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A numerical study of periodic disturbances on two-layer Couette flow
Jie Li, Yuriko Y. Renardy, and Michael Renardy
Department of Mathematics and ICAM, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia 24061-0123

~Received 5 June 1998; accepted 17 August 1998!

The flow of two viscous liquids is investigated numerically with a volume of fluid scheme. The
scheme incorporates a semi-implicit Stokes solver to enable computations at low Reynolds numbers,
and a second-order velocity interpolation. The code is validated against linear theory for the stability
of two-layer Couette flow, and weakly nonlinear theory for a Hopf bifurcation. Examples of
long-time wave saturation are shown. The formation of fingers for relatively small initial amplitudes
as well as larger amplitudes are presented in two and three dimensions as initial-value problems.
Fluids of different viscosity and density are considered, with an emphasis on the effect of the
viscosity difference. Results at low Reynolds numbers show elongated fingers in two dimensions
that break in three dimensions to form drops, while different topological changes take place at
higher Reynolds numbers. ©1998 American Institute of Physics.@S1070-6631~98!00612-6#
o
-
e
he
ce
th

-
o
a

th
e
e
e

o
et

s
p-
f
r-
to
u
h

a
,
o

2,
la

t,

w,

n.
a

dis-

sta-
d 7,

ch
out
at-

i-
a
kly
es.
we

dity
at

g is

–
w
w.
oves
is-
of

ng
ree-
the
I. INTRODUCTION

Flows composed of two immiscible liquids and underg
ing shearing motions1 can form fingers as a result of an in
terfacial instability due primarily to the viscosity jump. Th
jump in the viscosity from one fluid to the other results in t
jump in the tangential velocity gradient across the interfa
and can be thought of as a viscous counterpart of
Kelvin–Helmholtz instability. An example is Fig. 1~cour-
tesy of Fig. 20 of Ref. 2!, where a cylinder is situated be
tween the less viscous water below and more viscous
above. As the cylinder begins to rotate, it brings with it
sheet of water. Observed from one end of the cylinder,
water–oil interface takes on a cusp-like structure. The sh
of water taken onto the cylinder then undergoes a thr
dimensional instability, in the form of scallops along th
length of the cylinder. At higher rotation rates, this leads t
fingering instability and then to emulsions of water dropl
in oil foam. The experimental results2 show fingering of cer-
tain low-viscosity liquids into high-viscosity liquids. Drop
of low-viscosity liquid are torn off the fingertips, due to ca
illary instability, leading to the formation of an emulsion o
low-viscosity drops in a high-viscosity foam. The drop fo
mation from the fingers is similar to the breakup of jets in
drops. Another motivation for this paper is that in coextr
sion flow of very viscous liquids, the interface between t
two fluids is often rippled.3,4

In this article, we attempt to capture the qualitative fe
tures of fingering by simulating two-layer Couette flow
which is one of the simplest of all the shearing flows of tw
fluids one might consider. A solution is shown in Fig.
where length is made dimensionless with respect to the p
separation. In dimensionless variables~x,y,z!, the lower fluid
is fluid 1 ~with viscosity m1! and occupies 0,z, l 1 , and
fluid 2 with viscositym2 occupiesl 1,z,1. There are four
parameters: the viscosity ratiom5m1 /m2 , the average depth
of the lower liquid l 1 , the interfacial tension parameterT
5S* /(m2Ui), whereS* is the interfacial tension coefficien
3051070-6631/98/10(12)/3056/16/$15.00
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andUi is the dimensional interfacial speed of the base flo
and a Reynolds number based on the lower fluidR1

5Uil * r1 /m1 , wherel * is the dimensional plate separatio
With equal densities, gravitational force is balanced by
pressure gradient and can be neglected. The solution
played in the figure has a base velocity field@U(z),0#, where

U~z!5H z/ l 1 , 0<z< l 1 ,

~m/ l 1!~z21!1Up , l 1<z<1,
~1!

where the dimensionless upper plate speed isUp51
1ml2 / l 1 , and the base pressure field is a constant. The
bility of this solution has been addressed in Refs. 5, 6, an
for normal modes with wave numbera in the flow direction
and temporal dependence through exp(st). The two-layer
Couette flow is a model problem that has received mu
analysis,8 and has helped in the development of ideas ab
more complicated two-fluid flows. The problem has also
tracted recent experimental results.9

In Couette flow, the fluid motion is mainly in the hor
zontalx direction. The analysis of stability of the state with
flat interface, and the subsequent development of wea
nonlinear waves serve as tests for our numerical cod
These theoretical works raise the following questions that
attempt to address in this paper: what is the range of vali
for the linear theory, the weakly nonlinear theory, and wh
happens outside of this range? The first stage of fingerin
a two-dimensional instability in thex-z plane,z being the
vertical axis, which is different from the usual Saffman
Taylor instability associated with fingering in a Hele–Sha
cell, where the interface moves in the direction of the flo
In our case, depending on parameters, the interface m
mostly perpendicular to the flow direction, undergoing d
tortion. There is some analogy with the cusp-like structure
Fig. 1, in that the fingers in two dimensions are thin and lo
at the tips. The second stage is the development of th
dimensional scallop patterns in the direction transverse to
flow.
6 © 1998 American Institute of Physics
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There are a number of algorithms one may pursue for
numerical simulation of interfacial instabilities in parall
shear flows of two fluids with different viscosities. We a
further interested in predicting wave bending and break
past the point of pinch-off of drops, and we require a meth
that handles easily the breakup and reformation of interfa
In this sense, the methods that have been used to pr
liquid–liquid jet breakup are of relevance.10 Examples in-
clude the front-tracking methods,11,12 the level set method,13

and volume tracking methods,14–18 such as the volume o
fluid ~VOF! scheme. In this paper, we present results ba
on a VOF scheme.

The VOF method19,20 is a fixed mesh approach to trac
the interface and uses a marker function convected by
flow. This allows for accurate interface advection a
handles changes in interface topology. The application of
boundary conditions on the interface, however, is
straightforward. The CSF ~continuous surface force!
technique21 has been developed to impose surface tens
effects in an efficient manner. In this algorithm, interfac
tension forces are incorporated as body forces per unit
ume in the momentum equations rather than as boun
conditions. This formulation is equivalent in the limit of in
finitesimal interfacial thickness to the classical description
these forces as boundary conditions. A variation of the C
algorithm is the CSS~continuous surface stress! technique,15

in which the body force in the momentum equation is e
pressed as the divergence of a tensor, and hence the su
tension effects can be formulated in a conservative way.
problem of how to formulate these interfacial boundary co
ditions is, however, not completely solved. The loss of ac
racy of these techniques may be serious, as observe

FIG. 1. Fingering instability leading to emulsions of water droplets in
foam ~Fig. 20 of Joseph, Nguyen and Beavers; Fig. 4.19 of Joseph
Renardy!.

FIG. 2. Flow schematics.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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simulations of a spherical drop with surface tension:21,15 the
kinetic energy does not decay to zero but oscillates w
constant amplitude, despite the physical and numerical d
pation. These are the so-calledspurious currents, which pose
a challenge for the numerical investigation of bubble motio
A better understanding of this numerical phenomenon
achieved in Ref. 22, where it is proved that the classical fix
mesh methods cannot admit a steady discrete solution sim
to the one predicted by the Laplace Law~i.e., spherical in-
terface shape, pressure jump equal to surface tension co
cient times the interface curvature! and hencespurious cur-
rentsalways exist for these methods. In fact, these meth
mistreat the pressure near the interface. By taking into
count the pressure jump explicitly in the numeric
discretization,22 a remedy is found for the front trackin
method, where the interface is represented by marker po
Our pressure correction method is implemented in Ref.
and shown to effectively reducespurious currentsby a factor
105.

The accuracy problem of CSF and CSS methods is
severe when investigating shear flow. It is easy to prove
these two methods model the surface tension effects
when the interface is a straight line parallel to a grid li
~surface force nul in this case! and simulations of capillary
waves in Ref. 24 show an error of 2% compared to theo

The dynamic breakup of axisymmetric liquid–liqui
jets10 at first glance appears to be essentially the same as
two-layer Couette flow. However, the mechanisms that dr
the unsteady motion are different: jet breakup is driven
surface tension, while interfacial evolution in the two-lay
Couette flow is driven by the jump in shear rates across
interface. In Ref. 7, these issues necessitate the incorpora
of the following to the code of Ref. 10. First, the physical
correct viscosity interpolation in cells overlapping the inte
face is important. This need decreases if it is practical
implement a sufficiently small mesh size, which we ha
done in the present investigation. A second essential fea
of our problem is that the interface shape propagates es
tially as a traveling wave, with a deformation occurring on
much slower time scale. As a result of this, we achiev
accuracy by introducing a Galilean transformation to a fra
moving with the fluid on the interface. This is required
addition to the usual numerical stability conditions. Ev
with the Galilean transformation, Ref. 7 shows an unphys
formation of steps in the long term. In this paper, we succ
in removing these with a higher-order velocity interpolati
scheme. It is found in Ref. 7 that the location where the fi
nonlinearity arises is the interfacial region. The interface a
its neighboring region give birth to the nonlinearity while th
bulk of the fluid behaves linearly, even for rather small init
amplitudes. The wave shapes found in Ref. 7 are qua
tively reminiscent of those seen in the experiments of Re
in a channel bent into an annular ring. In their experimen
they observed these shapes as saturated waves. Figu
shows a result from the code of Ref. 7, which was not able
reach saturation, for a qualitative comparison of the non
ear wave forms. Their findings underscored the need
more accurate tracking of the interface, which motivates
present investigation.

d
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Higher-order methods of interface representation are
plored here. We begin with our code, which is derived fro
Refs. 15, 22, and 25~Sec. I!. The simulation of an inviscid
Kelvin–Helmholtz instability has been obtained in Refs.
and 26 and our investigation is the viscous counterpar
this. With the explicit code, we foresee a problem for lo
Reynolds numbers, since the time steps must be small.
is addressed in Sec. II, where we institute a semi-impl
scheme that enables the use of larger timesteps and enh
computational efficiency.

In Sec. III, the question of how well the weakly nonlin
ear bifurcation analysis predicts saturation amplitudes is
lustrated at sample situations. In particular, we pursue
computational work of Ref. 7 for viscosity ratiom50.5, and
Reynolds numbers ranging from 40 to 500. The sat ura
wave form and amplitudes are reproduced in the full num
cal situation sufficiently close to onset, while nonlinear ev
lution and fingering are found farther away. The compu
tions at low Reynolds numbers are related to the finger
results of Ref. 27 at large amplitudes for Stokes flow, and
addition, incorporate the effect of finite Reynolds numbe
In Sec. IV, the prediction of two dimensional~2-D! fingering
with drop formation is presented. In Sec. V, the fingering
tracked farther into the 3-D regime.

A. The equations of motion

The two-fluid flow is modeled with the Navier–Stoke
equation:

rS ]u

]t
1u–“uD52“p1“–mS1F, ~2!

wherer is the density,m the viscosity,S the viscous stress
tensor:

Si j 5
1

2 S ]uj

]xi
1

]ui

]xj
D ,

and F the source term for the momentum equation. In o
calculations, the body forceF includes the gravity and inter

FIG. 3. Nonlinear wave steepening of the interface for 1<t<8. The initial
interface height isz50.37210.05 cos(px/2), waves at subsequent time in
tervals are shifted down by 0.02, wave numbera5p/2, Reynolds number
R15500 @Fig. 12~b! of Cowardet al.#.
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128.173.125.76 On: Tue,
x-

f

is
it
ces

l-
e

n
i-
-
-
g
n
.

s

r

facial tension force. Details are given in Refs. 15, 22, and
The velocity fieldu is subject to the incompressibility con
straint:

“–u50. ~3!

The two fluids are immiscible, and named fluids 1 and
Density and viscosity are constant in each phase but ma
discontinuous at the interface. We use a volume fraction fi
C to represent and track the interface that is transported
the velocity fieldu:

]C

]t
1u–“C50. ~4!

This equation allows for the calculation of density and v
cosity. In fact, the average values of density and viscosity
interpolated by the following formulas:

r5Cr11~12C!r2 , ~5!

m5Cm11~12C!m2 . ~6!

B. Temporal discretization and projection method

The simultaneous solution of the large number of d
crete equations arising from~2! and~3! is very costly, espe-
cially in three dimensions. An efficient approximation can
obtained by decoupling the solution of the momentum eq
tions from the solution of the continuity equation by a pr
jection method. The basic projection method was propo
by Chorin.28 The MAC method proposed earlier by Harlo
and Wesh29 is a variant of that method.

In the present projection method, the momentum eq
tions are first solved for an approximateu* without the pres-
sure gradient, assuming thatun is known:

u* 2un

Dt
52un

–“un1
1

r
@“–~mS!1F#n. ~7!

In general, the resulting flow fieldu* does not satisfy the
continuity equation. However, we require that“–un1150
and

un112u*

Dt
52

“p

r
. ~8!

Taking the divergence of Eq.~8!, we obtain

“•S“p

r D52
“–u*

Dt
, ~9!

which is used to find the pressure field. Next,u* is corrected
by this pressure field and the updated solutionun11 is found
from Eq.~8!. This algorithm is easier to solve than the orig
nal fully coupled set of equations. We use two kinds
boundary conditions for the velocity: The periodic conditio
or the Dirichlet condition. Consistent with these bounda
conditions for the velocity, the boundary condition for th
pressure is periodic condition or Neumann condition, resp
tively.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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C. Spatial discretization

We use an Eulerian mesh of rectangular cells hav
variables sizes,Dxi for the i th x-direction mesh size,Dyj for
the j th y-direction mesh size andDzk for the kth z direction
mesh~Fig. 4!. While not as flexible as a mesh composed
arbitrary quadrilaterals, the variable mesh capacity of
codes gives it a considerable advantage over methods u
equal-size rectangles. For two-phase flows, in particular,
mesh can be refined in the interfacial region. The enorm
memory and time consumption of three-dimensional simu
tions make this effort absolutely imperative. Navier–Stok
solvers for arbitrary mesh is now standard for the 3-D cas30

however, the difficulty resides in the interface tracking.
our knowledge, there is no 3-D VOF method yet availa
for arbitrary mesh, although a 2-D code has been develo
in Ref. 22.

The momentum equations are finite differenced on a
cally variable, staggered mesh. As Fig. 5 shows, thex com-
ponent of velocityui 21/2,j ,k , the y component of velocity
v i , j 21/2,k and thez component of velocitywi , j ,k21/2 are cen-
tered at the right face, front face, and top face of the c
respectively, whereas the pressure,pi , j ,k , and the volume
fraction,Ci , j ,k , are located at the center. This is the so-cal
MAC method. This apparently sophisticated mesh prese
the advantage that in the resulting discrete Poisson equa
the pressure field is not decoupled and its solution permits
checkerboard oscillation. Another advantage of the MA
method is that the Neumann condition for the pressure

FIG. 4. A three-dimensional Cartesian mesh with variable cell sizes

FIG. 5. The location of variables in a MAC mesh cell.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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automatically involved in the numerical solution and is co
sistent with the Dirichlet condition for the velocity.31 No
numerical boundary condition is needed.

As reported by Hirt and Nichols,20 the conservative
scheme in a variable mesh loses one order of formal pr
sion for the advective terms. Hence, we chose the nonc
servative scheme; i.e.,

DUL5~ui 21/2,j ,k2ui 23/2,j ,k!/Dxi 21 ,

DUR5~ui 11/2,j ,k2ui 21/2,j ,k!/Dxi ,

S u
]u

]xD
i , j ,k

5ui , j ,k

DxiDUL1Dxi 21DUR

Dxi 211Dxi
. ~10!

The basic idea in Eq.~10! is to weight the derivatives by
cell size such that the correct order of approximation is ma
tained in a variable mesh. This type of approximation is us
in our code for all convective terms appearing in Eq.~7!.

The pressure and viscous terms in the momentum eq
tion are calculated using second-order central finite diff
ences, taking into account the variable mesh. The viscosi
calculated by formulas~6! once we know the volume frac
tion C. We should mention that contrary to the equal-s
mesh, the discrete pressure equation is no longer symme
This can be seen from the (]/]x)@(1/r)(]p/]x)# discretiza-
tion:

]

]x S 1

r

]p

]x D
i , j ,k

5
1

Dxi 21
S S 1

r

]p

]x D
i 11/2

2S 1

r

]p

]x D
i 21/2

D
52

1

Dxi
F pi 21

r i 21/2dxi 21/2
2S 1

r i 21/2dxi 21/2

1
1

r i 11/2dxi 11/2
D pi , j ,k1

pi 11

r i 11/2dxi 11/2
G ,

~11!

wheredxi 21/251/2(1/Dxi 21/211/Dxi). The discrete system
is not symmetric because of the factor 1/Dxi .

The solution of the discrete counterpart of Poisso
equation~9! is the most time consuming part of our Navier
Stokes solver and, consequently, an efficient solution is c
cial for the performance of the whole method. The perf
mance of some classic iterative methods, such as the Ga
Seidel method, the Cholesky incomplete factorizati
method, and the preconditioned conjugate gradient met
suffer from the degradation of the convergence rate when
mesh size increases. Moreover, the system can be ver
conditioned when a large density ratio of the two fluids
volved causes a sharp variation of the coefficients. Po
tially, the multigrid method is the most efficient method:
reduce the error from a constant factor, the multigrid meth
needs a fixed number of iterations, whatever the mesh s
The multigrid method achieves this convergence rate in
pendent of mesh size by combining two complementary
gorithms: one iterative method to reduce the high-freque
error and one coarse grid correction step to eliminate
low-frequency error.

Our multigrid solver is derived from the one in Ref. 1
adapted to the variable mesh. As the discrete pressure i
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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longer symmetric, new variables need to be declared. F
thermore, we use an algebraic approach~Galerkin method!
instead of the physical one to find the coarse grid syst
The algebraic approach can be generalized directly to
variable mesh case and provides also a better coarse
correction. In Ref. 20, the algebraic approach is dem
strated at least five times more efficient than the physical
for rising bubble simulations, where the density ratio is t
real ratio between water and air~about 1000!. Two-color~for
the 2-D case! and four-color~for the 3-D case! Gauss–Seide
methods are chosen as iterative methods, the periodic
Neumman boundary condition for the pressure necessitat
additional procedure during the numerical implementati
Their favorable convergence rates combined with a coa
grid correction makes the multigrid method one of the fas
solvers of the Poisson equation.

D. Piecewise linear interface calculation

The volume of fluid~VOF! method is especially suite
to two-fluid shear flow simulations.19,20,32–34In this method,
the location of the interface is approximately represented
the volume fractionCi j of fluid 1 in the cell. We have 0
,C,1 in cells cut by the interface andC50 or 1 away
from it. For a review of this method, see Ref. 35.

Since we lose interface information when we repres
the interface by a volume fraction field, the interface need
be reconstructed approximately in each cell. The first-or
VOF method of Ref. 7 shows an unphysical formation
steps in two-layer Couette flow at low speeds, close to on
conditions for traveling interfacial waves, and this und
scored the need for higher-order methods. High-order m
ods have been, indeed, developed successfully by Refs
27, 35, and 36 both for 2-D and 3-D cases. Typically,
interface can be reconstructed by the piecewise cons
~SLIC! or piecewise linear~PLIC! methods. When the latte
method~the more accurate and more stable one! is chosen,
the gist of interface reconstruction is to calculate the appro
mate normaln to the interface in each cell, since this dete
mines one unique linear interface with the volume fraction
the cell. We find that discrete gradient of the volume fract
field provides a good approximation:

n5
“

hC

u¹hCu
. ~12!

A least-square method36 has also been implemented. Th
method improves the calculation of the interface normal,
no significant difference has been observed in the simula
of Couette flow.

The second step of the VOF method is to evolve
volume fraction fieldC. If the flow field is incompressible
i.e.,“–u50, the advection equation can be recast in cons
vative form:

]C

]t
1“–~uC!50. ~13!

A popular method is to apply an Eulerian scheme at t
stage. In this case, the interface evolution is not governed
a conservative equation, and Eulerian schemes do not th
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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fore preserve the physical constraint 0<C<1 on the volume
fraction C. Hence, during the advection step, even with
sophisticated geometrical construction, there is a need
truncate the volume fractionC by the formula

Cn115min@1,max~Cn11,0!#, ~14!

at the (n11)th time step. Since interface evolution is go
erned by a transport equation, the Lagrangian method wo
appear more natural and more straightforward.27,33 In this
scheme, once the interface is reconstructed, the velocit
the interface is interpolated linearly and then the new po
tion of the interface is calculated by the following formula

xn115xn1u~Dt !. ~15!

Figure 6 illustrates how the Lagrangian method performs
an arbitrary two-dimensional mesh.22

On a Cartesian mesh, we can simplify the programm
by an operator-split method: we reconstruct and advance
interface in each spatial dimension separately. Suppose
in box @0,1#2 the interface segment is defined by a line
equation,

nxx1nyy5a, ~16!

and the horizontal velocity defined on two vertical face ce
ters areui 21/2,j andui 11/2,j . Let A be a point on the above
interface segment with coordinate~x,y!. From linear interpo-
lation we obtain its horizontal velocity:

u5~12x!ui 21/2,j1xui 11/2,j ~17!

and its updated coordinatex8 at the (n11)th time step, as
defined in Eq.~15!, is

x85~12ui 21/2,jDt1ui 11/2,jDt !x1ui 21/2,jDt, ~18!

where primes denote values at the (n11)th step and vari-
ables without primes are evaluated at thenth time step. The
new interface equation is still a linear equation:

nx8x1nyy5a8, ~19!

where

nx85nx /~12ui 21/2,jDt1ui 11/2,jDt !,

and

FIG. 6. The Lagrangian method on an arbitrary two-dimensional mesh.
shaded polygon represents the part occupied by the fluid in the central
The broken line shows the polygon position after advection in the lo
velocity field represented by arrows. The fluid is redistributed betw
neighboring cells, which the new polygon partially overlaps.
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a85a1nx8ui 21/2,jDt.

Figure 7 shows us how to obtain the new volume fract
from the new position of the interface. In Fig. 7~a!, we sup-
pose thatui 21/2,0 andui 11/2.0. The part occupied by the
fluid in the central cell is the shaded polygon. Figure 7~b!
shows its new position calculated by Eq.~15!. During the
advection step, the central cell contributesV1i , j ,k to the vol-
ume fraction of the left cell ifui 21/2,0, V3i , j ,k to the vol-
ume fraction of the right cell ifui 11/2.0, and alsoV2i , j ,k to
the volume fraction of itself.V1i , j ,k is the shaded area in th
left cell and it is between the linesx5ui 21/2, y50, x50 and
Eq. ~19!. V2i , j ,k and V3i , j ,k can be calculated by the sam
manner. Thus, the new volume fractionCi , j ,k in the cell
~i,j,k! is

Ci , j ,k5V3i 211V2i , j ,k1V1i 11 . ~20!

In a Lagrangian method, whenever the Courant con
tion (maxuuu)Dt/h,1/2 is satisfied, the algorithm is stable an
satisfies the physical constraint 0<C<1. Furthermore, the
Lagrangian method is not subject to the incompressibi
constraint. Figure 8 illustrates the example of a constant
locity field u5(1,0): ~a! the interfaces in cells with volume
fraction C are constructed;~b! the interface is advanced b
Eq. ~15! and the new volume fraction field is calculated fro
the new interface position; and~c! the interface is recon
structed from the new volume fraction field, and so on.

We should mention that until now our operator-sp
scheme is second-order accurate for the velocity field onl
the advancing direction. It is only first-order accurate in t
direction perpendicular to the advancing direction. While
have obtained good results for some kinematical te
~simple translation and solid rotation!, it fails to be precise
for shear flow. A simple shear velocity field in a box@0,1#2

is u5(y,0). We initialize this with a sinusoidal wave on th
interface@Fig. 9~a!#, which is represented by the height fun

FIG. 7. The Lagrangian method during the advection step.~a! The shaded
polygon represents the part occupied by the fluid in the central cell.~b! The
contribution of this part to the new volume fraction field after advection

FIG. 8. An interface advected by the velocity fieldu5(1,0).
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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tion z50.510.05 cos(2px). We can think of this simple tes
problem as modeling a limiting case of two-layer Coue
flow at very low Reynolds numbers, with linear growth rat
decreasing to zero, and resulting in only the deformation
the wave due to shear. Figure 9~b! shows the interface posi
tion at timet53 calculated by the above Lagrangian meth
with a 64364 uniform mesh. We observe that the interfa
wiggles behind the wave crest; the interface oscillates ac
grid lines. In this calculation, we have already improved t
interface normal calculation by the least-squares meth
The wiggle is not due to the calculation of the normal vec
but due to poor approximation of velocity. In fact, the loc
horizontal velocity is defined at the vertical face center
cells. This results in a staggered movement of interface s
ments in cells at different horizontal levels; the velocity fie
presents a discontinuity across the grid lines@Fig. 10~a!#.
Very fine mesh is needed for this method to improve veloc
approximation and consequently eliminate interface wigg
We remark that for this simple shear flow, our Lagrangi
method is equivalent to the Eulerian method of Ref. 36.

It is evident that we must make the velocity continuo
across grid lines. Our strategy is to define the local veloc

FIG. 9. ~a! The initial interface height isz50.510.05 cos (2px). ~b! The
interface position at timet53 s calculated by the first-order velocity inter
polation method.~c! The interface position at timet53 s calculated by the
second-order velocity interpolation method.

FIG. 10. ~a! The first-order Lagrangian method. Local velocity is defined
the face center of the cell. The velocity field is discontinuous across the
lines.~b! The second-order Lagrangian method. Local velocities are defi
at corners of the cell. The velocity field is continuous across the grid lin
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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on the four corners of the cell for the Lagrangian meth
These velocities are obtained by linear interpolation a
consequently, the velocity approximation is second-order
curate in each direction. Figure 10 compares the first-
second-order Lagrangian methods. While in the first-or
method the fluid moves with different velocities at differe
horizontal levels and fluid advection is discontinuous acr
grid lines, the second-order method reflects the shear p
erty of the flow well and fluid advection is continuous acro
the grid lines. It is then not surprising that the second-or
Lagrangian method eliminates the above wiggles of the
terface. Figure 9~c! shows the interface position at timet
53 calculated by this method with a 64364 uniform mesh;
no oscillation of the interface is observed.

We have thus developed the PLIC method, both in t
and three dimensions. This has been adapted by weigh
the equation~20! by the mesh size for the variable me
case.37 Comparing to Ref. 7, we recover their findings f
small amplitudes of interface perturbation, where the int
face is nearly horizontal and the first-order VOF method
still reliable. In addition, we do not observe unphysical s
formations when the interface undergoes large deformati

II. SEMI-IMPLICIT STOKES SOLVER

When a VOF method is used, the boundary condition
the interface are not applied directly, but replaced by so
volume force formulation. As a consequence, a good res
tion of the boundary conditions depends on the quality of
mesh. A fine mesh is usually required near the interface

The use of a finer grid imposes, however, a further
striction on the time step size for the explicit method. Ba
cally, given a mesh, the time scale for convective transp
of a fluid particle to pass through a cell is

Tc5minS Dx

u
,

Dy

v
,

Dz

w D , ~21!

and the time scale of viscous diffusion for momentum
diffuse through a cell is

Tm5
rh2

m
, ~22!

whereh is the minimum of the mesh sizes min(Dx,Dy,Dz).
The stability criterion for an explicit method is that the tim
stepsDt must be chosen less than the two above time sca
~i! the inviscid CFL ~Courant–Friedrichs–Lewy! number
Dt/Tc,1, and~ii ! the Neumann numberDt/Tm,1.

As with any explicit method, simulations of very low
Reynolds number flows are subject to strict stability limi
tions on the size of the time step and are therefore expen
Furthermore, for tracking interfacial instabilities, fine gri
need to be used near the interface. Since the viscous d
sion time scaleTm}h2, this stability limit is hence much
more restrictive than the CFL condition. For the physic
parameters of Fig. 13 of Ref. 7@A(0)50.01, a56.3, R1

540,m50.5, l 150.372,T50.01, equal densities, zero gra
ity#, with a 16031024 mesh,Tm52.3931028 and it is
therefore impossible to run a code with a time stepDt less
than this if we expect to perform a calculation for times
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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order 1. This makes the implicit treatment of the visco
terms imperative. Puckett and co-workers36 developed a
second-order scheme for the viscous terms. Their sch
possesses a full implicit part for the viscous terms and
quires the solution of a coupled parabolic system for
velocity components. This system appears more complica
than the Poisson’s equation and we presume that its solu
would be comparable, if not more costly, to the solution
the pressure equation and therefore reduce the efficienc
the whole method. Our remedy for this dilemma is as f
lows.

The time integration scheme is constructed to be impl
for the Stokes operator, and otherwise explicit. Take thu
component of the momentum equation~7!, for example. This
will be changed in the following way. We treat only th
terms related tou ~the terms with upper index* ! implicitly
and leave the other terms~the terms with upper indexn! in
the explicit part. Hence, this equation in the semi-impli
scheme is

u* 2un

Dt
5~un

–“ !un1
1

rn
F1

n1
1

rn

]

]x
~2mnux* !

1
1

rn

]

]y
~mnuy* 1mnvx

n!1
1

rn

]

]z
~mnuz*

1mnwx
n!, ~23!

and similarly for thev, w components. This can be ex
pressed as

H I 2
Dt

r F ]

]x S 2m
]

]xD1
]

]y S m
]

]yD1
]

]z S m
]

]zD G J u*

5explicit terms. ~24!

This procedure decouples theu component from the above
parabolic system. The same idea applies also to the o
velocity components.

As far as the viscous terms are concerned, our se
implicit scheme is unconditionally stable. The stabili
analysis can be carried out as follows~we will show only the
2-D case!. Let u;exp(iax1iby) and letm51, r51 for sim-
plicity. Then

S u* 2un

Dt
v* 2vn

Dt

D 5S 22a22b2 0

0 2a222b2D S u*

v* D
1S 0 2ab

2ab 0 D S un

vnD
1explicit terms, ~25!

which reduces to
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S u*
v* D5S 2a21b21

1

Dt
0

0 a212b21
1

Dt

D 21

3S 1

Dt
2ab

2ab
1

Dt

D S un

vnD1explicit terms.

~26!

The eigenvalues of the middle matrix above need to be
than 2a21b211/Dt and a212b211/Dt. The eigenvalues
are 1/Dt6ab. But ab are less than1

2(a
211b2). By a

similar argument, we have also proved that our 3-D se
implicit scheme is also unconditionally stable.

As the full explicit scheme, this semi-implicit scheme
first order in precision. Although it is more easy to be solv
than the coupled system, it requires still inversions of a la
sparse matrix. What makes the method very efficient i
factorization technique30 that is applied to the left-hand sid
of Eq. ~24!:

H I 2
Dt

r F ]

]x S 2m
]

]xD G J H I 2
Dt

r F ]

]y S m
]

]yD G J
3F I 2

Dt

r

]

]z S m
]

]zD Gu* 5explicit terms. ~27!

It is easy to show that the error of the above factorizat
is of orderO (Dt3). The inversion of the left-hand side of Eq
~27! requires solving only tridiagonal matrices; this results
a significant reduction in computing and memory. In fact,
solution of these tridiagonal systems can be done in o
O (N) operations~whereN is the grid point number! and is
insignificant compared to the solution of the pressure eq
tion.

The efficiency of the above semi-implicit scheme is
lustrated for the parameters of Fig. 13 of Ref. 7, given ab
for a 1283256 mesh. For the explicit run, we can mere
take Dt51024, the CFL51.2731022, and the Neumann
numberDt/Tm50.128. In this calculation, the viscous diffu
sion time scale is much more restrictive than the convec
transport one. For the implicit run, on the other hand, ther
no restriction from the viscous diffusion time scale. We to
Dt5231023, the CFL50.254, the Neumann numbe
Dt/Tm52.56. With the implicit scheme, we obtained the r
sults of same quality as the explicit scheme, but we redu
the CPU by a factor of 20. We have seen that Eq.~24! is of
order 1 and Eq.~27! is order 3, so the order of the whol
scheme is of order 1.

The implicit scheme was run for our previous paramet
on an extremely fine mesh (16031024). As we are not sub
ject to the viscous diffusion time scale, we chose our ti
step only according to the CFL number restriction,Dt52
31023, the CFL50.32, and Neumann numberDt/Tm

5105. This calculation took just a few hours on a S
Onyx2 computer by using the above implicit scheme but w
take more than two months if we use the explicit scheme.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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the other hand, for low Reynolds number flow, coarse g
mesh is enough for a calculation far away from the interfa
This advocates the use of a variable mesh size method.

III. SATURATION

At criticality, the two-layer Couette flow with a flat in
terface atz5 l 1 loses stability to a Hopf bifurcation. The
growth rate versus wave number plot is shown in Fig. 11
viscosity ratio m50.5, interfacial tension parameterT
50.01, equal densities, depthl 150.372. The maximum
growth rate modes are circled. In the 2-D study of Ref. 7 a
here, the initial condition is seeded with an eigenfuncti
derived from the linearized stability analysis of the ba
Couette flow.

The weakly nonlinear theory of Refs. 6 and 7 yields
Stuart–Landau equation for the amplitude functionZ(t) of
the primary mode:dZ/dt2sZ5kuZu2Z, where k denotes
the Landau coefficient. The critical eigenfunction is denot
z and the eigenvalue is denoteds. The dynamics just above
the onset of instability is dominated by the primary mo
and its self-interactions. The traveling wave solution is p
dicted to saturate when the real part of the Landau coeffic
is negative. The traveling wave solution is denotedZ(t)
5exp(ivt)Z0 and substitution into the amplitude equatio
yields ivZ02sZ05kuZ0u2Z0 , or iv2s5kuZ0u2. Taking
the imaginary part, we find the saturation amplitude to be

uZ0u5A2Re s/Re k. ~28!

At our parameters, the results are tabulated in Table
is evident that the value of the Landau coefficient is appro
mately the same whether the pressure gradient is kept fi
~PG! or whether the volume flux is kept fixed~VF! through-
out the weakly nonlinear analysis. Table I shows the theo
ical saturation amplitudesuZ0u at the maximum growth rate
points close to onset conditions. In addition, atR1540, a
56.3, s50.03526.16i , which was used in Ref. 7,k(PG)
521331602i , k(VF)521331588i , anduZ0u50.016.

FIG. 11. Growth rate Res versus wave numbera at m50.5, l 150.372,
T50.01, equal density. Values of the Reynolds number are given nex
each curve. The maximum growth rate points are circled. The approxim
onset condition isa56.3, R1510.
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TABLE I. The Landau coefficientsk for the fixed pressure gradient~PG! and the fixed volume flux~VF!, the
wave numbera of the maximum growth rate, the eigenvalues, and saturation amplitudeZ0 , close to onset
conditions. Herem50.5, l 150.372,T50.01, equal density.

R1 a s k ~PG! k ~VF! Z0

11 6.5 0.001726.43i 221811092i 221811074i 0.0028
15 6.9 0.008926.84i 239311250i 239311231i 0.0047
20 7.2 0.01727.13i 251311253i 251311234i 0.0058
40 7.5 0.03827.5i 23651950i 23651932i 0.01
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The wave shapes at saturation are represented asz5 l 1

1Fh , whereFh is the perturbation solution comprised
the primary wave componenthz and the second harmonichh

~notation as in Ref. 6!:

Fh52 Re@Z0hz exp~ iax1st !

1Z0
2hh exp~2iax12st !#. ~29!

For theR1511 case, Fig. 12~a! shows the saturation wav
form, and for theR1515 case, Fig. 12~b! shows the wave
form. It is evident that the nonlinearity becomes importa
very quickly. Even the waves of Fig. 12~a! have lost the
sinusoidal appearance and Fig. 12~b! shows two humps pe
wave. Comparing these, there is sensitivity in the shape
the situation moves off the onset case. TheR1515 case is
50% above onset in the Reynolds number.

The asymptotic analysis shows that atR1515, a56.9,
l 150.327, andm50.5 the saturation will be reached atA
'0.004. Simulations of this length in duration at low Re
nolds numbers would not have been possible without the
of the semi-implicit scheme for the viscous terms. Resu
for a variety of initial amplitudes below and over the pr
dicted saturation amplitudes,R1515, A(0)50.003, andR1

540, A(0)50.01,0.05 are shown to lead to fingering; s
Sec. IV. Why is fingering preferred over wave saturation
these parameters? It is known that for Stokes flow,27 the
action of shearing an interface horizontally leads to elon
tion of an initial wave form to fingers. The low Reynold
numbers we address here would also show this phenom
for sufficiently large initial waves. On the other hand, t
finite Reynolds number affects the growth of waves throu
the linear instability due to viscosity stratification. Th
growth rate term originating from the viscosity stratificatio
tends to zero as the Reynolds number tends to zero, while
interfacial tension term does not. The growth rate of the
s indicated in the article. Reuse of AIP content is sub
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ear instability is proportional to the Reynolds number and
therefore small, but governs the vertical growth of the int
face. The linear instability of the interfacial mode at, sa
a56.3, R1540, involves a rather short wave and wou
therefore be confined to the interfacial region. The veloc
field is only locally affected by the vertical linear growth ra
for the interface position, and is overall affected more by
base Couette flow, favoring the fingering due to horizon
shearing at the interface, rather than the slow vertical gro
to saturation. This is verified from our simulations, in whic
the maximum value of the velocity is attained some dista
away from the interface.

In the experiments of Ref. 9, saturation is reached afte
time of order 1000 s. The lower fluid is a water–glyceri
~32%–68%! mixture with viscosity 0.0191 Pa s, densi
1169 kg/m3, and the upper fluid is mineral oil with viscosit
0.0297 Pa s, and density 846 kg/m3. Interfacial tension is
0.03 Pa m. These experiments were conducted in a cha
bent into a circular form, so that the base flow involves
slight centrifugal component. Nevertheless, this is mode
with two-layer Couette flow in Ref. 38, who used an upp
plate velocity of 0.44 m/s, channel depth of 20 mm, a
wavelength 6.8 cm, and depth of lower fluid 12.74 mm,
describe an onset condition. Under our notation,6 the interfa-
cial tension parameter isT5S* /(m2Ui)53.14, F2

5Ui
2/(gl* )50.528, whereF is the Froude number,R1

5Uil * r1 /m15394, density ratior 5r1 /r251.3812, viscos-
ity ratio m5m1 /m250.645, depth ratiol 15 l 1* / l * 50.637,
dimensionless wave numbera51.9. The weakly nonlinear
results are shown in Table II. The amplitudeuZ0u50.007 is
equivalent to 0.14 mm.

The numerical investigation of saturation is difficult b
cause the vertical motion of the interface crest is mu
smaller than the horizontal motion, and a relatively sm
FIG. 12. The saturation wave form atm50.5, l 150.372.~a! a56.5, R1511, Z050.0028.~b! a56.9, R1515, Z050.005.
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TABLE II. The Landau coefficientsk for the fixed pressure gradient~PG! and the fixed volume flux~VF!, the
wave numbera of the maximum growth rate, the eigenvalues, and the saturation amplitudeZ0 , close to the
onset conditions for mineral oil over the water/glycerine mixture.

R1 a s k ~PG! k ~VF! Z0

394 1.9 0.000 3821.05i 27.82124.8i 26.63128.9i 0.007
500 1.9 0.006821.05i 29.14127.4i 27.3132.6i 0.03
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error in the horizontal motion can feed back a significa
error in the vertical motion. Linear theory predicts that t
eigenvalue iss53.76153102421.05i . From the kinematic
free surface condition, the complex vertical velocity is

v5h@s1 iaU~ l 1!#5h~3.76153102410.85i !.

The interface shape is defined by

Re~heiax!5h cos~ax!.

This has one crest atx50. Near this crest, the vertical ve
locity is

Re~veiax!5h@3.761531024 cos~ax!20.85 sin~ax!#

5h@3.76153102421.615x1O ~x2!#,

where the first term 3.761531024 is much smaller than
1.615, and therefore a small error in the horizontal motion
the crest will result in a large error in its vertical motio
There are some sources of error that we can mention h
First, att50, the velocity and pressure we input are the b
flow plus an eigensolution. The eigenfunction compu
from the linear stability problem is defined over 0< l 1 for
fluid 1 and overl 1< l 2 for fluid 2. However, the domain
occupied by fluid 1 is 0< l 11h and that of fluid 2 isl 11h
<1. To use the eigenfunction as an initial condition, we ne
to map it to the perturbed domain. Second, in our VOF d
cretization for the interface and MAC discretization for t
velocity, boundary conditions are not taken into account
plicitly, but treated as average quantities. Thus, a fine m
is required to obtain precision. Our numerical investigat
of the linear theory is presented in Table III, showing me
convergence. We begin with a small initial amplitudeA(0)
51025. The calculations have been done on differe
meshes with different time steps. We observe that increa
they mesh number alone leads to significant improvemen
the agreement with linear theory. For mesh 2563256, the
error is 138.5%, and for mesh 25632048 the error is 11.7%
The reduction of error is proportional to they mesh number.
s indicated in the article. Reuse of AIP content is sub
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The x mesh number and the time step size do not play
important role. Unfortunately, the excessive computatio
cost places a practical constraint on the computation with
larger mesh and for longer times.

We note that the evolution of bulk mode disturbanc
can be calculated accurately on a modest mesh. For exam
the first bulk mode has a decay rate20.1437. When the
initial condition is seeded with this mode on a 2563256
mesh, the evolution of maximum of the interface height,
maximum of the vertical velocityV and L2 norm against
time are shown in Fig. 14. Very good agreement is obtain
between linear theory and transient computations, the dif
ence between the two is less than 1%.

The saturation of the flow withR15394 is investigated
on a 2563256 mesh. Qualitative features of the flow a
captured on this modest mesh. Figure 13 is the theore
prediction for the saturated waves, with the same notation
in Fig. 12. Figure 15~a! illustrates the evolution of the inter
face amplitude versus time, showing saturation after a t
of order 1000 s. The saturation amplitude is approximat
0.0175; the error in the saturation amplitude is of the sa
order as the error for the linear growth rate on this me
Figure 15~b! shows the simulated wave shape at 2500 s w
flat crests and sharp troughs, in agreement with the wea
nonlinear theory. We conclude that the simulation atR1

5394 would require a finer mesh to resolve the evolut
quantitatively.

At R15500, the growth rate is sufficiently high that th
numerical resolution of the linear instability regime is rel
tively accurate on a 2563256 mesh. We obtain a linea
growth rate 7.131023 on this mesh, which yields a 4.41%
error in comparison with linear theory. This simulation w
started from a small initial amplitude in comparison with t
expected saturation amplitude:A(0)50.0002. The reason
for choosing such a small initial amplitude is to initialize
the linear regime; otherwise, if the initial condition is alrea
outside the linear regime, the solution may not saturate
TABLE III. Linear growth rates calculated on different meshes and time steps. Herenx is thex mesh number
andny is they mesh number;R15394. The theoretical growth rate is 3.761531024.

A(0) nx ny Dt Numerical growth rate Error

1025 256 256 1024 8.9731024 138.5%
1025 514 256 1024 9.1331024 142.8%
1025 1024 256 1025 9.1731024 143.9%
1025 256 512 1024 6.1231024 63.8%
1025 512 512 1024 6.2831024 67.0%
1025 256 1024 1024 4.8031024 27.5%
1025 256 2048 1024 4.16031024 10.5%
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FIG. 13. The saturation wave form for parameters of Table II.~a! R15394. ~b! R15500.
e
ig
s.
is
is
kl

s
t

e
a

st
t
o
ov
ca

per-
is
the
ith
-

s not
bed
e
he
to
ws
es
ort
the
and
gh,
n-

ict
l-
ny
bers
ro-

r
we
ndi-

s

iffe ude
cording to weakly nonlinear theory. The Log plot of th
maximum of interface height versus time is shown in F
16~a!, the flow is in the linear regime during the first 700
The evolution of the maximum of the interface height
shown in Fig. 16~b!; the saturation amplitude we obtained
approximately 0.031, in good agreement with the wea
nonlinear theory. Finally, the interface height atx50 is
shown in Fig. 16~c!. We mention that when the flow reache
saturation, our VOF scheme begins to lose some mass on
mesh. A finer mesh is needed to reduce this deficiency.

IV. FINGERING IN TWO DIMENSIONS

Our ultimate objective is the study of 3-D effects. Thre
dimensional simulations are, however, limited by the m
chine memory and computation time. As our flow manife
a quasi-two-dimensional behavior in the early stages and
three-dimensional effects come later, preliminary tw
dimensional studies are necessary, because they can pr
useful information for our choices of physical and numeri

FIG. 14. The log plot of the maximum of interface height~a!, the log plot of
the maximum of vertical velocity~b!, and the log plot of theL2 norm
against time ~c! for the flow: A(0)50.0001, a51.9, R15394, m
50.646 15,l 150.636 94,T53.14, density ratio. Linear stability analysi
indicates that the growth rate for the bulk mode is20.1437. Solid lines
represent theory and circles represent the numerical calculation. The d
ence is less than 1%. The calculation is carried out on a 2563256 mesh.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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parameters. We study in this section the large-amplitude
turbation of two-layer Couette flow depicted in Fig. 2. Th
flow is subjected to a periodic perturbation that disturbs
interface and the velocity field in a sinusoidal manner w
amplitudeA(0). In this section, the densities of the two flu
ids are assumed to be the same and so the gravity doe
play a role. Furthermore, we suppose that the undistur
interface height isl 150.372 and the viscosity ratio of th
fluids is m50.5. Linear theory predicts that, as long as t
amplitude is sufficiently small, a sinusoidal perturbation
the Couette flow with an appropriate wave number gro
exponentially. This tendency to grow vertically compet
with the convective action of the simple shear flow to dist
the interface. For the higher amplitudes of perturbation,
dominant tendency is the horizontal shift on the crests
troughs. When the perturbation amplitude is large enou
the folding of the interface under the shear simple flow co
vection is so important that the linear theory fails to pred
the flow evolution. Beyond the linear growth region, a
though the weakly nonlinear theory is relevant in ma
cases, there is much that happens at low Reynolds num
at seemingly small amplitudes, which lead to nonlinear p
cesses that must be simulated numerically.

First, we investigate the flow withm50.5, equal density,
T50.01, Reynolds numberR15500, and wave numbe
a5p/2. This was examined for short times in Ref. 7 and
pursue these parameters for longer times. Linear theory i
cates the growth rate is Re(s)50.035 77 for this flow. We

r-
FIG. 15. A simulation of saturation for experiments of Ref. 9,R15394. ~a!
The maximum of interface amplitude against time. The saturation amplit
is about 0.0175.~b! The wave shape at timet52500.
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need to start from a very small perturbation amplitude
keep the flow in the linear regime for a long time. We s
A(0)50.001. At the top of Fig. 17, we plot, on a log10-linear
scale, the evolution of the maximum amplitudeA(t) against
the time. Untilt5100, the numerical and theoretical grow
rates agree, the difference between them being 2%, and
agreement zone is over one and a half decade. The evolu
of the maximum of the vertical velocityV and L2 norm
against time are shown also in Fig. 17, and good agreem

FIG. 16. The simulation of saturation for experiments of Ref. 9,R15500.
~a! A log plot of the maximum of interface height; a solid line represe
theoretical growth and circles represent the calculation.~b! A plot of the
maximum of the interface position.~c! The perturbation interface height a
x50 against time. The calculation is carried out on a 2563256 mesh.

FIG. 17. Log plots of the maximum of interface position, the maximu
vertical velocity V, and theL2 norm against time for the flow:A(0)
50.001, a5p/2, R15500, m50.5, l 150.372, T50.01, equal densities
and zero gravity. The theoretical linear growth rate for the interfacial m
is 0.035 77. Solid lines represents theoretical growth and circles repre
the calculation. The calculation is carried out on a 2563256 mesh.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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is also obtained. This calculation is carried out on a 2
3256 mesh.

Corresponding to Fig. 17, we plot in Fig. 18 interfac
profiles for timet50, 100, 120, 125, and 130. As the inte
face moves vertically under the viscosity-jump instabilit
the two fluids do not penetrate into each other in the sa
manner. Note that the upper fluid is more viscous than
lower one. We observe that att5100, the interface trough is
more narrow than interface crest and the interface loses
shape symmetry. At this stage, we can conclude already f
mass conservation that the upper fluid penetrate faster in
lower fluid. This can be explained by the fact that the lo
viscosity liquid provides less resistance, making it easier
the high-viscosity liquid to penetrate inside it. An analogy
that when inertia is important, a high-density fluid penetra
easily into a low-density fluid.

At time t5120, the upper fluid penetrates clearly in
the lower one and the interface forms a fine finger. No fin
formation can be seen in the upper fluid. Under the conv
tion of the simple shear flow, this finger folds toward th
right side, because the upper fluid moves fast than the lo
one. The figure at timet5125 shows that the finger is elon
gated and breaks up, yielding a series of drops. From
figure for time t5130 and simulations for later times, w
notice that these drops will not reach the bottom wall b
return to the interface and consequently form a blob of
lower fluid sitting in the upper fluid. We should mention th
fingers and drops in two-dimensional flow correspond
fluid sheets and columns in real flow.

We build on these results by varying the initial amp

e
nt

FIG. 18. The sequence of interface positions forA(0)50.001, a5p/2,
R15500, m50.5, l 150.372, T50.01, equal densities, and zero gravit
Here t50, 100, 120, 125, and 130. The calculation is carried out on a
3256 mesh.
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tude and the Reynolds number. First, it is interesting to
vestigate how changes in the initial amplitude affects
subsequent flow. Figure 19 illustratesA(0)50.05, with the
other parameters kept constant. This initial amplitude is
times larger than the previous value, and although small
ferences can be observed, the qualitative features of the
vious flow are repeated; i.e., the plots shown in Fig. 18 n
occur at timet50, 5, 10, 15, and 20. In particular, from tim
t5125 tot5130 in Fig. 18 and from timet515 to t520 for
A(0)50.05 in Fig. 19, the time durations are both 5 s and
the evolution of the two elongated fingers and the motion
the drops are almost identical. Mesh convergence is es
lished on a 1283128 mesh, which uses half the number
points in thex andy directions of the previous investigation
Good agreement is obtained here also. It is crucial for 3
computations to use the minimum number of points in
mesh in order to minimize computation time and at the sa
time to obtain information of good quality, because
memory limitation and computational cost. These two lat
investigations suggest that we can study the thr
dimensional problem for Reynolds numberR15500 from a
relative large initial amplitude~consequently reduce th
computation time! and using a small mesh~consequently
economize the memory! without losing important informa-
tion of the flow subject to a small sinusoidal perturbation

Second, we investigate the Couette flow for relative
low Reynolds numbers. A numerical investigation is carr
out first for Reynolds numberR1540 with wave numbera
56.3. We start the simulation from the initial amplitud
A(0)50.01. Figure 20 shows the interface profiles for tim

FIG. 19. The sequence of interface positions forA(0)50.05, a5p/2, R1

5500, m50.5, l 150.372,T50.01, equal densities, and zero gravity. He
t50, 5, 10, 15, and 20. The calculation is carried out on a 2563256 mesh.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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t50, 5, 10, 15, and 20. This calculation is done on a 1
3320 mesh. Asymptotic theory shows that the interfa
growth rate decreases as the Reynolds number decrease
low Reynolds number flow, therefore, the convection
shear flow is the dominant mechanism that contributes to
evolution of the interface. At timet55, the interface is al-
ready steepening, and at timet510, the interface folds unde
the simple shear flow. Timest510, t515, andt520 show
only a finger in the lower fluid. Fromt510 to t520, the
finger does not penetrate so much into the lower fluid
elongates in the streamwise direction. One striking fact co
pared to the flow with Reynolds numberR15500 is that this
finger rests on a straight line. Unlike theR15500 case where
the wave number isp/2, we consider here a relative sho
wave with wave number 6.3. The finger head at timet515
and t520 is still far from the bottom wall. The perturbatio
grows very slowly according to linear theory and the who
velocity field is essentially the basic shear flow, which co
vects the finger along a straight line. The simulation is a
carried out on a 1603256 mesh, where we observe that t
above finger breaks up numerically due to lack of verti
refinement in the mesh; i.e., the 1603256 mesh is not fine
enough to calculate this flow.

The identical flow with large initial amplitudeA(0) is
investigated on a 1603160 mesh and the interface profile
for time t50, 2, 5, 8, and 10 are plotted in Fig. 21. Since t
initial amplitude is larger here, the influence of the ba
shear flow is proportionately more evident. This flow sho
a very different behavior than the flow with small initia
amplitude. These two fingers are elongated more and m
as time progresses.

FIG. 20. The sequence of interface positions forA(0)50.01, a56.3, R1

540, m50.5, l 150.372,T50.01, equal densities, and zero gravity. He
t50, 5, 10, 15, and 20. The calculation is carried out on a 1603320 mesh.
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Finally, we investigate a low Reynolds number case w
R1515. For this flow with wave numbera56.9, linear
theory predicts a growth rate 0.0089~see Table I! and
weakly nonlinear theory predicts the saturation amplitu
Z050.0047. We begin the simulation from initial amplitud
A(0)50.003, which is below the saturation amplitude. T
practical constraint on the initial amplitude is that the we
growth rate due to linear theory results in longer computat
times for smaller amplitudes. Figure 22 shows the interf
profiles of our simulation on a 253320 mesh. The time step
aret510, 50, 100, 160, and 170. We should mention that
have enlarged they direction scale to provide a better vie
due to the smallness of the wave amplitude. The growth
here is five times smaller than the case withR1540, the
vertical motion of the interface is so slow that the shear fl
has enough time to shift the interface crest and trough
nificantly, despite the very small difference of the crest a
trough height. Figure 22 for timet510 andt550 shows that
the interface loses its initial sinusoidal shape because of
shifting of the wave crest and trough. The interface is
longer symmetrical. The additional fact that we observed
previous examples is that the crest is large and flat, while
trough is narrow. This suggests, as before, that the up
fluid penetrates fast into the lower one. As time goes on,
interface steepens further, as is evident from the wave fo
shown at timest5100 andt5160. At t5170, the interface
turns to fold near the trough like the theR1540 flow at t
510 in Fig. 20. The upper tip of the fold is, however, ve
fine, since with the 2563320 mesh only a small tip can b
seen. Although we need a finer mesh to calculate well

FIG. 21. The sequence of interface positions forA(0)50.05, a56.3, R1

540, m50.5, l 150.372,T50.01, equal densities, and zero gravity. He
t50, 5, 10, 15, and 20. The calculation is carried out on a 1603160 mesh.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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interface folding, we can conclude from the interface sha
in Fig. 22 and those not shown here for later times that t
flow forms a finger. The examples shown in this secti
exhibit wave form folding with subsequent finger formatio
even at fairly low amplitudes, indicating that the weak
nonlinear theory may have a smaller than expected regio
applicability for low Reynolds number flow.

Similar shapes for two-dimensional fingers have be
recorded in Fig. 3 of Ref. 27, where creeping flow is trea
with the boundary integral method. At zero Reynolds nu
ber, the linear instability of the interface is absent, but with
sufficiently large-amplitude perturbation, a nonlinear evo
tion to fingering occurs from the following mechanism. Wi
the base flow of Fig. 2, and with the initially sinusoidal in
terface as in Fig. 25 superposed, it is evident that the cres
the wave moves forward faster than the trough~see Fig. 23!,

FIG. 22. The sequence of interface positions forA(0)50.003,a56.3, R1

515, m50.5, l 150.372,T50.01, equal densities, and zero gravity. He
t510, 50, 100, 160, and 170. The calculation is carried out on a
3320 mesh.

FIG. 23. The large-amplitude disturbance in creeping flow leads to finge
because the trough is left behind while the crest hurries on.
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and this motion initiates the fingering that is observed in R
27. This is related to our situation, where on top of the l
Reynolds numbers we address, we also have the instab
due to inertial effects.

V. FINGERING IN THREE DIMENSIONS

The response to periodic perturbations in three dim
sions is analyzed by using a horizontal undulation of
phase. The initial interface is

z5 l 11Ax~0!cos@axx1f~y!#, ~30!

f5Ay~0!cos~ayy!, ~31!

whereAx(0) is the two-dimensional perturbation amplitud
Ay(0) the spanwise perturbation amplitude,ax the x-
direction wave number, anday they-direction wave number
Basically, the initial conditions are derived as follows:v is
zero, and in eachx2z plane the velocity field~u,w! and the
interface position are derived from the two-dimensional c
figuration. However, the phase of the cosine wave is shi
in the y direction ~Fig. 24!. This spanwise interface pertu
bation is used to provoke a three-dimensional instabil
This perturbation formulation is inspired by the experime
of Lasheras and Choi39 on the shear layer flow.

The two-dimensional fingering study in the previous s
tion provides useful information for the subsequent thr
dimensional investigation. As we have seen, small pertu

FIG. 25. The simulation of two-layer Couette flow for Reynolds numb
R15500, a5p/2, m50.5, l 150.372, T50.01, equal densities, and zer
gravity. The initial interface height isz50.37210.05 cos@6.3x10.1
3cos(y/4p)#. The interface position is shown att50.

FIG. 24. Horizontal perturbation of the two layer flow.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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tions to low Reynolds number flow involves small interfa
structures and a fine mesh is needed to capture them
addition, a three-dimensional simulation is limited by m
chine memory and compution time. In this section, we stu
only the flow with Reynolds numberR15500. For this flow,
the simulation with initial amplitudeA(0)50.05 on a 128
3128 mesh captures the flow characteristics sufficien
well. We have not yet studied the most unstable spanw
mode. We simply selectay54p as the spanwise wavenum
ber. The three-dimensional calculation is therefore done
box of size 430.531 with a 1283323128 mesh, as in the
previous section, the initial two-dimensional amplitude
Ax(0)50.05, for a flow with wave numberax5p, R1

5500,m50.5, l 150.372,T50.01. We use a spanwise am
plitude Ay(0)50.1; thus the initial interface height isz
50.37210.05 cos@p/2x10.1 cos(4py)#. The initial interface
position is shown by Fig. 25. The finger is in the lower flui
but we have reversed our three-dimensional visualiza
box, in order to provide a better view; the wave crest se
here corresponds to a trough.

Figures 26, 27, and 28 show interface shapes att56, 10,
and 12, respectively. The flow shows a quasi-two-dim
sional character att56; the three-dimensional effect is wea
unless near the wave trough where the interface begin
fold and the transversey-direction perturbation is clearly am
plified. As in the two-dimensional case, we observe the f
mation of the finger in the low-viscosity fluid fort510. The
thin sheet that is formed is reminiscent of the tw
dimensional cusp-like fingering of Fig. 2. In addition to thi
we observe that this three-dimensional finger is longer t

r

FIG. 26. The interface position is shown att56. The interface begins to
fold and they-direction perturbation is amplified clearly near the trough.

FIG. 27. The interface position is shown att510. The formation of a finger
in lower-viscosity fluid. This finger is longer than the one in the tw
dimensional case at the same time.
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the two-dimensional case of the previous section for t
time. This is due to the three-dimensional effects of the p
turbed flow. Finally, fort512, this finger breaks up yielding
a series of drops in the low-viscosity fluid.

VI. CONCLUSION

We have explored the evolution of linear disturbanc
the weakly nonlinear regime, saturation to spatially perio
traveling waves, and fingering of large-amplitude perio
disturbances. In order to achieve the computational res
we have implemented a semi-implicit scheme to ena
faster computations at low Reynolds numbers, and a sec
order velocity interpolation for greater accuracy of the int
face advection. We have shown the development of e
gated fingers, which allow the migration of the more visco
into the less viscous liquid, and vice versa, depending on
fluid parameters. These fingers break up when perturbe
three dimensions, and form droplets reminiscent of Fig.
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