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The number of bound states of the one-dimensional Slihger equation is
analyzed in terms of the number of bound states corresponding to “fragments” of
the potential. When the potential is integrable and has a finite first moment, the
sharp inequalities + p+ EJP:l stNsElpzl N; are proved, where is the num-

ber of fragmentsN is the total number of bound states, aNgis the number of
bound states for thg¢th fragment. Whermp=2 the question of whethel=N;

+N, or N=N;+N,—1 is investigated in detail. An illustrative example is also
provided. © 1998 American Institute of Physids$S0022-24888)03109-0

I. INTRODUCTION

Consider the one-dimensional Sctirmger equation
' (k,x) + K2k, ) = V(x) gk, x), (1.9)

where the potentiaV/ is real valued and belongs IIJ}(R), the class of measurable functions for
which % dx(1+|x|)|V(x)| is finite. The prime denotes the derivative with respect to the spatial
coordinatex. Let us partition the real axis EB=UJP:1 (Xj—1,%j), with x; _,<x; for j=1,...p.
Here we use the conventiog= — o andx,= +%. We obtain a fragmentation of the potential by
settingV(x)==P_,; Vj(x), where

V(X), Xe(Xj-1,Xj)

Vj(x)= (1.2

0, elsewhere.

In this paper we analyze the relationship between the number of bound stafeanof the
number of bound states of its fragments. In Sec. Il we prove a pair of sharp inequalities relating
these number§Theorem 2.}, we also study the cage=2 in more detail, and in Theorems 2.2
and 2.3 we present criteria that tell us wher-N;+N, or N=N;+N,—1. In Sec. lll we give
another proof of Theorem 2.1 by using a factorization formula for the scattering matrix and
exploiting its smallk asymptotics. We also briefly discuss what happens if we increase the sepa-
ration distance between two fragmeriftheorem 3.L In Sec. IV we give an example which
illustrates various aspects of our results.

The inequality(2.5) in Theorem 2.1 has been proved before by different methods and under
stronger assumptions on the potential. In Ref(215) was proved whemp=2 and the fragments
have compact support. In Refs. 2 and 3, some special caséxSfwere proved for parity
invariant, compactly supported fragments, but, as already mentioned in those references, the parity
invariance is not an essential restriction. The method used in Ref. 1 was based on the nodal
properties of the zero-energy solutions of the Sdirger equation but was fairly contrived, while
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the method used in Refs. 2 and 3 relied on a factorization fothiatathe scattering matrix and

the smallk behavior of the scattering coefficients. In the proofs of Theorems 2.1 and 2.2 we use
certain properties of the Jost solutions, especially the interlacing property of zeros, in a very
straightforward way. As a result, we are able to establish the connection with the factorization
method used in Sec. lll. Furthermore, no additional technical restrictions are imposed on the
potential beside¥ e L}(R).

At various places in this paper we need to distinguish between ““generic” and “exceptional”
potentials. Recall that a potential is called generic if the corresponding transmission coefficient
vanishes ak=0, and that a potential is called exceptional {0)+ 0. Equivalently, a potential is
generic(exceptional if for k=0 the two Jost solutions are linearly independetependent .

II. INEQUALITY FOR THE NUMBER OF BOUND STATES

In preparation of this section we first establish some notation and collect some results about
the Jost solutions and their nodal properties. L,gtk,x) andf,.;(k,x) denote the Jost solutions
from the left and right, respectively, for the fragment. Recall thatf“j(k,x)=e'kx[1+o(1)] as
X— + o0 andfr;j(k,x)=e"k"[1+o(1)] as x— —o. Furthermore, len; denote the number of
zeros off,,;(0x) lying in (—,x;), m; the number of zeros df.;(0,x) lying in (x;_1,+), and
N; the number of bound states of the fragmept SinceN; is equat® to the number of zeros of
eitherf,.;(0x) or f,.;(0x), we conclude that

B nj, if fr,](O,XJ)f;’J(O,X])BO and fr’](O,XJ)aﬁO 21
i~ nj+1, if frJ(O,X])f;J(O,X])SO and fr,J(O,XJ)?éO, ( ’ )
N = m;, if f|;j(0,xj_1)f|’;j(0,xj_1)$O and f|;j(O,Xj_1)7&o 29
i~ mj+1, if f|;j(0,Xj_1)f|/;j(O,Xj_1)20 and f|,;j(O,Xj_1)7EO. ()

Note that on ;,+ =) the functionf,;(0x) is equal tof/.;(0.x;) (x—x;)+ f;;(0x;) and that this
linear function has the roox=xj—fr;j(O,xj)/f,’;j(O,xj) which lies in [x;,+«) precisely if
fr.;j(0x)=0 or f;(0x;)f/.;(0x;)<O; in this case we havdlj=n;+1. On the other hand, if
fr.;(0x)=0 or f;(0x)f[.;(0x)>0, thenf,;(0x) has no zeros ifix;, +=), i.e., all its zeros
are in (—,x;); thusN;=n; . This proves2.1). We obtain(2.2) by applying a similar argument
to f;.;(0x). We will also need the Jost solutions for the potentaivhich we denote by, (k,x)
andf,(k,x), respectively. In the generic case when0 the following asymptotic relations hdft
asSX— + oo

fi(0x)=1+0(1), f/(0x)=o0(1/x), (2.3
f.(0x)=c,x+o(x), f/(0x)=c,+0(1), (2.9

with some constant, # 0.
Theorem 2.1: Suppose tha¥ e L1(R). Let N denote the number of bound states\bfThen

p p
1_p+2 NJ<N$2 NJ-, p=1,2,..., (2.5
j=1 =1

where both inequalities are sharp.

Proof: It suffices to provg2.5) for p=2 because the general case follows by induction. Let
u(x) denote the solution ofl.1) for k=0 satisfying the initial conditionsi(x;)=1 andu’(x,)
=0. Thenu(x) =f,.,(0x) onx=x; andu(x)="f,.1(0x) onx=<x,;. Henceu(x) hasN, zeros on
(—o0,X;1) andN, zeros on X,,+ ), i.e.,N;+ N, zeros in all. Hence, by the interlacing property
of zeros, f;(0x) has eitherN;+N, or N;+N,—1 zeros. This prove$2.5. To see that the
inequalities are sharp, note that a square-well potential of depth and widthw has exactlyN
bound states, whend is the positive integer satisfying\(— 1) m<wH=N. ChoosingV to be a
square-well potential of depth- 72 with support(0,1), we obtainN=1. Let us partition the
interval (0,1) into p nonempty subintervals and hence obtain a fragmentatiaf) each fragment
still contains exactly one bound state and hence the lower bout&Snbecomes equal thl. On
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the other hand, consider the square-well potential of deptt with support (Op), and partition
(O,p) into the p subintervals [—1,j) for j=1,..p. ThenN;=1, N=p, and hence the upper
bound in(2.5 becomes equal tdl. |

We remark that the short proof ¢2.5 given here was suggested by the referee. Inequality
(2.5 also follows from the next theorem that gives us, in case of two fragments, the precise
information on whetheN=N;+N, or N=N;+N,—1. Let

~ f12(0xy)  fr0(0Xg)
T 00 1O (29

Theorem 2.2: Assume thav is partitioned into two fragments. Then:

(@ If f/.1(0x1)#0, f.,(0x1)#0, and Z(x;)=0, thenN=N;+N,—1; if Z(x;)<O0, thenN
=N;+N,.
(b) If f{.1(0x;)=0 or f|.,(0x;)=0, thenN=N;+N,.

Proof: (a) In order to determin®&l we will count the zeros of,(0x) that lie in[x,,+ ). We
do this by using the interlacing property of the zerosf @0x) andf,(0x), noting thatf,(0x)
=f.2(0x) on[Xy,+) andf,(0x)="f.1(0x) on (—,x;]. We already know than, zeros of
f(0x) lie in (—%,x;), wheren, is related toN; by (2.1). Upon multiplying f;.,(0,x) and
fr.1(0x) by suitable constantsr and B8, we can achieve thatp.,(0x)=af.,(0x) and
@r:1(0Xx) = Bf,.1(0x) satisfy ¢.5(0x1)=¢;.1(0x;)=1>0. ThenZ(x,) in (2.6) becomes

Z(X1)=¢1:2(0X1) = @r:1(0.X1).

First suppose thatZ(x;)>0, which is equivalent to assumindVl ¢,,¢,](Xx1)>0, where
W[g,h](X)=g(x)h’'(x)—g’(x)h(x) denotes the Wronskian. We first consider the case when
¢1:2(0X) has at least one zero omx,(,+=). Suppose thaty.,(0x) has its zeros ag; for |
=1,...my, wherex;<z;<z;<:+-<zZp,. If ¢:2(0X1)>¢;.1(0X1)>0, theng,.,(0x) hasm, ze-
ros in (X,,+) because, by a Wronskian argument, there are no zeros;iz;§ and there is
exactly one zero in each of the intervals (z,), (22,23),...,(zm2, +). To see that there is a zero
in (zp,, +°), note that by(2.3) and (2.4), W[ ¢, ,¢;](x) = @Bc,>0. Hencea and B¢, have the
same sign. Moreover, >0, thengo|’;2(0,zm2)>0 and hencepr(o,zm2)<0. Similarly, if <0,
then (p|';2(0,2m2)<0 and hencepr(o,zm2)>0. Becausep,(0x) = B¢, x+0(X) asx— +x, it fol-
lows thate,(0,x) must have a zero inxg,+) and, by the interlacing property, this is the only
zero on this interval. Hence, usin@.1) and (2.2), we haven;=N;, m,=N,—1, andN=n;
+my,=N;+N,—1. The same result holds whep.,(0x) has no zeros onxg,+%«). Then
¢,(0x) has no zeros onxg,+) either and we haven,=0. If ¢;.5(0X;)>¢,.1(0X;)=0, then
the previous argument goes through with only a minor change in counting the zeros because now
¢,(0x) also has a zero at=x;. We haven;=N;—1, my,=N,—1, andN=n;+m,+1=N;
+Ny— 1. If ¢.,(0X1)=0>¢;.1(0X;), thene,(0x) hasm,+ 1 zeros on X, ,+ ) because now
there is also a zero irk(,z;). Thusn;=N;—1, m,=N,—1, andN=n;+m,+1=N;+N,— 1. If
0> ¢.2(0X1) > ¢;.1(0X1), thenn;=N;—1, my=N,, andN=N;+N,—1 becausep,(0x) has
no zeros in X;,24). All the possibilities withZ(x;) >0 have now been exhaustedZifx,) <0, we
can apply similar arguments and find thét&=N;+N,. Finally, if Z(x;) =0 becausep;.,(0x,)
=¢;.1(0Xx1)>0, thenn; =Ny, my=N,—1, andN=n;+m,=N;+N,—1. If Z(x;)=0 because
(,D|;2(O,X1)=<pr;1(0,xl)=0, then n]_: Nl_ 1, m2: N2_1, and N=n1+ m2+ 1:N1+ NZ_ 1. |f
Z(X1)=0 becausep.,(0,X;)=¢;.1(0X;)<0, thenn;=N;—1, my=N,, and N=n;+m,=N;
+N,—1. This concludes the proof of pad). The proof of(b) is similar, using(2.1), (2.2), and
the Wronskian. The details are omitted. |

Theorem 2.3: Assume thatV is partitioned into two fragments, and I&¥(x;) denote the
WronskianW[ f,.5(0,-);f.1(0,-)]1(x1). Then:
(i) SupposeN; and N, are either both even or both odd. W(x;)>0 (W(x;)<0), thenN
=N;+Ny (N=N;+N,—1).
(i) SupposeN; is even andN, is odd or vice versa. IiV(x;)>0 (W(x;)<0), thenN=N;
+Ny,—1 (N=N;+Ny).

Proof: The proof is a consequence of the following observatioW(k;)>0, then the con-
stantc, in (2.4) is positive and si is even, while ifW(x;) <0, thenc, is negative andN is oddll
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If W(x;)=0, then Theorem 2.3 gives no information as to which possibility is realized.
However, Theorem 2.2a) says that ifW(x;)=0 because€Z(x;) =0, thenN=N;+N,—1. The
only other possibility is thaW(x,) =0 becausd.,(0x;)=f.,(0x;) =0, in which caseN=N,
+N, by Theorem 2.2b).

lll. FURTHER OBSERVATIONS

In this section we analyze the result of Theorem 2.1 in conjunction with the scattering matri-
ces corresponding to the fragments of this potential. For simplicity let us consider the fragmenta-
tion of VasV=V;+V,, whereV; has support in{,x;] andV, has support ifix;,+). The
analysis for three or more fragments can be carried out by using inductios; L&, andS be
the scattering matrices corresponding to the potertialsV,, andV, respectively. The scattering
coefficients appear in the scattering matrix as follows:

_{T(k) R(K)

L(k) T(k) | @D

whereT is the transmission coefficient, ahcandR are the reflection coefficients from the left and
from the right, respectively. Similarlyl;, R;, andL; denote the corresponding entriesffor
j=1,2. Let us define the so-called transition matrix associated $vdh follows:

1 Rk 1 L(k*
T(k) T(k) T(k) T(k)*

Alk)= Lk 1 | |ww 1 | 2
T(k) T(k)* T(k) T(k)*

where the asterisk denotes complex conjugation. SimilarlyAlend A, be the transition ma-
trices corresponding t8; andS,, respectively. It is knowhthat

A(K)=A1(k)Az(k). (3.3
From the(1,1) entry of the matrix product i3.3) we get

1 1-Ry(kLa(k)
Tk Ti(KTyKk)

(3.9

LetR"=(0,+«). Forke R", let us define the phases(k), ¢,(k), and¢,(k) of the transmis-
sion coefficients as follows:

T(k)=T(k[e?®,  Ti(k)=Ty(k)[e' %1,  T,(k)=|T,(k)|e!?2¥, (3.5
where it is understood tha#, ¢,, and ¢, are continuous ifkke R and normalized such that
H(+20)=py(+20)=ghp(+)=0. (3.9
Similarly, let
1= Ry(K)Lo(k)=]1=Ry(k)L (k) |e' X, (3.7)
wherew is assumed continuous ke R* and to satisfyw(+ %) =0. From(3.4) we obtain
(k)= ¢1(K)+ po(k) —w(k), keR™. (3.9
From Levinson’s theoreh we have

dy

$(0+)= N;— 7}777 ho(0+)=

N,— %}’F, (3.9

d
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whereN, N, andN, denote the number of bound states corresponding to the potevitisls,
andV,, respectivelyd=1 if V is a generic potential and=0 if V is exceptional; in a similar
mannerd, andd, take values 1 or 0 depending on whethgrandV, are generic or exceptional.
Using (3.9 in (3.8) we obtain

1 1
N=Ni+Np+ 5 [d=di—dp] = — w(0+). (3.10

Now let us analyze further. Note thaR; andL, are continuous and nonzero and strictly less
than one in absolute value fére R* and that, ak— +, bothR; andL, vanish.

In the following we need to distinguish between the generic case and the exceptional case.
WhenV; andV, are both generic we have

Ry(k)=—1-2ika,;.;+o(k), L,(k)=-1-2ika;.,+0o(k), k—0, (3.1)
where
X1 X1
ar;l=<1—f dx le(x)fr;l(O,x)) f dx Vi(x)f.1(0x), (3.12
Q= 1+f dx sz(x)f|;2(0,x))/f dx Vo(x)f.2(0x). (3.13
X1 X1
In the exceptional case we define
f1.2(0%) 1 f1.2(0%)
= ! = y = :f . O,X y 31
MTF 400 fraOx)’ 72 T 10X (314
and note that, ivV,, resp.V,, is exceptional, then
Ri(k)=—b;+0(1), resp. Ly(k)=b,+0(1), k—0, (3.15
where
2
-t
j_yj2+1, =12 (3.1

The relationg3.11)—(3.13 follow from p. 146 of Ref. 6{3.15 was proved in Ref. 12. We remark
that the validity of(3.11) depends on the property that; and V, are each supported on a
semi-infinite interval; this guarantees the convergence of the integrals in the numerd&din
and (3.13. In general, for potentials ihi(R) one can only concludéthat the reflection coeffi-
cients behave like-1+0(1) ask—0 in the generic case.

When bothV,; andV, are generic we have

1-Ry(k)Lo(k)=—2ik[a,.;; +a.,]+0o(k), k—O. (3.17
When bothV,; andV, are exceptional we get
1-Ry(k)Ly(k)=1+bib,+0(1), k—0. (3.18
WhenV; is generic and/, is exceptional we have
1-Ry(k)Ly(k)=1+4b,+0(1), k—0, (3.19
and finally, whenV, is exceptional and/, is generic, we have

1—Ry(K)Lo(K)=1—b;+0(1), k—0. (3.20
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From (3.15 and(3.18—(3.20 we see that if at least one &f; andV, is exceptional, then the
quantity[ 1—R;(0)L,(0)] is strictly positive, and hence(0+)=0.

If both V; andV, are generic, the analysis is slightly more complicated, lf<—a,.,, then
w(0+)=m/2; if a,.;,>—a.;, thenw(0+)=—=/2. If a,.;,=—4a,.,, then, ask—0, we get 1
—R;(k)L,(k)=0(k), where we have use@.17). As a result(3.4) implies thatk/T(k)=0(1) as
k—0, and this, in turn, implies that is exceptional. Therefore the left-hand side(8f4) has a
limit as k— 0, which means that in fact-1R;(k)L,(k)=0(k?), from which we obtainw(0+)
=0.

It is known'® that whenV; andV, are both exceptional, thewiis exceptional. If exactly one
of V; andV, is exceptional, therV is generic. If bothV, andV, are generic, thelV can be
exceptional or generic. By using these facts along with the valug(6f+) and(3.10, we arrive
at the following conclusions:

() If both V, andV, are exceptional, theN=N;+Ns.

(i)  If exactly one ofV,; andV, is exceptional and the other is generic, thés N;+N,.

(i) If both V, andV, are generic an¥/ is also generic, thew(0+)= * 7/2. In this case, we
haveN=N;+N,—1 if w(0+)=/2, and this happens #,.,<—a,., in (3.17); or we
haveN=N;+N, if w(0+)=— /2, and this happens #&,.,>—a,.,.

(iv) If both V,; andV, are generic and is exceptional, then we must hawg0+)=0 and
N=N;+N,—1. This happens i&,.; = —a,., in (3.17.

Summarizing, ifa,.;<-—ay., in (3.17 and botha,.; and a,., are finite, then we havél
=N;+N,—1,; if at least one of,., anda,., is infinite or if a,.,>—a,.,, then we haveN=N,
+N,.

There is a direct connection between ca@gs(iv) above and case®) and(b) of Theorem

2.2 because the coefficierds ; anda,., are related to the quanti®/(x,) defined in(2.6). To see
this recall thatf,.;(0,x) andf;.,(0x) obey the integral equations

X

fra(0X)=1+ f_xdy(x—y)vl(y)fr;l(O,y), 321

f|;2(0,X)=1+f:od)/(y—X)Vz(Y)f|;2(0,Y)- (3.22

Hence from(3.21) and(3.22 we obtain
fr.a(0X)=Cp.1X+d;q, X>Xq,
fl.2(0X)=—Cp.ox+dj.p,  X<Xq,

with

X1 X1
Cr:1= f_wdy Vl(y)fr;l(O:Y): dr;lzl_f_wdy yVl(y)fr;l(ouY)y (3.23

Cl;z=f dy Va(y)fi.2(0y), dl;z=1+f dy yVo(y)fi.2(0y). (3.29
X1 X1

Thus from(3.12), (3.13, (3.23, and(3.24) we conclude that

dr;l dI;2
ar;l_?;lu a|;2—?;2- (3.29
Moreover,
fr;l(ovxl) fI;Z(val)
—_X1+ar;1, 7~ <

; = N =X1—Q|:9,
fr;l(ovxl) fl;2(01X1) ! 2
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and hence
Z(Xl) =—a1—4a2.

Thus (i) and (i) above correspond to the possibilities of Theorem ®)2 (i) is the case when

fr.1(0xy) =f{.,(0x;)=0, and(ii) is the case when exactly onefqf,(0x;) andf|.,(0x,) is zero.

Case(iii) corresponds tda) of Theorem 2.2 withZ(x,) #0 and caséiv) corresponds tga) with
We conclude this section with a brief look at families of potentials of the form

Ve(X)=V1(X) +Vy(x—=§), (3.29

whereé is a non-negative parameter avigandV, are the two fragments of. In other words, the
parameteg controls the separation distance between the two fragments. The next result shows that
the number of bound states can only increasé i§ increased. By virtue 0f2.5) it can only
increase by one. Since the proof is short we present two versions, one using the method of Sec. Il
and the other using the method of this section. In the case of compactly supported fragments the
result is already known from Refs. 1 and 3.

Theorem 3.1:Let N, denote the number of bound states\gfgiven in (3.26). Then either
N¢=N;+ N, for all £=0 or there is a uniqué,=0 such thaN,=N;+N,—1 for 0<é<¢&; and
Ng=N;+N, for §>&,.

Proof: (a) First, if one of the fragments is exceptional, then we hhlye=N;+ N, for all &
=0. If both fragments are generic, then wefigs..(k,x) denote the Jost solution from the left for
the potentialV,(x—¢£). Thenf,.,..(0X)=—c.o(x—§) +d,., for x<x;+ ¢, and thus, by using
(2.6) and (3.26, we obtainZ,(x;)=—£&—a;.,—a,.;. Thus if Zy(x,)<O0, then, for all £=0,
Z(x1)<0 and henceN;=N;+N,. If Zy(x;)=0, then Zfo(xl) =0 when §y=2Zy(X1)=—a,

—a,.; and the assertion follows.
(b) ReplacingL,(k) by e?*¢L,(k) in (3.18 we obtain

l_Rl(k)Lz;g(k):_2ik[ar;1+a|;2+§]+0(k), k—0.

Now the conclusion follows usingii) and(iv) above. [ ]

IV. AN EXAMPLE

The following example illustrates Theorems 2.1 and 3.1. Let

A%, xe(0,1
V(x)=4{ —B?, xe(1,2 4.1
0, elsewhere,

where A and B are some positive constants. We can fragmérts V=V,;+V,, whereV, is a
square potential barrier of height with support(0,1) andV, is a square well of depth B2 with
support(1,2). Then, a straightforward computation usi(®23—(3.25 yields c,.;=A sinhA,
d;.;=coshA—AsinhA, c.,=—B sinB, d;.,=cosB—B sinB, and thus

1 1
ar;lzz cothA—1, a.2=— B cotB+1.

Let us demonstrate that by choosiA@ndB suitably, we can havil;=0, N,=1, N=0. In other
words, the positive fragmet; may cancel the bound state caused by the negative fragient
resulting in no bound states fof UnlessB is a multiple ofr, bothV, andV, are generic. If we
let, for exampleB = /4, then from(2.6) we getZ(x;) = —a,.; —a,.,=0 wheneveA=A,, where
A satisfiesAy tanhAg=7/4, i.e.,Ag=1.0201. .. . FoOlA= A, the potentiaV is exceptional with
no bound state and f&k>A, it is generic with no bound state. Now let us consider the famy
defined in(3.26. If A<A, andB= m/4, thenZy(x;) <0 and we haveN,=N;+N,=1 for all &.

If A=A, then we havéN,=0 butN =1 for £>0, i.e.,§,=0. If A>A,, then{, is given by
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B 1 1
gO_B tanB A tanhA’

and we haveN,=0 for é< £, andN,=1 for £>&,.
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