
Continuity of the S matrix for the perturbed Hill’s equation
Dominic P. Clemence and Martin Klaus 
 
Citation: Journal of Mathematical Physics 35, 3285 (1994); doi: 10.1063/1.530467 
View online: http://dx.doi.org/10.1063/1.530467 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/35/7?ver=pdfcov 
Published by the AIP Publishing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions.

Downloaded to  IP:  128.173.125.76 On: Mon, 24 Mar 2014 15:26:35

http://scitation.aip.org/content/aip/journal/jmp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/44149020/x01/AIP-PT/Maplesoft_JMPArticleDL_031914/Physics_advert1640x440_March14.jpg/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=Dominic+P.+Clemence&option1=author
http://scitation.aip.org/search?value1=Martin+Klaus&option1=author
http://scitation.aip.org/content/aip/journal/jmp?ver=pdfcov
http://dx.doi.org/10.1063/1.530467
http://scitation.aip.org/content/aip/journal/jmp/35/7?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov


Continuity of the S matrix for the perturbed Hill’s equation 
Dominic P. Clemence 
Department of Mathematics, University of Zimbabwe, PO. Box, MP 167, Mount Pleasant, 
Harare, Zimbabwe 

Martin Klaus 
Department of Mathematics, Virginia Polytechnic Institute and State University, 
Blacksburg, Virginia 24061 

(Received 7 January 1994; accepted for publication 2 February 1994) 

The behavior of the scattering matrix associated with the perturbed Hill’s equation 
as the spectral parameter approaches an endpoint of a spectral band is studied. In 
particular, the continuity of the scattering matrix at the band edges is proven and 
explicit expressions for the transmission and reflection coefficients at those points 
are derived. All possible cases are discussed and our fall-off assumptions on the 
perturbation are weaker than those made by other authors. 

I. INTRODUCTION 

On L,(R) we consider the Schrodinger operators 

Ho= -2 + P(x) 

and 

d2 
H=- z +ptx)+vx), 

where P(x) and V(x) are real-valued potentials such that P(x) E L’([O, I]), P(x+ l)= P(x), and 

I _m_(l +IXlawldx-. (1.1) 

It is well known’-4 that the spectrum a(H,J of H, is absolutely continuous and is the union of 
closed intervals 

c+(Ho)= U [E2n, E2n+11, 
n=O 

where -m<Eo<E,CE2<E,~~~. Each point E, is an eigenvalue of a boundary value problem of 
the form Ho@= E$ on [0, l] with either periodic or antiperiodic boundary conditions. The eigen- 
values associated with the periodic boundary conditions coincide with the points E, for n = 4k and 
n = 4k + 3, the eigenvalues associated with the antiperiodic boundary conditions coincide with the 
points E, for n = 4k + 1 and n = 4k + 2 (k =0,1,2 ,... ). The intervals [E2n, E2n+ 1] (n =O,l,...) are 
often referred to as “bands” and the intervals ( E2n+ 1, Ezn+ 2) as “gaps.” If E,, + , = E2n+ 2, we say 
that the corresponding gap is closed. The continuous part of the spectrum of H is also absolutely 
continuous and it agrees with the spectrum of Ho. In addition, H may have at most a finite number 
of eigenvalues in any gap. We refer the reader to Refs. 5, 6, and 7 for more information about the 
eigenvalues. 

In this article, the points E, which are endpoints of an open gap, will be classified as “ge- 
neric” or “exceptional” according to the following definition. The generic case is said to occur 
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at E = E, if the equation H$= E, $ has no bounded nontrivial solution. The exceptional case is 
said to occur at E = E, if H $= En+ has a bounded nontrivial solution. In the exceptional case, the 
point E, is also referred to as a half bound state. The equations Ho 1+5= E @ and H 1+4= E (CI are called 
Hill’s equation and perturbed Hill’s equation, respectively. 

Associated with the operators Ho and H is the scattering matrix 

W)=[ ;;I; $;]v 
where T(E) is the transmission coefficient and L(E) and R(E) are the reflection coefficients from 
the left and from the right, respectively. The object of the present article is to prove that S(E) is 
continuous at the points E, , both in the generic case and the exceptional case, and to obtain the 
correct leading asymptotic behavior as E -+ E, . 

In the generic case, the continuity of the scattering matrix at E, is known.879 It is also known 
that T( E,) =O. For the reflection coefficients the results have been incomplete. As Theorem 3.3 
below shows, there ,are two possibilities: R( E,) = L( E,) = - 1 or R( E,) = L(E,) = 1. To the best of 
our knowledge, only the first possibility has been noted in the literature.’ In the exceptional case, 
the continuity of S(E) has only been established’ under the stronger condition that 
J-r-( 1 +xz>~v(x)~dx< 00. However, no explicit expression for S(E,) is given in Ref. 8. In Ref. 9 
the perturbed Hill’s equation is studied under the assumptions that 1x1 I V(x)1 E L’(R) and 
V(x) E L2(R) [which together imply (1. l)]. However, in the exceptional case, the expressions for 
T(E,), R( E,), and L(E,) given in Ref. 9 do not agree with those of Theorem 3.3. We should also 
mention that the situation regarding the continuity of S(E) at E, for the perturbed Hill’s equation 
is similar to that in the case when P(x) =O, where a half bound state can occur at E =O. This latter 
case was studied in Ref. 10. The method used in the present article is a generalization of the 
method of Ref. 10 to the perturbed Hill’s equation. We also rely on some results from Ref. 11, 
where the Tit&marsh-Weyl m coefficient and its connection with half bound states is studied for 
the perturbed Hill’s equation on the half line. 

The article is organized as follows. In Sec. II we establish the notation and prove two tech- 
nical lemmas. In Sec. III we prove the continuity of the scattering matrix. 

II. PRELIMINARIES 

Let &,(x,E) and Bo(x,E) denote the solutions of the equation 

that satisfy the conditions 

+o(O,E)=B;(O,E)=O, and &,(0,E)=80(0,E)=1. 

Let 40(E) = +a( 1 ,E), 6$(E) = eo( 1 ,E) and define the discriminant by 

(2.1) 

It is well known1-4 that a(Ho)={E:~A(E)~~l}. Th e so-called quasimomentum k is defined by 

k=k(E)=cos-‘[A(E)], (2.2) 

where the branch of cos-t is such that Im k(E) >O when EC E. and k( Eo) =O. The global map- 
ping and analyticity properties of the function k(E) have been studied in Ref. 12. For the purpose 
of this article, we only need certain local properties that pertain to a small neighborhood of a given 
point E,. We summarize here those facts that are relevant to the present article. Similar results 
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were obtained in Ref. 11. The band [ E2n, E,, + , ] is mapped onto the interval [n r, (n + 1) ~1 and 
the interval (-a,EO) go_es over into the p_ositive imaginary k, axis. In each gap (EZn+ 1,E2n+2) 
there is a unique point En+ t such that A’(E,+J )=O. Then k(E,+l)=(n+ 1)7r+iS,+i(S,+t>O) 
and the two intervals (E2n+l,En+l] and [En+,, E2,,+ 2) are both mapped onto the segment 
{k:k=(n+ l)rr+it,O<t~S,+,}. We will also need the analytic continuation of k(E) into Im E 
CO, where, for the present article, it suffices to assume that E is near one of the points E, . To this 
end, we introduce the slit disks D2,={E:IE-E2,1<~2n}\[E2n,E2n+~2n) and 
D 2n+1={E:IE-E2,+11<~2n+1}\(E2n+,- p2,,+ ,,E2,+ t]. The positive numbers fin and fin+ t 
are sufficiently small so as to guarantee the following results. Under the map E -+ k(E) the slit 
disk D2,, is mapped one to one onto an open set in the k plane whose boundary consists of the 
segment (nrr- ~~~,n7r+ ezn) (efn = tan-‘[Jl -A2(E2n+p2n)lA(E2n + p2J]) and a curve, the 
image of the circle IE- E,,I = p2n, in the upper half of the k plane joining the endpoints of the 
segment. Similarly, each slit disk D2n+l is mapped onto a domain bounded by a segment 
(<n+ l)~-E2n+l,(~+ l)n.+E2n+l ) and a curve in the upper half plane joining the endpoints of 
the segment. The upper edge of the interval (E2n, E2,+p2J is mapped onto (nm,nr+ eZn), the 
lower edge is mapped onto (n V- eZn, nrr).Similarly,theupperedgeof(E2n+,-p2n+,rE2n+l) is 
mapped onto ((n+ 1)7~ Ebb+,, (n+ 1)~) and the lower edge onto ((n+ l)r,(n+ l)rr+eZn+,). 

In the sequel the important spectral parameter will be k. So we will henceforth write k in place 
of E, i.e., &x,k) in place of &,(x,E), etc. Let mb”)(k) denote the Titchmarsh-Weyl m functions 
associated with the operator Hi*. Then, for Im k>O, we have that 

&j+)(x,k)= eo(x k)+ 9 m0( , (+) k)40(x k)eL2(0,m) , (2.3) 

+~/6-‘(x,k)=80(x k)+m 9 ij-)(kMo(x,k) EJX-W,O). (2.4) 

There exist functions &o’)(x,k) with &‘)(x+ 1 ,k) = &‘)(x,k),eF)(O,k) = 1, such that 

r,@)(x,k)= &,‘)(x,k)e’ikx. (2.5) 

Hence I,&“( 1 ,k) =etik and from Eqs. (2.3) and (2.4), we have that 

m&‘)(k) = 
ekik- B,(k) 

+0(k) ’ 

Further, by using Eqs. (2.1) and (2.2) in Eq. (2.6), we obtain 

m&‘)(k) = 
t#h(k)-80(k) : i sink 

24,(k) - +o(k) * 

Evaluating the Wronskian of t,boof’(x,k) and #oM)(x,k) yields 

[Illb”(.,k);(C16-)(a k)]= 7 rnh-j(k)-m6+)(k), 

where [F(.);G(+)]=F(x)G’(x)-F’(x)G(x). Thus, by Eq. (2.6) 

2i sin k 
[t&+‘(. k);&-$,k)]=-- , 

40(k) ’ 

(2.6) 

(2.7) 

w-0 

Now suppose that E lies strictly inside a band [E2n, E2n+l], i.e., kE(nr,(n+ 1)~). Then there 
exist solutions @‘)(x,k) of 

H@=Ei,b (2.9) 

J. Math. Phys., Vol. 35, No. 7, July 1994 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions.

Downloaded to  IP:  128.173.125.76 On: Mon, 24 Mar 2014 15:26:35



3288 

such that 

D. P. Clemence and M. Klaus: Continuity of the S-matrix 

1Irc+ ‘)(x,k) = 
i 

?-(k)&,+)(x k)+o( 1) x + co, 
&)(x k)+‘L(k)@;x,k)+o(l) 

(2.10) 
, 9 x --+ --m 

and 

‘PC-)(x,k) = 
&-)(x,k)+R(k)&+)(x,k)+o(l), x -+ ~0, 

W)tjlb-)(x k)+o(lL , x -+ --oo. 
(2.11) 

These asymptotic relations define T(k), L(k), and R(k). In addition to W(‘)(x,k), we introduce 
solutions F(?)(x,k) of Eq. (2.9) that satisfy the integral equations 

F(+)(x,k)=&j+,b+)(x,k)- 
I 

m A(x,t;k)V(t)F(+‘(t,k)dt, 
x 

(2.12) 

F(-)(x,k) = &)(x,k) + 
I 

’ A(x,t;k)V(t)F’-)(t,k)dt, (2.13) 
-02 

where 

A(x,t;k) = - ,-lc16+)(. ,kl;tih-)(. ,k)l b&+‘b,W~-‘kk)- d?(x&&+‘b”(U)l. 
(2.14) 

From Eqs. (2.12), (2.13), and standard estimates [see also Sec. III, Eqs. (3.30) and (3.31)], it 
follows that F’+‘(x,k)= t,bc’(x,k)+o(l) as x -+ +a and F(-)(x,k)= @$,-)(x,k)+o(l) as x -t 
--00. Moreover, these relations may be differentiated. In analogy to the case P(x) =0, we call 

F”)(x,k) the Jost solutions of Eq. (2.9). They are related to W(‘)(x,k) by 

W”)(x,k) = T(k)F(“)(x k) , . 

By combining Eqs. (2.10), (2.11) with Eqs. (2.12), (2.13) and using Eq. (2.8), we obtain 

2i sin k 1 
T(k)= -[F(+)(. ,k);F(-)( .,k)]&(k) = 1 +Z(‘)(k) ’ 

[F(+)( .,k);F’-)( .,k)] 

L(k)=-[F(+)(~,k);F(-)(.,k)] 
= -Z-(k)J(+)(k), 

[F(+)(. k)T(-‘(. k)] 
R(k)= -[F’+‘(.:k)lF(-)(.:k), =-T(k).+)(k), 

(2.15) 

(2.16) 

(2.17) 

where 

40(k) co z(‘)(k)= _- 
2i sin k s 

@‘( t,k) V( t)F(‘)(t k)dt , 9 (2.18) 
...- 

J(‘)(k)= -s 
I 

;m ~~~)(t,k)V(t)F”)(t,k)dr. (2.19) 
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By evaluating the Wronskians [‘PC++. ,k);‘P(+)(. ,k)], [‘Z’(-)( .,k);W(-)(.,k), and 
[q(+)(. ,k);lIr(-)(. ,k)] as x + +m, we obtain, for real k, the unitarity relations 

~T(k)~2+~R(k)~2=~T(k)~2+~L(k)~2=1, 

T(k)R(k)+L(k)Z-(k)=O. 
(2.20) 

Our next goal is to prove two lemmas that will be used in Sec. III. First we need some more 
notation. Let 

k,=nrr, n=0,1,2... 

Throughout this section we assume that 

+o(kJ + 0. (2.2 1) 

The case when q$( k,) =0 will be considered separately in Sec. III. Furthermore, we define 

go(x , k)= &+‘(x,k) + I,$‘(x k) 1 . (2.22) 

Lemma 2.1: Let z(x,k,) be a solution of HI+?=E,I+G (n=0,1,2,...) and let a=z(O,k,), 
b=z’(O,k,). Then 

(a) z(x, k,) is bounded for x20 if and only if 

b-amb+)(k )+’ m n 2 
I 

o go(ttk,)V(r)z(f,k,)dr=O; (2.23) 

(b) z(x,k,) is bounded for XGO if and only if 

b-amc)(k,)--k ” 
I 

o3 go(r,k,)V(t)z(f,k,)dt=O. 

Proof We only prove (a); the proof of (b) is similar. First, we note that go(x,k,) and qSo(x,k,J 
are linearly independent solutions of H,$=E,# and that go(0,k,)=2, gL(O,k,) = mc’(k,) 
+ rnb-)(k,) = 2mb+)(k,), and [~#~(a ,k,);go( . ,k,)] = -2. By the variation of constants formula 
we have 

z(x,k.)=[b-ambt’(k,)]~o(x,k~)+~ go(x,k,)+i 
I 

’ K(x,t;k,)V(t)z(t,k,)dt, (2.24) 
0 

where K(x,t;k,)=~o(x,k,)go(t,k,) -go(x,k,)+o(t,k,). It follows from standard asymptotic re- 
sults that 

(2.25) 

Izkk,)l~C(l +x> (2.26) 

and hence 

jK(x,t;k,)lcC( 1 +x), OGtGx (2.27) 
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for some suitable constant C. By using Eqs. (2.25)-(2.27) and taking x -+ +W in Eq. (2.24), it 
follows that 

Z(X k )= b-am6+)(k )+A m 7 n n 2 f go(t,k,)V(t)z(t,k,)df +o(x,k,)+o(x). o 1 (2.28) 

Thus, in order for z(x,k,) to be bounded, it is necessary that the bracketed term in Eq. (2.28) 
vanishes, i.e., Eq. (2.23) holds. Conversely, if this term vanishes, then z(x,k,)=o(x) and so 
z(x,k,) must be a multiple of go(x,k,); that is, z(x,k,) must be bounded. Lemma 2.1 is pr0ved.m 

When k is near k, (with n fixed) it will often be convenient to use the variable 

cu=k-k,. 

The properties of the mapping E + k(E) [see Eq. (2.2)] imply that E(k) = E(k, + a) and hence 
&(x,k,+ a) and eo(x,k,+ n) are even functions of CX. Moreover, when cr is real, the following 
relations hold: 

mr)(k,+cw)=mb-)(k,,--a)=mo ( (+I k,-a)=mh-)(k,+cu), 

~~)(x,k,+(Y)=~~-)(x,k,-a)=rG~)(x,k,-cu)=clrb-)(x,k,+a). 
(2.29) 

Lemma 2.2: Let z(x,k) be a solution of H@=E$ with z(O,k)=a and z’(O,k)=b, where a 
and b are independent of k, and suppose that z(x,k,) is bounded for x20. Then, for k near k, , k 
real, we have the estimate 

Iz(x,k)-z(x,k,)lsC( 1 +x) (2.30) 

A similar estimate, with x replaced by Ix], holds if z(x,k,) is assumed to be bounded for x<O. 
Proof: It suffices to consider x>O. The proof when x<O is similar. From Ref. 11 we have the 
estimates (x 20) 

Ido(x,k)-~o(x,k,)l~C(l+x) [ 2 (iqd]- a + 

ko(x,O--go(x (l+x)a + [ * ( ia2]* (2.32) 

These estimates hold in some interval k,-EGkSk,+e(E>O). Since go(0,k)=2 and 
gA(O,k) = m6+‘(k) + rnh-j(k), the variation of constants formula yields 

k)+mb-)(k)) +o(x,k)+g g,(x,k)+i 1 K(x,t;k)V(t)z(t,k)dt, 

where K(x,t;k)=+o(x,k)go(t,k)-go(x,k)+O(t,k). By Eqs. (2.7) and (2.29), we have that 
m0 (+)(k,+a)+mo ( (-) k,+a)=2m6+)(k,)+O(Cu2), and hence 

1 x 
-gob.k,Jl+~ o[K(x,t;k)-K(x,r;k,)lV(r)z(t,k,)dr f 
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+; f ’ K(x,r;k)V(t)[z(t,k)-z(t,k,)]dt=Z,+Z,+Z,+Z,+Z,. (2.33) 
0 

We estimate each of the terms I, ,. . ., I, . Since there are terms in I, and I, that need to be 
combined, we begin with I,. We write 

II=; [~o(x.h#W,)l~~ go(r.k.)V(t)z(r,k.)dr+~ q50(x,k) f ;[go(r,k) 

-go(r,k.)lv(r)z(t,k,)dt-f IgoW-g,b,k.$; 4dt,k)V(t)z(t,k,)dt 

1 
-2 go(xAz) f j4oW ~o(t,kn)lv(t)z(r,k,)dt 

=J,+J,+J,+J,. 

Combining I, and .Z, with the help of Rq. (2.23), we obtain 

1, +J,= -$oW- do(xAA~; go(t,k,>V(t)z(t,k,)dt. 

Therefore 

Iz,+J,lEC[ J+( ~)*]j-~lvw+f)df7 (2.34) 

where we have used the boundedness of z(t,k,) and go( t,k,). Turning to the term J2, we use Eqs. 
(2.25), (2.32), and (l.l), to obtain 

Similarly, by using Eqs. (2.31) and (2.32) we get 

Returning to Eq. (2.33) and estimating the remaining terms, we obtain 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 
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Since 

i i 1 +;I, 

2 2 

6(1+x) l;l;lx 

the estimates (2.34)-(2.40) can be combined with the result that 

Iz(x,k)-z(x,k,)leC(l +x> +C(l +x) o IV(t)lIz(t,k)-z(t,k,)(dt. I” 

(2.41) 

Let 

( 2 

h(x,a)=C(lfx) (u2+- 1+“1:1x 1 

and 

u(x k)=lz(x~k)-z(xAJl 
9 

KG) . 

Since z + z/(z+ 1) is monotonically increasing, we have that h(t,a)Gh(x,a) when tsx. Thus 
Eq. (2.41) becomes 

u(x,k)s 1 +C ‘( 1 +t)~V(t)~u(t,k)dt. f 0 

Applying Gronwall’s inequality gives u(x,k)S C and Eq. (2.30) follows. Lemma 2.2 is proved.= 

Ill. ASYMPTOTICS AND CONTINUITY OF THE SCATTERING MATRIX 
We can assume that, in addition to Eq. (2.21) 

F(+)(O k 9 n ) # 0. (3.1) 

This can always be accomplished by a shift of the origin if necessary. Let &x,k) and B(x,k) be 
solutions of Eq. (2.9) satisfying qb(O,k)= #(O,k)=O and $‘(O,k)= B(O,k)=l. Let 

z(x,k)=F(+)‘(O,k,)+(x,k)+F(+)(O,k,)6(x,k) (3.2) 

so that z(x,k) is the solution of Eq. (2.9) which satisfies z(O,k)=F’+‘(O,k,) and z’(O,k) 
=F(+)‘(O,k,). 

Lemma 3.1: When k is real, the following relations hold: 

(a) F(+)(O,k,)[F(‘)(.,k);F(-)(.,k)]=F(-)(O,k)[F(’)(.,k);z(.,k)] 

-F(+)(O,k)[F(-$,k);z(.,k)-j, 

(b) F(+)(O,k,)[F(+)(x,k);F(-)(x,k)]=F(-)(O,k)[F(+)(x,k);z(x,k)] 

-F’+‘(O,k)[F’-)(x,k);z(x,k)]. 

Proof By straightforward calculation. n 
Note that [F(+)( .,k,);F’-)( .,k,)] =0 implies that we are in the exceptional case. Then 

F(+)(x,k,) and F(-)(x,k,) are linearly dependent, i.e., 
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F(‘)(x,k,)=a,F(-)(x,k,), (3.3) 

with a, # 0. Hence Eq. (2.9) has a bounded solution for E = E, . 
Lemma 3.2: Supppose that a half bound state occurs at k = k, . Then, as k t k, , k real, we 

have 
(a) [F”)(.,k);z(.,k)]=(-l)“+‘i[~o(kn)]-la+o(~), 
(b) [F’-‘(.,k);z(.,k)]=(- l)“a,i[~o(k,)]-‘cr+o(cu). 

Proofi The variation of constants formula gives 

+,k) = 4ob,k) +lo’ A(x,t;k)V(t)~(t,k)dr, 

where A(x,t;k) is given by Eq. (2.14). Then, using 

~o(x k) = _ (&‘(x~k>- &,-)W)) 
7 [&+‘(A&)(. k)l ’ 9 (3.4) 

we obtain 

m [F(+)(.,k);&k)]=F(+)(O,k)=l+ f &,+‘(t k)V(t)&t k)dt , , , (3.5) 
0 

[F(-+,k);&,k)]=F(-)(O,k)= 1- f r, &-)(t,k)V(t)qb(t,k)dt. (3.6) 

Similarly, we get 

[F(+)(.,k);B(.,k)]= -F(+)‘(O,k)=-mb+)(k)+ f m cl/6+‘(t,k)V(t)6(t,k)dt, (3.7) 
0 

[F(-)(*,k);0(=,k)]=-F(-)‘(O,k)=-rnb-j(k)- f :m q&-)(t,k)V(t)B(t,k)dt. (3.8) 

Combining Eq. (3.2) with Eqs. (3.5)-(3.8), we obtain 

[F(+)(.,k);z(.,k)]=F(+)(O,k)F(+)’(O,k,)-F(+)’(O,k)F(+)(O,k,) 

=- m6+‘(k)F(‘)(O,k,)+F(+)‘(O,k,)+ f om ~~~(t,k)V(t)z(t,k)dt 

(3.9) 

and 

[F’-‘(.,k);z(.,k)]=F(-)(O,k)F(+)’(O,k,)-F(-)’(O,k)F(+)(O,k,) 

c-m 6-‘(k)F(+)(O,k,)+F(+)‘(O,k,)- f 0 
--m &,-b-‘(t,k)V(t)z(t,k)dt. 

(3.10) 

Consider first the integral on the right-hand side of Eq. (3.9). It can be w&ten as 
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Z= om &,+‘(t,k)V(t)z(t,k)dt= f f m @‘(t,k,)V(t)z(t,kn)dt 
0 

m (+) + o [$. f (t,k)-cCI6+‘(t,k,)lV(r)z(t,k,)dt 

+ f m &+)(t,k)V(t)[z(t k)-z(t k 1 9 n )Idt 
0 

=z,+z*+z3. 

Since z(x,k,)=F’+‘(x,k,), Eq. (3.9) gives 

Z1=F(+)(0,k,)m6+)(k,)-F(f)‘(0,k,). 

(3.11) 

(3.12) 

In order to deal with the term Z2, we note that the boundedness of z(x,k,) together with Eqs. 
(2.23) and (2.24) imply that, as x + +m 

On the other hand, by Eqs. (2.12) and (2.22), z(x,k,)=F(+)(x,k,)= i,&+)(x,kn)+o(l) 
=ga(x,k,)/2+o(l) as x + +m. Thus 

F(+)(O,k,)- f ; ~o(t,k,)V(t)z(t,k,)dt= 1. (3.13) 

Expanding &)(x,k) near k=k, gives &)(x,k)=56f)(x,k,)+&+)(x,k,)cu+O(g), where the 
remainder termis uniform in x since ko’)(x,kn) is periodic. Then, for small a 

I&+)(X k)-+r)(x k , 9 n )=ae ‘knx[ix&+)(x,k,)+ @)(x,kJ]+ (eiaX- 1 - iax)eitnx@)(x,k,) 

+ a(eiax- l)eik~“~b+‘(x,k,)+0(cz2). (3.14) 

Using the estimates leiux- lI~CIalx/(l+lalx) andle’uX-l-icrxl~Ca2x2/(l+Inlx>,wecan 
write Eq. (3.14) as 

t&,+)(x k)-q&+)(x k 
i( - 1 )“hkkJ 

, 3 n )= +o(k,) ,+,( &) +‘( &) +Ob2)’ 
(3.15) 

where we have also used the relations 

j(o-‘(x,k,) = e *iq+)(X,kn) 

and 

which follow from Eqs. (2.3)-(2.5) and (3.4) on letting k -+ k, . On inserting Eq. (3.15) in Z, and 
appealing to the Lebesgue dominated convergence theorem, it follows that 

J. Math. Phys., Vol. 35, No. 7, July 1994 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions.

Downloaded to  IP:  128.173.125.76 On: Mon, 24 Mar 2014 15:26:35



D. P. Clemence and M. Klaus: Continuity of the S-matrix 3295 

i(-1)“a m 

z2= 4o(M f ~o(t,k,)V(t>z(t,k,)dt+o(cr) 
o 

and hence, by Eq. (3.13) 

i( - 1 )“cr 

z2= +o(k,) 
[F(+)(O k 3 n )-11+0(a). 

In order to estimate Z3 we use Eq. (2.30) and the Lebesgue dominated convergence theorem. Then 

Iz31~cj-omlvwlu+r) ( n2+&)df=o(a). (3.17) 

Therefore, putting together Eqs. (3.12), (3.16), and (3.17) yields 

Z=F(‘)(O,k,)m~)(k,)-F(+)‘(O,k,)+ 
i( - l)na 

4o(k,) 
[F(+)(O,k,)- l]+o(cy). (3.18) 

Moreover, by Eq. (2.7) 

i(-1)” 
mb+)(k)=mb+)(k,)+m a+O(a*). 

By using Eqs. (3.18), (3.19), and (3.9), we obtain the relation (a) of the lemma. Part (b) follows 
similarly by analyzing the integral on the right-hand side of Eq. (3.10), where one also has to make 
use of Eq. (3.3). Alternatively, part (b) can be reduced to part (a) by means of the substitution 
x -t -x. We omit the details. n 

In preparation of the proof of the next theorem we collect some more details about the case 
when c&&k,) =0 and the corresponding gap is open. By means of the variation of constants 
formula (see Ref. 3, p. 28), we find that 

In deriving Eq. (3.20) we have also used the facts that eo(k,) = t 1 and 
E-E,=T(2A’(E,))-‘d+O(a4), where the upper (lower) sign is to be chosen when 
A( E,) = + l(A(E,) = - 1). Thus, by Eq. (2.7), the imaginary part of m&“)(k) blows up as k + k,. 
On the other hand, the real 
As a result, the solutions P 

art of mh’)(k) tends to a finite limit because &(k,) = 8,(k,)(= + 1). 
d)(x,k) blow up and so do the solutions F”)(x,k). Therefore, if we 

define 

(3.21) 

then the solutions ,y(‘)(x,k) have finite limits as k -+ k, . The limiting functions x(‘)(x,k,) obey 
the integral equations 

x%,k,)=~okk,)- f x-boWJ eo(t,k,) - 8o(x,k,)~o(t,k,)lV(t)x(‘)(t,k,)dt. 

(3.22) 
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Since the function & (x,k,) is periodic [if A(k,) = I] or antiperiodic [if A(k,) = - 1] and hence 
bounded, Eq. (3.22) implies that ,$‘)(x,k,)= &(x,kJ +o(l) as n --t +w. The solutions 
x(‘)(x,k,) are linearly independent if and only if k, is not a half bound state. If k, is a half bound 
state, we define b, by 

#+)(x,k,) = b,,$-)(x,k ) n - (3.23) 

Since mb+‘(k)lm&-‘(k) + -1 as k -+ k,, we conclude from Eqs. (3.21) and (3.23) that 

(3.24) 

The following theorem is our main result. We obtain the leading asymptotic behaviors of the 
entries of S(k) as k + k, ; in particular, we prove that S(k) is always continuous at k, . Note the 
difference between the statements regarding T(k) and R(k) or L(k). In the case of the transmis- 
sion coefficient k is allowed to be complex with Im k20, while in the case of the reflection 
coefficients k is required to be real. This is a consequence of the fact that under our assumption 
(1.1) the transmission coefficient has an analytic continuation to a small neighborhood of k, in the 
upper half plane, whereas generally the reflection coefficients do not have such a continuation. 

Theorem 3.3: The asymptotic behaviors of T(k), R(k), and L(k) are as follows: 
(a) If k= k, is not a half bound state, then, as k + k, with OSarg(k- k,)Sw 

T(k)=ic,(k-k,)+o(k-k,), 

where c, is real and nonzero, and, as k t k, through real values 

(3.25) 

-1+0(l), if &(k,) # 0, 
, if &(k,)=O. 

(b) If k = k, is a half bound state, then, as k + k, with OSarg(k - k,) Gv 

+0(l), if hdk,) + 0, 
if &(k,)=O 

and, as k --+ k, through real values 

af- 1 
a2+1 f4lL if ddk,) + 0, 

L(k)= ;-b2 
+i +41)7 if 4&J = 0, 

n 

(3.27) 

(3.28) 

(3.29) 

(c) If the nth gap is closed (i.e., E,,,- , = E,, for some nal), then T(k), R(k), and L(k) are 
continuous at k, and T(k,) # 0. 

Proof: 
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(a) First assume that &(k,) # 0. Let a=k - k, be complex with Im ~20. The following 
estimates are consequences of Eqs. (2.5), (2.8), and (2.14), and hold in a sufficiently small neigh- 
borhood of a=O: 

IA(x,r)l~Ce(‘m”)I”-‘l(l +1x-tl) (3.30) 

and therefore, by iteration using Eqs. (2.12) and (2.13) 

(3.31) 

where C is a suitable constant. It follows from Eqs. (2.12), (2.18), and (3.31) that 
[F’ + ‘( + , k) ; F’-‘( . ,k)] and T(k) have analytic continuations into the upper half plane near the 
point k, . Therefore, by using Eq. (2.15) we conclude that, in the generic case 

T(k)=ic,cu+o(a), (3.32) 

where 

2(-l)n+’ 

‘“=[F’+‘(.,k,);F(-)(.,k,)]~,(k,) ’ 

This proves (3.25), provided &(k,) # 0. 
Now suppose that &(k,) =O. We make a shift x -+ xfa and consider the perturbed Hill’s 

equation with potentials P(x;a) = P(x + a) and V(x;a) = V(x + a). Associated with the potentials 
P(x;a) and V(x;a) are solutions analogous to those in Eqs. (2.3), (2.4) and (2.12), (2.13), namely, 

,)(?)(x,k;a)= “,‘)(x+a’k) 
0 

(C16’)(a,k) 

and 

F(‘)(~ k.a),F(‘)(X+a’k) , 9 
$i-b’)(a,k) * 

Furthermore, we have the relations 

Mx,k;a)= - ~o(a,k)fWx+a,k)+ 4Aa,k)h(x+a,k)9 

80(1 +a&)= Oda,k>&(k)+ 4o(a,k)O~(k). 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

By using Eqs. (3.34)-(3.36) and the fact that &,(k,) = eo(k,), we obtain 

+o( 1 A ;a) = - &aAJ %(kJ. (3.37) 

Since the gap is open, @,(k,) # 0. We now choose a such that &(a,k,J # 0 and hence 
ho< 1 ,k, ;a) # 0. We remark that it is well known5 that one can reduce the case &,(k,) =0 to the 
case &(k,) # 0 by a shift of the origin, but the argument given here is more explicit than that in 
Ref. 5. Also, we need Eq. (3.37) below. It is also easy to see that the discriminant (2.1) and hence 
the function k(E) are invariant under the shift. Then, by using Eqs. (3.33) and (2.15), we get 
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2i sin k 

[ 

40( l,k;a) 

T(k)=-[F(+)(~,k;a);F-(~,k;a)]+o(l,k;a) t,b~‘(a,k)&,-‘(a,k)+o(k) . I 

After some manipulation, using Eqs. (3.34)-(3.36) and (2.1)-(2.7), we see that the term within 
brackets is equal to 1. Thus 

2i sin k 

T(k)= -[F(+)( .,k;a);F-( .,k;a)]&,( 1 ,k;a) =T(k’a)’ 
(3.38) 

In view of Eqs. (3.21) and (3.33), we have that 

[F(+)( . k*a)*F-( . k-a)] = 
&)(k)&)(k) 

9, , 1 , +r)(a k)tib-)(a,k) Cx'+'(.;k);x'-'(.;k)l 9 

and therefore, by Eqs. (2.3) and (2.4) 

lim [F(+)( + k*a)*F-(. k-a)]= 99 , , 9 
k + k, 

d;(;,k,) [x'+'(.;k,);x'-'(.;k.)1. (3.39) 

Thus, using Eqs. (3.37), (3.38), and (3.39), we infer that Eq. (3.32) holds with 

2(-l)” 
Cn=[,$+)( .;k,);x’-‘(.;k,)]6;(k,)) . 

This proves Eq. (3.25) when &(k,) =O. 
Now we turn to Bq. (3.26) and, again, first assume that &(k,) # 0. By Lemma 2.1 [with 

z(x,k)=F’+‘(x k)] we have that , , 

I 
m &)(r,k,)V(t)F’+)(t,k,)dt=O 
--m 

if and only if k, is a half bound state. Hence this integral is nonzero in the case under consider- 
ation. Since $c)(x,k,)= &,-)(x,k,), we deduce from Eqs. (2.18) and (2.19) that Z(+)(k)/J(+)(k) 
and 1 and l/J’+‘(k) + 0 as k + k,. Together with Eqs. (2.16) and (2.17), this implies that 
L(k) + -1 andR(k) -+ -1 ask -+ k,, proving Eq. (3.26) when &(k,) # 0. If &(k,) =0, we 
use a shift as in the proof of Eq. (3.25). Then Eqs. (2.16) and (3.33) imply that 

$h-‘(a k) 
L(k)=W;a) q~-)(a:k) . (3.40) 

Since &-‘(a,k)l&-‘(a,k) + - 1 as k -+ k, and L( k, ;a) = - 1, we infer that L( k,) = 1. A 
similar argument shows that R(k,) = 1. 

(b) Suppose that &(k,) # 0. Lemmas 3.1 and 3.2 yield, for real k 

[F(+)( . ,k);F(-)( . k)] = 
C-1) n+li a:+ 1 

7 &Jk,) a,, crfo(a) 

and 

(-1)“i ai-1 
[F(+)( .,k);F(-)(a k)]=- - 7 

hdk,) a, 
cYfo(a). 

(3.41) 

(3.42) 
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Now, for real k, Eq. (3.27) follows from Eqs. (2.15) and (3.41). In order to extend the result to 
complex k, we note that by Eqs. (2.5) and (3.31), for k near k, (Im k>O), we have the estimate 

~~~16-‘(t,k)V(t)F’~~(t,k)~~C~V(t)~(l+max{-r,0}). (3.43) 

By using Eqs. (2.15) and (2.18), we can write 

1 =1- 40(k) m 
T(k) 2i sin k I 

t@(t,k)V(t)F’+)(t,k)dt. 
--m 

(3.44) 

Together with FQ. (3.43) this implies that l/T(k) is defined and analytic for k near k, with 
Im ksO(k # k,), and from Eqs. (3.43) and (3.44), we have the estimate 

(3.45) 

for LY near 0, where C is a suitable constant. The validity of Eq. (3.27) for real k, along with the 
estimate (3.45) allow us to appeal to theorems of Phragmin-Lindelof (see Ref. 13, Theorems 
1.4.1 and 1.4.4) and to conclude that T(k) approaches a finite limit as k --+ k, uniformly in 
O<arg(k- k,) Cr. Thus Eq. (3.27) is established. The relations Eqs. (3.28) and (3.29) follow 
immediately from Eqs. (2.16), (2.17), and (3.42). This proves (b) when &(k,) # 0. 

Now suppose that &(k,) =O. As in part (a) we make a shift x + x+a, where a is such that 
&(a,k,) # 0 and hence +o( l,k,;a) # 0. By using Eqs. (3.21), (3.33) and the fact that 
$&‘)(a,k)lm&“‘(k) --+ qbo(a,k) as k -+ k, , we obtain 

F(+)(x k *a) * n, 
F(-‘(x,k,;a) =klirnk 

[F(+)(x+a k)lt,h$,+)(a k)] x(+)(x+a*k) 

and hence 

F(+)(x,k, ;a) = b,F-(x,k, ;a). 

Now the assertions follow by using Eqs. (3.38), (3.40) and the results for the case when 
4&J + 0. 

(c) If the gap is closed, we have that c,ho(k,) = 8h(k,) = 0 and &(k,) = Bo(k,) 
= l(qbA(k,) = 8,(k,) = - 1) if A(k,)=l (A(k,)=-1). S ince A(E) has a quadratic maximum 
or minimum at E= E, , E-E, now vanishes linearly as a function of a as (Y -+ 0 [E - E, 
= aIt,/~+O(ct2)].Th’ is implies that in Eq. (2.15) the ratio sin k/+,(k) approaches a finite 
nonzero limit as k --t k, . Since the Wronskian [F(+)(. ,k);F(-)( . ,k)] is continuous at k, , it 
follows that T(k) must approach a nonzero limit as k -t k, . Similarly, we conclude that R(k) and 
L(k) are continuous at k= k, . n 
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