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The number of bound states of the one-dimensional Schro¨dinger equation is
analyzed in terms of the number of bound states corresponding to ‘‘fragments’’ of
the potential. When the potential is integrable and has a finite first moment, the
sharp inequalities 12p1( j 51

p Nj<N<( j 51
p Nj are proved, wherep is the num-

ber of fragments,N is the total number of bound states, andNj is the number of
bound states for thej th fragment. Whenp52 the question of whetherN5N1

1N2 or N5N11N221 is investigated in detail. An illustrative example is also
provided. © 1998 American Institute of Physics.@S0022-2488~98!03109-0#

I. INTRODUCTION

Consider the one-dimensional Schro¨dinger equation

c9~k,x!1k2c~k,x!5V~x!c~k,x!, ~1.1!

where the potentialV is real valued and belongs toL1
1(R), the class of measurable functions f

which *2`
` dx(11uxu)uV(x)u is finite. The prime denotes the derivative with respect to the sp

coordinatex. Let us partition the real axis asR5ø j 51
p (xj 21 ,xj ), with xj 21,xj for j 51,...,p.

Here we use the conventionx052` andxp51`. We obtain a fragmentation of the potential b
settingV(x)5( j 51

p Vj (x), where

Vj~x!5H V~x!, xP~xj 21 ,xj !

0, elsewhere.
~1.2!

In this paper we analyze the relationship between the number of bound states ofV and the
number of bound states of its fragments. In Sec. II we prove a pair of sharp inequalities re
these numbers~Theorem 2.1!; we also study the casep52 in more detail, and in Theorems 2.
and 2.3 we present criteria that tell us whenN5N11N2 or N5N11N221. In Sec. III we give
another proof of Theorem 2.1 by using a factorization formula for the scattering matrix
exploiting its small-k asymptotics. We also briefly discuss what happens if we increase the
ration distance between two fragments~Theorem 3.1!. In Sec. IV we give an example whic
illustrates various aspects of our results.

The inequality~2.5! in Theorem 2.1 has been proved before by different methods and u
stronger assumptions on the potential. In Ref. 1,~2.5! was proved whenp52 and the fragments
have compact support. In Refs. 2 and 3, some special cases of~2.5! were proved for parity
invariant, compactly supported fragments, but, as already mentioned in those references, th
invariance is not an essential restriction. The method used in Ref. 1 was based on the
properties of the zero-energy solutions of the Schro¨dinger equation but was fairly contrived, whil
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the method used in Refs. 2 and 3 relied on a factorization formula4 for the scattering matrix and
the small-k behavior of the scattering coefficients. In the proofs of Theorems 2.1 and 2.2 w
certain properties of the Jost solutions, especially the interlacing property of zeros, in a
straightforward way. As a result, we are able to establish the connection with the factoriz
method used in Sec. III. Furthermore, no additional technical restrictions are imposed o
potential besidesVPL1

1(R).
At various places in this paper we need to distinguish between ‘‘generic’’ and ‘‘exceptio

potentials. Recall that a potential is called generic if the corresponding transmission coefficT
vanishes atk50, and that a potential is called exceptional ifT(0)Þ0. Equivalently, a potential is
generic~exceptional! if for k50 the two Jost solutions are linearly independent~dependent!5–7.

II. INEQUALITY FOR THE NUMBER OF BOUND STATES

In preparation of this section we first establish some notation and collect some results
the Jost solutions and their nodal properties. Letf l ; j (k,x) and f r ; j (k,x) denote the Jost solution
from the left and right, respectively, for the fragmentVj . Recall thatf l ; j (k,x)5eikx@11o(1)# as
x→1` and f r ; j (k,x)5e2 ikx@11o(1)# as x→2`. Furthermore, letnj denote the number o
zeros off r ; j (0,x) lying in (2`,xj ), mj the number of zeros off l ; j (0,x) lying in (xj 21 ,1`), and
Nj the number of bound states of the fragmentVj . SinceNj is equal8,9 to the number of zeros o
either f l ; j (0,x) or f r ; j (0,x), we conclude that

Nj5H nj , if f r ; j~0,xj ! f r ; j8 ~0,xj !>0 and f r ; j~0,xj !Þ0

nj11, if f r ; j~0,xj ! f r ; j8 ~0,xj !<0 and f r ; j8 ~0,xj !Þ0,
~2.1!

Nj5H mj , if f l ; j~0,xj 21! f l ; j8 ~0,xj 21!<0 and f l ; j~0,xj 21!Þ0

mj11, if f l ; j~0,xj 21! f l ; j8 ~0,xj 21!>0 and f l ; j8 ~0,xj 21!Þ0.
~2.2!

Note that on (xj ,1`) the functionf r ; j (0,x) is equal tof r ; j8 (0,xj )(x2xj )1 f r ; j (0,xj ) and that this
linear function has the rootx5xj2 f r ; j (0,xj )/ f r ; j8 (0,xj ) which lies in @xj ,1`) precisely if
f r ; j (0,xj )50 or f r ; j (0,xj ) f r ; j8 (0,xj ),0; in this case we haveNj5nj11. On the other hand, if
f r ; j8 (0,xj )50 or f r ; j (0,xj ) f r ; j8 (0,xj ).0, thenf r ; j (0,x) has no zeros in@xj ,1`), i.e., all its zeros
are in (2`,xj ); thusNj5nj . This proves~2.1!. We obtain~2.2! by applying a similar argumen
to f l ; j (0,x). We will also need the Jost solutions for the potentialV, which we denote byf l(k,x)
and f r(k,x), respectively. In the generic case whenk50 the following asymptotic relations hold10

asx→1`:

f l~0,x!511o~1!, f l8~0,x!5o~1/x!, ~2.3!

f r~0,x!5crx1o~x!, f r8~0,x!5cr1o~1!, ~2.4!

with some constantcrÞ0.
Theorem 2.1:Suppose thatVPL1

1(R). Let N denote the number of bound states ofV. Then

12p1(
j 51

p

Nj<N<(
j 51

p

Nj , p51,2,..., ~2.5!

where both inequalities are sharp.
Proof: It suffices to prove~2.5! for p52 because the general case follows by induction.

u(x) denote the solution of~1.1! for k50 satisfying the initial conditionsu(x1)51 andu8(x1)
50. Thenu(x)5 f r ;2(0,x) on x>x1 andu(x)5 f l ;1(0,x) on x<x1 . Henceu(x) hasN1 zeros on
(2`,x1) andN2 zeros on (x1 ,1`), i.e.,N11N2 zeros in all. Hence, by the interlacing proper
of zeros, f l(0,x) has eitherN11N2 or N11N221 zeros. This proves~2.5!. To see that the
inequalities are sharp, note that a square-well potential of depth2H2 and widthw has exactlyN
bound states, whereN is the positive integer satisfying (N21)p,wH<Np. ChoosingV to be a
square-well potential of depth2p2 with support ~0,1!, we obtainN51. Let us partition the
interval ~0,1! into p nonempty subintervals and hence obtain a fragmentation ofV; each fragment
still contains exactly one bound state and hence the lower bound in~2.5! becomes equal toN. On
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the other hand, consider the square-well potential of depth2p2 with support (0,p), and partition
(0,p) into the p subintervals (j 21,j ) for j 51,...,p. Then Nj51, N5p, and hence the uppe
bound in~2.5! becomes equal toN. j

We remark that the short proof of~2.5! given here was suggested by the referee. Inequa
~2.5! also follows from the next theorem that gives us, in case of two fragments, the pr
information on whetherN5N11N2 or N5N11N221. Let

Z~x1!5
f l ;2~0,x1!

f l ;28 ~0,x1!
2

f r ;1~0,x1!

f r ;18 ~0,x1!
. ~2.6!

Theorem 2.2:Assume thatV is partitioned into two fragments. Then:
~a! If f r ;18 (0,x1)Þ0, f l ;28 (0,x1)Þ0, and Z(x1)>0, then N5N11N221; if Z(x1),0, then N
5N11N2 .
~b! If f r ;18 (0,x1)50 or f l ;28 (0,x1)50, thenN5N11N2 .

Proof: ~a! In order to determineN we will count the zeros off r(0,x) that lie in @x1 ,1`). We
do this by using the interlacing property of the zeros off r(0,x) and f l(0,x), noting thatf l(0,x)
5 f l ;2(0,x) on @x1 ,1`) and f r(0,x)5 f r ;1(0,x) on (2`,x1#. We already know thatn1 zeros of
f r(0,x) lie in (2`,x1), where n1 is related toN1 by ~2.1!. Upon multiplying f l ;2(0,x) and
f r ;1(0,x) by suitable constantsa and b, we can achieve thatw l ;2(0,x)5a f l ;2(0,x) and
w r ;1(0,x)5b f r ;1(0,x) satisfyw l ;28 (0,x1)5w r ;18 (0,x1)51.0. ThenZ(x1) in ~2.6! becomes

Z~x1!5w l ;2~0,x1!2w r ;1~0,x1!.

First suppose thatZ(x1).0, which is equivalent to assumingW@w l ,w r #(x1).0, where
W@g,h#(x)5g(x)h8(x)2g8(x)h(x) denotes the Wronskian. We first consider the case w
w l ;2(0,x) has at least one zero on (x1 ,1`). Suppose thatw l ;2(0,x) has its zeros atzj for j
51,...,m2, wherex1,z1,z2,¯,zm2

. If w l ;2(0,x1).w r ;1(0,x1).0, thenw l ;2(0,x) hasm2 ze-
ros in (x1 ,1`) because, by a Wronskian argument, there are no zeros in (x1 ,z1) and there is
exactly one zero in each of the intervals (z1 ,z2), (z2 ,z3),...,(zm2

,1`). To see that there is a zer
in (zm2

,1`), note that by~2.3! and ~2.4!, W@w l ,w r #(x)5abcr.0. Hencea andbcr have the

same sign. Moreover, ifa.0, thenw l ;28 (0,zm2
).0 and hencew r(0,zm2

),0. Similarly, if a,0,

then w l ;28 (0,zm2
),0 and hencew r(0,zm2

).0. Becausew r(0,x)5bcrx1o(x) as x→1`, it fol-
lows thatw r(0,x) must have a zero in (x1 ,1`) and, by the interlacing property, this is the on
zero on this interval. Hence, using~2.1! and ~2.2!, we haven15N1 , m25N221, andN5n1

1m25N11N221. The same result holds whenw l ;2(0,x) has no zeros on (x1 ,1`). Then
w r(0,x) has no zeros on (x1 ,1`) either and we havem250. If w l ;2(0,x1).w r ;1(0,x1)50, then
the previous argument goes through with only a minor change in counting the zeros becau
w r(0,x) also has a zero atx5x1 . We haven15N121, m25N221, andN5n11m2115N1

1N221. If w l ;2(0,x1)>0.w r ;1(0,x1), thenw r(0,x) hasm211 zeros on (x1 ,1`) because now
there is also a zero in (x1 ,z1). Thusn15N121, m25N221, andN5n11m2115N11N221. If
0.w l ;2(0,x1).w r ;1(0,x1), thenn15N121, m25N2 , andN5N11N221 becausew r(0,x) has
no zeros in (x1 ,z1). All the possibilities withZ(x1).0 have now been exhausted. IfZ(x1),0, we
can apply similar arguments and find thatN5N11N2 . Finally, if Z(x1)50 becausew l ;2(0,x1)
5w r ;1(0,x1).0, thenn15N1 , m25N221, andN5n11m25N11N221. If Z(x1)50 because
w l ;2(0,x1)5w r ;1(0,x1)50, then n15N121, m25N221, and N5n11m2115N11N221. If
Z(x1)50 becausew l ;2(0,x1)5w r ;1(0,x1),0, then n15N121, m25N2 , and N5n11m25N1

1N221. This concludes the proof of part~a!. The proof of~b! is similar, using~2.1!, ~2.2!, and
the Wronskian. The details are omitted. j

Theorem 2.3: Assume thatV is partitioned into two fragments, and letW(x1) denote the
WronskianW@ f l ;2(0,•); f r ;1(0,•)#(x1). Then:
~i! SupposeN1 and N2 are either both even or both odd. IfW(x1).0 (W(x1),0), then N
5N11N2 (N5N11N221).
~ii ! SupposeN1 is even andN2 is odd or vice versa. IfW(x1).0 (W(x1),0), thenN5N1

1N221 (N5N11N2).
Proof: The proof is a consequence of the following observation. IfW(x1).0, then the con-

stantcr in ~2.4! is positive and soN is even, while ifW(x1),0, thencr is negative andN is odd.j
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If W(x1)50, then Theorem 2.3 gives no information as to which possibility is realiz
However, Theorem 2.2~a! says that ifW(x1)50 becauseZ(x1)50, thenN5N11N221. The
only other possibility is thatW(x1)50 becausef r ;18 (0,x1)5 f l ;2(0,x1)50, in which caseN5N1

1N2 by Theorem 2.2~b!.

III. FURTHER OBSERVATIONS

In this section we analyze the result of Theorem 2.1 in conjunction with the scattering m
ces corresponding to the fragments of this potential. For simplicity let us consider the fragm
tion of V asV5V11V2 , whereV1 has support in (2`,x1# andV2 has support in@x1 ,1`). The
analysis for three or more fragments can be carried out by using induction. LetS1 , S2 , andS be
the scattering matrices corresponding to the potentialsV1 , V2 , andV, respectively. The scatterin
coefficients appear in the scattering matrix as follows:

S~k!5FT~k! R~k!

L~k! T~k!
G , ~3.1!

whereT is the transmission coefficient, andL andR are the reflection coefficients from the left an
from the right, respectively. Similarly,Tj , Rj , andL j denote the corresponding entries ofSj for
j 51,2. Let us define the so-called transition matrix associated withS as follows:

L~k!5F 1

T~k!
2

R~k!

T~k!

L~k!

T~k!

1

T~k!*

G5F 1

T~k!

L~k!*

T~k!*

L~k!

T~k!

1

T~k!*

G , ~3.2!

where the asterisk denotes complex conjugation. Similarly, letL1 andL2 be the transition ma-
trices corresponding toS1 andS2 , respectively. It is known4 that

L~k!5L1~k!L2~k!. ~3.3!

From the~1,1! entry of the matrix product in~3.3! we get

1

T~k!
5

12R1~k!L2~k!

T1~k!T2~k!
. ~3.4!

Let R15(0,1`). For kPR1, let us define the phasesf(k), f1(k), andf2(k) of the transmis-
sion coefficients as follows:

T~k!5uT~k!ueif~k!, T1~k!5uT1~k!ueif1~k!, T2~k!5uT2~k!ueif2~k!, ~3.5!

where it is understood thatf, f1 , andf2 are continuous inkPR1 and normalized such that

f~1`!5f1~1`!5f2~1`!50. ~3.6!

Similarly, let

12R1~k!L2~k!5u12R1~k!L2~k!ueiv~k!, ~3.7!

wherev is assumed continuous inkPR1 and to satisfyv(1`)50. From~3.4! we obtain

f~k!5f1~k!1f2~k!2v~k!, kPR1. ~3.8!

From Levinson’s theorem11 we have

f~01 !5FN2
d

2Gp, f1~01 !5FN12
d1

2 Gp, f2~01 !5FN22
d2

2 Gp, ~3.9!
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whereN, N1 , andN2 denote the number of bound states corresponding to the potentialsV, V1 ,
andV2 , respectively;d51 if V is a generic potential andd50 if V is exceptional; in a similar
manner,d1 andd2 take values 1 or 0 depending on whetherV1 andV2 are generic or exceptiona
Using ~3.9! in ~3.8! we obtain

N5N11N21
1

2
@d2d12d2#2

1

p
v~01 !. ~3.10!

Now let us analyzev further. Note thatR1 andL2 are continuous and nonzero and strictly le
than one in absolute value forkPR1 and that, ask→1`, bothR1 andL2 vanish.

In the following we need to distinguish between the generic case and the exceptiona
WhenV1 andV2 are both generic we have

R1~k!52122ikar ;11o~k!, L2~k!52122ikal ;21o~k!, k→0, ~3.11!

where

ar ;15S 12E
2`

x1
dx xV1~x! f r ;1~0,x! D Y E

2`

x1
dx V1~x! f r ;1~0,x!, ~3.12!

al ;25S 11E
x1

`

dx xV2~x! f l ;2~0,x! D Y E
x1

`

dx V2~x! f l ;2~0,x!. ~3.13!

In the exceptional case we define

g15
f l ;1~0,x!

f r ;1~0,x!
5

1

f r ;1~0,x1!
, g25

f l ;2~0,x!

f r ;2~0,x!
5 f l ;2~0,x1!, ~3.14!

and note that, ifV1 , resp.V2 , is exceptional, then

R1~k!52b11o~1!, resp. L2~k!5b21o~1!, k→0, ~3.15!

where

bj5
g j

221

g j
211

, j 51,2. ~3.16!

The relations~3.11!–~3.13! follow from p. 146 of Ref. 6;~3.15! was proved in Ref. 12. We remar
that the validity of ~3.11! depends on the property thatV1 and V2 are each supported on
semi-infinite interval; this guarantees the convergence of the integrals in the numerators in~3.12!
and ~3.13!. In general, for potentials inL1

1(R) one can only conclude12 that the reflection coeffi-
cients behave like211o(1) ask→0 in the generic case.

When bothV1 andV2 are generic we have

12R1~k!L2~k!522ik@ar ;11al ;2#1o~k!, k→0. ~3.17!

When bothV1 andV2 are exceptional we get

12R1~k!L2~k!511b1b21o~1!, k→0. ~3.18!

WhenV1 is generic andV2 is exceptional we have

12R1~k!L2~k!511b21o~1!, k→0, ~3.19!

and finally, whenV1 is exceptional andV2 is generic, we have

12R1~k!L2~k!512b11o~1!, k→0. ~3.20!
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From ~3.15! and ~3.18!–~3.20! we see that if at least one ofV1 and V2 is exceptional, then the
quantity @12R1(0)L2(0)# is strictly positive, and hencev(01)50.

If both V1 andV2 are generic, the analysis is slightly more complicated: Ifar ;1,2al ;2 , then
v(01)5p/2; if ar ;1.2al ;2 , then v(01)52p/2. If ar ;152al ;2 , then, ask→0, we get 1
2R1(k)L2(k)5o(k), where we have used~3.17!. As a result,~3.4! implies thatk/T(k)5o(1) as
k→0, and this, in turn, implies thatV is exceptional. Therefore the left-hand side of~3.4! has a
limit as k→0, which means that in fact 12R1(k)L2(k)5O(k2), from which we obtainv(01)
50.

It is known13 that whenV1 andV2 are both exceptional, thenV is exceptional. If exactly one
of V1 and V2 is exceptional, thenV is generic. If bothV1 and V2 are generic, thenV can be
exceptional or generic. By using these facts along with the value ofv(01) and~3.10!, we arrive
at the following conclusions:

~i! If both V1 andV2 are exceptional, thenN5N11N2 .
~ii ! If exactly one ofV1 andV2 is exceptional and the other is generic, thenN5N11N2 .
~iii ! If both V1 andV2 are generic andV is also generic, thenv(01)56p/2. In this case, we

have N5N11N221 if v(01)5p/2, and this happens ifar ;1,2al ;2 in ~3.17!; or we
haveN5N11N2 if v(01)52p/2, and this happens ifar ;1.2al ;2 .

~iv! If both V1 and V2 are generic andV is exceptional, then we must havev(01)50 and
N5N11N221. This happens ifar ;152al ;2 in ~3.17!.

Summarizing, ifar ;1<2al ;2 in ~3.17! and bothar ;1 and al ;2 are finite, then we haveN
5N11N221; if at least one ofar ;1 andal ;2 is infinite or if ar ;1.2al ;2 , then we haveN5N1

1N2 .
There is a direct connection between cases~i!–~iv! above and cases~a! and ~b! of Theorem

2.2 because the coefficientsar ;1 andal ;2 are related to the quantityZ(x1) defined in~2.6!. To see
this recall thatf r ;1(0,x) and f l ;2(0,x) obey the integral equations

f r ;1~0,x!511E
2`

x

dy~x2y!V1~y! f r ;1~0,y!, ~3.21!

f l ;2~0,x!511E
x

`

dy~y2x!V2~y! f l ;2~0,y!. ~3.22!

Hence from~3.21! and ~3.22! we obtain

f r ;1~0,x!5cr ;1x1dr ;1 , x.x1 ,

f l ;2~0,x!52cl ;2x1dl ;2 , x,x1 ,

with

cr ;15E
2`

x1
dy V1~y! f r ;1~0,y!, dr ;1512E

2`

x1
dy yV1~y! f r ;1~0,y!, ~3.23!

cl ;25E
x1

`

dy V2~y! f l ;2~0,y!, dl ;2511E
x1

`

dy yV2~y! f l ;2~0,y!. ~3.24!

Thus from~3.12!, ~3.13!, ~3.23!, and~3.24! we conclude that

ar ;15
dr ;1

cr ;1
, al ;25

dl ;2

cl ;2
. ~3.25!

Moreover,

f r ;1~0,x1!

f r ;18 ~0,x1!
5x11ar ;1 ,

f l ;2~0,x1!

f l ;28 ~0,x1!
5x12al ;2 ,
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and hence

Z~x1!52ar ,12al ;2 .

Thus ~i! and ~ii ! above correspond to the possibilities of Theorem 2.2~b!; ~i! is the case when
f r ;18 (0,x1)5 f l ;28 (0,x1)50, and~ii ! is the case when exactly one off r ;18 (0,x1) and f l ;28 (0,x1) is zero.
Case~iii ! corresponds to~a! of Theorem 2.2 withZ(x1)Þ0 and case~iv! corresponds to~a! with
Z(x1)50.

We conclude this section with a brief look at families of potentials of the form

Vj~x!5V1~x!1V2~x2j!, ~3.26!

wherej is a non-negative parameter andV1 andV2 are the two fragments ofV. In other words, the
parameterj controls the separation distance between the two fragments. The next result show
the number of bound states can only increase ifj is increased. By virtue of~2.5! it can only
increase by one. Since the proof is short we present two versions, one using the method of
and the other using the method of this section. In the case of compactly supported fragme
result is already known from Refs. 1 and 3.

Theorem 3.1: Let Nj denote the number of bound states ofVj given in ~3.26!. Then either
Nj5N11N2 for all j>0 or there is a uniquej0>0 such thatNj5N11N221 for 0<j<j0 and
Nj5N11N2 for j.j0 .

Proof: ~a! First, if one of the fragments is exceptional, then we haveNj5N11N2 for all j
>0. If both fragments are generic, then we letf l ;2;j(k,x) denote the Jost solution from the left fo
the potentialV2(x2j). Then f l ;2;j(0,x)52cl ;2(x2j)1dl ;2 for x,x11j, and thus, by using
~2.6! and ~3.26!, we obtain Zj(x1)52j2al ;22ar ;1 . Thus if Z0(x1),0, then, for all j>0,
Zj(x1),0 and henceNj5N11N2 . If Z0(x1)>0, then Zj0

(x1)50 when j05Z0(x1)52al ;2

2ar ;1 and the assertion follows.
~b! ReplacingL2(k) by e2ikjL2(k) in ~3.18! we obtain

12R1~k!L2;j~k!522ik@ar ;11al ;21j#1o~k!, k→0.

Now the conclusion follows using~iii ! and ~iv! above. j

IV. AN EXAMPLE

The following example illustrates Theorems 2.1 and 3.1. Let

V~x!5H A2, xP~0,1!

2B2, xP~1,2!

0, elsewhere,

~4.1!

whereA and B are some positive constants. We can fragmentV as V5V11V2 , whereV1 is a
square potential barrier of heightA2 with support~0,1! andV2 is a square well of depth2B2 with
support ~1,2!. Then, a straightforward computation using~3.23!–~3.25! yields cr ;15A sinhA,
dr ;15coshA2A sinhA, cl ;252B sinB, dl ;25cosB2B sinB, and thus

ar ;15
1

A
coth A21, al ;252

1

B
cot B11.

Let us demonstrate that by choosingA andB suitably, we can haveN150, N251, N50. In other
words, the positive fragmentV1 may cancel the bound state caused by the negative fragmenV2 ,
resulting in no bound states forV. UnlessB is a multiple ofp, bothV1 andV2 are generic. If we
let, for example,B5p/4, then from~2.6! we getZ(x1)52ar ;12al ;2>0 wheneverA>A0 , where
A0 satisfiesA0 tanhA05p/4, i.e.,A051.0201. . . . ForA5A0 the potentialV is exceptional with
no bound state and forA.A0 it is generic with no bound state. Now let us consider the familyVj

defined in~3.26!. If A,A0 andB5p/4, thenZ0(x1),0 and we haveNj5N11N251 for all j.
If A5A0 , then we haveN050 but Nj51 for j.0, i.e.,j050. If A.A0 , thenj0 is given by
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j05
1

B tan B
2

1

A tanhA
,

and we haveNj50 for j<j0 andNj51 for j.j0 .
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