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(Abstract)

Difficulties in characterizing the dynamic behavior of wood structures have hin-
dered investigations into their performance under dynamic loading. Because of this,
wood structures are treated unfavorably in seismic design codes, even though past
damage assessment surveys after seismic events indicated generally satisfactory per-
formance. To allow investigations into their performance and safety under dynamic
loading, the energy dissipation mechanisms of wood joints and structural systems
must be known and the hysteretic behavior modeled properly. This thesis presents
a general hysteresis model for wood joints and structural systems, based on a modi-
fication of the Bouc-Wen-Baber-Noori (BWBN) model. The hysteretic constitutive law,
based on the endochronic theory of plasticity and characterized by a single mathemat-
ical form, produces a versatile, smoothly varying hysteresis that models previously
observed behavior of wood joints and structural systems, namely, (I) nonlinear, in-
elastic behavior, (2) stiffness degradation, (3) strength degradation, (4) pinching, and
(5) memory. The constitutive law takes into account the experimentally observed de-
pendence of wood joints’ response to their past history (i.e., the input and response at
earlier times, or memory). Practical guidelines to estimate the hysteresis parameters
of any wood joint or structural system are given. Hysteresis shapes produced by the
proposed model are shown to compare reasonably well with experimental hysteresis
of wood joints with: (I) yielding plate, (2) yielding nails, and (3) yielding bolts. To
demonstrate its use, the proposed model is implemented in a nonlinear dynamic anal-
ysis program for single-degree-of-freedom (SDF) systems. System response from arbi-

trary dynamic loading, such as cyclic or earthquake-type loadings, can be computed.



Three SDF wood systems are subjected to the Loma Prieta accelerogram to obtain their
response time histories. Advantages of using the proposed model over currently avail-
able models in nonlinear dynamic analysis of more complex systems are identified. A
multidegree-of-freedom shear building model incorporating the proposed hysteresis

model is formulated but not implemented on a computer.
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Notation

The following variables and symbols are used in this thesis:

A

Ao
a,az,ai

(€]

Ci

E,

E;
Es

F(t)

f (@), fi(t)
fs

h(z)

[(H*]

h{

{1}

[K¥]

parameter that affects the tangent stiffness and ultimate hysteretic
strength;

initial value of A;

amplitude of cyclic excitation;

the damping matrix of a multidegree-of-freedom (MDF) system;
viscous damping coefficient;

viscous damping coefficient of it* mass;
absorbed energy;

hysteretic energy;

input energy;

elastic strain energy;

damping energy;

forcing function;

hysteretic restoring force;

total non-damping restoring force;

vield level of Fr;

vector of the dynamic actions;

mass-normalized forcing function;
non-damping restoring force;

pinching function;

matrix that contains the hysteretic elements;
hysteretic coefficient of it" element [(1 — &;)k;];
the influence vector;

linear part of the stiffness matrix;



k = stiffness;

ki, ks = initial and final tangent stiffness, respectively;

k& = linear spring coefficient of it* element (cx;k;);

m = system mass;

m; = mass of the it" element;

n = hysteresis shape parameter that controls curve smoothness;

P = applied force;

p = constant that controls the rate of initial drop in slope;

Q;: = total restoring force of the it* mass;

q = fraction of ultimate hysteretic strength, z,,, where pinching occurs;
= differential operator;

r = total number of lumped masses in a MDF model;

[M] = the mass matrix of a MDF system;

sgn(-) = the signum function;

t,t; = time;

u = vector of system response;

u = relative displacement of the mass with respect to the base

displacement;
u = relative velocity of the mass with respect to the base velocity;

= relative acceleration of the mass with respect to the base

acceleration;
Ug = earthquake ground displacement;
g = earthquake ground acceleration;
Ui = interstorey drift, or relative displacement between floors;
Umax = maximum relative displacement;
Uo = relative displacement at z = 0;
Up; = peak displacement in it* half cycle;
Up; , = peak displacement in (i — 1)t* half cycle (note that this is the peak



opposite and immediately before that in the it half cycle);

Ut = absolute or total mass displacement (u + uy);

Uy = vyield relative displacement;

y = vector of global response of a single-degree-of-freedom (SDF) system;

Vi = {ith element of response vector y;

Vi = time derivative of y;;

{X} = vector of relative displacements;

Xi = relative displacement of the it" mass with respect to the ground
displacement;

X = relative velocity of the i** mass with respect to the ground velocity;

Xi = relative acceleration of the it* mass with respect to the ground
acceleration;

Xg = ground acceleration;

x4 = absolute acceleration (%; + X,);

{Z} = vector of the hysteretic components of the displacements;

z = hysteretic component of the displacement;

Z; = hysteretic displacement of the i** mass;

Zp, = peak z value in it? half cycle;

Zpi s = peak z value in (i — 1)** half cycle;

Zy = ultimate value of z (or z at ‘a’l—f; = 0);

x = a weighting constant representing the relative participations of the

linear and nonlinear terms (0< & <1);

= hysteresis shape parameter;

% = hysteresis shape parameter;

04 = constant that controls the rate of strength and stiffness degradation;
Oij = Kronecker delta;

on = constant that controls the rate of stiffness degradation;

Oy = constant that controls the rate of strength degradation;

Xiv



oy = parameter specified for the desired rate of change of ¥, based on ¢;

£ = dissipated hysteretic energy;

é = the rate of change of dissipated hysteretic energy;

4] = controls the magnitude of initial drop in slope, ﬂ%, (C1 <1.0);

C1, = measure of total slip;

) = controls the rate of change of the slope, “f—f‘;

n = stiffness degradation parameter;

ni = value of i during the it" half cycle;

A = small parameter that controls the rate of change of £ as {; changes;
u = ductility;

v = strength degradation parameter;

= viscous damping ratio;

&o = linear damping ratio (c/ ZM );

1} = parameter that contributes to the amount of pinching; |
w, Wj = frequency of cyclic excitation;

Wn = natural frequency of undamped oscillation;

Wo = preyield natural frequency of the system (W ).



Chapter 1

Introduction

1.1 General

Wood structures are generally recognized to perform well in seismic zones. This is
attributed to wood’s high specific strength (high strength to weight ratio), redundancy
of non-load bearing elements including the presence of non-engineered shear walls
and diaphragms and unit action of the system when the components are adequately
fastened. Favorable system geometry, e.g. symmetrical plan for earthquake and steep
roof slope for wind, also contribute to its performance.

Wood construction does not, however, guarantee earthquake- and/or hurricane-
resistant structures. Assessments of collapsed or damaged wood buildings after earth-
quakes and typhoons have identified common failure modes and their possible causes
and solutions (Soltis 1984; Falk and Soltis 1988; Conner et al. 1987). Most of what we
know about wood structural behavior under dynamic loading, however, comes from
qualitative field data and/or limited experimental data, with little theoretical under-
standing of actual behavior. Difficulties in characterizing wood system behavior (e.g.,
sensitivity of material properties to the rate and duration of loading and inelastic and
nonlinear behavior) have hindered investigations into their performance under dy-
namic loading. Because of this, wood structures are treated unfavorably in seismic
design codes. Stringent and unclear code requirements put wood at a disadvantage in
competing with other traditional construction materials, such as steel and concrete, for
the engineered structures market. Methods for dynamic analysis of wood structures

are needed to investigate the performance and safety of engineered wood systems.
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A dynamic analysis or dynamic response analysis problem is one where the dynamic
action (i.e., force) on a structural system- which is modeled mathematically by the as-
sumed (or measured) mass, damping and stiffness properties of the actual system- is
known and the corresponding system response is sought (Fig. 1.1). Accuracy of the
computed response depends on the accuracy of the mathematical model used to de-
scribe the actual system. Thus, the model should provide as realistic a description
of the actual structure’s behavior as possible. With static monotonic loading, an ap-
propriate load-displacement relation is normally sufficient to predict system response
(Fig. 1.2a). With cyclic loading, the load-displacement trace produces hysteresis loops
(Fig. 1.2b) caused by damping and/or inelastic deformation. (The area contained in
the loop represents the energy dissipated by the structure.) Analytical modeling of an
inelastic structure under dynamic loading ideally requires a force-displacement rela-
tion, or hysteresis model, that can produce the true behavior of the structure at all
displacement levels and strain rates (Sozen 1974). Consequently, the energy dissipa-
tion mechanisms of wood joints and structural systems must be known and the hys-
teretic behavior modeled properly before we can accurately predict the overall system
response of wood structures to dynamic loads.

Since (1) there are hundreds of combinations of materials and joint configurations in
wood systems, and (2) wood-based products, fasteners and use of wood-based products
continue to evolve, a general model is preferred over models derived from specific
configurations. A completely empirical model will not only be expensive to obtain but
may also be of limited use in dynamic analysis. A mathematical model, that simulates
the general hysteretic features of wood systems, is preferred. Parameters of the new
hysteresis model may be estimated from data obtained from previous tests of specific

wood joints and assemblies.

1.2 Objectives

The objectives of the present work are to:
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Figure 1.1: Block scheme of the dynamic analysis process
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1. develop a general hysteresis model that simulates experimentally observed be-

havior of wood joints and structural systems under cyclic loading, and

2. incorporate the hysteresis model into a dynamic analysis computer program to
allow response computations of wood structural systems under arbitrary dynamic
loading.

To fulfill these objectives, it is sufficient to limit the present analysis to a single-
degree-of-freedom (SDF) wood system. The hysteresis model developed for a SDF sys-
tem can also be used for a more refined analysis of wood structures and structural
systems using multi-degree-of-freedom (MDF) models. It is also desired that a general
set of rules for identifying hysteresis model parameters for common wood systems be

established.

1.3 Thesis Overview

A review of literature related to basic concepts of structural dynamics, observed
behavior of wood joints and structural systems, and hysteresis modeling is presented
in Chapter 2. Characteristic features of hysteresis behavior of wood joints are iden-
tified and current hysteresis models that have been used and proposed for dynamic
analysis of wood structures are also reviewed. In Chapter 3, the approach taken in
modeling the general hysteretic behavior of wood joints and étrucrural systems, and
the form and properties of the proposed model are discussed. Generalization of the
pinching capability of the Bouc-Wen-Baber-Noori (BWBN) model, to complete the pro-
posed hysteresis model for wood, is presented. Chapter 4 gives a summary of the
proposed hysteresis model for SDF systems, presents the formulation for MDF shear
building models, introduces the topic of systems identification and provides a general
set of rules for identifying hysteresis model parameters for wood systems. Model hys-
teresis is compared with experimental hysteresis of common wood joints. The new

model is incorporated in a nonlinear dynamic analysis program. Chapter 5 describes
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the program and presents time history analysis results of three hypothetical SDF wood
buildings subjected to the Loma Prieta accelerogram. Finally, Chapter 6 presents a set

of conclusions for the present study and recommendations for future work.



Chapter 2

Literature Review

2.1 General

Research on dynamic analysis of wood structures lags behind advances in general
structural dynamics mainly because of (1) many factors affecting the collection of test
data and (2) difficulties in characterizing the dynamic behavior of wood joints and
structural systems. An international workshop on full-scale behavior of wood-framed
buildings in earthquakes and high winds produced a document presenting the state-
of-the-art and the specific research needs on the earthquake and wind performance
of low-rise, light-framed wood construction (Gupta and Moss 1991). Summarizing the
research needs in mathematical modeling of wood-framed buildings, Stalnaker and
Gramatikov (1991) stressed the need for accurate hysteresis models for wood compo-
nents, subcomponents and (both inter-element and inter-component) connections and
for tests from which the model can be derived. The hysteresis model should be incor-
porated into a dynamic analysis procedure that would allow response computations
of wood structures under dynamic loading. The need for various types of parametric
studies was also identified.

The objectives of this chapter are to elaborate on the need to accurately model
the hysteretic behavior of wood joints and structural systems and to discuss the basis
and limitations of current models for wood. Literature on other topics related to the
present work will be mentioned in other chapters and sections as needed. To provide
a background on dynamic behavior of wood structures and structural systems, some

basic terms and concepts used in structural dynamic analysis and modeling are first
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introduced.

2.2 Basic Concepts of Structural Dynamics

2.2.1 Introduction

The mathematical expression, that describes the behavior of a structural system
under dynamic loads, provides a quantitative expression of load-response relations. It

may be written in the following synthetic form (Meirovitch 1985):
Ru="f (2.1)

where R is a differential operator, u is the vector of the system response and f is the

vector of the dynamic actions. Three fundamental cases can be studied:

1. The operation performed by the operator R is known and the actions defined
by the vector f are also known. The problem requires the solution of dynamic
response, described by vector u. This is known as a dynamic analysis or dynamic

response analysis problem.

2. When the operator R and the response u are known, the problem requires the
solution of action vector f that produced the response u. This is called an action

identification or action synthesis problem.

3. When the vectors f and u are known, the problem is reduced to identifying the

operator R. This is known as a system identification or operator synthesis problem.

Two concepts can be used to define dynamic loads: (1) deterministic, or (2) nonde-
terministic or stochastic or random. When loading is deterministic, the forcing function
is assumed as a known function of time. Its time variation is completely known at each
time instant. When loading is random, the forcing function is not completely known a

priori and is, thus, defined statistically.
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The present work deals with deterministic dynamic analysis of wood structures.
But first, a mathematical model, that simulates the general hysteretic features of wood

systems, needs to be defined.

2.2.2 Equation of Motion

Development of any mathematical model normally starts with the construction of
an appropriate mechanical model of the actual system. In structural dynamics, a single-
degree-of-freedom (SDF) mechanical model typically consists of the system mass, m, a
dashpot with viscous damping coefficient, ¢, and a spring with stiffness, k (Fig. 2.1a).

The response of a SDF system to an earthquake ground motion will be analyzed.
The SDF systems in Figs. 2.1a and b are assumed to behave in a linearly elastic-perfectly
plastic fashion (Fig. 2.1¢), with viscous damping.

The equation of motion for the system subjected to ground motion (Fig. 2.1a) is
mis+cit+ fs=0 (2.2)

where m = mass, ¢ = viscous damping coefficient, fs = restoring force, u: = u + uy
= absolute (or total) displacement of the mass, u = relative displacement of the mass
with respect to the ground motion, uyz = earthquake ground displacement, and dots
designate time derivatives. In the linear elastic range, f; may be expressed as ku, where
k = stiffness (Fig. 2.1c).

Letting u; = i + 14, EqQ. (2.2) may be rewritten as
mii + cu + ku = —~miiy (2.3)

With this equation, Fig. 2.1a is conveniently represented with the equivalent system in
Fig. 2.1b having a fixed base and subjected to an effective horizontal dynamic force of

magnitude —maiiy. Dividing Eq. (2.3) by m, we obtain the differential equation

i+ 25wt + wiu = —1ig (2.4)
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(¢) monotonic load-displacement (d) elasto-plastic hysteresis
relations

Figure 2.1: A linearly elastic-perfectly plastic single-degree-of-freedom system
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where w,, = \/m and € = c/(2mwy). The natural frequency of undamped oscillation
is wy. The product 2mw,, is known as critical damping and & is a nondimensional
quantity known as the viscous damping factor or damping ratio. When g > 1, the system
is overdamped and oscillation is absent. When & = 1, system damping, ¢, equals critical
damping. For a given initial excitation, a critically damped system “tends to approach
the equilibrium position the fastest” (Meirovitch 1986). Most structures have the case
0 < & < 1, referred to as the underdamped case. When & = 0 (or ¢ = 0), known as
the undamped case, the structure oscillates infinitely unless acted upon by an external
force.

From the static monotonic load-displacement diagram, Fig. 2.1c, displacement duc-

lity is

= u;':"‘ 2.5)
where Umax is maximum displacement and u,, is yield displacement. With cyclic load-
ing, the load-displacement trace produces hysteresis loops, shown in Fig. 2.1d, caused
by damping and/or inelastic system behavior. The area contained within the loop rep-

resents the energy dissipated by the structure.

2.2.3 Damping and Energy Dissipation

Damping is the mechanism by which energy is removed from a vibratory system;
it is the property responsible for the eventual decay of free vibrations and for the
fact that the response of a vibratory system excited at resonance (i.e., cyclic excitation
with frequency, w = w,) does not grow without limit (Crandall 1970). The origin and
mechanism of damping, however, is complex and difficult to comprehend. For instance,
damping can be (Srinivasan 1982): (1) of viscous origin, where the damping force is
proportional to the first power of velocity [as in Egs. (2.2) and (2.3)]; (2) of aerodynamic
origin, where the damping force is proportional to the square of the velocity; (3) of
the Coulomb type, where the energy dissipated is constant in magnitude but changes

direction with velocity (e.g., friction between dry sliding surfaces or interface effects in
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structures); (4) hysteretic in nature, where energy dissipation is a function of the stress
amplitude; (5) due to imperfect elasticity of vibrating bodies (i.e., internal friction);
etc. Analytical study is difficult because in real engineering systems, damping is a
heterogeneous mix of these various types of mechanisms.

To simplify vibration analysis, viscous damping is normally assumed. In cases
where damping forces are not proportional to velocity and have significant effect on
response, an equivalent viscous damping concept is sometimes used (e.g., Medearis
and Young 1964). To obtain the equivalent viscous damping ratio for a system, it is
necessary to obtain the amount of energy dissipated per cycle measured by the area
enclosed by the hysteresis loop and to divide this by the maximum stored energy. The
dissipated energy of the actual damping force is assumed to be equivalent to that of
a viscous damping force, —cu. If the restoring force needed to bring the system back
to equilibrium state at any given displacement is linear in the absence of damping,
the use of equivalent viscous damping ratio simplifies the analysis. But in the case
of systems with nonlinear restoring force, e.g. wood structural systems, actual damp-
ing is underestimated by the equivalent viscous damping approach (Polensek 1988).
Note that most reported values of damping ratio of wood joints and components in
literature pertain to the equivalent viscous damping ratio.

References to damping in engineering literature should be clarified because differ-
ent researchers use the term in slightly different ways. Some materials engineering
researchers study damping as a nondestructive ihspecu‘on tool to determine material
properties while others use it as a macrostructural tool to investigate stress, strain
and slip at interfaces within structural configurations and systems (Lazan 1968). They
use the word damping to mean the total energy dissipation in a member, i.e. viscous
and non-viscous types are combined. Researchers in structural dynamics, however,
normally refer to viscous damping alone when they use the word damping. Energy
dissipation is, thus, attributed to “damping” and inelastic deformation. This is based

on the evaluation of energy equations derived from the equation of motion [Eq. (2.2)
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or (2.3)).

Energy is imparted to a structure during seismic ground motion. The energy equa-
tions can be derived by using either Eq. (2.2) or (2.3) since both systems (Figs. 2.1a and
b) give the same relative displacement. Many researchers used the derivation based
on Eq. (2.3) in past studies. The choice of equation, however, may result in different
definitions of input and kinetic energies. Uang and Bertero (1990) refer to the energy
equation derived from Eq. (2.2) as “absolute” energy equation and that from Eq. (2.3) as
“relative” energy equation. The absolute energy equations derived by Uang and Bertero
are used in defining energy components.

By integrating Eq. (2.2) with respect to u from the time that ground motion excita-
tion starts and replacing u by (¥; — ug), we obtain

m(u)?

> + Icudu + stdu = Imﬁtdug (2.6)

The first term is the “absolute” kinetic energy (Ey),

_ m(u;)?

Ex >

(2.7)

because absolute velocity (u;) is used. The second term is the damping energy (Eg),

which is always non-negative because
Eg = [ cudu = [culat 2.8)

The third term is the absorbed energy (E;), which is composed of recoverable elastic

strain energy (E;) and irrecoverable hysteretic energy (Ep):
Eq = [ fodu = E; + E 2.9)

where E; = (f5)2/(2k).
The right-hand-side in Eq. (2.6) is the “absolute” input energy (E;):

E; = [ maicdu, 2.10)
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where mii; represents the inertia force applied to the structure which is the same as
the total force applied to the structure foundation. Thus, E; represents the work done
by the total base shear at the foundation on the foundation displacement.

The absolute energy equation can be written as

The energy terms are illustrated in Fig. 2.2 for an elastic-perfectly plastic SDF system
(with u=5 and £=5%) subjected to the 1986 San Salvador earthquake (Uang and Bertero
1990).

2.3 Wood Structures and Components

2.3.1 Behavior of Wood Structural Systems

Wood structures consist of interacting components (or subassemblies) such as walls,
floors, roofs and foundation that are fastened together by nails, bolts, steel straps
and/or cleats forming a three-dimensional, highly indeterminate system. They nor-
mally incorporate some kind of lateral load resisting system that helps them to survive
natural disasters, such as earthquakes and typhoons. The four most common systems,
shown in Fig. 2.3a, are (Buchanan and Dean 1988): moment resisting frames, cantilever
columns, diagonal bracing and shear walls. Horizontal bracing and/or diaphragm also
contribute to a building’s lateral load resistance. Typical light-frame residential wood
buildings with diaphragm/shear and bearing wall construction (e.g., Fig. 2.3b) are not
engineered.

Information from damage assessment surveys after natural disasters have tradi-
tionally served to indicate the performance of wood-framed buildings (Soltis 1984;
Falk and Soltis 1988). Data from post-disaster surveys, however, are highly qualitative
and do not provide complete information on the dynamic behavior of the buildings un-

der inspection. Recently, full-scale tests on houses have been used to observe building
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1990)
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behavior and evaluate the failure mechanisms of the complete house and the major
structural components. Three-storey wood houses have been tested in Japan under
various types of loading including horizontal static, reverse cyclic and forced vibra-
tion (e.g. Yasumura et al. 1988, Hirashima 1988). Full-scale dynamic test of a 2-storey
wood house using a 6-degree-of-freedom earthquake simulator has been performed in
Greece (Touliatos 1989). Extensive reviews of full-scale testing around the world can
be found in Gupta and Moss (1991).

Most available data are, however, based on tests of subassemblies such as shear
walls (Medearis and Young 1964; Stewart 1987; Kamiya 1988; Dolan 1989; Filiatrault
and Foschi 1991), diaphragms (Cheung et al. 1988; Polensek and Bastendorff 1979;
Weyerhaeuser 1990) and truss systems (Gavrilovi¢ and Gramatikov 1991). A com-
mon observation from these tests is that the hysteresis trace of a wood subsystem
or subassembly is governed by the hysterestic characteristics of its primary connec-
tion. Nailed sheathing behavior governs the hysteresis of shear walls and diaphragms
(e.g., compare Figs. 2.4 and 2.5b); metal plate connections govern the hysteretic behav-
ior of truss-frame systems. Dowrick (1986) also noted this when he collected cyclic test
data of wood joints and structural systems in New Zealand, Japan and North America
and examined common hysteresis loops for timber structures. Thus, we only need
to characterize the hysteretic behavior of wood joints to characterize the behavior of
wood structures and structural systems.

For analytical purposes, Dowrick classified the hysteresis loops for timber struc-
tures, based on their shape characteristics, into joints with: (1) yielding plate, (2) yield-
- ing nails, and (3) yielding bolts (Fig. 2.5). Similarities in the hysteresis shapes of the

dowel-type fasteners, i.e. nails and bolts, can be seen in Figs. 2.5b and c.

2.3.2 Hysteretic Characteristics

Equation (2.5) shows that ductility is mathematically defined in terms of mate-

rial yield behavior. This poses no problem for steel and some reinforced concrete
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structures, but requires an alternative concept for timber structures since they do not
demonstrate typical yield behavior.

Figure 2.5b shows hysteresis loops from static cyclic loading of a nailed plywood
sheathing, typical of those observed in timber shear walls and diaphragms. Several
characteristic features of cyclic response of these systems can be noted from the figure:
(1) nonlinear, inelastic load-displacement relationship without a distinct yield point, (2)
progressive loss of lateral stiffness in each loading cycle (will be referred to as stiffness
degradation), (3) degradation of strength when cyclically loaded to the same displace-
ment level (will be referred to as strength degradation), and (4) pinched hysteresis loops.
A very important feature, not observed in the figure, is that the response of a wood
joint, and possibly wood structures in general, at a given time depends not only on
instantaneous displacement but also on its past history (i.e., the input and response
at earlier times). This is known as memory. Whale (1988) observed that nailed or
bolted timber joints under irregular short or medium term lateral loading have mem-
ory. In some tests, Dean et al. (1989) also noted the presence of initial slackness due
to shrinkage clearances at bolt holes or deformation at supports.

Any hysteresis or constitutive model for timber structures should incorporate ex-

perimentally observed characteristics such as those given above.

2.4 Hysteresis Models

2.4.1 Models for General Dynamic Analysis

Analytical modeling of an inelastic structure under seismic loading requires a force-
displacement relation that can produce the true behavior of the structure at all dis-
placement levels and strain rates. This is a very stiff requirement considering that
numerous factors contribute to the hysteresis behavior of different structural systems

(Sozen 1974). Besides, most structural systems have hysteretic restoring forces that
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are difficult to compute because the response depends not only on instantaneous dis-
placement but also on its past history. Thus, simplified hysteresis models are used
in practice to obtain estimates of bounds to dynamic response in the inelastic range.
Some models incorporate strength and/or stiffness degradation and pinching in an at-
tempt to more accurately represent actual system behavior. This is important because
degradation might lead to progressive weakening and total failure of structures.
Some piecewise linear hysteresis models that were developed for reinforced con-
crete and steel structures to represent their earthquake response have also been used
in seismic analysis of timber structures. A summary is shown in Fig. 2.6 and briefly

presented below (Loh and Ho 1990):

» Elasto-plastic model (Fig. 2.6a)- is used for a linearly elastic-perfectly plastic system

and normally applied to steel frame structures with large deformation capacities.

e Bilinear model (Fig. 2.6b)- has a finite positive stiffness slope after yielding to sim-
ulate the strain hardening characteristics of steel and reinforced concrete struc-

tures. The elasto-plastic model is a special case of the bilinear model.

o Modified Clough model (Fig. 2.6¢)- has a bilinear primary curve and an unload-
ing stiffness that is updated for each loop by an unloading stiffness degradation

parameter.

o Q-hysteresis model (Fig. 2.6d)- is a modified bilinear hysteresis model incorporat-

ing stiffness degradation during load reversals.

e Takeda model (Fig. 2.6e)- is based on experimentally observed behavior of rein-

forced concrete members tested under lateral load reversals with axial load.

o Slip model (Fig. 2.6f)- is commonly used to model the pinching effects in reinforced

concrete structures with large vertical stresses.

The elasto-plastic and bilinear models are probably the simplest and most widely
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used in dynamic analysis of structures under complex deterministic and random ex-
citations. But the exact solution for random vibration analysis, even for these simple
models, has not been obtained. Previous researchers have used a variety of approxi-
mate solution techniques with varying degrees of success (Noori 1984). The main prob-
lem with the elasto-plastic and bilinear models is their inability to accurately represent
actual material behavior. Other piecewise linear models that allow various forms of
degradation, however, are computationally inefficient, especially for random vibration
analysis, in that they require one to keep track of all stiffness transition points. Ideally,
a hysteresis model should be given in a form suited for random vibration analysis to
allow researchers to investigate structural performance under natural hazards, with
the random characteristics of the loading modeled as random processes. Estimates of
response statistics may then be used to design a structure based on accepted levels of
safety, measured in terms of probability of failure.

Another commonly used model, with smoothly varying hysteresis loops, is the
Ramberg-Osgood model. It is based on a simple function defined by three parameters:
a characteristic or yield load, a characteristic or yield displacement and an exponent.
When the exponent is equal to unity, the model is elastic and when it approaches in-
finity, the elasto-plastic case is obtained. It has been used in modeling structural steel
members and connections and is most applicable for systems exhibiting stable, nonde-
teriorating hysteresis loops (Kaldjian and Fan 1968). But this is not suitable for random
vibration analysis in its original form (Bhatti and Pister 1981). Jennings (1965), Iwan
(1969) and Iemura (1977) have proposed variations of the Ramberg-Osgood model.

Other smoothly varying hysteresis models have been proposed (Iwan 1977; Bouc
1967) but one that has gained wide acceptance is Wen’s (1976; 1980) modification
of Bouc’s model. The hysteretic restoring force is given by a nonlinear first order
differential equation; thus, it is characterized by a single mathematical form. Baber
and Wen (1981) extended the model to admit stiffness and/or strength degradation
and applied it to analyze multidegree-of-freedom structures. Baber and Noori (1986)
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added pinching capability. The Bouc-Wen model has been studied and used by various
researchers (e.g., Ang and Wen 1982, Casciati 1987, Maldonado et al. 1987, Sues et
al. 1988 and Maldonado 1992 among others) to study various engineering problems.
Detailed properties of this model will be discussed in the next chapter.

2.4.2 Current Models for Wood Systems

Ewing et al. (1980) developed a hysteresis model for wood diaphragms to perform
seismic analysis of wood diaphragms in masonry buildings. The model follows the
backbone curve shown in Fig. 2.7a. ( A backbone, or skeleton or load envelope, curve is
the curve resulting from joining the tips of the hysteresis, i.e. points of maximum load
in a virgin loading path.) Based on observations of hysteresis data from Medearis and
Young (1964), they used a trilinear path from the maximum deflection on the positive
backbone curve to the maximum deflection on the negative backbone curve (Fig. 2.7b).
The unloading slope and the residual force are specified to match experimental data.

Since wood joints govern the overall dynamic behavior of wood structures (Dowrick
1986; Stewart 1987; Dolan 1989; Polensek and Schimel 1991), many researchers used
data obtained from tests of wood joints to develop hysteresis models for wood struc-
tures. Kivell et al. (1981) derived an idealized hysteresis model for moment resisting
nailed timber joints (Fig. 2.8a) based on a modification of the Takeda model shown in
Fig. 2.6e. The model follows a simple bi-linear backbone curve. Similar to the model by
Ewing et al., a trilinear path connects maximum deflections in each half cycle. Kivell et
al., however, defined the end points of the lines by a cubic function that passes through
the maximum deflections. They used the model to perform dynamic analyses of two
simple timber portal frames with nailed beam-to-column connections . The model dis-
plays some pinching but does not incorporate stiffness and strength degradation.

Lee (1987) used the hysteresis model earlier proposed by Polensek and Laursen
(1984) for nailed plywood-to-wood connections to perform dynamic analyses of wood

wall and floor systems using the finite element method. The model follows a trilinear
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Figure 2.8: Hysteresis model proposed by Kivell et al. (1981) for moment resisting
nailed timber joints
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backbone curve. Similar to earlier models, the hysteresis trace between maximum
deflections in each half cycle follows a trilinear path. The control points are, however,
obtained using a statistical fit of test data. The model relies heavily on the type and size
of the nail and the material properties of the side members. The regression equations
used to define the control points have a very limited use.

Chou (1987) tested nailed plywood-to-wood connections under cyclic loading and
investigated the experimental hysteresis shapes. He used a system of nonlinear Kelvin
models in series and in parallel to model the hysteresis loops of the joint. Nail be-
havior was studied using a modification of the beam-on-elastic-foundation analysis.
Nonlinear response was approximated by a linear step-by-step approach; that is, non-
linear response was considered as the sum of different linear responses under small
increments of load. It is, however, unclear how Chou’s model can be used for dynamic
analysis of wood structural systems.

Stewart (1987) and Dolan (1989) modeled hysteresis in nailed sheathing-to-lumber
connections. Stewart (1987) idealized pinching and stiffness degradation using a set
of force-history rules to obtain the hysteresis shape shown in Fig. 2.9a. A key fea-
ture of Stewart’s model is the option to include an initial slackness in the first loading
cycle. Dean et al. (1989) noted the presence of initial slackness in tests of subassem-
blies caused by shrinkage clearances at bolt holes or deformation at supports. Dolan
(1989) divided a hysteresis loop into four segments, each one defined by an exponen-
tial equation with four boundary conditions (Fig. 2.9b). This model was incorporated
in a dynamic finite element model that predicts shear wall response to earthquakes.

Ceccotti and Vignoli (1990) developed a hysteresis model for moment-resisting
semi-rigid wood joints that are normally used in glulam portal frames in Europe. It
also models pinching and stiffness degradation (Fig. 2.10). A set of subroutines were
written to define the new hysteretic element and were fncorporated into the commercial
nonlinear dynamic analysis program DRAIN-2D.

In Japan, several models have been used in dynamic analysis of Japanese wood
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houses. Sakamoto and Ohashi (1988) proposed two hysteresis models for conventional
Japanese wood houses. The first model consists of a parallel combination of bilinear
element and slip element and the second model follows a trilinear path from the max-
imum deflection on the positive backbone curve to the maximum deflection on the
negative backbone curve. The three control points were obtained from racking tests of
shear walls (Fig. 2.11a). Kamiya (1988) proposed the model shown in Fig. 2.11b, which
was developed from pseudo-dynamic tests of wood-sheathed shear walls. The model in
Fig. 2.11c was proposed by Miyazawa (1990) for Japanese wood-framed construction.

For trussed-frame wood systems, Gavrilovi¢ and Gramatikov (1991) used a simple
bilinear hysteresis model. The hysteresis trace between maximum deflections in each
half cycle also follows a bilinear path.

Foschi and his associates proposed a new hysteresis model for a single dowel-type
fastener (Fig. 2.12). The analysis considered the fastener as an elasto-plastic beam on
a nonlinear foundation (the wood support), and keeps track of the gap which forms
between the beam and the support during load cycling (UBC 1993). The model was
verified by cyclic testing of nails driven into spruce wood. Hysteresis parameters are
obtained from basic characteristics of joint materials, namely, modulus of elasticity

and yield point of the fastener and embedment properties of the side members.

2.4.3 Comments

While the current models for wood satisfied some of the specific features of the
joints that they meant to model, they may be inappropriate for joints with different
configurations and material components. Since (1) there are hundreds of combinations
of materials and joint configurations in wood systems, and (2) wood-based products,
fasteners and use of wood-based products continue to evolve, a general model is pre-
ferred over models derived from specific configurations. A completely empirical model
will not only be expensive to obtain but may also be of limited use in dynamic analy-

sis. A mathematical model, meeting all the criteria given in section 2.3.2, is preferred.
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Model parameters may be estimated from tests of representative wood joints or as-
semblies.

All the available models for wood systems use a complex set of force-history rules
and are expressed in forms incompatible with available random vibration solution
methods. For this reason, research on the dynamic analyses of wood structures has
been limited to deterministic approaches and has lagged behind advances in general
structural dynamics. Ideally, a hysteresis model for wood structures should be given in
a form suited for both deterministic and random vibration analyses. The latter would
allow researchers to investigate the performance of wood structures under natural

hazards, with the loading modeled as random processes.

2.5 Summary

Basic terms and concepts used in structural modeling and dynamic analysis were
presented to provide the necessary background for the present work. Cyclic tests on
wood subassemblies and wood joints were reviewed. It was pointed out that the hys-
teresis trace of a wood subsystem or subassembly is governed by the hysterestic char-
acteristics of its primary connection. Thus, we only need to characterize the hysteretic
behavior of wood joints to characterize the behavior of wood structures and structural
systems. Dowrick (1986) classified the hysteresis loops for timber structures, based
on their shape characteristics, into joints with: (1) yielding plate, (2) yielding nails,
and (:3‘) yielding bolts. Based on experimental hysteresis, any hysteresis or constitutive
model for timber structures should incorporate experimentally observed characteris-
tics such as: (I) nonlinear, inelastic load-displacement relationship without a distinct
yield point, (2) stiffness degradation, (3) strength degradation, (4) pinching, and (5)
memory. Incorporating memory means that the model should be capable of predicting
response at a given time based not only on instantaneous displacement but also on its
past history (i.e., the input and response at earlier times).

Hysteresis models proposed for steel, concrete and wood structures were reviewed.
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The models for wood were derived from specific joint configurations and were ex-
pressed using either a complex set of force-history rules or limited empirical relations.
It was apparent that there is a need for a general hysteresis model that incorporates
all the features given above. Such a model would permit response computations of a
wide variety of wood structural systems under arbitrary dynamic loading and help in

investigating the safety and performance of engineered wood structures.
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Hysteresis Modeling

3.1 General

Analytical modeling of an inelastic structure under seismic loading requires a force-
displacement relation that can produce the true behavior of the structure at all dis-
placement levels and strain rates. This is a very stiff requirement considering that
numerous factors contribute to the hysteresis behavior of different structural systems
(Sozen 1974). Besides, most structural systems, especially wood systems, have hys-
teretic restoring forces that are difficult to compute because the response depends not
only on instantaneous displacement but also on its past history (referred to earlier as
memory). The hysteresis model should take this into account while simulating other
characteristic features of wood systems that have been identified in the previous chap-
ter. It is important to incorporate strength and/or stiffness degradation and pinching
to more accurately represent actual system behavior because degradation might lead
to progressive weakening and total failure of structures.

A general hysteresis model for wood joints and structural systems that incorpo-
rates the hysteretic features that have been identified in the previous chapter will be
presented. The smoothly varying Bouc-Wen hysteresis model and its extensions will
be examined. A pinching, degrading model modified to more accurately model the
hysteretic behavior of wood joints will be described.

35
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3.2 Approach to Modeling

Generally, there are two possible approaches in obtaining a hysteresis model for
wood systems: (1) by empirically fitting experimental data from cyclic tests of partic-
ular wood joints, or (2) by describing system behavior using an approximate mathe-
matical model. Since (I) there are hundreds of combinations of materials and joint
configurations in wood systems, and (2) wood-based products, fasteners and use of
wood-based products continue to evolve, a general model is preferred over models
derived from specific configurations. A completely empirical model will not only be
expensive to obtain but may also be of limited use in dynamic analysis. A mathematical
model, meeting the criteria given in section 2.3.2, is preferred. Model parameters may

be estimated from tests of representative wood joints or assemblies.

3.3 Mechanical Model

In the previous chapter, a simple single-degree-of-freedom (SDF) mechanical model
with system mass, m, a dashpot with viscous damping coefficient, ¢, and a spring with
stiffness, k, was introduced. A brief background was also given on damping and energy
dissipation. Here, the mechanical model for nonlinear wood systems is presented.

A nonlinear system can be represented by a dynamic mechanical model with: (1)
linear spring and nonlinear damping- Coulomb type or aerodynamic type alone or in
combination with viscous damping (Fig. 3.1a); (2) nonlinear spring and linear viscous
damping (Fig. 3.1b); (3) nonlinear spring and nonlinear damping (Fig. 3.1¢); (4) linear
spring, linear viscous damping and nonlinear hysteretic element (Fig. 3.1d), or; (5) vari-
ous combinations of (1)to (4). The choice of an appropriate mechanical model depends
on the complexity of mathematical expression that describes the model and its com-
patibility with known solution techniques.

An efficient way to treat a nonlinear hysteretic system is to separate the source of

nonlinearity in the system from any linear components. This results in a mechanical
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model with three parallel elements: (1)a linear viscous damping, (2) a linear spring and
(3)a hystereu‘c' element (Fig. 3.2a). This achieves two things: (1) analytical difficulty in
treating the different sources of energy dissipation in the system is avoided since the
non-viscous types are lumped together into the hysteresis element, and (2) standard
values for the viscous damping ratio of linear wood systems can be used for analysis.
Once the parameters of the hysteresis model are identified, dissipated hysteretic energy

can be obtained from the hysteresis trace of the response.

3.4 The Bouc-Wen-Baber-Noori Model

3.4.1 Background

Bouc (1967) suggested a versatile, smoothly varying hysteresis model for a SDF me-
chanical system under forced vibration. With the mechanical model shown in Fig. 3.2a,
Wen (1976; 1980) generalized Bouc's hysteretic constitutive law and developed an ap-
proximate solution procedure for random vibration analysis based on the method of
equivalent (or statistical) linearization. Baber and Wen (1981) extended the model to ad-
mit stiffness and/or strength degradation as a function of hysteretic energy dissipation
and applied it to a multidegree-of-freedom system. Later on, Baber and Noori (1986)
further extended the modified Bouc model by incorporating pinching while maintain-
ing it in a form compatible with Wen and Baber and Wen’s equivalent linearization
solution. Response statistics obtained by the equivalent linearization technique were
shown to reasonably approximate those obtained by Monte Carlo Simulation. The final
model will be called the Bouc-Wen-Baber-Noori (BWBN) model in the present work.

Many researchers have used the early form of the modified Bouc model in random
vibration investigations of hysteretic systems. With the features added by Baber and
Wen (1981) and Baber and Noori (1986), it has more closely approximated the hysteretic
behavior of wood joints and structural systems. However, it needs further modification

to be applicable in modeling general wood system behavior.
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(a) schematic model

Fk Fh_=(1—(l)kz
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(b) non-damping linear restoring (¢) hysteretic restoring force
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Figure 3.2: Hysteretic SDF system for wood structural systems
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Although one of the best features of the BWBN model is its continuous and mathe-
matically tractable form that is suited for random vibration analysis, the present work
will focus only on deterministic dynamic analysis (i.e., the forcing function is assumed

as a known function of time).

3.4.2 Equation of Motion and Constitutive Relations

Considering the SDF hysteretic system in Fig. 3.2a, the equation of motion may be
generally written as

mit + cu + R[u(t), z(t);t]= F(t) (3.1)

where dots designate time derivatives; F(t) is the forcing function; the damping restor-
ing force, cu, is assumed linear and R[u(t), z(t); t] is the non-damping restoring force
consisting of the linear restoring force aku and the hysteretic restoring force (1 - «)kz
(Figs. 3.2b and c). Dividing both sides of Eq. (3.1) by m, the following standard form is
obtained:

i+ 25, wott + awlu + (1 — x)wiz = f(t) (3.2)

where the hysteretic displacement z is a function of the time history of wu; it is related

to u through the following first-order nonlinear differential equation,

2= h(z2) {Aa—v(3|u||z|"“12+yulzl")} 3.3)
n
where,
f(t) = mass-normalized forcing function,
Wo = preyield natural frequency of the system (\/m ); k; is initial stiffness ,
& = linear damping ratio (c/Z\/kTm_ ),
o = a weighting constant representing the relative participations of the linear
and nonlinear terms (0< « <1),
A = parameter that regulates the tangent stiffness and ultimate hysteretic

strength,
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B,y,n = hysteresis shape parameters,

v,n = strength and stiffness degradation parameters, respectively; if v = n = 1.0,
the model does not degrade ,

h(z) = the pinching function introduced by Baber and Noori (1986); if h(z)= 1.0,

the model does not pinch.

The hysteretic restoring force is given by the fourth term in Eq. (3.2) as F, = (1 —
a)w?3z. Since [(1 — ) w2] is a time-invariant system property, the hysteretic restoring
force will also be referred to as z from hereon.

Equation (3.3) defines the constitutive law, based on a modified “endochronic”
model of the force-displacement relations. The hereditary restoring force model sat-
isfies the requirement that the response depends not only on instantaneous displace-

ment but also on its past history (referred to earlier as memory).

3.4.3 Hysteresis Shape Properties

Baber (1980) and Maldonado et al. (1987) examined in great detail the properties
of the Bouc-Wen or Modified-Bouc model (i.e., the non-degrading, v = n = 1.0, and
non-pinching, h(z)=1, model). To understand the effects of the model parameters on

hysteresis shape, let us examine the parameters «, A, B, y and n.

3.4.3.1 Parameters A and «

From Eq. (3.1), the total non-damping restoring force Fr is expressed as
Fr=kloou+ (1-x)z]. (3.4)

Recall that ocku is the linear restoring force (due to the spring element) and (1 — a)kz
is the the hysteretic restoring force (due to the hysteretic element). The tangent stiff-
ness to the nonlinear restoring force is obtained by differentiating Fr with respect to

displacement u.:

dFy _ @iz
au [(x+(1 a)du] (3.5)
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where %z; is the tangent to the nonlinear path in the z-u plane. This is obtained by
dividing both sides of Eq. (3.3) by & (or 4%),

2 _hz) {A = V‘ﬁsg“(“):l"‘lz + )'IZI")}

T (3.6)

where sgn(-) = the signum function. The ultimate value of z, or z,, is obtained by
setting :—i to zero and solving it for z to get
1/n
= |vden) &0
Assuming that v, §, y and n do not change, this shows that A regulates the ultimate
hysteretic strength, z,,.
To investigate the effect of A on the tangent stiffness in the z-u plane, setv =n =

1.0 and h(z)=1, and rewrite Eq. (3.6) as
dz

= A — y n-1 n
™ A- (Bsgn(u) 1z|" "z + ylz|™) (3.8
At the limit z - u — 0,
dz
- =A (3.9)
du z=u=0

This means that A sets the initial tangent stiffness. Egs. (3.7) and (3.9), thus, show that
increasing the value of A increases both the ultimate hysteretic strength, z,, and the
initial tangent stiffness, %2 at z = u = 0.

In the special case where A=1, a physical interpretation of the parameter & may be
obtained. Substitute Eq. (3.9) into (3.5) to obtain the initial tangent stiffness, k;, in the

Fr-u plane,
dFr

ki: du z=u=0

=k[a+(1-«)-1] (3.10)

which gives
ki=k. (3.11)

At zy, j—f¢=0 and the final tangent stiffness, ky, is

dFr

=,

=ka. (3.12)
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From Egs. (3.11) and (3.12),
0=, (3.13)

Thus, « is the ratio of the final tangent stiffness to the initial stiffness, when A=1.

The preceding discussion may also be extended to provide some insight into the
relationship of hystereses in the Fr-u and the z-u planes. For illustration purpose, we
will keep A=1. First, consider a half cycle in the z-u plane. After plotting the tangent
stiffness lines at z=0, Eq. (3.9), and z = z,, the hysteresis may be plotted as shown in
Fig. 3.3a. When A=1, the “yield” displacement, u,, corresponding to the intersection
of the initial and final tangent stiffness lines, is numerically equal to z,.

In the Fr-u plane, the yield force is

Fry = klauy + (1 - a)zy] (3.14)
or
Uy =2y = F% : (3.15)

As seen in Fig. 3.3b, Fr,, corresponds to the intersection of the initial and final tangent
stiffness lines and not to the actual force in the hysteresis curve corresponding to u,.
Fig. 3.3 shows that the hysteresis may be plotted in either plane, since it can be easily
mapped from one to the other. The present work will focus mainly on the hysteresis

in the z-u plane.

3.4.3.2 Parameters § and y

Focusing on the non-degrading, non-pinching BWBN model, the constitutive rela-

tions may be broken into four segments. Eq. (3.8) is expressed as four differential

equations,
4z _ A-(B+yz" z220,u=z0 (3.16)
du S
dz n .
o = A-(y-PB)z z>20,u<0 (3.17)
dz _ A+ (1)1 (B +y)z" z<0,u<0 (3.18)

du
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Figure 3.3: Nondegrading and non-pinching BWBN model: (a) z-u plane, (b) Fr-u plane



Chapter 3. Hysteresis Modeling 45

dz
du

Considering the simple case where n = 1, solutions to the above equations are plotted

= A+ (-1)"(y - B)z" z<0,u=0 (3.19)

in Fig. 3.4, where u, is the displacement at z=0, a quantity which varies from cycle to
cycle. Egs. (3.16) and (3.18) (Figs. 3.4a and c) are the loading, or outward, paths and
Egs. (3.17) and (3.19) (Figs. 3.4b and d) are the unloading, or inward, paths.

The equations for the loading paths may be combined and rewritten as
dz

_ _ n Y

au B+y)lzl zu>0 (3.20)
Similarly, for the unloading paths,

az _ n -

du = (y - B)lz| zu <0 (3.21)

With these equations, it can be readily seen that when =0, the two equations are the
same and the loading and unloading paths coalesce into a single path. Although the
path may remain nonlinear (when 7 >1), it is nonhysteretic.

Examining the positive loading (Fig. 3.4a) and unloading (Fig. 3.4b) paths, it is ob-
served that a variety of hysteresis shapes may be obtained by varying the values of A,
B and y. When B <0, a negative dissipation energy is obtained. Since this cannot be
physically realized, g should therefore always be positive, regardless of the value of y.
With this restriction, hysteresis shapes resulting from possible combinations of 8 and
y are shown in Fig. 3.5.

Depending on y, a softening or hardening model may be obtained. A softening
characteristic is obtained when the slope of the hysteresis path decreases with increas-
ing |z|. A hardening model is obtained when the slope of the hysteresis path increases
with increasing |z|. As seen in Fig. 3.5, positive y tends to cause softening and nega-
tive y tends to cause hardening, but the limiting behavior will remain softening unless
ly| > |Bl and y < 0. To obtain a linear unloading path, set y = B.

3.4.3.3 Parameter n

The effect of n on the skeleton curves of the hysteresis will be investigated in this
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Figure 3.4: Hysteresis loop behavior for n=1
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Figure 3.5: Possible hysteresis shapes, n=1 (from Baber 1980)
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section. In Fig. 3.6, the skeleton curves for n=1,3,6 and 12 are shown for the case A=1,
B = y = 0.5. It can be seen that as 7 increases, the model approaches the elasto-plastic
behavior. This can be shown analytically by examining the softening model, (8+y)> 0.
The loading path is given by Eq. (3.20). Considering the non-degrading case, v=1, and
substituting for (8 + y) from Eq. (3.7) into (3.20), we get

n
d_i _A_A (i) _ (3.22)

Whenz < zy,asn — o, (z/z,)"=0and é‘% = A. Thus, the loading pathfor0 < z < z,
is linear. When z = z,,, 4 = 0 as before. This is a horizontal line.

The unloading path when z > 0 is defined by Eq. (3.21) and may be expressed as

% —A- [A (;'—;—g)] (%)n (3.23)

after some manipulation of Eq. (3.7) and substitution into (3.21). Again, as n — «, the

slope approaches a constant value A, which is the same as that for the loading path.
The foregoing shows that as n — o, the hysteresis in the z-u plane produces an

elasto-plastic model. Following Fig. 3.3, this would produce a true bilinear hysteresis

in the Fr-u plane, with & > 0, and a true elasto-plastic hysteresis, with & = 0.

3.4.4 Swurength and Stiffness Degradation and Pinching

Degradation is controlled by defining the parameters v and n as functions of the
dissipated hysteretic energy given by
u

©u : t
e= [ Fp-du =(1—a)ngfzdu =(1—a)w§jfzudt (3.24)
Uo Uo £,

/]

Then, A, v and n may be written as

A(e) = Ap,-0,¢
v(ie) = 1.0+0dyv¢ (3.25)
nE) = 1.0+6,¢
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Figure 3.6: Skeleton curves with varying n
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where A, is the initial value of A and the §’s are constants specified for the desired rate
of degradation. A value of 6 = 0 means no degradation. If A decreases (i.e., 64 >0),
both strength and stiffness degrade (Fig. 3.7). If v increases (i.e., 6, >0), strength
alone degrades (Fig. 3.8). If n increases (i.e., 6, >0), stiffness alone degrades (Fig. 3.9).
Figures 3.10a, b and ¢ show the effect of changing values of A, v and n, respectively,
using the stiffness, dz/du, vs. z/z, plot. Note that each plot shows the positive z
loading case only.

Sues et al. (1988) suggested an alternative stiffness degradation scheme similar to
that of Clough for reinforced concrete elements (see Fig. 2.6¢). The stiffness degrada-
tion parameter, 1, is defined such that the value of A (which controls the initial loading
slope of each hysteresis cycle) reflects the maximum deformation reached in the pre-
vious cycle. The desired displacement dependent stiffness degradation is achieved

by
(Up; — Up;_y)

e P (3.26)
where,
ni = value of n during the it* half cycle ,
Up; = peak displacement in it* half cycle,
z,, = peak z value in it* half cycle
Up,_, = peakdisplacementin (i - 1)tk half cycle (note that this is the peak
opposite and immediately before that in the it* half cycle),
Zp,, = peak z value in (i — 1)t* half cycle.

Sues et al. (1988) found Eq. (3.26) to adequately model the stiffness degradation ob-
served in scale model tests of a reinforced concrete building and a reinforced concrete
frame. Incorporating Eq. (3.26) with pinching (like the one that will be described next),
the author, however, found that the rate of degradation increases too fast and out of
control. The resulting model is practically useless. Thus, for a Bouc-Wen model that
incorporates pinching, the energy-based stiffness degradation originally proposed by
Baber and Wen (1981), and given in Eq. (3.25), is preferred.
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Figure 3.7: Strength and stiffness degradation- effect of varying A
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Figure 3.8: Strength degradation- effect of varying v
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Figure 3.9: Stiffness degradation- effect of varying n
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Figure 3.10: Degradation effect using dz/du vs. z/z,, plot
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The pinching function, h(z), originally proposed by Baber and Noori (1986), allows
control of pinching severity and sharpness as functions of &¢. It is defined by the fol-
lowing expressions (Baber and Noori 1986):

h(z) = 1.0-G e2/TD (3.27)
Ci(e) = T, [1.0-e0P9] (3.28)
C2(e) = (Po+by€) (A+T1) (3.29)

where,

C1 = controls the magnitude of initial drop in slope, dz/du; (1 < 1.0),

[P = controls the rate of change of the slope, dz/du,

1] = parameter that contributes to the amount of pinching,

Oy = parameter specified for the desired rate of change of ¢> based on ¢,

pr = constant that controls the rate of initial drop in slope,

C1, = measure of total slip,

A = small parameter that controls the rate of change of > as C; changes.

The pinching function effect can be seen from the plot of stiffness, dz/du, against
z/z, in the absence of degradation (Fig. 3.11). Fig. 3.11a shows that when {; varies
while > is kept constant, dz/du drops at the start of the second and successive loading
cycles. Pinching is induced by forcing minimum tangent stiffness when z=0. Then, the
stiffness increases relatively rapidly as z increases, slowing down as the original slope
is approached. When € is kept constant, the original slope is reached at the same level
of z in all cycles. When > is varied and ; is kept constant, the level of drop at the start
of the second and successive loading cycles remains the same but the original slope is
reached at increasing levels of z. Thus, it may be stated that £; controls the severity of
pinching while > controls the rate of pinching. Fig. 3.11c shows the pinching function
effect when both £; and > vary.

While Baber and Noori’s pinching function improved the versatility and capability of
the BWBN model, most wood joints and structural systems that show pinching behavior
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Figure 3.11: Baber and Noori’s (1986) pinching function effect (dz/du vs. z/zy)
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do not pinch at z=0 (e.g., Fig. 2.4). Thus, the pinching function should be modified.
Section 3.5 will discuss the pinching behavior of wood systems and the development
of an appropriate pinching function.

3.4.5 Model Limitation

Maldonado et al. (1987) and Casciati (1987) observed that the most serious draw-
back in the original Bouc-Wen model (i.e., the nondegrading, nonpinching type) was its
inability to form a small loop during partial loading-unloading (see Fig. 3.12). Instead,
the model softens during reloading without stress reversal. Most materials, includ-
ing wood, demonstrate hysteresis loops in loading situations without stress reversal.
This unwanted model behavior, however, is of relatively minor consequence in seismic
analysis because seismic ground motions induce stress reversals on structures. Seis-
mic ground action is often treated as a zero mean random process. For other loadings
(e.g., wind) where this mechanical behavior needs to be modeled properly for analysis,
a modification to the Bouc-Wen model was proposed by Casciati (1987). Two terms
are added in the hysteretic constitutive equation so that the stiffness at the beginning
of reloading, when there is no stress reversal, is greater than the one at the end of
unloading. These terms disappear during unloading.

Casciati’s modification of the Bouc-Wen model will not be considered in the present
work. Dynamic analysis will be limited, for now, to wood structural systems under
earthquake loading.

3.5 Pinching of Wood Systems

3.5.1 Experimental Observations

A closer examination of the pinching behavior of wood subassemblies in Fig. 2.4
and the nailed sheathing joint in Fig. 2.5¢ shows that the pinching function should
have the following features (illustrated in Fig. 3.13):
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(a) Bouc-Wen hysteresis behavior

Y

(b) behavior of most materials (including wood)

Figure 3.12: Hysteresis during partial loading-unloading
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Figure 3.13: Pinching of wood systems (dz/du vs. z/zy)
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¢ In initial loading (starting from rest), no pinching occurs.

« In the second loading cycle, pinching starts: dz/du drops at z=0 and continues to
decrease until it reaches a minimum at z = some fraction of z,, or gz,,. Then the
stiffness increases relatively rapidly as z increases, slowing down as the original
slope is approached. As z finally approaches ultimate value, the slope sharply

decreases and reaches zero at z,,.

¢ In the third and successive cycles, the drop of dz/du at z=0 slows down but
the stiffness reaches a minimum at gz,, again. Medearis and Young (1964) first
noticed this on cyclic tests of plywood shear walls and called gz, the invariant

point. Others call it the residual force.

3.5.2 Pinching Function Development

Baber and Noori (1986) introduced the use of dz/du vs. z curves to develop hystere-
sis models. Here, the object is to obtain mathematical functions that would provide the
dz/du behavior shown in Fig. 3.13 and listed in section 3.5.1. To do this, the tangent

stiffness function, given earlier in Eq. 3.6 as

(3.30)

dz {1 ~-v(Bsgn(u) [z|" 1z + ylzl")}
du ’

—— =h(z)
n

is examined.

To get the desired pinching, the pinching function, h(z), should be a small value at
z=0 and reach a minimum at z = gz,; this makes dz/du minimum at this level as well.
As z increases, h(z) should approach 1 to allow dz/du to return to the original stiff-
ness path. During unloading, h(z) should not cause pinching even at z = qgz,. Thus,
pinching should be induced during loading only, that is, when z# > 0 or sgn(z)-sgn(tt)
is positive [see Eq. (3.20)].

Several modifications of Baber and Noori’s (1986) original function, defined by
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Egs. (3.27), (3.28) and (3.29), were investigated. One that meets the foregoing require-

ments with the least modification of Baber and Noori’s function is
h(z)= 1.0 - ; el~(Zsen()-qzu)* /3] (3.31)

where g is a constant that sets a fraction of z, as the pinching level and all other
parameters are as previously defined. Eq. (3.31) is a generalization of Baber and Noori’s
pinching function; that is, when g=0, the model reverts back to Baber and Noori’s
original function. It is desired that as little modification as possible is introduced to
Baber and Noori’s equation in the hope that the new model will maintain the original
form’s compatibility with statistical linearization during random vibration analysis.
Although random vibration analysis is not performed in the present work, this is the
goal of the project’s next phase.

Figure 3.14 shows h(z) as a function of z and sgn(ut), where ;=0.85, £,=0.02,
g=0.15 and z,=1.0. Its effect on dz/du satisfies the pinching requirements for wood

systems and produces a dz/du vs. z/z,, plot similar to that in Fig. 3.13.

3.6 Summary

The Bouc-Wen-Baber-Noori (BWBN) hysteresis model was used as the basis of a gen-
eral model for wood joints and structural systems. The mechanical model consisted
of three parallel elements: (1) a linear viscous damping, (2) a linear spring and (3) a
hysteretic element. The hysteretic element was defined by a nonlinear first-order dif-
ferential equation with a form similar to that in the endochronic theory of plasticity.
The hereditary nature of the constitutive relations satisfied the requirement that the
response depends not only on instantaneous displacement but also on its past history
(or memory).

The form and properties of the original Bouc-Wen model and its extensions were

presented. The pinching capability of the BWBN model was modified so that it would
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Figure 3.14: Behavior of the proposed pinching function for wood systems
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represent pinching in dowel-type wood joints more accurately. The generalized pinch-
ing capability enhanced the model’s versatility. The modified BWBN model is, in fact,
applicable to structures made of other materials, such as steel and reinforced concrete,
that exhibit pinching similar to that observed in dowel-type wood joints and plywood
shear walls. In summary, the modified BWBN hysteresis model incorporates all the
experimentally observed characteristics of timber structures that were identified in
the previous chapter. It has: (I) a nonlinear, inelastic load-displacement relationship
without a distinct yield point, (2) stiffness degradation, (3) strength degradation, (4)
pinching, and (5) memory.



Chapter 4

Dynamic Modeling of Wood Structures

4.1 General

Structures are continuous systems and as such have an infinite number of degrees
of freedom. For analytical purposes, the structure is simplified by means of spatial
discretization of the continuum. The following discretization methods can be used in
the dynamic modeling of structures (Clough and Penzien 1993): (1) concentrated mass
method, (2) generalized displacements method, and (3) finite element method. Use of
any of these methods results in a discretized structural model with a finite number
of degrees of freedom. The present work will concentrate on the concentrated mass
method only.

The basis, form and properties of a general hysteresis model for wood joints and
structural systems were presented in the previous chapter. Here, the complete form of
the modified Bouc-Wen-Baber-Noori (BWBN) model for SDF wood systems will be sum-
marized, a model for MDF systems will be derived, methods for parameter estimation
will be briefly discussed, model behavior will be compared with a selected number of
experimental hysteresis results and its potential applications for future studies in dy-

namic analysis and design of wood structures and structural systems will be presented.

4.2 Proposed Model for Wood Structural Systems

4.2.1 Model for SDF Systems
While very few real structures are accurately modeled by SDF models, such models
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may still be used for preliminary dynamic analyses of many types of structures. In
some cases, a SDF model is sufficient to obtain a basic understanding of the dynamic
behavior of the structural system. Fig. 4.1 shows a SDF dynamic model idealization of
a trussed wood-frame and a wood shear wall. The structural mass is assumed to be
concentrated in the direction of the displacement. Stewart (1987) and Kamiya (1988)
performed time history analyses of wood-sheathed shear walls using a SDF model that
incorporates their hysteresis models presented in section 2.4.2. Stewart obtained hys-
teresis parameters from full-scale cyclic tests of the walls, while Kamiya obtained model
parameters from pseudo-dynamic tests. Gavrilovi¢ and Gramatikov (1991) also used a
SDF model to compute the dynamic response of a trussed-frame wood structure.

The hysteresis model developed and described in the previous chapter will now be

summarized for SDF wood systems. The equation of motion is
i+ 25,wott + awiu + (1 — c)w3z = f(t) . 4.1)

So that « is the ratio of the final tangent stiffness to the initial stiffness (see section
3.4.3.1), A will be set to unity (A=1) in the hysteretic constitutive relations. Then, the

constitutive law, Eq. (3.3), becomes

 — y n-1 IPALC
3= h(z) {u v(Blullz|"" z + yul|z| ”f 4.2)
n
with pinching function
h(z)=1.0-0 e[-—(zsgn(il)-QZu)z/C§] 4.3)
where
Ti(e) = Ty, [1.0-elP9] (4.4)
Ca(e) = (Po+0ype) A+T1). (4.5)
Strength and stiffness degradation are modeled, respectively, by
v(e) = 1.0+06,¢ (4.6)
ne) = 1.0+6,¢.
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Note that parameter A is now treated as a constant (in this case A=1). Pinching, and

strength and stiffness degradation are controlled by the hysteretic energy dissipation
2 (¥
£=(1-a)w? L zidt . 4.7)

All variables are as previously defined.

The foregoing model satisfies all the experimentally observed features of hysteretic
behavior of wood joints and structural systems, namely, (1) nonlinear hysteresis, (2)
stiffness degradation, (3) strength degradation, (4) pinching and (5) memory (see sec-
tion 2.3.2). The constitutive law takes into account the dependence of wood joints’

response on their past history.

4.2.2 Model for MDF Systems
4.2.2.1 Shear Building Model

Multi-storey buildings have been commonly treated as “shear-beam” or, simply,
shear buildings in most earthquake engineering studies. A shear building model, the
simplest MDF model possible, is based on the following assumptions (Paz 1991): (1)
the total mass of the structure is concentrated at the levels of the floors (or the roof,
at the top floor), (2) the girders on the floors are infinitely rigid as compared to the
columns, and (3) the deformation of the structure is independent of the axial forces
present in the columns. The structure will now only have as many degrees of freedom
as it has lumped masses at the floor levels. With the second assumption, rotation at
the girder-to-column joint is suppressed. The third assumption means that the rigid
girders remain horizontal during ground motion.

While many wood structures may not be ideal candidates as shear building models,
these models may still provide enhancements that make them more preferable than
alternative SDF models. A two-storey wood building shown in Fig. 4.2a, for example,
may be better represented by a three-degree-of-freedom shear building than by a SDF

model. The first mass, mi, is assumed to be concentrated at the floor of the first
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storey. Corresponding hysteretic properties are obtained from the floor-to-foundation
connections. The second mass, m, is concentrated on the second-storey floor. Corre-
sponding hysteretic properties are obtained from the columns (or walls) connecting the
first and second storey floor systems. The trussed-roof structure carries ms, with cor-
responding hysteretic properties obtained from the columns (or walls) connecting the
second storey floor system and the roof system. Sakamoto and Ohashi (1988) used the
shear building model to compute the seismic response of one-, two- and three-storey
conventional Japanese wood houses. Fig. 4.3 shows the lumped mass model that they
used.

Generally, a shear building model may have up to » lumped masses and, thus,
degrees of freedom. Considering the shear building model in Fig. 4.2b, the relative
displacement of the it" mass with respect to the ground displacement is indicated
by x;. Interstorey drift, or the relative displacement between floors, is denoted by
Ui = X; — Xi—1. When dynamically loaded, the it mass is acted upon by the forces
shown in Fig. 4.2c, where %# is the absolute acceleration, X2 = %; + %4, and Q; is the

total restoring force of the it mass given as
Qi = Ci(Xi — Xi-1)+ 0k (Xi — Xi-1)+(1 — ;) kiz; 4.8)

or, in terms of u;,

Qi = cili + oikiu; + (1 - xp)kiz; . (4.9)
Using D’Alembert’s principle, the equation of motion is obtained as
mixf +Qi- Qis1 =0 4.10)
or, after substituting %# and Eq. (4.8) and rearranging,

MmiXi — CiXi-1 + (Ci — Ci+1)Xi + Civ1Xi+1—
oikixi-1 + (ki — Xir1Kiv1)Xi + Kiv1Kiz1Xie1+ 4.11)

(1 -o)kizi — (1 — ai+1)Kiv12i41 = —-MiX,
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Figure 4.2: MDF idealization of multi-storey wood buildings
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Figure 4.3: Sakamoto and Ohashi’s (1988) MDF idealization of multi-storey conven-
tional Japanese houses
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wherei=1,2,...,7. The assemblage of equations of motion for all » masses gives the

following matrix equation:
[MI{X} + [CI{X} + [K*HX} + [H*{Z} = —-[M]{T}%, (4.12)

where {X} is the relative displacement vector, {Z} is the vector for the hysteretic com-
ponent of the displacement and {7} is the influence vector (all entries are 1, in this
case).

The hysteretic displacement, z;, of the it* mass is related to the relative displace-
ment between floors, u;, through the following first-order nonlinear differential equa-

tion:

Ui — vi(Biluillzi ™1z +yiuiIZi|m)} (4.13)

ni
where the parameters are the same as in the SDF model except that they are now defined

Zi = h(z) {

for each element. That is,

h(z;) = 1.0-0, e["(Zi Sgn(ﬂi)—QiZui)zlc‘zZi] (4.14)
C1.(&1) = Ty, [1.0 —el"PiED)] (4.15)
CZ;’(Ei) = (Woi + aq;ifi) (Al + gli) (4-16)

vi(gi)) = 1.0+ 6y; & 4.17)

ni(&;) = 1.0+ 0y & (4.18)

tr
& = (-opwd [ zaidt. (4.19)

Notethat u; = x; —x;1 and i =1,2,...,7.
All the matrices in Eq. (4.12) have dimension (» x r). [M] is the diagonal mass
matrix. [C] is the damping matrix with the following nonzero entries:
[ (c1+¢2) - ]
-c2  (c2+c3) —c3
[C]l= . (4.20)

Cn-1 (Cn-1+¢Cn) —Cn

—Cn Cn
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The linear part of the stiffness matrix, [K*], has the following nonzero entries:

R

_kE (kG +KS) kS
[K*] = (4.21)
Ay (kG +kE) kS
| ko ks

where ki = a;k;. Matrix [H*] contains the hysteretic elements with the following

nonzero entries:

h{ -h¥

h§ —hg
[H*]= 4.22)
n-1 —h%

ha

where h{ = (1 — o;)k;.

The model for MDF shear buildings is now complete and is described by Egs. (4.12) to
(4.22). There are a total of 27 unknowns: 7 unknowns in vector {X} plus » unknowns in
{Z}. There are r equations in (4.12) and another 7 equations to define the constitutive
relations of each deforming element, Egs. (4.13) to (4.19). If we are interested in the
behavior and performance of the it"* mass, its hysteresis may be plotted in the z;-u;
plane. Note that u; is the interstorey drift, or the relative displacement between floors,
calculated as (x; — xj—1).

If it is desired to obtain u; directly, the equations of motion should be formulated
in terms of ;. Substituting % = %; + X4 = ._ it; + X, into Eq. (4.10) and dividing
by m;,

Q Qi _,

1
Uj+Xxg +
El J g m; m;

The relative accelerations are decoupled by subtracting the (i — 1)t* equation from the

(4.23)

ith equation (except when i = 1) to obtain

Qi-1

mi-i

Ui — (1-96q)

+[1+(1—5i1) M ]&
mi-1 | m;
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Qi1 Mis1 "
(] — sy i1 Miv1 )
( Oir) ol ; i1Xg 4.24)

where J;1, 6 are Kronecker deltas (i.e., 6;» = 1 when i = 7, 0 otherwise) introduced
so that the equation will be valid for the first mass (i = 1) and last mass (i = 7), as well
as all the intermediate masses. The complete model is now described by Egs. (4.24)
and (4.13) to (4.19).

4.2.2.2 Alternatives to the Shear Building Model

Other structural models may be used instead of the simple shear building model
given above. Related work will be cited but no other model that specifically incorporates
the modified BWBN hysteresis model will be formulated.

Takizawa (1975) proposed a structural modeling technique that considers the inter-
action of inelastic storey drifts. His approach required that the structural mechanism
producing the inelastic response deformations be known or assumed. The post-yield
degrees of freedom are then based on the frame yield mechanism, with the pre-yield
stiffness based upon the natural frequency. His approach sometimes leads to a SDF
system. Baber (1980) reviewed other modeling techniques and chose the discrete hinge
concept, normally used in deterministic analysis of yielding structures, to model plane
frame structures. Yielding was confined to discrete hinge regions that incorporate
the non-pinching BWBN constitutive relations. Baber (1980; 1986a; 1986b) performed
zero and non-zero mean random vibration analyses of hysteretic frames using this ap-
proach. Fig. 4.4 shows a typical discrete hinge model of a planar frame. Maldonado
(1992) used a similar approach in developing a response spectrum method for plane
frames with potential plastic hinges modeled by the non-pinching non-deteriorating
BWBN constitutive law.

Previous work have, thus, shown that incorporation of the BWBN hysteresis model
into analytical structural models is not limited to shear type buildings. If desired, it
can be used with other structural modeling techniques.
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4.3 Parameter Estimation

There are typically two steps in constructing a mathematical model from measured
data (Ljung and Soderstrom 1983): (1) selecting a family of candidate models that
represents the general behavior of the physical system, and (2) choosing a particular
member of this family that best describes the observed data. A general hysteresis
model has just been proposed for wood structural systems. The model then needs
to be explicitly defined for a particular set of system materials and configurations.
This is specifically known as a parameter estimation problem, or generally as a system
identification problem.

System identification is defined as “a process for constructing a mathematical de-
scription or model of a physical system when both the input to the system and the
corresponding output are known” (Yao 1985). The general topic of system identifi-
cation originated from mechanical control theory and electrical engineering but has
since been used in many branches of science and engineering. For structural engineer-
ing applications, the input is usually a forcing function and the output is displacement,
velocity, or acceleration response of the structure to this force. Thus, the particular
model obtained from the identification process should produce a response that closely
matches the system output, given the same input (Yao 1985).

Ideally, one should use system identification techniques such as Newton’s iterative
algorithm, Gauss method, or Extended Kalman Filtering technique to systematically
determine the hysteresis model parameters from experimental data (e.g., Sues et al.
1988; Maruyama et al. 1989). But this is a major project by itself and is beyond the scope
of the present work. For the purpose of this thesis, a practical, albeit nonsystematic,
approach will be used.

Properties needed in the equation of motion are estimated from the physical sys-
tem. The system’s natural frequency, w,, is computed as \/kiW, where m is the
estimated mass of the system and k; is its initial stiffness. From the system’s exper-

imental hysteresis, the nonlinear weighting constant, «, is computed as the ratio of
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the final tangent stiffness, kg, to initial stiffness, k;. Since system nonlinearity, hys-
teretic damping, and the non-viscous energy dissipation property are modeled by the
hysteretic element, the value of the linear damping ratio, &,, is not critical and may
be arbitrarily chosen within the range 0.01 and 0.05 (Yeh et al. 1971; Chui and Smith
1989) for all wood systems.

Hysteresis shape parameter values for 8 and y should be chosen such that

B+y>0and y-B8<0.

Note that, to obtain positive energy dissipation, 8 > 0. The pinching level constant,
q, is determined from the experimental hysteresis as the ratio of the residual force (at
invariant point) to the maximum restoring force. The pinching and degradation pa-
rameters, p, C1,, A, Yo, Oy, 6y and &, are obtained by experimentation. That is, they
are assigned certain values, the response is computed using the computer program
that is described in the next chapter and the model hysteresis is plotted and com-
pared with experimental hysteresis. This is repeated until the basic hysteresis shape

is satisfactorily reproduced.

4.4 Comparison With Experimental Hysteresis

Model parameters of three comon wood joints, to represent the major hysteresis
types for timber structures that Dowrick (1986) identified (see section 2.3.1), were es-

timated. Figures 4.5a, b and ¢ show the hysteresis shapes produced by the model.

For a SDF wood system, with w,=9.425 rad/s, £,=0.05, «=0.25, whose behavior is
governed by joints with yielding plates, the hysteresis parameters are: 8=0.5, y = 0.5,
q=0, h(z)=1.0, 6,=0 and 6, = O (Fig. 4.5a). Model parameters for a system, with
w,=6.283 rad/s, £,=0.05, x=0.10 and joints with yielding nails, are: f=1.5, y = -0.5,
q=0.10, €1,=0.97, A=0.10, p=1, @,=0.20, 6,4=0.002, 6,=0.005 and &, = 0.05 (Fig. 4.5b).
For a wood structural system, with bolted joints and w,=3.0 rad/s, £,=0.05, x=0.35,
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Figure 4.5: Hysteresis loops produced by the modified BWBN model
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the model parameters are: f=2.0, y = -1.0, g=0, €;,=0.98, A=0.10, p=2.0, y,=0.20,
0y=0.004, 6,=0.0 and 6, = 0.025 (Fig. 4.5¢). Note that to get the exact hysteresis shapes
and response values as shown in Fig. 2.5, complete information about connection ma-
terials, test set-up and the forcing function that was used for testing are needed. Since
most of these are not known, the focus should only be on modeling the basic hystere-
sis shape of the joints in Fig. 2.5; thus, no specific force and displacement units are
considered.

Comparison of model hysteresis (Fig. 4.5) with experimental hysteresis (Fig. 2.5)
shows that the proposed model reasonably mimics the basic hysteresis shape of test
data. The slight discrepancy in the hysteresis shapes of the yielding bolt joints (Fig. 2.5¢
vs. Fig. 4.5¢) may be largely attributed to different forcing functions used in the test
and the analysis. Even then, the basic behavior of the actual bolt joint can be observed
in the model hysteresis.

The model is very flexible and can actually produce a wide variety of hysteresis

shapes if the parameters are varied.

4.5 Potential

Although some practical guidance has been presented to obtain hysteresis param-
eters for any wood system, it is ideal that system identification techniques be used to
estimate the parameters of the proposed model. This will allow us to: (1) systemati-
cally obtain a system model from laboratory or field data for predicting the structural
response of similar real-world systems under adverse environmental loadings such as
earthquakes or winds, and (2) estimate the existing conditions of structures for the as-
sessment of damage and deterioration. The latter may be used to obtain an “improved”
or “updated” mathematical model that better represents the characteristics of the ex-
isting structure. The updated model may then be used to assess safety and reliability of
the existing structure. Maruyama et al. (1989) have performed system identification of
the non-pinching BWBN model using the Extended Kalman Filter algorithm. If the same
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technique can be successfu]ly. applied to the proposed model, hysteresis parameters
of any system configuration and material combination can be systematically estimated
as long as hysteresis data are available.

The non-pinching BWBN model has been shown to adequately model the dynamic
behavior of concrete and steel structures (Sues et al. 1988) and has beenused in random
vibration analysis and stochastic seismic performance evaluation of buildings under
natural hazard loadings. If the proposed model for wood systems, which is a modified
BWBN model, proves to be similarly suited for random vibration analysis, it would
help narrow the gap between advances in general structural dynamics and those in
wood engineering. It has the potential to open up future research opportunities, in
the league of those in other structural materials, in the area of analysis and design of
timber structures against natural hazards.

For example, Ang (1988) and his associates used the Bouc-Wen model (or the non-
degrading, non-pinching BWBN model) to develop a reliability-based damage-limiting
seismic design procedure for reinforced concrete buildings. Structural damage was
quantified using a damage index expressed as a combination of maximum displace-
ment and hysteretic energy dissipation. Both quantities can also be obtained from
random vibration analysis of hysteretic wood systems using the proposed model. Fol-
lowing Ang’s work, random vibration analysis of wood structural systems using the
proposed hysteresis model could provide a method for (1) cumulative damage model
development for, and (2) safety and damage assessment of, wood structures subjected
to dynamic loading. A host of other random vibration problems in wood structures
and structural systems, such as those related to the transport of goods on wooden

pallets and containers, can also be addressed.

4.6 Summary

The complete form of the modified Bouc-Wen-Baber-Noori (BWBN) model proposed
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for SDF wood systems was summarized. A model for MDF shear buildings was formu-
lated; alternative models for planar frames were reviewed. Previous work have shown
that incorporation of the BWBN hysteresis model into analytical structural models need
not be limited to shear type buildings. It may be used with other spatial discretization
methods.

The topic of system identification and parameter estimation was introduced. A
general set of rules for identifying hysteresis model parameters for wood systems was
given. Comparison of model hysteresis with experimental hysteresis showed that the
proposed model reasonably mimics the basic hysteresis shape of test data. Potential

research topics for future work were cited.



Chapter 5

Nonlinear Dynamic Analysis

5.1 General

General purpose dynamic analysis programs have long been used in the analysis
and design of reinforced concrete and steel structures. These programs have, however,
seen very limited use in the analysis of wood structures because the available material
models and finite elements are inadequate to model wood system response. It was
not until the start of the 1980’s that hysteresis models specifically derived for wood
systems surfaced in the literature (see the review in section 2.4.2). (Note that all the
models for wood have only been proposed in the past 13 years or so.) The models for
wood have been incorporated into either existing commercial programs (e.g., DRAIN-
2D) or new programs written to solve a specific problem. The availability of various
types of hysteresis models for wood structures allowed researchers and engineers to
perform dynamic analyses of wood structures and structural systems. The problems
considered and the types of analysis so far employed can be found in Gupta and Moss
(1991). Itis clear, however, that a gap between advances in general structural dynamics
and the dynamic analysis of wood structures remains.

A major requirement for any hysteresis model is that it should provide as realistic
a description of the actual structure’s behavior as possible. Accuracy of the computed
response depends on the accuracy of the mathematical model used to describe the
actual system. But to be of any use, the model should also be readily incorporated into
some kind of dynamic analysis procedure. The last two chapters showed that the pro-
posed hysteresis model for wood systems, the modified Bouc-Wen-Baber-Noori (BWBN)
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model, reasonably mimics the basic hysteresis shape of test data. It incorporates all
the experimentally observed characteristics of timber structures, namely (1) nonlinear,
inelastic behavior, (2) stiffness degradation, (3) strength degradation, (4) pinching, and
(5) memory. To demonstrate its analytical capability, the model will now be incorpo-
rated into a nonlinear dynamic analysis computer program. It is sufficient to limit the

present analysis to a single-degree-of-freedom (SDF) wood system.

5.2 Preliminary Considerations

5.2.1 Governing Equations

The complete set of equations that governs the dynamic behavior of a SDF wood

system were given in section 4.2.1. The equation of motion and constitutive law are

given as
i+ 25, wott + awiu + (1 — a)w3z = f(t) (5.1)
g — y n-1 y n
3= h(z) {u v(iBIuIIZI’7 z +yulz| )} 5.2)

where the hysteretic pinching, h(z), and degradation parameters, v and n, are func-
tions of the energy dissipated by the system, previously given in Eq. (4.7). The rate of
change of the hysteretic energy dissipation may be written as

E=(1-wizu. (5.3)

All parameters are as previously defined.

5.2.2 Overview of Numerical Solution Methods

The governing equations may be solved using any of the available algorithms for
nonlinear structural dynamics. Time derivatives are usually approximated by differ-
ence equations involving one or more increments of time. (A differential equation
involves functions and their derivatives defined on some continuous interval, while a

difference equation involves functions and their differences defined at discrete points.)
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Discrete systems of difference equations are solved using step by step methods, which
may be classified as either single step or multistep . A single step method requires in-
formation about the solution (i.e., displacement, velocity or acceleration) from a single
preceding step to obtain the solution at the current point in time. A multistep method
requires information from several preceding steps.

If a given step formula expresses the response at time t only in terms of the previ-
ously obtained solution at times before ¢, it is called an explicit method. If the response
at time t depends also on the solution at time t, then the method is implicit.

When at least two equations, in a set of difference equations, have very different
scales of the independent variable on which the dependent variables are changing, the
set of equations is said to be stiff. This is often encountered in many physically impor-
tant situations or systems. When this occurs, one is “required to follow the variation
in the solution of the shortest length scale to maintain stability of the integration, even
though accuracy requirements allow a much larger stepsize” (Press et al. 1992). Special
algorithms addressing this issue should be used to solve a stiff set of equations.

Adeli et al. (1978) evaluated several commonly used explicit and implicit numerical
integration techniques in nonlinear structural dynamics and compared their accuracy,
stability and efficiency as applied to a plane stress problem. They concluded that,
among the explicit methods they considered, the central difference predictor is better
than the two-cycle iteration with the trapezoidal rule and the fourth-order Runge-Kutta
method. Among the implicit methods, the Park stiffly-stable method was rated better
than the Newmark-Beta method and Houbolt’s procedure. Comparing the Park stiffly-
stable method to the central difference method, they found that the Park method is
better for elastoplastic analysis, especially when there are geometric nonlinearities.
Park’s method is based on a class of time integrators originally proposed by Gear (1971).

Several new solution algorithms have been proposed for structural dynamic prob-
lems since Adeli et al.’s study. An excellent review of the new methods can be found in

Allahabadi (1987). He chose the constant average acceleration (CAA) method, a special
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case of the Newmark-Beta method, with some enhancements as the solution algorithm
for DRAIN-2DX. Detailed properties of the Newmark method, including five other tra-
ditional methods for nonlinear dynamic analysis, are given in Barbat and Canet (1989).

5.2.3 Solution Approach

Let us consider a vector y defined as

r 1 « ' u W

y=1 22 t=1" 1 (5.4)
y3 4

(7] L]

Then, Egs. (5.1), (5.2) and (5.3) may be rearranged into a set of 4 first-order nonlinear
ordinary differential equations,

Y1 = 2 (5.5)
Y2 = —awiyr—25woy2 - (1 - wiys + f(t) (5.6)
V3 = h(z) {.’)’2 - V(Blyzllyal’;"lys - szlysln)} 5.7)
Ys = (1- )W) y2y3 (5.8)

This arrangement results in a stiff set of equations. Thus, a stiffly-stable method,
known as Gear’s Backward Differentiation Formula (BDF) (Gear 1971; IMSL 1987), was
used to solve for y. Gear’s BDF method is an implicit multistep method. A simple
computer program, incorporating the IMSL subroutine for Gear’s BDF method, was
written to compute the response time histories of SDF wood systems subjected to

arbitrary dynamic loading.

5.3 Response to General Cyclic Loading

The computer program accepts the following types of loading: (1) a single sinu-

soidal function of the form f(t)= (a; + ayt) sin(wt), where the a;’s are specified
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constants, (Fig. 5.1a); (2) a series of sinusoidal functions as shown in Fig. 5.1b where
fi(t)= a; sin(w;t) for each region, t;-1 <t < tj, i =1,2,...,5 and where amplitude
a; and frequency w; for each region are specified independently; and (3) an arbitrary
acceleration input such as the ground acceleration record shown in Fig. 5.1c.

Loading types (1) and (2) are used to verify the program and check the basic capabil-
ity of the proposed hysteresis model. They are also used to compare model hysteresis
with experimental hysteresis (e.g., section 4.4). Most available hysteresis data of wood
joints and systems have been obtained from static cyclic load tests, where the test
specimen is subjected to a predetermined number of displacement controlled loading
cycles. The displacement pattern is normally increasing as shown in Fig. 5.2a. Since the
experimental hysteresis loops in Fig. 2.5 were obtained in this manner, the hysteretic
response of common wood joints in Fig. 4.5 (section 4.4) using the proposed model
were obtained, using the dynamic analysis program, with input defined by loading
type (1) shown in Fig. 5.1a.

The use of tests with increasing amplitude pattern alone to model hysteresis be-
havior of wood systems has been criticized (Moss 1991; Reyer and Oji 1991), however,
and a test procedure with increasing-decreasing-increasing loading pattern, producing
hysteresis inner loops from the smaller amplitude loading, is currently being proposed
in ASTM (Fig. 5.2b). Current hysteresis models proposed for wood, with the exception
of that proposed by the UBC researchers shown in Fig. 2.12, did not consider the hys-
teresis inner loops produced from the smaller amplitude loading cycles. Fig. 5.3 shows
that the modified BWBN model produces small hysteresis loops similar to the behavior
of dowel-type fasteners, modeled by the UBC model, when subjected to a loading pat-
tern similar to loading type (2). The hysteresis plots were obtained with load histories
having different combinations of amplitude and frequency for each region as shown in
the side plots in Fig. 5.3. The SDF system used in all hysteresis plots has the following
properties: w,=3.0 rad/s, £,=0.05, #=0.10, B=1.5, y = -0.5, g=0.10, T1,=0.97, A=0.10,
p=1, Y,=0.20, §,=0.002, §,=0.005 and &, = 0.05.
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Figure 5.1: Loading types handled by the computer program
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Including loading type (2) as an option for load input in the program, therefore,
allowed investigation of model response to general cyclic loading. This will assume
greater importance if the ASTM test procedure proposal is passed and adopted. If
desired, a specialized loading pattern based on the proposed standard may be added
as another load input option to the program.

After the model was verified and validated (this was discussed in section 4.4), load-
ing type (3) was added as a load input option. Response of SDF wood systems under

arbitrary dynamic loading is discussed next.

5.4 Time History Analysis

5.4.1 Ground Accelerogram

Since we are primarily interested in the seismic response of wood structures and
structural systems, earthquake accelerogram data will be used for f(t) in time history
analysis. For illustration purpose, only the Loma Prieta accelerogram record will be
used (Fig. 5.4a). It is the ground acceleration record of the earthquake that occurred
in the San Francisco Bay Area in California in October 17, 1989. The epicenter of the
7.1 Richter scale earthquake was located at the Loma Prieta peak in the Santa Cruz
Mountains, about 60 miles (97 km) southeast of San Francisco. The accelerogram was
recorded in Eureka, California and has a peak horizontal acceleration of 0.63g, where
g is the acceleration of gravity. It was estimated that a ground acceleration of about
0.3g occurred in the bay mud area (Turner et al. 1990).

The relative velocity and pseudo acceleration spectra of the Loma Prieta earthquake

are shown in Figs. 5.4b and c, respectively.

5.4.2 Seismic Response

Consider three hypothetical simple wooden buildings in Fureka, CA at the time of
the Loma Prieta earthquake. How would they have behaved if the ground where they
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stand moved horizontally with acceleration shown in Fig. 5.4a?

Modeling the buildings as SDF systems, to simplify the analysis, and using the pro-
posed hysteresis model for wood structures to represent the three buildings, their
global response time history (i.e., solution of y for the entire time duration under con-
sideration) can be computed as described earlier. As an illustration of response com-
putations, no specific units of force, displacement, velocity and energy are considered.
Additionally, the hysteresis parameter values used in response computations should

not be viewed as realistic representation of any physical system.

5.4.2.1 Trussed-frame Building

The first building is a trussed-frame structure whose behavior was primarily gov-
erned by metal plate connections that have hysteresis behavior given by thatinFig. 4.5a.
The SDF system model was assumed to have the following properties (these were taken
to be the same as those in section 4.4 and Fig. 4.5a): w,=9.425 rad/s, £,=0.05, x=0.25;
the hysteresis parameters are: §=0.5, y = 0.5, =0, h(z)=1.0, 6,=0 and 6, = 0.

The hysteresis response of this trussed-frame building to the Loma Prieta accelero-

gram is given in Fig. 5.5. Response time histories are shown in Fig. 5.6.

5.4.2.2 Building with Plywood Shear Walls

The other building had plywood shear walls to resist lateral loads. The shear walls
governed the building behavior and have hysteresis loops given by that in Fig. 4.5b
for nailed sheathing joints. The model parameters for the system are assumed as:
0,=6.283 rad/s, £=0.05, &=0.10, B=1.5, y = —0.5, g=0.10, £1,=0.97, A=0.10, p=1,
¥0=0.20, 64=0.002, §,=0.005 and 6, = 0.05.

The building governed by plywood shear walls would respond to the Loma Prieta

accelerogram as shown in Figs. 5.7 and 5.8.
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Figure 5.7: Hysteresis response of a building with plywood shear walls to the Loma
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Figure 5.8: Response time histories of a building with plywood shear walls to the Loma
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5.4.2.3 Heavy Timber Building

The third building is of heavy timber construction. The members are primary held
together by bolted joints that behave like the one in Fig. 4.5¢. The SDF system proper-
ties are assumed as: w,=3.0 rad/s, £,=0.05, =0.35, f=2.0, y = -1.0, g=0, £;,=0.98,
A=0.10, p=2.0, ¢,=0.20, §,=0.004, §,=0.0 and &, = 0.025.

This building would have a hysteretic behavior due to the Loma Prieta accelerogram

as shown in Fig. 5.9. The response time histories are shown in Fig. 5.10.

5.5 Comments

Recall that the purpose of performing time history analyses of the hypothetical
wooden buildings is to demonstrate the analytical capability of the proposed modified
BWBN model. If the SDF system properties were obtained from actual tests using an
appropriate system identification method, we can comment on seismic performance
and safety of these buildings based on the computed response. Key dynamic proper-
ties, including ductility, can be obtained from hysteresis plots similar to those shown
in Figs. 5.5, 5.7 and 5.9. Various types of sensitivity and parametric studies, like those
mentioned by Stalnaker and Gramatikov (1991), can be performed using the model,
without the need for additional physical testing. Model parameters that critically af-
fect the ductility, serviceability and safety of the wood structure under study can be
identified.

The computer program is presently limited to dynamic analysis of SDF systems. For
a more refined analysis, multi-degree-of-freedom (MDF) models can be constructed to
represent various types of wood structures and structural systems, where each degree-
of-freedom is modeled by the hysteretic behavior of its governing connection. (See
section 4.2.2 for the formulation for shear building models.) The proposed hystere-
sis model can be included as an alternative subroutine to existing nonlinear dynamic

analysis programs. It can also be incorporated into finite element models in dynamic
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analysis.

With currently available hysteresis models for wood joints and structural systems,
one subroutine for each connection type, that defines its hysteretic behavior, has to be
implemented. Incorporating a new model for a specific connection set-up into a com-
mercial dynamic analysis program, such as DRAIN-2D or its latest version DRAIN-2DX,
is a major undertaking (Dowrick 1986). Thus, analytical study of a wood structural sys-
tem that requires several models of hysteresis behavior is very laborious. Because of
the general nature of the proposed model, however, only one subroutine for hysteretic
constitutive relations needs to be written for the whole gamut of wood products, fas-
tener types and configurations that are currently used in construction. Only the model
parameters have to be changed for the desired hysteresis shape. Thus, with the pro-
posed general hysteresis model, analytical study of MDF wood structural systems that

need to be modeled by several different hysteresis shapes is simplified.

5.6 Summary

The modified BWBN model was implemented in a nonlinear dynamic analysis pro-
gram for single-degree-of-freedom (SDF) systems. Incorporation of the model into the
program was relatively straightforward. System response from arbitrary dynamic load-
ing, such as cyclic or earthquake-type loadings, can be computed. Three SDF wood sys-
tems were subjected to the Loma Prieta accelerogram to obtain their hysteresis loops
and response time histories. Advantages of using the proposed model over currently
available models in nonlinear dynamic analysis of more complex wood structural sys-
tems were identified.

The program allows response computations of a wide variety of wood structures
and structural systems that can be modeled as SDF systems, as long as hysteresis
parameters for these systems are known. The program may be extended to handle
dynamic analysis of multi-degree-of-freedom (MDF) systems; an MDF shear building

model incorporating the proposed hysteresis model has already been formulated in
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section 4.2.2.1.



Chapter 6

Conclusions and Recommendations

6.1 Summary and Conclusions

A general hysteresis model for wood joints and structural systems was developed
and incorporated into a nonlinear dynamic analysis program. It is a modification of
the Bouc-Wen-Baber-Noori (BWBN) model. The hysteretic constitutive law, based on
the endochronic theory of plasticity and characterized by a single mathematical form,
produces a versatile, smoothly varying hysteresis that models previously observed be-
havior of wood joints and structural systems, namely, (1) nonlinear, inelastic behavior,
(2) stiffness degradation, (3) strength degradation, (4) pinching, and (5) memory. The
constitutive law takes into account the experimentally observed dependence of wood
joints’ response to their past history (i.e., the input and response at earlier times, or
memory).

Practical guidelines to estimate the hysteresis parameters of any wood joint or struc-
tural system were given. Hysteresis shapes produced by the proposed model were
shown to compare reasonably well with experimental hysteresis of wood joints with:
(1) yielding plate, (2) vielding nails, and (3) yielding bolts.

The model is versatile and can actually model a wide variety of hysteresis shapes,
degradations, and pinching behavior to cover a whole gamut of possible combinations
of materials and joint configurations in wood systems. Continued evolution of wood-
based products, fasteners, and use of wood-based products need not be a problem, as
long as hysteresis data from tests of representative wood joints or structural systems

are available, from which model parameters can be estimated.
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The proposed model was implemented in a nonlinear dynamic analysis program
for single-degree-of-freedom (SDF) systems. System response from arbitrary dynamic
loading, such as cyclic or earthquake-type loadings, can be computed. Three SDF wood
systems were subjected to the Loma Prieta accelerogram to obtain their response time
histories. Advantages of using the proposed model over currently available models in
nonlinear dynamic analysis of more complex systems were identified. A multi-degree-
of-freedom (MDF) shear building model incorporating the proposed hysteresis model

was formulated but not implemented on a computer.

6.2 Recommendations for Future Work

Research on dynamic analysis of wood structures has lagged behind advances in
general structural dynamics mainly because of (1) many factors affecting the collec-
tion of test data and (2) difficulties in characterizing the dynamic behavior of wood
joints and structural systems. The latter hindered investigations into their perfor-
mance under dynamic loading. The present work attempted to address this problem
and succeeded in (1) deriving a general hysteresis model for wood structures, and (2)
incorporating the model into a simple computer program for nonlinear dynamic anal-
ysis of SDF systems. It is clear, however, that this is just the first step. Much work

remains to be done. The following topics are recommended for future work:

1. System Identification - although some practical guidance has been presented to
obtain hysteresis parameters for any wood system, it is ideal that system identi-
fication techniques be used to estimate the parameters of the proposed model.
This will allow us to: (a) systematically obtain a system model from laboratory or
field data for predicting the structural response of similar real-world systems dur-
ing earthquake or wind events, and (b) estimate the existing conditions of struc-

tures for the assessment of damage and deterioration. If successful, hysteresis
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parameters of any system configuration and material combination can be system-
atically estimated as long as hysteresis data are available. Furthermore, various
types of sensitivity and parametric studies, like those mentioned by Stalnaker
and Gramatikov (1991), can be performed using the model, without the need for
additional physical testing. Model parameters that critically affect the ductility,
serviceability and safety of the wood structure under study can be identified.

2. Multidegree-of-freedom Systems - the model for MDF shear buildings that was for-
mulated in the present work should be implemented numerically. The proposed
hysteresis model should also be incorporated in the formulation of discrete hinge
and finite element models for wood structural systems. Incorporation of the hys-
teresis model to commercial dynamic analysis programs should also be explored.
The modified BWBN model is, in fact, applicable to structures made of other ma-
terials, such as steel and reinforced concrete, and may also be used for dynamic

analysis of these structures.

3. Random Vibration Analysis - the original BWBN model has been used in random
vibration analysis. The modification to generalize its pinching behavior does not
guarantee that equivalent linearization of the governing equations would work as
it did for the parent form. Random vibration analyses of SDF and MDF wood sys-
tems would allow researchers to investigate the performance of wood structures
under natural hazards, with the loading modeled as random processes. With a
reliable estimate of response statistics, one may then design a structure based on

accepted levels of safety, measured in terms of probability of failure.

4. Seismic Damage Analysis - structural damage due to a seismic event may be quan-
tified using a damage index expressed as a combination of maximum displace-
ment and hysteretic energy dissipation. Both quantities can be obtained from

random vibration analysis of hysteretic wood systems using the proposed model.
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Following Ang’s (1988) work, random vibration analysis of wood structural sys-
tems using the proposed hysteresis model could provide a method for (a) cumu-
lative damage model development for, and (b) safety and damage assessment of,

wood structures subjected to dynamic loading.

The foregoing list of potential research topics shows that with the proposed hys-
teresis model for wood structural systems, a number of future research opportunities
in the area of analysis and design of timber structures against natural hazards have
opened up. All this will hopefully help wood engineering research catch up with ad-

vances in general structural dynamics.
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