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The rational large eddy simulatiofRLES) model is applied to turbulent channel flows. This
approximate deconvolution model is based on a rati¢sabdiagonal Padepproximation of the
Fourier transform of the Gaussian filter and is proposed as an alternative to the gfaldi@khown

as the nonlinear or tensor-diffusivjtynodel. We used a spectral element code to perform large eddy
simulations of incompressible channel flows at Reynolds numbers based on the friction velocity and
the channel half-width Re=180 and Re=395. We compared the RLES model with the gradient
model and the Smagorinsky model with Van Driest damping. The RLES model was much more
stable than the gradient model and yielded improved results. Both the RLES model and the gradient
model predicted the off-diagonal Reynolds stresses better than the Smagorinsky model with Van
Driest damping. The latter, however, yielded better results for the diagonal Reynolds stresses.
© 2003 American Institute of Physic§DOI: 10.1063/1.1604781

I. INTRODUCTION filter width. A priori test§ show high correlations between

real and modeled stresses. Another realistic feature of the
) , ) i X scale-similarity model is that it produces backscatteraln

ful techniques in the numerlcall S|mu.lat|on.of turbUIem.ﬂOWS'posteriori tests, however, the scale-similarity model does not
sy ESPte enoth ey and ypcaly eas 0 e
: ! sults. As a remedy, Bardinet al® added a dissipative Sma-
ing only the large-scale flow features. The large scales are

) o - . orinsky term. The resulting model, known as the mixed
defined by means of a filtering operation: the NaVIer_StOKegmodel, combines the strengths of both the scale-similarity

equations are convolved with a spatial filter, and the resultin%nd the Smagorinsky model. The dynamic procedure has

filtered variables become the variables of interest in LES full lied to both th d th ed
Thus, a good LES model should be able to compute an a Jeen successiully applied 1o bo € pure an € mixe
scale-similarity model, yielding improved resutfs.

curate approximation of the filtered variables. A diff | fLE del . fth del
An essential challenge in LES is the modeling of the ifferent class of LES models consists of those models

subfilter-scale(SF9 stresses, representing the interactions2iMed at computing an improved SFS stress approximation
between the largéabove the filter widthand small(below by replacing the unknown unfiltered variables with approxi-

the filter width scales in the filtered Navier—Stokes equa_mately deco'nvolved filtered variables. An inver§e.filtered
tions. A remarkable research effort has led to a wide varietynodel was first proposed by Shah and Ferz_’r@é’ms idea
of SFS models, surveyed, for example, in Refs. 1-3. was formalized by Geurt$ for the top hat filter. Kuerten
Arguably the most popular class of LES models is the€t all u_sed the.approxmate inverse to_lmprove the comput-
eddy-viscosity type, based duariants of the Smagorinsky able estimates in the dynamic Smagorinsky model. Another
model* The main feature of the eddy-viscosity models is model in this class is the velocity estimation model of Doma-
that they properly transfer kinetic enerdyy inviscid pro- ~ radzki and Saikt*~*° Stolz and Adam¥ developed the ap-
cessesfrom large scales to smaller and smaller scales, untiProximate deconvolution model, based on repeated applica-
this energy is dissipated through viscous effects. These modion of the filter to approximately deconvolve the dependent
els have several limitations, however, including poor correVariables:®*?
lation coefficients ira priori tests'® and inability to provide One popular model in this class is the gradient model
backscatter. Some of these limitations are circumvented b(also known as the nonlinear or tensor-diffusivity mogel
using a dynamic procedure in calculating the Smagorinskyvhich usesexplicitfiltering. In addition to themplicit filter-
constant, yielding the dynamic subgrid-scale eddy-viscosityng due to the effective truncation@rid and numerical
model introduced by Germanet al,’” and used in many method, this LES model also assumes a regular explicit fil-

Large eddy simulatioLES) is one of the most success-

studies® ter of prescribed shape and effective width larger than the
Another class of LES models is the scale-similarity one.grid spacing.
The scale-similarity model, introduced by Bardieaal.® The gradient model is based on a Taylor series approxi-

postulates that the full structure of the velocity field at scalesnation of the Fourier transform of the filter and aims at
below the filter width is similar to that at scales above thereconstructing the filtered-scale stress due to explicit filter-
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ing. The gradient model was developed in several stepdl. THE RATIONAL LES MODEL
First, in 1974 Leonard proposed a model for the “resolved

scales” uu in the Reynolds stress tensor. Next, in 1979,
Clark, Ferziger, and Reynoltisised the same approach to
model the “cross termstiu’+u’u.

The gradient model was testedpriori against experi-
mental datatwo-dimensional cutsby Liu et al** Borue and U+V-(uu)—Re AU+ VH:f_, (1)
Orszag? presented a detaileal priori analysis of the gradi- _
ent model based on Gaussian-filtered DNS of homogeneoud/here d is the filter width andu=g,*u is the variable of

isotropic decaying turbulence. Also, Winckelmaasal?? interest. Th_e filtered NSE4) do not .form a closed system,
presented severalpriori tests for the gradient model and its @nd @ considerable research effort in LES research has been

0directed at modeling the stress

The usual LES starts by convolving the Navier—Stokes
equationgNSE9 with a spatial filterg;. Assuming that dif-
ferentiation and convolution commugehich is true for ho-
mogeneous filteds the filtered NSEs read as follows:

dynamic version, again in the context of homogeneous, is
tropic decaying turbulence. Similar tests have been per-
formed by Caratiet al?* All the abovea priori tests have
shown high correlations. As mentioned by Caratt al,”” this stress consists of a

In a posterioritests, however, it was found that the gra- subfilter-scale stress tensor, mainly due to filtering, and a
dient model does not dissipate enough energy. Simulationgubgrid-scalgSGS stress tensor, mainly due to discretiza-
with the pure gradient model appear to be unstabso,  tion. One way of approximating the subfilter-scale stress ten-
Liu, Meneveau, and KatZ reported problems near the wall, SOr is by using a Taylor series expansion in the wave number
where the pure gradient model’s Reynolds stresses do n&Pace to represent the unknown full velocity in terms of the
follow the x3 behavior. To stabilize the gradient model, filtered velocity. This approach was first used by Leorfdrd,
Clark, Ferziger, and Reynolisombined it with a Smagor- and it was later espoused by Clark, Ferziger, and Reyriolds.
insky term, but the resulting mixed model inherited the ex-The resulting model, called the gradient, nonl|nezir2,403[)£§£150r-

cessive dissipation of the Smagorinsky model. A differentdiffusivity model, was used in numerous studies:

approach was proposed by Lkt al,2* who supplied the The gradient model is derived by using a Taylor series

gradient model with a “limiter” to prevent energy backscat- approximation to the Fourier transform of the Gaussian filter
ter; this clipping procedure ensures that the model dissipates 87k|?

T=Uuu-—uu. 2)
|.24

—~ _ 2|2
energy from large to small scales. This approach was also gxk)=e 7 1{74r~1— 4—+O(54), )
used in Refs. 26, 27. Y
From this point of view, the gradient model is similar to and for its inverse
the scale-similarity model: It shows high correlationsan 1 52|K|?
priori tests, but it does not dissipate enough energy in actual __~ _ — gkl%4y 1 4 +0(8%. (4)

LES simulations: hence, the need for extra viscosity type  9s(K) 4y

terms(mixed models We note that, for both types of model, pecomposings into its average and its turbulent fluctuations

the best results in actual LES simulations were obtained by o

using the dynamic mixed procedu&?® In fact, it has been u=u+u’, )
23,24,28 H

noted beforg that there are strong ties between the ;4 taying first the average and then the Fourier transform of

gradient model and the scale-similarity model: the first terMua above relation. we get

in the Taylor series expansion of the scale-similarity model is ’

indeed the gradient model. As noted by Winckelmans ., 1 A
et al,?® however, the other terms in the expansion are differ- B )u, ©®)
ent. Thus, the gradient model is not identical to the scale-
similarity model. and thus
The model presented in this paper was introduced by 1.
Galdi and Laytof’ as an alternative to the gradient model. U= =u, (7)
They observed that the Taylor series approximation of the 9s
Fourier transform of the Gaussian filter used in the derivatiorwherel denotes the Fourier transform of
of the gradient model actualincreaseshe high wave num- By taking the inverse Fourier transform and usi@y,
ber components, instead of damping them. As an alternativere get
to the Taylor series approximation, Galdi and Layton pro- 5
posed a rationaJ(0,1) Pade] approximation. This rational U~U— — AL 8
approximation is consistent with the original approximated 4y
function (which is a negative exponentialt attenuates the gy plugging the above int®), using(3) and the same tech-
high wave number components. nique as above, simplifying, and dropping out the terms of
In this paper, the resulting LES model, called in the se-9(5%), we get the gradient model
quel the rational LESRLES) model, is applied to the nu-
merical simulations of incompressible channel flows at Re T — —
—180 and Re=395, TEUUS UL SO VUVY, ©
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FIG. 2. Problem setup for the channel flow.

! \ Reynolds numbers based on the wall shear velocity Re
-r ! \ 7] =180 and Re=395. Some preliminary work started in Ref.

i » 39; it was significantly updated and improved in the present
! \ paper.

1S 4 \ 4

1 | IIl. NUMERICAL SETTING

3 . . . . ) Y , The 3D channel flowFig. 2) is one of the most popular
-2 -15 -10 -5 0 5 10 15 2 test problems for the investigation of wall bounded turbulent
40,41 - P
FIG. 1. Approximations to the Fourier transform of the Gaussian filter: flows: 2We used the fine DNS Of_ Mosgr, Kim, and
Rational (Pade vs Taylor. Mansouf? as benchmark for our LES simulations.
We compared the RLES mod&l2) with

(1) the gradient model9) 7= (8%2y)VuVu;

where (I1) the Smagorinsky model with Van Driest damping

- 4 gu au; =—(Cso(1—exp(-yT/A*)I9S  where S:=3(Vu
(Vuvu)i,j:l:1 X X (10 +Vu') is the deformation tensor of the filtered field,

C¢=0.1 is the Smagorinsky constant=6 is the param-

Noticing that the approximation by Taylor series ®f eter in the definition of the Gaussian filtey,"=(H
actually increasesthe high wave number componen(see —|y])u,/v is the nondimensional distance from the

Fig. 1), Galdi and Laytof? developed a new LES model wall, H=1 is the channel half-widthu, is the wall

based on a ration#(0,1) Padg approximation 0fg;, which shear velocity, and\™ = 25 is the Van Driest constant.

reserves the decay of the high wave number components . o S .
P Y 9 P The computational domain is periodic in the streamwise

(x) and spanwisé€z) directions, and the pressure gradient that

~ 22
ga(k)=e 7K™ v —52W2_+ o(&%. (1D drives the flow is adjusted dynamically to maintain a con-
1+ 4—y stant mass flux through the channel. The parameters used in

the numerical simulations are given in Table | for the two
The resulting LES model, called the rational LEBLES)  Reynolds numbers considered (R480 and Re=395).
model, reads as follows: The filter width § is computed a35=3\/AXAZAy(y),
-1/ g2 whereA, andA, are the largest spaces between the Gauss—
| vav
2y

_ (120  Lobatto—LegendréGLL) points in thex and z directions,
respectively, and\,(y) is inhomogeneous and is computed
The inverse operator if12) acts as a smoothing operator as an interpolation function that is zero at the wall and is
and represents the approximation of the convolution by théwice the normal mesh size for the elements in the center of
Gaussian filter in the stress tensoin (2). the channel. Note that, since we filter in all three directions,
We note that differential filters have been proposed bythe filter width 5 never vanishes away from the wall. This,
Germano in Ref. 33: Actually, one can think @f2) as the however, could be a serious problem for tests in which one
stress tensor obtained by applying such a differential filterfiltering direction is discarded; in this case, the LES model
Mullen and Fischer used similar filters in Ref. 34. Also, would vanish although the other two directions are poorly
Domaradzki and Holm considered the Navier—Stokes-alph&esolved. To avoid this difficulty, one should instead use the
model[which contains an inverse operator similar to the oneanisotropic version of the RLES mod€l2), in which &y,
in (12)], in an LES framework®
The mathematical analysis associated with the RLE . .
model (12) was presented ir)1/ Ref. 36. The first steps in thp%’ABLE |. Parameters for the numerical simulations.
numerical analysis and validation of the RLES mo¢ER) Nominal Re LyXLyXL, N, XN, XN,
were made in Refs. 37 and 38, rgspecnvely. 180 PRSP 36x37x36
This paper presents numerical results for the RLES 395 22X a7 79%55x54
model (12) applied to the 3D channel flow test problem at

T=

52
(_ZyA—*—I
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— on an operator splitting of the discrete system, which leads to
,,",,,’;”4 separate convective, viscous, and pressure subproblems
,,,,”’&4’ without the need foad hocpressure boundary conditions. A
”’ filter, which removes 2%-5% of the highest velocity mode,
51,,,4 ”’ is used to stabilize the Galerkin formulatiththe filter does
- et - Is of the discret
not compromise the spectral accuracy. Details of the discreti-
g
’9/ zation and solution algorithm are given in Refs. 45, 46.
= The initial conditions for the Re=180 simulations were

obtained by superimposing a 2D Tollmien—Schlichti{fig)
mode of 2% amplitude and a 3D TS mode of 1% amplitude
on a parabolic mean flowPoiseuille flow and integrating
the flow for a long timgapproximately 200 Hi,) on a finer
mesh(72Xx73X72 mesh points The final field file was fur-
ther integrated on the actual coarse LES m&8x37x36
mesh points for approximately 50 Hi, to obtain the initial
condition forall three Re=180 simulations.

The initial condition for the Rg=395 case was obtained
in a similar manner: We started with a field file correspond-
ing to a Re=180 simulation, and we integrated it on a finer
mesh (96X73x72 mesh pointsfor a long time (approxi-

8,, andé, are all different. The derivation of this anisotropic mately S0 Hl,). Then, we integrated the resulting flow on
form of the RLES model is straightforward and the resultingth€ actual coarser LES megfi2x55x54 mesh poinsfor
model remains easy to implement. anothgr 40H4,, and the flna-l field file was used as initial
We used as a first step the RLES mo¢&2) with the ~ condition forall three simulations.
inverse operator equipped with Neumann boundary condi- FOr €ach of the three simulations and for both.Re
tions. =180 and Re=395, the flow was integrated further in time
The numerical simulations were performed by using auntil the statistically steady state was reaclifeat approxi-
spectral element code based on the- Py_» velocity and mately 15HU,). The statistically steady state was identified
pressure spaces introduced by Maday and P&tefae do- by a linear total shear stress profile. Figures 4 and 5 present
main is decomposed into spectral elements, as shown in Figesults for “coarse DNS'(without any LES modglfor Re,
3. Mesh spacing in the wall-normal directigy) was chosen =180 and Re=395, respectively. The total shear stress for
to be roughly equivalent to a Chebyshev distribution havinghe Re=395 case tends to overshoeindershootthe cor-
the same number of points. The velocity is continuous acroseect values at the wall-1 and 1, respectivelyAt the wall,
element interfaces and is representedNifi-order tensor- however, the correct values are attained. One possible reason
product Lagrange polynomials based on the GLL points. Théor this behavior is the fact that we impose a constant mass
pressure is discontinuous and is represented by tensoftux through the channdinstead of a constant pressure gra-
product polynomials of degred— 2. Time stepping is based dieny and to the inadequate resolution near the weike

FIG. 3. Spectral element meshes:,R&80 (top), and Re=395 (bottom).

- total shear stress

Xy
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- FIG. 4. Re=180, linear total shear stress profile, an
- indication that the statistically steady state was reached.
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first mesh point away from the wall is aty* Ref. 47, where it was proved that the best way to reconstruct
=1.753368616. This issue, which is part of the very com-the Reynolds stresses from LES is
plex interplay between the numerical method and the LES _
model employed, appears as an interesting avenue for further RENS~ RhES+<Ai"J-">, 13
investigation.

The statistics were then collected over another 6H/ Where R °=(uju;)—(u;)(u;) are the Reynolds stresses
and contained samples taken after each time step ( from the fine DNS in Ref. 42R;™°=(uju;)—(u;)(u;) are
=0.0002 for Re=180 andAt=0.000 25 for Re=395). We the Reynolds stresses corresponding to the dynamics of the

also averaged over the two halves of the channel. LES field, and(A{f') are the averaged values of the modeled
Note that in our simulations the bulk velocity,, was  subgrid-scale stress¢s;;)=(u;u;—u;u;).
fixed to match the corresponding one in Ref. (42e Table As pointed out in Ref. 47, the Reynolds stresses from an

1), and the friction velocityu, was a result of the simula- LES can only be compared with those from a DNS by also
tions. Table Il presents thectual values of Re correspond- taking into account the significant contribution from the av-
ing to the friction velocityu, computed for all four numeri- eraged subgrid-scale stresses. Since we include results for
cal tests and two nominal Reynolds numbers. We note thahe Smagorinsky model with Van Driest damping, we need to
the friction velocity u, is within 1%-2% of the nominal be careful with the reconstruction of the diagonal Reynolds
value, and, as a result, so is the actual.Re stressesthe rms turbulence intensitiesSpecifically, for this

In our numerical experiments, we considered, as a firseddy-viscosity model, only thanisotropicpart of R can
step, homogeneous boundary conditions for all LES modelbe reconstructe¢and thus compared with DNS
tested. _

The numerical results include plots of the following R VS~RiES+(AMM), (14)
time- and plane-averagddenoted by -)) quantities normal-
ized by thecomputed y: the mean streamwise velocity, the Where
X, y component of the Reynolds stress, and the rms values of 3 3
t_he streamwise, wall-normal, z_an_d spanwi_se velocity quctue_l- R* DNSE<uiruir>_ } 2 (ujup) = Ri[i)NS_ E E REli\lS'
tions. We computed these statistics following the approach in 31 31

TABLE II. Computedu, and Re.

FixedU, Nominal Re Case Computed, Computed Re
15.63 180 RLES 0.987944 8 177.8352
Gradient 0.989011 8 178.022 2
Smagorinsky with Van Driest damping  0.991 7144 178.5120
17.54 395 RLES 1.001 025 319 395.407 1960
Gradient 1.005 021 334 396.985992 4

Smagorinsky with Van Driest damping  0.997 417 688 4 393.9718933
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Moser et al.

— RLES

-— - gradient

— - Smagorinsky with
Van Driest damping

20

15F

FIG. 6. Mean streamwise velocity, Re180. We com-
pared the RLES modél2), the gradient mod€B), and
the Smagorinsky model with Van Driest damping with
the fine DNS of Moser, Kim, and Manso(Rref. 42.

Ui =u;— (Ui,

3
31

A=A -

3
> A
=]

andA*™ is modelingA®

w| -

The reconstruction of the off-diagonal stressgg, is

straightforward
REYS=RIES+ (A1)
since(A}"Y= (A},

In computingRyy, Ufs, Urms: @andwig,
LES models, we used formuld$4) and(15)

0.5

(19

for the three

u:cms: ( | RiclLES+ <A’1clM > | )1/2

* * LES
wr =(|R

o= -15F

-
-2F ,
7
i 7’
\ i
25k ! !
25 \ / Moser et al.
\ ol — RLES
\ \/I/ - — gradient
-3+ v — - Smagorinsky with
Van Driest damping
_3.5 il 1 . 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.8

08

v :ms: ( | R;ZLES+ <A§2M > | ) 1/2:

(16)
33+ <K§3M M2

These results were then compared with the corresponding
ones in Ref. 42.

IV. A POSTERIORI TESTS FOR Re,=180

We rana posterioritests for the RLES modélL2), the
gradient model(9), and the Smagorinsky model with Van
Driest damping. We compared the corresponding results with
the fine DNS simulation of Moser, Kim, and Mansdfr.

Figure 6 shows the normalized mean streamwise veloc-
ity ut, where a “*”

superscript denotes the variable in wall

FIG. 7. Thex, y component of the Reynolds stress,
Re,=180. We compared the RLES mod&P), the gra-
dient model(9), and the Smagorinsky model with Van

Driest damping with the fine DNS of Moser, Kim, and
Mansour(Ref. 42.
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FIG. 8. rms values of streamwise velocity fluctuations,
Re,=180. We compared the RLES mod#P), the gra-
dient model(9), and the Smagorinsky model with Van
Driest damping with the fine DNS of Moser, Kim, and
Mansour(Ref. 42.

units; note the almost perfect overlapping of the results corthese spikes. This behavior is apparent in all the other plots
responding to the models tested. We interpret this behavidor the Reynolds stresses. Thg, for the RLES model
as a measure of our success in enforcing a constant mass fIlRLES) is better than that corresponding to the gradient
through the channel. Since we have only two mesh pointsnodel (9) (there are no spikgswith the exception of the
with y*<10 away from the wall, the plotting by linear in- near-wall region; here, the invers@moothing operator
terpolation between these two points produces inadequatguipped with Neumann boundary conditions introduces a
results. The mean streamwise velodity at these points is, nonzeroR,, for the RLES mode{12). Nevertheless, both the
however, very close to that in the fine DNS. RLES (12) and the gradient9) model yield much better
Figure 7 presents the normalizedy component of the results forR,, than the Smagorinsky model with Van Driest
Reynolds stress,,, computed by usingl5). Note thatR,,  damping; the latter performs poorly.
includes contributions from the subgrid-scale stresses, The situation is completely different for the rms turbu-
which, in turn, include terms containing the gradient of thelence intensities in Figs. 8—10: Here, the Smagorinsky model
computed velocity. Since this gradient is not continuouswith Van Driest damping performs significantly better than
across the spectral elements, we obtain the spikes in the graeth the RLES(12) and the gradient9) models. As for the
dient(9) and Smagorinsky with Van Driest damping models.R,,, the inverse operator in the RLES model has a smooth-
The inverse operator in the RLES mod&R) has a smooth- ing effect and attenuates the spikes in the diagonal Reynolds
ing effect on the subgrid-scale stress tensor and attenuateresses of the gradient mod#), yielding improved results,

3.5 T T T T T T T

T
+ Moser etal.

— RLES

N, -—- gradient

3k N — - Smagorinsky with
I— Van Driest damping

FIG. 9. rms values of wall-normal velocity fluctuations,
Re,=180. We compared the RLES mod#P), the gra-
dient model(9), and the Smagorinsky model with Van
Driest damping with the fine DNS of Moser, Kim, and
Mansour(Ref. 42.
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FIG. 10. rms values of spanwise velocity fluctuations,
Re,=180. We compared the RLES mod&P), the gra-
dient model(9), and the Smagorinsky model with Van
Driest damping with the fine DNS of Moser, Kim, and
Mansour(Ref. 42.

with the exception of the near-wall region where it intro- V. A POSTERIORI TESTS FOR Re,=395
duces a nonzero diagonal Reynolds stress. We also note that
the first spike in the rms turbulence intensities for gradient =~ We ran simulations with all three LES models for Re
model (9) away from the wall isnot at the spectral element =395, and we compared our results with the fine DNS in
interface. Nevertheless, the smoothing operator in the RLERef. 42. Again, as in the Re 180 case, the normalized mean
model (12) attenuates it significantly. streamwise velocity profiles in Fig. 11 are practically identi-
The inverse operator is also responsible for the mucleal; this time, however, they do not overlap onto that corre-
increased numerical stability of the RLES mod&R) over  sponding to the fine DNS. Nevertheless, the mean flows are
the gradient mode(9): In order to prevent the numerical the same, and this is supported by the fact that the models
simulations with the gradient model from blowing up, we underpredict the correct value near the wall but overpredict it
had to use a very small time step; the simulations with theaway from the wall. The inadequate behavior near the wall is
RLES model(12) ran with much larger time stepéTo col-  due to the plotting, as in the Re180 casgwe used linear
lect statistics, however, we ran the two LES models with thenterpolation for the two mesh points with" <10 away
same time step. from the wal). In fact,u™ at these two mesh points com-

25 T T

» Moser etal
— RLES
-—- gradient
— - Smagorinsky with

Van Driest dampiny
201 ping |

FIG. 11. Mean streamwise velocity, Re395. We com-
pared the RLES modél2), the gradient mod€B), and
the Smagorinsky model with Van Driest damping with
the fine DNS of Moser, Kim, and Manso(Rref. 42.
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0.5 T T T T T T T Y T

FIG. 12. Thex, y component of the Reynolds stress,
Re,=395. We compared the RLES mod&P), the gra-
dient model(9), and the Smagorinsky model with Van
Driest damping with the fine DNS of Moser, Kim, and
Mansour(Ref. 42.
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pares very well with the fine DNS results in Ref. 42. In thethe gradient9) models in predicting the rms turbulence in-

buffer and log layers the three LES models deviate from theensities(Figs. 13—15%, with the exception ofv};, . in Fig. 15,

correct DNS results, but they perform well at the center ofwhere the improvement is not that dramatic.

the channel. Again, as in the Rg=180 case, the RLES mod€l?2) is
The results for the normalized Reynolds stresses in Figsnuch more stable numerically than the gradient model.

12-15 parallel the corresponding ones for the=RE30 case:

The RLES model(12) performs better than the gradient

model (9) (the smoothing operator eliminates the spjkes VI. CONCLUSIONS

with the exception of the near-wall region, where the  We have used a spectral element code to test the RLES

smoothing operator introduces a nonzero value. model (12) in the numerical simulation of incompressible
Both the RLES(12) and the gradien{9) models yield channel flows at Re=180 and Re=395. This approximate

much better results for the off-diagonal Reynolds stress terdeconvolution model is based on a ratiof@ade approxi-

sor R,y than the Smagorinsky model with Van Driest damp-mation to the Fourier transform of the Gaussian filter and is

ing (Fig. 12. proposed as an alternative to the gradient md@gl We
However, the Smagorinsky model with Van Driest compared the RLES modél2) with the gradient mod€l9),

damping performs much better than both the R(ES and  and the Smagorinsky model with Van Driest damping. The

35 T T T T

Moser et al.

— RLES

-— gradient

— - Smagorinsky with
Van Driest damping

FIG. 13. rms values of streamwise velocity fluctua-
tions, Re=395. We compared the RLES modgl2),
the gradient model9), and the Smagorinsky model
with Van Driest damping with the fine DNS of Moser,
Kim, and MansourRef. 42.
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FIG. 14. rms values of wall-normal velocity fluctua-
tions, Re=395. We compared the RLES moddl2),
the gradient model9), and the Smagorinsky model
with Van Driest damping with the fine DNS of Moser,
Kim, and Mansour(Ref. 42.

corresponding results were benchmarked against the fingredicting the off-diagonal Reynolds stresses, but predicted
DNS calculation of Moser, Kim, and Mansctir. very accurately the rms turbulent fluctuations.

The RLES model(12) yielded better results than the We believe that these results for the RLES model are
gradient model(9) for both Re=180 and Re=395, and for encouraging. They also support our initial thoughts: The
all Reynolds stresses. This was due to the inverse operator RLES model is an improvement over the gradient model as a
the RLES model, which had a smoothing effect over thesubfilter-scalemodel. The RLES model is also more stable
modeled subgrid-scale stress tensor and eliminéedat-  numerically because of the additional smoothing operator,
tenuatedl the spikes in the gradient model. The inverse op-and this feature is manifest for both low (Rel80) and
erator equipped with Neumann boundary conditions, howmoderate (Rge=395) Reynolds number flows.
ever, introduced nonzero Reynolds stresses in the near-wall However, the RLES model accounts just for the
region. subfilter-scale part of the stress reconstruction. The informa-

But, the most significant improvement of the RLES tion lost at the subgrid-scale level must be accounted for in a
model over the gradient model is the much increased numerdifferent way, as advocated by Caratial?* This was illus-
cal stability, which is also due to the smoothing effect of thetrated by the dramatic improvement for the diagonal Rey-
inverse operator. nolds stresses, for both Re180 and Re=395, yielded by

The Smagorinsky model with Van Driest damping per-the Smagorinsky model with Van Driest damping, a classical
formed worse than both the RLES and the gradient models ieddy-viscosity model.

25 T T T T T T T

T
Moser ot al.
— RLES

- —- gradient

! — - Smagorinsky with
h Van Driest damping

FIG. 15. rms values of spanwise velocity fluctuations,
Re,=395. We compared the RLES mod&P), the gra-
dient model(9), and the Smagorinsky model with Van
Driest damping with the fine DNS of Moser, Kim, and
Mansour(Ref. 42.
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