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Drag due to the production of capillary-gravity waves is calculated for an object moving along the
surface of a liquid. Both two and three dimensional objects, moving at large Froude and Weber
numbers, are treated. @001 American Institute of Physic§DOI: 10.1063/1.1384889

I. INTRODUCTION AND SUMMARY p2

R~— (2D). (1.9
An objectB, partially submerged in a liquid and moving T
along its surface, produces capillary-gravity waves which ex- e use(1.1) for P in (1.3) for R to get the 3D result
ert a wave dra@k on B. See Fig. 1. We calculate whenB 2 31160 4

moves with constant velocity) and is just slightly sub- Cip°U°L

R~————— (3D). (1.5

merged. Then we indicate how to apply the result to an insect 67T?
or other arthropod walking on water. L . . .

Our calculation applies to a liquid in potential flow with I.CL ISI gl;gn by(5.131 fzorfa ’T;D Obiejttw'th f‘ circular water-
linearized boundary conditions and large values of the e " we use(1.2) for P in (1.4 to ge
Froude numberF=U?gL and the Weber numbelV cEp2U4|_2
=pLU?/T. Here p is the liquid density,T is the surface R~——+— (2D). (1.6
tension,g is the acceleration of gravity, and is the scale
length of B. We determine the wave pattern in both two For a 2D objeciC, is given by(3.14).
dimensions(2D) and three dimension@D), and show that In addition to the lift forceP due to dynamic pressure,
far from B it is the same as that produced by a movingthere are forces oB due to hydrostatic pressure and due to
pressure distribution concentrated along a line in 2D or at gurface tension acting at the waterline. Wigis at rest, the
point in 3D. resultant of the latter two forces is vertical, and it is just

The total downward forc® in 3D, or forceP per unit  equal to the weight of the fluid displaced Byand by the
length in 2D, exerted on the liquid by the equivalent pressureneniscus(Keller’). When B is moving, the waterline and

distribution, can be written as these two forces change. To calculate this change requires a
. - boundary layer solution in a neighborhotl of the water-
P=3CpU°L" (3D), (1D Jine, which we shall not consider. WithiM linearization

about a horizontal surface will not be valid if the contact
angle condition requires that the surface have a finite slope
there.

Raphael and de Genrlealso found thaR=0 whenU
<Cmin=(49T/p)¥*, corresponding tFW/4<1, and thatR

P=3C_pU%L (2D). (1.2

Here C, is a lift coefficient which we find in terms of the
body shapelpU? is the dynamic pressure;L? is the wetted

area ofB in 3D, and 2 is the wetted area per unit length in . :
2D. This downward force must be exerted Bnby some — = & U=Cmin. Richard and Raphaeshowed that includ-

external influence, and it is balanced by the lift force exerted"d Viscosity make&>0 for U<cy;, and makes finite at
on B by the liquid. U=Cpi,. Shliomis and Steinbefgshowed that even witf

R for a moving concentrated pressure distribution was 0, for a pressure distribution which extends to infinity in a

calculated by Raphael and de Genha@eir result in 3D is, SPecial way, there is a critical velocity. such thaR=0 for

whenFW>1, U<U. )
In Sec. Il we formulate the equivalent flow problem of a
2P%pU? stationary object in a moving fluid. To solve it asymptotically
~ 3.1z (3D (1.3 when F and W are large, we introduce inner and outer
asymptotic solutions. In Sec. Ill we find the 2D inner solu-
Their 2D result is, wherF>1 andW>1, tion. In Sec. IV we give the 2D outer solution and match it to
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Px=0 _ 977hy =0
-1 1

FIG. 2. The inner solution in 2D satisfiasp=0 in the half-plane<0 with
the boundary conditions shown on the line 0.

expansion with respect 6 andW for F andW large. Since
(2.6) does not involve, Egs.(2.1), (2.2), (2.5), and(2.6) can
FIG. 1. Sketch of a cross section of the partially submerged iBoitytwo ~ be solved fore and then can be found fromp by integrat-
dimensions. Its wetted surfaceds-h(x), —L<x<L, and the free surface ing (2.3).
Is z={(x), x<—L and x>L. The body is moving to the left with The inner solution can be constructed in the entire fluid
velocity U. . . . . .

regionz=<0 without the necessity of matching it to a bound-

ary layer solution inM and without imposing the outgoing
the inner solution found in Sec. Ill. Matching determirgs  wave condition. This is so becau$®.6) does not contain
andP, which we use in1.4) or (1.6) to getRin 2D. In Sec.  derivatives of{, so no contact angle condition is required at
V we find the 3D inner solution and determi@g andP. We  the waterline, and2.6) cannot support surface waves. In-
use them in(1.3) or (1.5 to find Rin 3D. In Sec. VI we stead of the contact angle condition, it suffices to require the
discuss the application of the results to insects or other aisolution to have the weakest singularity at the waterline. In-

z=h(x)

thropods walking on water. stead of the radiation or outgoing wave condition, it suffices
to require that the velocity ¢ tend to zero at infinity. These
Il. FORMULATION two requirements select a unique solution.

We consider a stationary objeBtpartially submerged in The inner solution does not contain surface waves, so it
a fluid which is in steady potential flow. Far from the object, 'S not valid far fromB, where the waves propagate. There-
the fluid has the velocity-U parallel to thex axis, and its fore, we shall introduce another solution, which we call the

surface isz=0. We write the potential atJL[¢(x,y,2) “outer solution,” which is valid there but not valid neds.
—x] whereL, the half-length oB along thex axis, is the unit Since it is not valid neaB, we do not require that it satisfy

of length. The fluid is bounded above by the surfaceBof the condition(2.2) on B._ Instead, we introduce a dimension-
z=h(x,y), and by the free surface= ¢(x,y) outsideB. It is less pressure distribution on the right-hand sidg2#) to
convenient to denote bil the projection on the plane=0 produce the waves contained in the outer solution. This pres-

of the wetted surface d8, and byHC the rest of the plane, SU'e distribution, which is unknown, depends upoandW.

which is the projection of the free surface. The common'Ve assume that it can be expanded asymptotically and

boundary ofH andHC is the projection orz=0 of the wa- W for F andWlarge, and we denote hy(x,y) the leading
terline, the neighborhooll of which contains the meniscus. €M in it. To determinep(x,y) we require that the outer
We assume that outsidd both h(x,y) and (x,y) and solution match with the inner solution at some intermediate

their derivatives are sufficiently small that the boundary condistance fromB where both are valid. o
The problem for the leading term in the outer solution is

ditions can be linearized and imposed on the plaae. ' ! ] '
Then the equations satisfied gyand ¢ there are obtained by replacing?.2) and(2.4) by the single equation

A(,DZO, z<0, (2.1) ¢X+F_1§_W_l(gxx+ é“yy)=—p(X,Y), z=0. (27)
¢,=h,, z=0(xy)eH, (2.2 T.h_e radiation conditic.)n.must still hqld, but therg is. no con-
c dition atB. We can eliminate by taking thex derivative of
¢,=Cx, z=0,(xy)eH"~, (2.3 (2.7) and using(2.3) to replacef, by ¢,. Then (2.7) be-
(PX+F_1§_W_1(§XX+ gyy):Oa Z=0,(XyY)EHC, comes
(24 (PXX+F71(PZ_W71((PZXX+ Pzy )= —Px(X,y), z=0.
Ve—0, z—-o. (2.5 (2.9

The solution must contain only outgoing waves, and musiNow (2.1), (2.9), (2.8) and the radiation condition constitute
match with the solution iM, where these equations do not & problem for¢ alone. Then{ can be found frome by
hold. In (2.4, F=U?%gL is the Froude number anWv  integrating(2.3.

=pLU?/T is the Weber number.

We shall solve this problem when both and W are ;. INNER SOLUTION IN TWO DIMENSIONS
large. Then we keep only the leading tegqin (2.4), omit- . L . . .
ting the terms inF~* and W™, to obtain the simplified We begin by considering a two dimensional bdglyith
boundary condition surfacez=h(x), and the corresponding two dimensional
_ _ c flow. The potentiale of the inner solution satisfie.1),
ex=0, 2=0, (xy)eH™ (2.6 (2.2), (2.6) and the conditiorV ¢—0 at infinity. See Fig. 2.

We call the solution of the problem wiil2.6) replacing(2.4) It is convenient to seti= ¢, , and to write these equations in
the “inner solution.” It is the leading term in an asymptotic terms ofu:
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Uyt U,;=0, z=<0, (3.2
u;= hxx(x)r z=0, |X|<1, (32)
u=0, z=0, [x|>1. (3.3

Since the wetted part @& has length 2 along thex axis, we

S.-M. Sun and J. B. Keller

In the linear approximation, this pressure is just=u.
Therefore orB we have

P(X)=U(£0)=2, ansirH é— g)

n=1

,  X=siné.

(3.13

have placed the origin at its midpoint. Then in the scaledMe can us(x) in (2.7) to calculate the outer solution. We

variables it extends from=—1 to x=+1. The solutionu
must tend to zero at infinity.

To solve foru we introduce the complex variable=x
+iz and map the lower half of the plane onto a half strip
in the plane ofA =&+ n by settingw=sin\. Then

x=siné coshy, z=cosésinhy. (3.9
In the A-planeu(¢, ) satisfies
a a
Ugetu,,=0, —§<§<§, 7<0, (3.5
. T w
u,=hy(sin§)cosé, _§<§<§’ 7n=0, (3.6
v
u=0, §=i§, 7<0. (3.7

The solution can be found by separation of variables as &b

sum of products of trigonometric functions §multiplied by
functions of . The normalized functions of which satisfy
(3.7) are (2kr)Y2sinn(é—m/2)], n=1,2,.... For each the
corresponding function of; is a linear combination o&"”
ande™ "7, but the requirement that—0 asz— — shows
that only thee"” are present. Thus we can writeas

u(é, n)=21 ane””sir{“(f‘ g” (3.9
From (3.6) we find thata,, is given by
/2 ) ] T
an:ﬁ _W/thx(smg)cosg sw{n( &— E) dé. (3.9

For n=1 we can simplify this integral since $g-(7/2)]
= —cosé. By using this, and setting=sin¢, we obtain

1 (1
a;=—— | hy(s)yl—s?ds.
m)-1

To find the behavior ofi for x*+ z? large, withz nega-
tive, we first invert(3.4) to get

e7~1/2x*+27%, cosé~|z|l\x?+ 2°,

(3.10

3.1
Siné~x/ x>+ 7°. (3.13
Then from(3.8) we have
u~-—a e”cosgzi z<0, x?+z>>1
L 2(x°+2%)’ ’ '
(3.12

The dimensionless dynamic pressure in the flow is, from the

Bernoulli equation,

(14 @02+ e~ 1]=¢,+O[(Ve)?].

can also integrat€3.13 to getC, , the lift coefficient or total
dimensionless dynamic lift force per unit length, BnSince
x=sin& on B anda; is given by(3.10, we obtain

1
CL=2f p(x)dx
-1

1

=2a1f (—cosé)dx
-1

= _’7Ta1

=fl he(s)V1—s?ds.
1

(3.19

Next from (2.3) we have ,(X)= ¢,(X,0) S0 ,(X)
= 0,,(X,0)=u,(x,0). From (3.12 we getu,(x,0)~a/2x?
and therefore [,,(x)~a;/2x?. Integrating vyields ¢,
~ —ay/2x, where we have taken the constant of integration
e zero to maké,()=0. Another integration gives

a

g(x)~—?log|x|+Ai. (3.15
The constant iA, for x>0 andA_ for x<<0. This result
shows clearly that the inner solution is not valid for large
since it yields a free surface which is unbounded at infinity.

IV. OUTER SOLUTION IN TWO DIMENSIONS

The outer solution, which satisfi€2.1), (2.5), (2.8) and
the radiation condition, can be found for apyx) by using
the Fourier transform irx. For p(x)=P4(x), the surface
£(x) is given explicitly by Raphael and de Genrlels. our
notation it is

-2P K kj=k; for x<0,
Tlky—ky) SMKIXTFOO e, for x>0. ¢

The wave numberk; andk, are defined by

{(x)= 4.1

k= 3W— 3(W?—4WF HV2~F~1

for W>1,
kg= W+ 3(W? — AWF 1) V2w

F>1.

4.2
Thus there are gravity waves with wave numtsgrF 1
downstream ofB and capillary waves with wave number
k,~W upstream ofB. The nonoscillatory functior(x) is
defined by
m

m
m?+ki mP+k;

e Xl dm,

4.3

For W andF large, the integral ir{4.3) can be evaluated
asymptotically. The integral of the first term can be written
as follows by settingm|x|=t, and then evaluated fok;
small:

— P -
FOo= 7T (K,—Ky) fo
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foc te 'dt _fl tdt
0 P4 (kx)? Jo t2+ (kgx)?
+flt(e‘—l) +fw te”tdt
o 24 (kx)?  J1 24 (kgx)?

1
5 log[ 1+ (kx)?]+0(1).

—logk, x|+

4.9

This result is obtained by evaluating the first integral, an
noting that both the second and third integrals are finite when
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disk. Then we introduce oblate spheroidal coordingtes ¢
with the rangesée (0,+), ne(—1,0), ande e (0,27),
related tox,y,zby

x=(&+ 1)1~ 5" cose,

(5.9
y=(£+1)" 1= 7" ?sing, z=¢.
In these coordinates, Laplace’s equati@nl) is separable
with product solutionsb(¢)P(7)Q(¢) and (5.2 and (5.3

obecome

u=0 at =0, (5.5

k,x=0. The integral of the second term can be estimated for

|kox| large by writing
Joc te 'dt 1 J ‘g 1 4

0 TH 02 2 Jo 1€ Wiz 49

We now combing4.4) and (4.5 in (4.3) and use(4.2)

for k; and k, to get T(k,—k;)~TW=pUZ?L. Then (4.3
yields

F(x)~

)+O(1)}.
(4.6

P
7pUZL —log|x| — IoglirO((k X

Next we use(4.6) in (4.1) for {(x), and compare the result
with the inner solution(3.15. We see that the leading terms

are both proportional to Idg. The two coefficients of Idg|
are equal ifP/(2pU%L) has the value

P
UL

=may. (47)

This is exactly the negative of the lift coefficie@f given by

(3.14.

This analysis confirms that the pressure distribution
P &(x), with P the negative of the force dB due to dynamic

2)Y2c0s¢p,(1— %) Y2sing] at £=0.

(5.6

us=nhul(1-7

The function® is a linear combination of sim¢ and
cosme¢, wherem must be an integer to makk periodic with
period 2. The functionP is a linear combination of the
associated Legendre functioR§'(») andQ'(#). However,
Q' must be omitted because it is singular in the domain, and
n must be an integer of the form=m+2/+1,/=0,1,... in
order thatP'(0)=0 as(5.5) requires. FinallyQ is a linear
combination ofP}'(i£) andQJ\(i£), but Pr\(i€) is singular
at é=+o, so it must be omitted.

By combining these product solutions, we can write the
general solution of5.1) and(5.5), and the conditiom—0 at
infinity in the form

© [

u(é, n,go)zZ,O mz,o (A, cosme

+Bp, Sinme) P2, 1(7) Qi 2/ 41(16)

Qm+2/+1(|§)

-1
. (5.7
d¢ go}

pressure, produces an outer solution which matches the inner

solution. Therefore this value & can be used iil.4), orC,

given in(3.14) can be used ifl.6), to determineRr, the wave

drag per unit length oB:

2u4L2 2

f he(X)(1—x3)Y2dx]| . (4.9

By usingP in (4.1) we find that the dimensionless amplitude
of both the gravity and capillary waves iswa;, so the

actual amplitude is- ra;L=L [ h(x)(1—x?)Ydx.

V. INNER SOLUTION IN THREE DIMENSIONS

To find the inner solution for a three dimensional body > E (Ar, COSMe +B,,, sinme)P

B, we again setp,=u in (2.1), (2.2), and(2.6) to get

Au=0, z=0, (5.1
uZ= hxx(x,y), ZZO:(X:Y)EH, (52)
u=0, z=0,x,y)eHC. (5.3

In addition,u—0 at infinity.

We have included the last factor for convenience. The de-
rivative in it has the value

I|md§Qm+2/+1(|§) —(27+2)i lim Qm+2/+2(i§)
-0 £-0

_eimﬂ-/2,ﬂ_(_l)m+/+1
T2 A (mE )

(5.9

The producte™'™™2QM ., . (i £) is real for£=0.
We substitutg5.7) into (5.6) to get

] o

o & m+2/+1( 7)

= 7hy{ (1= 7*)"2cose,(1- 7°)*?sing]
=9(7,¢). (5.9

Here we have defined(7,¢) as the expressiomh,, in
(5.9. By using the orthogonality of the trigopnometric func-

Now to facilitate solving this problem, we take the wa- tions and of the associated Legendre function$sif), we

terline projection to be the unit circle so thitis the unit

obtain
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(Am/ e (2m+4/+2+1)(2/+1)!
Bm/ 2 (2m+2/+1)!
cosme

2w 0
xjo )Jlg(n,(P)Pm+2/+1(77)d77d(p.
(5.10

The factore ,=2 for m=1 ande,= 1. With this determina-
tion of the coefficients the solution(¢, 7, ¢) is determined
by (5.7).

The expressiorn5.10 for Ay, can be simplified as fol-
lows, sinceP}(7)= »:

sinme

27 (0
Aoo:if J hed (1= 592
277 0 1 XX

X cose,(1—7?)*?sine]n? dyde
3

27 (1
=— f hy[r cose,rsine](1—r?)Yrdrde
27 Jo Jo

3
—_ _v2__\,271/2
= 277] fxzwzﬂhxx(x,y)[l X“=y“]H“dx dy.

(5.1

The dimensionless dynamic pressure on the wetted suf-

face ofB is justu(0,n,¢) for —1< =<0, so it is given by
(5.7 with £=0. By integrating it over this wetted surface,
i.e., over the disk- 1< =<0, we getC, , the lift coefficient
or dimensionless lift force. The area elementridrde
=(1- 79)Y2d(1- 5»)Y?dep=— pd 7y de. The ¢ integration

yields zero for all terms in the sum except the cosine term
with m=0. Then the remaining integrands are constant
times nPg/H(n). The integral of each of these terms from

n=—1 to =0 vanishes, except for the term with=0,
which is —1/3. Thus we obtain

27 (0
CLzzfo f71U(0,n,qo)(—77)dnd<P

0
=4mAg fﬁlpg(n)(—n)an‘i(O)
d I
dg o =3 Aoo-

When we usé5.11) for Ay in (5.12), we get

x| = Q%i¢) (5.12

CL:iJ J hXX(X,y)(l—XZ—yZ)lldedy.
T x2+y?<1
(5.13
The result(5.13 for C, can be used ir{1.1) and (1.5) to
determineP andR in 3D.
We can also calculatefor x>+ y?+z?>1 from (5.7) by

using the inversion of the coordinate transformatibri) to
get
§~(X2+y2+22)1/2, 7]~Z(X2+y2+22)71/2

for x?+y?+2z?>1. (5.14

S.-M. Sun and J. B. Keller

Furthermore QM. , . ,(i&)=0(£72"™2) as é—x,
Therefore the leading term if5.7) is that with/'=m=0:

2A .
u(xy.2)~ = PUAMQR(i&)
_ —2Aq0 z
T 37 (XPHyi+ )T

( )
362
(5.13

We have verified that the outer solution, corresponding to the
pressureéP §(x) 8(y), agrees asymptotically witth.15 when

P/(2pU2L?) is given by(5.13).

_ 2Aq0m
o

VI. WALKING ON WATER

An insect or other arthropod walking on water is sup-
ported mainly by surface tension acting on its partly sub-
merged legs. In walking, it keeps some of its legs fixed with
respect to its body, and moves the others backward. Then it
brings those legs forward, presumably lifting them to dimin-
ish drag. It repeats the process, moving the same or other
legs backward. The propulsive force is provided by the re-
sistance of the water to the backward motion of the backward
Fnoving legs. This must exceed the resistance of the water to
the forward motion of the fixed legs, and to the forward
motion of those legs being brought forward.

The total drag force on a moving leg is a stk R
+R; whereR is the wave-making dradR; is the viscous
drag, also called the drag due to skin friction, dgdis the

Yrag due to surface tension. Whehsc,,=2Y%(gT/p)4
where Cmin IS the minimum phase velocity of capillary-

gravity waves, there are no waves Be-0. As U increases
abovec,,,, Rincreases from zero and it is asymptotic to the
expression in(1.5 whenU is large. Thus the total drag is
given byR;+ Ry for U=c,,, increases above this value as
U increases above,,;,, and is asymptotic to the expression
in (1.5 for large U because that expression increases faster
thanR;+Ry.

Measurements of the total drag on the leg of the fisher
spider were made by Sutet al® for U ranging from zero to
about Z,,,. In walking, U ranges up to 8&,. They ob-
served the presence of waves 10r>c,,, but they were
unable to measure their effect on the total drag. A calculation
like the present one, valid fdd up to about 2, or 3Cnyin,
would be helpful in separating the total drag into its compo-
nents.
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