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We review and generalize recent results on advection of particles in open time-periodic
hydrodynamical flows. First, the problem of passive advection is considered, and its fractal and
chaotic nature is pointed out. Next, we study the effect of weak molecular diffusion or randomness
of the flow. Finally, we investigate the influence of passive advection on chemical or biological
activity superimposed on open flows. The nondiffusive approach is shown to carry some features of
a weak diffusion, due to the finiteness of the reaction range or reaction velocit000 American

Institute of Physics.S1054-150000)02001-3

Advection of passive tracers in open nonstationary flows
is an interesting phenomenon because even in simple
time-periodic velocity fields the tracer particles can ex-
hibit chaotic motion, and tracer ensembles display pro-
nounced fractal patterns. As an illustrative numerical ex-
periment we analyze a model of the von Keman vortex
street, a time-periodic two-dimensional flow of a viscous
fluid around a cylinder. First, we consider the problem of
passive advection, and discuss the chaoticity of the par-
ticle dynamics and its relationship to the appearance of
fractal patterns. Then we include weak diffusion and
show that this leads to a washing out of the fine-scale
structure below a critical length scale, while still preserv-
ing fractal scaling above this scale. Finally, we study how
chemical or biological processes superimposed on open
flows are influenced by the properties of the underlying
nondiffusive passive advection. We present an elemen-
tary derivation of the reaction equation that describes
accumulation of products along the unstable manifold.
Moreover, the similarity of this fattening of a fractal to
that due to diffusion is discussed and analyzed, and our
method is compared with the traditional description via
reaction-advection-diffusion equations.
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I. PASSIVE ADVECTION IN OPEN FLOWS

The advection of particles by hydrodynamical flows has
attracted recent interest from the dynamical system
community! =32

If advected particles take on the velocity of the flow very
rapidly, i.e., inertial effects are negligible, we call the advec-
tion passive and the particle a passive tracer. The equation

for the positionr(t) of the particle is then
r=v(r,t), (€8]

wherev represents the velocity field that is assumed to be
known. The tracer dynamics is thus governed by a set of
ordinary differential equations, e.g., like those of a driven
anharmonic oscillator, whose solution is typically chaotic.

A unique feature of chaotic advection in time-dependent
planar incompressibleflows is that the fractal structures
characterizing chaos in phase space become observable by
the naked eye in the form of spatial patteti$ln such cases
there exists atreamfunctiony,,)(x,y) (Ref. 33 whose de-
rivatives can be identified with the velocity components as

e

2
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and whose level curves provide the streamlines. The sulfellow some of the periodic orbits for awhile and later turn to
scriptu(t) indicates the set of all parameters determining thefollow another one. This wandering among periodar,
streamfunction, which is generally time dependent. Note thatnore generally, nonescapingrbits results in thechaotic

Eq. (2) is a consequence of incompressibility because it immotionof passive tracers. Indeed, as long as the tracers are in
plies V-v=0. Combining Eq.2) with Eq. (1) for a planar  the mixing region, their trajectories possess a positive aver-
flow, wherer=(x,y) andv=(vy,v,), one notices that the age Lyapunov exponeit. Hence the union of all nonescap-
equations of motion have canonical character, withing orbits is called thehaotic saddlelt has a unique fractal
. (Xy) playing the role of the Hamiltonian andandy  dimensionD{$®%® on a stroboscopic map, independent of
being the canonical coordinates and momeatasice versg  the time instant at which the snapshot is taken.

respectively. Thus, the plane of the flawincideswith the While many of the tracers spend a long time in the mix-
particles’ phase space. This property makes passive advegyy region, the overwhelming majority of particles leaves
tion in planar incompressible flows especially interesting andps region sooner or later. The decay of their number in a
a good candidate for an experimental observation of patterng.eq frame is typically exponential with a positive exponent
that are typically hidden in an abstract phase space. In stg: )y \which is independent of the frame. This quantity is
tionary flows whenj is independent of, the systentl) and 0 escape ratérom the saddldor the mixing regioh The

(2) is integrable and the particle trajectories coincide with thereciprocal of the escape rate can also be considered as the

_strear_nllnes. n tlme-erendent_cases, however, particle tr%[verage lifetime of chaos, and therefore the chaotic advec-
jectories and streamlines are different, and the former on on of passive tracers in open flowstignsient chaos*

can only be obtained by solving Eqg) and(2) numerically. The chaotic saddle is the set of nonescaping orbits which

Here we consider passive advectionojpenflows. This : o )
. : tracer particles can follow for an arbitrarily long time. Each
means that there is a net current flowing through the obser-
) : o e orbit of the set, and therefore the set as a whole, has a stable
vation region where the velocity field is time dependent. In

the far upstream and far downstream regions the flow is corghd an unstablenanifold The stable manifold is a set of
oints along which the saddle can be reached after an infi-

sidered stationary. In such cases complicated tracer mov@-.t v | . Th tabl ifold is th t al
ments are restricted tofaite region. This will be called the nitely long ime. Theunstable maniiold 1s the et along
mixing regionoutside of which the time dependencepfs which particles lying infinitesimally close to the saddle will

negligible. It is worth emphasizing that a complicated flow €Ventually leave it in the course of time. Viewed on a stro-
field (turbulence inside the mixing region isot required for ~ POSCOPIC map, these manifolds dractal curves winding in

a complex tracer dynamics or for the appearance of fractdt COmPplicated manner. By looking at different snapshots of
patterns. Even simple forms of time dependence, e.g., a p&€Se curves we can observe that they move periodically with
riodic repetition of the velocity field with some periag is ~ the periodT of the flow. Their fractal dimensiom, (1
sufficient. However, the periodicity of such flows allows for <Po<2) is, however, independent of the snapstidhe

a simpler presentation of the chaotic advection dynamics vigtable and unstable manifolds have identical fractal dimen-
the so-called stroboscopic map. It is a discrete mvgpde- sion due to the tracer dynamics’ time reversal invariance, and
fined by the sequence of snapshots taken at time instanB§>'"=2(Dg—1).]

separated byl connecting the coordinatex(,y,) of the The unstable manifold plays a special role since it is the
particle at snapshot with those at the next one as only manifold which can be directly observed in an experi-
ment. Let us consider a dropl@nsemblgof a large number
(Xn+1,Yn+1) =M, (X, Yn)- (8)  of particles which initially overlaps with the stable manifold.

Since the parameters of the flow are time periodic Witthe As the droplet is advected into the mixing region its shape is

parameters. on the snapshots areindependent, and hence strongly deformed, but the ensemble comes closer and closer

the map is autonomous. Due to the incompressibility of thd© the chaotic saddle as time goes on. Since, however, only a
flow, mapM , is area preserving small portion of particles can fall very close to the stable
1 /L "

The complicated form of trajectories implies a long time Manifold, the majority do not reach the saddle and start flow-

spent in the mixing region. In other words, tracers can pbdng away from it along the unstable manifold. Therefore we
temporarily trapped there. It is even more surprising, how-<conclude that in open flowdroplets of particles trace out
ever, that for very special initial tracer positionsnescaping the unstable manifolcbf the chaotic saddle after a suffi-
orbits exist. The simplest among these orbits are the periodi€iently long time of observation. This implies that classical
ones with periods that are integer multiples of the flow'sflow visualization techniques based on dye evaporation or
period, T. All the nonescaping orbits are highly unstable andstreaklines trace out fractal curvesinstable manifolds
possess a strictly positive local Lyapunov exponent. Anothewhich aredifferent from streamlinesr any other character-
important feature of these orbits is that they are rather excepstics of the Eulerian velocity fieldfor several flow visual-
tional so that they cannot fill a finite portion of the plane.ization photographs of this type, see Ref).35
Indeed, the union of all nonescaping orbits forms a fractal A classical result, valid for any transient chaotic motion,
cloud of points on a stroboscopic map. This cloud is movingrelates the dynamical quantities to the fractality of the
periodically with the flow but never leaves the mixing re- manifolds®*343” Applied to our particular problem, it im-
gion. plies that the information dimensiob; of the manifold is
Typical tracer trajectories not exactly reaching any of theuniquely related to the average Lyapunov exponeatound
nonescaping orbits are, however, influenced by them. Thethe chaotic saddle and the escape rate
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K wake of the cylinder at any instant of time and these vortices
N (4) alternate when separating from the cylinder. The form of the
analytical model is motivated by the results of a direct nu-
This formula says that the unstable manifold’s dimension isnerical simulation of the Navier—Stokes equations at Rey-
smaller than the plane’s dimension by an amount given byiolds number 250, reported in Ref. 23. The dynamical and
the ratio /N of two dynamical rates, or two characteristic geometrical parameteis «,K,, andD, are functions of the
times. Since the fractal dimensidd, of the manifold is  Reynolds number. The wake of the cylinder plays the role of
typically very close(from above to Dy, Eq. (4) also pro- the mixing region.
vides a fairly good estimate d@,. It is worth emphasizing that relationg) and (6) are
The derivation of Eq(4) is based on the observation that valid for hyperbolic chaotic saddles only. The chaotic
if we cover the unstable manifold in a given region with saddles in advection problems typically also contain nonhy-
boxes of linear sizes and color the covered ared, the  perbolic components. One source of them can be KAM tori
colored aread’ staying inside the preselected region aftergenerated by the Hamiltonian problem(1) and
some timer will be smaller by a factor of exp{x7) due to  (2).10-12141526|n the wake of the cylinder, however, they
escape. Simultaneously, the covering will be narrower due tean hardly be observéd:*® The applied resolutions suggest
the convergence along the stable direction towards the unhat they are certainly not present on dimensionless length
stable manifold. Therefore we write that the new box size isscales above I¢. Another, independent source is the sur-
e'=eexp(-\7) where —\ is the average negative face of the cylinder. It acts as a union of parabolic orbits, and
Lyapunov exponent. By this we are considering boxes whicthence as a smooth torus, which is also sticky. Close to the
are typical with respect to the natural meastfreon the surface, i.e., in the boundary layer, this stickiness leads to an
saddle and so their numbhi(e) scales ag P1. This expo- immediate power law decdy,but further out in the wake
nentD; is somewhat smaller than the fractal dimension de-exponential decay can be observed over more than 15 peri-
termining the scaling of all the covering boxes. Since, how-ods. Thus, the advection problem in the wake can faithfully
ever, our boxes are typical, the total covered areadis be described over a long time span as if the saddle was fully
~€*~P1and A’ ~€'27P1 up to corrections which are negli- hyperbolic. Thus(4) and(6) can safely be used in this con-
gible in the smalle limit. By inserting the relation between text.
the box sizes and the areas, we find that &g.holds irre- Figure 1 displays the unstable manifold of the chaotic
spective ofr. saddle taken at different snapshots within one period. The
It is worth emphasizing the usefulness of a further, indestadius R of the cylinder and the period@ of the flow are
pendent characteristic, thepological entropy K of the cha-  taken as the length and time units. The construction is based
otic saddle. It can be interpretéd'*as the growth rate of on the mathematical definition of the unstable manifolds,
the lengthL (t) of material lines or of the droplet perimeters therefore what we see are infinitesimally thin lines. As a
in a fixed region of observation as a function of time comparison, Fig. 2 illustrates the droplet dynamics men-
L(t)~eKot ®) tioned above. It shows the shape of an originally compac_t
droplet as time goes on. We can observe that after a suffi-
for asymptotically long times. In spite of the very natural ciently long time the droplet traces out the unstable mani-
measurability of these lengths in passive advection, the usi!d. Due to the finite number of particles, however, the cha-
of topological entropy is not yet widespread. The quari€igy  otic saddle cannot be reached exactly, and the number of
provides an upper bound to the metric entrdpy which  particles in the wake tends to zero in the long time limit.
turns out to be the difference between the Lyapunov expoPermanent fractal patterns can only be observed if there is a
nent and the escape rafe®* continuous inflow of tracers in front of the cylinder.

D1:2_

Ko=K;=A—«k. (6)  ||. DIFFUSION AND RANDOM FLOWS

The average Lyapunov exponent can also be expressed as the The effect of molecular diffusion on passive advection
average growth rate of Int) around the chaotic saddle. The can be taken into account by considering, instead of Es.

difference betweer, and X is due to the difference be- and(2), their stochastic counterparts augmented by Langevin
tween the logarithm of an average and the average of a loggerms3’

rithm.

Next, as a paradigm of two-dimensional viscous flows o A1y (X,Y) FE) _ AP0y (X,Y) FeqD)
around obstacles, we consider the case of the particle motion ay e IX YA
around a cylinder. We work in a range of parameters where (7)

a von Kaman vortex street exists, and vortices are detachinq_|ere £, £ represent, in the simplest case, uncorrelated
X y il H H

from the .upper and Ipwer ha}lves. of the cylinder with a.perIOdGaussian noises with white autocorrelation functions:
T. Experiments carried out in this flow proved the existence

of unstable periodic orbits and of a fractal unstable (& (t)&,(t"))=2Dds(t—t'), (8)
manifold3° This problem has also been investigated numeri- Py ,
cally in great detaif'~2°For simplicity we take an analytical (&(Dgy(1"))=2Do(t-t"), ©)

model for the streamfunction introduced in Ref. 24. It de-where D is the molecular diffusion coefficient and is as-
scribes the flow when only two vortices are present in thesumed to be isotropic in the plane.
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FIG. 1. Snapshots taken on the unstable manifold of the chaotic saddle attﬁrﬁé%, and 1 in the wake of the cylinder. This fractal pattern is time
periodic with the period of the flovt.=0 is the instant when a vortex is born close to the first quadrant of the cylinder surface. The length is measured in units
of cylinder radiusR.

In the case of time-periodic flows this leads to a noisycorresponding to a limit cycle behavior repeating itself after
stroboscopic map taken with the periddf the flow time intervalsr. The flow in the wake of the cylinder is time
-~ periodic with T but, since it is reflection symmetric with
On1:Yn+ 1) = MO Yn) + (& y.n), (10 respect to the-axis after a time shift off /2, we expect a
where the noise termg, ,,§, , obey similar characteristics steady solution for the diffusive case witt T/2.
as their continuous counterparts. The autonomous property The solution is simpler i\ 7<1, formally correspond-
of the map is broken due to the appearance of additive noiséng to the limit 7,T—0, since then
the full map depends on the snapshot taken, i.en.dfur- D\ 12
thermore, it is no longer exactly area preserving. 5* = (_) _ (13)
Let us now qualitatively formulate how molecular diffu- A
sion modifies the behavior around the filaments of the unThe asymptotic solution is then strictly constant in time, and
stable manifold, assuming the case of weak diffusion. Ongphears to be a fixed point of thiedynamics. This formula
then expects to see diffusive effects on small scales onlyean pe used as a first guess for the filament width even for
This implies that the convergence of a droplet towards thgjnite values ofr since Eq.(12) can be written asyD/x
unstable manifold can be observed similarly as without dif'multiplied by a dimensionless function ofr. Both cases

fusion, but not up to infinite accuracy. If a filament is locally jjystrate that the coverage of the manifold’s filaments fol-
covered by particles in a sufficiently narrow band of width  |4\ys a dissipatives-dynamics, in spite of the Hamiltonian
this width can change in time due to twompetingeffects.  character of the original passive advection prob[&gs. (1)

It tends to broaden because of diffusion, but also shrinkgnq (2)]. This dynamics can also be expressed in terms of a
because of the contraction along the stable direction, i.egifferential equation in the limit—O0:

perpendicular to the filament. These effects result in a certain
time dependence af which leads to ateady statén which 5= E S (14)
the two effects exactly compensate each other. 1) '

To see this qualitatively, let us follow the evolution of
the filament widths, over a time interval. It increases to
(62+ 2D 7)Y2 according to the usual spreading due to diffu-
sion, multiplied by the typical shrinking factor expk 7). So
all together the new width is

which has(13) as its steady-state solution. Irrespective of the
form of the advection dynamics, we conclude that in the
presence of diffusion, the fractal scaling of the asymptotic
tracer distribution remains valid beyond the crossover dis-
tance 6* with the same dimension®, or D; as without
Oni1=(82+2D 7)™, (11)  diffusion, but belows* the distribution is smoothed out.
This equation has obvious steady solutions. By requiring that Qne_can also gsﬂmgte the t'weed?d o see the effect
e . of diffusion. Starting with a droplet of linear size of order
S'=6=6* we find . : . ) X
unity, the typical width of its filaments decreases as

oD |2 exp(—\t). At tq it reaches the size of/D/\ which yields
o* = ey (120 t4~1/\InD, i.e., the diffusion time depends logarithmically

on the magnitude of the diffusion coefficient.
This describes a solution in which the coverage of the fila- Note that, althoughd converges to a steady state, the
ments by tracers is changing in time in a periodic fashiomrmaterial content does not. There is a permarintion in
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FIG. 2. The evolution of a droplet of passively advected tracers is shown at the time insﬁarﬂ:é%,l%, 2,2, and 4. The initial droplet is a rectangle of
linear size 0.X0.2, inx andy directions, respectively, and it is centered aromrd—2.5 andy=0. It contains 20 000 particles. Note that the pattern traced
out after a short transient is similar to the corresponding patterns of Fig. 1. The coverage of the unstable manifold by the tracers is not pettiedirmites to
number of particles.

the covered region due to diffusion, and since the number dficles with some sampling time (which can be completely

colored particles decreases in the fixed region of observatioimdependently chosen from the original peribof the flow)

as exp(-«t), their concentration also decreases with this rateone finds a magM, which connects the particle positions

asymptotically. (Xn,Yn) and (,41,Yn+1) ON two subsequent snapshots in
Next, it is worth contrasting the case of diffusion with the form of

that of nondiffusive passive advection imandomflow. By

random we mean that the flow parametgrsentering the (Xn+1,Yn+1) =Mz 5 (X0 Yn)- (15

streamfunctiorys are not constant in the course of time but

fluctuate around their meam, i.e., u(t)=u+ Su(t), where  Map (15) is area preserving. It further differs frod0) not
ou(t) is the fluctuation. In our particular example of the only in the nonadditive character of the noise, but more im-
flow around a cylinder, this can be realized either by lettingportantly in the fact thahll advected particles feel theame
the cylinder fluctuate randomly but slowly around its original realization of the flow at a given instant of time, while the
center with some small amplitude, or, more naturally, byadditive noise in10) is considered to be independent for any
going to higher Reynolds numbers where the detachment gdarticle. More generally, mafl5) expresses the randomness
vortices is no longer strictly periodic, but rather modulatedof the velocity fields, i.e., randomness in the Eulerian pic-
with a nonperiodic, chaotic component. Thus, the case ofure, while map(10) describes stochasticity in the advection
flows where the velocity field is changimfpaoticallyin time  process, i.e., in the Lagrangian picture for exactly periodic
can also be considered as a random flow. In any case tHfeows. They are both extensions of m&p) for different
instantaneous streamlines are smooth, i.e., the flow is faypes of random perturbations.
from turbulent. If the fluctuations of the parameters can be considered to
By considering snapshots of the passively advected pabe taken with astationaryprobability distribution, i.e., if the
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probability P(Su) of the parameter fluctuations is tinte-  advected, they trace out the unstable manifdithe en-
independent, then mall , is called arandom map Note ~ hancement of activity is meant in comparison with noncha-
1 /Ln

. L tic, i.e., stationary flows.
that the particular form of the distributioP(du) (e.g., 0 o . . L 9
Gaussianity does not need to be specified. The stationarity To be specific, we consider a simpkinetic modef

can be insured if the flow has some structural stability and ”Where two passively advected particles of different kind un-

the observational time is sufficiently long. These criteria aredergo a reaction if and only if they come within a distance

met by the examples mentioned above. The distancer is called thereaction range and, as we see

The theory of random maps has been originally workeo‘ater’ can also be considered as a diffusion distance. We
out in the context of dissipative systeffsand applied to study (cf. Refs. 50 and 5lan auto-catalytic process+B

flows in closed containef®.This approach has recently been _’.ZB in which cpmponent\ is.the bgckground material cov-
extended to advection in open flot€3 which implies the ering the majority of the entire fluid surface. For computa-

use of open area-preserving random maps. We note, in pas onal smgh:n}(y WT assutmetthat the I:??Ct'or}s a{.e m;tanta—
ing, that if the condition of stationarity is not fulfilled, i.e., q_ﬁous an d aKe Ft)hacte at integer mu tlp es ho a tlm.e. agth
either structural stability of the flow, or long observational us,o-andr are the two new parameters characterizing the

times are not available, the theory of random maps is no?hem'cal Process.

applicable. In such cases the advection dynamics is not cha—h Figurf:hB diSpl?{S thef resultsl,l zf a lnltjgebrlical s_imtl}lwlation
otic, and hence beyond the scope of the present article; how-'OWINg he spreading ot a smail drople {black) in the
urse of time. The background is considered to be covered

ever, concepts of dynamical systems can usefully be applie‘[ﬁlO . L
to characterize such advecti&h. by A (white). Note the rapid increase of tHgarea and the

The motion of individual particles in random maps is aSformatlon of a filamental structure. After about four periods,

“random looking” as that of diffusive particles. By consid- the chemical reaction takes on the period of the flow and

ering howeverensemble®f particles which are in this case reaches steady stat.elln th's stegdy sFate, thg .react_lon prod-
ajicts are apparently distributed in strips of finite width along

the unstable manifold, and tlieparticles trace out a station-
which are to be treated as averages over all realizations ary pattern on a stroboscopic map taken with the pefiod

over sufficiently long times Perhaps even more surpris- the_floyv. Qn "F‘eaf scales Iargerthar_l an average waditthe
ingly, tracer patterns converge towarfilactal objects, and B distribution is a fractal of theame_d|men5|0nD0 orD; as
the analogs of the chaotic saddle, as well as of its manifoldgje unstable manifold of t_he reaction-free ﬂO.W'

can be defined. Moreover, for the information dimensibn Next we present a simple theory, a slightly extended

of the analog of the unstable manifold Bg) turns out to version of the one given in Refs. 50 and &dhere the un-
remain valid*>*® Thus, for ensembles of nondiffusive trac- stable manifold was assumed to be a monofractal Wigh

ers, the behavior is very similar to that in time periodic.:Dl)' The basic observation is that after a sufficiently long

flows, and, in spite of the randomness, an exact fractal scafime: the filaments of the unstable manifold will be covered
ing holdswithout any lower cutoff due to nois¢Note that N _narrow strips by m_ate_r |aE_$ due to its autocatalytic pro-
for ensembles of diffusive tracers described by rt&® the duction. The product is distributed on a fattened-up unstable

fractality of droplet patterns is washed out below the cutoffman'fOId‘ Lete, Qenote the average width of these S'F”ps.
scales(12) or (13).] It is worth mentioning that advection by right before reaction takes place. The effect of the reaction is

random flows, especially by chaotically moving point then a broadening of the width by an amount proportional to

. . . . . . i : + . i i ion-
vortices?® is reminiscent to advection by two-dimensional ;[he reactg)n range: en—en C‘tf. Hler(;zfc Its altdtlmensmtnt b
turbulence®® at least on finite time scales. ess number expressing geometrical effects. It turns out to be

slightly time dependent, but for simplicity we consider it to
be constant in what follows. In the next period of length
lll. CHEMICAL ACTIVITY there is no reaction, just contraction towards the unstable
manifold. Therefore, the widtlz,,, ; right before the next

uniquely define chaos characteristig&ke A, «, and K),

We showed in the previous sections that the fractal un ) i
stable manifold is the avenue of long-time propagation and€action can be given as
transport of passive tracers in open flows. It is natural to
expect that this object also plays a central role if the tracers
are chemically active and can react with other tracers or withl_ . . . .

. . ."This is a recursive map, for the actual width of tBestrips
the background flow. The problem of chemical reactions in ; : .
) . . on snapshots taken with multiples of the time laglts so-
imperfectly mixed flows attracts ongoing intef®$t and has . : .
: S . . lution converges to the fixed point
important applications to environmental chemistty.

For our discussion let us assume that the activity of the
advected particles is some kind of “infection” leading to a ~ x— co _ (17)
change of properties if particles come close enough to each et -1
other. Particles with new properties are the products. For
nondiffusive tracers, aenhancementf activity can be ob- In the time-continuous limit—0, o— 0, but keepingo/ 7
served around the chaotic saddle and its unstable manifolgv, constant, one obtains the differential equation:
since it is there where the active tracers spend the longest
time close to each other. Then, as the products are passively e=cv,—\e. (18

ens1=(eqtco)e M. (16
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FIG. 3. Time evolution of autocatalytic tracers is shown at the time instam:egz, %1% 2,2, and 10. The initial droplet is the same as in Fig. 2. The pattern
traced out after reaching the stationary state is a fattened-up copy of the unstable manifold, which is the skeleton of activity. The chemicemetdes pa
areo0=0.005 andr=0.2. The simulation was performed on a rectangular grid of size 0.005.

Hereuv, can be interpreted as a reaction velocity. The reacb, as the information dimension of the unstable manifold
tion is tending to broaden the width, while convergence to{cf. the derivation of4)] for any box sizee not shorter than
wards the unstable manifold produces shrinking. These twthe width ¢ of the B-strips. We can thus choose=¢
effects are competing, and when compensating each othes AS’(Z’Dl), and rewrite(18) so that it represents an equa-

they lead to the steady solution tion for the area:
Cu, . KU
o= (19 AB:—K.AB—FCTrAgB. (20

At this point, it is worth making a comparison to the o e
effect of diffusion in reaction-free flows. Both reaction and
diffusion lead to a broadening, expressed in the similarity Nk Ky
between Egs(11) and(16), (14) and(18), and also between B=(D1=D/(2=Dy)=——=— (21)
the steady state resultd2) and (17), (13) and (19). The K
latter suggest the corresponderide-o?/7 in the discrete is a nontrivial exponent. Since the manifold’s dimension lies
time version, andD—v?/\ in the continuous time limit. between 1 and 2, ank;>0, the exponenp is typically
This implies that the reaction range or reaction velocity playsositive. ForDy=D;=1 the differential equatiori20) de-
a similar role as diffusion in reaction free flows. Note, how- scribes a classical surface reaction along a line with front
ever, that in contrast to the latter case, themeddilutionin  velocity v, in the presence of escape. FoxD <2 it rep-
the chemical model due to the reaction. resents a novel form of reaction equations containing also a
An important consequence of tkedynamics is the time negative power of concentration due to the fractality of the
evolution of the areadg occupied by particle® in a fixed unstable manifold. Such processes are generalizations of
region of observation. This area scales.4g~ e® P1 with classical surface reactiof$.The enhancing reaction term
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with a negativepower of the area occupied IB/is due to the point like particles(specie of type B and C. There is a
fractality of the unstable manifold. The le& material is constant inflow of materiah into the system on the entire
present, the more effective the reaction is, because the resurface of the flow. Specieé® (C) catalyzed by materiah
solved perimeter is larger. Thus the manifold effectively in-reproduce instantaneously at time intervalonly if their
creases the free surface area where the reaction takes plazenters come within a distaneg; (o) to particles of type
and thus acts as eatalyst A. Due to the open character of the flow, the particles will be
Let us finally sketch how the effect of molecular diffu- drifted downstream, therefore leaving the mixing region of
sion would modify the results. In such a case one expects ththe wake with escape rate In addition, there is a sponta-
combination of(14) and (18) to hold, i.e., the differential neous decay of individuals t& with mortality rateség and

equation 5c . Two autocatalytic processést B— "82B, B— °8A and
D A+ C—7c2C, C— %A describe thus replication and compe-
e=Cu,+——\e (22)  tition. Material A is the common limiting resource for both
€ speciesB andC.
for the width of theB-strip covering the unstable manifold. In our numerical experiment, we place two droplets of

HereD is the molecular diffusion coefficient. This equation organisms from speciesandC into the flow in front of the
also possesses a steady-state solution with a constant cylinder. We find that both specigand C are pulled onto
Around this state the solution is similar to that(@®) with  the unstable manifold of the chaotic set, as their initial posi-

an effective reaction velocity tions overlap with its stable manifold. Thus, both spedes
andC are trapped in the wake, and are accumulated along the
b — b+ D 23) filaments of the fractal unstable manifold. This leads to an
nef T e enhancement of their activity, with both of them having in-

. ) o creased access to the backgrodnfibr which they compete.

Thus close to the steady state, the inclusion of diffusion OnlyAIong the fractal unstable manifol® and C can be sepa-

renormalizes the effect of the reaction velocity. _ rated quite efficiently by filaments @ Due to the imperfect
~ Alternatively, one can also consider the stochastic very,ying the competition is reduced by spatial separation and

sion of (18) by adding a Gaussian white noise tetwith the survival is catalyzed by increased access to matArial

autocorrelation strengthi2 to the right-hand side. The same g jeads to the coexistence of the competing species for a
derivation which led tq20) then yields(see also Ref. 51 wide range of parameter values.

) K Figure 4 shows a series of snapshots of the organisms in
Ag=—rAg+ XAEB(CUNL &), (24 the region of observation from the insertion of the droplets at
time t=0 to timet=20. The filamental structure shown in
which is a nonlinear Langevin-type equation with multipli- Fig. 4 is reminiscent of the patterns found in mesoscale
cative noise. This indicates that on the macroscopic level, fop|ankton model§*~5®
the total area 0B, the noise appears in a nontrivial fashion, Note that in the asymptotic state specBsovers the
and its effect is enhanced by fractality via the prefactorsyrface of the cylinder, while speci€occupies mainly the
ABB' wake. This shows that the actual number of individuals does
not only depend on the parameters but also on the initial
IV. BIOLOGICAL ACTIVITY conditions. The mere fact of coexistence is, however, inde-

Our discussion on chemical reaction in open flows carPéndent of these in a broad range.

be naturally extended to population dynamics models pro-
vided the species’ advection can be approximated with the

passive tracer model. In such cases, we expect that differeNt CONCLUDING REMARKS
species accumulate along the unstable manifold of the pas- _. . .

; X ) . Finally we summarize those features of the chemical and
sive advection problem. Here we consider a particular prob; . . - : . L

. . . biological activity which we believe are generally valid in

lem of several different species competing for the same re:- ical open flows
source. According to the classical theory, the number opr P '
coexisting species can at most be equal to the number df) Active processes take place around the unstable mani-
independent resources, if the environment is well stirred and fold of the passive advection’s saddle. If the passive
homogeneou?’ It is well known that in plankton communi- advection is chaotic, the manifold is a fractal and con-
ties the number of coexisting species can be much larger sequently active processes also lead to fractal pat-
than that of the resources. In the wake of an obstacle we terns.
expect that several species can coexist in spite of competing)  Although the fractal manifold is of measure zero, due

for a single resource. This would be again a deviation from to the chemical reactiofor population dynamigsthe
classical results due to the fractality of the unstable manifold. amount of active tracers covering this manifold is fi-
In fact, our mode® may also shed some new light on this nite. This implies that the fractality can be observed
apparent contradiction between empirical and theoretical on length scales larger than the average width of the
studies, sometimes called the “plankton paraddX.” fattened-up manifold.

Our competition dynamics for a single background ma-(ii) On one hand, the fractal skeleton results in an in-
terial A is a simple model of replication and competition with crease of the active surface and acts as a catalyst for



Chaos, Vol. 10, No. 1, 2000 Advection, diffusion, and reactions in flows 97

1=0.4

17 t=0 1
> 0t = | % M
=1 | _ 2 | |
-2 0 2 4 6 2 A :
X T T
- t=D5 i 1 =1*D_
= ] .. B
L |
iy . . -1r =
-2 0 2 4 6 2 o0 2 4 s
2 4 " X
I PN ey t=1.4 1
> 0 e > 0
- g “‘_f. . - -1
. X . X |
1 =20 : =20
% D! ) = w n e
=1 . wise” a0 | 4
® X

FIG. 4. (Color Time evolution of two competing species is shown at time instanetﬁsé, %1% %,2, and 20. The initial position of speci@s(green and
C (red is a square of linear size 0.1 centered arowrd—2.5, y=—0.05 andy=0.05, respectively. The initially small droplets of specisndC are
eventually pulled along the unstable manifold. The stationary state is reached after a short time: the last two gte@shats=2 andt=20) are almost
the same. Specids (red) occupies also the boundary layer around the cylinder, vilgreen is trapped mainly on the chaotic set in the wake. The model

parameters areg= ﬁ, oc= ﬁ), 83=0.5, 6c=0.0001, andr= % The simulation was performed on a rectangular grid of size 0.001.

the growth process. On the other hand, different spespatial patternavhich is due to the fact that the phase space
cies are separated efficiently along the fractal mani-of Egs.(1) and(2) coincides with the geometrical spatke
fold decreasing competition. only example of this sort to our knowledgén order to see

(iv) The derivation of reactiorior population dynamigs these spatial patterns we usasemble®f particles, corre-
equations is similar to that of the macroscopic trans-sponding to droplets in the hydrodynamical context. As
port equations from microscopic molecular dynamics.pointed out here, even effects similar to that of diffusion can
The presence of the ever-refining fractal structurede described by the inclusion of an interaction range or re-
generates new terms in the macroscopic equationgction velocity. In this approach Lagrangian characteristics,
leading to interesting new effects like singular sourcelike Lyapunov exponents, entropies, and dimensions seem to
term in the reaction equation. be natural parameters of the processes. It is of interest to see

(v)  The macroscopic equations describing the active prohow this approach is related to the more traditional one
cess typically reach a steady state synchronized witlbased onpartial differential equations describing reaction-
the background flow’s temporal behavior. If more advection-diffusion effects, and carrying Eulerian parameters
than one species is present, coexistence is typical ifike shears or diffusior{see e.g., Refs. 46, 48, and 5659
the steady state for a wide range of parameter valueshis problem clearly needs further investigation.

We emphasize that our method of studying activity in
open flows is based on a fuljeterministicapproach of pas-
sive advection. It is described by meansooflinary differ- Useful discussions with A. Bracco, P. Haynes, B. Leg-
ential equations. Nevertheless, we are able to study complenas, A. Provenzale, G. Zaslavsky, and |. Zutic, and with the
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