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A system reservoir model, where the associated reservoir is modulated by an ex-
ternal colored random force, is proposed to study the transport of an overdamped
Brownian particle in a periodic potential. We then derive the analytical expression
for the average velocity, mobility, and diffusion rate. The bistable kinetics and
escape rate from a metastable state in the overdamped region are studied conse-
quently. By numerical simulation we then demonstrate that our analytical escape
rate is in good agreement with that of the numerical result. © 2008 American
Institute of Physics. �DOI: 10.1063/1.3013122�

I. INTRODUCTION

As an immediate consequence of stochastic dynamics, it is observed that thermal diffusion in
a periodic potential plays a prominent role in various cases such as Josephson’s junction,1 diffu-
sion in crystal surface,2 and noise limit cycle oscillators.3 There has been renewed interest in
recent times in the study of transport properties of Brownian particles moving in a periodic
potential4 with special emphasis on coherent transport and giant diffusion.5 These studies have
been motivated in part by an attempt to understand the mechanism of movement of protein motors
in biological systems.6 Several physical models have been proposed to understand the transport
phenomena in such systems such as vibrational ratchet,7 rocking ratchet,8 diffusion ratchet,9,10 and
correlation ratchet.11 Such ratchet models have a wide range of application in biology and nano-
scopic systems12 because of their extraordinary success in exploring experimental observations on
biochemical molecular motors, active in muscle contraction,13 observation of directed transport in
photovoltaic and photoreflective materials,14 etc. In all the above models, the potential is taken to
be asymmetric in space. One can also obtain a unidirectional current in the presence of a spatially
symmetric potential. For such nonequilibrium systems, one requires time asymmetric random
force15 or space dependent diffusion.16–18 In passing, we want to mention the fact that to explain
the role of the Levy stable noise in transport phenomena in the presence of bistable, metastable,
and periodic potentials with broken symmetry, several elegant approaches have been suggested
recently.19

Traditionally, the Langevin equation describing the dynamics of a Brownian particle coupled
to a thermal reservoir is a tool for modeling several aspects of nonequilibrium phenomena.20 In
addition to the Langevin dynamics, one often takes into account the probabilistic aspect of the
random dynamics through the usage of the Fokker–Planck equation.21 Both of the approaches
utilize the relation between the random fluctuations imposed by the reservoir into the Brownian
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particle and the relaxation of the imposed energy back to the reservoir through the fluctuation-
dissipation relation �FDR�.22 FDR takes into account the balance between the energy input �to the
system from the reservoir� and output �from the system into the reservoir� through the detailed
balance mechanism. A typical signature of such a system is the attainment of equilibrium in the
asymptotic limit.

An additional external random driving applied to the Brownian particle can break this balance
mechanism and make the composite system open,23 the direct consequence of which is the loss of
FDR. In addition to that, the system hardly reaches the equilibrium state in the long time limit but
rather attains a stationary steady state.23 However, driving of the reservoir by an external random
field24 creates a thermodynamic consistency condition analogous to FDR �Ref. 25� that leads to
the study of several interesting phenomena25–29 in chemical physics. The net effect of the reservoir
driving by an external random force is the creation of an effective temperature in addition to the
thermal energy kBT exerted by the reservoir on the system of interest. As shown recently, this
effective temperature can enhance the reaction rate in condensed media25–27 as well as generate
directed motion in a periodic system.28,29

In the present paper, we consider a system reservoir model where the bath is modulated by an
external noise. However, when the reservoir is modulated by an external noise it is likely that it
induces fluctuations in the polarization of the reservoir due to the external noise from a micro-
scopic point of view and one may expect that the nonequilibrium situation created by modulating
the bath makes its presence felt in the transport property and also in the kinetics of the Brownian
particle. A number of different situations depicting the modulation of the bath may be physically
relevant. For an example, we may consider the case of a Brownian particle when the response of
the solvent is time dependent, as in a liquid crystal, or in the reaction-diffusion mechanism in
supercritical lattice, or the growth in living polymerization.30

To observe the effects of external stochastic modulation one can carry out the experiment in a
photochemically active solvent �the heat bath� where the solvent is under the influence of external
monochromatic light with fluctuating intensity which is absorbed solely by the solvent molecules.
As a result of this, the modulated solvent heats up due to the conversion of light energy into heat
energy by radiationless relaxation process, and an effective temperaturelike quantity develops due
to constant input of energy. Since the fluctuations in light intensity result in the polarization of the
solvent molecules the effective reaction field around the reactant gets modified.31 Our theoretical
model can be tested experimentally to study the directional motion and mean first passage time of
artificial chemical rotors in photovoltaic solvent.32

There are some precedents for our model that are worth mentioning. Mencia Bravo et al.24

dealt with a related problem: a classical system in a heat bath with an additive external noise. In
the quantum case, Faid and Fox33 proposed a stochastic coupling between the system and a heat
bath as a phenomenological mechanism of relaxation for the bath. Mañas et al.34 considered the
problem of a system coupled to an ensemble of independent harmonic oscillators as a reservoir.
We have also considered the dynamics of a metastable state nonlinearly coupled to a heat bath
driven by an external noise to study the escape rate from a metastable state.27 In the present work,
we address the so-called ratchet problem and bistable kinetics of a Brownian particle for a ther-
modynamically open system where the associated bath is modulated by a colored noise and we
explore the dependence of various parameters of the external noise on the transport phenomena
and bistable kinetics.

To get insight of situations encountered in the growing number of nano- and microscale
experiments, our model can be used as a potential tool. For instance, several DNA nanomotors
have been recently suggested.35,36 These machines are relatively slow and do not perform con-
tinuous rotation. Very recently, a rotary DNA nanomachine that shows a continuous rotation has
been proposed.35 This motor consists of a DNA ring whose elastic features are tuned such that it
can be externally driven by a periodic temperature change. Our model proposed in this paper can
be used as a theoretical avenue to examine the periodic temperature change via a physically
motivated microscopic Hamiltonian picture. Optical tweezers,37 which are capable of manipulat-
ing nanometer and micrometer sized dielectric particles by exerting extremely small forces via a
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highly focused laser beam, are often used to manipulate and study single molecules by interacting
with a bead that has been attached to that molecule. DNA and the proteins and enzymes that
interact with it are commonly studied in this way. At this juncture, we want to mention the fact that
our development present in this article can be used as a theoretical model to understand the
phenomena of heating of the liquid surrounding a bead in an optical tweezer setup.38

The organization of the paper is as follows. In Sec. II, starting from a microscopic Hamil-
tonian picture of a system linearly coupled with a harmonic reservoir which is modulated by a
noise with arbitrary decaying memory kernel, we have derived the Langevin equation with an
effective noise ��t� and then explored its statistical property. Employing the functional calculus
method,23,39,40 we then obtain the Fokker–Planck–Smoluchowski equation in Sec. III, correspond-
ing to the Langevin equation valid in the overdamped limit and for rapid fluctuations whose
correlation function vanishes rapidly. In Sec. IV, we have calculated the steady current in a ratchet
potential and derived the expression for diffusion rate and mobility. As another application of our
development, we study the bistable kinetics to obtain the stationary probability density function
�PDF� and the barrier crossing rate. The summarizing remarks are presented in Sec. VI preceded
by a numerical application in Sec. V.

II. THE MODEL: HEAT BATH MODULATED BY EXTERNAL NOISE

We consider a classical particle of unit mass coupled to a heat bath consisting of a set of
N-numbers of mass weighted harmonic oscillators with frequency �� j�. The heat bath is externally
driven by a Gaussian random force ��t� with an arbitrary decaying correlation function. The total
Hamiltonian of such a composite system can be written as25,41

H =
v2

2
+ V�x� + �

j=1

N �v j
2

2
+

1

2
� j

2�xj − cjx�2	 + Hint. �1�

In the above equation x and v are the coordinate and the velocity of the system particle, respec-
tively, and V�x� is the potential energy of the system. �xj ,v j� are the variables for the jth oscillator
with characteristic frequency � j. The system particle is coupled to the bath oscillator linearly
through the general coupling terms cj� jx, where cj is the coupling strength for the system-bath
interaction. The interaction between the heat bath and the external noise is represented by the term
Hint, which we take as25,42

Hint = �
j=1

N

� jxj��t� , �2�

where � j denotes the coupling strength of interaction and ��t� is an external noise which is
assumed to be stationary, Gaussian with zero mean, and arbitrary decaying correlation function,
the statistical property of which is given by


��t��e = 0, 
��t���t���e = 2De��t − t�� , �3�

where De is the external noise strength and ��t� is the external noise memory kernel which is
assumed to be a decaying function of its argument and 
¯�e implies averaging over each realiza-
tion of ��t�. Eliminating the bath degrees of freedom in the usual way,25,41 we get the Langevin
equation for the system particle,

ẋ = v ,

v̇ = − V��x� − �
0

t

dt���t − t��v�t�� + f�t� + ��t� , �4�

where the memory kernel ��t� and the Langevin force term f�t� are given, respectively, by
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��t� = �
j=1

N

cj
2� j

2 cos�� jt� , �5�

f�t� = �
j=1

N

cj� j
2
�xj�0� − cjx�0��cos�� jt� +

v j�0�
� j

sin�� jt�� . �6�

In Eq. �4�, ��t� is the fluctuating force generated due to the external stochastic forcing of the bath
by ��t� and is given by

��t� = − �
0

t

dt���t − t����t�� , �7�

with

��t� = �
j=1

N

cj� j� j sin�� jt� . �8�

The form of Eq. �4� reveals that the system is driven by two fluctuating forces, f�t� and ��t�.
��t� is a dressed noise originating due to the bath modulation by external noise ��t� and f�t� is the
thermal noise due to system-bath coupling. To define the statistical properties of f�t�, we assume
that the initial distribution is such that the bath is equilibrated at t=0 in the presence of the system
but in the absence of the external noise ��t� such that


f�t�� = 0, 
f�t�f�t��� = kBT��t − t�� , �9�

where kB is the Boltzmann constant, T is the equilibrium temperature, and 
¯� implies the usual
average over the initial distribution which is assumed to be a canonical distribution of Gaussian
form,25,41

P = N exp
−
v j

2�0� + � j
2�xj�0� − cjx�0��2

2kBT
� ,

where N is the normalization constant. Now at t=0+, the external noise agency is switched on to
modulate the bath. Here, we define an effective Gaussian noise ��t�= f�t�+��t�, the statistical
property of which can be described by



��t��� = 0,



��t���t���� = kBT��t − t�� + 2De�
0

t

dt��
0

t�
dt���t − t����t� − t����t� − t�� ,

=G�t − t�� �say� . �10�

In Eq. �10�, 

¯�� means that we have taken two averages independently, average over initial
distribution of bath variables and average over each realization of ��t�. While deriving Eq. �10�,
we have made the assumption 

��t���t����=G�t− t��, which cannot be proven unless the structure
of ��t� is explicitly given. As we shall see later it is a valid assumption for a particular choice of
coupling coefficients and for external stationary noise processes. It should be realized that Eq. �10�
is not a FDR due to the appearance of the external noise intensity; rather it serves as a thermo-
dynamic consistency relation.

To obtain a finite result in the continuum limit, i.e., for N→	, the coupling functions ci

=c��� and �i=���� are chosen as c���=c0 /��
c and ����=�0��
c. Consequently, ��t� and ��t�
reduce to
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��t� =
c0

2


c
� d�����cos �t �11�

and

��t� = c0�0� d������ sin �t , �12�

where c0 and �0 are constants and 
c is the correlation time of the heat bath. For 
c→0 we obtain
a �-correlated noise process. 1 /
c may be characterized as the cutoff frequency of the bath
oscillators. ���� is the density of modes of the heat bath which is assumed to be Lorentzian,

���� =
2
c

��1 + �2
c
2�

. �13�

The above assumption resembles broadly the behavior of the hydrodynamical modes43,44 in a
microscopic system and is frequently used by the chemical physics community.43 With these forms
of ����, c���, and ����, we have the expressions for ��t� and ��t�, respectively, as

��t� =
c0�0


c
exp�− �t�/
c�, ��t� =

c0
2


c
exp�− �t�/
c� .

Although Eq. �10� is not a FDR, Eq. �7� resembles the familiar linear relation between the
polarization and the external field. Here, ��t� and ��t� play the role of former and latter, respec-
tively. Thus ��t� can be interpreted as a response function of the reservoir due to external noise
��t�. It is also clear from the structure of ��t� and ��t� that

d��t�
dt

= −
c0

�0

1


c
��t� . �14�

The above relation is independent of D��� and represents how the dissipative kernel ��t� depends
on the response function of the medium due to the external noise ��t�. Such an equation for the
open system can be anticipated in view of the fact that both the dissipation and response functions
crucially depend on the properties of the reservoir. If we assume that � is a �-correlated noise, i.e.,

��t���t���e=2De��t− t��, then the correlation function of ��t� is given by


��t���t���e =
Dec0

2�0
2


c
exp�− ��t − t���/
c� , �15�

where we have neglected the transient terms �t , t�

c�. This equation shows how the heat bath
dresses the external noise. Although the external noise is a �-correlated one, the system encounters
it as an exponentially correlated noise with the same correlation time of the internal noise but with
a strength dependent on the coupling term �0 and the external noise strength De. On the other
hand, if the external noise follows the Ornstein–Uhlenbeck process,


��t���t���e =
De


c
exp�− ��t − t���/
e� ,

the correlation function of ��t� is found to be


��t���t���e =
Dec0

2�0
2

�
e/
c�2 − 1
� 
e


c
�
 1


c
exp�− ��t − t���/
e� −

1


e
exp�− ��t − t���/
c�� , �16�

where we have again neglected the transient terms. The dressed external noise ��t� now has a
more complicated structure of correlation function with two correlation times 
c and 
e. If the
external noise correlation time is much larger than the internal noise correlation time �
e�
c�,
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which is more realistic, the dressed noise is dominated by the external noise, and we have


��t���t���e =
Dec0

2�0
2


e
exp�− ��t − t���/
e� . �17�

On the other hand, when the external noise correlation time is smaller than the internal one, we
recover Eq. �15�. In what follows, we shall focus on the situation when 
e�
c. Thus, in terms of
the effective noise ��t�, the Langevin equation �4� can be written as

ẋ = v ,

v̇ = − V��x� − �
0

t

dt���t − t��v�t�� + ��t� , �18�

which reduces to

ẋ = v, v̇ = − V��x� − �v�t� + ��t� , �19�

where we have assumed that the internal noise f�t� is �-correlated and the internal dissipation is
Markovian so that

��t� = 2c0
2��t − t�� = 2���t − t�� ,


f�t�� = 0,


f�t�f�t��� = 2c0
2kBT��t − t�� = 2�kBT��t − t�� ,

with �=c0
2 �see Eqs. �5�–�7��. The effective noise ��t� thus has statistical properties �see Eq. �9��,



��t��� = 0,



��t���t���� =
DR


R
exp�− ��t − t���/
R� , �20�

where

DR = ��kBT + De�0
2� and 
R =

De

DR
��0

2
e, �21�

with DR and 
R being the strength and correlation time of the effective noise ��t�, respectively.
Although the reservoir is driven by the colored noise ��t� with noise strength De and correlation
time 
e, the dynamics of the system of interest is effectively governed by the scaled colored noise
��t�, with noise strength DR and correlation time 
R. In what follows we will describe the effect of
external noise in terms of the effective parameters DR and 
R in the rest of our analysis.

III. THE FOKKER–PLANCK DESCRIPTION IN THE OVERDAMPED LIMIT

In the overdamped limit, Eq. �19� reads

ẋ�t� = −
1

�
V��x� +

1

�
��t� , �22�
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=W�x� + ��t� , �23�

where we have defined W�x�=−�1 /��V��x� and ��t�= �1 /����t�. Clearly, ��t� is the scaled noise
and as ��t� is Gaussian �since f�t� and ��t� are assumed to be Gaussian�, ��t� is also Gaussian. The
Gaussian nature of ��t� is expressed by the probability distribution function

P���t�� = N exp�−
1

2
� ds� ds���s���s����s − s��	 , �24�

where � is the inverse of the correlation function of ��t� and N is the normalization constant
expressed by a path integral over ��t�,

1

N
=� D� exp�−

1

2
� ds� ds�f�s�f�s����s − s��	 . �25�

Now, let 
��t��=0 and 
��t���t���=c�t− t��. Then from Eq. �25� we get

�N

���t�
= − N2� D��−

1

2
� ds���s����t − s�� +� dsf�s���s − t�	exp�−

1

2
� ds� ds���s���s��

���s − s��	 ,

=N� ds��t − s�
��s�� = 0. �26�

Therefore, it follows that

�P���t��
���t�

= − �� ds��t − s���s�	P��� . �27�

Consequently,

�2P���t��
���t����t��

= �� ds� ds���t − s���t� − s����s���s��	P���t�� − ��t − t��P���t�� �28�

and

0 =� D�
�2P���t��

���t� � ��t��
,

=� ds� ds���t − s���t� − s��c�s − s�� − ��t − t�� . �29�

Equation �29� implies

� ds��t − s�c�s − s�� = ��t − s�� , �30�

which shows that the kernel ��s−s�� is the inverse of the correlation function c�s−s��. Now, using
Eqs. �27� and �30� one may observe that

P���t����t� = −� ds�c�t − s��
�P���t��
���s��

. �31�
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The path integral is used to define the probability distribution functional for x�t�; then the
solution of Eq. �23� becomes

P�y,t� =� D�P�����y − x�t�� . �32�

From Eq. �32� it follows that

�P

�t
=� D�P����−

�

�y
��y − x�t��ẋ	 , �33�

where ẋ=dx /dt and can be replaced by the right hand side of Eq. �23� to get

�P

�t
= −

�

�y
� D�P�����y − x�t���W�x� + ��t�� ,

=−
�

�y
�W�y�P� −

�

�y
� D�P�����t���y − x�t�� . �34�

Now functional integration by parts yields

� D�P�����t���y − x�t�� = −� ds�c�t − s��� D�P���
�

�y
��y − x�t��

���t�
���s��

. �35�

Again from Eq. �23� we have

d

dt

�x�t�
���t��

= W��x�
�x�t�
���t��

+ ��t − t�� .

This equation possesses the unique solution

�x�t�
���t��

= ��t − t��exp��
t�

t

dsW��x�s��	 , �36�

where ��t− t�� is defined by

��t − t�� = 1, t 
 t�

=1/2, t = t�

=0, t � t�.

Now substituting Eq. �36� into Eq. �35� and from Eq. �34� we have

�P

�t
= −

�

�y
�W�y�P� +

�2

�y2
�
0

t

ds�c�t − s��� D�P���exp��
s�

t

dsW��x�s��	��y − x�t��� .

�37�

Equation �37� is not a Fokker–Planck equation. The second term cannot be reduced to a term
containing P�y , t� because of the non-Markovian dependence on x�s� for s� t. Fortunately, in our

case c�t− t��= �D̃R /
R�exp�−�t− t�� /
R�, where D̃R=DR /�2 is an exponentially decaying function
and for large � �as we are dealing with the overdamped case� decays rapidly. We now change the
variable t�= �t−s�� and observe that
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�
0

t

ds�c�t − s��exp��
s�

t

dsW��x�s��	 = �
0

t

dt�c�t��exp��
t−t�

t

dsW��x�s��	 ,

�
D̃R


R
�

0

t

dt� exp�− t�/
R�exp�t�W��x�t�� −
1

2
�t��2W��x�t��ẋ�t�	 . �38�

Neglecting the �t��2 term which can be shown to be valid self-consistently for small 
R under the
Markov approximation,23,39 we get

�
0

t

dt�c�t��exp��
t−t�

t

dsW��s�	 �
D̃R


R
�

0

t

dt� exp�−
t�


R
+ t�W��x�t��	 ,

�
D̃R

1 − 
RW��x�t��
�39�

for sufficiently large t. Substituting Eq. �39� into Eq. �37� we obtain the Fokker–Planck–
Smoluchowski equation corresponding to Eq. �19� as

�P

�t
=

�

�x

 1

�
�V��x� +

DR

�

�

�x
� 1

1 + �
R/��V��x��	P� , �40�

where P� P�x , t� is the probability density of finding the particle at x at time t. Defining an
auxiliary function G�x�, Eq. �40� can be rewritten as

�P

�t
=

�

�x

 1

�
�V��x� +

DR

�

�

�x
G�x�	P� , �41�

where G�x�=1 / �1+ �
R /��V��x��.

IV. APPLICATION

A. Solution under periodic boundary condition

In this subsection we consider the dynamics of a Brownian particle moving in a periodic
potential under a constant external force F. Then the above Fokker–Planck–Smoluchowski equa-
tion, Eq. �41�, reads as

�P

�t
=

�

�x

 1

�
�V��x� − F +

DR

�

�

�x
G�x�	P� .

In the overdamped limit the stationary current is given by

J = −
1

�
�V��x� − F +

DR

�

�

�x
G�x�	Pst�x� , �42�

where Pst�x�= P�x , t→	�. Now under symmetric periodic potential with periodicity 2�, i.e.,
V�x�=V�x+2��, we may employ the periodic boundary condition and normalization over one
period on Pst�x�,

Pst�x� = Pst�x + 2�� �43�

and
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�
0

2�

Pst�x�dx = 1. �44�

Integrating Eq. �42� we have the expression of stationary probability distribution in terms of
stationary current as

Pst�x� =
e−U�x�

G�x� �G�0�Pst�0� − J
�2

DR
�

0

x

eU�x��dx�	 , �45�

where

U�x� =
�

DR
�

0

x V��x�� − F

G�x��
dx� �46�

is the effective potential for the problem. Now applying the periodic boundary condition Eq. �43�
we have from Eq. �42�

G�0�Pst�0� = J
�2

DR
�1 − eU�2���−1�

0

2�

eU�x�dx . �47�

Using Eq. �42� and applying the normalization condition �Eq. �44��, we get

�
0

2� e−U�x�

G�x� �G�0�Pst�0� − J
�2

DR
�

0

x

eU�x��dx�	dx = 1. �48�

Elimination of G�0�Pst�0� from Eqs. �47� and �48� gives the expression of stationary current,

J =
DR

�2 � �1 − eU�2���
M

	 , �49�

where

M = ��
0

2� e−U�x�

G�x�
dx�

0

2�

eU�x��dx� − �1 − eU�2����
0

2� 
 1

G�x�
e−U�x���

0

x

eU�x��dx��dx�	 .

Now, the average velocity, 
v�= 
ẋ�, is given by


v� =
1

�

�F − V��x��� ,

=
1

�
�

0

2�

�F − V��x��Pst�x�dx ,

=
1

�
�

0

2� 
�J +
DR

�

�

�x
G�x�Pst�x��dx ,

where we have made use of Eq. �42�. Since Pst�x� and V�x� are periodic functions of x, with period
2�, 
v� is thus given by the constant probability current density, multiplied by 2�: 
v�=2�J. For
the periodic potential,

U�2�� =
�

DR
�

0

2� V��x�� − F

G�x��
dx� = − F� �say� ,

with
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� =
�

DR
�

0

2� dx�

G�x��
.

By definition,39 the mobility is given by

� = lim
F→0


v�
F

= 2� lim
F→0

J

F
.

If we consider mobility only in the linear response regime,39 the double integral term in the
expression of steady state current becomes

J =
DR

�2 � �1 − e−F��
M

	 , �50�

where

M = ��
0

2� e−U�x�

G�x�
dx�

0

2�

eU�x��dx� − �1 − e−F���
0

2� 
 1

G�x�
e−U�x���

0

x

eU�x��dx��dx�	
vanishes as F→0 and hence the mobility is given by

� =
2��DR/�2��

�
0

2� e−U�x�

G�x�
dx�

0

2�

eU�x��dx�

. �51�

Using the Einstein relation,39 the diffusion rate is given by

D̃ = ��kBT + D�0
2� ,

=
4�2

�
�kBT + D�0

2�
1

�
0

2�

eU�x�dx�
0

2� e−U�x�

G�x�
dx

. �52�

The above expression for the diffusion rate is exact for any periodic potential and for any Gaussian
noise process with a decaying memory kernel. For a simple choice of the potential V�x�, the above
expression is analytically tractable. For example, if we choose V�x�=A cos x, then to first order in

R �assuming the damping is large�,

D̃ =
kBT + D�0

2

�I0
2�A�

�1 + 
R�2� − 1�A
I1�A�
I0�A�	 , �53�

where I� is the modified Bessel function of order �. From Eq. �53�, the diffusion rate is seen to
increase from white to colored noise. The quantity A�I1�A� / I0�A�� is strictly positive, except at

A=0 where it is zero. The increase in D̃ is consistent with the fact that the diffusion coefficient
also increases from white to colored noise by a factor which is much larger than the enhancement
factor of the potential.

B. Bistable kinetics

The dynamics of a Brownian particle in a bistable potential models several physical
phenomena,45 and the standard form of the potential is given by
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V�x� = −
a

2
x2 +

b

4
x4, �54�

which has symmetric minima at x= ��a /b with intervening local maxima at x=0 of relative
height Eb=a2 /4b. We consider that our system of interest is moving in a bistable potential of the
form of Eq. �54� and is coupled to a bath which is modulated by an external Gaussian noise ��t�
with the statistical properties stated earlier. The corresponding Fokker–Planck equation in the
overdamped limit is given by Eq. �40�, the explicit form of which with the potential as in Eq. �54�
reads as

�P

�t
=

1

�� �

�x� d

dx
�−

a

2
x2 +

b

4
x4� +

DR

�

�

�x� �

� + 
R
d2

dx2 �− ax2/2 + bx4/4���P� .

At steady state, the above equation reads as

d

dx
�− ax + bx3�P�x� +

DR

�

d2

dx2� �

� + 
R�− a + 3bx2�	P�x� = 0. �55�

Since at steady state the stationary current vanishes, Eq. �55� takes the form

dP�x�
dx

+ R�x�P�x� = 0, �56�

where

R�x� =
g��x�
g�x�

−
h�x�

DRg�x�
, �57�

with

g�x� =
1

� − 
R�a − 3bx2�
, h�x� = ax − bx3, �58�

and prime � �� denotes differentiation with respect to x. The solution of Eq. �56� is given by

P�x� = N��� − 
R�a − 3bx2���exp� a

2DR
�� − a
R�x2 +

4ab
R − b�

4DR
x4 −


Rb2

2DR
x6	 , �59�

where N is the normalization constant. From Eq. �59�, we observe that the pre-exponential factor
behaves like a constant in comparison to the exponential factor, which is an exact statement for

R=0, i.e., when the external noise ��t� is �-correlated.

To this end, following the standard technique,46 the barrier crossing rate is obtained as

k =
�2a

��
� � − a
R

� + 2a
R
	exp�−

a2�

4bDR
�1 +

2a

�

R�	 , �60�

which is valid in the strong friction regime.

V. NUMERICAL IMPLEMENTATION

To check the validity of our analytical result we numerically simulate the Langevin equation,
Eq. �22�, using Heun’s algorithm.47 In our simulation, we have always used a small integration
step �t=0.001 to ensure numerical stability. In addition to that all our numerical results have been
averaged over 10 000 trajectories to obtain a smooth numerical profile. As mentioned in Sec. II,
although we mention the explicit values of the external noise parameters �De and 
e� used in the
simulation, we interpret our results in terms of the effective noise parameters DR and 
R.
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In Fig. 1 we show the profile of escape rate k as a function of the dissipation constant � for
different values of the effective correlation time 
R. Numerically, the escape rate has been defined
as the inverse of the mean first passage time.48 The values of the different parameters used in the
simulation are given in the figure caption. The profiles show that the numerical results are in good
agreement with the analytical ones. As expected for a fixed 
R value, the escape rate decreases
with �, but for a fixed value of �, the escape rate increases with the increase in the effective
correlation time 
R. To understand this behavior we numerically calculate the steady state PDF
�Ref. 48� for a fixed value of �, which is a measure of the dynamics in the bistable potential. The
analytical �Eq. �59�� and numerical profiles of steady state PDF �see the inset of Fig. 1� show that
the barrier height decreases as 
R increases, which effectively increases the escape rate k. In Fig.
2 we show the variation in the escape rate with different values of the coupling term �0, which
reflects an increasing trend of k with �0. The steady state PDF profile accounts for this behavior
with a decrease in the barrier height �see the inset�.

VI. CONCLUSION

A system reservoir model, where the reservoir is modulated externally by a Gaussian colored
noise, has been proposed to study the transport of an overdamped Brownian particle in a periodic
potential. Based on the Fokker–Planck–Smoluchowski description we calculate the mobility of the
Brownian particle in the linear response regime, and using Einstein’s relation the diffusion rate is
calculated for any arbitrary periodic potential where the external driving noise is colored. For a
cosine potential we obtain the diffusion rate in a closed analytical form and observe that the
diffusion rate increases from white to colored noise. As an immediate application of our formal-
ism, we study the bistable kinetics of the Brownian particle and demonstrate the dependence of the
correlation time of the external colored noise, by which the bath is modulated, on the steady state
PDF and observe the barrier crossing dynamics to obtain the expression for the escape rate. Our
analytical result for the escape rate is then compared with the Langevin simulation result, which
shows that both are in very good agreement. To the end it should be noted that nonlinear system
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FIG. 1. �Color online� Plot of barrier crossing rate k as a function of dissipation constant � for various values of the
effective correlation time 
R. The solid lines are drawn from the theoretical expression, Eq. �60�, and the symbols are the
results of numerical simulation of Eq. �22�. The values of the parameters used are kBT=De=0.05, 
e=0.04 �red, solid�, 0.06
�green, dashed�, and 0.08 �blue, dotted�, and �0

2=3 �red, solid�, 5 �green, dashed�, and 7 �blue, dotted�. Inset: The
normalized steady state PDF �Eq. �59�� using �=5.0 and the same parameter set as in the main figure.
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reservoir coupling may also be considered to obtain a Langevin equation for a Brownian particle
effectively driven by a state dependent colored noise, from which one may observe various
dynamical and kinematical aspects of the Brownian particle. We hope to address these issues in
the near future.
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