum by a spectral gap. Moreover, z(f3) is chosen such that

this leading eigenvalue is equal to 1.

(b) Thus, the leading eigenvalue of Lz is equal to 1/2z(3). Here, the essential spectral
radius is equal to 1, with only isolated eigenvalues outside. Again, the leading

eigenvalue is isolated from the rest of the spectrum by a spectral gap.
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We will first show that

Theorem 4.2 Let 0 < f < 1. Then Lg has a leading eigenvalue \g > 1. This

eigenvalue is simple and the corresponding eigenfunction positive.

PROOF: We have re,s(Mpg,) < |zl)\;ﬂ which is less than 1 unless 8 = 0 and |z| = 1.

Now, by Lemma 4.8 we have r(Mpg;) > r(My;) = 1 for < 1. Using monotonicity of

Mag, in z, for each B < 1 we can choose a z > 0 such that r(Mg,) = 1. Then, Mg,
1 .

has a simple eigenvalue 1 with positive eigenfunction, which implies that A = 27" is

a simple eigenvalue of L with positive eigenfunction.

Moreover, since we have r(Mg,’) < r(Mpg,) for |2'| < z, there is no eigenvalue A

of Lg with [A| > 27!, O
Finally, we get
Lemma 4.11 Lz has a spectral gap for f < 1, i.e. there is a § < 1(Lg) such that

the only part of the spectrum outside the disk with radius 6 is the leading eigenvalue

/\ﬁ = I‘(ﬁg).

PROOF: Let z = /\El. Then, we have by Lemma 4.7 1(Mg,') < 1(Mpg,) for |2/| = 2,

2' # z, so that there is no other eigenvalue A of L5 with [A| = Ag.

Moreover, as 1 = res(Lg5) < Ag, all other eigenvalues of £g have to be in a disk

with radius strictly smaller than Ag. O

4.3.3 Analyticity of A\g for 0 <3< 1

Lemma 4.12 The leading eigenvalue Ag of Lg is real-analytic i 8 > 1.
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PROOF: We have to show that z(3), defined by r(Mg,s)) = 1, is analytic. As
Tess(Mp.) < 1, this is a simple eigenvalue. Since Mg, is jointly analytic in |z| < 1 and
B, standard perturbation theory of simple eigenvalues ([22], Chapter VII, Theorem
1.9) applies, by which there are at most finitely many solutions to r(Mpg,) = 1. Thus,
2() is unique in a small neighborhood of in a small neighborhood of {8, 2(8)} and,
by [22], Chapter VII, Theorem 1.8, consists of a branch of an algebraic function.

Thus, z(8) is analytic. O

For the piecewise linear map, z(3) can be estimated in a particularly simple way.

It is given implicitly by the equation

4.3.4 The Phase Transition at 8 =1
Lemma 4.13 For > 1, 1(Lg) =1

PROOF: 1(Lg) is decreasing in 3. Furthermore, 1(£,) = 1 and r(Lg) = 1. O

Thus, it follows immediately that

Corollary 4.2 1(Lg) is analytic in 8 < 1 and 8 > 1 with a non-analyticity at f =1

Thus, we have accomplished a complete description of the pressure function, as

depicted in Figure 4.1.

At the phase transition G = 1, we still have an eigenfunction ¢ of My;. However,

the extension Mgz is unbounded and computing M ;¢ leads to a singularity at the
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origin. Using the asymptotics of G, along with the positivity of ¢ in J, we can show

that

Lemma 4.14

Mf’l(b(:r,) ~z", -0

PROOF: Theorem (3.1) implies

[> o]

316 (@)ldo Gule) = 3 IO )1+ o(1)(¥(1) + of1)
= |F/(0)|#(1)(1 + o(1)) Z(l-{-nrc:n -2

Estimating the sum by the corresponding integral, we see that it diverges as ™" for

z— 0 O
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Chapter 5

Asymptotic Behavior at the Phase

Transition

Now, we compute the asymptotic behavior at the phase transition 8 = 1. In the
first section, perturbation theory is used to get the expansion. This expansion will
be done in terms of a function 7,(z). The second section provides the asymptotics

for 7,(z) and, combining these expansions, we get the desired result.

In the following estimations, we need Holder-continuity of the leading eigenfunc-
tion of Mg,. Thus, we suppose throughout this chapter that f € C, is Holder-

continuous as in Theorem 4.5, i.e. F;' € C*(I) and ™" (Fy'(z) — 1) € C*(I) for some

e < a.
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5.1 Perturbation Expansion at the Phase Transi-
tion

First, we summarize our knowledge of Mg,. For 3 close to 1, the map
('8’ z) — Mﬂl

is continuous in 0 < z < 1 and S, and analytic in 8. For z close to 1, we have an
isolated simple eigenvalue Ag, = r(Myp,) with a positive Holder-continuous eigenfunc-
tion Wg,, both being continuous in z < 1 and analytic in §. Moreover, A\;; = 1, and
the Lebesgue measure py; = pr is an eigenvector of M7}, with eigenvalue 1, i.e. for
all ¥ € BV(I),

#11(M111/J) = #11(¢)-

Also, Mg, is strictly increasing in z and strictly decreasing in 8 with a unique solution

2(B) of Ag.(gy = 1 which is analytic for § < 1 and strictly increasing.

Let
M= 3o An(2)(1=B) and Mg, = 3o(1— B M. (5.1)
n=0

n=0

be the expansions of Ag, and Mg, for 3 close to 1 and z < 1. z — A,(z) is continuous
and A¢(l) = 1. Analyzing the perturbation series, we see that Ag(z) = Ay, is the

largest eigenvalue of

M,© = M,,.

With P;, denoting the spectral projection of M;, corresponding to the eigenvalue

A1, and ¥y, being the positive eigenvector of My normalized to

#11(‘1’11) =1, (5.2)
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we choose the left and right positive eigenvectors p;, and ¥,, of M, as

V,, =P,%,;, and py, = p11 P, (5.3)
Then, A;(z) is given by
’\l(z)ﬂlz(‘l’lz) = ﬂlz(Mz(l)‘I’lz)- (5.4)
We note that since
MDU(z) = 3 2"Gl(2)](~ log |GL(#) ¥ 0 Ga(2) (5.5)

the finite limit A;(1) of A;(2) as 2 /' 1 is strictly positive:

M(1) = pua(MVE1) = p(log |g|¥41,) > 0. (5.6)

In order to describe the asymptotics of A;, and of 2(3), we define for r > 0

0 ] _ yn
n.(2) = Z 141 - (5.7)
n=1 M "7

7.(2z) \, 0 as z /" 1. A more precise description of the behaviour of 7,(z) will be

given in the next section.

Now we can proceed to show

Lemma 5.1 We have the asymptotic expression

A1z =1- Crnr(z) + O(Wr/(l-f-e)(z))

with

Cr

- mm'(o)wn(n.
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PRrOOF: We note that since
Mlz‘I'lz = /\1z‘I’1z and ﬂuMu = M11

we have
(/\1z - 1)#11(‘1’12) = #11((M1z - Mll)"I’lz)- (5-8)
We will show that ¥,, can be replaced by ¥;; to leading order and that taking into

account the normalization (5.2) one has
Arr = 1+ pa (M — Map)¥11) + O(Ur(z)z)- (5.9)
To prove (5.9) we first note that

HMz - MIHBV(J) S Z(l - zn)”MnHBV(J)

n=1
00 X 1-2"
< CY (-Gl £C' Y —7ir = 0(ne(2))
n=1 n=1

for some C,C’' > 0. By the spectral properties of M;; this implies that for the

spectral projections

|| Prz — Pll”BV(J) = O(n.(2))
also holds and that therefore ||¥;, — ‘1’11HBV(J) = O(n,(z)). This together with (5.8)

leads to

ll'll((Mlz — M11)‘I’11) + #11((M12 - Mu)(‘I’lz - ‘1’11))
1+ ﬂn(‘I’lz - ‘1’11))
p11((Mi: — M1)¥11) + O(n.(2)°)
1+ O(n.(2))

which in turn implies (5.9), since also pq1((My, — M11)¥11) = O(n.(2)).

Alz = 1+

= 1+

Next, we estimate § = py1((M11 — M1.)¥;1). One gets
6 = [ 30 -2)G@) ¥ 0 Galo)de
n=1

= 2 (1- z")_/ Uy (z)dz, (5.10)

n=1 In
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where J,, = Gn(J) has boundary points Fy Fy*(1) and Fy Fy""}(1). Denoting a primi-
tive of W1; by ¥, one can write (5.10) as
§=3 (1-2")|Fo FF"1) - ¥o FFy"'(1)|. (5.11)
n=1

By Theorem 4.5, ¥y, is C¢, so that ¥ is C'*¢. Since Fy is C1+¢ by assumption, we

see that ¥ o F is C1*¢ as well.

Using a, = Fy"(1), we have
6 = Z(l—z")’i’oFlFo(an*l)—‘.I-loFl(anﬁl)’

n=1

— i(l —z") ‘(‘-Iv' 0 Fl)'(fn)! [@n-1 — Fo(an-1)],

n=1
where ¢, € [Fo(an_1),an-1]. Using R(z) of (1.11), we write

b= é(l = 2") |(¥ 0 F1)(én)] e(an-1)"*"(1 + R(an-1)). (5.12)
Holder-continuity leads to the estimate

(¥ 0 F)(2) = Fi(2)¥y 0 Fy(2) = Fi(0)¥1,(1) + O(z°),
and Theorem 3.1 implies

oy = (nre) " {14 0(m™/")}.

Inserting this and R(z) = O(z®) into (5.12) we can write

6 = i(l — 2" {IF'(0)|¥n(1) + O(n-f/')} e(nre) 7 {1 n O(n“"/')}

n=1
oo

= ¢ Y (1-2") {n‘l“% + O(n—l—(1+e)/r) + O(n—l-(l+a)/r)}

n=1

= &N (2) + O j14a)(2)) + O(1rj14¢)(2)), z /1.
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Combining this with (5.9) and € < a we obtain the lemma, since
O(nr(z)z) = O(n,(2)) = O(”r/(l+a)(z)) = O(nr/(1+6)(z))a z,/ 1.0

From this lemma, the desired result follows immediately.

Theorem 5.1 As (3 71

0 - (2o ﬂ)) 1+ o(1)].

PROOF: Combining Lemma 5.1 with the expansion (5.1) of Ag, gives

1= X, = 1= (2) + O j14)(2)) + (1 = B)Ai(1){1 + o((1 - 2)°) {1 + O(1 - B)},

whence

- (2) + o(n.(2)) = (1-8)+0((1-8)").

Ai(1)
Hence, 7,(2) = O(1 — B) and, thus,
w(2) = 21— ) + o1 - p).

Applying 7! on both sides implies the theorem. O

5.2 Asymptotic Estimation

We now investigate the asymptotics of 7,(2) as z ,/ 1. In order to obtain an integral

representation of 7,(z), we use

/ Fp— _ra+7) )

Tattt
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Then, for z < 1 one obtains

=] 2" 1 00 -t
Z / tr——dt,
asinttr T(1+7) -

1— ze
and hence,
(=) = 1“(1;%)/000#64 [1 —le—t T

- —_1———{_:?) /°° tre™ 1 - e‘lt)zli ze“)dt

_ /°° _ 1T (1tq$(t) (5.13)
where

| ot
H(t) = and c:liz.

We will investigate the asymptotic behavior of (5.13) as ( — oo. It will be convenient

to split up the integral as follows: using the identity

1
=——— , >0, (5.14)

and setting

we can write

1
() = 1)/ T

1y 1 1
*fuT e [T

The first integral in the square brackets is finite for all » and the last one can be

majorized by

; (ee_ 3 /1 T ry(t)dt
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so that we are left with estimating the integral

1 1_4 et 1
ﬂ,(z):/o T (5.15)

We first consider the case of 0 < r < 1. Here, we again apply (5.14) and get

9, (z) = ¢ Uol £+ 2y(t)dt — /01 t%-2¢(t)1 n ((11— e—t)dt :

The first integral is bounded and the second one is majorized by

11 ,4 1 4 .1 ¢ 1 1
tr 2 dt = - 1_,/ P2 d
/o el+(t(l—e)/e ec - 1+71(l—e)/e i

= 0(¢"™ ") +0(¢™).

Here we performed the change of variables
T = (t. (5.16)

Hence,

1

") = Frr T

1+ %)C_l /0°° ﬁ*z!/)(t)dt + O(C—mjn{_l;,z}).

In the case of » = 1 we write

1 et 1
S T ST
R 1 4 ¢ e T/¢ 1 p
= [0 (/) 1+ 7é(7/C) "t SO 1T+ r(r/O)]

The first integral converges to fol % = log2 as { — oo. Applying (5.14) to the second

integral, we write it as

/), )1
./1 T d /; T 1+T¢(T/C)d. (5.17)
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The second integral in (5.17) is O(1). Performing the change of variables (5.16) in

the first integral, we can write it as

/11 ¥ gy

it
Since 1 is analytic at the origin and ¥(0) = 1, then 9(t) = 1+¢1,(t) with 9; bounded

at the origin. Therefore, for (5.17) we obtain
1
log ¢+ [ (1)t +0(1)

and thus,

—

m(z) = WC_IIOgC +0(¢™).

For r > 1, we use the change of variables (5.16) in (5.15) and obtain

e /¢ 1
=t [ FOTT o0

The integrand can be written as

1, 1
T 1+ (1+€¢2(‘r1'/())

where |1,(7,7/¢)| is uniformly bounded for € [0,(]. Since f¢ ;;Td‘r = 0((?), w

deduce

1 [ 1
19,. =("r %‘"1 -1
()= ¢ [ ot mdr 0

as { — oo. Thus,

1
nr(z) F(1+ )C—— 0 T%_11+Td7'+0(c_1)-

Summarizing, we obtain that as { — oo

ern TS tr=2p(t)dt + O(¢~ ™), 0<r<1

m(2) = p(11+5)C‘1 log ¢ +0(¢™1), r=1 (5.18)
F@C o T11+T dr + O0(¢™), r> 1
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This leads to the final result on the asymptotic behavior of Ag for 8 ' 1 and,

thus, for the pressure P(Blog|f’|).

Theorem 5.2 The asymptotic behavior of the pressure P(Blog|f’|) for functions

f €C, is given as
d(1-8)1+0(1)], O0<r<1

P(Blog|f') = di—gifpgml+o(1)], r=1

d.(1-B)[1+o(1)], r>1

for 3 /7 1. Here,

I'(1+ %)‘\Lc(rll (fo'” t#(%sinh-;-)‘zdt)wl , 0<r<1

d,- = J A:ll N r = ]_
r 1_ -r

(r(1+ 1)2l) ( o flgr’dr) , r>1

wath
c !
= (’”C)IT/’lFl (0)¥11(1)

and

M(1) = [ Tu(e)loglg'(x)lde.

PROOF: This follows from (5.18) along with Theorem 5.1, using P(Blog |f'|) =
—log2z(B) and —logz = (™' + O(¢™?%). Inverting 7.(z) for r = 1, we use that

—ylogy = z implies y = =2—(1 + 0(115-(_—1"531)) O

—log= (log =)?
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Appendix A

Notation and General Definitions

Here, we list some notation and general definitions for reference.

A.1 Notation

We use the following symbols:

Z the set of integers {...,—-2,-1,0,1,2,...}
Ny the set of non-negative integers {0,1,2,...}

N the set of positive integers {1,2,...}

R the set of real numbers

C the set of complex numbers

intD the interior of the set D
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clD the closure of the set D

0D the boundary of the set D

D¢ the complement of the set D
O(g) means that ﬁ((% is bounded
= o(g) means that lim, g—g—% =0

f ~ g means that lim, 5% =1,i. e f(t) = g(t) + o(g(t))

A.2 General Definitions

For a complex-valued function ¥ on the interval I = [a, b], let ||¥||, denote the usual

supremuim norm, i. €.
1¥]]; = sup [¥(z)].
z€l
The space of continuous functions, equipped with the supremum norm, is denoted by

C(I). We further denote

varf(¥) = sup{zn: |W(a;) — ¥(a;—1)|:m>1, ag<a; <---<ap, a; €I},
i=1
||‘I’“BV(1) = var/(¥) + |[¥[[,
and define
BV(I)={¥:1->C: [|¥||gy < oo},
the space of functions with bounded variation on the interval 1.

We note that for functions of bounded variation the one-sided limits exist, i. e.
lim,~ , ¥(z) for y € [a,b] and lim,, ~, ¥(z) for y €]a, b].
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Moreover, for functions f and g on I,

varg(|f]) < vars(f)
varf(f+g) < varg(f)+ vari(g)

varg(f-g) < ||fllyvari(g) + vars(£)llglly,

and, for functions f on I and g on J = f(I),

vary(g o f) = vary(g).

We also need the notion of Hoélder-continuous functions. For a complex-valued

function ¥ on I, denote for some 0 < € <1

[¥(z) - ¥(y)| .

PRSP z,y €1, a:;éy}

“I’le,l = Sup{

Naturally, |¥|, ; < ||¥’||;. For reference, we also note that for functions f and g

on I,

If 4 glet < |fleq + |9ler, |f - gler < N fllflgles + | Flexllgllss

and, for functions f on I and g on J = f(I),

g0 fler < lglsa(1fls,0), e<s<1

In particular, choosing § to be € or 1, we get

Ig o f’e,l S lglc,J(lfll,I)ey lg © f‘e,[ ,<. |g 1,J|f|e,I'

Denoting
1€l = max{||¥][, [¥]er},
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the space of Holder-continuous functions is given by

C(I)={¥:1-C: [|¥|, < oo}.

In particular, we will also deal with the space C'*<(I) of functions on I whose

derivative is in C*(]), equipped with the norm ||¥||, ; = max{[[¥[|, [|¥']|, ,}-

We omit the reference to the interval / whenever the choice of I is clear out of

the context.
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