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Signal processing for low-finesse fiber-optic Fabry–Perot sensors based on white-light interferometry
is investigated. The problem is demonstrated as analogous to the parameter estimation of a noisy,
real, discrete harmonic of finite length. The Cramer–Rao bounds for the estimators are given, and three
algorithms are evaluated and proven to approach the bounds. A long-standing problem with these
types of sensors is the unpredictable jumps in the phase estimation. Emphasis is made on the property
and mechanism of the “total phase” estimator in reducing the estimation error, and a varying
phase term in the total phase is identified to be responsible for the unwanted demodulation jumps.
The theories are verified by simulation and experiment. A solution to reducing the probability of jump
is demonstrated. © 2013 Optical Society of America
OCIS codes: 060.2370, 120.3180, 120.2650, 120.2230.

1. Introduction

Low-finesse fiber-optic Fabry–Perot interferometric
(FPI) sensors have been investigated for more than
two decades. Both extrinsic and intrinsic FPIs (de-
noted as EFPIs and IFPIs, respectively) have sought
extensive applications in displacement, tempera-
ture, strain, pressure, and acoustic sensing [1–5]. In
such applications, the change of the optical path dif-
ference (OPD), defined as twice the product of the
cavity length and the refractive index of the cavity
material, is monotonically or linearly related to
the physical parameters being measured; as a result,
the key to signal processing is to make an accurate
measurement of the OPD. The reflection spectrum
of the Fabry–Perot (FP) sensor is expressed as [6]

I�Φ� � 2R
1 − cos�Φ�

1� R2
− 2R cos�Φ� ; (1)

where R is the reflectance of the cavity mirrors (as-
sume identical reflectivity) and Φ denotes the total
phase defined through Φ � k · OPD, where k is the
wavenumber in vacuum. In the regime of “low fi-
nesse,” the reflectances of the cavity mirrors are low
and multireflections are neglected. Such low-finesse
FP sensors are more cost-effective, and most impor-
tantly, they exhibit outstanding robustness in
harsh environments [7]. For such sensors Eq. (1) is
reduced to

I�Φ� � 2R�1 − cos�Φ��; (2)

which appears sinusoidal with respect toΦ, andΦ is
linear with both OPD and k. In fringe counting mode,
a fixed-wavelength laser (or several lasers at differ-
ent but fixed wavelengths) is injected into the sensor
and the reflected power is modified sinusoidally
with the OPD (when k is fixed) [8]. Unfortunately,
the output is inherently periodic, so it provides only
a relative OPD measurement. Absolute measure-
ment is apparently more desirable and can be
achieved using white-light interferometry (WLI), in
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which a broadband optical source is used. With WLI,
the OPD is measured either by matching the cavity
length of a reference interferometer [9] or by direct
analysis of the reflected spectrum; the latter is the
subject of this paper.

The schematic of the WLI sensing system is de-
picted in Fig. 1. The spectrum interrogation unit
comprises a broadband source and a spectrometer
(or a swept-laser spectrometer), which records the re-
flection spectrum of the FP sensor and sends the data
to a processing unit (computer) for demodulation.
The spectrum is sinusoidal with wavenumber k ac-
cording to Eq. (2). A variety of demodulation methods
have been developed to calculate the OPD directly
from the spectrum, and they can be classified into
two categories.

The first type is based on direct frequency estima-
tion and is denoted as TYPE I, which relies on the
fact that the spectrum is a harmonic function of k,
with OPD being the frequency. Estimating the fre-
quency can be achieved by using a periodogram
[i.e., by Fourier transform (FT)] or phase linear re-
gression. A periodogram is mostly adopted in the
estimation of the frequency by tracking the peak po-
sition in the FT of the spectrum [10–14]; this method
is especially powerful for demodulation of multi-
plexed sensors. An alternative TYPE I approach re-
lies on Φ � OPD · k, where multiple Φ and k values
are obtained from the spectrogram, and conse-
quently calculation of OPD is converted to frequency
estimation by linear regression (LR). A simple but
popular version uses only two points and usually em-
ploys peaks, valleys, or zero-crossing points [1,3,15].
This method offers low resolution and works better
for situations where only a few peaks exist in the
spectrum. If more peaks are available, it is straight-
forward to use more points to maximize information
utilization. In such cases, multiple peak/valley points
[2,16] or all the spectral data [17,18] are used for
the LR.

The second type of algorithm, named TYPE II
(total phase), also relies on the relationship
Φ � OPD · k. In a simple version, the spectral posi-
tion k of one peak is accurately determined, and the
OPD is obtained by Φ∕k, where the value Φ of the
peak is known if the corresponding fringe order is
found. Without the knowledge of the fringe order
there is an 2π ambiguity in Φ [19]. In order to enable
absolute measurement, an improved algorithm esti-
mates the fringe order in the first step by FT or LR
and subsequently determines the OPD by tracking
one peak [20,21]. This strategy was extended further
to utilize the whole spectrum [22]. Apart from esti-
mating only the frequency component in the spectro-
graph as in TYPE I methods, this approach seeks to

estimate the total phase Φ at given spectral points k
(or vice versa). Similar tasks were also accomplished
by iterative curve fitting [23–25].

Despite the success of these developed methods,
problems still exist. It is widely accepted (and will
be demonstrated later) that the TYPE II approach
(total phase) is more accurate than the TYPE I
(frequency estimation) in calculating the OPD.
Unfortunately, because the total phase is periodic
in nature, a 2π ambiguity may occur during imple-
mentation, which leads to abrupt discontinuity (or
“jumps”) in the demodulated OPD [22–25] (it should
be noted that jumps only exist in TYPE II estima-
tions). To date, the cause of the jump is still not thor-
oughly understood, and consequently eliminating
the jump is still not promising. Moreover, a theoreti-
cal framework is missing within which the perfor-
mance of the different algorithms can be evaluated
and compared. Due to these reasons, it is reasonable
to conclude that the practicality and potentiality of
the WLI algorithms are still not fully exploited.

This paper constructs a set of theories and criteria
upon which the performance of the algorithms can be
evaluated, and the cause of the jump problem is well
explained (Section 2). We emphasize the role of an
additional phase term that acts as a “hidden killer”
to cause the jumps and propose a more appropriate
definition of the total phase with the hope of maxi-
mizing noise reduction while maintaining minimum
jump risk. In Section 3, the theories will be verified
and discussed. Three WLI algorithms will be com-
pared, and their pros and cons will be concluded.
The physical cause of the additional phase will be
further expounded and a solution to minimize the
jump occurrence will be demonstrated.

2. Theory

A. Background

In deriving Eq. (1), a plane wave with normal inci-
dence to the cavity mirrors is assumed. In a real
application, the beam inside the cavity is diffraction
limited and its divergence gives rise to a round-trip
power coupling factor v, and accordingly Eq. (1) is
modified to

I�Φ� � R
1� ν2 − 2ν cos�Φ�

1�R2ν2 − 2Rν cos�Φ� (3)

with ν < 1. I�Φ� is periodic with Φ and can be subse-
quently expressed by a Fourier series as

I�Φ� � a0 �
X∞
n�1

an cos�nΦ� (4)

with Fourier coefficients an (the sine terms are ab-
sent due to symmetry). It is shown that the intensity
ratio between adjacent harmonics is (for n > 0)

an�1∕an � Rν; (5)Fig. 1. Schematic of the fiber-optic WLI FP sensing system.
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which dictates that higher harmonics are orders of
magnitude weaker than the fundamental component
and can be neglected. As a result we are left with a
pure sinusoidal signal, which after normalization
appears to be

Inorm�Φ� � 1� 2ν

1� ν2
cos�k · OPD� π�: (6)

The influence of the beam divergence is to reduce
the signal strength by a factor of 2ν∕�1� ν2�, which is
usually referred to as the fringe visibility.

The above discussion only takes into account the
loss generated by the beam divergence. In fact, the
divergence also distorts the wave front of the beam,
which introduces another phase term φ0 (additional
phase) in the total phaseΦ when the light is coupled
back into the lead fiber [25]. Equation (6) is finally
written in the following form (where φ0 � π is
combined into φ0):

Inorm�Φ� � 1� 2ν

1� ν2
cos�k · OPD� φ0�; (7)

which best describes the spectrum of a real low-
finesse FP sensor. The TYPE I (frequency estima-
tion) approaches calculate OPD directly from the
density of the fringes, and thus the additional phase
term φ0 is ignored. On the contrary, this term needs
to be considered in the TYPE II approach, due to its
direct contribution to the value of the total phase,
and is usually treated as a constant and precali-
brated [20,22]. Nevertheless, this treatment is in
most cases not suitable and will result in the demo-
dulation jumps, as will be discussed later.

Most spectrometers provide spectral position read-
ings in units of wavelength (λ), which result in an
uneven distribution of k (i.e., k � 2π∕λ). It is recom-
mended that the spectrum be interpolated to yield an
equal sampling interval in k to take full advantage of
standard signal processing techniques. The interpo-
lation error is minimized if a “cubic spline” interpo-
lation is used, and the associated interpolation error
shows negligible influence on the final estimation
quality, as will be demonstrated in Section 3.B.

We conclude that the OPD estimation problem is
now converted to standard harmonic analysis. Before
continuing the theoretical discussion, the scope of the
subject matter needs to be further clarified. The
signal is a discrete, real-valued sequence, with un-
known parameters OPD (frequency) and φ0 (phase)
to be estimated. Because the data are real-valued, we
define the normalized frequency by ωn � ω∕�2ωs�,
whereωs is the angular sampling frequency, and thus

ωn � OPD ·Δk∕π; (8)

where Δk denotes the spectral sampling interval.
As can be easily verified, for real systems Eq. (8) al-
ways yields a number <0.1, which suggests that the
signal has “moderately low” frequency. The phrase

“moderately low” is used to distinguish from “extre-
mely low,” in which the FT peak in the periodogram
is nearly indistinguishable from the direct current
(dc) component that standard frequency estimation
methods (such as the ones to be introduced in
Section 3) tend to generate large errors. In such
cases, the method in [20] is suggested. If the FT
peaks are clearly resolvable in the Fourier domain,
a classical nonparametric periodogram yields the
best performance (i.e., the maximum likelihood esti-
mator) [26]; this condition is satisfied for most cases
and is the subject of this paper. More specifically, this
paper is confined to single harmonic analysis. For
multitone analysis a filter is usually used to select
the corresponding frequency component; however,
the problem is complicated by issues such as cross-
talk among different sensors, and the lower bounds
of the estimators need to be modified [26]. If multiple
harmonic components closely coexist with deterio-
rated resolution on the periodogram, parametric
methods can be applied [27]. In some applications,
the signal is amplitude-modulated by an envelope
stemming from the source spectrum. The envelope
can be removed by precalibrating the source spec-
trum or by an interpolation process [21,22]. In sum,
after the removal of the envelope and the DC compo-
nent, the signal is expressed as

In � A cos�OPD · kn � φ0� �Wn; (9)

where A is the amplitude, kn is the fixed sampling
wavenumber, and In is the measured intensity at
kn, which is contaminated by zero-mean white
Gaussian noise Wn with power σ2 � var�Wn� (var�•�
denotes the variance). The quantities in Eq. (9) are
all real-valued and n � 1; 2;…N (N is the length of
the data). OPD and φ0 will be the parameters to
be estimated; their corresponding estimation values
are denoted as ^OPD and φ̂0, respectively. The signal-
to-noise ratio (SNR) is defined as S � A2∕�2σ2� [28].
The beginning wavenumber is defined as k0 and
subsequently kn � k0 � �n − 1�Δk, and we define a
central wavenumber

kc � �k1 � kN�∕2 ≈ k0�NΔk∕2; (10)

which is heavily used throughout the rest of
the paper.

Two WLI systems will be applied for simulation
and experimental demonstration of the theories.
Their system parameters are listed in Table 1.

B. Theories

1. Cause of the Jump (I): the Constant φ0

Assumption
For the TYPE II (total phase) method, if the demodu-
lation algorithm assumes that φ0 is a constant, the
jump problem becomes inherent when in fact φ0
changes during the measurement and the change
exceeds π. A detailed analysis of this phenomenon
is found in [29]. This can be intuitively understood
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as follows. While φ0 shifts, as long as the drift is less
than π, the algorithm can find a nearest fringe order
(N0) by a rounding process [20]. However, when the
shift is beyond π, the nearest fringe order suddenly
moves to N0 � 1, and the jump occurs. As a result,
assumption of a constant φ0 should be avoided to pre-
vent jumps.

2. Total Phase Estimation with Varying φ0
As stated in the previous subsection, when applying
the TYPE II approach (to calculate the total phase),
φ0 cannot be treated as a constant. Instead, it should
be estimated along with the OPD, and the total phase
can be estimated by [29]

Φ̂ � kc · ^OPD� φ̂0; (11)

where ^OPD and φ̂0 are estimated by the TYPE I al-
gorithm and subsequently an estimation of OPD
with better resolution is given by

^OPDtot � Φ̂∕kc: (12)

The subscript tot denotes TYPE II OPD estimation
by total phase. Amajor advantage of TYPE II estima-
tion is its superior noise reduction capability. In
Section 2.B.3 and Appendix A, the noise reduction
mechanism of the TYPE II approach will be ana-
lyzed. Moreover, using total phase also benefits from
a reduction of bias and demodulation nonlinearity, as
will be discussed in Sections 3.C.1 and 3.E.1.

Using Eq. (11), the prerequisite of constant φ0 is
removed. Typically, φ0 depends on OPD in a determi-
nistic way and can be calibrated within the measure-
ment range [e.g., by polynomial fitting φ0 � P�OPD�].
In real practice, one needs to estimate ^OPD and φ̂0 in
the first step. Similar to Φ, φ0 is a phase term and is
consequently subject to 2π ambiguity. If φ0 is preca-
librated [meaning the relationship of φ0 � P�OPD� is
found], one can calculate the expectation value of φ0
at the given ^OPD (calculated in advance via TYPE I
estimation) as ~φ0 � P� ^OPD� and set a 2π range
[ ~φ0 − π, ~φ0 � π] to determine φ̂0. As will be shown
in Section 3.E.2, this technique can reduce the prob-
ability of jump by several orders of magnitude.

3. Lower Bounds
For an estimator, performance can be evaluated by
the mean square error (MSE):

E��θ̂ − θ�2� � var�θ̂� � bias2�θ̂�; (13)

where E denotes the average and θ̂ is the estimated
value of the parameter θ. In general the estimator is
assumed to be unbiased, and the MSE reduces to the
variance of the estimator. However, unbiasedness is
not a straightforward assumption and will be dis-
cussed in detail in Section 3.C.1. In any circum-
stances, the variance of the estimator cannot be
arbitrarily small, the lower bound of which is defined
by the Cramer–Rao bound (CRB). Here, without
proof, the CRBs for the frequency and phase estima-
tions in WLI are given; the derivations can be found
in [30]. Defining P � N�N − 1�∕2, Q � N�N − 1��2N−

1�∕6, n0 � k0∕Δk, and Y � n2
0N � 2n0P�Q,

• The CRB of OPD estimation with unknown φ0
is (OPD of TYPE I)

var� ^OPD� � 12

S · �Δk�2N�N2
− 1� : (14)

• The CRB of OPD estimation with known φ0 is
(this is an approximation of the CRB of TYPE II
OPD; see Appendix A)

var� ^OPD� � 1

S · �Δk�2Y : (15)

• The CRB of φ0 estimation with unknown OPD
is (φ0 of TYPE I)

var�φ̂0� �
12Y

S ·N2�N2
− 1� : (16)

• The CRB of φ0 estimation with known OPD is
(Φ of TYPE II)

var�φ̂0� �
1

S ·N
: (17)

For WLI systems, both OPD and φ0 are unknown.
Equation (14) defines the lower bound of the OPD
estimation variance for the TYPE I algorithms
(“frequency estimation”); the lower bound of phase
estimation variance of TYPE I methods is given
by Eq. (16). Equation (17) is the CRB ofΦ estimation
[total phase of TYPE II, Eq. (11)], and accordingly the
TYPE II OPD estimation ( ^OPDtot) has a variance
limit of

Table 1. List of Key Parameters of the WLI Systems Used in the Research

System
Number Source Spectrometer

Wavelength
Range (nm) N k0�μm−1� Δk�m−1� Remarks

I LED OceanOptics, Inc., USB2000 715.88–980.64 2048 6.4072 1157.6 Multimode fiber based
II Micron Optics, Inc., swept laser spectrometer with

built-in source, Si-720
1520–1570 20,000 4.0020 6.5826 Single-mode fiber based
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var� ^OPDtot� �
1

S ·N · k2c
: (18)

To demonstrate that Eq. (17) is the CRB of Φ̂, we
take the variance on both sides of Eq. (11) and notice
that when the frequency OPD is known, the var-
iances of Φ̂ and φ̂0 coincide, which sets the lower
bound of the total phase estimation. A more detailed
explanation of the noise reduction mechanism of the
total phase approach is given in Appendix A. The
benefit of using the total phase is clear when Eqs. (18)
and (14) are compared. The root mean square (rms)
error of the direct frequency estimation is much lar-
ger than the total-phase-based OPD estimation by a
factor of [by taking the square root of Eq. (14)/
Eq. (18)]

G � 2
���
3

p �
n0

N
� 1

2

�
: (19)

ForWLI System I, it is calculated thatG ≈ 11.09, and
for WLI System II, G ≈ 107.04. This predicts that the
OPD estimation resolution using total phase is ap-
proximately 10 and 20 dB better than the direct fre-
quency estimation for Systems I and II, respectively.
More benefits of using total phase will be further dis-
cussed in Section 3.E.1. In general, if high resolution
is required, total phase demodulation is recom-
mended. However, one major drawback of the ap-
proach is the potential of the demodulation jumps
(there is no jump problem associated with the TYPE
I method).

It should be noted that the fringe visibility (and
hence the SNR) is OPD dependent [25]. Accordingly,
for applications where the OPD is subject to large
change, the CRBs should be treated as a function
of the OPD.

4. Cause of the Jump (II): Estimation Noise of φ0
The probability density function (PDF) of φ̂0 is a
Gaussian with mean φ0 and variance σ2p [the lower
bound of the variance is defined by Eq. (16)] and is
expressed as

f �φ̂0;φ0; σ2p� �
1

σp
������
2π

p exp
�
−
�φ̂0 − φ0�2

2σ2p

�
: (20)

As discussed in Section 2.B.2, a 2π range is as-
signed to φ0 in order to unambiguously determine
its value. A jump event will occur if φ̂0 falls out of
the assigned range; this would lead to addition or
subtraction of 2π multiple times in order to force
φ̂0 back to the given range. The probability of jump
is minimized if the range is centered at φ0, where the
probability is defined by the following inequity:

Pjump ≥ 2F�f ;−π� � 2
Z

−π

−∞

f �φ̂0; 0; σ2p�dφ̂0; (21)

where F denotes the cumulative distribution func-
tion. It should be noted that in principle the jump
cannot be eliminated [the value of Eq. (21) is always
>0]; however, it can approach zero if σp is small and
the 2π range is appropriately selected. The jump
probability minimizes when the estimator reaches
the CRB and the 2π range is centered at φ0. One
can thus estimate the jump probability by Eqs. (16)
and (21). The probability escalates rapidly if σp is
large and/or the range is not centered at φ0;
we will illustrate this situation in more detail in
Section 3.E.2.

3. Discussion

A. WLI Algorithms

1. Periodogram (Fast Fourier Transform Method)
The maximum likelihood estimator of a single har-
monic is the periodogram, which can be regarded
as the best algorithm [26,30]. However, this method
has been considered to yield poor accuracy when it is
applied in WLI. The reasons for this belief are the
following: (1) a periodogram was used as a TYPE I
estimator in the past, i.e., only ^OPD was estimated.
As a result of the discussion in Section 2.B.3, com-
pared with the TYPE II approaches, the resolution
of a periodogram is worse. (2) The implementation
of the algorithm is not optimized.

Because the signal is real, its FT is symmetric
about zero and only N∕2 data points are effective
in the periodogram. This basically dictates that the
normalized frequency resolution is limited to 2∕N. To
improve the resolution, zero padding is widely
adopted to increase N [13]. Taking the derivative
of Eq. (8) on both sides and denoting the frequency
resolution as dωn � 2∕N, it is found that in order
to resolve a frequency difference of δOPD, the num-
ber of points needed is

N � λ2c
δOPD ·Δλ

; (22)

in which λc is the central wavelength and Δλ is the
wavelength interval of the spectrometer. To achieve a
resolution of δOPD � 1 Å, for WLI System I, N �
7.4 × 107, and for WLI System II, N � 9.6 × 109.
The required data size will lead to an unrealistic
computational load and result in extremely low effi-
ciency. To improve its efficiency, it is recommended
that following an approximate estimation of the
FT peak position with relatively shortN, the normal-
ized frequency in Eq. (8) is further determined by the
Newton–Raphson method to maximize [26,30]

jA�ωn�j �
����
XN−1

n�0

In exp�−i · πnωn�
����; (23)

and the estimations of OPD and φ0 are obtained by

^OPD � ω̂nπ∕Δk; (24)
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φ̂0 � arg�exp�−i ^OPD · k0�A�ω̂n��: (25)

This method is expected to yield the maximum-
likelihood estimation to reach the CRB. It is abbre-
viated as the fast Fourier transform (FFT) method
and will be discussed further in the following
subsections.

2. Linear Regression Method and Peak Tracking
Method
In the LR method, Φ of all the data points are calcu-
lated by solving the angle of the analytical signal, fol-
lowed by a linear fitting to their corresponding
spectral positions kn. Details of the method can be
found in [22]. Equation (13) in [22] is used to estimate
the OPD and φ0.

Instead of using all the spectral points for LR, the
peak tracking (PT) method uses only the peak posi-
tions in the spectrum. Corresponding details can be
found in [29], and Eqs. (21) and (22) in [29] are used
to determine the OPD and φ0. At first glance the ac-
curacy of PT should be lower than LR, because only a
small portion of the spectral data (only the peak
points) are used; however, this is not true, because
actually all the points contribute to the determina-
tion of the peak positions.

For the LR and PTmethods, it is important to use a
bandpass filter to clean the signal in advance to in-
crease the breakdown threshold, which is defined as
an SNR value beyond which the error of the estima-
tor abruptly becomes significantly larger than the
CRB [22]. It is found that an effective order of the
filter is Nf � N∕10. If Nf is too small, the noise re-
duction is not sufficiently effective; on the other
hand, if Nf is too large, the effective length of the
data is sacrificed to an extent that the CRB is appar-
ently lifted. It is also important to shift the filtered
data back to Nf ∕2 points to compensate the filtering
delay, or a large phase bias would occur.

B. Evaluation of the Algorithms

The algorithms in Section 3.A were evaluated by
comparison with the corresponding CRBs using com-
puter simulation. In the simulation, an FP cavity
with OPD � 200 μm was assumed, and the para-
meters of WLI System I were used. White Gaussian
noise was added to the sensor spectrum according to
the required SNR. At each SNR level, 1000 sets of
spectral data were generated, and the variances of
the FFT, LR, and PT methods were calculated for
both TYPE I and TYPE II [by using Eqs. (11) and
(12)] estimations. Plotted together are the corre-
sponding CRBs. In Fig. 2(a), the CRB for frequency
estimation with known phase is plotted, which is suf-
ficiently accurate as the CRB for a TYPE II OPD es-
timator (see Appendix A). Because the estimators
were assumed to be unbiased, the simulation used
their standard deviation as the rms error. The discus-
sion on estimator bias is given in Section 3.C.1.
As demonstrated by Fig. 2, all three algorithms ap-
proach the CRBs nicely. It should be noted that the

input spectrum was evenly sampled in wavelength.
Reaching the CRB demonstrated the effectiveness of
the interpolation process that evenly sampled the
spectrum in wavenumber. The FFT method, as ex-
pected, shows the best performance, whereas the LR
and PTmethods demonstrate nearly identical perfor-
mances. The threshold of the LR and PT methods
occurs at SNR ∼ −5 dB, and the FFT approach shows
a lower threshold, below −10 dB, which suggests bet-
ter immunity to noise. Reaching the CRB is a man-
ifestation of the performance optimization. In other
words, once an algorithm approaches the CRB, it
reaches the ultimate limit given the amount of infor-
mation. Any other WLI algorithms can be evaluated
against the CRB under the same framework.

C. Comparison of the Algorithms

1. Estimator Bias
In the previous discussions, the estimators are as-
sumed to be unbiased [30], which is in fact not true

Fig. 2. (Color online) Performance evaluation of the FFT, LR, and
PT methods: (a) OPD estimation and (b) φ0 estimation. Plotted to-
gether in both figures are the standard deviations of both the
TYPE I and TYPE II estimators. The CRBs for the corresponding
variances are coplotted. Insets are zoomed-in views of the lines,
which provide better visibility of the algorithms’ performance.
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for the current situation. The reason is closely re-
lated to the properties of the WLI signal. As noted
in Section 2.A, the harmonic under analysis is
real-valued and bears a very low frequency. Unlike
a complex-valued signal (analytic signal), the real
signal is symmetric about zero on the Fourier
domain. When the harmonic frequency is low, the
positive and negative peaks associated with the
harmonic are very close to each other. As the se-
quence is of finite length, spectral leakage will take
place [28,31], manifesting as sidelobes near the FT
peaks. The sidelobes of the negative peak interfere
with the positive peak and slightly change its spec-
tral position. The modification is small, but a notice-
able bias is incurred when high accuracy is required.

Windows can be applied to the data to effectively
suppress the intensity of the sidelobes. The perfor-
mances of different windows are compared by compu-
ter simulation, in which the cavity length of the FP
sensor was continuously swept from 3 to 100 μm,
with the cavity refractive index set to unity. During
the simulation no noise was added, and the WLI
System I parameters were used in the study. The
TYPE I OPDs estimated using LR, FFT, and wind-
owed FFT (with a Blackman–Harris window) were
obtained, and the bias of each estimator at the given
cavity length was found by comparing with the true
value. The results are shown in Fig. 3. A common fea-
ture shown is the tendency toward a short cavity,
where the influence of spectral leakage surges ra-
pidly for all the estimators, resulting in an increased
bias. Another feature is the bias’s pattern that oscil-
lates with the cavity length, which is apparently a
signature of the sidelobes. For TYPE I estimation,
FFT and LR show unsatisfactorily large biases. Even
at a cavity length of 100 μm, both show a maximum
bias of ∼10 nm. The oscillatory pattern will promote
demodulation nonlinearity. The effectiveness of

windowing to suppress the bias is demonstrated.
As shown by the dotted curve, application of
Blackman–Harris window leads to a bias suppres-
sion ratio over 30 dB; themaximum bias was reduced
below 10 pm for cavity lengths from 10 to 100 μm.

During the simulation, φ0 in the spectrum was set
to zero; as a result the TYPE II OPD estimator
[Eqs. (11) and (12)] became unbiased (otherwise the
TYPE II estimator has an constant bias, which will
be discussed in Section 3.E.1). It is found that the
TYPE II estimator showed superior bias reduction,
which suppressed the bias further by another
∼15 dB. Themaximum bias for cavity length ranging
from 10 to 100 μm was uniformly below 1 pm,
which is of significant importance for high-accuracy
applications.

2. Comparison of the Algorithms
In Section 3.B the performances of the algorithms
are evaluated by comparing with the CRBs. In the
previous demonstration only the variance was con-
sidered. According to Eq. (13), the MSE also includes
a bias term; as discussed in the preceding section, the
estimators are generally biased, which calls for reex-
amination of their performance. Comparison was
made among FFT, LR, and windowed FFT (with a
Blackman–Harris window); for both TYPE I and
TYPE II estimations by computer simulation, the
simulation assumesWLI System I parameters. In or-
der to make the influence of the bias more visible, the
OPD of the simulated spectrum was shortened to
60 μm. At each SNR level, the rms error was calcu-
lated based on comparison of the estimated and true
OPD values with 1000 observations. The results are
plotted in Fig. 4. The rms errors of the TYPE I LR
and FFT estimators diverge significantly from the
CRB for SNR > 10 dB, which is attributed to a big
bias. The curve corresponding to windowed FFT in
the TYPE I group follows the CRB nicely in the whole
SNR range except for a uniform ∼3 dB degradation.
This is attributed to the larger equivalent noise
bandwidth associated with the window used [31].
For the TYPE II estimators, FFT without windowing
shows the worst performance (diverging significantly
from the CRB starting at SNR ∼ 10 dB). For the
TYPE II LR estimator, significant divergence from
the CRB happens above SNR ∼ 25 dB. The perfor-
mance of the windowed FFT is consistent in the com-
plete SNR range. According to the simulation, for the
TYPE I estimation, windowed FFT is preferred if
SNR exceeds 20 dB. For the TYPE II estimation,
for SNR > 30 dB, the windowed FFT has the best
performance; otherwise the LR method is sufficient.
For applications having a high SNR and requiring a
high accuracy, the TYPE II windowed FFT is the best
choice. The simulation predicts that for WLI System
I, at SNR � 40 dB, the rms estimation error is
∼50 pm if TYPE II FFT with a Blackman–Harris
window is used.

The computation complexity of the FFT, PT,
and LR estimators were compared in terms of

Fig. 3. (Color online) Absolute value of OPD bias versus
cavity length plotted for TYPE I LR, FFT, and windowed FFT
(Blackman–Harris) estimators. The result for the TYPE II estima-
tor using FFT (Blackman–Harris) is coplotted, which demon-
strates superior bias suppression.
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computation time. The time was measured by aver-
aging over 1000 executions and as a function of data
length (N), and the result is plotted in Fig. 5. The in-
vestigated algorithms show that the computation
time linearly increases withN. The LR and PTmeth-
ods have nearly identical complexity, while the com-
plexity for the FFT method is significantly higher.
The calculated complexity can be influenced by a
number of factors, such as the CPU speed and pro-
gramming skills. However the significantly higher
complexity of the FFT estimator is as expected [32].

D. OPD-Dependent Additional Phase

We discussed in Section 2.B.1 that the “constant φ0”

assumption will intrinsically lead to demodulation

jumps if TYPE II estimation is made. We concluded
from numerous experimental observations that the
φ0 term for both EFPI and IFPI is, in general, usually
a function of OPD. Being a function of OPD makes
the φ0 calibratable, which is the key to reducing
the probability of jumps, as will be discussed in
Section 3.E.2. In this subsection some major causes
for the OPD-dependence of φ0 will be introduced;
nevertheless, factors not included in this subsection
may also cause a changing φ0.

1. Wave Front Distortion
The φ0 change due to wave front distortion is an
inherent property of the FP cavity. In other words,
unlike other factors, it is a “built-in” signature of
the cavity and is unremovable by any hardware or
software. At the cavity interface, the optical beam
will be diffracted from a fiber mode into either a
free-space mode (for an EFPI) or other fiber modes
(for an IFPI). During propagation, the wave front
of the cavity mode will become distorted, and a non-
zero phase term will be generated when the wave-
front-distorted beam is recoupled back into the
lead-in fiber. Intuitively, the greater the distortion
is, the larger the phase term; as the distortion is
OPD-dependent, so is the induced phase. For EFPIs,
detailed analysis can be found in [25,33,34], and the
case for IFPIs was studied in [35]. In general, for an
EFPI, the phase term caused by wave front distor-
tion is small and changes moderately with OPD;
for an IFPI, due to multimode excitation, this term
could be large and change more rapidly. It should
be noted that multiple modes may still exist even
when a single-mode fiber is used for the relatively
short FP cavity as long as the single-mode fiber is
different from the input single-mode fiber.

2. Material Dispersion
If the FP cavity is filled by a material with nonzero
chromatic dispersion, and when the spectral band-
width of the light detected is large (e.g., WLI System
I), the material dispersion can cause a “chirp” in the
spectrum that finally amounts to a spurious phase
term. The material dispersion is described by the
Sellmeier model; the coefficients of the model are all
temperature-dependent. For a temperature sensor,
changing the temperature subsequently changes the
OPD, while the Sellmeier coefficients simultaneously
vary to cause a changing φ0. This was simulated
using the parameters of WLI System I and a silica
wafer with an initial thickness of 70 μm. Dispersion
of the wafer was modeled by the temperature-
dependent Sellmeier model with parameters from
[36]. During the simulation, temperature was in-
creased from 20°C to 1300°C, and the linear coeffi-
cient of thermal expansion was set to 8.5 × 10−6.
The φ0 term was calculated using a Blackman–
Harris-windowed FFT and is plotted as the solid
curve in Fig. 6. The agreement of the simulation
result with the experiment will be given later in
Section 3.E.2 (Fig. 8).

Fig. 4. (Color online) Performance comparison of the LR, FFT,
and windowed FFT (Blackman–Harris). The rms error includes
the contributions from both the estimator variance and bias.
The windowed FFT for both TYPE I and TYPE II estimations
manifests superior performance in bias reduction, at the expense
of a ∼3 dB increase in the rms error.

Fig. 5. (Color online) Measured computation complexity in terms
of execution time, plotted as a function of data length (N). The FFT,
PT, and LR methods are compared to demonstrate a linear rela-
tionship with N. The complexity of FFT is the highest, while
the complexities of PT and LR are almost identical.
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3. Fixed-Pattern Noise
A pixel-sensor (such as a CCD) usually bears fixed-
pattern noise (FPN) due to uneven pixel-to-pixel
sensitivity [37]. Some spectrometers (such as the
spectrometer used in WLI System I) are built with
such devices. Typically the FPN is small enough
for accurate spectral analysis; however, for sensitive
OPD measurement, the influence from the FPN can
be noticeable. The OPD-dependent phase term φ0
can be understood as follows. The spectrum of the
FP sensor with the FPN is written as (with time-
dependent noise excluded)

In � A cos�OPD · kn � φ0� � W̄n; (26)

where W̄n represents the FPN. The Fourier domain
spectrum is thus expressed as

~Ik � FFTk�In� � Sk � ~wk; (27)

where Sk is the FT of the harmonic signal and ~wk is
the FT of the FPN. A major difference between the
FPN and normal noise is that ~wk is fixed for each
Fourier bin. When the OPD changes, the FT peak po-
sition scans continuously, and the interference from
~w is dependent on the peak position, so the OPD es-
timation error becomes OPD-dependent. This OPD
error is finally translated to a phase error via
Eq. (25). The FPN-induced phase shift always shows
up with an oscillating pattern (with respect to OPD)
with a period roughly equal to λc (the central wave-
length). This can be easily understood by recalling
that after the OPD shifts λc, the spectrum nearly
recovers, and the influence by the FPN will conse-
quently repeat. The FPN-induced phase was simu-
lated by adding a fixed white Gaussian noise to

the spectrum acquired by WLI System I, which
resulted in an equivalent SNR � 12 dB. This noise
was added upon the spectra that were previously
used to simulate and plot the dispersion-related
phase (Fig. 6, solid curve), and the final results
are shown on the Fig. 6 as the dashed curve. The
simulated influence indeed shows up as an OPD-
dependent oscillatory phase term.

4. Finite Sampling Rate
If the spectrometer has a finite sampling rate (FSR)
across the full spectral range (e.g., WLI System II;
the laser scanning rate is 5 Hz), the FSR will couple
with the OPD changing rate to generate an addi-
tional phase. The added phase can be expressed
as [29]

Δφ0 ≈

�
dOPD
dt

�
·

k2c
f sNΔk

; (28)

where f s denotes the scanning frequency and the
derivative term represents the OPD changing
rate. Among all the factors that induce the OPD-
dependent φ0, this FSR-induced phase is the most
difficult to remove, because it depends on the instan-
taneous OPD changing rate, and thus cannot be
precalibrated.

E. More on Total Phase

1. Characteristics of the Estimated Total Phase
The benefit of TYPE II estimation is multifold. First,
as was demonstrated previously, the TYPE II estima-
tors have superior noise reduction capability. The
rms error reduction factor for OPD is given in
Eq. (19), and the CRB of the TYPE II OPD estimator
approaches the CRB of OPD estimation with known
phase. Second, as was shown in Section 3.C.1, the es-
timation bias of the TYPE II estimator is much lower
than that of the TYPE I. More generally, the total
phase estimation,Φ̂, follows the real OPD change
more linearly than ^OPD. At first glance, the defini-
tion of TYPE II OPD estimation [Eq. (12)] introduces
a bias term [Eq. (11), φ̂0 term). In fact, it is the inclu-
sion of this term that reduces the demodulation non-
linearity. In real applications, the projection from the
real OPD change to the demodulated ^OPD (TYPE I)
change is always not perfectly linear. This is caused
by the nonlinearly changing φ0 as discussed in
Section 3.D. Interestingly, the nonlinearity that φ̂0
experiences is always accompanied by a proportional
^OPD change in the opposite direction (that is why
^OPD is not quite linear); however, the outcome is a

cancellation of the nonlinearity in the total phase,
which adds the two oppositely diverging terms. In
sum, the TYPE I ^OPD has worse translation fidelity
due to the influence of the spurious additional phase
φ̂0; however, the translation to Φ̂ is much linear. An
excellent example is given in [29], Fig. 8.

Fig. 6. (Color online) Computer-simulated phase term φ0 caused
by material dispersion (solid curve) and FPN (dashed curve). The
dispersion of a 70 μm thick silica wafer was modeled by the
temperature-dependent Sellmeier model. WLI System I, together
with Blackman–Harris windowed FFT, was used for signal demo-
dulation. For the simulation of FPN, the applied white Gaussian
noise yields SNR � 12 dB.

10 January 2013 / Vol. 52, No. 2 / APPLIED OPTICS 135



2. Reducing the Probability of Jump in TYPE II
Estimations
Despite its multiple benefits, a major drawback of
the TYPE II estimation is the demodulation jump,
as discussed in Sections 2.B.1 and 2.B.4. Based on
the assumption that the PDF of φ̂0 is Gaussian,
the theory in Section 2.B.4 predicts the lower limit
of the jump probability by Eq. (21), and this limit
is reached when the 2π phase confinement range is
centered on φ0 and the estimator reaches the phase
CRB. It should be noted that the Gaussian PDFof the
phase estimation is an essential assumption of the
theory, which is demonstrated in Fig. 7. The PDF
plotted in the figure was obtained with a real EFPI
sensor whose phase was kept constant during the
measurement. WLI System I was used in conjunction
with the PT method, and the PDF was calculated
from 200,000 estimations, which can be well fitted
by a Gaussian with σp � 0.158π.

From the discussion in Sections 2.B.2 and 3.D, the
OPD-dependent phase term φ0 can be calibrated in
advance such that during real measurement, the
expectation value of φ0 can be estimated by ^OPD,
resulting in a proper assignment of the 2π phase
range for φ̂0 with minimum jump risk.

In detail, after calibration, theφ0 term is fittedwith
the OPD using a polynomial as φ0 � P�OPD�. In real
measurement, ^OPDand φ̂0 are estimated by aTYPE I
estimator (e.g., FFT), and the expectation value of φ0
is obtained by ~φ0 � P� ^OPD�. Then, multiple 2π will be
added to or subtracted from φ̂0 such that it fallswithin
the range [ ~φ0 − π, ~φ0 � π]. Finally, the TYPE II OPD
is estimated by Eqs. (11) and (12).

In Fig. 8 an example is given to illustrate the above
process. In Fig. 8(a), the color map of the PDF of the
estimated phase is plotted as a function of OPD. The
data were acquired experimentally from a sapphire-
wafer-basedEFPI temperature sensor [7]. During the
phase calibration, a sufficient amount of data was
recorded to capture the OPD − φ0 relationship (com-
paring with Fig. 6 reveals reasonable agreement).

For simplicity, linear fitting was used to fit the phase
with theOPD, and accordingly the phase confinement
range was assigned, shown as the dashed lines in
Fig. 8(a). In comparison, the solid lines are an alter-
native range scheme that center at the initial φ0 but
assume constant values. According to the PDF of φ̂0
and the values of the range boundaries, the probabil-
ity of jump (i.e., the probability of having phase esti-
mation outside the predefined range) is plotted in
Fig. 8(b) for both range schemes. For the fixed phase
boundary (solid lines in Fig. 8a), the maximum prob-
ability of jump reached ∼10% at OPD ≈ 207.2 μm,
whereas using the OPD-dependent phase boundary,
the jump probability was uniformly below 1 ppm. A
reduction of jump probability by 105 was resulted.

4. Conclusion

The demodulation of the WLI low-finesse FP
sensor is identical to parameter estimation of a

Fig. 7. (Color online) Experimentally obtained PDF of φ0

estimation.

Fig. 8. (Color online) Reduction of jump probability by phase ca-
libration. (a) PDF of φ0 estimation plotted with OPD, σp � 0.158π.
The area between the solid lines is the assigned phase range as-
suming constant phase, and dashed lines are the boundaries of the
OPD-calibrated range with linear fitting. (b) The corresponding
probability of jump. Solid curve: OPD-dependent jump probability
for the constant range scheme. Dashed curve: jump probability for
the calibrated range scheme.
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noise-contaminated, real, discrete tone with finite
length. This forces us to solve the problem, and to
evaluate the estimators in the context of harmonic
analysis. We call attention to the importance of the
CRBs, because any developed algorithms should be
evaluated using the bounds as standards. Three
algorithms are compared in terms of their errors (in-
cluding estimation variance and bias) and complex-
ities; comparisons with the CRBs are highlighted.

In spite of its similarity to traditional harmonic
analysis, the WLI problem bears some unique fea-
tures. The data are real and have finite length and
low frequency, and consequently the bias caused by
spectral leakage becomes dominant when the SNR
is high. A solution is to use windows with effective
sidelobe suppression in the periodogram, at the
expense of moderately increased variance.

The TYPE I estimation (denoted as ^OPD in the
paper) will suffice if the requirement for resolution
is not high. Despite low resolution, this approach has
no jump problem. If high resolution is desired, both
^OPD and φ̂0 need to be estimated and subsequently

combined to yield the TYPE II estimation ( ^OPDtot).
^OPDtot has significantly reduced estimation error

and demodulation nonlinearity; however, it has the
risk of abrupt demodulation jumps. The jump is
attributed to the φ̂0 term, the value of which is intrin-
sically ambiguous (with 2π-step jumps). Moreover,
the value of φ0 is not a constant and can vary during
measurement. As such, φ̂0 and ^OPD are of parallel
importance in TYPE II estimation. If φ0 is reliably
dependent on OPD, it can be calibrated in advance
and an appropriate (OPD-dependent) 2π range can
be assigned to φ̂0 to minimize the occurrence
of jumps.

Appendix A: Noise Reduction Mechanism of TYPE II
Estimations

In Section 2.B.3, we have shown the noise reduction
gain in Eq. (17). In this appendix we will explain
more on the noise reduction mechanism of the
TYPE II approaches.

Taking the variance on both sides of Eq. (18),
we get

var�Φ̂� � k2c · var�L̂� � 2kc · cov�L̂; φ̂� � var�φ̂�; (A1)

where cov�•� denotes the covarianceL̂ and φ̂ are
estimations of the OPD and additional phase. The
values of the terms on the right-hand side of Eq. (A1)
can be obtained from the components of the inversed
Fisher information matrix, and correspondingly la-
beled as J�i;j��i; j � 1; 2�. The values of var�L̂� � J�11�

and var�φ̂� � J�22� are defined in Eqs. (14) and (16),
respectively. The value of cov�L̂; φ̂� is determined by
the antidiagonal elements J�1;2� � J�2;1�, which can
be calculated as

J�1;2� � J�2;1� � −
6�2n0 �N − 1�

S ·Δk ·N�N2
− 1� : (A2)

The value is negative and sets the lower limit of
the covariance in the sense that jcov�•�j ≥ jJ�1;2�j.
To estimate the variance of Φ̂, we insert Eqs. (14),
(16), and (2) into Eq. (1) and get

var�Φ̂� ≈ 12k2cN − 12kcΔk�2n0 �N − 1�N � 12Δk2Y

S ·Δk2 ·N2�N2
− 1� :

(A3)

In order to simplify Eq. (A3), the following approx-
imations are made: P ≈

N2

2 ,Q ≈
N3

3 , kc ≈ k0 � 1
2NΔk �

�n0 � 1
2N�Δk, k2c ≈

YΔk2
N −

�NΔk�2
12 , which lead to the

following approximation:

YΔk2 ≈

�
1� 1

12

�
N
n0

�
2
�
k2cN � �1� C0�k2cN: (A4)

With the approximations above, Eq. A3 is reduced
to

var�Φ̂� ≈ 1
S ·N

; (A5)

which is the CRB of φ̂with known OPD [Eq. (17)]. We
can further prove that the TYPE II OPD estimation
[Eq. (12)] approaches the CRB of OPD estimation
with known phase by inserting Eqs. (A4) and (12)
into Eq. (A5) and setting C0 � �N∕n0�2∕120 ≈ 0 (to
demonstrate, putt in parameters for WLI
System I, we get C0 ≈ 0.01, and for WLI System II,
C0 ≈ 0.0001), and finally we get

Fig. 9. (Color online) Computer-simulated variance and covar-
iance terms in Eq. (A1). The corresponding CRBs are plotted
together. An important observation is that the variance terms
and the covariance term cancel to yield a significantly reduced var-
iance for the total phase estimation.
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var� ^OPDtot� ≈
1

S · �Δk�2Y ; (A6)

which is the CRB for OPD estimation with known
phase [Eq. (15)]. The above calculation was con-
firmed by computer simulation in which the variance
and covariance terms in Eq. (A1) are numerically
solved (OPD � 200 μm, WLI System I with an
FFT estimator was used, and at each SNR 1000
observations were made). The result is plotted in
Fig. 9. The figure clearly shows how the covariance
term cancels the variance terms to yield a much
smaller variance for the total phase estimation. It
should be noted that Eq. (A5) is the real CRB for
the total phase estimation, whereas Eq. (A1) is only
an approximation (as shown in the figure, the var-
iance falls in between the two lines).
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