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Based on a microscopic system reservoir model, where the associated bath is not in
thermal equilibrium, we simulate the nonstationary Langevin dynamics and obtain
the generalized nonstationary fluctuation dissipation relation �FDR� which asymp-
totically reduces to the traditional form. Our Langevin dynamics incorporates non-
Markovian process also, the origin of which lies in the decaying term of the non-
stationary FDR. We then follow the stochastic dynamics of the Langevin particle
based on the Fokker–Planck–Smoluchowski description in ratchet potential to ob-
tain the steady and time dependent current in an analytic form. We also examine the
influence of initial excitation and subsequent relaxation of bath modes on the trans-
port of the Langevin particle to show that the nonequilibrium nature of the bath
leads to both strong nonexponential dynamics as well as nonstationary current.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2942416�

I. INTRODUCTION

The traditional theory of noise induced transport deals with a Langevin equation describing
the motion of a model Brownian particle in an external periodic potential, spatially symmetric or
asymmetric.1–5 The nature of asymmetry of the external force field, in which the Brownian particle
is moving, is crucial in generating biased directed motion. While moving in a symmetric potential,
the Brownian particle is unable to generate motion in a preferred direction due to the detailed
balance principle which can be broken easily by applying an external time dependent perturbation,
either deterministic or random. The correlation time of the external perturbation needs to be
greater than the correlation time of the fluctuations which the system experiences from its imme-
diate surroundings, the heat bath. A general approach in this direction involves the application of
a time periodic deterministic field or the application of a colored noise to the system of interest.1,3,4

Adopting a different approach, one can create directed motion by putting the Brownian particle in
a biased asymmetric periodic potential from the very beginning. The spatial bias in the potential is
able to overcome the detailed balance principle and hence can generate motion in a preferred
direction.2–4

The theory of directed motion has gained wide interdisciplinary attention to model the phe-
nomena of noise induced transport, where the interplay of fluctuations and nonlinearity of the
system plays an important role.1–5 Exploitation of the nonequilibrium fluctuations present in the
medium helps generate directed motion of the Brownian particle. The presence of spatial aniso-
tropy in the potential together with nonequilibrium perturbation enables one to extract useful work
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from random fluctuations without violating the second law of thermodynamics.1,3 This leads to its
wide applicability in explaining the mechanism of molecular motors,2,3,6 tunneling in a Josephson
junction,3 rotation of dipoles in a constant field,3 phase locked loop,3 directed transport in photo-
voltaic and photoreflective materials,7 and efficiency of a tiny molecular machine in a highly
stochastic environment.4,5,8 Motor proteins such as kinesins, dyenins, and myosins are versatile
biomolecular shuttle cargo encapsulated in vesicles and are present in the different parts of the
cell. In living cells, transport occurs via the cytoskeletal filaments and motor proteins.6,9 Motor
proteins are also important ingredients of the mechanism of muscle contraction and cell division.9

The search for physical principles that enable such tiny molecular machines to function efficiently
in a highly Brownian regime and construction of artificial molecular rotors which produce con-
trolled directional motion mimicking molecular motor proteins10 are the subject of ongoing inter-
est.

During the past two decades, several theoretical models have been proposed using the idea of
a Brownian particle moving in a ratchet potential1–4 to explain the transport mechanism under
various nonequilibrium situations. The ratchet model and its many variants such as rocking
ratchet,1 diffusion ratchet,11 correlation ratchet,12 flashing ratchet,13 etc., have found wide attention
in recent days.3 To get a unidirectional current, either spatially asymmetric periodic potentials or
time asymmetric external forces are necessary in these models. In explaining the above mentioned
directional transport phenomena, most of the theoretical approaches adopt phenomenological
models. The first self-consistent microscopic attempt was made by Millonas14 in the context of
construction of a Maxwell demon-like information engine that extracts work from a heat bath. In
this microscopic construction, the Hamiltonian for the whole system includes a subsystem, a
thermal bath, and a nonequilibrium bath that represents an information source or sink.14

In this article, we consider a simple variant of the system reservoir Hamiltonian14 to model the
directional transport processes where the associated bath is in a nonequilibrium state. The model
incorporates some of the features of Langevin dynamics with a fluctuating barrier15 and the
kinetics due to space dependent friction along with the presence of local hot spots.16–18 Since the
theories of transport processes traditionally deal with stationary bath, the nonstationary transport
processes have remained largely overlooked so far. We specifically address this issue and examine
the influence of initial excitation and subsequent relaxation of bath modes14,19–23 on the transport
of system particle. We show that relaxation of the nonequilibrium bath modes may result in strong
nonexponential kinetics and nonstationary current. The physical situation that has been addressed
is that at t=0_, the time just before the system and the bath are subjected to an external excitation,
the system is appropriately thermalized. At t=0, the excitation is switched on and the bath is
thrown into a nonstationary state which behaves as a nonequilibrium reservoir. We follow the
stochastic dynamics of the system mode after t�0. The separation of the time scales of the
fluctuations of the nonequilibrium bath and the thermal bath to which it relaxes is such that the
former effectively remains stationary on the fast correlation of the thermal noise.19

The organization of the paper is as follows: We discuss in Sec. II a microscopic model
necessary to compute the transient transport process where the system in question is not initially
thermalized and the associated bath is thrown into a nonequilibrium and nonstationary situation by
sudden initial excitation of some of the bath modes. Appropriate elimination of the reservoir
degrees of freedom leads to a non-Markovian Langevin equation, stochasticity being contributed
by both additive thermal noise and the multiplicative noise due to relaxing nonequilibrium modes.
In Sec. III, following the prescription of Ref. 24, the Fokker–Planck description is provided in
position space which is valid for state dependent dissipation. We then derive the time dependent
solution of the associated Smoluchowski equation for probability density function �PDF�. As an
application of our development, in Sec. IV, we consider the motion of a Langevin particle in a
periodic ratchet potential and obtain the stationary and time dependent average velocity of the
Langevin particle and show that for symmetric periodic potential, the direction of average velocity
depends on the initial excitation of intermediate bath modes. Summarizing remarks are presented
in Sec. V.
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II. THE BACKGROUND AND THE MODEL

To make the paper self-contained, we first discuss the essential features of the traditional
theory of system reservoir dynamics in this section and then describe the model we adopt in the
present work. This shows how our model deviates from the usual system reservoir theory and
brings up the new features of our model.

A. The traditional system reservoir model

In the traditional system reservoir model,25–27 the reservoir is assumed to be in equilibrium at
t=0 in the presence of the system, and the appropriate distribution of the initial state of the heat
bath is governed by the Hamiltonian

HB + HSB = �
�
� p�

2

2m�

+
m���

2

2
�q� −

g�x

m���
2�2	 , �1�

which includes the static interaction part HSB between the system and the reservoir. The total
Hamiltonian of the system plus bath is then usually written as

H =
p2

2
+ V�x� + HB + HSB. �2�

In Eqs. �1� and �2�, the system �mass weighted� is described by the coordinate x and the conjugate
momentum p, and the heat bath, composed of a set of linear harmonic oscillators, is described by
the coordinate q� and the conjugate momenta p�, �=1,2 , . . . ,N. m� is the mass of the �th oscillator
and �� is the corresponding frequency. The system bath interaction is generally taken to be linear
in both the system and the bath coordinates through the coupling constant g�. V�x� represents the
external force field in which the Brownian particle is executing random motion. The bath is
assumed to be in thermal equilibrium at temperature T and the initial distribution is considered to
be a canonical one:25–27

W�q�0�,p�0�� =
1

Z
exp�−

HB + HSB

kBT
� , �3�

where Z is the normalization constant and kB is the Boltzmann constant. To derive the dynamical
equations for the system in terms of x and p, one usually eliminates the bath degrees of freedom
from the equations of motion of the system variable25 and obtains

ẋ = p ,

ṗ = − V��x� − 

0

t

d���t − ��p��� + ��t� , �4�

where ��t� is the memory kernel,

��t� = �
�

g�
2

m���
2cos ��t ,

and ��t� is the forcing function,

��t� = �
�

g���q��0� −
g�

m���
2x�0��cos ��t +

p��0�
m���

sin ��t	 . �5�

Having chosen a distribution for the initial state of the bath, given by Eq. �3�, the fluctuating force
��t� becomes zero centered, and the correlation function of ��t� gives the celebrated fluctuation
dissipation relation25–27 �FDR�
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��t���t��� = kBT��t − t�� . �6�

To complete the identification of Eq. �4� as a generalized Langevin equation, one must establish
the conditions on the coupling coefficients g� on the bath frequency �� and on the number N of the
bath oscillators which ensure that ��t� is indeed dissipative. Sufficient conditions for ��t� to be
dissipative are that it is positive definite and decreases monotonically with time. Both the condi-
tions are achieved if N→� and if g� /m���

2 and �� are sufficiently smooth functions of �.28 As
N→�, one replaces the sum by an integral over � weighted by a density of states D��� to get

��t� =
 d�D���c���cos��t� , �7�

with �g� /m���
2�→c���. For

D���c��� =
�/�c

1 + �c
2�2 , �8�

which can be achieved by a variety of combinations of the density of states D��� and the coupling
function c��� and which broadly resembles the behavior of hydrodynamic model in a macroscopic
system,26 the dissipation kernel ��t� becomes

��t� =
�

�c
exp�− �t�/�c� . �9�

�c in the above expression is the cutoff frequency and is characterized as the correlation time of
the bath. In the limit �c→0, ��t�→2���t� and one obtains the traditional Langevin equation in the
Markovian domain,

ẋ = p ,

ṗ = − V��x� − �p + ��t� , �10�

where 
��t��=0 and 
��t���t���=2�kBT��t− t��. If one considers the dynamics of the Brownian
particle in a periodic potential V�x�=V�x+L�, whose spatial symmetry can be broken by an
external load �force�, thereby creating a biased force field, then the system’s dynamics is governed
by

ẋ = p ,

ṗ = − V��x� − �p + ��t� + F , �11�

where F is the external force. The sum of the periodic potential V�x� and the potential −Fx due to
the external force F, i.e., U�x�=V�x�−Fx, is a corrugated plane whose average slope �a measure-
ment of the bias� is determined by the external force F.29

Equation �11� is the standard Langevin equation of a particle moving in an external potential
under an external load force and is Markovian in nature. In addition to that, the dissipation term �
is constant due to the linear system reservoir coupling g� and the noise term ��t� is Gaussian,
additive in nature, reflecting the Markovian kinetics of the Brownian particle. In Sec. II B, we
show how this Markovian kinetics changes to a non-Markovian one due to the sudden excitation
of the few bath modes and splits the noise term ��t� into two parts.

B. The nonstationary system reservoir model

We consider a Brownian particle of unit mass, described by the coordinate x and the conjugate
momentum p, moving in a periodic potential of periodicity L, i.e., V�x+L�=V�x�. It is acted upon
by an external force F, which for the present study is assumed to be constant and time indepen-
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dent. The system mode is coupled to a set of relaxing modes considered as a semi-infinite dimen-
sional system ��qk�-subsystem� which effectively constitutes a nonequilibrium bath.14,19,22 These
�qk� modes are in contact with a thermally equilibrated reservoir. Both the reservoirs are composed
of two sets of harmonic oscillators of unit mass characterized by the frequency sets ��k� and �	 j�
for the nonequilibrium and the equilibrium bath, respectively. The system reservoir combination
evolves under the total Hamiltonian

H =
p2

2
+ V�x� − Fx +

1

2�
j

�Pj
2 + 	 j

2Qj
2� +

1

2�
k

�pk
2 + �k

2qk
2� − x�

k


 jQj − g�x��
k

qk − �
j,k

� jkqkQj .

�12�

In Eq. �12�, 
 j is the coupling constant describing the coupling of the system with the equilibrium
bath modes and g�x� is the coupling function. The term g�x�� jqj indicates the coupling of the
nonequilibrium bath to the system and the last term describes the coupling between the nonequi-
librium bath and the thermal bath with coupling constant � jk. The equilibrium bath is assumed to
be in thermal equilibrium at a temperature T and the initial distribution of equilibrium bath
variables is assumed to Gaussian. The form of the nonequilibrium bath, that of a set of phonons or
photons, is chosen for both simplicity and because of its generic relationship to many condensed-
matter-type systems.27

By eliminating the equilibrium bath variables �Qj , Pj� in the traditional way,25–27 one may
show that the nonequilibrium bath modes obey the dynamic equations

q̇k = pk,

ṗk = − �pk − �k
2qk − g�x� + �k�t� . �13�

Equation �13� takes into account the average dissipation � of the nonequilibrium reservoir modes
qk due to their coupling to the thermal reservoir which induces fluctuations �k�t� characterized by
the usual FDR 
�k�t��k�0��=2�kBT��t�.19,25 In general, 
�k�t�� is a nonzero constant quantity
which, without loss of any generality, may be chosen as zero by shifting the origin of our coor-
dinate system as we are dealing with a periodic potential. In passing we mention that in deriving
Eq. �13� from Eq. �12�, the cross terms for � j�kjqj have been neglected.

Proceeding similarly to eliminate the thermal reservoir variables from the equations of motion
of the system, we obtain

ẋ = p ,

ṗ = − �ep − V��x� + F + �e�t� + g��x��
k

qk, �14�

where �e refers to the dissipation coefficient of the system mode due to its direct coupling to the
thermal bath providing fluctuations �e�t�. The statistical properties of �e�t� are 
�e�t��=0 and

�e�t��e�t���=2�ekBT��t− t��. Comparing with Eq. �11�, it is easy to see that the dissipation term �e

and the noise term �e�t� are basically � and ��t�, respectively, that arise due to the direct linear
system reservoir coupling. Now making use of the formal solution of Eq. �13�, which takes into
account the relaxation of the nonequilibrium modes, and integrating over the nonequilibrium bath
with a Debye-type frequency distribution of the form19


��� =
3�2

2�c
3 for ��� � �c
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=0 for ��� � �c, �15�

where �c is the high frequency Debye cutoff, one finally obtains the following Langevin equation
for the system mode from Eq. �14�:

ẋ = p ,

ṗ = − ��x�p − Ṽ��x� + F + �e�t� + g��x��n�t� . �16�

In the above equation,

��x� = �e + �n�g��x��2 �17�

is the state dependent dissipation constant comprising of �n and �e. �n refers to the fluctuations of
the nonequilibrium bath modes which effectively cause damping of the system mode. This damp-
ing is also state dependent due to the nonlinear coupling function g�x� as is given by �n�g��x��2.
In Eq. �16�, the potential V�x� in which the particle moves has been modified to

Ṽ�x� = V�x� −
�c

�
�ng2�x� . �18�

The fluctuation �n�t� due to the presence of nonequilibrium bath is also assumed to be Gaussian
with zero mean 
�n�t��=0. Also, the essential properties of �n�t� explicitly depend on the nonequi-
librium state of the intermediate oscillator modes �qj� through u�� , t�, the energy density distri-
bution function at time t in terms of the following FDR for the nonequilibrium bath:19

u��,t� =
1

4�n



−�

+�

d�
�n�t��n�t + ���ei�� =
1

2
kBT + e−�t/2�u��,0� −

1

2
kBT	 . �19�

�u�� ,0�− �kBT /2�� is a measure of the departure of energy density from thermal average at t=0.
The exponential term exp�−�t /2� implies that this deviation, due to the initial excitation, decays
asymptotically to zero as t→�, so that one recovers the usual FDR for the thermal bath.19,22

Equation �19� thus attributes the nonstationary character of the �qk�-subsystem. At this point it is
pertinent to note that the above derivation is based on the assumption that �n�t� is effectively
stationary on the fast correlation time scale of the equilibrium bath modes. This is necessary for
the systematic separation of the time scales involved in the dynamics.

Equation �16� is the required Langevin equation for the particle moving in a modified poten-

tial Ṽ�x� and is acted upon by a uniform force F. The motion of the particle is damped by a state

dependent friction ��x�. Depending on the coupling function g�x�, both Ṽ�x� and ��x� are, in
general, nonlinear in nature. As a result, the stochastic differential equation �16� becomes nonlin-
ear. The fluctuating part in Eq. �16� is comprised of two quantities: �e�t�, an additive noise due to
thermal bath, and �n�t�, a multiplicative noise due to nonlinear coupling to the �qk�-subsystem. The
Langevin equation �16� describes a non-Markovian process as well, where the non-Markovian
nature is characterized by the decaying term in Eq. �19�, describing the initial nonequilibrium
nature of the �qk�-subsystem created by applying sudden excitation at t=0.19,22

III. STOCHASTIC DYNAMICS IN THE OVERDAMPED REGIME AND THE TIME
DEPENDENT DISTRIBUTION

For large dissipation, i.e., in the overdamped limit, one usually eliminates the fast variable p
adiabatically by omitting the inertial term dp /dt from the dynamical equations of motion to get a
simpler description of the system in position space. The approach of adiabatically eliminating fast
variables is valid on a much slower time scale and is a zero order approximation. For constant
large dissipation, this adiabatic elimination of the fast variables leads to the correct description of
the system’s dynamics. However, in the presence of hydrodynamic interactions, i.e., when the
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dissipation is state dependent, the traditional adiabatic reduction in fast variables does not work
properly and gives an incorrect description of the system’s dynamics. For state dependent dissi-
pation, an alternative approach was proposed in Ref. 24. Using the method given in Ref. 24 and
using Eq. �16�, one may carry out a systematic expansion of the relevant variable in powers of
1 /�e by neglecting terms smaller than O�1 /�e�. Then, by the Stratonovich interpretation, it is
possible to obtain the appropriate Langevin equation corresponding to a Fokker–Planck equation
�FPE� in position space. Thus, following Ref. 24, the formal FPE for the PDF P�x , t� correspond-
ing to the process described by Eq. �16� can be obtained as

�P

�t
=

�

�x
�V�˜�x� − F

��x�
P� + �ekBT

�

�x
� 1

��x�
�

�x

1

��x�
P� + �nkBT�1 + re−�t/2�

�

�x
�g��x�

��x�
�

�x

g��x�
��x�

P�
+ �nkBT�1 + re−�t/2�

�

�x
�g��x�g��x�

�2�x�
P� , �20�

where r= ��u��→0,0� /2kBT�−1� and is a measure of the deviation from equilibrium at t=0.
Under the steady state condition �at t→��, �P /�t=0 and the stationary distribution obeys the
following relation:

kBT
dPS�x�

dt
+ �Ṽ��x� − F�PS�x� = 0, �21�

which has the solution

Ps�x� = N exp�−
1

kBT

x

�Ṽ��x�� − F�dx�	 , �22�

where N is the normalization constant. In the Stratonovich description, the Langevin equation
corresponding to the FPE given by Eq. �21� is

ẋ = −
�Ṽ��x� − F�

��x�
−

D̃�t�g��x�g��x�
�2�x�

+
1

��x�
�e�t� +

g��x�
��x�

�n�t� , �23�

with D̃=�nkBT�1+r exp�−�t /2�� being the time dependent diffusion constant due to the relaxation
of nonequilibrium bath modes.19 Let us consider that the time dependent solution of Eq. �20� is
given by20

P�x,t� = PS�x�exp�− ��t�� , �24�

where � is a function of time only and limt→� ��t�=0. PS�x� is the steady state solution of Eq.
�20�,

d

dx
��Ṽ��x� − F�

��x�
PS�x�� + �ekBT

d

dx
� 1

��x�
d

dx

1

��x�
PS�x�� + �nkBT

d

dx
�g��x�

��x�
d

dx

g��x�
��x�

PS�x��
+ �nkBT

d

dx
�g��x�g��x�

�2�x�
PS�x�� = 0. �25�

Substitution of Eq. �24� in Eq. �20� separates the space and time parts and we have the dynamic
equation for ��t�,

−
d�

dt
exp��t/2� = const = ��say� .

On integration over time, we get
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��t� =
2�

�
exp�− �t/2� , �26�

where � can be determined from the initial condition. The time dependent solution of Eq. �20� thus
reads as

P�x,t� = PS�x�exp�−
2�

�
exp�− �t/2�	 . �27�

To determine �, we now demand that just at the moment the system �and the nonthermal bath� is
subjected to external excitation at t=0, the distribution must coincide with the usual Boltzmann
distribution where the energy term in the Boltzmann factor, in addition to the usual kinetic and
potential energy terms, contains the initial fluctuation of energy density �u�=u�� ,0�− �kBT /2��.
This demands that

� =
��u

2kBT
, �28�

� is thus determined in terms of relaxing mode parameters and fluctuations of the energy density
distribution at t=0.

IV. STATIONARY AND TRANSIENT CURRENT

In the overdamped limit, the stationary current from Eq. �25� can be represented as

JS = −
1

��x��Ṽ��x� − F + kBT
d

dx
	PS�x� . �29�

Integrating Eq. �29� we have the expression for stationary probability distribution in terms of
stationary current as

PS�x� = e−U�x�h�x��PS�0�
h�0�

−
JS�e

kBT



0

x

h�x��eU�x��dx�	 �30�

where h�x�=1+ ��n /�e��g��x��2, ��x�=�eh�x�, and U�x�=�e�0
xdx�h�x���Ṽ��x��−F� /kBT. We now

consider a symmetric periodic potential with periodicity L, i.e., V�x�=V�x+L�, as well as the
periodic derivative of coupling function with the same periodicity as that of the potential, i.e.,
g��x�=g��x+L�. As a consequence of this choice, U�x� is also a periodic function of x with the
period L. If we impose the condition that PS�x� is bounded for large enough x, it follows from the
above mentioned conditions of periodicity that PS�x+L�= PS�x� i.e., PS�x� must be periodic with
the same period L.29 Now applying the periodicity condition of PS�x�, we have from Eq. �30�

PS�0�
h�0�

= JS
�e/kBT

1 − eU�L�

0

L

h�x�eU�x�dx . �31�

Because of the periodicity, we normalize the steady state PDF in the periodic interval,



0

L

PS�x�dx = 1, �32�

to get



0

L

h�x�e−U�x��PS�0�
h�0�

−
JS�e

kBT



0

x

h�x��eU�x��dx�	dx = 1. �33�

Now eliminating PS�0� /h�0� from Eqs. �31� and �33�, one obtains the steady state current
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JS =
kBT

�e
�1 − eU�L���


0

L

h�x�e−U�x�dx

0

L

h�x��eU�x��dx�

− �1 − eU�L��

0

L

�h�x�e−U�x�

0

x

h�x��eU�x��dx��dx	−1

. �34�

From Eq. �34� it is clear that in the absence of any external bias F, the steady current vanishes. We
thus observe that there is no occurrence of current for a periodic potential and for periodic
derivative of the coupling function with the same periodicity for F=0. At the macroscopic level,
this confirms that there is no generation of perpetual motion of the second kind, i.e., no violation
of the second law of thermodynamics. In passing, we note that in the absence of �qk�-subsystem,
i.e., when �n=0, Eq. �34� reduces to the standard form29

JS = L�ekBT�1 − eLF/kBT��

0

L

eV�x�/kBTdx

0

L

e−V�x�/kBTdx − �1 − e−2LF/kBT�

���

0

L

e−V�x�/kBT

0

x

eV�x��/kBTdx��dx�	−1

. �35�

Next, to find the time dependent current J�x , t�, we resort to Eq. �20� and observe that

J�x,t� = −
�

�x
� Ṽ�x�� − F

��x�
P� + �ekBT� 1

��x�
�

�x

1

��x�
P� + �nkBT�1 + re−�t/2��g��x�

��x�
�

�x

g��x�
��x�

P�
+ �nkBT�1 + re−�t/2��g��x�g��x�

�2�x�
P� . �36�

Now substituting Eq. �24� in Eq. �36� and making use of Eq. �25�, we find that J�x , t� can be
expressed in a much simpler form,

J�x,t� = JSe−��t� − D�t�
1

��x�
d

dx

1

��x�
�g��x��2PS�x� , �37�

where PS�x� is the steady state PDF and JS is the steady state current given by Eq. �35� and

D�t� = r�nkBTe−�t/2e−��t�. �38�

The steady state current JS thus can be obtained from

JS = −
�Ṽ��x� − F�

��x�
PS�x� − �ekBT

1

��x�
d

dx

1

��x�
PS�x� − �nkBT

g��x�
��x�

d

dx

g��x�
��x�

PS�x�

− �nkBT
g��x�g��x�

�2�x�
PS�x� , �39�

from which we have

1

��x�
d

dx

1

��x�
�g��x��2PS�x� = −

JS

�nkBT
−

�Ṽ��x� − F�
�nkBT��x�

−
�e

�n

1

��x�
d

dx

1

��x�
PS�x� . �40�

Using Eq. �40� we then obtain from Eq. �37�

J�x,t� = JS�e−��t� +
D�t�

�nkBT
	 +

D�t�
�nkBT

� �Ṽ��x� − F�
��x�

PS�x� + �ekBT
1

��x�
d

dx

1

��x�
PS�x�	 . �41�

Defining the space dependent part on the right hand side of Eq. �41� as M�x�, we obtain
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J�x,t� = JS�e−��t� +
D�t�

�nkBT
	 +

D�t�
�nkBT

M�x� , �42�

where

M�x� = � �Ṽ��x� − F�
��x�

PS�x� + �ekBT
1

��x�
d

dx

1

��x�
PS�x�	 . �43�

From Eq. �42� we observe that the current J�x , t� can be written as a sum of two terms. The first
term is space independent and only a function of time. The second term is product separable in the
form of time and space parts. As t→�, right hand side of D�t�→0 and asymptotically J�x , t�
reduces to the steady state current JS. Now using the continuity equation

�P�x,t�
�t

= −
�J�x,t�

�x
,

along with P�x , t�= PS�x�e−��t�, we get from Eq. �42�

dM�x�
dx

= −
�

r
PS�x� �44�

or equivalently,

M�x� = −
�

r

x

PS�x�dx . �45�

As we are dealing with periodic functions, the constant of integration is chosen to be zero. Now
integrating Eq. �29� for PS�x� and using the normalization condition �Eq. �32��, we have the
expression for steady state PDF as

PS�x� = e−�Ṽ�x�−Fx�/kBT�1 +
JS

kBT

0

L

e−�Ṽ�x�−Fx�/kBT�

0

x

��x��e�Ṽ�x��−Fx��/kBTdx��dx



0

L

e−�Ṽ�x�−Fx�/kBTdx � . �46�

Using Eq. �46� along with Eq. �45�, one obtains from Eq. �42� the expression for the time
dependent current J�x , t� as

J�x,t� = JS�e−��t� + re−�t/2� −

�e−�t/2
x

dx��e−�Ṽ�x��−Fx��/kBT�



0

L

e−�Ṽ�x�−Fx�/kBTdx
�1 +

JS

kBT



0

L

e−�Ṽ�x��−Fx��/kBT

� �

0

x�
��x���e�Ṽ�x��−Fx��/kBTdx��dx��	 , �47�

where JS is given by Eq. �34�. Since the potential possesses spatial periodicity, one has J�x , t�
=J�x+L , t�. Hence the net time dependent current is given by

j�t� =
1

L



0

L

J�x,t�dx . �48�

It should be noted that for symmetric potential with F=0, JS=0. However, in our development,
transient current exists and the direction of current depends on the sign of �. What is immediately
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apparent is that for symmetric potential, the sign of �u�=u�� ,0�− �1 /2kBT�� determines the di-
rection of the initial current,

j�t� = −
�e−�t/2

L



0

L

dx
x

dx� exp�− Ṽ�x��/kBT�



0

L

dx exp�− Ṽ�x�/kBT�
. �49�

It is also clear from Eq. �47� that the time dependent current reduces to the steady state current JS

in the asymptotic limit. The presence of the term exp�−��t�� in the expression of J�x , t� makes the
transient current strongly nonexponential in nature. The transient behavior of growth or decay of
charge and current in L-R, C-R, or L-C-R circuit is important in construction of many electrical
and electronic devices where there is the mechanism of storage of energy. In construction of
molecular motor or nanoswitch, the transient behavior of the devices may be worth studying. In
our development, the preparation of intermediate relaxing bath plays a key role in generating the
time dependent current. Nevertheless, our methodology will also be applicable in the case when
any arbitrarily prepared bath is approaching equilibrium. In passing, we mention that the model
considered in the present paper may be realized in a guest-host system embedded in a lattice where
the immediate neighborhood of the guest comprises intermediate oscillatory modes, while the
lattice acts as a thermal bath.

V. CONCLUSION

We have hereby proposed a simple microscopic system nonequilibrium bath model to simu-
late nonstationary Langevin dynamics. The nonequilibrium bath is effectively realized in terms of
a semi-infinite dimensional reservoir which is subsequently kept in contact with a thermal reser-
voir which allows the nonthermal bath to relax with characteristic time. The frequency spectrum
of the relaxing bath is assumed to be of Debye type. By an appropriate separation of time scale, we
then construct the Langevin equation for a particle in which the dissipation is state dependent and
the stochastic forces appearing are both additive and multiplicative. The underlying stochastic
dynamics is found to be nonstationary and non-Markovian. Based on the strategy of Sancho et
al.,24 we then show that this Langevin equation can be recast into the form of the generalized
nonstationary Smoluchowski equation which reduces to its standard form asymptotically. We then
solve the expression for time dependent PDF. As an immediate application of our recent devel-
opment, we consider the dynamics of a Langevin particle in a ratchet potential and obtain the
analytic expression for both stationary and nonstationary transient average velocities, which is
followed by an immediate observation that in a periodic potential, the direction of nonstationary
current depends on the preparation of the nonequilibrium bath.
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