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Capillary-gravity wave drag
Shu-Ming Sun
Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia 24061-0123

Joseph B. Keller
Departments of Mathematics and Mechanical Engineering, Stanford University, Stanford,
California 94305-2125

~Received 3 January 2001; accepted 3 May 2001!

Drag due to the production of capillary-gravity waves is calculated for an object moving along the
surface of a liquid. Both two and three dimensional objects, moving at large Froude and Weber
numbers, are treated. ©2001 American Institute of Physics.@DOI: 10.1063/1.1384889#
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I. INTRODUCTION AND SUMMARY

An objectB, partially submerged in a liquid and movin
along its surface, produces capillary-gravity waves which
ert a wave dragR on B. See Fig. 1. We calculateR whenB
moves with constant velocityU and is just slightly sub-
merged. Then we indicate how to apply the result to an ins
or other arthropod walking on water.

Our calculation applies to a liquid in potential flow wit
linearized boundary conditions and large values of
Froude numberF5U2/gL and the Weber numberW
5rLU2/T. Here r is the liquid density,T is the surface
tension,g is the acceleration of gravity, andL is the scale
length of B. We determine the wave pattern in both tw
dimensions~2D! and three dimensions~3D!, and show that
far from B it is the same as that produced by a movi
pressure distribution concentrated along a line in 2D or a
point in 3D.

The total downward forceP in 3D, or forceP per unit
length in 2D, exerted on the liquid by the equivalent press
distribution, can be written as

P5 1
2CLrU2L2 ~3D!, ~1.1!

P5 1
2CLrU2L ~2D!. ~1.2!

Here CL is a lift coefficient which we find in terms of the
body shape,12rU2 is the dynamic pressure,pL2 is the wetted
area ofB in 3D, and 2L is the wetted area per unit length
2D. This downward force must be exerted onB by some
external influence, and it is balanced by the lift force exer
on B by the liquid.

R for a moving concentrated pressure distribution w
calculated by Raphael and de Gennes.1 Their result in 3D is,
whenFW@1,

R;
2P2rU2

3pT2 ~3D!. ~1.3!

Their 2D result is, whenF@1 andW@1,
2141070-6631/2001/13(8)/2146/6/$18.00
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R;
P2

T
~2D!. ~1.4!

We use~1.1! for P in ~1.3! for R to get the 3D result

R;
CL

2r3U6L4

6pT2 ~3D!. ~1.5!

CL is given by~5.13! for a 3D object with a circular water
line. In 2D we use~1.2! for P in ~1.4! to get

R;
CL

2r2U4L2

4T
~2D!. ~1.6!

For a 2D objectCL is given by~3.14!.
In addition to the lift forceP due to dynamic pressure

there are forces onB due to hydrostatic pressure and due
surface tension acting at the waterline. WhenB is at rest, the
resultant of the latter two forces is vertical, and it is ju
equal to the weight of the fluid displaced byB and by the
meniscus~Keller2!. When B is moving, the waterline and
these two forces change. To calculate this change requir
boundary layer solution in a neighborhoodM of the water-
line, which we shall not consider. WithinM linearization
about a horizontal surface will not be valid if the conta
angle condition requires that the surface have a finite sl
there.

Raphael and de Gennes1 also found thatR50 whenU
,cmin5(4gT/r)1/4, corresponding toFW/4,1, and thatR
5` at U5cmin . Richard and Raphael3 showed that includ-
ing viscosity makesR.0 for U,cmin and makesR finite at
U5cmin . Shliomis and Steinberg4 showed that even withT
50, for a pressure distribution which extends to infinity in
special way, there is a critical velocityUc such thatR50 for
U,Uc .

In Sec. II we formulate the equivalent flow problem of
stationary object in a moving fluid. To solve it asymptotica
when F and W are large, we introduce inner and out
asymptotic solutions. In Sec. III we find the 2D inner sol
tion. In Sec. IV we give the 2D outer solution and match it
6 © 2001 American Institute of Physics
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 This a
the inner solution found in Sec. III. Matching determinesCL
andP, which we use in~1.4! or ~1.6! to getR in 2D. In Sec.
V we find the 3D inner solution and determineCL andP. We
use them in~1.3! or ~1.5! to find R in 3D. In Sec. VI we
discuss the application of the results to insects or other
thropods walking on water.

II. FORMULATION

We consider a stationary objectB partially submerged in
a fluid which is in steady potential flow. Far from the obje
the fluid has the velocity2U parallel to thex axis, and its
surface isz50. We write the potential asUL@w(x,y,z)
2x# whereL, the half-length ofB along thex axis, is the unit
of length. The fluid is bounded above by the surface ofB,
z5h(x,y), and by the free surfacez5z(x,y) outsideB. It is
convenient to denote byH the projection on the planez50
of the wetted surface ofB, and byHC the rest of the plane
which is the projection of the free surface. The comm
boundary ofH andHC is the projection onz50 of the wa-
terline, the neighborhoodM of which contains the meniscus

We assume that outsideM both h(x,y) andz(x,y) and
their derivatives are sufficiently small that the boundary c
ditions can be linearized and imposed on the planez50.
Then the equations satisfied byw andz there are

Dw50, z,0, ~2.1!

wz5hx , z50,~x,y!PH, ~2.2!

wz5zx , z50,~x,y!PHC, ~2.3!

wx1F21z2W21~zxx1zyy!50, z50,~x,y!PHC,
~2.4!

“w→0, z→2`. ~2.5!

The solution must contain only outgoing waves, and m
match with the solution inM, where these equations do n
hold. In ~2.4!, F5U2/gL is the Froude number andW
5rLU2/T is the Weber number.

We shall solve this problem when bothF and W are
large. Then we keep only the leading termwx in ~2.4!, omit-
ting the terms inF21 and W21, to obtain the simplified
boundary condition

wx50, z50, ~x,y!PHC. ~2.6!

We call the solution of the problem with~2.6! replacing~2.4!
the ‘‘inner solution.’’ It is the leading term in an asymptot

FIG. 1. Sketch of a cross section of the partially submerged bodyB in two
dimensions. Its wetted surface isz5h(x), 2L,x,L, and the free surface
is z5z(x), x,2L and x.L. The body is moving to the left with
velocity U.
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expansion with respect toF andW for F andW large. Since
~2.6! does not involvez, Eqs.~2.1!, ~2.2!, ~2.5!, and~2.6! can
be solved forw and thenz can be found fromw by integrat-
ing ~2.3!.

The inner solution can be constructed in the entire fl
regionz<0 without the necessity of matching it to a boun
ary layer solution inM and without imposing the outgoing
wave condition. This is so because~2.6! does not contain
derivatives ofz, so no contact angle condition is required
the waterline, and~2.6! cannot support surface waves. In
stead of the contact angle condition, it suffices to require
solution to have the weakest singularity at the waterline.
stead of the radiation or outgoing wave condition, it suffic
to require that the velocity“w tend to zero at infinity. These
two requirements select a unique solution.

The inner solution does not contain surface waves, s
is not valid far fromB, where the waves propagate. Ther
fore, we shall introduce another solution, which we call t
‘‘outer solution,’’ which is valid there but not valid nearB.
Since it is not valid nearB, we do not require that it satisfy
the condition~2.2! on B. Instead, we introduce a dimension
less pressure distribution on the right-hand side of~2.4! to
produce the waves contained in the outer solution. This p
sure distribution, which is unknown, depends uponF andW.
We assume that it can be expanded asymptotically inF and
W for F andW large, and we denote byp(x,y) the leading
term in it. To determinep(x,y) we require that the oute
solution match with the inner solution at some intermedi
distance fromB where both are valid.

The problem for the leading term in the outer solution
obtained by replacing~2.2! and ~2.4! by the single equation

wx1F21z2W21~zxx1zyy!52p~x,y!, z50. ~2.7!

The radiation condition must still hold, but there is no co
dition at B. We can eliminatez by taking thex derivative of
~2.7! and using~2.3! to replacezx by wz . Then ~2.7! be-
comes

wxx1F21wz2W21~wzxx1wzyy!52px~x,y!, z50.
~2.8!

Now ~2.1!, ~2.5!, ~2.8! and the radiation condition constitut
a problem forw alone. Thenz can be found fromw by
integrating~2.3!.

III. INNER SOLUTION IN TWO DIMENSIONS

We begin by considering a two dimensional bodyB with
surface z5h(x), and the corresponding two dimension
flow. The potentialw of the inner solution satisfies~2.1!,
~2.2!, ~2.6! and the condition“w→0 at infinity. See Fig. 2.
It is convenient to setu5wx , and to write these equations i
terms ofu:

FIG. 2. The inner solution in 2D satisfiesDw50 in the half-planez,0 with
the boundary conditions shown on the linez50.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

 08 Apr 2014 14:09:35



le

s

th

e

ion

ity.

r

en

2148 Phys. Fluids, Vol. 13, No. 8, August 2001 S.-M. Sun and J. B. Keller

 This a
uxx1uzz50, z<0, ~3.1!

uz5hxx~x!, z50, uxu,1, ~3.2!

u50, z50, uxu.1. ~3.3!

Since the wetted part ofB has length 2L along thex axis, we
have placed the origin at its midpoint. Then in the sca
variables it extends fromx521 to x511. The solutionu
must tend to zero at infinity.

To solve foru we introduce the complex variablew5x
1 iz and map the lower half of thew plane onto a half strip
in the plane ofl5j1 ih by settingw5sinl. Then

x5sinj coshh, z5cosj sinhh. ~3.4!

In the l-planeu(j,h) satisfies

ujj1uhh50, 2
p

2
,j,

p

2
, h,0, ~3.5!

uh5hxx~sinj!cosj, 2
p

2
,j,

p

2
, h50, ~3.6!

u50, j56
p

2
, h,0. ~3.7!

The solution can be found by separation of variables a
sum of products of trigonometric functions ofj multiplied by
functions ofh. The normalized functions ofj which satisfy
~3.7! are (2/p)1/2sin@n(j2p/2)#, n51,2,... . For eachn the
corresponding function ofh is a linear combination ofenh

ande2nh, but the requirement thatu→0 ash→2` shows
that only theenh are present. Thus we can writeu as

u~j,h!5 (
n51

`

anenh sinFnS j2
p

2 D G . ~3.8!

From ~3.6! we find thatan is given by

an5
2

np E
2p/2

p/2

hxx~sinj!cosj sinFnS j2
p

2 D Gdj. ~3.9!

For n51 we can simplify this integral since sin@j2(p/2)#
52cosj. By using this, and settings5sinj, we obtain

a152
1

p E
21

1

hxx~s!A12s2 ds. ~3.10!

To find the behavior ofu for x21z2 large, withz nega-
tive, we first invert~3.4! to get

eh;1/2Ax21z2, cosj;uzu/Ax21z2,
~3.11!

sinj;x/Ax21z2.

Then from~3.8! we have

u;2a1eh cosj5
a1z

2~x21z2!
, z,0, x21z2@1.

~3.12!

The dimensionless dynamic pressure in the flow is, from
Bernoulli equation,

2 1
2@~211wx!

21wy
221#5wx1O@~“w!2#.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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In the linear approximation, this pressure is justwx5u.
Therefore onB we have

p~x!5u~j,0!5 (
n51

`

an sinFnS j2
p

2 D G , x5sinj.

~3.13!

We can usep(x) in ~2.7! to calculate the outer solution. W
can also integrate~3.13! to getCL , the lift coefficient or total
dimensionless dynamic lift force per unit length, onB. Since
x5sinj on B anda1 is given by~3.10!, we obtain

CL52E
21

1

p~x!dx

52a1E
21

1

~2cosj!dx

52pa1

5E
21

1

hxx~s!A12s2 ds. ~3.14!

Next from ~2.3! we have zx(x)5wz(x,0) so zxx(x)
5wxz(x,0)5uz(x,0). From ~3.12! we get uz(x,0);a1/2x2

and therefore zxx(x);a1/2x2. Integrating yields zx

;2a1/2x, where we have taken the constant of integrat
to be zero to makezx(`)50. Another integration gives

z~x!;2
a1

2
loguxu1A6 . ~3.15!

The constant isA1 for x.0 andA2 for x,0. This result
shows clearly that the inner solution is not valid for largex
since it yields a free surface which is unbounded at infin

IV. OUTER SOLUTION IN TWO DIMENSIONS

The outer solution, which satisfies~2.1!, ~2.5!, ~2.8! and
the radiation condition, can be found for anyp(x) by using
the Fourier transform inx. For p(x)5Pd(x), the surface
z(x) is given explicitly by Raphael and de Gennes.1 In our
notation it is

z~x!5
22P

T~k22k1!
sinkjx1F~x!,

kj5k1 for x,0,
kj5k2 for x.0. ~4.1!

The wave numbersk1 andk2 are defined by

k15 1
2W2 1

2~W224WF21!1/2;F21

k25 1
2W1 1

2~W224WF21!1/2;W
for W@1, F@1.

~4.2!

Thus there are gravity waves with wave numberk1;F21

downstream ofB and capillary waves with wave numbe
k2;W upstream ofB. The nonoscillatory functionF(x) is
defined by

F~x!5
P

pT~k22k1!
E

0

`S m

m21k1
22

m

m21k2
2De2muxu dm.

~4.3!

For W andF large, the integral in~4.3! can be evaluated
asymptotically. The integral of the first term can be writt
as follows by settingmuxu5t, and then evaluated fork1

small:
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E
0

` te2t dt

t21~k1x!2 5E
0

1 t dt

t21~k1x!2

1E
0

1 t~e2t21!

t21~k1x!2 1E
1

` te2t dt

t21~k1x!2

52 logk1uxu1
1

2
log@11~k1x!2#1O~1!.

~4.4!

This result is obtained by evaluating the first integral, a
noting that both the second and third integrals are finite w
k1x50. The integral of the second term can be estimated
uk2xu large by writing

E
0

` te2t dt

t21~k2x!2,
1

~k2x!2 E
0

`

te2t dt5
1

~k2x!2 . ~4.5!

We now combine~4.4! and ~4.5! in ~4.3! and use~4.2!
for k1 and k2 to get T(k22k1);TW5rU2L. Then ~4.3!
yields

F~x!;
P

prU2L F2 loguxu2 logk11OS 1

~k2x!2D1O~1!G .
~4.6!

Next we use~4.6! in ~4.1! for z(x), and compare the resu
with the inner solution~3.15!. We see that the leading term
are both proportional to loguxu. The two coefficients of loguxu
are equal ifP/( 1

2rU2L) has the value

P
1
2rU2L

5pa1 . ~4.7!

This is exactly the negative of the lift coefficientCL given by
~3.14!.

This analysis confirms that the pressure distribut
Pd(x), with P the negative of the force onB due to dynamic
pressure, produces an outer solution which matches the i
solution. Therefore this value ofP can be used in~1.4!, or CL

given in~3.14! can be used in~1.6!, to determineR, the wave
drag per unit length ofB:

R;
r2U4L2

4T F E
21

1

hxx~x!~12x2!1/2dxG2

. ~4.8!

By usingP in ~4.1! we find that the dimensionless amplitud
of both the gravity and capillary waves is2pa1 , so the
actual amplitude is2pa1L5L*21

1 hxx(x)(12x2)1/2dx.

V. INNER SOLUTION IN THREE DIMENSIONS

To find the inner solution for a three dimensional bo
B, we again setwx5u in ~2.1!, ~2.2!, and~2.6! to get

Du50, z50, ~5.1!

uz5hxx~x,y!, z50,~x,y!PH, ~5.2!

u50, z50,~x,y!PHC. ~5.3!

In addition,u→0 at infinity.
Now to facilitate solving this problem, we take the w

terline projection to be the unit circle so thatH is the unit
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disk. Then we introduce oblate spheroidal coordinatesj, h, w
with the rangesjP(0,1`), hP(21,0), andwP(0,2p),
related tox,y,zby

x5~j211!1/2~12h2!1/2cosw,
~5.4!

y5~j211!1/2~12h2!1/2sinw, z5jh.

In these coordinates, Laplace’s equation~5.1! is separable
with product solutionsF(w)P(h)Q(j) and ~5.2! and ~5.3!
become

u50 at h50, ~5.5!

uj5hhxx@~12h2!1/2cosw,~12h2!1/2sinw# at j50.
~5.6!

The functionF is a linear combination of sinmf and
cosmf, wherem must be an integer to makeF periodic with
period 2p. The functionP is a linear combination of the
associated Legendre functionsPn

m(h) andQn
m(h). However,

Qn
m must be omitted because it is singular in the domain, a

n must be an integer of the formn5m12l 11,l 50,1,... in
order thatPn

m(0)50 as~5.5! requires. Finally,Q is a linear
combination ofPn

m( i j) andQn
m( i j), but Pn

m( i j) is singular
at j51`, so it must be omitted.

By combining these product solutions, we can write t
general solution of~5.1! and~5.5!, and the conditionu→0 at
infinity in the form

u~j,h,w!5 (
l 50

`

(
m50

`

~Aml cosmw

1Bml sinmw!Pm12l 11
m ~h!Qm12l 11

m ~ i j!

3F d

dj
Qm12l 11

m ~ i j!U
j50

G21

. ~5.7!

We have included the last factor for convenience. The
rivative in it has the value

lim
j→0

d

dj
Qm12l 11

m ~ i j!52~2l 12!i lim
j→0

Qm12l 12
m ~ i j!

5
2eimp/2p~21!m1l 11

2m12l 11l ! ~m1l !!
. ~5.8!

The producte2 imp/2Qm12l 11
m ( i j) is real forj>0.

We substitute~5.7! into ~5.6! to get

(
l 50

`

(
m50

`

~Aml cosmw1Bml sinmw!Pm12l 11
m ~h!

5hhxx@~12h2!1/2cosw,~12h2!1/2sinw#

[g~h,w!. ~5.9!

Here we have definedg(h,w) as the expressionhhxx in
~5.9!. By using the orthogonality of the trigonometric func
tions and of the associated Legendre functions in~5.9!, we
obtain
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S Aml

Bml
D5

«m

2p

~2m14l 1211!~2l 11!!

~2m12l 11!!

3E
0

2p S cosmw
sinmw D E

21

0

g~h,w!Pm12l 11
m ~h!dh dw.

~5.10!

The factor«m52 for m>1 and«051. With this determina-
tion of the coefficients the solutionu(j,h,w) is determined
by ~5.7!.

The expression~5.10! for A00 can be simplified as fol-
lows, sinceP1

0(h)5h:

A005
3

2p E
0

2pE
21

0

hxx@~12h2!1/2

3cosw,~12h2!1/2sinw#h2 dh dw

5
3

2p E
0

2pE
0

1

hxx@r cosw,r sinw#~12r 2!1/2r dr dw

5
3

2p E E
x21y2,1

hxx~x,y!@12x22y2#1/2dx dy.

~5.11!

The dimensionless dynamic pressure on the wetted
face ofB is just u(0,h,w) for 21<h<0, so it is given by
~5.7! with j50. By integrating it over this wetted surfac
i.e., over the disk21<h<0, we getCL , the lift coefficient
or dimensionless lift force. The area element isr dr dw
5(12h2)1/2d(12h2)1/2dw52h dh dw. Thew integration
yields zero for all terms in the sum except the cosine te
with m50. Then the remaining integrands are consta
timeshP2l 11

0 (h). The integral of each of these terms fro
h521 to h50 vanishes, except for the term withl 50,
which is 21/3. Thus we obtain

CL52E
0

2pE
21

0

u~0,h,w!~2h!dh dw

54pA00E
21

0

P1
0~h!~2h!dh Q1

0~0!

3F d

dj
Q1

0~ i j!U
j50

G21

5
8

3
A00. ~5.12!

When we use~5.11! for A00 in ~5.12!, we get

CL5
4

p E E
x21y2,1

hxx~x,y!~12x22y2!1/2dx dy.

~5.13!

The result~5.13! for CL can be used in~1.1! and ~1.5! to
determineP andR in 3D.

We can also calculateu for x21y21z2@1 from ~5.7! by
using the inversion of the coordinate transformation~5.4! to
get

j;~x21y21z2!1/2, h;z~x21y21z2!21/2

for x21y21z2@1. ~5.14!
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Furthermore Qm12l 11
m ( i j)5O(j22l 2m22) as j→`.

Therefore the leading term in~5.7! is that with l 5m50:

u~x,y,z!;
2A00

p
P1

0~h!Q1
0~ i j!

;
2A00h

p S 21

3j2D5
22A00

3p

z

~x21y21z2!3/2.

~5.15!

We have verified that the outer solution, corresponding to
pressurePd(x)d(y), agrees asymptotically with~5.15! when

P/( 1
2rU2L2) is given by~5.13!.

VI. WALKING ON WATER

An insect or other arthropod walking on water is su
ported mainly by surface tension acting on its partly su
merged legs. In walking, it keeps some of its legs fixed w
respect to its body, and moves the others backward. The
brings those legs forward, presumably lifting them to dim
ish drag. It repeats the process, moving the same or o
legs backward. The propulsive force is provided by the
sistance of the water to the backward motion of the backw
moving legs. This must exceed the resistance of the wate
the forward motion of the fixed legs, and to the forwa
motion of those legs being brought forward.

The total drag force on a moving leg is a sumR1Rf

1RT where R is the wave-making drag,Rf is the viscous
drag, also called the drag due to skin friction, andRT is the
drag due to surface tension. WhenU<cmin521/2(gT/r)1/4,
where cmin is the minimum phase velocity of capillary
gravity waves, there are no waves soR50. As U increases
abovecmin , R increases from zero and it is asymptotic to t
expression in~1.5! when U is large. Thus the total drag i
given byRf1RT for U<cmin , increases above this value a
U increases abovecmin , and is asymptotic to the expressio
in ~1.5! for largeU because that expression increases fa
thanRf1RT .

Measurements of the total drag on the leg of the fis
spider were made by Suteret al.5 for U ranging from zero to
about 2cmin . In walking, U ranges up to 3cmin . They ob-
served the presence of waves forU.cmin , but they were
unable to measure their effect on the total drag. A calculat
like the present one, valid forU up to about 2cmin or 3cmin ,
would be helpful in separating the total drag into its comp
nents.
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