
Frequency-estimation-based signal-processing algorithm
for white-light optical fiber Fabry–Perot interferometers

Fabin Shen and Anbo Wang

A novel signal-processing algorithm based on frequency estimation of the spectrogram of single-mode
optical fiber Fabry–Perot interferometric sensors under white-light illumination is described. The
frequency-estimation approach is based on linear regression of the instantaneous phase of an analytical
signal, which can be obtained by preprocessing the original spectrogram with a bandpass filter. This
method can be used for a relatively large cavity length without the need for spectrogram normalization
to the spectrum of the light source and can be extended directly to a multiplexed sensor system.
Experimental results show that the method can yield both absolute measurement with high resolution
and a large dynamic range. Performance analysis shows that the method is tolerant of background noise
and variations of the source spectrum. © 2005 Optical Society of America
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1. Introduction

Fiber optic white-light interferometry has proved to
be a practical method for measuring absolute optical
path difference (OPD) with high accuracy and a large
dynamic range.1–8 In a white-light measurement sys-
tem, light from a low-coherence source, such as a
light-emitting diode (LED), a superluminescent LED,
or a broadband lamp, is transmitted to a single or
multiplexed fiber sensors. A fringe pattern is pro-
duced by the light transmitted by or reflected from
the sensor and recorded either spectrally by an opti-
cal spectrum analyzer (OSA) or temporally by a pho-
todiode in a scanning interferometric system.1,2

When the interferogram of an interferometer is
measured, the OPD of the interferometer can be es-
timated from the fringe patterns of the interference
by fringe analysis. The fringe analysis approach most
often used for white-light interferometers is the
fringe peak tracking method, in which the peak po-
sition of a fringe or the fractional sample points be-
tween fringes in the interferogram are identified to
determine the fringe order and to estimate the OPD

of the sensor.1–5 Although this fringe analysis method
has been successfully used in many single interfero-
metric sensor systems, it requires a high signal-to-
noise ratio (SNR) to determine the fringe orders
correctly and detect the peak positions accurately and
cannot be directly applied to multiplexed sensor sys-
tems.

The most often used multiplexing scheme for fiber
white-light interferometers is the path-matched dif-
ferential interferometric coherence division multi-
plexing technique, in which the OPD of a receiving
interferometer is scanned to match the OPDs of the
interferometers interrogated. The multiplexed inter-
ferometers must have different OPDs that are larger
than the coherence length of the light source. The
path-matched differential interferometric fringe pat-
terns from different sensors fall into different tempo-
ral ranges during the scanning of the receiving
interferometer and can be separated in time or spa-
tial domain.6–8

If a spectrogram of multiple interferometers is
measured by an OSA, the fringe patterns from dif-
ferent interferometers will be mixed with one an-
other. However, if the OPDs of the multiplexed
interferometers are different, the measured spectro-
gram will have multiple frequency components that
can be separated in the frequency domain.

In this paper we present a phase linear regression–
based frequency-estimation approach to the measure-
ment of absolute OPDs of multiplexed Fabry-Perot
(FP) interferometers from a measured spectrogram.
We analyze the frequency components in a spectro-
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gram, use a finite impulse-response (FIR) filter to se-
lect the frequency component that corresponds to an
individual FP interferometer, and estimate the fre-
quency by linear regression of the instantaneous phase
of the analytical signal. The OPD estimations are
given for both known and unknown initial phases of
FP interferometers.

The contents of this paper are arranged as follows:
In Section 2, the frequency components of a spectro-
gram are analyzed, the analytical signal is intro-
duced, and the frequency-estimation method based
on instantaneous phase linear regression is pre-
sented. In Section 3, experimental results for multi-
plexed FP interferometers are demonstrated. The
performance of the signal-processing method at sev-
eral SNR levels is analyzed in Section 4, followed by
a statement of our conclusions in Section 5.

2. Principles of Operation

A. Fabry–Perot Interferometers

There are two main categories of fiber FP interfero-
metric sensors, namely, intrinsic FP interferometers
(IFPIs) and extrinsic FP interferometers (EFPIs). An
IFPI sensor contains two internal partial reflection
mirrors. The fiber between the reflectors serves as
both a sensing element and a light waveguide. Lee
and Taylor9,10 demonstrated some IFPI sensors by
building dielectric mirrors into optical fiber, as shown
in Fig. 1(a). An EFPI sensor contains a lead-in fiber
with a partial mirror at the end face, a cavity of air or
another transparent medium, and a reflector on the
other end, which may also be a piece of fiber. Re-
searchers at Virginia Tech developed some EFPI sen-
sors constructed by forming an air gap between end
faces of two uncoated fibers inserted into an align-
ment tube, as shown in Fig. 1(b).11,12 Sirkis et al.
introduced in-line fiber etalons by fusion splicing two
fibers with a section of hollow tube of the same out-
side diameter.13

The optical path length between the light reflected
from the two partial mirrors in Figs. 1(a) and 1(b) is

L � 2ned, (1)

where ne is the refractive index of the cavity medium
and d is the geometrical distance between the two
reflectors.

When the light is launched into the FP interferom-
eter, the light reflected from the two reflectors will
interfere. Assuming that the reflection coefficients at
the two reflectors, R1 and R2, are very small, the FP

interferometer can be approximated to a two-beam or
Fizeau interferometer with all the multipath reflec-
tions neglected. The electric field of the reflected light
can be given as

E � E1 � E2 � �1R1E0 � �2R2E0 exp[j(kL � �)], (2)

where E0 is the electric field of the incident light, k is
the wave number, L is the OPD in Eq. (1), �1 and �2
are the coefficients of coupling efficiency of the light
reflected into the lead-in fiber, and � is a phase term
that refers to reflection and light propagation.14

The intensity of the reflected light can be given as

I � |E|2

� |E0|
2[�1

2R1
2 � �2

2R2
2 � 2�1�2R1R2 cos(kL � �)]

� I0[A � B cos(kL � �)], (3)

where I0 is the intensity of the incident light at wave
number k.

When light from a low-coherence light source is
reflected by the FP cavity and measured by an OSA,
the spectrogram of the interference can be given as

I(kn) � AI0(kn) � BI0(kn)cos(knL � �) � v(kn), (4)

where I0�kn� are samples of the spectrum of incident
light and v�kn� are the measurement noises. The co-
efficients A, B, L, and � are assumed to be wave-
length independent, which is true for most cases.

The measured spectrogram contains a background
source spectrum AI0�kn�, an amplitude-modulated
(AM) signal BI0�kn�cos�knL � �� with a carrier of fre-
quency L in the wave-number domain, and a noise
term v�kn�.

The goal of signal processing in white-light inter-
ferometry is to determine L from the measured spec-
trum I�kn�. This is equivalent to estimating carrier
frequency L from AM signal BI0�kn�cos�knL � �� cor-
rupted by background noises AI0�kn� and v�kn�.

One may store a background spectrum of the light
source I0�kn� and obtain a normalized interference
spectrogram:

IN(kn) �
I(kn)
I0(kn)

� A � B cos(knL � �) � �(kn). (5)

Then the task becomes the classic problem of esti-
mating the frequency of a sinusoid. However, unless
the stored background source spectrum can be up-
dated frequently, the normalization in Eq. (5) may
give an error when the real light source spectrum,
which is dependent on its driving current and ambi-
ent temperature, does not match the stored source
spectrum.

A normalization method that can handle the vari-
ations of the light source spectrum was given in Refs.
5 and 6. Two auxiliary spectral curves, Imax�k� and

Fig. 1. FP interferometric sensors: (a) IFPI sensor, (b) EFPI
sensor.
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Imin�k�, which are the envelopes of the measured spec-
trogram, can be interpolated from the maxima and
minima of the spectrogram and used to calculate the
cosine term and eliminate the source spectrum in Eq.
(4). However, this method also depends on the accu-
racy of extremum detection, which is difficult when
there is a low SNR or when multiple sinusoids exist.
It also requires that the number of extrema be large
enough to yield a good interpolation, which means
that the cavity length should be long enough.

We present a signal-processing approach that does
not need normalization explicitly. The approach is
based on frequency estimation of analytical signals,
as discussed below.

B. Analytical Signal

The spectrogram of an EFPI cavity and its discrete
Fourier-transformation result are shown in Fig. 2.
The spectrogram has a variable of k in radians per
micrometer; its frequency component has units of mi-
crometers.

The source spectrum, I0�k�, falls into the low-
frequency region with spectral range S. The AM sig-
nal, I0�k�cos�kL � ��, shifts the spectrum of I0�k� to
frequencies of �L. If L is selected to be L � 2S during
the sensor fabrication, then the spectra of I0�k� and
I0�k�cos�kL � �� will not overlap, as Fig. 2 shows. We
can use a bandpass filter to separate them to select
the AM signal, I0�k�cos�kL � ��.

The analytical signal model of the AM signal can be
expressed as

I(k) � I0(k)exp[j(kL � �)]. (6)

We can use either of two methods to obtain this an-
alytical signal from Eq. (4). One method is to design
a single-band filter, which can be implemented by a
double-band filter followed by a Hilbert transform, to
select the single band of the AM signal, as shown in

Fig. 3(a). The filtering and Hilbert transformation
can be calculated efficiently by fast Fourier transfor-
mation. The other method is first to shift the fre-
quency components by multiplying Eq. (4) by
exp�jkL0� and filtering the signal with a double-band
filter. Then an analytical signal with central fre-
quency L � L0 can be obtained, as shown in Fig. 3(b).
Schematics of these two methods are shown in Fig. 3.

We use a digital FIR bandpass filter whose pass-
band center frequency is close to L to select the AM
signal in Eq. (4). It is well known that a FIR filter is
a linear phase filter. It introduces a pure delay into
the signal without giving any other distortion to the
signal in the passband. The pure delay of samples
caused by the FIR filter is

nd � (Mf � 1)�2, (7)

where Mf is the order of the FIR filter. One can simply
shift the filtered signal backward by nd samples to
compensate for the phase change caused by the FIR
filter.

If the wave number is uniformly spaced in steps of
ks from starting wave number k0, then, after filtering
and backward shifting, the analytical signal can be
written as

x�n � A� n exp[j(knL � �)] � v�n

� A� n exp[j(ksLn � k0L � �)] � v�n

(n � 1, 2, . . . N), (8)

where A� n is the amplitude after filtering, k0 is the
starting wave number, ks is the wave-number step,
and v�n is the residual noise after filtering. Carrier

Fig. 2. (a) Spectrogram and (b) result of fast Fourier transforma-
tion of an EFPI sensor.

Fig. 3. Methods for obtaining analytical signals: (a) single-band
filter, (b) frequency shift.
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frequency L or normalized angular carrier frequency

	 � ksL (9)

can be estimated by the method of phase linear re-
gression discussed below.

C. Frequency Estimation

A frequency estimation based on linear regression of
the instantaneous signal phase was given in Ref. 15.
The frequency and phase estimation of sinusoids
from a sequence of signal samples is given as

xn � A exp[j(	n � �)] � vn, (10)

where A, �, and � are unknown parameters to be
estimated and vn is additive Gaussian white noise.

The difference between Eqs. (8) and (10) is that
amplitude A� n in Eq. (8) is wave-number dependent,
whereas amplitude A in Eq. (10) is constant. How-
ever, the derivations of the unwrapped phases of Eqs.
(8) and (10) are the same as shown in Eq. (11). Thus
the frequency-estimation method in Ref. 15 can be
extended to the AM analytical signal model.

The unwrapped phase of the sinusoids in Eq. (8)
can be given as

�n � [�x�n]2
 � knL � � � �n (n � [1, . . . , N]),
(11)

where ��x�n�2
 means tan�1�Im�x�n��Re�x�n�� � 2m
, �n

is the equivalent phase noise of additive noise v�n in
Eq. (8), and N is the length of the unwrapped phase
sequence.

The parameters L and � can be estimated by the
method of least-squares estimation or linear regres-
sion to minimize the square error:

S � �[�n � knL̂ � �̂]2. (12)

The solution is

�L̂

�̂
�� (ATA)�1AT
, (13)

where

A � �k1 k2 . . . kN

1 1 . . . 1 �T

,


 � [�1 �2 . . . �N]T.

Estimation L̂ usually does not have high precision,
especially when the SNR is not high. A simulation
result of the variance of the normalized frequency
estimation for unknown frequency and phase is given
in Subsection 4.A below. In practice, phase term � in
Eqs. (4) and (8), which is a constant, can be known a

priori by either accurate modeling or calibration in
advance. We can use it to get a higher frequency-
estimation precision than that of an unknown phase.
One can obtain averages of multiple estimations L̂
and �̂ from Eq. (13) and store them as calibrated
values of L� and �� . The modulus of �� with 2
, �̃

� ��� �2
, whose value falls within ��
, 
�, can be used
as a good calibrated approximation of �.

If the estimation error �L � L̂ � L is less than ��2,
where � is the wavelength of light, the phase error
caused by �L,

��n � kn�L, (14)

will be in the range ��
, 
�. Therefore, for the esti-
mation of L̂ and �̂ from Eq. (13), we can select

�� � [�̂��]

or

[�̂��̃], (15)

whose value falls within ��
, 
�, as an estimation of
phase error caused by �L. Then we can estimate �L
by minimizing the variance

S � �[�� � kn�L̂]2 (16)

with the solution

�L̂ � (CTC)�1CTD, (17)

where

C � [k1 k2 . . . kN]T,

D � [�� �� . . . ��]T.

We can use the estimation of Eq. (17) as compen-
sation for the frequency estimation of Eq. (13). The
compensated frequency estimation for known � is

L̃ � L̂ � �L̂. (18)

It will have higher precision than that of the un-
known �. The simulation results of frequency esti-
mation for unknown and known phases, L̂ in Eq. (13)
and L̃ in Eq. (18), at different SNR levels, are shown
in Subsection 4.A below.

It needs to be noted that the signal-processing
approach can be extended to a multiplexing system
in which the measured spectrogram has multiple
frequency components that correspond to different
interferometers. The spectrogram of multiplexed
interferometers can be given as
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I(kn) � AI0(kn) � �
i�1

M

BiI0(kn)cos(2
knLi � �i) � v(kn),

(19)

where M is the number of frequency components. We
can use bandpass filters with different central fre-
quencies to select and estimate each frequency com-
ponent separately.

The signal-processing method for multiple fre-
quency components with known phases is summa-
rized as follows:

(a) If needed, manipulate the measured spectro-
gram to be equally spaced in wave numbers.

(b) Use a FIR bandpass filter to select a single
frequency component and obtain a single-band ana-
lytical signal as described in Eq. (8).

(c) Obtain the unwrapped phase of the analytical
signal.

(d) Obtain an estimation of L̂ and �̂ from Eq. (13).
(e) Obtain the phase difference between �̂ and the

known phase from Eq. (15).
(f) Obtain a compensated frequency estimation

from Eqs. (17) and (18).
(g) Repeat steps (b)–(f) until all frequencies are

estimated.

The experimental results of this method for multi-
plexed FP interferometers are demonstrated in Sec-
tion 3 below.

3. Experimental Results

We use a simple setup to evaluate the signal-
processing algorithm for multiplexed FP interferom-
eters. The setup of the experiment is shown
schematically in Fig. 4.

We construct the sensor head by splicing a piece of
hollow tube between single-mode fibers as described
in Ref. 13. The interfaces between the silica fibers
and the air in the hollow tube serve as partial reflec-
tion mirrors, which give reflections R0 and R1. The
cleaved end face of the single-mode fiber serves as
another mirror that gives reflection R2. Each pair of
these reflections will interfere and construct a FP
interferometer. Thus the sensor head contains an
EFPI air gap cavity formed by R0 and R1, an IFPI

silica fiber cavity by R1 and R2, and an extra FP cavity
by R0 and R2.

Light from a low-coherence light source is launched
to the sensor head through a single-mode fiber and a
3 dB directional coupler. The LED has a central
wavelength of 1.55 �m and a FWHM bandwidth of
80 nm. The light reflected from the sensor head is
coupled to an OSA (Ando AQ-6315A) by the coupler,
while we eliminate the reflection from the other arm
by curling the fiber into several turns of small diam-
eter. The OSA has a wavelength accuracy of
�0.05 nm.

The electric fields of these reflections coupled back
to the lead-in fiber can be given as

E � E1 � E2 � E3

� �0R0E0 � �1R1E0 exp[j(kL1 � �1)]
� �2R2E0 exp[j(kL1 � �1)]exp[j(kL2 � �2)],

(20)

where �1, �2, and �3 are the coupling coefficients of R1,
R2, and R3 into the lead-in fiber and L1 and L2 are the
OPDs of the air gap and the silica fiber FP cavities,
respectively. All the multipath reflections are ne-
glected owing to the low reflections R0, R1, and R2.

The intensity of these reflections at wave number k
can be given as

I � |E|2

� I0[A � B cos(kL1 � �1) � C cos(kL2 � �2)
� D cos(kL3 � �3)], (21)

where

I0 � |E0|
2,

A � �0
2R0

2 � �1
2R1

2 � �2
2R2

2,

B � 2�0�1R0R1,

C � 2�1�2R1R2,

D � 2�0�2R0R2,

L3 � L1 � L2,

�3 � �1 � �2.

The measured spectrogram of the sensors can be
expressed as Eq. (19) with three sinusoidal compo-
nents corresponding to the three FP cavities. A mea-
sured spectrogram and its discrete Fourier
transformation result are shown in Figs. 5(a) and
5(b), respectively. The OPDs of the air gap FP cavity
and the glass fiber FP cavity, L1 and L2, respectively,
were selected to be 384 and 1315 �m. The frequencies
of the sinusoids corresponding to L1 and L2 were lo-
cated separately in the frequency domain.

Fig. 4. Schematic of the experimental setup.
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We investigated the temperature dependence of
these two FP cavities to verify the performance of the
signal-processing algorithm discussed in Section 2.
We estimated L1 and L2 separately, following steps
(b)–(f). Two Hanning-windowed FIR bandpass filters
were used to select the frequency components corre-
sponding to L1 and L2.

When the sensor head is put into a temperature-
varying environment, the OPDs of the FP interferom-
eters will change owing to thermal expansions of the
cavity lengths and thermo-optic effects of the media
between the reflectors. The OPD change of a FP in-
terferometer can be given as

�L � 2(�ned � ne�d) � L	�ne

ne
�

�d
d 
. (22)

For the air gap FP cavity, one can assume that the
refractive index of air is not temperature dependent.
The OPD change of L1 is due only to the thermal
expansion of the silica hollow tube:

�L1 � L1

�d
d � L1�T�T, (23)

where �T is the coefficient of thermal expansion of the
silica hollow tube and �T is the temperature change.
For silica, �T � 0.5 � 10�6 �1�°C�.

For the silica fiber FP cavity, the OPD change is
due to both the thermo-optic effect and the thermal
expansion of the silica fiber. The refractive-index
change of the fiber caused by a temperature change is

�ne �
�ne

�T �T, (24)

where �ne��T is a thermo-optic coefficient, which is
�1.0 � 10�5�°C for silica fiber. Thus the total OPD
change �L2 can be written as

�L2 � L2	�ne

�T
ne � �T
�T � L2(�T � �T)�T, (25)

where �T and �T are effective thermo-optic and ther-
mal expansion coefficients of silica fiber, respectively.
�T is much larger than �T, which means that the
thermo-optic effect is dominant for the temperature
dependence of the OPD of the silica fiber cavity.

The sensor head was tested in a temperature
chamber with a temperature range of 0°–150 °C and
temperature steps of 10 °C. The time at each step
during the increasing–decreasing cycle was 1 h, ex-
cept at 150 °C, where it was 8 h. The history curves
and temperature dependences of L1 and L2 are shown
in Figs. 6(a) and 6(b), respectively.

Figure 6(a) shows the measured OPDs of the two
FP cavities during the temperature cycle. Figure
6(b) shows the temperature dependence of the
OPDs. The standard deviations of the estimations
of L1 and L2 at 150 °C are 0.8 and 3.0 nm, respec-
tively. The uncertainty of the OPD measurement,
�L�L, is �2.2 � 10�6 in both cases.

Experimental results show that the method can
attain both absolute measurement of OPDs with high
resolution and a large dynamic measurement range.
For example, the estimation of the OPD of the silica
fiber FP cavity has a 3.0 nm resolution in a dynamic
range of 14 �m.

4. Performance Analysis

A. Background Noise

The background noises include AI0�kn�, which is a
slowly varying process from the light source, and
v�kn�, which can be modeled as a Gaussian random
process. v�kn� may include the detector’s dark-current
noise, the shot noise, and the thermal noise from the
electric circuits.

The frequency estimation based on the phase linear
regression in Eq. (13) is the optimal maximum-
likelihood estimation for Eq. (11) when �n is Gaussian

Fig. 5. (a) Spectrogram and (b) result of fast Fourier transforma-
tion of multiplexed FP sensors.

Fig. 6. Temperature responses of the multiplexed FP sensors: (a)
OPDs during the temperature cycle, (b) OPDs versus temperature.
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white noise.16,17 When the SNR is moderately high, the
estimator can attain the Cramer–Rao bound for a si-
nusoidal signal with constant amplitude, as described
in Eq. (10).15,16 However, when the sinusoidal signal is
amplitude modulated as described in Eq. (8), the av-
erage SNR is decreased; thus the estimator will have a
larger estimation error for the AM signal than for that
of pure sinusoids. It can also be expected that prefil-
tering with a bandpass filter will reject the noise out-
side the passband and increase the SNR greatly.
Therefore prefiltering will greatly improve the perfor-
mance of the estimator, especially for a low-SNR case.

The performance of the estimator [Eq. (13)] for an
unknown phase was investigated for AM and pure
sinusoidal signals at different SNR levels. The sim-
ulation results with and without prefiltering were
compared. The simulation was based on a sequence
of 1000 samples of a sinusoid whose normalized
frequency is 0.024. Figure 7 shows the relationship
between the mean-square errors (MSEs) of the fre-
quency estimation and SNR levels. It can be seen
from Fig. 7 that estimator (13) can yield a good
estimation for a high SNR but poor performance for
a low SNR. Prefiltering will greatly improve perfor-
mance at low SNR levels. The Cramer–Rao bound of
the frequency estimation for Eq. (10) with an un-
known phase15,17 is also plotted for comparison.

Frequency estimations for unknown phase and
known phase, as described in Eqs. (13) and (18), are
compared in Fig. 8. The simulation data were gener-
ated for a FP interferometer with an OPD of 360 �m
illuminated by a LED with a Gaussian shaped spec-
trum whose FWHM bandwidth is 80 nm. It can be
seen that the frequency-estimation error for a known
phase can be much smaller than that of an unknown
phase, which means that the frequency estimation in
Eq. (18) can have higher precision than that of Eq. (13).

The frequency estimation for a known phase
given by Eqs. (13), (17), and (18) is based on the
assumption that the phase error caused by the
frequency-estimation error is within ��
, 
�. How-
ever, when the SNR is low, the frequency-

estimation error given by Eq. (13) may be large;
thus the phase error selected by Eq. (15) may have
a 2
 ambiguity, which will lead to error jumping of
the frequency estimation. This 2� ambiguity is sim-
ilar to that of the order-determination ambiguity
problem in the fringe peak tracking–based signal-
processing approach. For example, to ensure a
coarse estimation error �L � L̂ � L of less than ��2,
from Eq. (5), for a wave-number step of ks � 4.2
� 10�4 rad��m, the frequency-estimation error
should be less than 3.2 � 10�4, which requires that
1�MSE in Fig. 7 be larger than 70 dB. Thus it can be
seen that the required SNR should be larger than
0 dB to yield a reasonable confidence interval to pre-
vent a 2
 ambiguity problem.

B. Amplitude Noise

The frequency range of I0�k� is S, as Fig. 2 shows. We
consider only the amplitude noise whose bandwidth
is limited by S. In practice, the amplitude variation
caused by the driving current and by the change in
ambient temperature of the LED is usually of low
frequency. The variation of the amplitude can thus be
eliminated from Eq. (11) because only the phase of
the analytical signal is obtained.

Figure 9 shows the experimental results of the
EFPI cavity shown in Fig. 2 illuminated by (A) a LED
of total power 50 �W, (B) the same LED, whose
power of 60 �W has been increased by an increase in
driving current, and (C) a superluminescent LED of
total power of 1 mW. The source spectra of several
illuminations are shown in Fig. 9(a); the OPD esti-
mations are shown in Fig. 9(b). Although the source
spectra are different, which means that the ampli-
tudes of the analytical signal vary greatly, the OPD
readings are consistent with a small variation of
2 nm.

C. Phase Noise

The estimation [Eq. (13)] for the model in Eq. (11) is
optimal when �n is Gaussian white noise. However,

Fig. 7. Simulation results of frequency estimations for unknown
phases.

Fig. 8. Comparison of frequency-estimation errors for unknown
and known phases.
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phase noise �n in a FP interferometer, which is wave
number and geometric length dependent, is not really
white. The dependency of phase noise can be given as

�� � �kL � k�L � �kL � k�L � (�k � k�)L, (26)

where � is the ratio of change in the OPD. Wave-
number error �k is caused by jittering of the light
source and by the wavelength measurement uncer-
tainty of the OSA. OPD error �L is caused by the
variation in the OPD during measurement of the
spectrogram. Usually the wavelength uncertainty of
an OSA is the main source of phase noise.

From Eq. (26) it is evident that phase noise ��
caused by �k and �L is proportional to L. Therefore
the SNR level for large L is reduced because of the
larger phase noise. This is the reason why the
frequency-estimation precision for a small L is
higher, as the experimental result in Section 3 shows.
Another disadvantage of a large L is that it lowers the
interference contrast, which decreases the signal
power and the SNR. There is also a higher probability
of occurrence of 2
 ambiguity for large L because a
larger frequency-estimation error �L may occur.
Therefore, if possible, one should select a shorter L
that satisfies the condition L � 2S, as discussed in
Subsection 2.B, for both precision of estimation and
avoidance of ambiguity.

D. Two-Beam Approximation

We use a two-beam approximation model [Eq. (3)] to
describe a FP interferometer. Multipath reflections
are neglected because they are low reflections. How-
ever, multipath reflections will give some harmonic
frequency components to the measured spectrogram.
The side peaks of the harmonics can be observed in
Fig. 2.

Because a bandpass filter is applied to select the
fundamental frequency components, the influence of
these harmonics has been reduced to a minimum. If
the frequency component of another interferometer
coincides with the positions of these harmonics in a

multiplexed sensor system, cross talk will occur.
Thus, one should carefully design the OPDs of the
sensors and locate the frequencies properly to pre-
vent cross talk between interferometers. However,
the power of the harmonics is rather low compared
with the fundamental frequency component, �28 dB
for a 4% air–glass interface reflection, so the influ-
ence of cross talk can be reasonably neglected.

5. Conclusions

A frequency-estimation-based signal-processing algo-
rithm for white-light optical fiber Fabry–Perot inter-
ferometers has been presented. The frequency
estimation is based on linear regression of the instan-
taneous phase of the analytical signal, which can be
obtained from the spectrogram of a FP interferome-
ter. Experimental results for multiplexed FP inter-
ferometers show that the method can achieve both
absolute optical path difference estimation with high
resolution and a large dynamic range. We have ana-
lyzed the performance of the algorithm by consider-
ing various noises at different levels.
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01G011050 and U.S. National Science Foundation
under grant CMS-0427951.
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