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The behavior of the scattering matrix associated with the perturbed Hill’s equation
as the spectral parameter approaches an endpoint of a spectral band is studied. In
particular, the continuity of the scattering matrix at the band edges is proven and
explicit expressions for the transmission and reflection coefficients at those points
are derived. All possible cases are discussed and our fall-off assumptions on the
perturbation are weaker than those made by other authors.

I. INTRODUCTION

On L,(R) we consider the Schrodinger operators

2
H0=—Z;2' + P(x)

and

d2
H= —W +P(x)+V(x),

where P(x) and V(x) are real-valued potentials such that P(x) e L'(0, 1]), P(x+1)=P(x), and
j (1+]x|)|V(x)|dx <. (1.1)

It is well known'™* that the spectrum o(H,) of Hy is absolutely continuous and is the union of
closed intervals

U(HO) = UO[EZn ’ E2n+ 1]’
n=

where —o<E,<E,<FE,<FE,--.Each point E, is an eigenvalue of a boundary value problem of
the form Hg¥=E on [0, 1] with either periodic or antiperiodic boundary conditions. The eigen-
values associated with the periodic boundary conditions coincide with the points E,, for n =4k and
n=4k+ 3, the eigenvalues associated with the antiperiodic boundary conditions coincide with the
points E, for n=4k+1 and n=4k+2 (k=0,1,2,...). The intervals [E,,, E,;,.+,] (n=0,1,...) are
often referred to as “bands” and the intervals (E,, 4 1,E,,+2) as “gaps.” If E5, . 1 = E5, 45, We say
that the corresponding gap is closed. The continuous part of the spectrum of H is also absolutely
continuous and it agrees with the spectrum of H,,. In addition, H may have at most a finite number
of eigenvalues in any gap. We refer the reader to Refs. 5, 6, and 7 for more information about the
eigenvalues.

In this article, the points E, which are endpoints of an open gap, will be classified as “ge-
neric” or “‘exceptional” according to the following definition. The generic case is said to occur
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at E=FE, if the equation Hy=FE, i has no bounded nontrivial solution. The exceptional case is
said to occur at E=E,, if Hiy=E i has a bounded nontrivial solution. In the exceptional case, the
point E,, is also referred to as a half bound state. The equations Hyiy=E and H = E ¢ are called
Hill’s equation and perturbed Hill’s equation, respectively.

Associated with the operators H, and H is the scattering matrix

T(E) R(E)
L(E) T(E)

’

S(E)=[

where T(E) is the transmission coefficient and L(E) and R(E) are the refiection coefficients from
the left and from the right, respectively. The object of the present article is to prove that S(E) is
continuous at the points E,, both in the generic case and the exceptional case, and to obtain the
correct leading asymptotic behavior as E — E, .

In the generic case, the continuity of the scattering matrix at E,, is known.®® It is also known
that T(E,)=0. For the reflection coefficients the results have been incomplete. As Theorem 3.3
below shows, there are two possibilities: R(E,)=L(E,)=—1 or R(E,)=L(E,)=1. To the best of
our knowledge, only the first possibility has been noted in the literature.® In the exceptional case,
the continuity of S(E) has only been established® under the stronger condition that
2 (1 +xH)|V(x)|dx<oo. However, no explicit expression for S(E,) is given in Ref. 8. In Ref. 9
the perturbed Hill’s equation is studied under the assumptions that |x||V(x)|eL!(R) and
V(x) e LYR) [which together imply (1.1)]. However, in the exceptional case, the expressions for
T(E,), R(E,), and L(E,) given in Ref. 9 do not agree with those of Theorem 3.3. We should also
mention that the situation regarding the continuity of S(E) at E, for the perturbed Hill’s equation
is similar to that in the case when P(x)=0, where a half bound state can occur at £=0. This latter
case was studied in Ref. 10. The method used in the present article is a generalization of the
method of Ref. 10 to the perturbed Hill’s equation. We also rely on some results from Ref. 11,
where the Titchmarsh—Weyl m coefficient and its connection with half bound states is studied for
the perturbed Hill’s equation on the half line.

The article is organized as follows. In Sec. II we establish the notation and prove two tech-
nical lemmas. In Sec. III we prove the continuity of the scattering matrix.

il. PRELIMINARIES
Let ¢y(x,E) and 6y(x,E) denote the solutions of the equation
Hoy=Ey¢
that satisfy the conditions
é0(0,E)=60)(0,E)=0, and ¢(0,E)=0,(0,E)=1.

Let ¢o(E)= ¢po(1,E), 0y(E)=03(1,E) and define the discriminant by

A(E) =5 ¢4(E) + 8o(E)]. ’ @
It is well known'™* that o(H,)={E:|A(E)|<1}. The so-called quasimomentum k is defined by

k=k(E)=cos [A(E)], 2.2)

where the branch of cos™! is such that Im k(£)>0 when E<E, and k(E,)=0. The global map-
ping and analyticity properties of the function k(E) have been studied in Ref. 12. For the purpose
of this article, we only need certain local properties that pertain to a small neighborhood of a given
point E, . We summarize here those facts that are relevant to the present article. Similar results
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were obtained in Ref. 11. The band {E,,, E,,.] is mapped onto the interval [n7, (n+1)7] and
the interval (—,E,) goes over into the positive imaginary k axis. In each gap (E3,+1,E2,+2)
there is a unique point £, | such that A’ (E,,+J) =0. Then k(E,, ;) =(n+ 1) 7+i8,, (5,4 ,>0)
and the two intervals (Ej,41,E,+;] and [E, . 1,E;,+;) are both mapped onto the segment
{k:k=(n+1)7+it,0<t=<8,,}. We will also need the analytic continuation of k(E) into Im E
<0, where, for the present article, it suffices to assume that E is near one of the points E,, . To this
end, we introduce the slit disks D,,={E:|E—E,,|<p3,\NEznEzs+p2,) and
Dypiy= {E |E_ Ern+i | <Pan+ l}\(E2n+l = Pan+1-E2n+1]. The positive numbers p,, and pyp 49
are sufficiently small so as to guarantee the following results. Under the map E — k(E) the slit
disk D,, is mapped one to one onto an open set in the k plane whose boundary consists of the
segment (N7 — €, n T+ €,,) (€3, = tan"'[V1—=A>(E,,+ pyu)/A(E,, + p3,)]) and a curve, the
image of the circle |E—E,,|= p,,, in the upper half of the k plane joining the endpoints of the
segment, Similarly, each slit disk D,,,, is mapped onto a domain bounded by a segment
((n+1)7m—€3,4,(n+ 1)+ €;,,,) and a curve in the upper half plane joining the endpoints of
the segment. The upper edge of the interval (E,,,E,,+ p,,) is mapped onto (nm,n7+ €,,), the
lower edge is mapped onto (n7— €,,,n ). Similarly, the upper edge of (E5,+1~ Pan+1,E2n+1) is
mapped onto ((n+1)m— €5,,1,(n+ 1)) and the lower edge onto (n+ 1) 7, (n+1)7T+€3,41).

In the sequel the important spectral parameter will be k. So we will henceforth write k in place
of E, i.e., d(x,k) in place of ¢(x,E), etc. Let mi™)(k) denote the Titchmarsh—Weyl m functions
associated with the operator H)'. Then, for Im k>0, we have that

Yo (x,k) = Bo(x,k) + mG) (k) o(x,k) & Ly(0,%), 23)
Wy (x,k) = Bo(x,k) + m§T) (k) Bo(x,k) € Lp(—,0). (2.4)
There exist functions &%(x,k) with £ (x+ 1,k) = £§")(x,k),&5%(0,k) =1, such that
Uh™) (k) = 67 (x k) e =10, (2.5)
Hence zllf,t)(l,k)=e:”‘ and from Eqgs. (2.3) and (2.4), we have that

etik__ oo(k)
dolk)

Further, by using Egs. (2.1) and (2.2) in Eq. (2.6), we obtain

m§=) (k)= (2.6)

do(k)— Op(k) L isink
2¢0(k) T Polk)

Evaluating the Wronskian of %*')(x,k) and %")(x,k) yields

mgt)(k)=

2.7)

[45TC,k) 07 k) 1=mG7 ) (k) — m§ T (k),
where [F(:);G(-)]1=F(x)G'(x)—F'(x)G(x). Thus, by Eq. (2.6)
2isink
$o(k)

Now suppose that E lies strictly inside a band [E,,, E;,+1], i-e., ke(nm,(n+1)7). Then there
exist solutions ¥*)(x,k) of

Lob k)97 k) 1= - 2.8)

Hy=Ey (2.9)
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such that
N TR (x k) Fo(l), x — o,
Pl )(X,k)—[ g+)(x,k)+L(k)¢t§)_)(x,k)+o(1), Y —o (2.10)
and
() (+)
_ TGk Rk (k) + (1), x — o,
Pl )(x’k)—-(T(k)(//g_)(x,k)+o(1), X - —co0. (2.11)

These asymptotic relations define T(k), L(k), and R(k). In addition to ‘I'(:)(x,k), we introduce
solutions F*)(x,k) of Eq. (2.9) that satisfy the integral equations

FO) k)= it (x, k) — f ) A(x, k) V() F ™ (1,k)dt, (2.12)
F(_)(x,k)=¢g_)(x,k)+Jj A(x,t;k) V() F ) (2, k)dt, (2.13)
where
A(x,t3k)=— 1 [ e, k) g7, — w7 (e k) s (2,6) 1.
[P R)4067C 0]

(2.14)

From Egs. (2.12), (2.13), and standard estimates [see also Sec. III, Egs. (3.30) and (3.31)], it
follows that F\™F)(x,k)= i ) (x,k) +o(1) as x — +o0 and F ) (x,k)=¢§7(x,k) +o(1) as x —
—o, Moreover, these relations may be differentiated. In analogy to the case P(x)=0, we call
F®)(x,k) the Jost solutions of Eq. (2.9). They are related to ¥*)(x,k) by

Y E (x,k)=T(k)FE)(x,k).

By combining Egs. (2.10), (2.11) with Egs. (2.12), (2.13) and using Eq. (2.8), we obtain

_ 2isink _ 1
T = D F 0Tt 1H I @15
PR FOCLR] "
L(k)——[Fm(_,k);F(_)(.’k)] =—T(k)J k), (2.16)
_ [-F_(:7(9k)9F(—)(9k)] _ (=)
R(k)——[F(+)(',k);F(_)(.,k)1—~T(k)J k), (2.17)
where
+ (k ® :. +
1<—)(k)=~§%n—)zj_w W71, k) V() FE) 1, k)dr, (2.18)
k o . .
JEN (k)= — 2‘?"s§n)k f B PRV FE) (k) dt. (2.19)
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By evaluating the Wronskians [W(( k)W k)], [ ,k);¥I(- k), and
[P ,k); W) k)] as x — oo, we obtain, for real k, the unitarity relations

| T(R) >+ |R()>=|T(k)|*+|L(K) =1,
. (2.20)
T(k)R(k)+L(k)T(k)=0.

Our next goal is to prove two lemmas that will be used in Sec. IIl. First we need some more
notation. Let

k,=nw, n=0,1,2...
Throughout this section we assume that
do(k,) # 0. (2.21)
The case when ¢y(k,) =0 will be considered separately in Sec. III. Furthermore, we define
806 k)= g6 (x. k) + g (). (2.22)

Lemma 2.1: Let z(x,k,) be a solution of Hy=E, (n=0,1,2,..) and let a=2z(0,k,),
b=2z'(0,k,). Then

(a) z(x,k,) is bounded for x=0 if and only if
(+) Lre
b—amy (k,,)+§ go(t, k) V(1) z(t,k,)dt=0; (2.23)
0
(b) z(x,k,) is bounded for x<0 if and only if

1 (o
b—amf)”(k,,)—if

golt,k)V(t)z(t,k,)dt=0.
Proof: We only prove (a); the proof of (b) is similar. First, we note that go(x,k,) and ¢y(x,k,)
are linearly independent solutions of Hoy=E, and that go(0,k,)=2, g4(0,k,) = m{"(k,)
+ mf)')(k,,) = 2mg+)(kn), and [ (- ,k,);80(+,k,)]1=—2. By the variation of constants formula
we have

z(x,k,,)=[b—amg+)(k,,)]¢o(x,k,,)+; go(x,k,,)+~;-f0x K(x,t;k,)V(£)z(2,k,)dr, (2.24)

where K(x,t;k,) = do(x.k,)go(t,k,) —go(x.k,) Po(t,k,). It follows from standard asymptotic re-
sults that

| do(x,k,)|<C(1+x), (2.25)
l2(x,k,) <= C(1+x) (2.26)

and hence
|K(x,5:k,)|<C(1+x), O<r<x (2.27)

J. Math. Phys., Vol. 35, No. 7, July 1994
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for some suitable constant C. By using Egs. (2.25)—(2.27) and taking x — + in Eq. (2.24), it
follows that

z(x,k,.>=[b—am§,+’(k,,>+% |7 sate kv | o +on. @28)

Thus, in order for z(x,k,) to be bounded, it is necessary that the bracketed term in Eq. (2.28)

vanishes, i.e., Eq. (2.23) holds. Conversely, if this term vanishes, then z(x,k,)=0(x) and so

z(x,k,) must be a multiple of gy(x,k,); that is, z(x,k,) must be bounded. Lemma 2.1 is proved.l
When k is near &, (with n fixed) it will often be convenient to use the variable

a=k—k,.

The properties of the mapping E — k(E) [see Eq. (2.2)] imply that E(k)=E(k,+ «) and hence
do(x,k,+ a) and G(x,k,+ a) are even functions of a. Moreover, when « is real, the following
relations hold:

m$ ky+ @)y =m§ ) (k= @) =m{H (k,— @) =m{ 7k, + ),
(2.29)

PP (X, k@)= g (0 k= @) = Y5 (x,kp— @) = 95 (x, K + ).

Lemma 2.2: Let z(x,k) be a solution of H¢r=E with z(0,k)=a and z'(0,k)=>b, where a
and b are independent of &, and suppose that z(x,k,) is bounded for x=0. Then, for k near k,, k
real, we have the estimate

a 2x

2
@ +1+|a|x

l2(x,k) —2(x, k)| < C(1+x) . (2.30)

A similar estimate, with x replaced by |x|, holds if z(x,k,) is assumed to be bounded for x=<O0.
Proof: 1t suffices to consider x=0. The proof when x=<0 is similar. From Ref. 11 we have the
estimates (x=0)

ax \?

| bo(x, k)~ bolx,kn)| < C(1+x) a2+(1 n Ialx) ; @31)
ax 2

|go(x.k) = go(x,k,)|<C (1+x)a2+(1—+l'&|—x) (2.32)

These estimates hold in some interval k,—e<k<k,+e(e>0). Since go(0,k)=2 and
g6(0,k) = mf,”(k) + mg_)(k), the variation of constants formula yields

2(x,K)=| b= (n§() +m§7(0))

¢0(x,k)+§ go(x,k)+% f: K(x,::k)V(5)z(1,k)dt,

where K(x,t;k)= ¢o(x,k)go(t,k) — go(x,k)Po(2,k). By Egs. (2.7) and (2.29), we have that
mi (k,+ @) +m§ ) (k,+ a)=2m§ ) (k,)+O(a?), and hence

2k, ) = 2(x,k) = [b=am§ () L do(x.) = olx,kn) 1+ O(a) o, ) + 3 Lol )

1=
_gO(kan)]_i_Ejo [K(-x’t;k)_K(xvt;kn)]v(t)z(t’kn)dt

J. Math. Phys,, Vol. 35, Na. 7, July 1884
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1 (=
+5f0 K(x,t;k)V(t)[Z(t,k)_Z(t,kn)]dt=11+12+13+14+15. (2.33)

We estimate each of the terms /;,...,/5. Since there are terms in /| and I, that need to be
combined, we begin with 7,. We write

1 ' x 1 x
14=§ [¢0(-x»k)_¢0(x’kn)]f go(t,k,,)V(t)Z(t,k,,)df‘f'i‘ ¢0(x’k)J. [gO(t’k)
4] 0
1 x
'_go(t,k,,)]V(t)Z(t,k")dt_‘i [gO(x,k)_gO(x’kn)]Jo ¢0(t,k)V(t)Z(t,kn)dt

1 x
—-2— gO(x’kn)f [¢O(t’k)~¢O(tvkn)]v(t)2(t’kn)dt
0

=Jl+.]2+J3+J4-

Combining I, and J, with the help of Eq. (2.23), we obtain
1 ©
Il +Jl = _E[(ﬁo(ka)_ ¢0(x’kn)]f gO(t’kn)V(t)Z(t’kn)dt-
X

Therefore

ax

In+ail<c 1+ax

02+(

2] (o
) “ |V()|(1+1)dt, (2.34)

where we have used the boundedness of z(¢,k,) and gy(#,k,). Turning to the term J,, we use Egs.
(2.25), (2.32), and (1.1), to obtain

Lj<C(1+n)| a2 2% 2.35)
|2|\( x)| @ 1+la|x' (2.
Similarly, by using Egs. (2.31) and (2.32) we get
<C|(1+x)a?+ | —mr i 2.36
|13|\C ( x)a 1+|a|x s (2.36)
Jg=d a2V 237
| 4|\ a 1+Iaix . ( . )
Returning to Eq. (2.33) and estimating the remaining terms, we obtain
|I]|=Ca?(1+x), (2.38)
ni=c] (14 ma2+[ =2 2.39
X
|Is|=c1 +x)f0 tV(Olz(t,k) — z(t,k,)|dt. (2.40)

J. Math. Phys.. Vol. 35, No. 7, July 1994
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Since

ax 2< Lt a’x
1+]|alx <(1+x) 1+|alx
the estimates (2.34)~(2.40) can be combined with the result that

2

l2(x.k) - z(xk)|<C(1+x)(a +1+| P )+C(1+x)j [V()l|2(2,k) = z(2,k,) | dr.
(2.41)

_ 2 azx
hix,a)=C(1 +x)(a +m)

and

|z(x, k) —2(x,k,)|
h(x,k)

u(x,k)=

Since z — z/(z+ 1) is monotonically increasing, we have that h(r,a)<h(x,a) when r=<x. Thus
Eq. (2.41) becomes

u(x)<1+ Cf:(l + 0|V u(t.k)dt.

Applying Gronwall’s inequality gives u(x,k)<C and Egq. (2.30) follows. Lemma 2.2 is proved.ll

. ASYMPTOTICS AND CONTINUITY OF THE SCATTERING MATRIX
‘We can assume that, in addition to Eq. (2.21)

F)(0,k,) + 0. (3.1)

This can always be accomplished by a shift of the origin if necessary. Let ¢(x,k) and & x,k) be
solutions of Eq. (2.9) satisfying ¢(0,k)=6'(0,k)=0 and ¢'(0,k)=6(0,k)=1. Let

2(x,k)=F*)'(0,k,) p(x,k) +FH)(0,k,) 6(x,k) (3.2)

so that z(x,k) is the solution of Eq. (2.9) which satisfies z(0,k)=F‘*)(0,k,) and z'(0,k)
=F("'(0,k,).
Lemma 3.1: When k is real, the following relations hold:

@) FUOk)[FIC k) FOC k) ]=FO0,L)[F(- k)sz(- k)]

—F 0,0 [F( k)sz2(-,k)],

(b) FUU0,k, ) [F) (k) F ) (x, k) 1= F(0,k) [ (x,k);2(x,k)]

— FU0,k)[F ) (x k) 2(x, k).

Proof: By straightforward calculation. |

Note that [F (+)(-,k,,);F (_)(-,kn)]=0 implies that we are in the exceptional case. Then
F‘“(x,k,,) and F(”)(x,k,,) are linearly dependent, i.e.,

J. Maih. Fhys., Vol. 35, No. 7, July 1994
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F ) (x, k) =a,F ) (x,k,), (3.3)

with a,, # 0. Hence Eq. (2.9) has a bounded solution for E=E,,.

Lemma 3.2: Supppose that a half bound state occurs at k=k,. Then, as k — k,, k real, we
have

@ [FCR20,01=(= D" il ¢o(k,)] ' a+o(a),

®) [FOCh)320,0]1=(=1)"a,il ¢o(k,)] ™ a+o().

Proof: The variation of constants formula gives
B )=o)+ A OV,
0

where A(x,t;k) is given by Eq. (2.14). Then, using

57, k) = 95 (x, k)

k)= ——r — , 3.4
o) = 0] G4)
we obtain
[FO k) 8(- k) 1= F(0,6) =1+ f: S CNCOLICNILI (3.5)
0
[F<'>(~,k>;¢(-,k>]=F‘“>(o,k)=1—f_ ¢ (1) V(2) (1K) dr. (3.6)

Similarly, we get

[F( k) 6(- k) ]=—F*)'(0,k)= —m§,+>(k)+f: YUk V(1) 6(2,k)dr,  (3.7)

[FC( k)60 k) ]==F)(0,k)= —-m{,')(k)—fi) SN, k) V(1) 0(t,k)dt.  (3.8)
Combining Eq. (3.2) with Egs. (3.5)—(3.8), we obtain
[FUC k)32, k)= FU(0,6) FH(0,k,) — FOH'(0,k)FU(0,k,)
= —m{NK)F(0,k,) + F'(0,k,) + f: P§P(1,k)V(2)z2(2,k)dt

(3.9

and
[FOC k)52, k) 1= FO0,6) F ' (0,k,) — FCV (0,6) FCH(0,k,,)
=—mg')(k)F”)(O,k,,)+F(+)'(O,k,,)—ff G5, k) V()2 (2, k)t

(3.10)

Consider first the integral on the right-hand side of Eq. (3.9). It can be written as
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ZEF P k)V (D) z(2 k)dt=f°° G (1,k,) V(1) 2(2,k,)dt
0 0 ’ ’ 0 0 Whep WKy
+ fo [67(,k) = 957 (1, k) V()2 (2 k)i

+ f: ARV 2(t.K) =2t en) d

=Zl+22+Z3. (3.11)
Since z(x,k,)=F")(x,k,), Eq. (3.9) gives
Z,=F )0,k )m{" (k)= FF(0,ky). (3.12)

In order to deal with the term Z,, we note that the boundedness of z(x,k,) together with Egs.
(2.23) and (2.24) imply that, as x — +x

gO(xakn)
2

2(x,k,)= FU)0,k,) —f: do(t,k,)V(t)z(t,k,)dt|{+0(1).

On the other hand, by Egs. (2.12) and (222), z(x,k,)=F™(x,k,)=¢5"(x,k,)+o(1)
=go(x,k,)/2+0(1) as x — +. Thus

F*(0,k,) —J: bo(t,k,)V()z(t,k,)dt=1. (3.13)

Expanding &"(x,k) near k=k, gives &"(x,k)=&")(x,k,)+ & (x,k,) a+0(o?), where the
remainder term is uniform in x since §§+)(x,k,,) is periodic. Then, for small a

W5 (0, k) = U5 (x, k) = e Lix S (x,k,) + £57)(x,k,) 1+ (€7 — 1 —iaux) e ™ £6) (x k)
+a(e!®—1)e*n {1 (x,k,) + O(a?). (3.14)

Using the estimates |¢/®*— 1|<C|a|x/(1+|a|x) and |¢'**— 1 —iax|<Ca?x*/(1 +|a|x), we can
write Eq. (3.14) as

) ) _i(—1)"po(x,k,) ( a*x? ) ( a’x )
(/IS"L (x,k) t//§,+ (x,kn)————¢0(kn) a+0 T+ ]alx +0 [T alx +0(a?),

(3.15)
where we have also used the relations
€7 (x k) =" €07 (x k)
and
Bo(x,kn)= (= 1)"*ighg(k)e™ [ ix 6 x, k) + €67 (x,kn)],
which follow from Egs. (2.3)—-(2.5) and (3.4) on letting k — k,,. On inserting Eq. (3.15) in Z, and

appealing to the Lebesgue dominated convergence theorem, it follows that
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g, = f Bolt k) V(D)z(t,k,)dt+o( @)
27 polky) 0
and hence, by Eq. (3.13)
g, FOO(0,k,)— 1]+ 3.16

In order to estimate Z; we use Eq. (2.30) and the Lebesgue dominated convergence theorem. Then
2.

@
1+ |alt

1Zsl=C :IV(t)l(1+t) o’ + )dt=o(a). (3.17)

Therefore, putting together Egs. (3.12), (3.16), and (3.17) yields

Z=F™)N0,k,)m{ (k) — F ) (0,k,) + (¢_(k)n) [F(Y)(0,k,)—1]+0(a). (3.18)
Moreover, by Eq. (2.7)
(F)( 1) = g () i-n" 2
my (k)=my (k")+¢0(k ) a+0(a). (3.19)

By using Eqgs. (3.18), (3.19), and (3.9), we obtain the relation (a) of the lemma. Part (b) follows
similarly by analyzing the integral on the right-hand side of Eq. (3.10), where one also has to make
use of Eq. (3.3). Alternatively, part (b) can be reduced to part (a) by means of the substitution
x — —x. We omit the details. |

In preparation of the proof of the next theorem we collect some more details about the case
when ¢y(k,)=0 and the corresponding gap is open. By means of the variation of constants
formula (see Ref. 3, p. 28), we find that

1 1
¢0(k)=—m( fo di(x,k,)dx | @®+0(a?). (3.20)

In deriving Eq. (3.20) we have also used the facts that @yk,)==*1 and
E—E,=%QA'(E,)) '&?+0(a"), where the upper (lower) sign is to be chosen when
A(E,)=+1(A(E,)=—1). Thus, by Eq (2.7), the imaginary part of m{™)(k) blows up as k — k,,.
On the other hand, the real part of m{™)(k) tends to a finite limit because ¢y(k,)=6y(k,)(== 1)
As a result, the solutions V}) )(x,k) blow up and so do the solutions F*)(x,k). Therefore, if we
define

() = o 5K (3.21)
Xm0 '

then the solutions ,\/(t)(x,k) have finite limits as k — k,,. The limiting functions X(t)(x,k,,) obey
the integral equations

X(t)(x,kn) = ¢O(kan) —fx_w[¢0(kan) 00(takn) - eo(x’kn) ¢0(’vkn)]V(t)X(t)(t’kn)dt'
(3.22)
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Since the function ¢, (x,k,) is periodic [if A(k,)=1] or antiperiodic [if A(k,)=—1] and hence
bounded, Eq. (3.22) implies that x‘™)(x,k,)= ¢g(x,k,)+0(l) as x — +ow. The solutions
X(t)(x,k,,) are linearly independent if and only if k,, is not a half bound state. If k,, is a half bound
state, we define b, by

X0 k) =b,x 7 (x,k). (323)
Since m§T(k)/m$ (k) — —1 as k — k,, we conclude from Egs. (3.21) and (3.23) that

. F(x,k)
b,,=—kl_1‘)n}c’l m . (3.24)

The following theorem is our main result. We obtain the leading asymptotic behaviors of the
entries of S(k) as k — k,; in particular, we prove that S(k) is always continuous at k, . Note the
difference between the statements regarding T(k) and R(k) or L(k). In the case of the transmis-
sion coefficient k is allowed to be complex with Im k=0, while in the case of the reflection
coefficients k is required to be real. This is a consequence of the fact that under our assumption
(1.1) the transmission coefficient has an analytic continuation to a small neighborhood of k,, in the
upper half plane, whereas generally the reflection coefficients do not have such a continuation.

Theorem 3.3: The asymptotic behaviors of T(k), R(k), and L(k) are as follows:

(a) If k=k, is not a half bound state, then, as k — k, with O<arg(k—k,)<w

T(k)=ic,(k—k,)+o(k—k,), (3.25)
where ¢, is real and nonzero, and, as k — k, through real values

—1+o(1), if ¢olk,) #+ 0,

(b) If k=k, is a half bound state, then, as k — k, with O<arg(k—k,)<w
2a, .
_1—;'_(12— +o(1), if ¢o(kn) # 0,
T(k)= ) b: (3.27)
+ i =0
552 o(1), if ¢olk,)
and, as k — k, through real values
ai-
231 +o(l), if ¢o(k,) # 0,
L(k)= 1—b2 (3.28)
1552 +o(1), if o(k,)=0,
_ 2
——7 +o(1), if ¢olk,) * O,
1+a,
R(k)= b2—1 (3.29)
n . —
mf +0(1), if ¢0(kn) 0.

n

(c) If the nth gap is closed (i.e., E,,_ | =E,, for some n=1), then T(k), R(k), and L(k) are
continuous at k, and T(k,) # 0.
Proof:
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(a) First assume that ¢y(k,) # 0. Let a=k—k, be complex with Im a=0. The following
estimates are consequences of Egs. (2.5), (2.8), and (2.14), and hold in a sufficiently small neigh-
borhood of a=0:

|A(x,5)| < Cem @s=d(1 +|x—1]) (3.30)
and therefore, by iteration using Eqs. (2.12) and (2.13)
|FC) (2, k)| < Ce ™™ @%(1 + max{+ x,0}), (3.31)

where C is a suitable constant. It follows from Egs. (2.12), (2.18), and (3.31) that
[F N k) F (=)(.,k)] and T(k) have analytic continuations into the upper half plane near the
point k,, . Therefore, by using Eq. (2.15) we conclude that, in the generic case

Tk)=ic,ato(a), (3.32)
where

_ 2(__1)n+1
TIFC k) FO( k) T dolky,)

This proves (3.25), provided ¢(k,) # 0.

Now suppose that ¢(k,)=0. We make a shift x — x+a and consider the perturbed Hill’s
equation with potentials P(x;a)=P(x+a) and V(x;a)=V(x+a). Associated with the potentials
P(x;a) and V(x;a) are solutions analogous to those in Egs. (2.3), (2.4) and (2.12), (2.13), namely,

Cn

8:’(x,k;a)=—¢édzi(—f(z—:)—k)
and
F(t)(X,k;a)=w ) (3.33)
Yo (a.k)

Furthermore, we have the relations
Bo(x,k;a) = — do(a,k) B(x+a,k) + Bg(a,k) po(x+a,k), (3.34)
do(1+a,k)=6p(a,k) po(k) + dola.k) g(k), (3.35)
Bo(1+a,k) = (a,k) Bo(k) + dola.k) B(k). (3.36)

By using Egs. (3.34)—(3.36) and the fact that ¢(k,) = 6o(k,), we obtain

bo(1,ky3a)=— d5(a,k,) 05(ky). 3.37)

Since the gap is open, 63(k,) # 0. We now choose a such that ¢y(a,k,) # 0 and hence
&y(1,k,;a) # 0. We remark that it is well known® that one can reduce the case ¢y(k,)=0 to the
case ¢y(k,) # O by a shift of the origin, but the argument given here is more explicit than that in
Ref. 5. Also, we need Eq. (3.37) below. It is also easy to see that the discriminant (2.1) and hence
the function k(E) are invariant under the shift. Then, by using Egs. (3.33) and (2.15), we get
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2i sin k ¢o(1,k;a)

)= FC ka) P (- ka)ldo(1ka) | g5 (@ k)0l (a k) do(k) |

After some manipulation, using Egs. (3.34)—(3.36) and (2.1)—(2.7), we see that the term within
brackets is equal to 1. Thus

2i sin k

T(k)= CF(ka) F (- k) do( 1 kia)

=T(k;a). (3.38)

In view of Egs. (3.21) and (3.33), we have that

mg* (k)m (k) "
¥ (a, g5 (a k) X

[FU(- ksa);F (- ka)]= D5k x (k)]

and therefore, by Egs. (2.3) and (2.4)
1
lim [FU(- k;a);F (- ksa)]=—r—— X k)i x5k 1 (3.39)
k—k, d’o(a’kn
Thus, using Egs. (3.37), (3.38), and (3.39), we infer that Eq. (3.32) holds with
2(-1)"
cp= = ; .
[X(+)( : ;kn);X( )( : 7kn)]00(kn)

This proves Eq. (3.25) when ¢y(k,)=0.
Now we turn to Eq. (3.26) and, again, first assume that ¢y(k,) # 0. By Lemma 2.1 [with
2(x,k)=F™)(x,k)], we have that

f PRI VOF (1) di=0

if and only if &, is a half bound state. Hence this integral is nonzero in the case under consider-
ation. Since 4" (x,k,)= ¢§7)(x,k,), we deduce from Egs. (2.18) and (2.19) that I )(k)/J ) (k)
and 1 and 1/J)(k) —0 as k — k,. Together with Egs. (2.16) and (2.17), this implies that
L(k) — —1 and R(k) — —1 as k — k,, proving Eq. (3.26) when ¢y(k,) # 0. If ¢(k,)=0, we
use a shift as in the proof of Eq. (3.25). Then Egs. (2.16) and (3.33) imply that

w5 (a k)

L(k)=L(k;a) "m .

(3.40)

Since ¢4 )(a,k)/ 5 )(ak) > — 1 as k — k, and L(k,;a)=—1, we infer that L(k,)=1. A
similar argument shows that R(k,)=1.
(b) Suppose that ¢y(k,) #* 0. Lemmas 3.1 and 3.2 yield, for real k

(=1)"*Yial+1

[FH)(',k);F(_)(',k)]:an—a+o(a) (3.41)
and
-, (=Dmiai-1
). . . =—————’l
[FH( k) FO( k)] o) e arol. (3.42)
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Now, for real k, Eq. (3.27) follows from Egs. (2.15) and (3.41). In order to extend the result to
complex k, we note that by Egs. (2.5) and (3.31), for & near £, (Im £=0), we have the estimate

[ (1,k) V(£) FH(2,k)| < C| V(2)] (1 + max{—1,0}). (3.43)
By using Egs. (2.15) and (2.18), we can write

1 - $o(k)
T(k) =~ 2isink

Jm o (1) V() F (1, k). (3.44)

Together with Eq. (3.43) this implies that 1/7(k) is defined and analytic for k¥ near k, with
Im k=0(k # k,), and from Egs. (3.43) and (3.44), we have the estimate

I C
Im‘ sm (3.45)

for a near 0, where C is a suitable constant. The validity of Eq. (3.27) for real k, along with the
estimate (3.45) allow us to appeal to theorems of Phragmén—-Lindelof (see Ref. 13, Theorems
1.4.1 and 1.4.4) and to conclude that T(k) approaches a finite limit as k — k, uniformly in
O=<arg(k—k,)<w. Thus Eq. (3.27) is established. The relations Egs. (3.28) and (3.29) follow
immediately from Egs. (2.16), (2.17), and (3.42). This proves (b) when ¢y(k,) # 0.

Now suppose that ¢(k,)=0. As in part (a) we make a shift x — x+a, where a is such that
do(a,k,) # 0 and hence ¢y(1,k,;a) # 0. By using Egs. (3.21), (3.33) and the fact that
$E N a,k)Im§T (k) — pola,k) as k — k,, we obtain

F(xkpia)  [FPG+ab)lgda )] xPx+ask)
F(x k,a) ”kli,“in [F- (et a /s (ak)] ko, X (xtak)

and hence
F(+)(-x,kn;a)=an_(-x7kn;a)'

Now the assertions follow by using Egs. (3.38), (3.40) and the results for the case when
bo(k,) # 0.

(c) If the gap is closed, we have that ¢o(k,) = 6g(k,) = O and Pg(k,) = 6g(k,)
= 1(pi(ky) = 6Oy(k,) = —1) if A(k,)=1 (A(k,)=—1). Since A(E) has a quadratic maximum
or minimum at E=E,, E—E, now vanishes linearly as a function of @ as «a — 0 [E — E,
= a/V|A"(E,)|+ O(a?)]. This implies that in Eq. (2.15) the ratio sin k/ ¢o(k) approaches a finite
nonzero limit as k — k,. Since the Wronskian [FY(Lk);FC(-,k)] is continuous at k,, it
follows that T(k) must approach a nonzero limit as k — k, . Similarly, we conclude that R(k) and
L(k) are continuous at k=k,, . |
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