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The wave propagation in a one-dimensional nonhomogeneous medium is considered, where
the wave speed and the restoring force depend on location. In the frequency domain

this is equivalent to the Schrodinger equation d*/dx* + kK = k*P(x)4 + Q(x)4 with an
added potential proportional to energy. The scattering and bound-state solutions of

this equation are studied and the properties of the scattering matrix are obtained; the inverse
scattering problem of recovering the restoring force when the wave speed and the

scattering data are known are also solved.

I. INTRODUCTION

Consider the one-dimensional (1-D) Schrédinger
equation,

dy(k,
TV 4 k(i) = PGB + Q)

(L.1)

where xeR is the space coordinate, k’cR is energy,
K*P(x) is the potential proportional to energy, and Q(x)
is also a potential. Both potentials P(x) and Q(x) are
real. The Fourier transformation from the frequency &
domain into the time ¢t domain changes (1.1) into

FPu 1
R Rmyoav ey A Q(x)u,

where ¢(x) = 1//1 — P(x) is the wave speed and Q(x)
is the restoring force. The equation in (1.2) describes the
propagation of waves in a medium, where the wave speed
and the restoring force depend on location. We will let

(1.2)

H(x) = y1— P(x), and for a meaningful wave speed we
will assume P(x)<1l. We also assume that P(x) is
bounded below, and thus

M =sup H(x)
xR

(1.3)

is a finite number.

The direct scattering problem for (1.1) consists of
finding the scattering matrix S(k) (which will be defined
in Sec. II) when the potentials P(x) and Q(x) are
known. There are three inverse scattering problems asso-
ciated with (1.1). The first one is to recover the potential
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Q(x) when the scattering matrix S (%) and the other po-
tential P(x) are known. The second inverse problem is to
recover P(x) when S(k) and Q(x) are given. The last
one is to recover both P(x) and Q(x) when S(k) is
given, although its solution is, in general, not unique. In
this paper we will only study the first inverse problem
mentioned; physically, this inverse problem corresponds
to the determination of the restoring force when the wave
speed and the scattering data are known.
Letting

y=Jodé H(§)

and

¢(ky) = VH(x)P(kx),

one can transform (1.1) into the Schrodinger equation,

d’¢

E};,+k2¢= Viy)e, (1.4)

where the new potential ¥ (p) is related to the potential of
(1.1) as

V(y) = —G(x)/H(x), (1.5)
where
H"(x) 3H'(x)>? Q(x)
G = =@ T i ) B (1.6)

Note that throughout the paper we use the prime to de-
note the derivative with respect to x. V(y) can be ob-
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tained by solving the inverse scattering problem for (1.4)
by using one of the inverse scattering methods for the 1-D
Schridinger equation. Inverting (1.5) we can obtain
O(x) when P(x) is known, thereby solving the inverse
scattering problem for (1.1). However, in this paper we
will use the spatial coordinate directly because this will
enable us in the future to combine the results of the
present paper with those of Ref. 1 in order to solve the
second inverse problem and to study the third inverse
problem mentioned earlier.

We formulate the first inverse scattering problem for
(1.1) as a Riemann-Hilbert problem. Once the problem
is posed as a Riemann-Hilbert problem, there are several
methods to solve it, such as the Marchenko method,”™
the Gel’fand-Levitan method,®’ the Wiener—Hopf factor-
ization method,® and the Muskhelishvili-Vekua
method,»'® which is also known as the Newton-Jost
method.!! In this paper we will only use the Marchenko
method to solve the first inverse problem.

All the results given in this paper hold for real po-
tentials satisfying the conditions QEL{(R), P(x) <1 and
is bounded below, PEL (R), and GEL (R), where
L (R) is the class of Lebesgue-integrable potentlals hav-
mg a finite jth moment Note that whenever PeL!(R), we
have 1— HeL'(R) since |1 —H|<|1—H|(1+H)
= | P|. This fact will be used throughout the paper. In
the beginning of each section we will specify the sufficient
conditions under which the results there hold.

This paper is organized as follows. In Sec. II we de-
fine the scattering solutions of (1.1), study their proper-
ties, and establish their asymptotics for small k. In Sec.
ITT we study the large k asymptotics of the scattering
solutions of (1.1). In Sec. IV we study the properties of
the scattering matrix and establish its asymptotics for
small and large k. In Sec. V we study the bound-state
solutions of (1.1) and obtain a Levinson theorem that
relates the number of bound states to the phase of the
transmission coefficient. In Sec. VI, using the Marchenko
method, we solve the inverse scattering problem by re-
covering Q(x) from one of the reflection coefficients
when P(x) is known. In Sec. VII we obtain some prop-
erties of the scattering data when the Marchenko method
leads to GeL}(R), where G(x) is the quantity defined in
(1.6). In Sec. VIII we show that G(x) obtained from the
Marchenko method belongs to L}(R) when the scatter-
ing data satisfy the conditions obtained in Sec. VII, and
we also show that the solution of each of the two March-
enko integral equations leads to a solution of the Schro-
dinger equation (1.1). Finally, in the Appendix we prove
a lemma used in Sec. VL.

Il. SCATTERING SOLUTIONS

In this section we study the scattering solutions of
(1.1) and also establish their asymptotics for small k.

J. Math. Phvs.,

Vol 23, No. 5,

The sufficient conditions on the potentials in this section
are P(x) <1 and P,QeL!(R).

The physical solutions 3, from the left and ¢, from
the right satisfy

Ti(k)e™ + o(1),

X— o0,
¢’(k’x)={e"""+L(k)e*"’°‘+o(1), xmmw FD
and

—# 4 R(k)e™ 4 0(1), x- oo,
wrldex) = [T,(k)e—ka+o(1), 5o P

Here T and T, are the transmission coefficients from the

left and from the right, respectively, and L and R are the

reflection coefficients from the left and from the right,
respectively. The scattering matrix S(k) is defined as

k T, (k) R(k) (2.3)

Lk TR '

We will study the properties of S(k) in Sec. IV. The

physical solutions #; and 4, satisfy the Lippmann-
Schwinger equation

[gl/;(k,x )

th

ik|x — y|
21k f dye

k,
X [F2P(3) + Q)] [fﬁ’ﬁ e |

P.(k,x)

(2.4)

The Jost solutions of (1.1), f; from the left and f,
from the right, are defined as

filk,x) = [1/T (k) ]¥i(k,x),

(2.5)
fr(k’x) = [I/Tr(k)]lpr(k’x)
They satisfy the integral equations
. 1 (=
Sk =~z [ 7 dysinieGz—p)
X [K*P(y) + Q) 1f k),
: 1 (= .
Sflkx) =e #* 4 % f dy sin k(x — »)
X [R*P(p) + Q1S k),
and the boundary conditions
e +o(1), X— o0,
flexy=1 1 . L _,. _
T TTme Tl rmTe

May 1982
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and

1 . R(k)

—e
Filkx) = | T,(6) T, (k)
e * 4 o(1), xo — .

eikx+0(1), X— c0,

Let us also define

my(k,x) = [1/T(k)]e ™ *(k,x),

. (2.6)
m,(k,x) = [1/T,(k)1e*y,(k,x).

Then from (1.1) and (2.6) it is seen that m; and m,
satisfy the equations

mj (k,x) + 2ikmj(k,x)
= [K2P(x) + Q(x) Im (kx), 2.7)
m, (k,x) — 2ikm;(k,x)

= [K*P(x) + Q(x)1m,(kx). (2.8)

We will call m; and m, the Faddeev solutions from the
left and right, respectively; they satisfy the integral equa-
tions

1 ® 2ik(y — )
m,(k,x)=l—ﬁ J; dy[l —e ]

X [K*P(y) + Q) Imy(k,p), (2.9)

X

1 .
mkx) =1—— dy[1 — e(x=»]

2k ) _ o
X [K*P(y) + Q(9) Im,(k.p), (2.10)
and the boundary conditions

m(kx)=1+0(1), x— 0,

mj{kx) =0(1), x— oo,

m(kx)=140{(l), x> — o,

m,(kx)=0(1), x> — .

Next we show that the Faddeev solutions defined in
(2.6) can be extended analytically in k to the upper half
complex plane C*. We will use the notation C~ for the
lower half complex plane and use C* to denote C* UR.

Theorem 2.1: If QcL}(R) and PeL'(R), the Faddeev
solutions m,(k,x) and m,(k,x) axz_analytic in k for
keC™ and continuous in k for ke C™*.

Proof: From (2.9) we have m(k,x) = 2/ gn;(k,x),
where ny(k,x) =1 and

1 ® )
nj(k,x) = __2—1E J. dy[1— e2tk(y—x)]

X[K2P(y) + Q) In;_y(kyp), j>1.

Noting that [}~ *dt ¥* = — (172ik)[1 — &*U—],
and using |1 — k=) | <2 when y>x and k e C*, we

obtain

1

o J
e <3| [ atlkpe)| + G -nlew|.

Hence, we have

k) | <exp( [~ ayl e )]

+ @ —x)|QW I]), keC+. (2.11)

Furthermore, each n;(k,x) is analytic in & for keC * and
continuous in k for k € C™, and thus by the Weierstrass
theorem, m;(k,x), being the limit of a uniformly conver-
gent sequence of analytic functions on compact subsets in
Ct_,_is analytic in k for k<eC™* and continuous in k for
keC* for each xeR whenever PeL'(R) and QEL}( R).
Repeating the above argument with (2.10), we obtain

mten) | <exp( [* @yt |eP)|

- ®

+(x—2) Q) 1]), keC*,  (2.12)

and that m,(k,x) is analytic in k for keC™ and contin-

uousin k forke C™+.
The solutions of (2.7) and (2.8) at k = O satisfy

m(0x) = 1 + f“’ dy(y —x)QWIm0), (2.13)

m,(0x) = 1+ f_ dy(x — 2)Q()m,(0),
® (2.14)

which can also be obtained from (2.9) and (2.10) in the
limit £ —0. Applying the analysis given in the beginning
of the proof to (2.13) and (2.14), we see that (2.11) and
(2.12) are valid also at k = 0. Hence, for each x, we have
the continuity of m,(k,x) and m,(k,x) at k=0. =

Proposition 2.2: If P,QeL}(R), then for k € C*,the
Faddeev solutions m;(k,x) and m,(k,x) satisfy the ine-
quality |m(k,x)|<C(k)[1 + |x|], where

Jd. Mzth, Fhys,, Vol. 33, MNo. 5, May 1992
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Cy(k) =exp( |7 v+ p1112P0) +Q(y)|)

x|+ exp( [ aetiip] + 1zQ(z>|])]

x[ ff dyly| |2PG) + 00|

Proof: From the proof of Theorem 2.1 we see that the
Lippmann-Schwinger equation for m,(k,x) can also be
written as

mkx) =1+ fw dy fy—x dt 2 k2P(p)
x 0
+ Q(y) Imy(k,p),

and thus for k € C* we have

| mihox) | <1+ f” dy(y — x) | I2P()
+00) | |miky) |

<1+ f: dy P ICP(Y) + 0) | | milkp) |
_x f ® @y RPG) + QW) | Imikp)|.

Using (2.11) and letting

Cy(k) =1 +exp( fm dz[|kP(z)| + |zQ(2) | ])

x[ff dy|y||k2P(y)+Q(y)l],
we obtain

|m(k,x) |
GCy(k)[1+ |x]]

<1+ fw dy[1+ |y|1|K*P(»)

+ QW) | |m(ky) | (Cy(k)

X[1+ |y[]1).

Hence, using iteration we obtain

i) |ACARI 1+ ||
<exp( [yl + b11KPO) + 0021 ),

which gives the result stated in the propostion with

Cy(k) =C2(k)CXP( f )

— o

dy[1+ |y|]

X |K*P(y) + Q) | )

In a similar way, we also obtain |m,(kx)| < Ci(k)
X [1 + [x]|] ]

From (2.9) and (2.10), we have
my(kx) = — fw dy ¥k =%
X [KP(p) + Q) 1m(k.p),

m, (kx) = fx dy k=9

— o0

X [K*P(y) + Q(») 1m, (k).

Hence, using Proposition 2.2 we obtain
miten <k [T i1+ 1y

X |P(») + Q()|, keC*,

and similarly
|miem) | <G [T ap[L+ Iyl]

X [2P(p) + Q(»)|, keC*,

where C,(k) is as specified in Proposition 2.2. Thus, if
PQec L}(R), the functions m;(k,x)arM;(k,x)are an-
alytic in keC ™ and continuous in k € C* for each xeR.

ll. LARGE k ASYMPTOTICS OF THE SCATTERING
SOLUTIONS

In this section, the sufficient assumptions are that
P(x) <1 and is bounded below, PeL!(R), and GeL!(R),
where G(x) is the quantity defined in (1.6). First, using
techniques similar to those used in Refs. 12 and 1, we
show the existence of two linearly independent solutions
of (1.1) and establish their large k£ asymptotics. Then,
relating these solutions to the scattering solutions of

J. Math. Phys., Vol. 33, No. 5, May 1992
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(1.1) defined in Sec. II, we will establish the large k&
asymptotics of the scattering solutions of (1.1).

Assume a solution of (1.1) of the form ¢(k,x)
= Y(k,x)Z(k,x), where Y(k,x) stands for either of the
two functions defined by

exp[ikSs dz H(z)]
Y (kx) = bt ‘/1(;(; (3.1)
and
—ikftdz H
Y,(k,x)=exp[ ik§odz H(z)] (3.2)

VH(x)
Then Z(k,x) satisfies
YZ" +2Y'Z' + [Y" + KH?Y — QY]Z =0.

Multiplying the above equation by Y and rearranging
terms, we have

(Y’Z')' + Y [Y"/Y + KH* — Q1Z=0. (3.3)
Note that from (3.1) and (3.2) we have

Y'/Y + KH? — Q= G(x)H(x),

where G(x) is the quantity in (1.6). Integrating (3.3)
with the boundary condition Z'(k,x,) = 0, we obtain

Y (k,x)2Z' (k,x)
- _ fx dz Y(k,2)*G(2)H(2) Z(k,2),
X0

or equivalently

2
f dz—L% G(2)H(2)Z(kyz2).

(3.4)

Z'(kx) =

Integrating (3.4) with the boundary condition Z(k,xg)
= 1, we obtain

Z(k,x)=1_f dgf a: T8 Y(k,z)z

X G(2)H(z)Z(k,z), (3.5)

and after changing the order of integration in (3.5), we
obtain

Z(kx) =1 — f " dz P kex,2)Z(k,2), (3.6)
)

where

x Y(kz)?
Lkx,z) = G(2)H(z) f dg;,—(k—g)T.

From (3.6) choosing x, = % «, we will obtain two lin-
early independent solutions denoted by Z; and Z,, respec-
tively, satisfying

Zikx) =1+ f & LkxD)Zik), (37

Zr(k,x) = 1 - fx dZ i”,(k;x,z)Z,(k,z), (3'8)

where
G z
Z(kx,z) =%z€l[l —exp(Zl’k J. d§H(§))],
&L (k;x,z)
G(z)
= 2; 1— exp( — 2ik f d§H(§))]

Note that for k ¢ ET\{O}, we have
| &L (k;x,2) |<|G(2)|/|k| and

| & (kx,2) | <|G(2) /| k|,

in the domains of integration given in (3.7) and (3.8),
respectively. Thus, iterating (3.7) and (3.8) we obtain

1 [
| Z(kx) | <eXp(m f dz|G(z) | )

1 (o p—
<exp(m f dzl G(Z) | )’ k€C+ \{0}7

(3.9)

| Z,(kx) | < (1 f dz|G(z)|)
(kx) | <exp| —
PUTRT J -

<exp(ﬁ f“’ dz]G(z)l), keC*\{0}.

(3.10)

Hence, by the Weierstrass theorem used before, when
G’EL}(R), for each x both Z;(k,x) and Z,(k,x) have con-
tinuous extensions in k to C* \ {0}, which are analytic
on C*. Furthermore, on estimating Z,(k,x) — 1 and
Z,(k,x) — 1 by iterating (3.7) and (3.8), we obtain
Zkx)=1+4+0(1/k) and Z.(kx)=1+40(1/k)

J. Math. Phys., Voi. 33, No. 5, May 1992
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as k—w in C*. Using (3.4), (3.9), and (3.10),
for k e C* \ {0}, we obtain

i o
| Zi(kx) | <M exp(l—k| f dz|G(z) ]| )

—_—

xff dE|G(E)],

-~ 0

1 [
|Z) (kx) | <M exp(rkl‘f dz|G(2) | )

x [T @@,

where M is the constant given in (1.3). Hence, by the
Weierstrass theorem, both Zj(k,x)and Z;(k,x)have con-
tinuous extensions to k € C* \ {0}, which are analytic on
C*, and Zj(kx) = O(1) and Z;(k.x) O(1) as
k— o« in C + .

Since Z;(k,0) = 0, Z)(k,0) =1, Z/(k,— )
=0, and Z,(k, — ) =1, using

Yi(kx)Z)(kx) = exp(ikx — ik fw [1— H])
0
+0(1)3 X— 00,

Y (kx)Z,(kx) = exp( —itkx — ik J-O {1— H])

+o(1),

X— — 0,

we see that the Jost solutions defined in (2.5) are given by

Filkox) = exP(ik fo "1 —H])Yl(k,nz,(k,x),
(3.11)

frlkx) = exp(ik fo [1-— H])Y,(k,x)Z,(k,x).
o (3.12)

Hence, from (2.5) it is seen that the physical solutions of
(1.1) are given by

Pi(kx) = T(k)exp(ik fo‘” [l—H])
X Yl(er)Zl(er)a
0
¢r(k,x)=T(k)exp(ik f [l—H])

X Y, (k,x)Z,(k,x),

J. Math. Phys., Vol. 3

a

0
]
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and from (2.6) we obtain

1 X
m,(kx) = m exp(ik f_ 3} [1-— H])Z,((l;,);i.)

)Zz(k,x),
(3.13)

1
my(k,x) = m exp(ik

Thus, since m;(k,x) and m(k,x) are continuous in k
even at k = 0, it follows that Z,(k,x) and Z,(k,x) are also
continuous in k as k—»0in C*.

From (3.13) and (3.14), as k— « we obtain

exp(ikfZ[1—H])

m[(k,X) = \/H(X)
x[1+0(1/k)], keC™,
ks [1—H
) = P o 11— HD

VH(x)

X1+ 0(1/k)], keC™.
Note that both m,;(k,x) and m,(k,x) remain bounded as
k- *« in R.

IV. SCATTERING MATRIX

In this section we show that the scattering matrix
S(k) is unitary and continuous for kcR and study its
asymptotics for small and large k. In this section the
sufficient assumptions on the potentials are P(x) <1 and
P,QcL!(R). Although we use QeL}(R) for mathematical
simplicity in our proof to obtain the properties of S(k) as
k—0, the condition QeL!(R) suffices as in the scattering
theory'>!* for the Schrédinger equation in (1.4). The
proofs under the assumption QeL}(R) will be given in
Ref. 15.

From (2.1), (2.2), and (2.4) we obtain the expres-
sions for the transmission coefficients,

o0

Ty(k) =1+ 5 . dye~ ™

X [K*P(y) + Q) 1¥i(k.p), (4.1)
T.(k) =1+ —2—11% ff K oy

X [KP(y) + Q0 14, (kp), (4.2)

and the reflection coefficients

3, Nc. 5, May 1992
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1 © .
Lk =5z [ dyeP1PG) + 00 lithy),
(4.3)

dy e~ ®[I2P(y) + Q) 1¢,(k.p).
(4.4)

1
R(k) =7k

From (2.4) through differentiation, we obtain

) = kT k)e™ + o(1), X— o0,
Yilkx) = ike™ — ikL(k)e= ™ +0(1), x- — o
and

P (k,x)

—ike~ ™ 4 ikR(k)e™ 4+ 0(1), x— oo,
- l — kT (k)e™* ¢ o(1),

X— — 0.

Let [ f:g] = fg' — f'g denote the Wronskian of f and
g; it can be shown that the Wronskian of any two solu-
tions of (1.1) is independent of x. Hence, as x— =+ «0,
from the Wronskian [¢,( — k,x);¥,(k,x)] we obtain

TWk)T( —k) + L(k)L(—k) =1, keR, (4.5)
from [1,( — k,x); #,(k,x)] we obtain

T.(K)T,.( —k) + R(K)R(—k) =1, keR, (4.6)
and from [#,(k,x); ¥,( — k,x)] we find

T(k)R( —k) + L(k)T,(—k) =0, keR.  (4.7)

From (4.5), (4.6), and (4.7), it is seen that the scattering
matrix S(k) defined in (2.3) is unitary and that we have

S(—k)Y=Sk)=Sk)", keR,

where S(k)’ denotes the transpose and S(k) —! the in-
verse of the matrix S(k). As a consequence, the trans-
mission and reflection coefficients cannot exceed one in
absolute value for keR.

The Wronskian [¢,(k,x);¥,(k,x)] can be computed
using (2.1) and (2.2) to obtain

[(kX)s (kx) ] = — 2ikT (k) = — 2ikT, (k).

Therefore the transmission coefficients from the right and
left coincide, and this common value will be denoted by
T(k):

T(k) = T((k) = T/(k).

The Wronskian of the Faddeev solutions can be com-
puted from (2.7) and (2.8) to obtain

[m,(kx);m(k,x)] = — 2ikm,(k,x)m(k,x)
+ 2ik/T (k). (4.8)

In Sec. II, we have shown that m,(kx), m(kx),
mj(k,x), and. m;(kx) are continuous in k for
k € C*and analytic in k for keC*. Thus, k/T (k) is
continuous in C* and analytic in C*. We can write
(4.8) as

2ik
TR = S e ym, o) + [m kY (k)]

from which it is seen that T'(k)s40 for keR\ {0}. Hence,
using the unitarity of S(k), we see that the reflection
coefficients R(k) and L (k) cannot be equal to 1 in abso-
lute value when kcR\ {0}.

From (4.1) and (4.2) we have

1 1

=T =2k

f“’ GIRPY) + 00 Imikp),

1 1 o
YTt = 2k f_ . dy[K*P(p) + Q(»)Im, (k).
' (4.9)

Similarly, from (4.3) and (4.4) we have

Lk 1 o .

%=ﬁ f T dy HRTEPG) + 00 Imi(k),
R(k)_ 1 ® — 2ikpr 1,2

= f C_ e TWIRPR) + 000 Im ().

(4.10)

There are two cases to consider; namely, the case
§® ., dy Q(y)m;(0,y)5£0, which is the generic case, and
the case [  dy Q(y)m(0,y) =0, which is the excep-
tional case. In the generic case, as k—0 from C ™, using
Proposition 2.2, from (4.9) we obtain

1 1 o
5= f_ _ 4y 00Im0) +o(1/k),
and hence
—2ik —
T(k) = +o(k), keC+*.

T2 . dy Q()m(0,p)

Thus, since T(k) vanishes linearly as k0, the quantity
k/T (k) does not have a zero at k = 0 in the generic case.
From (4.9) and (4.10) we obtain
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L(K) + 1 1 (e i
ST =it o wET-
X [F2P(y) + Q) 1m(k.p),

R(K) + 1 1 (= i
5= +ﬁf_m dyle=2% _ 1]

X [E*P(y) + Q) Im,(k.p),

and hence, as k-0 we have

L(k)+1 o

=14 f  00m(0y)
+o0(1), keR,

R(k) +1 °

= 1— f_w dy yQ(y)ym,(0,y)

+o(1), keR,

where the convergence of the integrals above can be seen
from Proposition 2.2 and from the assumption QeL}(R).
Thus, in the generic case we have

L(k)= — 14 kc;+0(k), keR,
R(k) = — 1+ kc,+o0(k), keR,

where ¢, and c, are the constants given by

| =21+ 52, dyyQ()m(0y)]
ar= £° . dy Q(»)mi(0,p) ’
T 2i[1 -2, dyyQ(y)m,(0y)]

52 o dy Q(I)m,(0y)

Assuming QeL}(R), we obtain by differentiating
(2.9) and (2.10) with respect to k% that m,(k,x) and
m,(k,x) are continuously differentiable with respect to k
on R. Letting k-0 we have

3m1(0 x) amz(O,y)

f dy(y — x)Q(y) E2Y)

—i f " dy(y — x)20()m0),

amr(oyx)

x r( )

=i |7 ayx—p00Im o).
From (4.9) we then obtain

d k 1 (= c?m,(O,y)
[ﬁT(k) . 0=1_2—if_w @ o)

1 = m,(0,p)
=1—2—,.f_ dy o) 2.

Thus, in the exceptional case we have, as k-0,

1 l «© aml(osy)
+o0(1), keCT,
and hence 7'(0)540 and, as k-0,
T(k !
(&) =T (17205 _ dy 00) [9m(0p) /K]
+o(1), keC™.

In the exceptional case, since T'(0)70, the quantity
k/T (k) has a simple zero at k =0.

From the preceding analysis it is seen that L(k) and
R(k) are continuous for k€R and T'(k}) is continuous for
k € C*. In fact, in the generic case L(0) = R(0) = —
and 7'(0) = 0, while R(0), L(0), and T(0) are nonzero
in the exceptional case. Thus, in both the generic and
exceptional cases, when QeL{(R), the continuity of S(k)
is also valid at the point k = 0. By using the method of
Ref. 14 it is possible to prove'’ the continuity of S(k) at
k =0 under the weaker assumption QEL}(R), but for
mathematical simplicity, in the above analysis we have
assumed that QeL}(R).

Now let us study the large k asymptotics of the scat-
tering matrix. From (3.7), (3.8), (3.11), and (3.12), we
obtain
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G fitkes( ik [0 - )

. 2ik

_e“”‘“exp(Zik f:[l_li])f:dz

G(2)Z,(k,z) :
—Tilziexp(Zikz—ZikL[l-—H])
(4.11)

, o G(z)Z(k,
=elkx[1+f dz (Z) l( z)l

and

B fkoe( ik [* (1-m)

. x G(2)Z,(k,z)
— tkx ——
[1 + f_ ) dz Y

—e”“exp(—-Zikfx [l-H])
0

x G(z2)Z,(k,z)
X f_m %

Xexp(—Zikz—l—Zik fz[l—H]). (4.12)
0

Then from (4.11) and (4.12) the transmission and re-
flection coefficients are obtained as

T(k) exp(zk J-jw [1 ——H])

o G(2)Z\(k,z)
X[1+ f—w dz—-——~——2ik J,

1 ®
T_Uc—}:exP(ik f_ [1 ——H])
« G(2)Z,(k,z)
X[l—f- f_w dZT],
L k) ® 0
T—§k3=—exp(ikf0 [1——H]-—ikf_

w  G(2)Zikz)
X[l—H])f_w dz ————=

Xexp(Zikz——2ik f [1 —H]),
0
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R(k) 0 o
N , 1— .
T exp(zk f_w [ H] — ik fo

w  G(2)Z(k2)
X [1 —H]) fw dz ——5

t4
Xexp( — 2ikz 4 2ik f [1 —H]).
0

From the above expressions, as |k| - o we obtain
T(k) =exp( ik f“’ [ —H])[l
0 ©
L(k)=—exp(—2ikf [I—H])[f dz

G(2) . . [
X —ﬁc—exp(szz—sz fo [1 —H])}

} keET,

+ O(1/K?), keR,
R(k)=—exp(-2ik f:[l—H])U” dz
G(z)

zZ
X ik exp(-—-2ikz+2ikJ.o[1—H])]

+ O(1/k%), keR. (4.13)

V. BOUND STATES

In this section we study the bound-state solutions of
(1.1). We assume that P(x) and Q(x) are bounded,
PQEL (R), and P(x)<1. Then, a multiplication by
Q(x) or by 1 — P(x) is a bounded operator on L?(R). By
definition, a bound-state solution of (1.1) is a solution
¥(k,x) belonging to L*(R) such that ¢"(k,) -+ [k
X(1— P(-)) — Q(*)]¢(k,) also belongs to L2(R). Due
to the boundedness of P(x) and Q(x), the bound-state
solutions of (1.1) thus belong to the domain of the
Hamiltonian Hy = — d?/dx*.

Proposition 3.1: The bound-state energies for (1.1)
correspond to the zeros of k/T'(k) in C* and can only
occur on the imaginary axis in C*. There is never a
bound state at zero energy.

Proof: Bound states when k%> 0 are ruled out owing
to the asymptotic behavior of the Jost solutions and their
complex conjugates [see (3.11) and (3.12)]. Note that
Silk,x) and f,(k,x) are linearly independent and that no
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linear combination of them can lie in L>(R). Thus there
cannot be any bound states when keR\ {0}.
The Wronskian identity

[filkx)if (kx)] = — 2ik/T(k) (5.1)

derived from (4.8) implies that, for keC*, the Jost so-
lutions f,(k,x) and f,(k,x) are linearly dependent if and
only if T (k) has a pole at k. As seen from (3.11) and
(3.12), f,(k,x) vanishes exponentially as x— + o and
fr(k,x) vanishes exponentially as x—» — . Thus, when-
ever f,(k,x) and f,(k,x) are linearly dependent, as x—
=+ 0, we obtain an exponentially decaying solution of
(1.1) and hence there is a bound state at k. On the other
hand, if 7' (k) does not have a pole at &, then since we are
in the limit-point case at both endpoints =+ «, any solu-
tion that is square-integrable at — w[ + o] must be a
multiple of f,(k,x) [ fi(k,x)]. Hence, if any nontrivial
combination of the Jost solutions were in L*(R), then it
would have to be a multiple of both f,(k,x) and f,(k,x).
Since f)(k,x) and f,(k,x) are linearly independent, this is
impossible and hence — k? cannot be a bound state.

As the analysis in Sec. IV shows, for k<R, the
Wronskian in (5.1) is nonzero with only one exception;
namely, at k = 0 in the exceptional case. In the generic
case, the Wronskian in (5.1) is nonzero, even at k = 0.
However, k =0 in either case does not correspond to a
bound state. This can be seen by noting that for k =0,
(1.1) reduces to the ordinary Schrédinger equation at
k =0, which is given by ¥" = Q(x), and it is known
that the ordinary Schriddinger equation does not have a
bound-state solution at zero energy“'”’16 when QeL} (R).

In order to prove that the bound states can only oc-
cur on the imaginary axis in C*, we proceed as follows.
Since P(x) is real, from (1.1) we have

(. HY) = (Y,K*(1 — P)y)

=k2f°° dyl1— PO |k % (5.2)

(HY, 85 = (21 = PYg )
- ff dyl1— PO |9k |5 (5.3)

where H = — d%/dx? + Q(x). Because Q(x) is real, H is
a self-adjoint operator; using P(x) <1, from (5.2) and
(5.3), we see that at a bound state we have k% = P,
which can occur only when k is on the real axis or on the
imaginary axis. However, above we have already ex-
cluded bound states for real k. . ]

Proposition 5.2: Each zero of k/T(k) in C* is a sim-
ple zero.

Proof: From the analysis in Sec. IV we know that
k/T (k) has either no zeros at k = 0 (generic case) or has
a simple zero at k=0 (exceptional case). Thus let us
consider k € C* \{0}. Let an overdot indicate the deriv-
ative with respect to k. Then, from (1.1), we obtain the
identities

Lk ()]

= 2k[1 — P(x)1f(k,x)f,(k,x), (5.4)
d .
xl S1Ckx)if (kx) ]

= — 2k[1 — P(0) 1fikx) £, (Kx). (5.5)

Adding (5.4) and (5.5) we see that
d .
a?[f[(ksx);.fr(k,x)] = [f[(kyx);fr(k!x)]

+ [ fikx); Fkx)] (5.6)

is independent of x. From (5.1) it is seen that the expres-
sion in (5.6) is equal to — (d/dk)[2ik/T(k)]. Hence, in
order to show that each zero of k/T (k) is a simple zero
in C*, it is enough to show that the right-hand side of
(5.6) does not vanish at a bound-state energy. At the
bound state k=B, the functions f,(iB,x), f,(iBx),
fi(iBx), and f(iBx) all vanish as x— =+ 0, and
[AiBx) =c(B)fi(iB,x) for a nonzero constant c(fB).
Thus, from (5.4) and (5.5), using the fact that
Uilkx);f,(kx)] vanishes as x— 4 o and that
[fi(k.x);f,(k,x)] vanishes as x— — 0, we obtain

[ FiCiBx);f (iBx)]
= —2ie(B) |7 ayl1 — PO AiBY,
[ FiB.X)1f (iBx) ]

~ —2iBe(B) f A1 — PO 1F B
and hence
[ F1GBx)f(iBx)] + [ fi(iBx)if (iB,x) ]
= —2iBc(B) f Tyl — POy (5.7)

Due to the fact that f)( — k,x) = f,(kx) forkeCT, it
follows that £,(iB,x), f,(iB,x), and ¢(B) are all real. Thus
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the integral in (5.7) cannot be zero. Hence, comparing
(5.6) and (5.7), we see that — (d/dk)[2ik/T(k)] is
nonzero at a bound state and thus the zeros of k/T'(k) in
C+ are simple. |

Proposition 5.3: The number of bound states for (1.1)
is finite.

Proofr Note that 1/T(k) cannot vanish on the real
axis because | T'(k) | <1 for keR. Due to the analyticity of
filkx), f(kx), f](kx), and fl(kx) for keC™, as seen
from (5.1), k/T(k) is also analytic in C*, and hence
k/T (k) can have only isolated zeros in C™*. As seen from
(4.13), as k— « in C™, the quantity

ik exp( —ik §° _[1—H])
T(k)

grows like | k| in absolute value and hence k/T(k) can-
not have zeros for large enough |k|. Furthermore, as
seen from the analysis in Sec. IV, the quantity k/T(k)
either has an isolated simple zero at k =0 (exceptional
case) or no zero at k = 0 (generic case). Hence k/T(k)
can only have isolated zeros in a bounded region of
Q , and by Proposition 5.2 each zero of k/T(k) in
C+ is simple. Hence, by Proposition 5.1 and the analy-
ticity of k/T(k) in C™*, the number of bound states,
which is equal to the number of zeros of k/T(k) in C ™,
must be finite. | ]

When Q(x) >0, we will show that there cannot be a
bound state. Note that for Q(x)>0, 1 — P(x) >0, and
k* <0, using the fact the Hy = — d?/dx* is a non-nega-
tive self-adjoint operator, we see from (1.1) that

— (Hoth, ) + K[ 1 — P||* = (Qu ). (5.8)

Hence, the left-hand side of (5.8) is nonpositive and its
right-hand side is non-negative, which can only occur
when ¥=0. Thus, there cannot be any bound states when
Q(x)>0.

Let .#7(Q,P) denote the number of bound states for
(1.1), which is the same as the number of discrete eigen-
values of (1.1). The next result shows that .#°(Q,P)
=.1"(Q,P=0), hence, if Q(x) has a negative part and
thus the possibility of bound states exists, the number of
bound states of (1.1) does not depend on P(x).

Proposition 5.4: The number of bound states for (1.1)
is independent of P(x).

Prooft In order to prove that .+ (Q,P) = 4"(Q,P
=0), we will use a variant of the Birman-Schwinger
kernel.!” Let Qx) =0, (x) —Q@_(x), where @, (x)
= max{Q(x),0} and Q_ (x) = max{ — Q(x),0}. Let ¢
= O_1, and let k = iB so that k2 = — B% note that
B >0 at a bound state because, as shown in Proposition
5.1, the bound states can only occur when X is on the
imaginary axis in C*. Then, we can write (1.1) as

@ =K pp, (5.9)

where

2 —1

d
Hp= @ | =72+ Q4 +FU-P)| JO_

is a version of the Birman-Schwinger kernel. The opera-
tor % g is positive and self-adjoint. It is also.compact,
as the following inequalities show. Let P,
= suP,eg P(x) < 1and P, = infg P(x). Then, in the
sense of operator inequalities, we have

-1
JO_ <%

d2
— gm0y + B = Poyy)

Jo-

42 -1
<VQ-| —72+ Qs +FU—Puy) | O,

(5.10)

and since @ (x)>0, we have

Vo

2

d -1
— 2+ Q@+ +FU—Pu)| O

d2 -1
<J’QT[—;;+B2(1—PM)} Vo  (ap

The operator appearing on the right-hand side in (5.11)
contains the  kernel Q_(x)2a)~ leg—alx—yl
X {@_ (y), where ¢ = By1 — P,,,, and, as a conse-
quence, is Hilbert-Schmidt because Q _eL!(R). This im-
plies via (5.11) and (5.10) that %4 is compact. The
latter follows from the fact that if 4 and B are positive
operators such that A<LB, then
dim E, ,,(4)<dim E, ,,(B) for every a>0. Here
E 4 )(4) denotes the spectral projection
of A for the interval (a,0). For if dim E, ., ,(4)
>dim E(, ,,,(B) then there would exist a unit vector @
in the range of E, .,(4), which is perpendicular to the
range of E(, ,(B). Then ($,4AP) > a while (®,BP)<a,
contradicting A<B. By the spectral theorem it follows
that 4 is compact if B is compact.

Returning to (5.9) we see that %4 has eigenvalue 1
if and only if — 8% is an eigenvalue of (1.1). Moreover, as
functions of B the eigenvalues of %" are strictly decreas-
ing and approach zero as S— 4 . Hence, if B3>0 is
fixed, the number of eigenvalues of %~ 5, that are strictly
greater than 1 is equal to the number of eigenvalues of
(1.1) which are strictly less than — f85. Since By>0 is
arbitrary, (5.10) immediately translates into

‘/V.(Q,Pmin)<'/’/(Q,P)<~/‘/(Q1Pmax)'
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However, A4 (Q,Py;,) = A4(0,0) = A4 (Q,Py,,) for if
— % is an eigenvalue of (1.1) with P=0, then — B%/[1
— P_..] is an eigenvalue of (1.1) with P=P,,, and —
B%/[1 — Ppy,] is an eigenvalue of (1.1) with P=P_;.
Thus the proof is complete. [ |

For the ordinary Schrédinger equation, the Levinson
theorem specifies the relation between the number of
bound states and the phase of T°(k). The Levinson theo-
rem for (1.1) can be stated for the phase of
T(k)exp(ik§® _[1 — H]). As seen from (4.13),
T'(k)exp(ik§= ,[1—H]) converges to 1 as k—oo in
C*, and hence, we can use the argument principle for the
contour that consists of the real axis and the semicircle of
infinite radius in C*. Let .4” be the number of bound
states for (1.1) and let @(k) denote the phase of
T(k)exp(ik§® _[1 — H]). One then obtains the Levin-
son theorem for (1.1)

m(A —3), generic case,
O0+)—-0(+ »)= )
w4/, exceptional case.

As in the case of the regular Schrédinger equation in one
dimension, since in the Levinson theorem the phases dif-
fer by 3 in the generic and exceptional cases, we will say
that there is a half-bound state at zero energy in the
exceptional case.

Vi. RECOVERY OF Q(x)

In this section the sufficient assumptions are P(x) < 1
and P,QeL}(R). We will show that the potential Q(x)

T(k)exp(ik f‘” [ —H])

Alkx) =

Let 1= [{] From Sec. III it is known that Z(k,x) is
continuous in k € C* and has an analytic extension in k
to C* for each x, while Z(k,x) — 1= O(1/k) as k— =
in C*. The continuity of Z(k,x) at kK =0 can be seen
from (3.24) and (3.25) and the continuity of m;(k,x)
and of m,(k,x). Similarly, Z( — k,x) is continuous in
ke C~ and has an analytlc extension in k to C~ for each
x,and Z( — k,x) — 1= O(1/k) ask— « in c- . Hence,
solving (6.2) for Z( — k,x) and Z(k,x) when A(k,x) is
known constitutes a Riemann—Hilbert problem.%'®!
There are various methods to solve this Riemann—Hilbert
problem, such as the Marchenko method,”* the
Gel'fand-Levitan method,” Newton’s generalization of
the Marchenko and Gel’fand~Levitan methods,® the

4. Maih. Phys., Val. 33, No. §

—L(k)exp( — 2ikx + 2ik fx [1 ——H])

can be recovered when the scattering matrix S(k) and
the other potential P(x) are known. In fact, one of the
reflection coefficients determines the potential Q(x).
When there are bound states, the norming constants must
be specified for each bound state in order to obtain the
potential uniquely.

Since k appears as k2 in (1.1), ¥,( — k,x) and ¥,(
— k,x) are also solutions of (1.1) whenever ¥,(k,x) and
¥,(k,x) are the physical solutions. Using (2.1) and (2.2)
as well as (4.9) and (4.10), the solution vectors

¢I( — k’x)
Ip( —kx) = [¢r( — k,x)

and

Y (k,x)
$lkx) = [¢ o

are found to be related to each other as

111( _k:x) = —'k)tqll}(kax)» kERa (6~1)

where ¢ = [J 1] Letting Z(k,x) = [;’((’,2’;))] and using

(4.7), (3.4), (3.5), (3.22), and (3.23), we can write
(6.1) as
Z( — kx) = Alk,x)gZ(k,x), keR, (6.2)

where

—-R(k)exp(Zikx + 2ik f‘” [1— H])

T(k)exp (ikfw [I—H])

r

Wiener-Hopf  factorization  method,® and  the
Muskhelishvili-Vekua method.*!!

Below we will solve (6.2) by the Marchenko method.
From (6.2), letting I = [(1, (17], we obtain

Z(— kx) — 1= [Alkx) —T1g[Z(kx) — 1]

+qlZ(kx) — 1] + [Alkx) — 1T,
(6.3)

and using the Fourier transform, we transform (6.3) into

8, May 1992
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By = [ T eMIAGx) ~TiglZ(km) — 1)
® dk ik ~

+ f Zrel Y[A(kx) —I11 + gB(x, —y),

) (6.4)

where we have defined

o dk . ~
B(xy) = f = e~ [ Z(kx) — T).

—w 2

As in Sec. V, we will use ./ to denote the number of
bound states that occur at k = if3,,...,i8_ ;. Note that from
the analysis in Sec. IV, we have A(k,x) =14 O(1/k) as
k— + . From (4.18) and the properties of T'(k) in
C* that are established in Sec. IV, it follows that
T'(k)exp(ikSf= [1 — H]) is continuous for k € C, is
meromorphic for keC* with poles at k = iB,...,i8 4, and
behaves like 1 + O(1/k) as k— o0 in C*. Let

o dk
u(y) = f_w Ee”"[ T (k)

Xexp(ik f:, [l—H])—l].

Then we have

N
up)=— 2 Ee™%, y>0, (6.5)
ji=
where

exp(—BSZ [1 —H])

5= 5= @l = P@) /1B, [ Br)

(6.6)

Note that in order to obtain (6.6), we have used (5.1)
and (5.7) and the residues of T(k) at the bound states.
From the analytic and asymptotic properties studied
in Sec. IIl, we see that the functions Z;(k,x) — 1 and
Z,(k,x) — 1 belong to the Hardy space of L? functions in
k with analytic continuations to C* and hence their Fou-
rier transforms are L? functions in y with support in
[0,0); i.e., Bi(x,y) = B,(x,p) = 0 for y <0, where

o dk "
Bi(x,y) = f 7 [Z)(k,x) — 1]e™ ™, (6.7)
o dk "
B,(x,y) = f Zr [Z,(kx) —1]e ", (6.8)
and hence

Zy(kx) =1 + f dy By(x.p)e™, (6.9)
0

Z(kx) =1+ fw dy B,(ky)e™. (6.10)
0

From (3.26) it is seen that B;(x,y) and B,(x,p) are real.
Introducing

© dk .
g = [ S-ePlAGm -1,

© dk
)=~ [ SR

- 0

Xexp(2ikx + 2ik fm [1 —H])e”‘y,
¥ (6.11)

o dk
st =~ [* o

Xexp( — 2ikx + 2ik f [1— H])e"ky,

from (6.4) we derive the 2X 1 system of integral equa-
tions,

B(x,p) =g(x )1 + gB(x, — )

+f dzg(xy+2)qB(x.2), yeR,

(6.12)

where we have

g/(x,}’)

g ()| T4 i

glxT= [

Note that for y>0, (6.12) gives us the two scalar equa-
tions
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Bi(x,y) =gi(x,y) +u(y) + f: dz g/(x,y + z)B/(x,z) u(y) + f: dz u(y + z)B/(x,z)
N [-+]
+ f dzu(y +z)B,(x,z), y>0, = — Z e‘ﬂi"Ej[I + f dz e B7B)(x,z)
0 =1 °
(6.13) .
= — z e_nyEjZI(iB],x). (6.17)
ji=1

B.(xp) =g (xy) + u(y) + J dz g.(x,y + z)B,(x,z)
0 . On the other hand, from (6.6) and (6.15) we have, for

® y>0,

+ fo dzu(y+DB(xz), y>0. (6.14)

N

2 |CBx)Ee~% + J dz C(Byx)
Although (6.13) and (6.14) seem to be coupled at a first i=1 0
glance, using (6.5) and (6.6) and the fact that f;(k,x) B+
and f,(k,x) are linearly dependent if k=iB, we will XEg™" By(x,2)
show that (6.13) and (6.14) can actually be uncoupled.
As in Sec. V, let us use c(Bj) to denote the proportional- ol _p, o g
ity constants at bound states; ie., let f,(iBx) = '21 C(Bpx)e™ 7. Ej[l + fo dz e "7B)(x.z)
= c(B)f1(iB;x). Then, using (3.4), (3.5), (3.20), and =

(3.21), we obtain Z,(iBj-,x) = C(Byx)Z/(iByx), where we N
have defined = Y C(Bpx)e WEZ(iBx), (6.18)
ji=1
x as well as
o] N 1 s © 1
- - By —_—
2 cao 7 Jy )
Xexp( —B; f“;’ [1 —-H])
X Eje_Bj(y+z)Br(x’z)
0
xewp(p, [ 111}, (6.15) ” w
- = — e~ BVE, ~ Bz
jgl B e E,[l + fo dz e~ P7B.(x,z)
From (6.5), we have, for y>0,
N
1
- — — e~ BYEZ (iB.x). 6.19
u(y) + f dz u(y + z)B,(x,z) jgl C(Byx) ¢ 72 (iByx) ¢ )
o]
Now let
N © s
= — -ByE, - Bz
jgl e EJ[I + J;) dz e~ ’7B,(x,z) Q%) =glxy) — ’21 C(Bj,x)Eje‘Bf"’,
i=
S et 3
= - e PPE; r(iB'x)y (6~16) = — —E,V
& ¢ RS 0,00) =g 09) = X Gpy B
as well as or, using (6.6) and (6.15),
|
& e~ exp( = 2845 [1 — HDexp( — 2B,5H)
Quxy) =gixy) = 2 P B, , (6.20)
L e Prexp( —2B4° 1 — H])exp(2B,55H)
Q.(xp) =g xp) — 2 s - (6:21)

ol 5 dz[1 — P(2)1f(iB;z)’
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Using Z,(iBpx) = C(Bpx) Z)(iB;x) as well as (6.16),
(6.17), (6.18), and (6.19), we can write (6.13) and
(6.14) as

Bi(x,y) = Q(xy) + fo dz Q,(x,y + z)B(x,z),

>0, (6.22)

B,(xp) = Q(xy) + f: dz Q,(xy + 2)B,(x,2),

y>0. (6.23)

The equations given in (6.22) and (6.23) are the March-
enko equations. Note that the scattering data given in
(6.20) and (6.21) indicate that in the presence of bound
states, for the unique solvability of the Marchenko equa-
tions, at each bound state the constants «,(53;) and K,(Bj)
must be specified, where

© 4 o dk G
By = [ az " o

+ J.:, dz f: d& fiow Z%G(Z)Bl(z,é’)

xi(B)) = \Ff f dz[1 — P(2)1fiBy2)*,

x(B) = \/ fw dz[1 — P(2)1£(iBs2)? .

This is the counterpart of specifying the norming con-
stants for the inverse problem*® for the regular Schro-
dinger equation.

Let us write (3.16) as

Zykx) —1= f‘” dz & (kx,z) + f " dz L (kx,2)

X[ Z[(kz) —1].

Taking the Fourier transform of both sides and using
(3.13), (3.15), (6.7) as well as the realness of B/(x,y),
we obtain, for y> 0,

— sin(ky) — sin( — ky + 2k fz H)l

Using §*  dk[sin(yk)/k] = w6(y), where 6(y) is the sign function, we can write (6.24) as

1 (o
Bixy)= —¢ f dz

X

x[e(g—y)—e(g_y+z

Similarly, one obtains,

1 X
B(xy) =7 f dz

«©

x[oe-»-o(e-y +2 | H)]G(z)B,<z,§).

Hence, from (6.25) and (6.26), we obtain

1 (e
Bi(x0+) = ‘if dz G(2),

] X
B(x0+) = —3 f dz G(2),

o(y) +9( —y+2sz)

—e(y)—e(—y+2f:f1)

sin(kE — ky) —sin(k§—ky+2k f H)] (6.24)
1 o o
G(Z)+Zf dzf d¢
X 0
H) G(z)B/(z,€). (6.25)
1 X 0
G(z)+zf dzfo dé
(6.26)
I
and thus we have
dB,(x,0 dB,(x,0
SR ICTES IR 1T RS

where the derivative exists for almost every xeR. As a
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consequence, using (1.6), Q(x) can be recovered from
the solution of either of the Marchenko equations (6.22)
and (6.23).

Let us define

ol(x) = f:’ dz |G(2)|,

x (6.28)
o,(x) = f dz|G(2)|,

T(x) = J.w dz o/(z),

x (6.29)
T(x) = f dz o,(z).

Note that from (6.28) and (6.29), we obtain

T(x) = rw dz(z — x)|G(2)|,

and

T{x) = fx dz(x — z) | G(2)].

Proposition 6.1: If G € L}(R), the integral equations
(6.25) and (6.26) are uniquely solvable for B,(x,y) and
B,(x,y), respectively. Furthermore, the solutions satisfy

| Bi(x.p) | <3 01(x + y/ (2M) ) MU0 = mitx + 37 QMM
(6.30)

| B (x,) | <3 0,(x — p/(2M) )M 17=) =7l =y MO,

where M is the constant in (1.3), and o}, o, 75 and 7, are
the quantities defined in (6.28) and (6.29).

Proof: Note that from (6.28) we have (d/dx)7,(x)"
= —nrx)"~ lo/(x) for n>1. Note also that o,(x) and
7/(x) are decreasing functions of x, and if G L{(R), we

iBn+1(x,y)|<~f dzf dg|G(2)| | B, (z§>|< f dzf d§iG(z)|cr,(z+ f”)

3
dz|G(z) a( )
4n'f fx+(y £)/(2M) | | 2M

J. Math. Phys, Vel 33, No, 5,

have o) — ) < + « and 7/{x) < + « for each x. Let
us omit the subscript from B;(x,y) for simplicity. From
(6.25) we have

B(x,p) = Bo(x.y) + -21 B(x.),
e

where

1 (=
By(x,y) = -2 f dz! 6(y)

+9(-—y+2£ H)
-1 [ ae [ agoce -3 —o(5—»
+2 [ n)

Then we have

G(2),

B, (xp)

G(z)B,(z,£), n>0.

2.0 <5 "’(”w) i) = (x+"274)m

for n>0. The proof is by induction and as follows. Since
H(x)<M, we have —y+42f2H< —y+2M(z—Xx).
Thus the term 6(y) + 6( —y + 2§ 2H) vanishes when
—y+ 2M(z — x) <0. Hence the integration for By(x,y)
vanishes when z<x + y/(2M) and

| Bo(x.p) | <5 f dz
x4+ y/(2M)

vo(—y+2 [ #)[I6@)]

dz|G(z)| = —a,(x +

16D)]

2

i WM M )

Assume for n, the induction hypothesis holds. Since
O<H(x)<M, 8(&—yp) —6(& —y+2f°H) vanishes if
E—y>00rif§—y+2M(z—x) <0. Thus we have

T(z) — »r,(z + —Zi_l) ]

T(z) — TI(Z + '21%) ]

May 1002
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~an J-
n

f x+ y/(2M)
M

iy f f
<anl ’( 2M> x+y/<zm

ol ) 7 I, 41
— oyl x u u—

“am M| Jxi0m 0
<Mna(x+y)fw du T(u—L)——T(u)
ant ™! 2M) J s yom ! 2M !
—yr—la(x—{- 4 )fw du
- 2n! ! 2M X+ y/(2M)
L e 2 Ve Ea
=2 tat O T o) | =T X+ 5y

Hence the induction proof is complete and we obtain
(6.30). Thus (6.25) is uniquely solvable and the solution
can be obtained using iteration. The proof for the unique
solvability for (6.26) and the bound on its solution can be
obtained in a similar way. [ ]

Proposition 6.2: If G e L} (R), the solution B)(x,p) of
(6.25) satisfies the partial differential equation,

a
ax

d 1 4

1
dy ~ 2H(x) ox G(X)BI(X,y)

BI(X,Y)

(6.31)
and the solution B,(x,y) of (6.26) satisfies the partial
differential equation,

]
dx

d 1

J 1
@ -+ _ZH_(x—)-‘a B,(x,y) = — E G(X)Br(xd’)-

(6.32)

Proof: Let us first work on Bj(x,y) of (6.25). Since
db(x)/dx = 26(x), where 8(x) is the Dirac delta distri-
bution, we have, in the sense of distributions,

9 L (" &ls
5Bz(x,y)= _EJ; 2[ )
J.7)
x fo " dg[—a(g—y)

fera 1)

or, equivalently,

1 ©
—6(—y+2 6@ +5 [ a

G(2)B(z,£),

J. Math. Phiys., Voi.

fe—slloco]

Jo{e-2w)

7'1(11 - 5‘7) — 7(u)

1733

n

(4= 337) 0
o
o
;o am)

[a,(u - %) —ou)

n

n

)

n+1

5(») —6( —y+2 L

1 s
X G(z) +3 f dz G(Z)[ — Bi(z,p)

+B,(z,y— 2 L H)]

On the other hand,

gl

aB 1 (= d
5; l(x’y)—' ""i' J; Z

d © z
= Bi(xy) = H() f dzs(—y+2 f H)G(z)'

+ H(x) f " & G(z)B,(z,y _2 f H).

Thus we have

1 a
Bi(x’y)

1 I
5 -5 [ e,

(6.33)

from which (6.31) follows. The proof for B,(x,y) is sim-
ilar. By differentiating (6.26) we obtain

1 X
Baw =3 [ do@Be),

3
[8y 2H(x) 3x

from which we obtain (6.32). ]

From (6.33), using (6.30), we have the estimate

33, No. 5, May 1992
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3 ]
‘ [5} T 2H(x) dx

1 o
B[ <5 [ de|6) | 1Bay)|

1 (e y
- i [7(2) =tz + y/(2M))]
<4 J; dz|G(z) |a,(z+ 2A{)eM

<.;_ O'I(X + %)eM[n(x) —1(x+y/(2M))) Jw dz|G(z)|

1 y
- A, [r(x) ~ r{x + y/(2M))]
<3 oz(x)az(x +3 M)e‘“ .

The next theorem shows that the Marchenko equa-
tions given in (6.22) and (6.23) are uniquely solvable.

Theorem 6.3: Suppose the potential P(x) is bounded
below, 1 — HeL'(R), P(x) <1, and G € L}(R),where G
is the quantity defined in (1.6). Then the Marchenko
integral operators are self-adjoint and compact on
L*(0,%), and the Marchenko integral equations (6.22)
and (6.23) are uniquely solvable.

Prooft Note that the reflection coefficients R(k) and
L(k) are continuous for k€R, are of O(1/k) as k— = =
and belong to L?(R). We will only prove the unique
solvability of (6.22); the proof for (6.23) is similar. Let
us introduce the linear operators %, 5, and Q, by

@B = [7 dzgey + 0BG,
‘/;/- o0

FBW = — 3 CBEe |7 dre= o),
j=

(QB) () = fo ® dz Quxy +2)B(2).

Then ¥,is compact on L*(0, ) as a result of the lemma
in the Appendix and 7, is compact as a result of the
square integrability of its kernel. Thus Q;= ¥, + 77, is
compact on L?*(0,c0 ).

From (4.8) it follows that g,(x,y) is real and from
(6.20) it is seen that ,(x,p) is real. Since in (6.22) y and
z appear as y + z in the argument of the kernel, the

C(BX)E; =

Marchenko integral operator {}; has a symmetric kernel.
Hence, since (), is also bounded, it is self-adjoint.

The proof of the unique solvability of (6.22) is sim-
ilar to the proof given in Ref. 19. Since , is a compact
operator, it suffices to show that the homogeneous
Marchenko equation n(y) = (Qm) (y) has no nontrivial
solutions; i.e., if 7(p) is a solution of

7() = f: dz g%y + ) (2)

‘/V‘ o0
+ 2 cBmELy [T g,
j=1 0

then 7(y) vanishes identically. Here {i(z) = e B7. Let
{,*) denote the usual inner product on L*(0,c0). Then
we have

0=(IX—-Qpnm

1
2w

fw dk[1+R(k)
Xexp(2ikx+2ik fw [1—H])][ﬁ(k)|2

N
+ 2 CBE|ng) 17 (6.34)
i

where /ﬁ(k) is the Fourier transform of 7n(y) and

c(Bexp( —2BS3H — BS& 11 — HY + Bs° 11— H] — By~ 1 —H])>O

5= dzl1 — P(2) | f(iB:2) F (iBy2) ’
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in view of fi(iByz) = ¢(B)f,(iBpz) and 1 — P>0. Asa
result of these inequalities and | R(k)| < 1 for all nonzero
real k, we obtain from (6.34),

2k =0 and (m&) == (nLy) =0,

whence 7(y) =0. |

Vii. BOUNDS ON THE KERNELS OF THE
MARCHENKO OPERATORS

In this section, under the assumption that the solu-
tion of each Marchenko equation through (6.27) leads to
G(x) satisfying G e L} (R), we will obtain some estimates
on the kernels given in (6.20) and (6.21).

Proposition 7.1: Assume G(x) obtained from the so-
lution of each Marchenko equation using (6.27) satisfies
G e LI(R). Then the kernels of the Marchenko equations
(6.22) and (6.23) satisfy

|Q,0x0) | <L 0y(x) MR MIMHD 1)

From the Marchenko equation (6.22), letting s = x
+ S2[1 — H] + y/2, we obtain

w,(s):B,(x,Zs—Zx——Z f: [I—H])

—2 fw dt By(x,2t — 25)o(1). (1.3)

Similarly, from (6.11) and (6.21) it is seen that Q,(x,y)
is a function of — x + S* _[1 — H] + y/2. Equation
(7.3), being a Volterra equation, is uniquely solvable for
®,(s). For simplicity, let us drop the subscript / in B, w,
o5, and 7. We then have o(s) = 2;°= ocoj(s), where wy(s)
= B(x,25s — 2x — 2f[1 — H]) and

coj(s) = —2 fw dtB(x,Zt—Zs)a)j_l(t), Jj>1.

Using (6.30) we obtain

(7.1)
|2,(x.9) | <4 0,(x) MrADMIH ~ 1) | B(x,2¢ — 25) | < 0 (x + p/ (2M) ) M7 = Mrx-45/ 20D,
), ’ (74)
where M is the constant defined in (1.3) and o,(x), . (x)
o,(x), 7(x), and 7(x) are the functions defined in Thus we have |ao(s)|< io(x)eMT . Assume
(6.28) and (6.29). i
Proof: We will give the proof for Q,(x,p) only; the |0n(s) | <= o'(x) eM'r(x)[ fw "
proof for ,(x,p) is similar. From (6.11) and (6.20) it is 2n! s
seen that Q,(x,p) is a function of x + § 3°[1 — H] + y/2.
n
Let ol x 4 L=\ Mrt) ~ ot + t—sim |
M
® y
w,(x + J; [1-H]+ 2) = Qy(x.). (7.2) Then by induction using (7.4) we obtain
]
o(x)eM™®) o t—s
U T(x) — M7(x + (t—s)/M)
om0 < | dto(x+ - )eM 0~ Mrte+
© z—5§ "
X[ f dz a(x+ )eMr(x)——M‘r(x+(z-—s)/M)]
. M
1 * =5\ ptete) — mret - |
_— T(x) o 7(x) — Mr(x+ (t -5
_2(n+1)!o(x)eM [fs dta(x—{— i )eM
Thus through summation we obtain
1 T(x) ® TS\ Mrx) — Mrix 4 (1 5)/M) 1 (x) , MM _ 1]
|w(s) | <3 a(x)eM™Pexp f dio|x + — M =1o(x)eM XM , (7.5)
s
and hence, replacing s by x + ([l — H] + y/2 and using (7.2), we obtain (7.1). |

Proposition 7.2: Assume G(x) obtained from the solution of each Marchenko equation using (6.27) satisfies G
€ L,l( R).Then the derivatives of the kernels of the Marchenko equations (6.22) and (6.23) satisfy

Jd. Math. Phys., Vol. 33, Mo. 5, May 1982



1736 Aktosun, Klaus, and van der Mee: Scattering and inverse scattering

d G(x) where M is the constant defined in (1.3), and o, 0, 75
ax Qy(x,0) — _2H_(x_5 and T, are the quantities defined in (6.28) and (6.29).
Proof: We will give the proof only for (d/dx)Q,(x,0);
<1 +M 0 () 2eMIR) MM — 1, the proof for (d/dx)Q,(x,0) is similar. For simplicity, we
2 will again drop the subscript / in B, @, o), and 7,

Let y—0 in the Marchenko equation, which is equiv-
alent to letting s —» x + f7[1 — H] in (7.3). Let us use
the notation B;(x,y) and B,(x,y) for dB,(x,y)/dx and
dB(x,y)/dy, respectively. We then obtain

d G(x)
‘E ‘Q'r(xyo) — 2H(x)

1+M

< o (x)ZeM,rr(x)eM[eMr(x)

1

w(x+ on (1 —H]) =B(x,0)—2J‘w dtB(x,2t—2x—2fw [I—H])(o(t). (7.6)
x x+ f2[1~H] x
Taking the derivative of both sides of (7.6) with respect to x, we obtain

H(x)co’(x+ Jw [ -‘—H]) = By(x,0) +2H(x)3(x’0)‘"(x+ fw 1 _H]) -2 nom™
X x X+, 1=

X [Bl(x,Zt —2x—2 f [ —H]) ~ 2H(x)B2(x,2t —2x—2 J-:’ [1— H])]w(r).
1.7

From (6.33) we have

By(xy) — 2H(x)By(x,p) = H(x) fw dz G(2)B(z). (7.8)

Thus, using B,(x,0) =1G(x) and (7.8) in (7.7), we obtain

«© G(X) © © ©
co’(x+ J; [I—H]) —m=2B(x,O)w(x+ J; i —H]) —2 .L+;;°[1-H] dt w(t) J; dz G(z)

XB(z,2t—2x—2 f:’ [ —H]).

Thus we have

- G(x)
“"("*L “‘H]) )

<2|B(x0)|’ (x+ L“’ [1—H])[ +2 L”Hm“_m dt|o(D)|

xf: dzlG(z)l\B(z,Zt—Zx—2 f: [1—H])\.

Note that using (7.4) and (7.5), we have
® 1 2 M) _
2|B(x,0)| ‘w(x+ f [ —H])‘<§ o (x)2eM Ml -1

and

J. Math. Phys,, Vol. 33, No. &, May 1982
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2 fw dt|w(z)|f°° dz]G(z)l‘B(z,Zt—Zx—Z r [I—H])‘
x+ 7 [1-H] x x

<o (x)MT(x) MM llf dz|G(z) |
x+ 21— H]

t—x—§2[1—H]
Xexp )}

M

Mr(x) — MT(Z +

© M
<o (x) MR MM - '1[ f dz | G(z) |

Hence the proof is complete.

Proposition 7.3: Assume G € L{(R). Then the functions
o/(x) and o0,(x) defined in (6.28) satisfy

f " dx(1 + |x)orx)*<Cla)

and

[ axt1 + 1xhosmi<ca,

where C)(a) is a decreasing function of @ and C,(a) is an
increasing function of a.

Prooft We will give the proof for o,(x) only; the proof
for 0,(x) is similar. For simplicity, let us drop the sub-
script / in o, First note that

fw dx(1+ |x|)o(x)?
<max{0, — a}(1 + |a|)o( — |a]|)?

+o(0) f: dx(1+ |x])o(x).

Hence we only need to show that f3° dx(1 + x)o(x) is

finite.
We have

f” dx o(x)?<0(0) f‘” dx o(x)
0 0

and

fw dx xo(x)?
0

2

M

1 t—x— 71— H]
dt—a(z+ )

= (A;)a(x)zeMT(x)eM (M7 -],

- f: dxxf“’ |G| f“’ dz|G(2) |

<J:° dx fw dyy|G(y)| fw dz|G(z) |

< [7@slow|) [T ax [ aziee)
<(J:o dyy‘G(y)’)f: dx o(x).

Hence we only need to prove that (Fdx o(x) is finite.
This follows from

f: dx o(x) = f: dyf:dx|G(y)|

= |7 w1601 < + .

Thus the proof is complete. ]

Proposition 7.4: Assume G(x) obtained from the so-
lution of each Marchenko equation using (6.27) satisfies
G € L}(R), and infg H(z) > 0. We then have

f dx(1 + |x| | | e, (7.9)

Q0,(x,0) (7.10)

fa dx(1+ |x|)l <c,(a),

where ¢;(a) is a decreasing function of @ and ¢,(a) is an
increasing function of a.
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Proof: We will give the proof only for (d/dx)(x,0);
the proof for (d/dx)Q,(x,0) is similar. For simplicity, let
us drop the subscripts in Q,, o, and 7;. Using Proposition
7.2 we have

dQ(x,0
J dx(1+|x|)| (x )‘

G(x)
f dx(1+ le)HZH(x)

+ %U(X)zezr(")e"fm - 1]

-————meRH(t)f dx(1+ |x]) |G|

1 (—|a ®
5 i lege ""‘f dx(1+ |x])o(x)”

The first integral is finite because G € L}(R)and the sec-
ond integral is bounded, as shown in Proposition 7.3. W

Viil. PROPERTIES OF THE POTENTIAL

In this section, when the scattering data satisfy (7.9)
and (7.10), we show that G(x) obtained through (6.27)
from the solution of each Marchenko equation satisfies
Ge L} (R).We also show that the solution of each March-
enko equation leads to a solution of the Schrédinger
equation (1.1).

Note that (7.9) is equivalent to @; € L (a, 0 ),where
o,(t) is the function defined in (7.2). Deﬁne

yi(x) = fw dt|w] (1)) (8.1)

It is seen that y,(x) is a decreasing function of x that is
bounded on [a,0) for any real number a. Note that
[eo)(x) | <I;°dt|a;,(t)| and hence |w)(x)|<y,(x). Fur-
thermore, y;eL (a, ) because

fw dx y/(x)
= fw dx fm dt|wj(t) | <y,(a)max{0, — a}

+ fw dx fw dt|w;(t)| = Cs(a),
0 x

where we have defined

Cs(a) = y/(a)max{0, — a} + J:o detlo;(1)].
(8.2)

Proposition 8.1: Any solution in L'(0,00) of each of
the homogeneous Marchenko equations is bounded and
hence also belongs to L*(0,00).

Proof: We will give the proof for the homogeneous
version of the Marchenko equation (6.22) only. The cor-
responding proof for (6.23) is similar. Let heL'(0,00) be
a solution of

h(y)

= fwdzml X+ fw [1—H]+Z+
0 X 2

By using (8.1) we then get

z
E)h(z), y>0.

[h(p) |
<f dzlh(z)lf dt|ol ()]
0 x+ S — H) + y/2 + 2/2

-] -] y y4
= J:) dzlh(z)ly,(x—i— J; [1—H] +5+5)
<?’1(x+ fm[1~H]+;)[fow dz ]

Hence h(y) is bounded and since

h(z)

[ wrino < f: dylh(y)l'rz(x+ [fu-m

+§)[J:° dz|h(2) |
<~n(x+ fj[l—m)“: |h<z>|r,

the solution heL! (0, ) also belongs to L*(0,00). [ ]
Proposition 8.2: The Marchenko operators {2, and Q,
are compact in L' (0,0 ). Furthermore, ||(I—Q,) 7| is
uniformly bounded for xe[a,e0) and ||(I—Q,) 7' is
uniformly bounded for xe( — «,a] for any acR.
Prooft We will give the proof for (; only; the proof
for Q, is similar. For any heL'(0,0 ) we have

Q@A) (»)

o @ y z
= J; dzco,(x—l— J; [1-H] +5+§)h(z).

Then, as in the proof of Proposition 8.1, we have
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- 0 00 y
fo d}’l(ﬂﬁ)(}’H(L dyy,(x+£ [1—H]+-2-)

x[f: dz|h(2) | (8.3)

and

f: &y (R 5+ €) — () )|

Jo
0

€ z °°1 " y z
+'2'+§)—601(X+J; [1- ]+2+2)

<fw dz|h(z)
0

601<x+ fw [1-H] +}5)

(8.4)

and also

i
N

sz(x+ f: [1-H] +§)]-
(8.5)

fm dyl(ﬂzh)(y)|<U°° dz|h(z)|
N 0

Then, for any heL'(0,c0 ), using the properties of w,(¢)

[ aimeai<ia—ap = [~ a
0 0

implied by w; € L} (a, 0 ),we can conclude that the integral
in (8.3) is finite, the integral in (8.4) vanishes as €~0,
and the integral in (8.5) vanishes as N— + . There-
fore, all the three conditions in the Fréchet-Kolmogorov
compactness criterion”® are satisfied. Hence the March-
enko operator {}; maps bounded sets into relatively com-
pact sets, and thus Q; is a compact operator on L*(0, ).

From Theorem 6.3 it follows that 1 is not an eigen-
value of the operator €, defined on L*(0, ), and hence
from Proposition 8.1 it follows that 1 is not eigenvalue of
Q,in L'(0,00). As a result, the operator (I — )~ ex-
ists for each x. The norm continuity of , with respect to
x and the fact that ||| -0 as x— + o imply that for
each aeR, the L' norm |[(I—;) " is uniformly
bounded for xefa,« ). [ |

Proposition 8.3: The solution of the Marchenko equa-
tion (6.22) is unique in L'(0,00)NL%(0,00) for each
xela, ), and the solution of the Marchenko equation
(6.23) is unique in L'(0,00)NL%*(0,00) for each
xe( — o0,a], where a is any real number.

Proof: We will give the proof for (6.22) only. The
proof for (6.23) is similar. Let us write (6.22) as (I
—Q)B;=w;, We then obtain B;= (I—-Q) o,
Hence, in terms of the norm of (I — ;) ~ Yon LY(0,00),
we have

s [Tem)

<a—ap= 7 dym(x+ [T 11-m+3)

o0

<2||(1—n,)-‘||f

+I21—H]

where Cy(x 4§ ?[1 — H]) is the quantity given in
(8.2). |

Proposition 8.4: The solution B,(x,y) of the March-
enko equation (6.22) is bounded for each x€[g, « ), and
the solution B,(x,y) of the Marchenko equation (6.23) is
bounded for each xe{ — «,a], where a is any real num-
ber. Furthermore, these solutions vanish as y— 4 co.

Proof: We will give the proof for (6.22) only. The
proof for (6.23) is similar. From the Marchenko equa-
tion (6.22) we have

lBl(x,y)|<‘w,(x+ fw [1—H] +§)‘ + f: dz

arp<2|a -y ic(x+ [T 1-m)

X

ofx+ [T 11— +3)| 1B

<w(x+ fw [1—-H] +}5’)

X[l + J;) dz|B(x,z) |

<ceon(x+ [Tn-m+3),
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where

Cx) =1+2|(X—Q)~ 1||c3(x + fw [1— H}),
* (8.6)

where C;(x + § 2[1 — H]) is the quantity given in (8.2).
Since y£L'(a,0 ) for any aeR and y/( ) =0, the proof
is complete. |

Proposition 8.5: Suppose that Q,(x,y) obeys (7.9).
Then the solution B;(x,y) of the Marchenko equation
(6.22) has first partial derivatives (a.e.) such that (d/
9x)B/(x,")eL'(0,0) and (3/3y)B/(x, )eL'(0,0). Sim-
ilarly, when Q,(x,y) satisfies (7.10), for the solution
B,(x,y) of (6. 23) we have (3/9x)B,(x, YeL'(0, ) and
(8/3y)B,(x,)eL' (0,0).

Proof: We will give the proof only for (8/9x)B(x.p).
The proof for (3/dy)B;(x,y) and for the derivatives of
B.(x,p) is similar. From (6.22), we obtain

aBl(-xay)
ax

=H(x)w,'(x + F [1— H] +§) + H(x)

© , © y z
XJ dzw,(x+f [1-——H]+5+5)
0 x

N
<Jy o]
—lf duf dy

€~ AL (xp) — o} (x + f‘” [1—H] + ;)Hm

w,(x+u+f [1—H

< sup dy

O<u<e v0

In an analogous manner, using Proposition 8.4, it follows
that

lime~!

-0

fo dz AQ(x,p + z)B)(x + €,2),

exists pointwise a.e. as well as in the L! sense.
Now let us write (8.8) as

Aktosun, Klaus, and van der Mee:

Scattering and inverse scattering

X B(x,z) + fw dz
0

dB(x,z)
ox

xwz(x%—f:’[ H]+2 2)

y>0. (8.7)

Obtaining (8.7) from (6.22) through differentiation is
justified, as shown by the following argument. Letting

AB((xy) = B(x+€y) —B(xy) and AL(xy)
= Q)(x + €y) — Q;(x,p), from (6.22) we obtain
AeBl(x’y)

= AL (xy) + f: dz AQ(x,y +z)

X By(x + 62) + f: dz Qy(xy + 2)AB(x2). (8.8)

In order to prove that the pointwise limit of

e 1A Oy(x,p) exists a.e. and satisfies

lim e~ 'AQ)(x,) =w;(x+ fw {1—-H] +§)H(x),

€0

and that, in fact, the same limit exists in the L' sense
(with respect to y), we write down the inequalities

’w,(s—i— r [1—H] +?’2-)H(s) —w;(x+ r [1—H] +§)H(x)\
)H(x+u) —co,(x+ J:o [1—H] +§)H(x)\

m;(x+u+ F’ [1—H] +;)H(x+u)—w;(x+ fw [1— H] +;>H(x)’ .
X+ u x

—
AB(xy) = (1—Q) ‘1[A€Ql(x,y) + f: dz

X AL (x,y + 2)B)(x + €2)]. (8.9)

Since (I — Q) ~ 1is a bounded operator on L (0,0 ), we
conclude that lim,_y e~ 1AeB,(x, ») exists in the L' sense.
Hence, since Q,(x,y + z) is bounded, from (8.8) we can
conclude that
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lime~! J:o dz Qi x,y + 2)AB)(x,2)

€-0

exists pointwise a.e. as well as in the L' sense. Thus, from

(8.8) we see that lim,_ e~ 'AB/(x,y) = dB/(x,y)/dx

a.e. From (8.8) and (8.9) it follows that this partial de-

rivative satisfies (8.7) and is in L'(0,). [
Defining

1 3B/(xy)

o y
pi(x,p) =1—[1—(—x—)—ax———w;(x+ f [1—-H] +E s

.Ul(x,y)

4

_ f“’ dzw;(x+ f“’ [1—H] +§+2)B1(x,z)
0 x

w0 0 y Z
+f dzw,(x+f [1—H1+5+5)
0 x

@ z
Xw,’(x+ f [1—H]+§), (8.11)
X
we can write (8.7) as
pi(xp) = pxy) + fo dz
Xco,(x-{— J; [ —H]+§+5)
Xpix,z), y>0. (8.12)

Proposition 8.6: For each real constant a, the quantity
pix,p) defined in (8.10) is bounded and
p,(x,')eL'(O,oo ), uniformly in x on [a, ).

Proof: Using (8.11) and Proposition 8.3, we obtain

|pi(xp) |

<fw dz
0
+ fw dz
0

xw;(x+f°°[1-H]+§)

© y z
w;(x-{- f (1-H] +§+E)BI(X,Z)

X

w,(x+ on [1—H] +}§,+§)

X

x

<C5(x)'y,(x + J.m [1— H] +32’-)

where we have defined

Cstx) =20Cx) + 1n(x + [ 11— A1)
X
and C,(x) is the quantity defined in (8.6). Hence we

have the L! norm of y; satisfying

X

lull<csea) [ dym(x+ [T 11— m1+3)

= 2Cs(x)m,(x), (8.13)

where

ﬂ[(X) = f dt]col(t)l.
X
Thus from (8.12) we obtain

[P <l + | Q24

<C5(xm(x+ fw [1—-H] +;)

X

+7’1(x+ fw [1—H] +}§)>“P1!|- (8.14)

On the other hand, from (8.12) and (8.13) we have

Al <INCE— ) = llles]

<2Cs(x)m(x) [[(X—Qp 1, (8.15)

and thus (8.14) gives us

pl<n(x+ [7 1-m+3)

X [Cs(x) + 2Cs(x)m,(x) | (X— Q) 71,

and hence

- 2
pd<zfn(x+ [T—m+3)| 1+ G

X 1+ 2m0x) | (T — @) ~ 1|1 (8.16)

Thus from (8.16) it follows that p;(x,y) is bounded in x
and y on [a,00 ) XR ', where a is any real constant; from
(8.15) it follows that p,(x,- )eL'(0, 0 ), uniformly in x on
[a,0). [ ]

The next theorem shows that when the reflection co-
efficients are used as inputs to the Marchenko equations
(6.22) and (6.23), the quantity G(x) obtained by using
(6.27) satisfies GEL% (R) whenever the quantities in
(6.20) and (6.21) obtained from the scattering data sat-
isfy (7.9) and (7.10).
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Theorem 8.7: Assume that the quantities in (6.20)
and (6.21) that are obtained from the scattering data
satisfy (7.9) and (7.10) and that H(x) is bounded away
from 0. Then the quantity G(x) that is obtained from the
solutions of the Marchenko equations using (6.27) satis-
fies GeL!(R).

Proof: The proof will be given by proving that
52 dx(1+ |x|)|dB(x,0)/dx| and §°_ _ dx(1 + |x]|)
|dB,(x,0)/dx| are finite for each acR; we will only give
the proof of the former since the proof of the latter is
similar. From (8.10) it is seen that it suffices to prove
that £ dx(1 + |x|)|pi(x,0)| < + . From (8.16) it
is seen that this integral is finite if y% € L{(a,oo },where
v/(x) is the quantity defined in (8.1). Since y,(x) is
bounded in [a, ), it is enough for us to prove that
€ L}(O,oo ). The latter follows from the assumption w;
€ L}(a, o0 )and a repetition of the proof of Proposition 7.3.
Thus we obtain G/(2H)eLl(a,) and G/(2H)eL}(
— w,a) for any real number a. Hence G/ (ZH)EL}(R).
Since inf,.g H(x) > 0, it follows that G € L}(R). ]

Theorem 8.8: The solution of each of the Marchenko
equations leads to the solution of the Schrédinger equa-
tion (1.1). As a result, the solutions of the Marchenko
equations also lead to the solution of the Riemann-
Hilbert problem (6.2).

Proof: We will give the proof only for the Marchenko
equation (6.22); the proof for (6.23) is similar. Let
B)(x,y) be a solution of (6.22) and set

dB](X,O + )

G(x)=2 I

(8.17)

In the following steps we will make the assumption, in
addition to the properties of B,(x,y) stated in Proposition
8.5, that

(xy) — f: dz Quxy + 2)m(%,2)

a

=5;(_

@ J
+ fo dz Q,(x,y—{-z)a—x( —

a

18
y T HG) ax)

a

1
3 T Hx) Bx)

5 [ 1 8B)x,z)

— G(X)Q[(xay) + a_x J‘o dz .Q,,(x,y + Z)H(X) Ix
dB)(x,0 +

N [Gu) —2“‘%—) lx2).

J€. Math. Phys, Vol 23,

3
Q(xp) + G(x)Bixy) +~— ( _

w a
— L dz Q,(x,y—}-z)-é;( —
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3
ax| ~

8

™ + Bi(xp)eLl'(0<y< o).

(8.18)

1 4
H(x) x

This assumption will be used to justify some of our cal-
culations below, although it is not needed for the validity
of the theorem; later in the proof, we will use an approx-
imation argument in order to get rid of this extra assump-
tion. Let

22

d
BI(X,J’)

1
n(x.) =3l +H(x) g

+ G(x)B/(x,p). (8.19)

We will show that n(x,y) satisfies the homogeneous

Marchenko equation

n(xy) — f: dz Quxy +z)n(x,z) =0, y>0,
(8.20)

and it will then follow from Theorem 6.3 that 7(x,y) =0,
and thus

af_,8.,
5 -5

In order to establish (8.20) we note that from (6.11)
and (6.20), we have

B,(X,y) — G(x)B,(x,y).

(8.21)

1 4
H(x) ax

—2H (X) Qz(x,y) (8.22)

d
ax

Using (6.22), (8.19), and (8.22), the left-hand side of
(8.20) can be evaluated as

3
25+

H(x) ax) f dz Q(x,p + 2)B/(x,z)

d
Byx,2) + f dz Q% +2)G(x)Bi(x,2)

6

a
H(X) Ix )Bl(x:z)
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Hence, upon using (8.17), we see that 77(x,p) is a solu-
tion of (8.20), and since 1 is not an eigenvalue of Q; we
conclude that 7(x,y) = 0. We will prove the assertion of
the theorem by showing that Z;(k,x) defined by using
(6.9) satisfies (3.3), or equivalently,

Z} + | — H'/H + 2ikH)Z; + GHZ, =0,

which we write as

d|Zi 2ik(Z;— 1 G 1
T g T U2, - 1) [+ G[Z,—1] = - G.

(8.23)
In order to verify (8.23), we differentiate (6.9) and use
integration by parts to obtain

2z -
2L 2ik(Z— 1) = —2B1(x,0+)—2f dy
H 0

a 1 4

tky -
xe dy 2H(x)dx

By(x,y),

where we have used the fact that By(x, ) =0, as seen
from Proposition 8.4. Hence we can rewrite (8.23) as

° d ikyi 2i ;_a_ G(x)|B
fo pe ax(' 3 T H) ax) T ) | Bl
dBy(x,0 + )
= -G +——F—. (8.24)

Each side of the equality in (8.24) vanishes; the left-hand
side due to (8.21) and the right-hand side due to (8.17).
This proves the theorem under the assumption given in
(8.18).

In the general case without assuming (8.18), we can
choose a sequence of functions w;,eC§ (0, ), satisfying

lim fw dz(1 4 z) |w}(2) —w),(2)]| =0,
0

n— 0

and hence

lim f dz|wj(z) — },(z)| =0.
neoo YO
Let Q,(xp) =0,,(x+§F[1 —H]l+y/2) and let
B, ,(x,y) denote the corresponding solution of (6.22).
Also set G,(x) =2[dB,;,(x,0+ )/dx] and denote by
Z,,(k,x) the corresponding solution of (8.23). Then it
follows from (8.7) that B,,(x,p) satisfies (8.18) so that
the calculations above are justified for the approximating
sequence. It also follows that ||, — Q,,|| -0 and hence
I(X—9Q,,) " '—(I—Q) |0 as n—co, where |||
denotes the operator norm in L'(0,). By exploiting
(8.7) it can then be shown that |B;,(x,p) — B(x,p)| -0

uniformly in x and y and that ||B;,(x,") — B)(x,")|[-0
and ||(d/9x)B;,(x,") — (3/9x)B/(x,")|| -0 uniformly in
Xx; we omit the details. From (6.9) we have

Zy (k) =1+ f T dy B (xp)e®. (8.25)

The right-hand side in (8.25) tends to a limit uniformly
in x, and thus so does Z;,(k,x). Since by (3.7) we have

Gu(2)
2ik

X[l—exp(——lik f H)

and G,(x)-G(x) in L'(R), we conclude that
lim,_, , Z;,(k,x) = Z/(k,x) is a solution of (8.23) with
corresponding potential G(x). The proof of Theorem 8.8
is now complete. ]

The equivalence of 2[dB(x,0+ )/dx] and —
2[dB,(x,0 4 )/dx] in (6.7) is assured because the solu-
tions of the Marchenko integral equations (6.22) and
(6.23) lead to the solution of the Riemann—Hilbert prob-
lem (6.1). The proof of this equivalence is similar to the
corresponding proof in the inverse problem* for the reg-
ular Schrodinger equation (1.4) and can be given in a
straightforward manner by noting that the solution of
(1.1) also satisfies (6.1).

Z(kx)=1+ fw dz

Zl,n(k9z)

APPENDIX

In this appendix we prove the following result used in
the proof of Theorem 6.3,

Lemma A.1: Let F(k) be continuous for k€R, vanish
as k— = oo, and belong to L2(R). Put

- dk iky
F) = f_w = eMF(k), yeR

Then the operator & defined on L%(0, ) by

(G () = fo ® Az fy+)h(2), y30,

is compact.

Proof* Let j(x) be a non-negative C*° function for
xR with support in [—1,1] such that
S? o dxj(x) =1, and let j.(x) = (1/€)j(x/€). Define
the mollification &, = j«F by convolution. Then, from
Lemma 2.18 of Ref. 21, we have (i) ®, is a C* function
that vanishes at =+ «o together with all its derivatives; i.e.,
DECF; (i) PLLX(R) with [|®,],<||F]], and lim,,q]®,
—F|,=0; and (i)  lim|®.(k) — F(k)|
=0, uniformly in k on R, due to the uniform continuity
of F on R. Now put
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- dk 4
e = [T Fiemo, yer,

and define ¢ on L*(0,0) by

(G ) () = f: dz 9y + 2)h(2), y>0.

Since

® 1
[ drslean P<ziedaled,
0 ‘"

1
< lliell o el o 113 < oo,

the operators ¥, are Hilbert-Schmidt on L%(0,00). Also,
noting that

[g - ge]h = (f_' (Pe)*h*y
for A*(y) = h( — y), and putting
(k) = (1/ \2m) 5§ dy e~ Phx(p),

we obtain

1 N
I — 9€]hl|2<m||(F— DA,

1
<—JZTTS;:EI£ | F(k) — D (k) |||A|2

where we used ||l,z\||2= liAll,. As a result of (iii), |¥
— ZJ|-0 as €10 in the operator norm of L%*(0,),
which establishes the compactness of ¥. n

ACKNOWLEDGMENTS

The authors are indebted to Roger Newton for his
help. The research leading to this paper was supported in
part by the National Science Foundation under Grant
No. DMS 9096268 and the Mathematical Physics Group
of the Italian Research Council (C.N.R.-G.N.F.M.).

'T. Aktosun and C. van der Mee, “Scattering and Inverse Scattering
for the 1-D Schrédinger Equation with Energy-Dependent Poten-
tials,” J. Math. Phys. 32, 2786 (1991).

2V. A. Marchenko, “The Construction of the Potential Energy from
the Phases of the Scattered Waves,” Dokl. Akad. Nauk SSSR 104, 695
(1955) (in Russian).

3Z. 8. Agranovich and V. A. Marchenko, The Inverse Problem of
Scattering Theory (Gordon and Breach, New York, 1963).

L. D. Faddeev, “Properties of the S Matrix of the One Dimensional
Schrédinger Equation,” Am. Math. Soc. Transl. 2, 139 (1964) [Trudy
Mat. Inst. Stekl. 73, 314 (1964) (in Russian)].

5P. Deift and E. Trubowitz, “Inverse Scattering on the Line,” Com-
mun. Pure Appl. Math, 32, 121 (1979).

SR. G. Newton, “Inverse Scattering 1. One Dimension,” J. Math. Phys.
21, 493 (1980).

"I. M. Gel’'fand and B. M. Levitan, “On the Determination of a Dif-
ferential Equation from Its Spectral Function,” Am. Math. Soc.
Transl. 1, 253 (1955) [Izv. Akad. Nauk SSSR 15, 309 (1951) (in
Russian)].

$T. Aktosun and C. van der Mee, “Inverse Scattering Problem for the
3-D Schrodinger Equation and Wiener-Hopf Factorization of the
Scattering Operator,” J. Math. Phys. 31, 2172 (1990).

N. . Muskhelishvili and N. P. Vekua, “The Riemann Boundary Prob-
lem for Several Unknown Functions and Its Application to Systems of
Singular Integral Equations,” Trudy Tbilissk. Mat. Inst. 12, 1 (1943)
(in Russian).

1ON. 1. Muskhelishvili, Singular Integral Equations (Noordhoff, Gron-
ingen, 1953) [Nauka, Moscow, 1946 (in Russian)].

'R, G. Newton and R. Jost, “The Construction of Potentials from the
S-matrix for Systems of Differential Equations,” Nuovo Cimento 1,
590 (1955).

12 A, Erdélyi, Asymptotic Expansions (Dover, New York, 1956).

BV, A. Marchenko, Sturm-Liouville Operators and Applications
(Birkhduser, Basel, 1986).

M. Klaus, “Low-Energy Behavior of the Scattering Matrix for the
Schrédinger Equation on the Line,” Inverse Problems 4, 505 (1988).

157, Aktosun, M. Klaus, and C. van der Mee, “Inverse Scattering in
1-D Nonhomogeneous Media,” preprint (1992).

18R, G. Newton, “The Marchenko and Gel’fand-Levitan Methods in
the Inverse Scattering Problem in One and Three Dimensions,” Con-
Sference on Inverse Scattering: Theory and Application, edited by J. B.
Bednar, R. Redner, E. Robinson, and A. Weglein (SIAM, Philadel-
phia, 1983), pp. 1-74.

'"B. Simon, “L, Properties of Schridinger Operators and the Localiza-
tion of Binding,” J. Funct. Anal. 35, 215 (1980).

BF. D. Gakhov, Boundary Value Problems (Pergamon, Oxford, 1966)
[Fizmatgiz, Moscow, 1963 (in Russian)].

9W. Eckhaus and A. Van Harten, The Inverse Scattering Transforma-
tion and the Theory of Solitons (North-Holland, Amsterdam, 1981).

0K, Yosida, Functional Analysis (Springer-Verlag, Berlin, 1965).

2R, A. Adams, Sobolev Spaces (Academic, New York, 1975).

Jd. Math, Phys., Vol. 33, No. 5, May 1992





