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Periodic motion of three stirrers in a two-dimensional flow can lead to chaotic transport of the
surrounding fluid. For certain stirrer motions, the generation of chaos is guaranteed solely by the
topology of that motion and continuity of the fluid. Work in this area has focused largely on using
physical rods as stirrers, but the theory also applies when the “stirrers” are passive fluid particles.
We demonstrate the occurrence of topological chaos for Stokes flow in a two-dimensional lid-driven
cavity without internal rods. This approach to stirring can enhance mixing relative to a “standard”
chaos-generating lid-driven cavity flow. © 2007 American Institute of Physics.

[DOLI: 10.1063/1.2772881]

I. INTRODUCTION

It has been shown that one can establish a quantitative
lower bound on the complexity of a two-dimensional stirred
flow simply by examining the motion of the boundaries." If
the fluid domain contains a sufficient number of stirring
rods that are moved about appropriately, the topology of the
time-dependent rod motions guarantees that at least some of
the fluid is subjected to exponential stretching and folding.
The prediction and analysis of this “topological chaos” is
based on the Thurston-Nielsen (TN) theory,3’4 a powerful
collection of mathematical tools for analyzing two-
dimensional dynamical systems.

Much of the existing work that uses this topological ap-
proach to fluid mixing has focused on systems in which the
stirring is produced by three solid rods inserted in the flow.
Consider, for example, viscous flow in a circular domain that
is driven by the motion of three cylindrical rods intersecting
the domain. In this example the stirrer motions take place in
two steps. First, the right rod and the center rod interchange
position by simultaneously moving clockwise along a circu-
lar path, as shown in Fig. 1(a). During this motion, the left
rod remains stationary. We will refer to this stirrer motion as
R,. Next, the left and center rods interchange position by
moving along a circular path either clockwise, as shown in
Fig. 1(b), or counterclockwise, as shown in Fig. 1(c), while
the right rod remains stationary. We will refer to these stirrer
motions as L, and L_, respectively. These two steps then
repeat, and after six steps the rods return to their original
positions, giving one full period of the stirrer motions. These
stirring protocols have been examined experimentally in vis-
cous flow' and numerically in both potential flow® and
Stokes flow.™® Similar stirring protocols can be achieved by
holding two of the rods fixed and moving the third rod about
these two in a figure-eight or epicyclic pattern.s’7 A recent
variation on this system combines figure-eight motion of one
rod with rotation of two “baffle” rods.

Topological chaos refers to complexity in the flow that
cannot be removed by continuous perturbation of the fluid
while holding the boundaries (i.e., the rods) fixed. For the
example in Fig. 1, the occurrence of topological chaos de-
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pends on whether the second rod interchange is done in the
clockwise or counterclockwise direction. It is the direction of
interchange that is important, not the specific shape of the
path. If this interchange is counterclockwise, so that the stir-
rer motion consists of R, followed by L_, then chaos is “built
in” the system in a way that does not depend on the detailed
dynamics of the rods or the fluid. That is, in this case the
stirred flow is topologically equivalent (i.e., isotopic) to a
chaotic pseudo-Anosov (pA) map that has a dense collection
of periodic orbits and a Markov partition with irreducible
transition matrix A. Except for a finite number of singulari-
ties, this pA map stretches everywhere in the unstable direc-
tion(s) by a factor A> 1, the dominant eigenvalue of A, and
contracts everywhere in the stable direction(s) by a factor
1/N. This complicated behavior is preserved under isotopy,9
i.e., under any continuous deformation in which the stirrers
remain fixed, so that in a subdomain of the real fluid this
stirring motion produces exponential stretching at a rate that
is at least \. (See, e.g., Refs. 1 and 10 for a more complete
discussion of isotopy in a fluid mechanics context.) The size
of the subdomain is not predicted by the TN theory, but the
experimental results reproduced in Fig. 1(f) indicate that this
region is on the scale of the stirrer motions. Thus, if a stirrer
motion is of pA type, a small amount of rough topological
data enables prediction of a quantitative lower bound on
complexity in the dynamics of the flow. The existing work
demonstrates that this prediction is of practical importance in
almost all cases considered thus far, the one exception being
steady, three-dimensional flow in a duct with a “stirring rod”
insert."

If the second interchange in the above example is instead
clockwise, so that the stirrer motion consists of R, followed
by L,, then the net effect of this motion is simply to twist the
fluid around the rods. Finite order motions such as this are
topologically trivial, and the TN theory gives no lower bound
on complexity in the resulting flow. Figure 1(e) shows that
the corresponding fluid motion can be nontrivial, and even
chaotic, but this complexity is due to the dynamics of the
flow, not the topology of the boundary motions, and can thus
be removed by varying parameters such as the shape of the
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FIG. 1. Stirring a viscous fluid with three rods, from Ref. 1. The rods are
orthogonal to the image plane. Panels (a)—(c) show the rod interchanges, or
stirrer motions, (a) R,, (b) L,, and (c) L_. Panels (d)—(f) show experimental
dye visualization images for (d) the initial dye configuration, (e) a finite
order motion after three periods of the flow, and (f) a pseudo-Anosov motion
after three periods of the flow.

domain or the speed of the boundaries. Furthermore, quali-
tative comparison of the experimental results in Fig. 1 shows
the advantage of using a pA motion to stir the fluid. These
two stirring protocols are energetically equivalent, but the
stirring produced with the pA motion is significantly more
efficient than that with the finite order motion.

The TN theory does not require that the stirrers produc-
ing topological chaos be solid rods. For example, when three
point vortices are allowed to interact dynamically in a singly-
periodic domain, some of the resulting vortex motions are of
PA type.12 In fact, the stirrers examined with the TN theory
need not be driving the flow at all, but merely be passive
particles (or groups of particles) that happen to experience
the appropriate trajectories. These passive periodic structures
have been termed ghost rods."

Existing analyses of topological chaos in a fluid with
ghost rods consider two cases. In one case, a single rod in a
circular domain is moved along either a figure-eight or epi-
cyclic trajectory. The stirrer motions generated by this single
rod are topologically trivial. However, each of these trajec-
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FIG. 2. Geometry of a lid-driven cavity with the top boundary split into
three segments. The tangential velocities of the left, center, and right seg-
ments are given by U, U, and Up, respectively. The geometry shown here
has an aspect ratio «=a/b=3 and a boundary length ratio 8=2c¢/d=1.

tories produce multiple elliptic islands that act as ghost rods
in the flow. The stirring motions generated by the combina-
tion of the solid rod and at least two ghost rods can be of pA
type, and the results are similar to those in which a single rod
moves about two fixed solid rods.”’ The other case considers
sine flow on a torus, in which the periodic points alone gen-
erate a stirring motion of pA type.14 This sine flow is quite
useful for analysis, but has no clear physical analog.

In this paper, we use a model of Stokes flow in a two-
dimensional lid-driven cavity to demonstrate that passively
advected periodic points can be made to follow trajectories
that guarantee the presence of topological chaos in a practi-
cal flow without any internal rods. In Sec. II we discuss the
details of the lid-driven cavity flow being considered, and in
Sec. III we examine the role of topological chaos in this flow.
We conclude in Sec. IV. Preliminary results of this work
were presented at the 59th Annual Meeting of the American
Physical Society Division of Fluid Dynamics.15

Il. THE LID-DRIVEN CAVITY FLOW

The two-dimensional lid-driven cavity system has been
used numerous times to generate chaotic motion in a viscous
fluid (see, e.g., Refs. 16—18). Flow inside the cavity is driven
by time-dependent tangential motion of the boundaries. In
the standard lid-driven cavity, these tangential velocities are
taken to be uniform along the entire length of each boundary.
In our system we drive only the top boundary, which we split
into three segments as shown in Fig. 2, with the tangential
velocity of each boundary segment assigned independently.
Not only does this system provide a basis for examining
topological chaos with ghost rods, but it has also been used
recently to model secondary flow in microchannels with sur-
face patterns19 and electro-osmotic flow in microchannels
with varying surface charge.20

For Stokes flow in the two-dimensional rectangular do-
main shown in Fig. 2 with |x|<a and |y|<b, the stream
function fx,y) satisfies the two-dimensional biharmonic
equation

V2V2y(x,y) =0 (1a)

with the boundary conditions
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FIG. 3. Representative streamlines in the steady flow generated by the
boundary velocity distributions (a) Uo=Ur=U>0 and U,=~-1.1920,
which produces motion analogous to R, in Fig. 1(a), and (b) U,=U,
=-U<0 and Ur=1.192U, which produces motion analogous to L_ in Fig.

1(c). The periodic points used to determine the velocity ratio are labeled

XL,XC,XR.
x==xa: =0, JYlix=0,
y=b: =0, dPldy="V(x), (1b)
y==b: =0, JdYldy=0,

where the top boundary velocity is given by the piecewise
constant distribution

U, for —(c+d)=x<-c,
V(x)=\Uy for —c<x<c,

Up forc<x=c+d.

(1c)

We solve for ¢(x,y) using a method discussed by
Meleshko?"?* that has its origins in the work of Lamé. This
approach is similar to obtaining a Fourier series representa-
tion, but instead of assuming all higher-order terms are zero
the asymptotic behavior of these terms is approximated. Use
of this method makes it possible to accurately represent the
discontinuities in the boundary velocity. Our objective here
is to demonstrate that one can generate topological chaos in
a lid-driven cavity by establishing a flow similar to that
shown in Fig. 1(f). For the sake of this discussion we will
focus on the particular cavity geometry in Fig. 2 with aspect
ratio @=a/b=3 and boundary length ratio S=2c/d=1, for
which b=c.

Choosing Ur=Uxr=U>0 and U; <0 gives a flow such
as that illustrated in Fig. 3(a). In order to produce a “rod
interchange™ similar to the stirrer motion R, in Fig. 1(a), we
look for a velocity ratio U; /U that satisfies the following two
conditions: (i) three points exist in the flow at the positions
x;=(=x1,y1), Xc=(0,y0), Xg=(x;,y;), such that x; is a stag-
nation point in the flow, and x, and x; lie on the same
streamline; and (ii) the points X~ and x; exactly change po-
sitions after time 7. We will work in terms of a dimension-
less “pulse time” 7=|U|T/(2b). For the chosen geometry,
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FIG. 4. (a) Velocity ratios that satisfy conditions (i) and (ii) in Sec. II for
various choices of aspect ratio a and boundary length ratio . The triangle
A marks the case shown in Fig. 3. (b) Sample streamlines (solid lines) and
the periodic points X;,Xc,Xg for the case a=3, B=1, -U;=Ur=U, U,
~2.530U. This case is marked by the square (] in (a). The dashed line is the
streamline passing through x; and x. for U-=~-2.530U, with all other pa-

rameters the same.

these two conditions are satisfied by taking U;/U=-1.192
and 7=5.379. We will refer to this pulse of the flow, shown
in Fig. 3(a), as the lid-driven motion R,.

Producing the analog of a left “rod interchange” is ac-
complished by taking U;=U-=-U with Up/U=1.192. The
point X is now a stagnation point, and the points x; and X,
exchange positions after time 7=5.379. If U>0, x; and x.
orbit in a counterclockwise direction, as shown in Fig. 3(b);
we refer to one pulse of this flow as the lid-driven motion L_.
If instead U <0, we generate the lid-driven motion L,.

Our lid-driven pA flow thus consists of periodically and
instantaneously switching between the steady lid-driven mo-
tion R, and the steady lid-driven motion L_. Each of these
individual motions persists for time 7, so the flow is time
periodic with a period 7,=27. The reader can easily verify
that the points starting at X; ,X., Xy return back to their initial
positions after three periods of the flow, so that these “ghost
rods” have a period 7,=67. This flow is obviously a very
specific case; it appears that once the geometry (i.e., the as-
pect ratio « and boundary length ratio 8) is given, conditions

(i) and (ii) above are satisfied for only one value of U,/U
when we require U-=Ug=U. Other cases can be found if we
allow each boundary velocity to be assigned independently
or if we change the geometry. Figure 4 documents several
parameter values for which the three desired periodic points
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exist. For example, if we again take @=3 and S=1 but now
specify that —U; =Ug=U # |U|, the conditions are met when
|Uc|/U~2.530 and 7~2.921; streamlines for this case are
shown in Fig. 4(b). In general, the existence and topology
(but not necessarily the symmetry) of these periodic orbits
will persist under slight parametric perturbation. A more in-
depth investigation into the effect of perturbation on the ex-
istence of “ghost rods” in a lid-driven cavity flow requires
careful consideration of the structure of such a rod. We will
pursue this line of research in a subsequent manuscript.

lll. TOPOLOGICAL CHAOS IN THE LID-DRIVEN
CAVITY

We focus our attention on the case illustrated in Fig. 3
with one period of the flow consisting of the lid-driven mo-
tion R, followed by the lid-driven motion L_. In this case
there exist three periodic points in the flow (viz. x;, X¢, and
Xp) that travel in a pA motion analogous to that of the physi-
cal rods used in Ref. 1.

The Thurston-Nielsen theory gives a quantitative lower
bound on the topological entropy of a flow; we will refer to
this lower bound as hpy. When the flow is of pA type, the
theory guarantees that Apy>0. Topological entropy is the
logarithm of the maximum stretching rate in the flow. Thus,
when the flow is of pA type, at least a portion of the fluid is
stretched exponentially in time, so that the flow contains
chaos due to the topology of the boundary motions.

Since the foundation for this analysis is the motion of
boundaries, the appropriate view of our cavity flow is the
following: If R is the domain contained within the rectangu-
lar cavity boundary, define R®=R—{x,,X.,Xg}. The pA flow
that consists of periodically switching between the lid-driven
motions R, and L_ generates a mapping f:R°— R, and f is
isotopic to the mapping for the flow shown in Fig. 1. That is,
these two flows are topologically equivalent because the mo-
tions of the “stirring rods” are topologically equivalent. The
predicted lower bound on topological entropy is the same for
all flows that are isotopic to one another. Thus, as shown in
Ref. 1, hTN=ln[%(3+\f'§)]%O.96, so that the number of pe-
riodic points of f and the length of nontrivial material lines
in R both grow at least as fast as exp(nhry) under iteration,
where n enumerates the period of the flow.

This prediction of exponential stretching applies to topo-
logically nontrivial material lines in the flow, such as loops
that encircle exactly two of the stirring rods or lines that join
a stirring rod with the outer boundary. The actual topological
entropy of the flow, Ay, can be determined by computing the
rate at which these nontrivial lines are stretched.”” We esti-
mate that s,~ 1.92 for this lid-driven cavity flow by comput-
ing the stretching rate for the two material lines shown in
Fig. 5(a). The evolution of these lines is shown in Fig. 5 for
three periods of the flow; the estimate of hf converges after
roughly 3—4 periods of the flow.

Physically, one can think of the TN theory as giving the
stretching rate for a taut elastic cord that joins two of the
stirring rods. For a pA motion the cord will be tangled
around the three rods in a way that stretches it exponentially
in time. A material line will experience this stretching plus

Phys. Fluids 19, 103602 (2007)

(a)

(b)

FIG. 5. Stretching of material lines joining points x; and X (dashed line)
and points X~ and x; (solid line). (a) Initial line positions at time 7=0.
[(b)—(e)] Deformation of the lines by the pA lid-driven cavity flow at times
(b) 7, (¢) 27=17, (d) 27, and (e) 37;.

that generated by the additional complexities of the flow be-
tween the rods, causing the entropy of the flow to be greater
than (or possibly equal to) the lower bound predicted by the
TN theory. The more the flow is dominated by the motion of
the rods, the better the prediction of the lower bound. In this
lid-driven cavity flow, hy~2hry, a substantial increase in
entropy over the theoretical lower bound. This large value of
the entropy suggests that there is at least one other unidenti-
fied periodic orbit, or ghost rod, in the flow that is producing
nontrivial stirring in addition to that of our three “inten-
tional” rods. In principle, there exist orbits in the flow that
make the predicted value for hpy arbitrarily close to Ay, al-
though these orbits may be quite long and complicated.”’24

As material lines are stretched by a pA motion, they
converge to the unstable foliations in the flow. Since both
Fig. 1(f) and Fig. 5(e) have the same underlying pA motion,
one expects the patterns of the stretched material lines to be
similar, even though the initial lines are different. There are
indeed similarities, particularly at the cusp where fluid is
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(a)

(b)

FIG. 6. Stretching of the material lines (a) shown in Fig. 5(a) and (b) along
y=0 using the standard lid-driven motion described in the text for time ¢
=37, This motion requires the same input power as that in Fig. 5(e).

drawn between the center and right rods. However, there are
also several apparent differences. In Fig. 5 it appears that
segments of material line terminate at each of the top cor-
ners. The structure of this flow continually drives material
lines to the top boundary at the separating streamline (see
Fig. 3) and then along that boundary to the top corners. This
motion causes a very dense packing of material lines along
the top boundary that we do not resolve in Fig. 5. Thus, the
striations that are layered above all three rods in Fig. 1(f) are
not clear in Fig. 5(e). Perhaps more importantly, in this lid-
driven cavity flow material lines are stretched vertically be-
tween the left and center rods, which does not happen in the
case with physical rods. In the lid-driven cavity, the fluid
around the stationary “ghost rod” experiences significant ro-
tation, which adds to the complexity of the underlying
structure.

Finally, for comparison we consider mixing in a “stan-
dard” lid-driven cavity flow.'*"® In the first half of this mo-
tion, we drive the entire top boundary of the cavity to the
right with a (constant) speed V. In order to generate a motion
that is energetically equivalent to the case with split bound-
aries, we operate for the same time 7=~ 5.379 with a bound-
ary velocity V=1.305U chosen such that the input power is
the same in both cases; that is,25

dx:|
y=b split

¢ du ¢ du
P/,u:l—l.lQZUf — dx + Uf —
—a (7y y=b -c (9y

(2a)

dx] . (2b)

y=b full

{ f " Ou
=V —

—a
In the second half of this motion, the entire bottom boundary
is driven to the right with the same speed V for the same
time 7.

After three periods of this flow, the lines in Fig. 5(a) are
deformed as shown in Fig. 6. Obviously, much less stretch-
ing has taken place here than in Fig. 5(e). In Fig. 6(a), a large
portion of the solid line lies within an elliptic island, so we
have also included the stretching of a horizontal line to give
a more complete picture of the stirring achieved by this case.

Phys. Fluids 19, 103602 (2007)

We have estimated the topological entropy for this flow to be
hg~ 0.92. Since hg> 0, there must exist a set of ghost rods in
this flow that generate a pA motion."*** However, since hy
<hry, this motion is less efficient at stirring the fluid than
the above split-boundary motion. In fact, any split-boundary
cavity flow with periodic points exhibiting the necessary R,,
L_ motions is guaranteed to produce a greater stretching rate
than any standard cavity flow with i, <hpy.

IV. CONCLUSIONS

A lid-driven cavity with split boundaries can generate
“ghost rods” within the cavity that “stir” the fluid in a
pseudo-Anosov motion. For the case we have examined, the
trajectories of these ghost rods are analogous to those of the
physical stirring rods shown in Fig. 1. The existence of this
pseudo-Anosov motion guarantees the presence of chaotic
transport in the flow and, through the Thurston-Nielsen
theory, a quantitative lower bound on the stretching rate for
topologically nontrivial material lines. Thus, important infor-
mation regarding stirring efficiency (and hence mixing) in
this flow can be determined a priori by merely finding the
appropriate periodic points.

The results presented here are valid for Stokes flow in a
two-dimensional lid-driven cavity with particular choices for
the boundary velocities. The predictions of the Thurston-
Nielsen theory for this system are based on the existence of
the ghost rods, which depends on the details of the fluid
dynamics. This influence of the dynamics on analysis of the
topological kinematics is in contrast to systems with physical
rods such as considered in Ref. 1 and shown in Fig. 1. For
those systems in which physical rods perform the stirring,
the topology of the imposed rod motion guarantees the pres-
ence of chaotic transport in the surrounding fluid. This pre-
diction is not subject to changes in the rod velocities or the
fluid rheology, for example, although the details of the mix-
ing will depend on these parameters. For systems in which
ghost rods perform the stirring, consideration must be given
to the effect of perturbation on the rods. We have shown that
the requisite ghost rods exist in our lid-driven cavity flow for
various choices of cavity geometry. It is also expected that
these periodic orbits will persist under small perturbations in
boundary velocity ratios and pulse time; we have confirmed
this expectation for some test cases.

The success of this approach to stirring enhancement in
a lid-driven cavity flow suggests that topological chaos and
the Thurston-Nielsen theory be considered in the analysis of
other fluid mixing systems without physical stirring rods.
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