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The one-dimensional Schiimger equation and two of its generalizations are con-
sidered, as they arise in quantum mechanics, wave propagation in a nonhomoge-
neous medium, and wave propagation in a nonconservative medium where energy
may be absorbed or generated. Generically, the zero-energy transmission coeffi-
cient vanishes when the potential is nontrivial, but in the exceptional case this
coefficient is nonzero, resulting in tunneling through the potential. It is shown that
any nontrivial exceptional potential can always be fragmented into two generic
pieces. Furthermore, any nontrivial potential, generic or exceptional, can be frag-
mented into generic pieces in infinitely many ways. The results remain valid when
Dirac delta functions are included in the potential and other coefficients are added
to the Schrdinger equation. For such Schiinger equations, factorization formu-

las are obtained that relate the scattering matrices of the fragments to the scattering
matrix of the full problem. ©1996 American Institute of Physics.
[S0022-24886)02111-1

I. INTRODUCTION

In this paper we consider the one-dimensional Sdimger equation and two of its generali-
zations. The Schainger equatiorn(2.1) describes the quantum mechanical behavior of a particle
interacting with the potential/(x). From the corresponding transmission coefficigifk) we
obtain the probability| T(k)|? that a particle of energk?® can tunnel through this potential.
Generically, the zero-energy transmission coefficient is zero and hence a zero-energy particle
cannot tunnel through a nontrivial potential. However, in the exceptional case, the transmission
coefficient does not vanish at zero energy. In this paper, we analyze certain aspects of this
exceptional case. With the help of a factorization formula, we show that a nontrivial exceptional
potential can always be fragmented into generic pieces; i.e., a nontrivial potential allowing tun-
neling at zero energy can always be decomposed into pieces none of which allow such tunneling.
The factorization formulg2.17) used to obtain this result allows us to express the scattering
coefficients corresponding to a potential in terms of the scattering coefficients corresponding to its
fragments. We show that similar factorization formulas hold for certain generalizeddiuieo
equations describing the wave propagation in one-dimensional nonhomogeneous or nonconserva-
tive media. For such generalized Safirmer equations, the generic and exceptional cases are
again determined by the zero-energy behavior of the transmission coefficients.

The generalized Schdinger equation3.3) can be analyzed by locally transforming it into a
finite number of Schidinger equations; the results obtained in Sec. Il show that each of these
Schralinger equations can be chosen to have generic potentials. In Sec. lll we obtain the corre-
sponding factorization formula for E¢3.3). This formula, Eq(3.15), brings insight to the analy-
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sis of wave scattering in a one-dimensional nonhomogeneous medium and allows us to see how
the scattering process can be viewed as resulting both from “soft scatttr@esponsible for
continuous changes in the medium paramétersd from “hard scatterers” (responsible for
discontinuous changes in the medium paramgtérhis formula also explains how the total
scattering matrix can be obtained in terms of the scattering matrices of the individual fragments
localized in space.

In Sec. IV, we generalize the factorization formyfal?) in a different way to analyze how
the scattering process takes place in a one-dimensional nonconservative medium governed by the
generalized Schringer equation4.1), where energy absorption or generation may occur. Al-
though the scattering matrix is no longer unitary when energy absorption or generation is present,
we still have a factorization formula, namely Eg.5), showing how the scattering resulting from
the fragments is superposed to give the total scattering.

The small-energy analysis of the exceptional case for these three equations usually requires
elaborate calculations. In addition to giving insight into the scattering process, the factorization
formulas associated with these equations are expected to simplify the small-energy analysis of the
wavefunctions and scattering coefficients.

Il. SCHRODINGER EQUATION

Consider the one-dimensional Sctimger equation

d?y(k,x)

o T KCUkx) = V) y(k,x), (2.9

wherek? is energy,x is the space coordinate, ai{x) is a real-valued potential belonging to
Li(R), i.e., JZ.. dx (1+|x])|V(x)| is finite. The scattering solutions of E(R.1) are those that
behave likee™ ' asx— +% andx— —ce. There are two linearly independent scattering solutions
fi(k,x) and f,(k,x) of Eqg. (2.1), known as the Jost solutions from the left and from the right,
respectively, satisfying the boundary conditions

e®*+0(1), x—+oo,

fitk)=1_1 e, L iy . (2.2
I Tk)ek-f'me k+0(1), X— — 00,

1 —ikx ik) ikx o0
£ (kx) = We + (k) e"“*+0(1), XxX—+oo, 2.3

e +0(1), x——oo,

whereT(k) is the transmission coefficient af{k) andL (k) are the reflection coefficients from
the right and from the left, respectively. The scattering matrix associated witt2 Bjjis defined
as

[T R(k)
QM_LW)TWV (2.9
and it satisfies
S(—k)=S(k), keR, (2.5

where the overline denotes complex conjugation. The scattering matrix is unitary; thus,

T2+ R P=[T(K)[*+[L(K)]?=1, keR, (2.6
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and from Eq.(2.5 we see that
R(K)T(=k)+L(=k)T(k)=0, keR. 2.7
It is also known that the determinant 8(k) is given by

T(k)

T~ RIOL(K) = 5

keR. (2.9

For a potential in_}(R), the corresponding scattering matrix is well understood. Generically,
the transmission coefficient vanishes linearlykasO andR(0)=L(0)=—1. In the exceptional
case, we hava (0)#0 and hencéR(0)|=|L(0)|<1. There are other characterizations of these
two cases. For example, the poten¥glx) is exceptional if and only iff (0, x) andf,(0,x) are
linearly dependent. Equivalently(x) is exceptional if and only if at least one 6f(0, x) and
f,(0,x) is bounded; in that case both of these functions are boundedf&. Furthermore, the
potential V(x) is exceptional if and only if

jj dx V(x)f(0, x)=0, (2.9

which is equivalent tg”., dx V(x)f,(0, x) =0 becausd (0, x) andf,(0, x) are linearly depen-
dentin the exceptional case. Moreover, the exceptional case occurs if andfiGd; if- ) = 0 or
f/(0, + ) = 0. Here and throughout the paper the prime denotes the spatial derivative and we
interpretf| (0, — «) aslim_,_.. f/(0, x) and interpref, (0, + «) aslim_, .. f/(0, x).

If the potential has support on a half-line, i.e.Vifx) =0 for x>b or x<a for some constants
a andb, we have the exceptional case if and only;if0, x) = 0 for allx=b or f| (0, x) = 0 for
all x=<<a, respectively. For example, wh&f{x) =0 for x>b, the linear dependence {0, x) and
f,(0, x) in the exceptional case requires tHat0, x) is a constant fox=b and hence (0, b)
= 0; in the generic case, sindg(0, x) is linear forx=b and linearly independent df(0, x), it
follows thatf/ (0, b) # 0. Note thaff,(0, x) andf/ (0, x) cannot simultaneously vanish at the same
x value; otherwise, we would havi(0, x) =0 for xeR contradictingf,(0,+%)=1. Similarly,
f,(0, x) andf/ (0, x) cannot simultaneously vanish at the samalue. Thus, ifV(x) =0 for x<a
and if f,(0, a)=0, thenV(x) must be generic. Similarly, i¥/(x)=0 for x>b and f,(0, b)=0,
thenV(x) must be generic.

In the exceptional case, letdenote the constant

_ f|(0,X)

v= 0% (2.10
We havé
fi(=kx)| | Tk} —RK)[f,(kx)
{fr(—k,x) _[—L(k) T(k) Hﬁ(k.x) » keR, 213
and hence from Eq$2.10 and(2.11) atk=0 we get
T(0) 1+L(0) (2.12

YZ1FRO)  T(0)

Using Egs.(2.7), (2.8), and(2.12, we obtain

J. Math. Phys., Vol. 37, No. 12, December 1996
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y—1

T(0)=72+L1, L(0)=—R(0)= 7. 2.13

Further information on the generic and exceptional cases can be found in Refs. 2—6. For later
reference, we summarize some of the necessary and sufficient conditions for the exceptional case.

Proposition 2.1:A potentialV e L}(R) is exceptional if and only if/ (0, — ») = 0 or equiva-
lently if and only if f/ (0, + ) = 0. If V(x) vanishes forx>b, it is exceptional if and only if
f/(0, b) = 0. Similarly, if V(x) vanishes fox<a, it is exceptional if and only if | (0,a) = 0.

The trivial potentialV(x) =0 is exceptional. IV(x) is nontrivial andV(x) =0, thenV(x) is
generic. The exceptional case is unstable in the sense that a small change in the potential usually
makes the case generic. As an example, consider the square-well potential: the exceptional case
occurs at the exact depths when a bound state is added to the potential; at any other depth the
square-well potential is generic.

The distinction between the generic and exceptional cases becomes relevant when the small-
energy behavior of the scattering coefficients and of the wavefunctions is considered. In many
instances one has to deal with quantities involving the fatf&j/k. In the generic case this factor
remains bounded and continuouskasO0, but in the exceptional case it behavesTé8)/k with
T(0)#0. In some applications the fact®k)/k is multiplied by a continuous functiog(k) and
one has to prove, for example, the integrability of the prod&) T(k)/k ask—0. In the generic
case this integrability holds automatically, but in the exceptional case one has to prove, for
instance, thag(k) is of order|k|” for some ye(0,1] ask—0. This is one of the reasons why
proofs tend to be more elaborate in the exceptional case than in the generic case. In this Section
we show among other things that an exceptional potential can always be “fragmented” into two
generic pieces and that a matrix closely related to the scattering matrix can be written as a product
of factors, where each factor carries the information pertaining to one fragment. The term “frag-
ment” will be made precise below. We expect our results to offer simplifications in dealing with
exceptional potentials.

We now consider E¢(2.1) and first explain the term fragment used in this paper. Choose a
partition —oo <x; <X,<:--<x,< -+ of the real lineR and define

V(). xe(X,Xj11),
Vi) = 0, xe&(X),Xj+1),

so that

N
V<x>=j§0 Vi ji1(x), (2.14

where in Eq.(2.14 and below we use the convention thg=—« and xy,,=+%. We call
V;j j+1(x) a fragment ofV(x). In analogy to Eq(2.4) we let

Tij+1(k) Rjj+a(k)

S0 T

denote the scattering matrix associated with the pote¥ial ,(x), where each matris ;. 1(k)
only carries the information pertaining to the fragm®nt , 1(x). Using the scattering coefficients,
we introduce the matrices
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Rl ! Ryn®

3 T(k) T(k) 3 Tjj+1(K) Tjj+1(k)
A(k)= L(k) 1 v A k)= Ly j21(K) 1 (2.19

T(k) T(=k) Tij+2(k) Ty i42(=k)

Note that each matrix in Eq2.15 can be written as the product of two matrices in the following
way:

1Rk 1 R(K)

AK) = T T ={ t 0 } Tk) Tk |, (2.16
Lk 1 Lo TGol| )
Tk T(—k)

Note also that using Eq2.7) it is possible to express the entries of each matrix in @dLH in
terms of the transmission coefficient and only one of the reflection coefficients; for example, we
have

1 R(K) 1 L(-k)
Tk) Tk T(k) T(—k)

A= o 1 [Tl 1
S T(-k) T(-k) T(k) T(—k)

It is known’ that A(k) can be written as the product

A(k):Ao,l(k)Al,z(k)'“AN,N+1(k)- (2.17

It can be proved that Eq2.17) remains valid if we allow the potentidf(x) to contain a finite
number of Dirac delta functions. When delta functions are included, the proof ¢2HEqJ) can be
obtained from Eqs.3.15 and(3.16 in the special casH (x)=1. If all the fragments in E¢2.14)
are delta-function potentials, E(R.17) reduces to Eq(3.17). In Sec. lll we will elaborate on the
inclusion of delta functions.

The matricesA(k) and A ;. 1(k) are usually called transition matrices. The reason for this
terminology is as follows, which at the same time proves &gl7). Any scattering solution
Y(k,x) of (2.1) obeys g(k,x)=c.e"*+ce ™®+0(1) as x—+x and ¥(kx)=d;e*
+d,e "+ 0(1) asx——o, wherec,,¢,,d;,d, are function ok alone. By using Eqg2.2), (2.3),
and(2.8), we can relate the vectorg| c,] and [d; d,] corresponding to each of the Jost solu-
tions f,(k,x) andf,(k,x), and hence we obtaird] d,]'=A(k)[c; c,]'. We use the superscript
to denote the transpose. Henkgk) provides the link between the asymptotics of the solutions of
Eq. (2.1) at +% and those at-« when the functiong™'** are chosen as afasymptoti¢ basis.
Now letN=1, i.e., the partition is simply-co<x;<<+o. Let ¢4 {k,X) be the solution of Eq(2.1)
with the potentialV, (x) that satisfiesy; (k,x)=(k,x) for x=x;, and letyyp ,(k,x) be the
solution of_Eq.(2.1) with the potentialV, «(x) such thatyg 4(k,x)=¢(k,x) for x<x;. Then
g Ak, x)=d. €+ de ™ for x<x,;, where [, d,]'=A,AKk)[c;c,]'. Since ¥(k,x,)
= oK) =thaAkx) and o' (kxy)= (K xe) =i k. xo), it follows that yo,(k.x)
=d, " +d,e ™ for x=x;. So AgyKk)[d;d,]'=[d; d,]', and hence d;d,]*
=Ag1(K)A 1 AK)[Cy c,lt. Thus,A(K)=Ag (k) A1 «K), proving Eq.(2.17 whenN=1. ForN=2
the result follows by induction.

For later use we note that whéd=1, from Egs.(2.15 and(2.17) we obtain

1 1-Ryy(k)LiAk)
TR ToxKT1dK)

(2.18
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Now we return to Eq(2.1) and discuss some consequences of Ejj47) and(2.18. The first
result concerns resonant energies. These are energies at which the potential is perfectly transpar-
ent; in other words, energié$=0 where|T(k;)|=1. Because of Eq2.5), T(—k) = T(k) for real
k, and hence it is sufficient to consider the resonant frequencies onlky=@. Typically, if V(x)
is a square-well potential, the existence of such resonant energies is well kno9of Ref. 8.
There are also some general existence rescitscerning resonances for potentials that are sym-
metric with respect to the midpoint of the potential barrier. The resonant energies play an impor-
tant role in tunneling spectroscopyHere we consider a related but somewnhat different problem.
We consider the one-parameter family of potentials

Ve(X)=Vo X+ &)+ Vi Ax—§), (2.19

where £ >0 is a real parameter. In other words, we take a poten{al) consisting of two
fragmentsV, 4(x) andV; o(x) and vary the distance between them by changinghe goal is to
adjust the distance between the fragments so that the transmission coefficient has magnitude 1. Let
T¢(k) denote the transmission coefficient #g(x), and fix anyk=k,=0. Then we ask: are there
any values of for which |T.(k,)|=1? The answer wheky>0 is contained in the next theorem.
The analysis foky=0 will be given at the end of this section.

Theorem 2.2: Consider the potentiaV/(x) defined in Eq.(2.19 with the corresponding
transmission coefficienk,(k). For any fixedk,>0, there are three possibilitie$) | T:(ko)| =1 for
all £>0, (i) there is no¢ >0 for which |T (k)| =1, (iii) the valuest >0 for which|T (k)| =1
form an infinite sequence tending tox.

Proof: Before starting the proof we remark that cdgeoccurs when both of the fragments
have a common resonant energy, that is wiBgu(ko)|=|T1 AKo)|=1; case(ii) occurs when
| To1(ko)| #| Ty Ako)|; caseliii) occurs when Ty 1(Ko)|=|T1 oko)|#1. For example, ifV(x) is
symmetric abouk=x; and hencé&/, ;(x; —X) =V; i(X; +X), then we are either in casg or case
(iii); the same is true i¥/; Ax) is a translate oW 4(X).

The reflection coefficients from the right and left associated with the potelg(x+ &) and
V1 x—§) are given byR, (k)e?*¢ andL, (k)e?*¢, respectively. The transmission coefficients
of the individual fragments are not affected by the shiftd Thus, by Eq.(2.18), |T(ko)|=1 if
and only if

| To1(Ko) || T1AKo)| = 1= Rg 1(Ko) L 1 A ko) €*¥04]. (2.20

Clearly, if Ry (ko) =L1oko)=0, then, by Eq.(2.6), |To1(ko)|=|T1Ako)|=1, and Eq.(2.20
holds independently of, which is casgi). If Ry (ko) =0 butL; (ko) #0 (or vice versy then
|To1(ko)| =1 and| Ty Ako)|<1 (or vice versa Then Eq.(2.20 does not hold for ang. This is a
special case of casgi). Now suppose thaR; (ko) andL; (ko) are both nonzero. Note the
inequality

1-ab=(1-a®»)Y41-b%»¥2 a,bel[0,1],

with the equality holding if and only ifa=b. Using this inequality witha=|Rg (k)| and
b=|L1 «ko)|, we see that Eq(2.20 holds if and only if| Ry (ko) |=|L1 Ako)| and

Ro.1(Ko)L1 A ko) €™ 0¢=|Rg 1(ko)|[L 1A ko).

Hence, if|Rg 1(ko)|#|L1.Ako)|, then we are in cas@i). If |Ry1(Ko)|=|L1oko)|, then we set
Ro 1(Ko)L 1 Ako) = |Ro a(ko)||L1 o ko) |€'#10,

and we see that the valuésare given by 4,é+ ¢o(ky)=27n, wheren is any integer large

enough to ensuré >0. Henceé,= 7n/(2ky) — ¢(ky)/(4ky) is the desired sequence in cdge). B
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Next we give some results concerning the nature of the goirfd. Let f,;; ,(k,x) and
fr.;i+1(k,x) denote the Jost solutions from the left and from the right, respectively, for the
potentialsV; ;. 1(x). Since the potentialg; ;. ,(x) have compact support fgpr=1,... N—1, using
Proposition 2.1 we can conclude thgt; , 1(x) is generic if and only iﬁl’;j“l(k,x]-) # 0 orif and
only if fr’;j'jﬂ(k,xﬁl) # 0. Equivalently,V; ;, 1(x) is exceptional if and only iﬁ(;j,jﬂ(k,xj)
= 0 or if and only iffr’;j,jﬂ(k,xjﬂ) = 0. This characterization also applies to the fragments
Vo.1(X) andVy n+1(X) if we usef|.1(k,Xo) andfy.y i 1(K,Xn+1), respectively.

Theorem 2.3: Consider a potentidV(x) given in Eq.(2.14 with N=1. Then:

(i) = Ifall N+1 of the fragments are exceptional, thé(x) is exceptional.

(i) = If exactly one fragment is generic, th&f(x) is generic.

Proof: (i) We give two proofs of(i) illustrating different aspects of the problem. First let
N=1. Then, from Eq(2.18 we see that if botfT,,(0) and T, 50) are nonzero, then the trans-
mission coefficienfT (k) corresponding td/(x) cannot vanish ak=0. Using induction, it then
follows from Eq.(2.18 that if none of the transmission coefficiefts; , 1 (k) vanish atkk=0, then
T(k) cannot vanish ak=0. Hence(i) is proved. Alternatively, one can argue by using the
zero-energy Jost solutions. Lkt; ;; denote the transfer matrix such that

l:b(o! Xj +1)

:Mj,j+1 ¢,(0,Xj+1) y le,...,N_l,

[‘1[/(01 X])
(0, X))

for any zero-energy solution of ER.1). Notice that
fij5+200,X10) =1, fj;41(0,%j41)=0.

Hence, ifV; ;.1(x) is exceptional, thefl 0]! is an eigenvector OM; ;1 corresponding to the
eigenvaluef,.; i 1(0, xj); if Vj;.1(x) is generic, therfl 0]' is not an eigenvector oM, 41,
since in that casé/.; ;,,(0,x;)#0 andf/,;;.4(0, x;+1)=0. Furthermore, we havé (0, xy)
=f1.nn+1(0, Xy) for xe[xy,+%) and hencd| (0, xy) = 0 wheneveV, y1(X) is exceptional.
Since all fragments are assumed exceptional, and Hgn&' is a common eigenvector of all
matricesM ; , ,, it follows that

1

=C 0 ,

wherec=TI}\_1f,., 1+ 1(0,%,). Now notice thatf,(0, x) satisfiesf;(0,x) = Vg 1(x)f,(0, x) with
the boundary condition(0, x;) =c andf| (0, x;) = 0; sinceV, 4(x) is exceptionalf,(0, x) must
be a constant multiple df, (0, x) in the interval(—«, x;]. HenceV(x) is exceptional.
(i) WhenN=1 and exactly one of the two fragments is generic, then the assertion immedi-
ately follows from Eq.(2.18. Indeed, from Eqs(2.195 and(2.17 we have

(0, xn)
1,2"'MN1,N[ 0 N

[fl(o! Xl)
f(0,%)

1 1-Lou(=KL(k)
Tk Tou(—K)T(k)

and hence ifT(0)#0 and T, 4(0)#0, we must havel; ,0)#0. Consequently, if botl/(x) and

Vo .1(X) are exceptionaly; ,(x) has to be exceptional. A similar argument shows that(d)+0
and T, ,0)#0, we must haveT,,(0)#0. When N=2, assume that the generic fragment is
Vi,.ig+1(X). Multiply Eq. (2.17) by T; ; +1(k) so that

Tigior 1A =Ag (k) [Ty jo+2(KA o+ 1K) ] Ay a(K). (2.2

J. Math. Phys., Vol. 37, No. 12, December 1996
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Now letk—0 in Eq.(2.21). Since in the generic case, lim, T(k)/k=ic for some real, nonzero
constant, (p. 303 of Ref. 3, we haveT; ; .1(0)/T;_ ; +1(0) = —1.Also,R(0)=L(0)=—11n
the generic case. Thus on the right-hand side of(EQ1 we get

1

. _J---AN,NHw).

1
Iiim0 [Tig.igr1(KA(K)]=A01(0)A; A0)- - { B

Since det\; ;,,(k) =1, the matrices\; ; . ,(0) are invertible and hence it follows that the matrix
product in Eq.(2.21) is nonzero ak—0. This implies that limp_ o[kA (k)] #0 and hencé/(x)

must be generic. As i), one could also use the transfer matrices to give an alternate proof of
part (ii). |

Theorem 2.4: Any nontrivial potential, generic or exceptional, can be fragmented into at least
two generic pieces. There are infinitely many different ways of fragmenting a nontrivial potential
into generic pieces.

Proof: If suffices to show that if a given portion contains an exceptional piece that is not
identically zero, then that piece can further be partitioned into infinitely many generic pieces.
Suppose thaV; ;. 1(x) is exceptional and not identically zero. Then there is a subinterval of
(Xj, Xj+1) on whichf/(0, x) # 0. Choosing any point in this subinterval to partitign, ., ;(x)
yields two fragments that are both generic.

An alternate proof can be given as follows. lfe} ;. ;1(k,x) be the corresponding Jost solu-
tion from the left for the potentiaV; ;,,(x). From Eq.(2.9 we have

Xj+1
dx Vjj+1(X)f;j,+1(0,X)=0. (2.22
X

Then for anyze R, consider the fragmentation &f ;. 1(x) given by
Vij+1(X)=0(Z=X)V j+1(X) + O8(X=2)Vj j 1(X), (2.23

where §(x) is the Heaviside function, i.ef(x)=1 if x>0 and 6(x) =0 if x<0. The fragments
given in Eg.(2.23 have to be generic for an infinite number of valuss(x;,x;.,), because
V;,i+1(X) is nontrivial and so the integral obtained by replacing the lower lim{Ri22) by z has
to be nonzero for somg and hence, by continuity, for infinitely marzy |

One can also consider fragmentations that contain exceptional pieces. From Theorem 2.3 we
already know that a generic potential cannot be divided into two exceptional fragments. A generic
potential can be divided into one generic and one exceptional piece if and only if there is a point
X, Where eitherf{ (0, x;) = 0 or f/(0,%) = 0. In the first case, the piece to the rightxqfis
exceptional while the piece to the left ®f is generic. In the second case, the types of the pieces
are reversed. We may or may not be able to fragment a nontrivial exceptional potential into two
nontrivial exceptional pieces. For example, the square-well potential supported:ond be-
comes exceptional at the depthg?7?/a? with j=1, 2, 3,..., and hence the square-well potential
given by

Vix) -2, xe(0,1),
(x)= 0, elsewhere,

cannot be fragmented into two nontrivial exceptional pieces. A nontrivial exceptional potential can
be cut into two nontrivial exceptional pieces if and only if there is a paintvhere f/ (0, x;)

= 0. If we have an exceptional potential we can choose each zd{¢@fx) as a separation point.

J. Math. Phys., Vol. 37, No. 12, December 1996



Aktosun, Klaus, and van der Mee: Factorization of scattering matrix 5905

This will give the partition into the largest possible number of exceptional pieces, and that number
may be finite or infinite. Example 3.1 demonstrates that an exceptional potential can be frag-
mented into an infinite number of exceptional pieced/(X) is generic, then choosing the zeros
of f/ (0, x) [respectivelyf, (0, x)] as separation points, we obtain a partition where all pieces are
exceptional except one, nameW 1(x) [respectivelyVy n+1(X)].

We note that if more than one fragment \6{x) is generic, ther/(x) may be generic or
exceptional. The following example illustrates this point.

Example 2.5 Assume

_ 4aV2x — Qe V2%
Vo(X)= (1re™) 0(=x), ViAx)= (1te 92 ().
Both V( 4(x) andV, A(x) are generic, and in fact we have
k(k+i/v2) -1

To(K)=T1 k)= e s Roi(K)=Ly k)= TR

Note that corresponding td(x) =V, 4(X) + V; Ax) we have

k+i/v2
T(k)=———, R(k)=0,
k—ilv2

which is the exceptional case.
On the other hand, in terms ofx) andv(x) given by

U(x)=8[4(3+2v2)e">— 64e?*+8e2HV2X— g2+ 2% 4 43— 2v7)e# V)],
v(X)=8+8e%~(3+2v2)e"*~(3-2v2)e?+ 22X,
let us define

( ) —V2x

u(x e
Vo(x)= v(x)2 0(—x), ViAx)= (1te a2 6(x),

both of which are generic with the corresponding transmission coefficients

_ BOK(k+i)(v2k+i) - 25k(V2k+1)
 BOVaK3+70k2+13v2k+31 T P 25/3K2+15K+4v2

To,u(k)

The sumV(x) =V, 1(X) + V1 (X) is a generic potential with the scattering coefficients given by

fpgo 2Ky 1
(k)= 2k2+1 ( )_2k2+1'

Finally, we analyzeT,(0) corresponding to the potenti#.(x) given in Eq.(2.19, as the
analysis ofT,(k) for k=0 was omitted from Theorem 2.2. In order to hd\T% 0)]=1, it is
necessary thal ,(x) is exceptional, and hence we first analyze the conditions for wij¢R) is
exceptional. Lef,(k,x) andF,(k,x) denote the Jost solutions from the left and from the right,
respectively, for the potentiaV.(x). Let us also usd(k,x) and f (k,x) to denote the Jost
solutions from the left and from the right, respectively, for the poteM{a). Note thatV.(x) =0
for xe (x;— &,x,+ &), and hence we have
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( f{ (0, X1) , , (™ dt
F(0, x+8)|1-28 22 28f/(0,x)? | rroa|s X=Xa—é,
F (0 X):< f|(01Xl) X+ ¢& fl O,t)
e (X=X = E)F{ (0, x)+1(0,X1), xe[x3—& X +£],
L F1(0,x=§), x=x1+§,
(2.29
((f.(0,x+&), XsxX;—§,
(X=X + T (0,x) +1.(0,%x1), xe[x;—§ x.+£&],
Fr(0.9=1 HOX) (e dt
| f (0, x—=§)|1+2¢& m—2§fr(0, X1) J;(l W , X=Xt &
(2.295

From EQs.(2.24 and (2.25 we see thatV,(x) is exceptional if and only if the ratio
F.(0, x)/F,(0, x) is independent ok; since F,(0, x) and F,(0,x) are linear functions in the
interval x e [X; — §,X,+ €], we can conclude tha¥(x) is exceptional if and only if

Fr(ov X1+§) _ Fr(oa Xl_g)

Fi(0,x;+8)  Fi(0,x,—¢)"

from which we obtain

[0, x); (0, x9)]  dr—d,
C21{(0,x)f(0,xy)  2dcdy’

(2.2

where[ f;g] = fg’ — f’'g denotes the Wronskian and we have defined

_fII(O, X1) _f;(oa X1)
TR0, X)) T (0, xp)°

The cases in which, (0, x;)=0 andf (0, x;) =0 are included by setting,=<« andd,=«, re-

spectively.

(@ If d;#0 andd,#0, then there is exactly one value &fiven by Eq.(2.26 for which V(x)
is exceptional provided the right-hand side of ER.26 is positive. OtherwiseV(x) is
generic.

(b) If dj=d,=0,i.e., iff/ (0, x;) = f;(0,x4) = 0, then both fragments and hence &) are
exceptional. ThusY(x) is exceptional for al = 0.

(¢) If d;#0 andd,=0, thenV,(x) is exceptional and/, (x) is generic. ThusT,,(0)#0,
T, 0)=0, R, (0)=—1, and|Lo,1(0)|<1, and Eq.(2.18 shows thafl; (0)=0 and hence we
are in the generic case for a@l= 0. This is also in agreement with Theorem Zii3.

(d) If d;=0 andd,#0, then the analysis is similar to ca@®; thusV(x) is generic for allé=0.

(e) If d;#0 andd, =, thenf/(0, x;) # 0 andf,(0, x;) =0; both fragments are generic. From
Eqg. (2.26 we see thatv,(x) is exceptional only wher§=1/(2d,) provided thatd,>0.
OtherwiseV(x) is generic, and in particula¥(x) is generic.

(f) If dj== andd,#0, the analysis is similar to cage). Then, from Eq.(2.26 we see that
V(x) is exceptional only wheg=—1/(2d,) provided thatd, <0. OtherwiseV(x) is ge-
neric, and in particula¥(x) is generic.

(9 If d;=0andd, ==, from (2.2 in the limiting case it is seen that rexists for whichV ()
is exceptional. Similarly, id;=c andd, =0, V(x) is always generic.

(h) If d;=d,=«, we havef,(0, x;)=f,(0, x;) =0 and hencd,(0, x) andf,(0, x) are linearly

dependent. Thus/(x) is exceptional. However, as seen from E2.26), V() is generic
for every &> 0. In other wordsT, (0)#0 for ¢£=0 but T/0)=0 for all £ > 0.
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Once all the values are obtained in cas@s, (b), (e), and(f) for which V. is exceptional,
one needs to determine which of thésealues correspond d6§ (0)|=1. For example, in cag®),
we can proceed as follows. From E@.18 we have

1 1-Roi(0)L140)
Te0)  Tou(0)T10)

and henceT , (0) is independent of. Let y, ; be the constant defined as in Eg.10 giving the
ratio of the zero-energy Jost solutions for the poteitigd(x), and lety, , be defined similarly for
the potentialV, (x). As in Eq.(2.13, we have

(2.27

2 2

1-v51 v 1
R =——"-, L == . 2.2
0x(0= 752, LdO=T (229
Using EQ.(2.28 in Eq. (2.27) we obtain
2901712
TA0)= ———,
« 1+ 7’(2),171,2

from which we see thaf; (0)|=1 if and only if yg 11 ,=*+1.

Ill. WAVE PROPAGATION IN A NONHOMOGENEOUS MEDIUM

The fragmentation of an exceptional potential into two generic pieces has important conse-
guences in direct and inverse scattering problems associated with wave propagation, where the
governing equations are related to the Sdinger equation or its variants. One such differential
equation is given by

d2u(k,x) k2
dx2 + C(X)2 lﬂ(k,X):Q(X)l//(k,X), (31)

or by its time domain equivalent

Pt 1 e,
o o~ (e, (32

Equation(3.1) describes the quantum mechanical behavior of a particle when the potential also
depends on its energy. Equatiof&1) and (3.2) describe the propagation of waves in a one-
dimensional nonhomogeneous, nonabsorptive medium where the wavespégll énd the re-

storing force density iQ(x). These equations can be analyzed by transforming them into -Schro
dinger equations by using local Liouville transformatidhdn the special(but still significany
caseQ(x) =0, the potential in the transformed Sctitmger equation is always exceptional. One
important outcome of Theorem 2.4 is that it is possible to choose the local Liouville transforma-
tions in such a way that all the resulting fragments of the transformed @olger equations are

either generic or pertain to a potential vanishing identically. This leads to considerable simplifi-
cations in the smalk analysis of Eqs(3.1) and(3.2). For example, consider E(.25 of Ref. 11

where the Jost solutions and their space derivatives are expressed as a product of matrices, each of
which is expressed in terms of the quantities related to one fragment only. The matrices in Eq.
(3.29 of Ref. 11 contain the factar;_,;(k)/k, wheret;_,;(k) is the transmission coefficient
corresponding to thgth fragment; that factor remains continuouslkas0 if the jth piece is

generic and it is singular if thgth piece is exceptional. Hence, by fragmenting the exceptional
pieces into generic ones, it becomes obvious that the Jost solutions and their space derivatives are
continuous ak=0.
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Let us write Eq.(3.2) as
(K, X)FKPH(X) 20k, x) = Q(x) ¢h(k,x), xeR. (3.3

Our assumptions o@(x) andH(x) are as follows:

(H1) H(x) is strictly positive, piecewise continuous with possible discontinuitield (r) or
H'(x) occurring at theN pointsx;<--- <Xy .

(H2) H(x) —H .. asx— =, whereH_. are positive constants.

(H3) H—H. e LY(R™), whereR™=(—%,0) andR" =(0,+).

(H4) H’ is absolutely continuous onx{,X,.;) and 2H"H—3(H")2eL}(x,,x,.1) for
n=0,... N, wherex,=—o andXy,,=+.

(H5) Q(x) is real valued and of the for@(x)=W(x)+=.;c;8(x—X;), whereWe L1(R)
and & (x) is the Dirac delta function.

Conditions(H1)—(H5), without the delta-function terms ifH5), were introduced in Ref. 11,
where the inverse scattering problem for E8.3), namely the recovery of the coefficieHt(x)
from an appropriate set of scattering data, was studied. HypotthéBisllows for abrupt changes
in the material properties of the medium in which the wave propagatedi3pwe have now
included delta functions because they are often useful in working out explicitly solvable examples.
Moreover, it is of interest to see how some of the results are affected by delta functions superim-
posed on discontinuities iH(x) andH’(x). The delta-function potential(x) = a8(x—a) cor-
responds to

—ial2 —ial2

— — 2ika — —2ika
T0=iF7az: RO Har® M= ez (3.4

from which we see that it is a generic potential.
As for Eqg.(2.1), Eq. (3.3 also has two linearly independent scattering solutions, namely the
Jost solutiond | (k,x) andf,(k,x) satisfying the boundary conditions

eikH+x+0(1), X—s + 00,
fitkx)=4 1 iKH_x | L(k)

—_— —ikH_x S

T,(k) € T,(k) € +0(1), X :

—ikH x _R(k) ikH . x "

f(kx)=1{ T,(K) © g & o), Xt

eiikH‘x-i-O(l), X— — 00,

Here, T,(k) andT,(k) are the transmission coefficients from the left and from the right, respec-
tively, andL (k) andR(k) are the reflection coefficients from the left and from the right, respec-
tively. Associated with Eq(3.3) is the scattering matrix

(3.5

Ti(k) R(k)}
Lk) Tk

The matrixS(k) is not unitary unlessi . =H _; we haveS(—k) = S(k) for realk, and
H . T(k)=H_T,(k), Imk=0,
T(—KT(K)+[R(K)[*=T (T (—k) +|L(k)[*=1, keR,

R(K)T,(—K) +L(=K)T,(k)=0, keR.
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In the study of the scattering matr&k) given in Eq.(3.5), one again has to distinguish
between the generic case and the exceptional case. As in Sec. Il, in the generic case the transmis-
sion coefficients vanish linearly &s—0, whereas in the exceptional case we hau®)+#0 and
T,(0)#0. Furthermore, in the generic caR€0)=L(0)=—1, while in the exceptional ca$(0)|
=|L(0)|<1. The coefficientH(x) in Eq. (3.3) has no influence on the leading behavior of the
transmission coefficients &s—0, and hence the generic and exceptional cases are determined by
the potentialQ(x) only. All the characterizations of the two cases for the Sdimger equation
hold verbatim also for E¢3.3). If Q(x)=0 in Eqg.(3.3), we have the exceptional caseQf{Xx) is
nontrivial andQ(x) =0 in Eq.(3.3), then we have the generic case. All the differences between the
two cases a&—0 outlined in Sec. Il also exist13in the wave propagation problem associated
with Eq. (3.3).

Let us generalize the factorization formul2a.17) to the scattering problem for E¢3.3).

Under the Liouville transformation

x 1
y=y0= [ ds Hs), utkn- i (3.6
Eq. (3.3 is transformed into
d?¢(k,
%Jrk%(k,yﬁwy)sb(k,y), 3.7

where

H'(x) 3H'(x?* QX

Since, by(H1), H(x) andH'(x) are allowed to have jump discontinuitiesxatfor j=1,... N, the
function V(y) is undefined aty;=y(x;) for j=1,...N. In agreement with Eq(3.6), we set
Yo=Y (Xg)=—02 andyy;1=Y(Xn+1)= 1. ThenV(y) is well defined in each of the intervals
(Yj,Yj+1) for j=0,... N, and (H4) ensures thaV e L1 on these intervals. In view aH5), the
solutions of Eq.(3.3) satisfy the conditions

Pk xn=0)=h(k,x, +0), ¢ (K,Xy+0) =4’ (KX, —0)=Crip(K,Xp). 3.9

As a result, by using Eq$3.6) and (3.9), we deduce that the solutions of E®.7) satisfy the
self-adjoint boundary conditions

B(K,yn—0)=\1q, ¢(k,y,+0), (3.10
do(k,y,—0 1 de(k,y,+0
%=vn¢(k,yn+0)+w%, (3.19)

where
_H(Xn_o)
T Hx, +0)’
" 1 H'(x,—0) H’'(x,+0) 2|, (3.12

T2 H(X—O)H(x, 1 0) L HX,—0)  H(X,+0)
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The scattering matrix corresponding to E®.7) equipped with these boundary conditions is
known as the “reduced scattering matrX’and is given by

(k) p(k)

(k)= /(K (k)

wherer (k) is the reduced transmission coefficient gntk) and/ (k) are the reduced reflection
coefficients from the right and from the left, respectively. The reduced scattering matrix is unitary
and its entries are related to the scattering mag(ix) given in Eq.(3.5) as follows!

(k)= \/% Ti(k)eA= \/:—; T, (k)e'kA, (3.13

p(K)=R(K)EHA, 7 (k) =L(K)eZkA-,

where
Aizif7 ds[H.—H(s)], A=A, +A_.
0

The pointsy; generate a partition of the real line, and so we define

o V(y), yE(ijijrl),
VJVJ'“(y)_[O, elsewhere.

We let 7 ;. 1(K), pj j+1(K), and/ ;. 1(k) denote the transmission coefficient and the reflection
coefficients from the right and from the left, respectively, for the poteMjgl, 1(y), and, as in
Eqg. (2.15, we define

1 pk 1 _pii+1k)
(k) (k) jj+1(K) jj+1(K)

MO=| gy q [ dato=| (3.14
(k) 7(=k) Tj,j+1(k) Tj,j+1(_k)

By suppressing th&-dependence of the transition matrices in E314), we have the generali-
zation of Eq.(2.17) in the case of Eq(3.3) given by

A=Ag1F1A1FoA s 5 FNAN NG 1 (3.19

whereF; for j=1,... N are the matrices defined by

s o (ﬁ+ieziky
" 2ik " 2ik
Fi(k)= ) V :
_ _7n | Q2iky, __n
(’3“ 2ik)e ’ " Jik
with
1 \/H(xn—O) \/H(x+0) 1 \/H(xn—O) \/H(xn+0)
=3 VHax,70) " VAG-0]" P72 VAx+0) VHX,-0)]

and where the constantg are given in Eq(3.12.
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The matricesk; account for the internal boundary conditiof&10 and (3.11). In order to

justify Eq. (3.19, again consider the cadé=1 first. Using notations similar to those used below
Eq. (2.17, we let ¢ (k,y) be a solution of Eq(3.7) such thatg(k,y)=c,e®+c,e ™ asy—
+, and we definep, ,(k,y) and ¢ 4(K,y) as solutions of Eq3.7) for the fragment¥/, ,(y) and
ViAy) such that ¢, J(k,y)=¢(ky) for y>y, and ¢ (k,y)=(k,y) for y<y;. Then,
B AK,y)=d"+de™™ for y<y; and ¢q (K, y) =T,V +T,e ' for y>y,, with suitable
constantsl,, d,, ¢;, andc,. Now the coefficientsl, andd, are related to the coefficienés and
C, through the boundary conditioné3.10 and (3.11) by setting ¢(k,y;—0)= ¢ 1(K,y1),
¢’_(l?ay1 = 0) = ¢o(ky1), and d(ky;+0)= 1 Aky1), ¢'(Kys + 0) = ¢14K,y1). This-
yields

eik)’1 efikyl

ikeky1  —jke k1

El} eikyl efiKY1 al

= 1 : : ~

C2 v, —||ike™ —ike-'thdJ’
Vo

from which we obtain§; C,]'= Fl[’(\ll'1 Ez]t. This proves Eq(3.15 whenN=1, and the general

case follows by induction. Note th&t, can be written as a product of three matrices, namely

Fo=AXn—0, Xp) A[Xn , Xn]A(Xn Xy 1+ 0), (3.19
where
“+ 3k But g e "
A(Xy—0, Xp) = - - ,
(B“__ 2ink)92'kyn "3k
1= 2C|T< ;_rll i
AlXq . Xn] S ey ¢, |’
T e“n 1+ 2Tk
s T i P —2ik
ay + o '8“+2ike Yn
A(Xpy,X,+0) N o ,
(B: 2ink)62'ky" = 3k
with
1 1 1 1
an =5 \/WJF—W Bn=%5 m——m

_ +1  H'(x,50)
Vv, = — .
" 2JH(x,70) H(X,+0)

We remark that the transition matrix(x,— 0, x,,) is due to the hard scatterer caused by a jump in
H(x) from H(x,—0) to 1 and a jump irH'(x) from H'(x,—0) to 0. The transition matrix
A[X,,X,] is due to the hard scatteref,6(x—x,), as seen from Eq.3.4). The transition matrix
A(X,,X,+0) is due to the hard scatterer caused by a jumpl{x) from 1 toH(x,+0) and a
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jump inH’(x) from 0 toH’(x,+0). The transition matriced,, . 1(k) in Eq. (3.1 are due to
the soft scatterer¥, ,.1(y). In the special case wheti(x) =1 andW(x) =0 in (H5), Eq. (3.15
takes the form

A=A[Xy,X1] - AlXn,Xn] (3.17)

which describes scattering by a superposition of delta functions located .at,xy .

We mention one application of the factorization formy&l5 in the inverse scattering
problem for Eq.(3.3) concerning the larg&-asymptotics ofn(k), p(k), and/(k); we refer the
reader to Refs. 11-13 for details: it is known that from the ldeggsymptotics of a reduced
reflection coefficient one can recover the ratipsand v, (cf. Ref. 13, where the casg =0 was
studied. It is seen from Eq(3.12) that the coefficients, affect the largde asymptotics through
the constants,, and thus contribute in the same manner as the jumps in the derivatiéx)f
We also see that,, can be chosen suitably to cancel the contribution from a jumig 'ifx).

In the recovery oH(x) in Eqg.(3.3), the distinction between the exceptional and generic cases
is important. For example, in the absence of bound states, given the scattering data consisting of
a reduced reflection coefficient ar@(x), one obtains a one-parameter family l8{x) in the
exceptional case and a unigHéx) in the generic casE 13 Therefore, in the exceptional case one
must include eitheH , or H_ in the scattering data for the unique recovenHgk); however, in
the generic casd{, or H_ cannot be specified in the scattering data and instead these constants
are themselves recovered during the inversion procedure.

Finally in this section we give an example of an exceptional potential that can be fragmented
into an infinite number of only exceptional pieces.

Example 3.11n Eqg. (3.3 chooseQ(x)=0 and

3

sin x
(— ,  X#0,

H(x)= (3.18

2, x=0.

Note thatH(x) is strictly positive and boundedi .=1, and

3 sirfx _
HY(x)= T[xcosx—smx], x#0,
0, x=0,
3sinx . .
H 0 ={ % [x2(3 co$x—1)—6x cosx sinx+4 sirx], x#0,

0, x=0,

and henceéd, H', andH” are all continuous oR. SinceQ(x) =0, we are in the exceptional case,
and hence the transmission coefficiemfék) and T,(k) cannot vanish ak=0. Note thatH(nr)
=1,H'(n7)=0, andH"(n#) =0 for any integen. Using Eq.(3.6) let us defingy,,=y(n). Now
consider the potential(y) obtained by using Eq3.18 andQ(x) =0 in Eq.(3.8). That potential
must be exceptional, and in fact from E®.13 it can be seen that the transmission coefficient
7 (K) corresponding to the potenti®g(y) cannot vanish ak=0. Now let us fragmen¥(y) as
V(Y)=Z27-_xVhn+1(y), where we have defined

_[V(Y), ye(YnYn+1)
Vinea(y) = 0, elsewhere. (3.19
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The following argument shows that ea¢h ,;(y) is exceptional. Sinc®(x)=0 in Eq.(3.3), the
corresponding zero-energy Jost solution is givenfl{®, x)=1 for xeR. Using Eq.(5.1) of
Ref. 11, we see that the zero-energy Jost solution from the left ofEq.is given by

91(0,y)=0,(0y(x))= VH(x).

Hence, we obtain

, dgi(0y) dxdyH(x) H'(x)
g/ (0y)= Idy :a/ dx :2H(x)3’2' (3.20

SinceH'(nw) =0, from Eq.(3.20 we see thag, (0,y,) = 0, and hence we can chooggas the
separation points to fragmeNft(y) into only exceptional pieces, which are given by E8.19.

IV. WAVE PROPAGATION IN A NONCONSERVATIVE MEDIUM

The wave propagation in a one-dimensional nonconservative medium is described, in the
frequency domain, by the generalized Schinger equation

P (K, X)+ K2k, x) =[ikP(x)+ Q(x)]¢(k,x), xeR, 4.2

wherek is the wave numbelR(x) represents the joint effect of energy absorption and generation,
andQ(x) stands for the restoring force density. In the time domain(Ed) corresponds to

Ju  du au

w2 P(x) EZQ(X)U, txeR,

where the wavespeed is equal to one. We will assume@&} is real valued and belongs to
L1(R), and thatP(x) is real valued and belongs t0(R). We have energy absorption when
P(x)<0 and energy generation wheé?(x)=0; however, our results in this section are valid
without assuming thaP(x) is positive or negative. .

The scattering solutions of E¢4.1) are those behaving likel* or e~ ™** asx— o, and such
solutions occur whe&?®>0. Among the scattering solutions are the Jost solution from the left
fi(k,x) and the Jost solution from the right(k,x) satisfying the boundary conditiorf2.2) and
(2.3, respectively. The scattering mati$(k) associated with Eq4.1) has the form2.4). When
P(x) is purely imaginary, the inverse scattering problem for @dl) was analyzed by Jaulent and
Jean'*Yin this case the scattering matr§k) is unitary and hence the reflection coefficients
cannot exceed one in absolute value. An incomplete study of the same problenP(®)en real
was outlined in Ref. 18. In that case the differential equatébt) is no longer self-adjoint and the
scattering matrixS(k) is no longer unitary. Consequently, the analysis of the direct and inverse
scattering problems for re®(x) is much more complicated than for imagindyx).

We are interested in the analog of the factorization form@47. As in Sec. Il, let us
partition the real axifR into Xp<X; <Xy < -+ <XNy<Xp1 With Xg=—0 andxy, ;= +. Consider
the analog of Eq(4.1) given by

ikx

' (k,X) + K2k, ) =[1KPj 1 1(%) + Q) j+ 1(¥) J¢h(K,x), (4.2)
where we have defined the fragments

P(X),  Xe(Xj,Xj+1),

Pjj+1(X)= 0, elsewhere, (4.3
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Q(X), XE(Xj,Xj+1),

QJ,J+1(X):[O, elsewhere. 49

Let the scattering matrix associated with E4.2) be given by

tiva(k) 1y iea(k)
1K)tk |

Proceeding as in the previous sections or as in Ref. 7 or Ref. 13 we obtain

A(K)=Ao(K) A A(K) - Ay nea(K), (4.5

where we have defined the transition matrices

S j+1(K)=

1 R(k)
. TH STk 46
(k)= L(k) T(k)?>-L(k)R(k) |’ o
T(k) T(k)
1 PR
tj+1(k) tji+1(k)
N 4,
pivalk) lj,j+1(k) tj,j+1(k)2_IJ,J+1(k)ri,i+1(k) 7
tjj+1(k) .i+2(k)

As in the previous sections, the transition matrix given in @cg) provides the link between the
asymptotics of the scattering solutions of E4.1) at + and those at-o> whene™*'** are chosen
as an asymptotic basis; the transition matrices in(Eq) have similar interpretations. Again, each
of the matrices in Eqg4.6) and(4.7) can be decomposed as in E.16). Note that th€2,2) entry

in Eq. (4.6) is analytic in the lower-half complex plar@™ and in general cannot be replaced by
1/T(—k); however, it is known thaf this entry is equal to 77{—k), where.7(k) is the trans-
mission coefficient associated with the differential equation obtained front4Et).by changing
the sign ofP(x).

Again one has to distinguish between the generic and exceptional cases in studying the
scattering and inverse scattering problems for @dL). As for Eq.(3.3), the potentialQ(x) alone
determines whether we have the generic case or the exceptional case. The difficulties arising in
proofs in the exceptional case outlined in the previous sections remain true also {dr F,cand
by choosing each fragment in the partitionit®y3) and (4.4) to be either generic or identically
zero we expect simplifications in the smialanalysis of the direct and inverse scattering problems
for Eq. (4.0).
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