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A numerical study of periodic disturbances on two-layer Couette flow

Jie Li, Yuriko Y. Renardy, and Michael Renardy
Department of Mathematics and ICAM, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia 24061-0123

(Received 5 June 1998; accepted 17 August 1998

The flow of two viscous liquids is investigated numerically with a volume of fluid scheme. The
scheme incorporates a semi-implicit Stokes solver to enable computations at low Reynolds humbers,
and a second-order velocity interpolation. The code is validated against linear theory for the stability
of two-layer Couette flow, and weakly nonlinear theory for a Hopf bifurcation. Examples of
long-time wave saturation are shown. The formation of fingers for relatively small initial amplitudes
as well as larger amplitudes are presented in two and three dimensions as initial-value problems.
Fluids of different viscosity and density are considered, with an emphasis on the effect of the
viscosity difference. Results at low Reynolds numbers show elongated fingers in two dimensions
that break in three dimensions to form drops, while different topological changes take place at
higher Reynolds numbers. @998 American Institute of Physid$$1070-663(98)00612-§

I. INTRODUCTION andU; is the dimensional interfacial speed of the base flow,
) o o and a Reynolds number based on the lower flig
Flows composed of two immiscible liquids and undergo- _ Uil* py /1, wherel* is the dimensional plate separation.

ing shearing motioriscan form fingers as a result of an in- \y;h equal densities, gravitational force is balanced by a
terfacial instability due primarily to the viscosity jump. The pressure gradient and can be neglected. The solution dis-

jump i_n the viscosity from one fluid tp the other resullts in theplayed in the figure has a base velocity figld(z),0], where
jump in the tangential velocity gradient across the interface,

and can be thought of as a viscous counterpart of the 2y, 0=sz=<lq,
Kelvin—Helmholtz instability. An example is Fig. (cour- U(z)= (M) (z-1)+U,, ly1=z=1, 1)
tesy of Fig. 20 of Ref. 2 where a cylinder is situated be-
tween the less viscous water below and more viscous oivhere the dimensionless upper plate speedUis=1
above. As the cylinder begins to rotate, it brings with it a+ml,/l,, and the base pressure field is a constant. The sta-
sheet of water. Observed from one end of the cylinder, théility of this solution has been addressed in Refs. 5, 6, and 7,
water—oil interface takes on a cusp-like structure. The shedor normal modes with wave numberin the flow direction
of water taken onto the cylinder then undergoes a threeand temporal dependence through ep(The two-layer
dimensional instability, in the form of scallops along the Couette flow is a model problem that has received much
length of the cylinder. At higher rotation rates, this leads to aanalysisS and has helped in the development of ideas about
fingering instability and then to emulsions of water dropletsmore complicated two-fluid flows. The problem has also at-
in oil foam. The experimental resuftshow fingering of cer-  tracted recent experimental resufits.
tain low-viscosity liquids into high-viscosity liquids. Drops In Couette flow, the fluid motion is mainly in the hori-
of low-viscosity liquid are torn off the fingertips, due to cap- zontalx direction. The analysis of stability of the state with a
illary instability, leading to the formation of an emulsion of flat interface, and the subsequent development of weakly
low-viscosity drops in a high-viscosity foam. The drop for- nonlinear waves serve as tests for our numerical codes.
mation from the fingers is similar to the breakup of jets intoThese theoretical works raise the following questions that we
drops. Another motivation for this paper is that in coextru-attempt to address in this paper: what is the range of validity
sion flow of very viscous liquids, the interface between thefor the linear theory, the weakly nonlinear theory, and what
two fluids is often rippled:* happens outside of this range? The first stage of fingering is
In this article, we attempt to capture the qualitative fea-a two-dimensional instability in th&-z plane,z being the
tures of fingering by simulating two-layer Couette flow, vertical axis, which is different from the usual Saffman—
which is one of the simplest of all the shearing flows of two Taylor instability associated with fingering in a Hele—Shaw
fluids one might consider. A solution is shown in Fig. 2, cell, where the interface moves in the direction of the flow.
where length is made dimensionless with respect to the plate our case, depending on parameters, the interface moves
separation. In dimensionless variab(gs/,2, the lower fluid  mostly perpendicular to the flow direction, undergoing dis-
is fluid 1 (with viscosity u;) and occupies €&z<I,, and tortion. There is some analogy with the cusp-like structure of
fluid 2 with viscosity u, occupiesl;<<z<1. There are four Fig. 1, in that the fingers in two dimensions are thin and long
parameters: the viscosity ratio= ., /w,, the average depth at the tips. The second stage is the development of three-
of the lower liquidl,, the interfacial tension paramet&  dimensional scallop patterns in the direction transverse to the
=S*/(u,U;), whereS* is the interfacial tension coefficient, flow.
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simulations of a spherical drop with surface tensibi? the
Water kinetic energy does not decay to zero but oscillates with

droplets

Ot

constant amplitude, despite the physical and numerical dissi-
pation. These are the so-callgpurious currentswhich pose
a challenge for the numerical investigation of bubble motion.
A better understanding of this numerical phenomenon is
achieved in Ref. 22, where it is proved that the classical fixed
6. 1. Fincering instabiliy leading ions of water dronlets in o mesh methods cannot admit a steady discrete solution similar
e e s s P b oot o 0 he one predicted by the Lapiace Laie, spherical in-
Renardy. terface shape, pressure jump equal to surface tension coeffi-
cient times the interface curvatyrand hencespurious cur-
rentsalways exist for these methods. In fact, these methods
There are a number of algorithms one may pursue for thenistreat the pressure near the interface. By taking into ac-
numerical simulation of interfacial instabilities in parallel count the pressure jump explicitly in the numerical
shear flows of two fluids with different viscosities. We are discretizatior?? a remedy is found for the front tracking
further interested in predicting wave bending and breakupmethod, where the interface is represented by marker points.
past the point of pinch-off of drops, and we require a methodDur pressure correction method is implemented in Ref. 23
that handles easily the breakup and reformation of interfaceand shown to effectively reducurious currentdy a factor
In this sense, the methods that have been used to predit.
liquid—liquid jet breakup are of relevant® Examples in- The accuracy problem of CSF and CSS methods is less
clude the front-tracking method&?the level set methot?  severe when investigating shear flow. It is easy to prove that
and volume tracking method$;8 such as the volume of these two methods model the surface tension effects well
fluid (VOF) scheme. In this paper, we present results basedhen the interface is a straight line parallel to a grid line
on a VOF scheme. (surface force nul in this cas@nd simulations of capillary
The VOF methotf?°is a fixed mesh approach to track waves in Ref. 24 show an error of 2% compared to theory.
the interface and uses a marker function convected by the The dynamic breakup of axisymmetric liquid—liquid
flow. This allows for accurate interface advection andjets' at first glance appears to be essentially the same as the
handles changes in interface topology. The application of théwo-layer Couette flow. However, the mechanisms that drive
boundary conditions on the interface, however, is nothe unsteady motion are different: jet breakup is driven by
straightforward. The CSF(continuous surface forge surface tension, while interfacial evolution in the two-layer
techniqué' has been developed to impose surface tensioCouette flow is driven by the jump in shear rates across the
effects in an efficient manner. In this algorithm, interfacial interface. In Ref. 7, these issues necessitate the incorporation
tension forces are incorporated as body forces per unit volef the following to the code of Ref. 10. First, the physically
ume in the momentum equations rather than as boundamrrect viscosity interpolation in cells overlapping the inter-
conditions. This formulation is equivalent in the limit of in- face is important. This need decreases if it is practical to
finitesimal interfacial thickness to the classical description ofimplement a sufficiently small mesh size, which we have
these forces as boundary conditions. A variation of the CSkKone in the present investigation. A second essential feature
algorithm is the CS$continuous surface strésechniquet®  of our problem is that the interface shape propagates essen-
in which the body force in the momentum equation is ex-tially as a traveling wave, with a deformation occurring on a
pressed as the divergence of a tensor, and hence the surfabech slower time scale. As a result of this, we achieved
tension effects can be formulated in a conservative way. Thaccuracy by introducing a Galilean transformation to a frame
problem of how to formulate these interfacial boundary con-moving with the fluid on the interface. This is required in
ditions is, however, not completely solved. The loss of accuaddition to the usual numerical stability conditions. Even
racy of these techniques may be serious, as observed inith the Galilean transformation, Ref. 7 shows an unphysical
formation of steps in the long term. In this paper, we succeed
in removing these with a higher-order velocity interpolation
A scheme. It is found in Ref. 7 that the location where the first
nonlinearity arises is the interfacial region. The interface and
its neighboring region give birth to the nonlinearity while the
bulk of the fluid behaves linearly, even for rather small initial
Fluid 2 | amplitudes. The wave shapes found in Ref. 7 are qualita-
2= tively reminiscent of those seen in the experiments of Ref. 9
———— interface in a channel bent into an annular ring. In their experiments,
Fluid 1 they observed these shapes as saturated waves. Figure 3
y shows a result from the code of Ref. 7, which was not able to
> X reach saturation, for a qualitative comparison of the nonlin-
ear wave forms. Their findings underscored the need for
more accurate tracking of the interface, which motivates our
FIG. 2. Flow schematics. present investigation.

z=1

z=0




3058 Phys. Fluids, Vol. 10, No. 12, December 1998 Li, Renardy, and Renardy

06 ' ' ' ‘ ' ‘ : facial tension force. Details are given in Refs. 15, 22, and 27.
The velocity fieldu is subject to the incompressibility con-
straint:

0.5
04

V-u=0. 3

03

0:2¢ The two fluids are immiscible, and named fluids 1 and 2.

01 W Density and viscosity are constant in each phase but may be
W discontinuous at the interface. We use a volume fraction field

interface Height

C to represent and track the interface that is transported by
the velocity fieldu:

1=8 JC
-03 - —+u-VC=0. (4)
at
04 2 4 6 8 10 12 14 16
x This equation allows for the calculation of density and vis-

cosity. In fact, the average values of density and viscosity are

FIG. 3. Nonli t i f the interface ferti8. The initial . .
onlinear wave steepening of the interface e initia interpolated by the following formulas:

interface height iz=0.372+0.05 cos{rx/2), waves at subsequent time in-
tervals are shifted down by 0.02, wave number /2, Reynolds number
R,=500[Fig. 12b) of Cowardet al]. p=Cp1+(1-C)p,, (5

u=Cupi+(1-C)u,. (6)
Higher-order methods of interface representation are ex-
plored here. We begin with our code, which is derived from
Refs. 15, 22, and 28Sec. ). The simulation of an inviscid
Kelvin—Helmholtz instability has been obtained in Refs. 22 ~ The simultaneous solution of the large number of dis-
and 26 and our investigation is the viscous counterpart ofrete equations arising frof2) and(3) is very costly, espe-
this. With the explicit code, we foresee a problem for low cially in three dimensions. An efficient approximation can be
Reynolds numbers, since the time steps must be small. Thgbtained by decoupling the solution of the momentum equa-
is addressed in Sec. Il, where we institute a semi-implicitions from the solution of the continuity equation by a pro-
scheme that enables the use of larger timesteps and enhangggfion method. The basic projection method was proposed
computational efficiency. by Chorin?® The MAC method proposed earlier by Harlow
In Sec. IlI, the question of how well the weakly nonlin- and Wesf? is a variant of that method.

ear bifurcation analysis predicts saturation amplitudes is il- In the present projection method, the momentum equa-
lustrated at sample situations. In particular, we pursue th#ons are first solved for an approximait& without the pres-
computational work of Ref. 7 for viscosity ratin=0.5, and  sure gradient, assuming thatt is known:
Reynolds numbers ranging from 40 to 500. The sat uration « 1
wave form and a_m_plltudes are reproduced_m the f_uII numeri- Y "YU _ VU S [V (uS)+F]M )
cal situation sufficiently close to onset, while nonlinear evo- At p
lution and fingering are found farther away. The computa- . - )
tions at low Reynolds numbers are related to the fingering" 9€neral, the resulting flow field* does not Sant'f’fy the
results of Ref. 27 at large amplitudes for Stokes flow, and iffOntinuity equation. However, we require thétu™"*=0
addition, incorporate the effect of finite Reynolds numbers 2"

B. Temporal discretization and projection method

In Sec. IV, the prediction of two dimension@-D) fingering L vp
with drop formation is presented. In Sec. V, the fingeringis — — —_— —— (8)
tracked farther into the 3-D regime. At p
A. The equations of motion Taking the divergence of E@8), we obtain
The two-fluid flow is modeled with the Navier—Stokes Vp V.u*
equation: V. (7> =" A 9
Ju
pl oy tu-Vu|=—Vp+V-uS+F, (2 which is used to find the pressure field. Naxt, is corrected

by this pressure field and the updated solutih? is found
wherep is the densityu the viscosity,S the viscous stress from Eq.(8). This algorithm is easier to solve than the origi-
tensor: nal fully coupled set of equations. We use two kinds of
1/{u.  ou: boundary conditions for the velocity: The periodic condition
j i .. L . .
i=3 <%+ I or th_e_ Dirichlet condltlo_n. Consistent with thes_e_ boundary
! ] conditions for the velocity, the boundary condition for the
and F the source term for the momentum equation. In ourpressure is periodic condition or Neumann condition, respec-
calculations, the body force includes the gravity and inter- tively.




Phys. Fluids, Vol. 10, No. 12, December 1998 Li, Renardy, and Renardy 3059

z automatically involved in the numerical solution and is con-
’ sistent with the Dirichlet condition for the velocify.No
/ X numerical boundary condition is needed.
Y As reported by Hirt and NichoR the conservative

scheme in a variable mesh loses one order of formal preci-
sion for the advective terms. Hence, we chose the noncon-
servative scheme; i.e.,

Azy DUL = (Ui 1) k= Ui—zp2j 1)/ AXj _ 1,

DUR= (U1 1/2j k= Ui—172 1)/ AX;,

Ay;
! au Ax;DUL+Ax;_;DUR 10
Ax; U ox ijk_ui""k AX;_ 1+ AX; (10
FIG. 4. A three-dimensional Cartesian mesh with variable cell sizes. The basic idea in Eq10) is to weight the derivatives by

cell size such that the correct order of approximation is main-
tained in a variable mesh. This type of approximation is used
in our code for all convective terms appearing in EQ.

The pressure and viscous terms in the momentum equa-

We use an Eulerian mesh of rectangular cells havingjon are calculated using second-order central finite differ-
variables sizeshx; for theith x-direction mesh sizey; for  ences, taking into account the variable mesh. The viscosity is
the]th y-direCtion mesh size andzk for the kth z direction calculated by formu|a$6) once we know the volume frac-
mesh(Fig. 4). While not as flexible as a mesh composed oftjon C. We should mention that contrary to the equal-size
arbitrary quadrilaterals, the variable mesh capacity of ouiesh, the discrete pressure equation is no longer symmetric.

codes gives it a considerable advantage over methods usifgis can be seen from th@/gx)[(1/p)(Jp/x)] discretiza-
equal-size rectangles. For two-phase flows, in particular, thgon:
mesh can be refined in the interfacial region. The enormous
memory and time consumption of three-dimensional simula- ¢ (} a_p) _ 1 (} 5_9) _(} a_p>
tions make this effort absolutely imperative. Navier—Stokes  dX | p dX ik Axi—g \\p dX] 1 \P x| ),
solvers for arbitrary mesh is now standard for the 3-D Cise;

C. Spatial discretization

however, the difficulty resides in the interface tracking. To __ i Pi—1 _( 1

our knowledge, there is no 3-D VOF method yet available AX; | pi—120%i—12 |\ Pi—120%i— 112

for arbitrary mesh, although a 2-D code has been developed

; 1 Pi+1

in Ref. 22. +—  p i F—,
The momentum equations are finite differenced on a lo- Pi+120%i 4172 Pi+1/20Xi+1/2

cally variable, staggered mesh. As Fig. 5 shows,xlvtem- (1)

onent of velocityu;_q»: , the y component of velocit .
S_ o and thez{olmt)%dhkent of zelocitsw- L are cen?/ where 8, _ 1= 1/2(1/AX; _ 1+ 1/AX;). The discrete system
bl Ll is not symmetric because of the factoA/.

tered at the right face, front face, and top face of the cell, ) ) . ,
respectively, whereas the pressupe and the volume The solution of the discrete counterpart of Poisson’s
' 4K ; : . : e
fraction,C; ; ., are located at the center. This is the so-calleoequatlon(g) IS the most time consuming part of our Navier
MAC method. This apparently sophisticated mesh present tokes solver and, consequently, an efficient solution is cru-
ial for the performance of the whole method. The perfor-

the advantage that in the resulting discrete Poisson equatioﬁ, f lassic iterati thod has the G
the pressure field is not decoupled and its solution permits ngance ol some classic iteralive methoas, such as the auss

checkerboard oscillation. Another advantage of the MAC eidel ‘method, - the Ch_o_lesky mc_omplete fa}ctonzanon
method is that the Neumann condition for the pressure iénethOd’ and the preconditioned conjugate gradient method
suffer from the degradation of the convergence rate when the

mesh size increases. Moreover, the system can be very ill
conditioned when a large density ratio of the two fluids in-
volved causes a sharp variation of the coefficients. Poten-
tially, the multigrid method is the most efficient method: to
reduce the error from a constant factor, the multigrid method
needs a fixed number of iterations, whatever the mesh size.
The multigrid method achieves this convergence rate inde-
T pendent of mesh size by combining two complementary al-

112k gorithms: one iterative method to reduce the high-frequency
error and one coarse grid correction step to eliminate the
low-frequency error.

Our multigrid solver is derived from the one in Ref. 15,

FIG. 5. The location of variables in a MAC mesh cell. adapted to the variable mesh. As the discrete pressure is no
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longer symmetric, new variables need to be declared. Fur-
thermore, we use an algebraic approd€talerkin methog
instead of the physical one to find the coarse grid system.
The algebraic approach can be generalized directly to the
variable mesh case and provides also a better coarse grid
correction. In Ref. 20, the algebraic approach is demon-
strated at least five times more efficient than the physical one
for rising bubble simulations, where the density ratio is the
real ratio between water and &about 1000. Two-color (for

the 2-D casgand four-color(for the 3-D casgGauss—Seidel
methods are chosen as I_t?ratlve methods, the perIO(_JIC arIlqu. 6. The Lagrangian method on an arbitrary two-dimensional mesh. The
Neumman boundary condition for the pressure necessitate R@aded polygon represents the part occupied by the fluid in the central cell.
additional procedure during the numerical implementationThe broken line shows the polygon position after advection in the local
Their favorable convergence rates combined with a Coarsée[ocity field represgnted by arrows. The flgid is redistributed between
grid correction makes the multigrid method one of the fastesf&'9nPoring cells, which the new polygon partially overlaps.

solvers of the Poisson equation.

D. Piecewise linear interface calculation fore preserve the physical constrairc@=<1 on the volume

) ) ) ) fraction C. Hence, during the advection step, even with a
The \{olume of fde(_VOF) .m%hz%%z'_sgfsr)ega"y suited sophisticated geometrical construction, there is a need to
to two-fluid shear flow simulations. In this method, truncate the volume fractio6 by the formula

the location of the interface is approximately represented by o o
the volume fractionC;; of fluid 1 in the cell. We have 0 C"i=min[1,maxC""*,0)], (14

<C<1 in cells cut by the interface an@=0 or 1 away gt the (1+1)th time step. Since interface evolution is gov-

from it. For a review of this method, see Ref. 35. erned by a transport equation, the Lagrangian method would
Since we lose interface information when we represenéppear more natural and more straightforw&rf In this

the interface by a volume fraction field, the interface needs tQ:heme once the interface is reconstructed. the velocity at

be reconstructed approximately in each cell. The first-ordefe interface is interpolated linearly and then the new posi-

VOF method of Ref. 7 shows an unphysical formation ofjjon of the interface is calculated by the following formula:
steps in two-layer Couette flow at low speeds, close to onset

conditions for traveling interfacial waves, and this under- X" I=x"+u(At). (15
scored the need for higher-order methods. High-order methrigyre 6 illustrates how the Lagrangian method performs on
ods have been, indeed, developed successfully by Refs. 22, arbitrary two-dimensional me&h.

27, 35, and 36 both for 2-D and 3-D cases. Typically, the o a Cartesian mesh, we can simplify the programming
interface can be reconstructed by the piecewise constaml, an operator-split method: we reconstruct and advance the

(SLIC) or piecewise lineatPLIC) methods. When the latter interface in each spatial dimension separately. Suppose that
method(the more accurate and more stable Joisechosen, iy pox [0,1]2 the interface segment is defined by a linear
the gist of interface reconstruction is to calculate the approxiazquation,

mate normah to the interface in each cell, since this deter-

mines one unique linear interface with the volume fraction of ~ MX+TNyYy=a, (16)
the cell. We find that discrete gradient of the volume fractionand the horizontal velocity defined on two vertical face cen-
field provides a good approximation: ters areuj_q,; andu;. ;. Let A be a point on the above
vhe interface segment with coordinatey). From linear interpo-
n= Ve (12)  lation we obtain its horizontal velocity:
A least-square methd¥ has also been implemented. This U= (1=X)Ui-12jF XU 12 (17)

method improves the calculation of the interface normal, butind its updated coordinateé at the i+ 1)th time step, as
no significant difference has been observed in the simulatiodefined in Eq(15), is
of Couette flow. ,

The second step of the VOF method is to evolve the * = (1 Ui AtH Ui 1) ADXF U1 AL, (18
volume fraction fieldC. If the flow field is incompressible, where primes denote values at the+(1)th step and vari-
i.e., V-u=0, the advection equation can be recast in conserables without primes are evaluated at ttith time step. The

vative form: new interface equation is still a linear equation:
JC n.x+ny=«a’', 19
“CHV-(uC)=0. (13) XTyYy=« (19
where

A popular method is to apply an Eulerian scheme at this
stage. In this case, the interface evolution is not governed by
a conservative equation, and Eulerian schemes do not therand

Ny =Ny /(1= Uj_1pjAt+ Ui, 10;A1),
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FIG. 7. The Lagrangian method during the advection stepThe shaded 0.0 0.2 0.4 0.6 0.8 1.0
polygon represents the part occupied by the fluid in the central(bgllhe (b)

contribution of this part to the new volume fraction field after advection.

0.60

0.55

, , 0.50

a =at nXUi_l/zJAt. 0.45

0.40

Figure 7 shows us how to obtain the new volume fraction s

from the new position of the interface. In Fig(@y, we sup- ©

pose that;_;,<<0 andui 1,>0. The part occupied by the g, 9. (a The initial interface height ig=0.5+0.05 cos (ax). (b) The
fluid in the central cell is the shaded polygon. Figu®)7 interface position at timé=3 s calculated by the first-order velocity inter-
shows its new position calculated by E@.5). During the  polation method(c) Thg interfaqe position at time=3 s calculated by the
advection step, the central cell contributes; ; , to the vol- ~ Second-order velocity interpolation method.

ume fraction of the left cell ifu; _,,<0, V3; ; \ to the vol-
ume fraction of the right cell ity ;,>0, and alsov2; ; , to
the volume fraction of itself1; ; . is the shaded area in the
left cell and it is between the lines=u;_4,, y=0,x=0 and
Eqg. (19). V2; j « and V3; j  can be calculated by the same

g];i;:)ng' Thus, the new volume fractiahy ; in the cell "\ Ve Gue to shear, Figuré® shows the interface posi-
o tion at timet=3 calculated by the above Lagrangian method
Cijk=V3i_1+V2;;+Vl1,,. (200  with a 64%x64 uniform mesh. We observe that the interface
.wiggles behind the wave crest; the interface oscillates across

In a Lagrangian method, whenever the Courant condi-

tion (mafu)Ath<1/2 is satisfied, the algorithm is stable and grid lines. In this calculation, we have already improved the

satisfies the physical constraints@C<1. Furthermore, the interface normal calculation by the least-squares method.

Lagrangian method is not subject to the incompressibilityThe wiggle is not due to the calculation of the normal vector

constraint. Figure 8 illustrates the example of a constant vet-)Ut due to poor approximation of velocity. In fact, the local

locity field u=(1,0): (a) the interfaces in cells with volume horizontal velocity is defined at the vertical face center of

fraction C are constructedi) the interface is advanced by cells. This results in a staggered movement of interface seg-

Eq. (15) and the new volume fraction field is calculated from ments in cells at different horizontal levels; the velocity field
the new interface position; an@) the interface is recon- presents a discontinuity across the grid lifésg. 10a)].

structed from the new volume fraction field, and so on. Very f|r)e rr:gsh |s(§1eeded for th[:s rr:.ethodtto. |rtnp;ove ng0(|:|ty
We should mention that until now our operator-split approximation and consequently €liminate intertace wiggles.

scheme is second-order accurate for the velocity field only irWe fem?‘fk thff‘t for this simple s_hear flow, our Lagrangian
the advancing direction. It is only first-order accurate in themethqd IS _equwalent to the Eulerian method 9f Ref. .36'
direction perpendicular to the advancing direction. While we Itis e_vld_ent that we must make the_ velocity contlnuoqs
have obtained good results for some kinematical test8Cross grid lines. Our strategy is to define the local velocity
(simple translation and solid rotatipnt fails to be precise
for shear flow. A simple shear velocity field in a bp®,1]2

is u=(y,0). We initialize this with a sinusoidal wave on the
interface[Fig. 9a)], which is represented by the height func-

i

o [
=3
N
=3
>
o
o
=]
o
=)

tion z=0.5+0.05 cos(zrx). We can think of this simple test

problem as modeling a limiting case of two-layer Couette
flow at very low Reynolds numbers, with linear growth rates
decreasing to zero, and resulting in only the deformation of

s, S, o
- 5, A A ~

-~

\_l; ! | e _’.
FIG. 10. (a) The first-order Lagrangian method. Local velocity is defined at
(a) (b) (©) the face center of the cell. The velocity field is discontinuous across the grid
lines.(b) The second-order Lagrangian method. Local velocities are defined
FIG. 8. An interface advected by the velocity fiale- (1,0). at corners of the cell. The velocity field is continuous across the grid lines.

(a) (b)
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on the four corners of the cell for the Lagrangian method.order 1. This makes the implicit treatment of the viscous
These velocities are obtained by linear interpolation andterms imperative. Puckett and co-work&rsleveloped a
consequently, the velocity approximation is second-order acsecond-order scheme for the viscous terms. Their scheme
curate in each direction. Figure 10 compares the first- angossesses a full implicit part for the viscous terms and re-
second-order Lagrangian methods. While in the first-ordeguires the solution of a coupled parabolic system for the
method the fluid moves with different velocities at different velocity components. This system appears more complicated
horizontal levels and fluid advection is discontinuous acrosshan the Poisson’s equation and we presume that its solution
grid lines, the second-order method reflects the shear propvould be comparable, if not more costly, to the solution of
erty of the flow well and fluid advection is continuous acrossthe pressure equation and therefore reduce the efficiency of
the grid lines. It is then not surprising that the second-ordethe whole method. Our remedy for this dilemma is as fol-
Lagrangian method eliminates the above wiggles of the inlows.

terface. Figure @) shows the interface position at tinte The time integration scheme is constructed to be implicit
=3 calculated by this method with a 8464 uniform mesh; for the Stokes operator, and otherwise explicit. Take uhe
no oscillation of the interface is observed. component of the momentum equati@ah, for example. This

We have thus developed the PLIC method, both in twowill be changed in the following way. We treat only the
and three dimensions. This has been adapted by weightingrms related ta (the terms with upper index) implicitly
the equation(20) by the mesh size for the variable mesh and leave the other ternithe terms with upper inde¥) in
case’’ Comparing to Ref. 7, we recover their findings for the explicit part. Hence, this equation in the semi-implicit
small amplitudes of interface perturbation, where the interscheme is
face is nearly horizontal and the first-order VOF method is
still reliable. In addition, we do not observe unphysical step . o

; ; ; u*—u 1 19
formations when the interface undergoes large deformations. = (U™ V)u"+ — Fi+ = — (2u"u?)
n

Il. SEMI-IMPLICIT STOKES SOLVER 1 90 - non 19
(pn'ug +u Ux)"'ﬁﬁ

n, *
When a VOF method is used, the boundary conditions at " p" ay (w0
the interface are not applied directly, but replaced by some TR
: mWy), (23
volume force formulation. As a consequence, a good resolu-
tion of the boundary conditions depends on the quality of the
mesh. A fine mesh is usually required near the interface. and similarly for thev, w components. This can be ex-
The use of a finer grid imposes, however, a further repressed as
striction on the time step size for the explicit method. Basi-
cally, given a mesh, the time scale for convective transpor

of a fluid particle to pass through a cell is _ E 7 <2M i) + 9 (M i) + 7 (M i) ]u*
d d d d d d
_[Ax Ay Az poLox X y y z z
Te=min| —, —, —/, (21) = explicit terms. (24)

and the time scale of viscous diffusion for momentum to
diffuse through a cell is This procedure decouples tliecomponent from the above
parabolic system. The same idea applies also to the other

2
T :ﬂ’ (22)  Velocity components.
op As far as the viscous terms are concerned, our semi-
whereh is the minimum of the mesh sizes min(Ay,Az). ~ implicit scheme is unconditionally stable. The stability

The stability criterion for an explicit method is that the time analysis can be carried out as folloqvee will show only the
stepsAt must be chosen less than the two above time scale@-D cas¢. Letu~exp(aex+igy) and letu=1, p=1 for sim-
(i) the inviscid CFL (Courant—Friedrichs—Lewynumber Plicity. Then
At/T <1, and(ii) the Neumann numbekt/T ,<1.

As with any explicit method, simulations of very low

* n
Reynolds number flows are subject to strict stability limita- Atu _2a2- g2 0 u*
tions on the size of the time step and are therefore expensive. . n :( 5 2) ( )
Furthermore, for tracking interfacial instabilities, fine grids v 0 —a®=2p%)\v*
need to be used near the interface. Since the viscous diffu- At
sion time scaleT ,«h?, this stability limit is hence much 0 —af|/u
more restrictive than the CFL condition. For the physical ( )( )
parameters of Fig. 13 of Ref. [A(0)=0.01, «=6.3, R; —af 0 /10"
=40,m=0.5,1,=0.372,T=0.01, equal densities, zero grav- +explicit terms, (25)

ity], with a 160<1024 mesh,T,=2.39X 108 and it is
therefore impossible to run a code with a time stepless
than this if we expect to perform a calculation for times of which reduces to
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1 -1 0.02
20%+ B2+ — 0
u* _ At o015}
v* 2 2, 1
0 a+2B°+ E 001k
1 2 0005
_ —a <
At P u” o 3
X 1 o0 +explicit terms. & 0
—ap At -0.005}
(26 oo}
The eigenvalues of the middle matrix above need to be less
than 2%+ B2+ 1/At and &+ 282+ 1/At. The eigenvalues 00—
are 1At=aB. But aB are less tharmy(a?++B%). By a wavenumber
similar argument, we have also proved that our 3-D SemiriG, 11. Growth rate Re versus wave number at m=0.5, |,=0.372,
implicit scheme is also unconditionally stable. T=0.01, equal density. Values of the Reynolds number are given next to

As the full explicit scheme, this semi-implicit scheme is each curve. The maximum growth rate points are circled. The approximate
first order in precision. Although it is more easy to be solved®"set condition isr=6.3,R;=10.
than the coupled system, it requires still inversions of a large

sparse matrix. What makes the method very efficient is a

factorization techniqu® that is applied to the left-hand side the other hand, for low Reynolds number flow, coarse grid
of Eq. (24): mesh is enough for a calculation far away from the interface.

This advocates the use of a variable mesh size method.
At | o J At | 9 J
[I 0X(2“<?X) HI p [W(“ﬁym
At ¢ d - L . .
X[=——= (,u 5) u* =explicit terms. (27 At criticality, the two-layer Couette flow with a flat in-
terface atz=1I, loses stability to a Hopf bifurcation. The
It is easy to show that the error of the above factorizationgrowth rate versus wave number plot is shown in Fig. 11 for
is of order”(At®). The inversion of the left-hand side of Eq. viscosity ratio m=0.5, interfacial tension parameteF
(27) requires solving only tridiagonal matrices; this results in=0.01, equal densities, depth=0.372. The maximum
a significant reduction in computing and memory. In fact, thegrowth rate modes are circled. In the 2-D study of Ref. 7 and
solution of these tridiagonal systems can be done in onhhere, the initial condition is seeded with an eigenfunction
(N) operationgwhereN is the grid point numbgrand is  derived from the linearized stability analysis of the base
insignificant compared to the solution of the pressure equacouette flow.
tion. The weakly nonlinear theory of Refs. 6 and 7 yields a
The efficiency of the above semi-implicit scheme is il- Stuart—Landau equation for the amplitude functiogt) of
lustrated for the parameters of Fig. 13 of Ref. 7, given aboveéhe primary modedZ/dt—oZ=«|Z|?Z, where x denotes
for a 128<256 mesh. For the explicit run, we can merely the Landau coefficient. The critical eigenfunction is denoted.
take At=10"*%, the CFL=1.27x10 2, and the Neumann ¢ and the eigenvalue is denoted The dynamics just above
numberAt/T,=0.128. In this calculation, the viscous diffu- the onset of instability is dominated by the primary mode
sion time scale is much more restrictive than the convectivand its self-interactions. The traveling wave solution is pre-
transport one. For the implicit run, on the other hand, there iglicted to saturate when the real part of the Landau coefficient
no restriction from the viscous diffusion time scale. We tookis negative. The traveling wave solution is denotégt)
At=2%x10"3, the CFL=0.254, the Neumann number =exp(wt)Z, and substitution into the amplitude equation

At/T,=2.56. With the implicit scheme, we obtained the re-yields iwZo— 0Zo= k|Zo|*Zy, OF i0—0=k|Zo|?. Taking
sults of same quality as the explicit scheme, but we reducethe imaginary part, we find the saturation amplitude to be

lll. SATURATION

the CPU by a factor of 20. We have seen that &4) is of _ /“Reo/Rex
order 1 and Eq(27) is order 3, so the order of the whole |Zo|=V—Red/Rex. (28)
scheme is of order 1. At our parameters, the results are tabulated in Table I. It

The implicit scheme was run for our previous parameterss evident that the value of the Landau coefficient is approxi-
on an extremely fine mesh (181024). As we are not sub- mately the same whether the pressure gradient is kept fixed
ject to the viscous diffusion time scale, we chose our timgPG) or whether the volume flux is kept fixd/F) through-
step only according to the CFL number restrictidt,= 2 out the weakly nonlinear analysis. Table | shows the theoret-
X 1073, the CFL=0.32, and Neumann numbekt/T, ical saturation amplitudelZ,| at the maximum growth rate
=105. This calculation took just a few hours on a SGlpoints close to onset conditions. In addition, Ryt=40, «
Onyx2 computer by using the above implicit scheme but will=6.3, 0=0.035-6.16, which was used in Ref. 7(PG)
take more than two months if we use the explicit scheme. On= — 133+ 602, «(VF)=—133+588, and|Z,|=0.016.
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TABLE I. The Landau coefficients for the fixed pressure gradie(PG) and the fixed volume fluxVF), the
wave numberx of the maximum growth rate, the eigenvalugand saturation amplitudg,, close to onset
conditions. Heren=0.5,1,=0.372,T=0.01, equal density.

Ry a o k (PG x (VF) Zy
11 6.5 0.001#6.43 —218+1094 —218+1074 0.0028
15 6.9 0.0089-6.84 —393+ 1250 —393+ 1231 0.0047
20 7.2 0.0177.13 —513+1253 —513+1234 0.0058
40 7.5 0.038-7.5 —365+950 —365+932 0.01

The wave shapes at saturation are representer=&g  ear instability is proportional to the Reynolds number and is
+®,,, where®,, is the perturbation solution comprised of therefore small, but governs the vertical growth of the inter-
the primary wave componeht and the second harmoriig, ~ face. The linear instability of the interfacial mode at, say,

(notation as in Ref. B a=6.3, R;=40, involves a rather short wave and would
®,=2 R4 Zoh, expliax+ ot) therefore be confined to the mterfamgl region. The velocity
field is only locally affected by the vertical linear growth rate
+Z(2,h,7 exp(2i ax+20t)]. (29 for the interface position, and is overall affected more by the

base Couette flow, favoring the fingering due to horizontal

For theR;=11 case, Fig. 1@) shows the saturation wave . . .
form, and for theR, =15 case, Fig. 1) shows the wave shearing at the interface, rather than the slow vertical growth
' ! ’ ' to saturation. This is verified from our simulations, in which

form. It is evident that the nonlinearity becomes important . L : .
very quickly. Even the waves of Fig. (@ have lost the the maximum value of the velocity is attained some distance
sinusoidal appearance and Fig.(l2shows two humps per W&y frr?m the mterface.f . o hed af

wave. Comparing these, there is sensitivity in the shape as N the experiments of Ref. 9, saturation is reached after a

the situation moves off the onset case. Te=15 case is time of order 1000 s. The lower fluid is a water—glycerine
50% above onset in the Reynolds number. (32%—-68% mixture with viscosity 0.0191 Pas, density

The asymptotic analysis shows thatRy=15, «=6.9, 1169 kg/ni, and the upper fluid is mineral oil with viscosity
|1:0_327, andm= 0.5 the saturation will be reached At 0.0297 Pas, and density 846 kélmnterfacial tension is
~0.004. Simulations of this length in duration at low Rey- 0-03 Pam. These experiments were conducted in a channel
nolds numbers would not have been possible without the us@ent into a circular form, so that the base flow involves a
of the semi-implicit scheme for the viscous terms. Resultslight centrifugal component. Nevertheless, this is modeled
for a variety of initial amplitudes below and over the pre- With two-layer Couette flow in Ref. 38, who used an upper
dicted saturation amplitude®; =15, A(0)=0.003, andR; plate velocity of 0.44 m/s, channel depth of 20 mm, and
=40, A(0)=0.01,0.05 are shown to lead to fingering; seewavelength 6.8 cm, and depth of lower fluid 12.74 mm, to
Sec. IV. Why is fingering preferred over wave saturation atdescribe an onset condition. Under our notafidhe interfa-
these parameters? It is known that for Stokes flouhe  cial tension parameter isT=S"/(u,U;)=3.14, F?
action of shearing an interface horizontally leads to elonga=U?/(gl*)=0.528, whereF is the Froude numberR;
tion of an initial wave form to fingers. The low Reynolds =U;l* p;/u,=394, density ratio = p, /p,=1.3812, viscos-
numbers we address here would also show this phenomendiy ratio m= u,/u,=0.645, depth ratid,;=17/1*=0.637,
for sufficiently large initial waves. On the other hand, thedimensionless wave number=1.9. The weakly nonlinear
finite Reynolds number affects the growth of waves througtresults are shown in Table Il. The amplituf#,| =0.007 is
the linear instability due to viscosity stratification. The equivalent to 0.14 mm.
growth rate term originating from the viscosity stratification The numerical investigation of saturation is difficult be-
tends to zero as the Reynolds number tends to zero, while thmause the vertical motion of the interface crest is much
interfacial tension term does not. The growth rate of the lin-smaller than the horizontal motion, and a relatively small

- N

h 0. 11 15 2 .5 3.5
&h 0.002
-0.005
0fs 1 1.5 2 .5 \
-0.002 -0.01
-0.004]

-0.015

(@) (b)

FIG. 12. The saturation wave form at=0.5,1,=0.372.(a) «=6.5,R;=11,Z,=0.0028.(b) «=6.9,R;=15, Z,=0.005.
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TABLE Il. The Landau coefficients for the fixed pressure gradie(RG) and the fixed volume fluxVF), the
wave number of the maximum growth rate, the eigenvalagand the saturation amplitud®,, close to the
onset conditions for mineral oil over the water/glycerine mixture.

R; @ o x (PG x (VF) Zy
394 1.9 0.000 38 1.05 —7.82+24.4 —6.63+28.9 0.007
500 1.9 0.0068 1.05 —9.14+27.4 —-7.3+32.6 0.03

error in the horizontal motion can feed back a significantThe x mesh number and the time step size do not play an
error in the vertical motion. Linear theory predicts that theimportant role. Unfortunately, the excessive computational
eigenvalue isr=3.7615< 10— 1.05. From the kinematic  cost places a practical constraint on the computation with the

free surface condition, the complex vertical velocity is larger mesh and for longer times.
v=h[o+iaU(l;)]=h(3.7615< 10 4+ 0.85). We note that the evolution of bulk mode disturbances
_ _ _ can be calculated accurately on a modest mesh. For example,
The interface shape is defined by the first bulk mode has a decay rated.1437. When the
Rehé ™) =h cog ax). initial condition is seeded with this mode on a 25856

) ] ) mesh, the evolution of maximum of the interface height, the
This has one crest at=0. Near this crest, the vertical ve- aximum of the vertical velocity/ and L2 norm against

locity is time are shown in Fig. 14. Very good agreement is obtained
Re(ve' ™) =h[3.7615< 10 * cog ax) — 0.85 sirfax)] between linear theory and transient computations, the differ-
ence between the two is less than 1%.
=h[3.7615< 10 *~ 1.615+ “(x?)], The saturation of the flow witlR, =394 is investigated

where the first term 3.762510 % is much smaller than ©Oh a 256<256 mesh. Qualitative features of the flow are
1.615, and therefore a small error in the horizontal motion ofaptured on this modest mesh. Figure 13 is the theoretical
the crest will result in a large error in its vertical motion. prediction for the saturated waves, with the same notation as
There are some sources of error that we can mention her# Fig. 12. Figure 16 illustrates the evolution of the inter-
First, att=0, the velocity and pressure we input are the baséace amplitude versus time, showing saturation after a time
flow plus an eigensolution. The eigenfunction computedof order 1000 s. The saturation amplitude is approximately
from the linear stability problem is defined over0, for ~ 0.0175; the error in the saturation amplitude is of the same
fluid 1 and overl,<I, for fluid 2. However, the domain order as the error for the linear growth rate on this mesh.
occupied by fluid 1 is &1,+h and that of fluid 2 id;+h Figure 18b) shows the simulated wave shape at 2500 s with
<1. To use the eigenfunction as an initial condition, we needlat crests and sharp troughs, in agreement with the weakly
to map it to the perturbed domain. Second, in our VOF dishonlinear theory. We conclude that the simulationRat
cretization for the interface and MAC discretization for the =394 would require a finer mesh to resolve the evolution
velocity, boundary conditions are not taken into account exquantitatively.

plicitly, but treated as average quantities. Thus, a fine mesh At R; =500, the growth rate is sufficiently high that the
is required to obtain precision. Our numerical investigationnumerical resolution of the linear instability regime is rela-
of the linear theory is presented in Table Ill, showing meshtively accurate on a 256256 mesh. We obtain a linear
convergence. We begin with a small initial amplitudl€0) growth rate 7.X10 2 on this mesh, which yields a 4.41%
=10°. The calculations have been done on differenterror in comparison with linear theory. This simulation was
meshes with different time steps. We observe that increasingfarted from a small initial amplitude in comparison with the
they mesh number alone leads to significant improvement irexpected saturation amplitudé&(0)=0.0002. The reason
the agreement with linear theory. For mesh %56, the for choosing such a small initial amplitude is to initialize in
error is 138.5%, and for mesh 28@048 the error is 11.7%. the linear regime; otherwise, if the initial condition is already
The reduction of error is proportional to tlyemesh number. outside the linear regime, the solution may not saturate ac-

TABLE lll. Linear growth rates calculated on different meshes and time steps.rjdsethe x mesh number
andn, is they mesh numberR,=394. The theoretical growth rate is 3.76450 4.

A(0) ny ny At Numerical growth rate Error
10°° 256 256 104 8.97x10* 138.5%
10°° 514 256 10* 9.13x10°* 142.8%
10°° 1024 256 10° 9.17x10° 4 143.9%
1075 256 512 104 6.12<10°4 63.8%
10°° 512 512 104 6.28x10°4 67.0%
10°° 256 1024 10* 4.80x10°4 27.5%

10°° 256 2048 104 4.160<10°* 10.5%
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FIG. 13. The saturation wave form for parameters of Tabléa)l R;=394. (b) R;=500.

cording to weakly nonlinear theory. The Log plot of the parameters. We study in this section the large-amplitude per-
maximum of interface height versus time is shown in Fig.turbation of two-layer Couette flow depicted in Fig. 2. This
16(a), the flow is in the linear regime during the first 700 s. flow is subjected to a periodic perturbation that disturbs the
The evolution of the maximum of the interface height isinterface and the velocity field in a sinusoidal manner with
shown in Fig. 16b); the saturation amplitude we obtained is amplitudeA(0). In this section, the densities of the two flu-
approximately 0.031, in good agreement with the weaklyids are assumed to be the same and so the gravity does not
nonlinear theory. Finally, the interface height a0 is  play a role. Furthermore, we suppose that the undisturbed
shown in Fig. 1€c). We mention that when the flow reaches interface height id;=0.372 and the viscosity ratio of the
saturation, our VOF scheme begins to lose some mass on thisiids is m=0.5. Linear theory predicts that, as long as the
mesh. A finer mesh is needed to reduce this deficiency. amplitude is sufficiently small, a sinusoidal perturbation to
the Couette flow with an appropriate wave number grows
IV. FINGERING IN TWO DIMENSIONS exponentially. This tendency to grow vertically competes
with the convective action of the simple shear flow to distort
Our ultimate objective is the study of 3-D effects. Three-the interface. For the higher amplitudes of perturbation, the
dimensional simulations are, however, limited by the ma-gominant tendency is the horizontal shift on the crests and
chine memory and computation time. As our flow manifestsroughs. When the perturbation amplitude is large enough,
a quasi-two-dimensional behavior in the early stages and th@e folding of the interface under the shear simple flow con-
three-dimensional effects come later, preliminary two-yection is so important that the linear theory fails to predict
dimensional studies are necessary, because they can proViﬂ% flow evolution. Beyond the linear growth region, al-
useful information for our choices of physical and numericalthough the weakly nonlinear theory is relevant in many
cases, there is much that happens at low Reynolds numbers
at seemingly small amplitudes, which lead to nonlinear pro-
cesses that must be simulated numerically.
First, we investigate the flow witm= 0.5, equal density,
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vl bbbl

Log(A) ,gjsé_ T=0.01, Reynolds numbeR;=500, and wave number
e 1 - - " ] a=m/2. This was examined for short times in Ref. 7 and we
(a) time pursue these parameters for longer times. Linear theory indi-

cates the growth rate is Re=0.035 77 for this flow. We
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FIG. 14. The log plot of the maximum of interface heighk, the log plot of '°-°“;
the maximum of vertical velocityb), and the log plot of the.? norm ~0.06L

against time () for the flow: A(0)=0.0001, a=1.9, R;=394, m ° *

=0.646 15,1,=0.636 94,T=3.14, density ratio. Linear stability analysis (b) Waveform

indicates that the growth rate for the bulk mode-i9.1437. Solid lines  FIG. 15. A simulation of saturation for experiments of RefR3=394.(a)
represent theory and circles represent the numerical calculation. The diffefFhe maximum of interface amplitude against time. The saturation amplitude
ence is less than 1%. The calculation is carried out on &Z%&® mesh. is about 0.0175(b) The wave shape at time=2500.
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FIG. 16. The simulation of saturation for experiments of RefR@s500.

(a) A log plot of the maximum of interface height; a solid line represents
theoretical growth and circles represent the calculatibp.A plot of the
maximum of the interface positiofic) The perturbation interface height at
x=0 against time. The calculation is carried out on a:2266 mesh.

t=130

o bl

1 2 3

need fo start from a -Very SmQII perturbation -amp"tUde toFIG 18. The sequence of interface positions A(0)=0.001, a= /2
keep the flow in the linear _reglme for a long tlme'_ We SetR1:500, m=0.5, 1,=0.372, T=0.01, equal densities, and z'ero gra(/ity.
A(0)=0.001. At the top of Fig. 17, we plot, on a Ipgiinear  eret=0, 100, 120, 125, and 130. The calculation is carried out on a 256
scale, the evolution of the maximum amplitudlét) against  x256 mesh.

the time. Untilt=100, the numerical and theoretical growth

rates agree, the difference between them being 2%, and the

agreement zone is over one and a half decade. The evolutid® also obtained. This calculation is carried out on a 256
of the maximum of the vertical velocity and L, norm X256 mesh.

against time are shown also in Fig. 17, and good agreement Corresponding to Fig. 17, we plot in Fig. 18 interface
profiles for timet=0, 100, 120, 125, and 130. As the inter-

face moves vertically under the viscosity-jump instability,
the two fluids do not penetrate into each other in the same
manner. Note that the upper fluid is more viscous than the
7 lower one. We observe that &t 100, the interface trough is
I 1 more narrow than interface crest and the interface loses its
i 50 100 150 shape symmetry. At this stage, we can conclude already from
time mass conservation that the upper fluid penetrate faster into a
lower fluid. This can be explained by the fact that the low-
viscosity liquid provides less resistance, making it easier for
the high-viscosity liquid to penetrate inside it. An analogy is
that when inertia is important, a high-density fluid penetrates
easily into a low-density fluid.

At time t=120, the upper fluid penetrates clearly into
time the lower one and the interface forms a fine finger. No finger
formation can be seen in the upper fluid. Under the convec-
tion of the simple shear flow, this finger folds toward the
right side, because the upper fluid moves fast than the lower
one. The figure at timé=125 shows that the finger is elon-
gated and breaks up, yielding a series of drops. From the
figure for timet=130 and simulations for later times, we
notice that these drops will not reach the bottom wall but
FIG. 17. Log plots of the maximum of interface position, the maximum return to the interface and consequently form a blob of the
vertical velocity V, and theL, norm against time for the flowA(0)  |ower fluid sitting in the upper fluid. We should mention that

=0.001, a=m/2, R;=500, m=0.5, ,=0.372, T=0.01, equal densities, gnars and drops in two-dimensional flow correspond to
and zero gravity. The theoretical linear growth rate for the interfacial mode,, : .
is 0.035 77. Solid lines represents theoretical growth and circles represetid sheets and columns in real flow.

the calculation. The calculation is carried out on a 2266 mesh. We build on these results by varying the initial ampli-

2 -2
Log, ()

time
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FIG. 19. The sequence of interface positions Ag0)=0.05, a= /2, R, FIG. 20. The sequence of interface positions 4¢0)=0.01, «=6.3, R,
=500,m=0.5,1,=0.372,T=0.01, equal densities, and zero gravity. Here =40, m=0.5,1,=0.372,T=0.01, equal densities, and zero gravity. Here
t=0, 5, 10, 15, and 20. The calculation is carried out on a2%86 mesh.  t=0, 5, 10, 15, and 20. The calculation is carried out on axl820 mesh.

t=0, 5, 10, 15, and 20. This calculation is done on a 160
tude and the Reynolds number. First, it is interesting to in-x320 mesh. Asymptotic theory shows that the interface
vestigate how changes in the initial amplitude affects thegrowth rate decreases as the Reynolds number decreases. For
subsequent flow. Figure 19 illustratd¢0)=0.05, with the low Reynolds number flow, therefore, the convection of
other parameters kept constant. This initial amplitude is 5&hear flow is the dominant mechanism that contributes to the
times larger than the previous value, and although small difevolution of the interface. At timé=5, the interface is al-
ferences can be observed, the qualitative features of the presady steepening, and at tirre 10, the interface folds under
vious flow are repeated; i.e., the plots shown in Fig. 18 nowthe simple shear flow. Timeas=10, t=15, andt=20 show
occur at time=0, 5, 10, 15, and 20. In particular, from time only a finger in the lower fluid. Fromt=10 to t=20, the
t=125tot=130 in Fig. 18 and from timé=15 tot=20 for ~ finger does not penetrate so much into the lower fluid but
A(0)=0.05 in Fig. 19, the time durations are hdd s and elongates in the streamwise direction. One striking fact com-
the evolution of the two elongated fingers and the motion ofpared to the flow with Reynolds numbRg =500 is that this
the drops are almost identical. Mesh convergence is estalfinger rests on a straight line. Unlike tRg =500 case where
lished on a 12& 128 mesh, which uses half the nhumber of the wave number isr/2, we consider here a relative short
points in thex andy directions of the previous investigation. wave with wave number 6.3. The finger head at timel5
Good agreement is obtained here also. It is crucial for 3-Dandt= 20 is still far from the bottom wall. The perturbation
computations to use the minimum number of points in agrows very slowly according to linear theory and the whole
mesh in order to minimize computation time and at the sameelocity field is essentially the basic shear flow, which con-
time to obtain information of good quality, because ofvects the finger along a straight line. The simulation is also
memory limitation and computational cost. These two lattercarried out on a 160256 mesh, where we observe that the
investigations suggest that we can study the threeabove finger breaks up numerically due to lack of vertical
dimensional problem for Reynolds numigy=500 from a  refinement in the mesh; i.e., the 26@56 mesh is not fine
relative large initial amplitude(consequently reduce the enough to calculate this flow.
computation timg and using a small mesfconsequently The identical flow with large initial amplitud&(0) is
economize the memoyywithout losing important informa- investigated on a 160160 mesh and the interface profiles
tion of the flow subject to a small sinusoidal perturbation. for timet=0, 2, 5, 8, and 10 are plotted in Fig. 21. Since the

Second, we investigate the Couette flow for relativelyinitial amplitude is larger here, the influence of the basic
low Reynolds numbers. A numerical investigation is carriedshear flow is proportionately more evident. This flow shows
out first for Reynolds numbeR;=40 with wave numbekr a very different behavior than the flow with small initial
=6.3. We start the simulation from the initial amplitude amplitude. These two fingers are elongated more and more
A(0)=0.01. Figure 20 shows the interface profiles for timeas time progresses.
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FIG. 21. The sequence of interface positions Aqg0)=0.05, «a=6.3, R,
=40, m=0.5,1,=0.372,T=0.01, equal densities, and zero gravity. Here
t=0, 5, 10, 15, and 20. The calculation is carried out on ax1680 mesh.

FIG. 22. The sequence of interface positions Ag0)=0.003,a=6.3, R,
=15,m=0.5,1,=0.372,T=0.01, equal densities, and zero gravity. Here
t=10, 50, 100, 160, and 170. The calculation is carried out on a 256
X 320 mesh.

Finally, we investigate a low Reynolds number case withe 46 folding, we can conclude from the interface shape
Ry=15. For this flow with wave numbew=6.9, linear i, rjg 25 and those not shown here for later times that this
theory predllcts a growth rate 0.0088ee Ta.ble ) anq flow forms a finger. The examples shown in this section
weakly nonlinear thgory prgdlcts_the satu.ralltllon amF?I'tUdeexhibit wave form folding with subsequent finger formation,
Z,=0.0047. We peg_m the simulation from initial z_amplltude even at fairly low amplitudes, indicating that the weakly
A(O),:O'OOS’ Wh_'Ch IS belo'vv. Fhe saturatlon_amplltude. Thenonlinear theory may have a smaller than expected region of
practical constraint on the initial amplitude is that the Weakapplicability for low Reynolds number flow.
growth rate due to linear theory results in longer computation Similar shapes for two-dimensional fingers have been
times for smaller amplitudes. Figure 22 shows the interfac?ecorded in Fig. 3 of Ref. 27, where creeping flow is treated
profiles of our simulation on a 26320 mesh. The time steps | ith the boundary integral method. At zero Reynolds num-
aret=10, 50, 100, 160, and 170. We should mention that W&o, e |inear instability of the interface is absent, but with a
have enlarged thg direction scale to provide a better view g iciently large-amplitude perturbation, a nonlinear evolu-
due tc_: th? sm_allness of the wave amplitude. The growth ralfion to fingering occurs from the following mechanism. With
herg IS f'Ve, times smaller than the case wRh=40, the the base flow of Fig. 2, and with the initially sinusoidal in-
vertical motion of the interface is so slow that the shear flow,,tace as in Fig. 25 superposed, it is evident that the crest of
has enough time to shift the interface crest and trough sigq, o \vave moves forward faster than the trodge Fig. 23
nificantly, despite the very small difference of the crest and
trough height. Figure 22 for time= 10 andt=50 shows that
the interface loses its initial sinusoidal shape because of the z
shifting of the wave crest and trough. The interface is no ‘r moving wall
longer symmetrical. The additional fact that we observed in
previous examples is that the crest is large and flat, while the
trough is narrow. This suggests, as before, that the upper —_—
fluid penetrates fast into the lower one. As time goes on, the ]
interface steepens further, as is evident from the wave forms \/
shown at timeg¢ =100 andt=160. Att=170, the interface -
turns to fold near the trough like the th® =40 flow att r— >
=10 in Fig. 20. The upper tip of the fold is, however, very .
fine, since with the 258 320 mesh only a small tip can be rig 23 The large-amplitude disturbance in creeping flow leads to fingering
seen. Although we need a finer mesh to calculate well thisecause the trough is left behind while the crest hurries on.
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1,

FIG. 26. The interface position is shown tat 6. The interface begins to
fold and they-direction perturbation is amplified clearly near the trough.

FIG. 24. Horizontal perturbation of the two layer flow.
tions to low Reynolds number flow involves small interface
. S i . _ . structures and a fine mesh is needed to capture them. In
and this motion initiates the fingering that is observed in REfaddition, a three-dimensional simulation is limited by ma-

27. This is related to our situation, where on top of the lOWchine memory and compution time. In this section, we study
Reynolds numbers we address, we also have the instabilitgnly the flow with Reynolds numbe, =500. For this flow

due to inertial effects. the simulation with initial amplitudeA(0)=0.05 on a 128
X128 mesh captures the flow characteristics sufficiently
V. FINGERING IN THREE DIMENSIONS well. We have not yet studied the most unstable spanwise

The response to periodic perturbations in three dimenM0de. We simply seleat, =4 as the spanwise wavenum-

sions is analyzed by using a horizontal undulation of theber' The_ three-dimensi(_)nal calculation is therefore o!one in a
phase. The initial interface is box of size 4<x0.5X 1 with a 128< 32X 128 mesh, as in the

previous section, the initial two-dimensional amplitude is
z=11+A(0)cod a,x+ ¢(y) ], (30 A (0)=0.05, for a flow with wave number,=m, R;

_ =500,m=0.5,1;,=0.372,T=0.01. We use a spanwise am-
¢=Ay0)codayy), BY Diitude A(0)=0.1; thus the initial interface height is
whereA,(0) is the two-dimensional perturbation amplitude, =0.372+0.05 cofn/2x+ 0.1 cos(4ry)]. The initial interface
Ay(0) the spanwise perturbation amplitude, the x-  position is shown by Fig. 25. The finger is in the lower fluid,
direction wave number, ang, they-direction wave number. but we have reversed our three-dimensional visualization
Basically, the initial conditions are derived as followsis box, in order to provide a better view; the wave crest seen
zero, and in eack—z plane the velocity fieldu,w) and the  here corresponds to a trough.
interface position are derived from the two-dimensional con-  Figures 26, 27, and 28 show interface shapes-a, 10,
figuration. However, the phase of the cosine wave is shifteénd 12, respectively. The flow shows a quasi-two-dimen-
in the y direction (Fig. 24). This spanwise interface pertur- sjonal character at=6; the three-dimensional effect is weak
bation is used to provoke a three-dimensional instabilityunless near the wave trough where the interface begins to
This perturbation formulation is inspired by the experimentfold and the transversedirection perturbation is clearly am-
of Lasheras and Chtion the shear layer flow. plified. As in the two-dimensional case, we observe the for-

The two-dimensional fingering study in the previous sec-mation of the finger in the low-viscosity fluid far=10. The
tion provides useful information for the subsequent threethin sheet that is formed is reminiscent of the two-
dimensional investigation. As we have seen, small perturbadimensional cusp-like fingering of Fig. 2. In addition to this,
we observe that this three-dimensional finger is longer than

A,

FIG. 25. The simulation of two-layer Couette flow for Reynolds number X >’ .
R;=500, a=m/2, m=0.5,1,=0.372,T=0.01, equal densities, and zero
gravity. The initial interface height isz=0.372+0.05 co§6.3x+0.1

X cosf/4m)]. The interface position is shown &t 0.

FIG. 27. The interface position is showntat 10. The formation of a finger
in lower-viscosity fluid. This finger is longer than the one in the two-
dimensional case at the same time.
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