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We use the finite-difference computational fluid dynamics method to study in detail the flow field
around a circular cylinder in a uniform stream while undergoing in-line harmonic motion. For a
given motion amplitude, there exists a critical forcing frequency below which the lift and drag can
be period-n, quasiperiodic, or chaotic. Similarly, for a given frequency, there exists a critical
amplitude below which the lift and drag can be period-n, quasiperiodic, or chaotic. Above these
critical conditions, the lift and drag are synchronous with the forcing. The lift nearly vanishes and
the mean drag drops and saturates at a value that is independent of the driving frequency, whereas
the oscillatory drag quadratically depends on it. We relate these features to changes in the wake and
the surface-pressure distribution. We examine the influence of the Reynolds number on these critical
frequency and amplitude. Second- and higher-order spectral analyses show remarkable changes in
the linear and quadratic coupling between the lift and drag when synchronization takes place; it
destroys the two-to-one coupling between them in the cases of no motion and synchronization due
to cross-flow motion. © 2009 American Institute of Physics. �DOI: 10.1063/1.3210774�

I. INTRODUCTION

The development of vortices and unsteady flow motion
in the wake of a body in a uniform stream is a classical
problem in fluid mechanics, which can be observed particu-
larly in offshore structures, such as risers, spar platforms,
fixed platforms, tension leg platforms, and jack up rigs. If the
body is not fixed, one or more of several motion types can
occur,1 including translational vortex-induced vibrations, tor-
sional vortex-induced vibrations, galloping, airfoil flutter,
multibody structure wake galloping, and breathing oscilla-
tions.

The continuously generated vortices have direct effect
on the exerted force on the body. This force can be decom-
posed into two components: lift �cross-flow component� and
drag �in-line component�. These components depend on the
body geometry. We consider here a circular cylinder due to
its simplicity and its common use in industrial applications.
Moreover, the wake behind a circular cylinder is simpler
than those behind noncircular cylinders, which allows more
informative analysis with less number of geometric param-
eters. Furthermore, unlike square cylinders, galloping does
not occur for a circular cylinder.2,3

The Strouhal number �SK� associated with the von
Kármán vortex street is the nondimensional frequency at
which two counter-rotating vortices are repeatedly shed in
the wake of a bluff body �a cylinder is a special case� re-
strained from any type of motion in a uniform stream; it is a
characteristic of the wake of that body. When a cylinder is
driven in the cross-flow direction �perpendicular to the in-
coming stream and to its span� with a nondimensional fre-
quency SM close to SK, the nondimensional vortex shedding
frequency SV is synchronized at the forcing frequency SM,4–7

thus shedding is entrained by the cylinder motion. As a con-
sequence, the lift is synchronized at SM. Similar to the case
of a fixed cylinder,8–10 the drag frequency is twice the lift
frequency and is synchronized at 2SM. On the other hand,
when a cylinder is forced to oscillate in the in-line direction
�parallel to the incoming stream� with a nondimensional fre-
quency SM around twice SK, shedding is synchronized at
1
2SM.11–13 The synchronization phenomenon also occurs
when a cylinder is constrained to oscillate in either the cross-
flow or in-line directions by a spring and a dashpot.14,15

The difference in the range of synchronization frequen-
cies in the two cases is explained by the phasing between the
moving cylinder and the synchronized shedding.16 For har-
monic motion in the in-line direction with two alternating
vortices being shed periodically, either shedding event of the
top and bottom vortex is always promoted when shedding
occurs at half the motion frequency. However, only every
other shedding event will be promoted if the motion fre-
quency is equal to the shedding frequency. The situation is
altered in the case of harmonic motion in the cross-flow di-
rection, where shedding is enhanced when it occurs at the
motion frequency but is partly opposed if it occurs at half the
motion frequency.

Studies of a one-degree-of-freedom moving cylinder
usually consider the cross-flow motion with the in-line mo-
tion being restrained. Many of these published studies do not
indicate the motion direction in the title because it is by
default the cross-flow direction.17–19 There is disagreement
on the importance of the in-line cylinder motion on its wake
and dynamics. Some studies show that the induced in-line
motions are one order of magnitude smaller than the cross-
flow motions,20,21 others emphasize the importance of the
induced in-line motions even though they are small, and oth-
ers show that they can be comparable to the cross-flow mo-a�Electronic mail: omarzouk@vt.edu.
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tions, depending on the cylinder density22,23 or its nondimen-
sional natural frequency.24

Tanida et al.12 carried out experiments on a one-degree-
of-freedom circular cylinder oscillating harmonically in the
in-line direction at the Reynolds numbers Re=80 and 4000.
The first part of their study considered a single circular cyl-
inder oscillating in a uniform stream, whereas the second
part was dedicated to the case of a circular cylinder oscillat-
ing in the wake of another cylinder �i.e., tandem arrange-
ment�. In both parts, they measured the lift and drag on the
oscillating cylinder. In the first case, the cylinder was made
to oscillate sinusoidally with a prescribed amplitude that is
14% of its diameter �the amplitude was 4.2 mm and the
diameter was 30 mm� and frequencies varying from below to
above 2SK. Each experiment corresponded to a single fre-
quency. Individual experiments lasted for at least 20 s, which
was long enough for the steady state to be achieved. The
working liquid was oil for Re=80 and water for Re=4000.
They observed synchronization for both configurations. They
also reported that the fluctuating lift “vanishes” occasionally
at Re=4000, where its magnitude drops to very small levels
when the forcing frequency is around twice SK. They related
this lift suppression to a positive aerodynamic damping in-
duced by the cylinder motion, which they described as being
“stable” in this condition, and to the work done by the drag
force. We show this lift suppression numerically at other
Reynolds numbers. We then enhance their explanation by
examining variations of multiple flow variables and their
characteristics, such as the vortex structure, the lift and drag
harmonics and their coupling, and the phase between the
synchronous drag and motion. We consider a broad range of
SM that is not limited to the synchronous range.

Kim and Williams25 measured the lift and drag on a
cylinder undergoing harmonic motion in air at Re=15 200
and studied the nonlinear coupling between them. The cylin-
der diameter was 50.8 mm and its length was 610 mm. A
printed circuit motor connected to a Scotch-yoke mechanism
was used to control the motion. The main part of the experi-
ment was conducted at a constant motion amplitude of 3.5%
of the diameter, which is very small. Also, the motion fre-
quency was 0.8SK, which is far below the synchronization
range. They revealed interesting facts about the nonlinear
interaction between the lift and drag and explained the struc-
ture of their measured power spectra.

In this study, we consider a circular cylinder undergoing
a one-degree-of-freedom harmonic motion in the in-line di-
rection in a uniform stream at different Re. The motion in-
duces a mechanical perturbation in the shear layer. We limit
ourselves to the influence of the forcing frequency on the
dynamics of the flow and the exerted forces. We compute the
velocities and pressure and pay special attention to the syn-
chronization that occurs near twice SK. Several differences
exist between this synchronization and the one that occurs
when the cylinder is fixed or driven in the cross-flow direc-
tion around SK. We use different analysis techniques to ex-
amine and highlight these differences and relate them to
changes in the vortex shedding and the surface pressures.

II. APPROACH

All variables are made nondimensional using the cylin-

der diameter D̂ as a reference length, the incoming far-field

velocity Û� as a reference velocity, and Û� / D̂ as a reference
time. For the cylinder motion, we let

��t� = Ax sin�2�SMt� , �1�

where � is the displacement and Ax and SM are the nondi-
mensional amplitude and cyclic frequency of the cylinder
motion, respectively.

The velocity and pressure fields are governed by the
two-dimensional, unsteady Navier–Stokes equations,
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where u and v are the x-component and y-component of the
fluid velocity, ug and vg are the x-component and
y-component of the grid speed, and p is the pressure. Equa-
tions �2� are first Reynolds-averaged and the Baldwin–Barth
eddy-viscosity model is used to account for the unresolved
turbulent scales. The resulting equations are then rewritten in
body-fitted coordinates � and �, instead of x and y, which are
aligned with the boundaries.26,27 The differential equations
are discretized using central second-order differences for the
viscous terms, an upwind flux-difference splitting scheme for
the convective terms, and a second-order implicit backward
Euler scheme for the local derivatives. The numerical fluxes
are calculated at the midcell location. A colocated arrange-
ment of the primitive variables is used, where the discretized
velocities and pressure fields are defined at the same grid
points. For efficient calculations, the orthogonal viscous
terms are treated implicitly, whereas the nonorthogonal terms
�which arise due to nonorthogonality in the grid lines� are
treated explicitly by moving them to the right-hand side of
the algebraic system. For a fixed cylinder, the grid is or-
thogonal and the nonorthogonal viscous terms are analyti-
cally equal to zero. On the other hand, the in-line motion
causes deformations in the grid, but the nonorthogonality is
small as can be seen in Fig. 1. Therefore, these nonorthogo-
nal terms are not significant and their explicit treatment is a
minor issue. We performed grid sensitivity checks and con-
firmed that higher resolutions do not cause important
changes in the simulation results. A no-slip boundary condi-
tion is applied at the cylinder surface. At the far-field inflow
boundary, a uniform horizontal stream is applied for the ve-
locities �i.e., u=U�=1 and v=V�=0�, whereas the pressure
is extrapolated. At the far-field outflow boundary, the pres-
sure is specified �p= P�=1�, whereas the velocities are ex-
trapolated. Figure 1 shows a portion of the cylinder at its
farthest downstream and upstream locations. The outer shape
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of the computational region is a nondeforming circle with a
nondimensional radius equal to 25. The equations are solved
iteratively, and the iteration is stopped when the maximum
absolute residual of the continuity equation over all grid
points is less than 10−4 or after 12 iterations. The problem is
solved on a Silicon Graphics, Inc. �SGI� machine with 1.6
GHz processor speed and 512 GB memory. Each time step
takes about 1.18 s of CPU time. The nondimensional time
step is 0.05.

We start by comparing our simulations with the reported
experimental data of Tanida et al.12 The experiments were
conducted in oil at Re=80, with an in-line motion amplitude
equal to 14% of the cylinder diameter. To reduce three-
dimensional effects, they took measurements at the central
section of the test cylinder. In Fig. 2, the ratio of the shed-
ding frequency to the forcing frequency SV /SM is plotted as a
function of SM. In addition to the good agreement between
the simulations and the measurements, this figure shows also
one type of synchronization at this Re and Ax, in which SV

�which is also the fundamental lift frequency� is equal to
1
2SM. Further analysis of the simulation results of the syn-
chronous lift and drag showed that CD is synchronous at SM.
Therefore, there is a quadratic coupling between the synchro-
nous lift and drag as in the case of no motion and the case of
synchronization due to cross-flow motion. We focus in this
study on another type of synchronization due to in-line mo-
tion in which the lift is synchronous at SM and its amplitude
is reduced to very low levels. Figure 3 shows the component
of the drag coefficient CD in phase with the velocity of the
in-line motion, which we denote by CD,V, as a function of
SM. Again, there is good agreement between our simulations
and the measurements. Figure 4 compares variations of the
root mean square �rms� of the calculated lift coefficient CL

with SM to the measured one. As mentioned before, the syn-
chronous CL is not reduced at this very low Re.

S M

S
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FIG. 2. �Color online� Comparison between our simulations and the mea-
surements of Tanida et al. �Ref. 12� for the variation of the forcing-to-
shedding frequency ratio SM /SV with the nondimensional forcing frequency
SM for a cylinder oscillating in-line at Re=80 with nondimensional ampli-
tude Ax=0.14.
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FIG. 3. �Color online� Comparison between our simulations and the mea-
surements of Tanida et al. �Ref. 12� for the variation of the drag component
in phase with velocity CD,V with the nondimensional forcing frequency SM

for a cylinder oscillating in-line at Re=80 with Ax=0.14.
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FIG. 1. Partial views of the cylinder and grid at the instants of �i� maximum
displacement and �ii� minimum displacement.
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FIG. 4. �Color online� Comparison between our simulations and the mea-
surements of Tanida et al. �Ref. 12� for the variation of rms CL with the
nondimensional forcing frequency SM for a cylinder oscillating in-line at
Re=80 with Ax=0.14.
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III. RESULTS AND DISCUSSION

A. Lift and drag

We investigate several flow properties over a wide range
of mechanical frequencies SM while fixing the amplitude of
motion Ax at 0.20. This value allows us to compare the flow
features for this case with those obtained for a cylinder with
cross-flow motion at the same amplitude and Re.28 The ma-
jority of the results correspond to Re=500; the others corre-
spond to Re=300. Synchronization is illustrated in Fig. 5,
which shows the ratio SV /SK as a function of the ratio SM /SK.
When SM �2SK, vortex shedding is synchronized at SM.
Hence the graph of SV /SK with SM /SK is a straight line with
unity slope; it starts at the critical value SM /SK=1.81 and
extends to SM /SK=3.33. Beyond this value, the synchronous
shedding bifurcates and becomes nonsynchronous with less
regular pattern and with an asymmetric lift. We refer to this
range of SM as postsynchronization compared to presynchro-
nization when SM is below the critical value. This range is in
contrast to the range 0.81�SM /SK�1.05 for the case of
cross-flow motion at the same amplitude and Re. So, the
synchronization range here is not just shifted, but it is also
broadened. It should be mentioned that the postsynchroniza-
tion range is preceded by a region in the presynchronization
range where the shedding occurs at half SM. Therefore, one
can describe vortex shedding as being synchronized at 1

2SM

as reported in other studies.12,32 However, because we want

to focus on the situation in which vortex shedding occurs at
SM, we use the terms “synchronization” and “postsynchroni-
zation” to refer to this situation.

Variation of the rms CL with SM is shown in Fig. 6. The
results are presented in terms of relative values, thus the rms
CL is presented relative to its value in the case of Ax=0.
Similarly, we use the ratio SM /SK to express changes in SM.
The lift reduction is clear in this figure, the relative rms CL is
reduced by two orders of magnitude from 1.696 at SM /SK

=1.80 to 0.0087 �a reduction of 99.5%� at the critical
SM /SK=1.81, which corresponds to the beginning of syn-
chronization.

We decompose the steady-state CD�t� into a constant
mean component �CD	 and an oscillatory component CD,osc

and analyze each one separately. Variation of the relative
mean CD with SM /SK is shown in Fig. 7. Synchronization of
the drag causes a reduction in its mean value from 1.32 to
0.77 �a reduction of 42%�. In the postsynchronization cases,
�CD	 is independent of SM, in contrast with CD,osc whose rms
value grows monotonically with SM as shown in Fig. 8. This
growth can be represented by a quadratic function, as indi-
cated in Fig. 9.

B. Mechanical work and drag phase

The nondimensional mechanical work done by the cyl-
inder on the flow per motion cycle TM �starting from an
arbitrary time to� is
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FIG. 6. �Color online� Variation of the relative rms CL with the forcing-to-
Strouhal frequency ratio SM /SK.
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FIG. 7. �Color online� Variation of the relative mean drag coefficient �CD	
with the forcing-to-Strouhal frequency ratio SM /SK.
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FIG. 5. �Color online� Variation of the shedding-to-Strouhal frequency ratio
SV /SK with the forcing-to-Strouhal frequency ratio SM /SK. Postsynchroniza-
tion region in the simulation results is indicated by a slope of unity.
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FIG. 8. �Color online� Variation of the relative rms CD,osc with the forcing-
to-Strouhal frequency ratio SM /SK.
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Wcyc = − Ax2�SM

to

to+TM

CD�t�cos�2�SMt�dt . �3�

The minus sign on the right-hand side of Eq. �3� ensures the
correct sign for Wcyc so that, when the velocity of the cylin-
der and the drag force are in the same direction, Wcyc is
negative and the work is actually done by the flow on the
cylinder. We carry out the above integration numerically us-
ing the trapezoidal rule. The results of Wcyc as a function of
SM /SK are given in Fig. 10. The sign of Wcyc is always posi-
tive, indicating that work is being done by the cylinder on
the flow. This constitutes another difference from the case of
cross-flow motion, where Wcyc takes on both negative and
positive values, depending on SM.

To first order, the steady-state synchronous drag can be
approximated as

CD�t� = �CD	 + �CD,osc�sin�2�SMt + �� , �4�

where � . � indicates an amplitude and � indicates the phase
angle by which CD leads �. Substituting Eqs. �4� and �1� into
Eq. �3� leads to the following expression:

Wcyc = − �Ax�CD,osc�sin��� . �5�

Equation �5� implies that � must be negative in order to have
positive Wcyc. We computed � for the synchronous-drag

cases and found that it is always negative varying from
�0.262 ��15°� to �0.175 ��10°�, as shown in Fig. 11. For
cross-flow motion, a sudden change in the phase between the
synchronous lift and the motion was reported in different
studies;28–31 we also found it to occur with the current Re
and motion amplitude. Such a feature does not occur with the
examined in-line motion.

C. Dissipation

We compute the average dissipated power in the flow at
each mechanical frequency. Its dimensional expression is

P̂ave =
1

t̂2 − t̂1



t̂1

t̂2
F̂x�Û� − x̂̇�dt̂ , �6�

where F̂x is the dimensional drag force, t̂1 and t̂2 are arbitrary

�but appropriate for statistical analysis�, and �Û�− x̂̇� is the
relative velocity between the cylinder and free-stream fluid

in the F̂x direction. Combining Eqs. �1� and �6� yields the
following nondimensional expression for the average dissi-
pated power:

Pave =
1

t2 − t1



t1

t2

CD�t��1 − Ax2�SM cos�2�SMt��dt . �7�

We use at least 40 motion periods to evaluate the integrand
in Eq. �7�. When Ax=0, Pave reduces to �CD	. In Fig. 12,
variation of the relative Pave with SM /SK is shown. Over the
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FIG. 9. �Color online� Variation of the calculated and fitted relative synchro-
nous rms CD with the forcing-to-Strouhal frequency ratio SM /SK.
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FIG. 10. �Color online� Variation of the mechanical work Wcyc with the
forcing-to-Strouhal frequency ratio SM /SK.
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FIG. 11. �Color online� Variation of the phase angle � of the synchronous
CD relative to the nondimensional displacement � with the forcing-to-
Strouhal frequency ratio SM /SK.
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FIG. 12. �Color online� Variation of the relative average dissipated power
Pavg with the forcing-to-Strouhal frequency ratio SM /SK.
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presynchronization frequencies, Pave increases slowly,
whereas it increases quickly with a cubic profile over the
postsynchronization frequencies, as indicated by the polyno-
mial fit in Fig. 13. This cubic profile can be explained as
follows. The first term in the integrand in Eq. �7� gives �CD	,
which remains unchanged with SM for postsynchronization
cases, as shown in Fig. 7. Therefore, Pave is controlled by the
second term in the integrand, in which CD�t� is multiplied by
SM. Recalling the approximation in Eq. �4�, we find that this
term becomes −�2� sin���AxSMrmsCD,osc, which is propor-
tional to the product of rms CD,osc and SM. The angle � varies
weakly with SM, as shown in Fig. 11, and rms CD,osc in-
creases quadratically with SM as shown in Fig. 9; hence Pave

increases in a cubic fashion with SM.

D. Synchronization map

We found that increasing the motion amplitude decreases
the critical frequency at which the lift reduction starts. There
is a threshold of this amplitude below, which the lift does not
exhibit this feature for any mechanical frequency. We found
that the threshold here is Ax=0.157. Figure 14 shows the
locus of the critical conditions in the Ax−SM /SK plane, which
separates synchronization and nonsynchronization. Similar
variations of the lift and drag with SM take place at other Re.
The loci of the critical conditions at Re=500 and 300 are
compared in Fig. 15. The locus of the critical conditions
when Re=300 is nearly a straight line with a negative slope,

and the threshold Ax is increased to 0.2. The need for a larger
motion amplitude for lift reduction at lower Re can be ex-
plained by the higher viscous dissipation. This also explains
the absence of such a feature at Re=80 in the experiments of
Tanida et al.12 and our simulations.

E. Pre- and postsynchronization modes

In the following part, we present several lift and drag
response modes that occur before and after the onset of syn-
chronization. These modes are very different quantitatively
and qualitatively. Before the critical frequency, we found lift
and drag responses that are either periodic with large period
�period-n�, quasiperiodic, or chaotic. The best method to dis-
tinguish among these responses is Poincaré sections. In Fig.
16, we show representative nonsynchronous cases showing
the Poincaré sections of CL for �i� a quasiperiodic response
with SM /SK=0.4, �ii� a period-6 response with SM /SK=0.72,
�iii� a chaotic response with SM /SK=0.73, and �iv� a period-2
response with SM /SK=1.7. The corresponding Poincaré sec-
tions of CD are shown in Fig. 17, which clearly indicate that
both of the lift and drag have the same response type for each
case.
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The period-2 mode of the lift and drag takes place for a
wide range of SM /SK �from 1.15 to 1.8�. It is followed by
synchronization, which is accompanied by large changes in
CL and CD, as can be seen from comparing the amplitudes
and patterns of the time histories for the period-2 case at
SM /SK=1.7 in Fig. 18 to those for the synchronous mode at
SM /SK=1.81 in Fig. 19. The synchronous lift and drag are
characterized by a single point in their Poincaré sections, as
in Fig. 20. We pay attention to changes that occur in the lift
and drag and their coupling due to synchronization. To
achieve this, we compare their spectra and cross bicoherence
to those we found for the period-2 case at SM /SK=1.7 �the
Poincaré sections of CL and CD for this case were shown
already in the last plots of Figs. 16 and 17, respectively� and
also to those we found for another synchronous case at
SM /SK=1 for a cross-flow motion. The Poincaré sections of
CL and CD for the latter case are shown in Fig. 21. Whereas
each of these sections contains a single point, as was the case
in the synchronous cases due to the current in-line motion,
we show below that the synchronous CL is period-1 for both
cases and the synchronous CD is period-1 in case of in-line

motion but period-1
2 in case of cross-flow motion. Because

one cannot distinguish between the two cases using the
Poincaré sections for CD, we use second- and third-order
spectral analyses to differentiate between them.

The spectra of CL and CD for the period-2 case at
SM /SK=1.7 are shown in Fig. 22. The frequency S is scaled
with the mechanical frequency SM to better indicate the po-
sitions of the fundamental components and their superhar-
monics and subharmonics. The fundamental component of
CL is at 1

2SM, whereas the fundamental component of CD is at
SM. There are odd and even superharmonics in the spectrum
of CL, but the odd harmonics are stronger. There are frac-
tional superharmonics in the spectrum of CD, but the integer
ones are stronger. The spectra of CL and CD for the synchro-
nous case at SM /SK=1.81 are shown in Fig. 23. The funda-
mental component of CL is now at SM and the fundamental
component of CD is still at SM. Whereas there are still even
and odd superharmonics in the spectrum of CL �as in the
presynchronization case�, their amplitudes decay monotoni-
cally and there is no bias toward the odd superharmonics.
The fractional superharmonics of CD have disappeared. The
spectra of CL and CD for the synchronous case at SM /SK=1
for cross-flow motion are shown in Fig. 24. One of the main
differences between this mode of synchronization and the
one due to in-line motion is that CD is synchronous at 2SM in
the case of cross-flow motion rather than at SM. Also, the
spectrum of CL consists mainly of odd superharmonics, and
the spectrum of CD consists mainly of even ones. It should
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FIG. 17. �Color online� Poincaré sections of nonsynchronous CD at �i�
SM /SK=0.4, �ii� SM /SK=0.72, �iii� SM /SK=0.73, and �iv� SM /SK=1.7.
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FIG. 18. �Color online� Steady-state time histories of CL and CD for the
period-2 mode at a forcing-to-Strouhal frequency ratio SM /SK=1.7.
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be mentioned here that, in the fixed cylinder case, the spectra
of CL and CD are qualitatively very similar to those in Fig. 24
�after scaling S with SK instead of SM�.

If we define a total-force coefficient CT as �CL
2 +CD

2 and
its angular orientation �T as arctan�CL /CD�, which is mea-
sured in the counterclockwise direction from the positive
x-axis, then the near-harmonic profiles of both CT and �T

found in the case of synchronization due to cross-stream mo-
tion �as shown in Fig. 25 for SM /SK=1� or in the absence of
motion are totally altered in the case of synchronization due
to in-line motion as shown in Fig. 26 for SM /SK=1.81. In the
former cases, the frequency of CT is equal to 2SM �or 2SK�,
which is twice the frequency of �T. Also, the angle �T is
limited to the first and fourth quadrants, thus CD is always
positive. With in-line synchronization, the profile of �T be-
comes nearly a step function with values equal to 0° or
�180°. This effect is a consequence of the extreme reduction
in CL. The interval when ��T��180° corresponds to negative
CD.

F. Higher-order spectral analysis

To examine the nonlinear coupling between CL and CD,
we calculate the magnitude-squared cross-bicoherence
bLLD

2 �S1 ,S2� as

bLLD
2 �S1,S2� =

�MLLD�S1,S2��2

MLL�S1�MLL�S2�MDD�S1 + S2�
, �8�

where

MLLD�S1,S2� = E�L̃��S1�L̃��S2�D̃�S1 + S2�� �9�

is the cross bispectrum, L̃�S� and D̃�S� are the discrete Fou-
rier transforms of CL�t� and CD�t�, respectively, E indicates
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FIG. 21. �Color online� Poincaré sections of CL and CD for the synchronous
mode due to cross-flow motion at a forcing-to-Strouhal frequency ratio
SM /SK=1.
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FIG. 22. �Color online� Magnitude power spectra of CL and CD for the
period-2 mode due to in-line motion at a forcing-to-Strouhal frequency ratio
SM /SK=1.7.
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FIG. 23. �Color online� Magnitude power spectra of CL and CD for the
synchronous mode due to in-line motion at a forcing-to-Strouhal frequency
ratio SM /SK=1.81.
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FIG. 24. �Color online� Magnitude power spectra of CD and CL for the
synchronous mode due to cross-flow motion at a forcing-to-Strouhal fre-
quency ratio SM /SK=1.
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the expected value �or time average�, and the superscript �

indicates a complex conjugate. The autopower spectra
MLL�f� and MDD�f� of CL and CD are given by

MLL�S� = E�L̃��S�L̃�S�� , �10�

MDD�S� = E�D̃��S�D̃�S�� . �11�

The corresponding magnitude-squared cross bicoherence
for the CL and CD spectra in Fig. 22 is shown in Fig. 27. The
presence of many quadratically interacting lift components is
noticeable. A fractional subharmonic or superharmonic in CD

at 1
2mSM is formed by quadratic coupling between the CL

components at �m+k�SM and −�k+ 1
2m�SM, where k	0 is an

integer. These coherence points are located in the difference
region of bLLD

2 . They are in addition to other couplings be-
tween the CL components at � 1

2m−k�SM and kSM, where k

0 is an integer. These coherence points are located in the
sum region of bLLD

2 . The number of coherence points is re-
duced in the synchronized cases, as shown in Fig. 28, which
corresponds to the spectra of CL and CD in Fig. 23. This is
because there are phase-coherent components at fractions of
SM. The fundamental frequency of CD at SM is formed by the
interaction of the components of CL at kSM and −�k+1�SM,
where k	0 is an integer. Similarly, the superharmonic in the
spectrum of CD at 2SM is formed by the interaction of the
components of CL at kSM and −�k+2�SM in addition to self-

interacting CL component at SM. A similar structure occurs
for the higher superharmonics in CD. The bicoherence plot is
even simplified further for synchronization cases due to
cross-flow motion, as shown in Fig. 29, which corresponds
to the CL and CD spectra in Fig. 24. This is because of the
presence of half the number of significant superharmonics in
the CL �odd ones� and CD �even ones� spectra. The funda-
mental component of CD at 2SM is formed by self-interacting
CL component at SM in addition to the interaction of the
components of CL at 3SM and −SM. The small CD subhar-
monic at SM is formed by the interaction of the components
of CL at 2SM and −SM.

The bicoherence analysis provides information about the
quadratic coupling of the CL components in the CD compo-
nents. To examine the linear correlation between the CL and
CD components, we use the �linear� cross-power spectrum
MLD�f�, defined as

MLD�S� = E�L̃��S�D̃�S�� . �12�

Figures 30–32 show the absolute value of the cross-power
spectrum �MLD�S�� corresponding to the CL and CD spectra in
Figs. 22–24, respectively. For the presynchronization case,
�MLD�S�� in Fig. 30 indicates that all CL components have
linear coupling with the respective CD components. The cou-
plings at 1

2SM and SM are both one order of magnitude larger
than the one at the subsequent superharmonic at 3

2SM. For the
synchronized cases with either in-line or cross-flow motion,
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FIG. 25. �Color online� Steady-state time histories of CT and �T for the
synchronous mode due to cross-flow motion at a forcing-to-Strouhal fre-
quency ratio SM /SK=1.
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FIG. 26. �Color online� Steady-state time histories of CT and �T for the
synchronous mode due to in-line motion at a forcing-to-Strouhal frequency
ratio SM /SK=1.81.
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FIG. 27. �Color online� Magnitude-squared cross bicoherence for the
period-2 mode due to in-line motion at a forcing-to-Strouhal frequency ratio
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FIG. 28. �Color online� Magnitude-squared cross bicoherence for the syn-
chronous mode due to in-line motion at a forcing-to-Strouhal frequency
ratio SM /SK=1.81.
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linear couplings occur at SM and its integer superharmonics.
The decay of �MLD�S�� at higher superharmonics is faster in
the case of in-line motion.

G. Wake structure

In the remaining part of this study, we relate the large
differences in the postsynchronization cases, including the
significant lift reduction and the saturation of the mean drag,
to changes in the vortex shedding and the pressure distribu-
tion on the surface of the cylinder. In Fig. 33, vorticity con-
tours in the near field for two postsynchronization cases �at
SM /SK=1.81 and 3� are shown at the instant when ��t�=0

and increasing �from negative to positive�, and therefore �̇ is
maximum. The typical von Kármán vortex street with 2S
mode is replaced by two parallel 1S streets: one with positive
vortices located behind the bottom point of the surface and
the other with negative vortices located behind its top point.
This instantaneous symmetry in the wake is what causes the
reduction in CL because the lift force is a result of the instan-
taneous imbalance in the surface pressure �which is related to
the vortex strength at the surface� between the top and bot-
tom parts of the surface. As SM increases, the vortex shed-
ding frequency also increases and the shed vortices along
each street become closer and those being shed from the
surface become stronger �higher vorticity levels�. So, we ex-
pect more negative pressure at the locations of these vortices
on the surface of the cylinder.

In the classical vortex shedding mechanism for a fixed
cylinder, two contrarotating vortices are periodically formed
and shed downstream in the wake. This is due to the shear-
layer instability, which causes vortex roll-up and leads to the
generation of an upper vortex and lower vortex in a periodic
and staggered pattern. The lift frequency is equal to the shed-
ding frequency but the drag frequency is equal to twice the
shedding frequency because both upper and lower vortices
contribute to the drag through the changes they induce in the
pressure field. This shedding mechanism is preserved in the
case of a synchronous wake due to cross-flow oscillation,
which is expected because the wake structure remains similar
to the one taking place in the case of a fixed cylinder, and the
effect of the shear-layer instability is not inhibited by the
cross-flow oscillation. Consequently, either the upper or
lower vortex still contributes to the drag, keeping its fre-
quency twice the frequency of the shedding and lift. On the
other hand, the in-line oscillation influences the locations and
motions of the formed vortices, which tend to oppose the
cylinder motion due to the added-mass effect. When the cyl-
inder velocity is strong enough, which corresponds to a high
frequency or high amplitude, this disturbing influence of the
oscillation overpowers the effect of the shear-layer instability
and becomes the dominant mechanism that controls the vor-
tex formation and shedding. This results in a sudden change
in the wake state, causing it to be instantaneously symmetric
and consequently reduces the lift dramatically. The vortices
are no longer staggered, but they are convected parallel to

FIG. 29. �Color online� Magnitude-squared cross bicoherence bLLD
2 for the

synchronous mode due to cross-flow motion at a forcing-to-Strouhal fre-
quency ratio SM /SK=1.
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FIG. 30. �Color online� Absolute of cross-power spectrum �MLD� for the
period-2 mode due to in-line motion at a forcing-to-Strouhal frequency ratio
SM /SK=1.7.
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FIG. 31. �Color online� Absolute of cross-power spectrum �MLD� for the
synchronous mode due to in-line motion at a forcing-to-Strouhal frequency
ratio SM /SK=1.81.
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FIG. 32. �Color online� Absolute of cross-power spectrum �MLD� for the
synchronous mode due to cross-flow motion at a forcing-to-Strouhal fre-
quency ratio SM /SK=1.
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each other, which causes the drag frequency to be equal to
the shedding frequency because both vortices contribute si-
multaneously to the drag. This explanation is supported by
the four vorticity contours in Fig. 34 that are taken over one
cycle of in-line motion, separated in time by a quarter cycle,
for the postsynchronization case at SM /SK=1.81. The corre-
sponding surface distributions of the pressure coefficient are
shown and discussed in Sec. III H, which are in support of
the mentioned change in the drag frequency. This explana-
tion is also justified by our finding that the critical frequency,
at which the wake state changes, decreases with the oscilla-
tion amplitude as shown in the synchronization maps in Figs.
14 and 15. Therefore, the combined effect of the frequency
and amplitude of the cylinder motion is what drives the
change in the wake state. Barbi et al.32 experimentally per-
turbed the inflow velocity rather than the in-line motion of

the cylinder. Therefore, the constant velocity Û� of the in-
coming stream is replaced by an oscillating one, which has a
nonzero mean value. Although the perturbation mechanism
of the shedding is different from the one we implement here,
the Reynolds number is higher �3000–40 000�, the aspect
ratios of the cylinders used are low �including a length-to-
diameter ratio of 2.5�, and the perturbation could not be
made purely harmonic, they found cases where shedding oc-
curs at the pulsation frequency. It is interesting that, for this
case, the lift and drag have the same frequencies, the lift is
remarkably reduced, and two vortices are symmetrically
shed every perturbation cycle. These features are similar to
the ones we found in our study, which covered a wider range
of frequencies

H. Surface pressure

Figure 35 shows distributions of the mean pressure co-
efficient �CP	 at the cylinder surface for the same two post-
synchronization cases shown in Fig. 33. The distributions in
this figure are almost symmetric about the base point �where
the angular coordinate � is 180°�, which causes the mean CL

to be zero. Whereas this figure cannot reveal much about the
large reduction in the rms CL due to synchronization, we use
it to interpret the reduction and saturation behavior of the
mean CD due to synchronization. The value of �CD	 is
mainly due to the imbalance in �CP	 between the upstream
and downstream parts of the surface. The upstream �CP	 is
close to unity, whereas the downstream �CP	 is negative. We
recall that the part of the surface near the base point ��
=180°� is nearly isolated from shed vortices in the postsyn-
chronization cases, as shown in Fig. 33. This is reflected in

the “bump” in the downstream �CP	 at SM /SK=1.81; it ex-
plains the 42% reduction in �CD	 once synchronization oc-
curs. To interpret the saturation behavior, we compare the
two surface distributions of �CP	 at SM /SK=1.81 and 3. The
downstream bump is stronger in the latter case, which should
result in a reduced �CD	 for this high-frequency synchronized

(b)(a)

FIG. 33. �Color online� Vorticity contours when �=0 for synchronous cases:
�i� SM /SK=1.81 and �ii� SM /SK=3. Positive �counterclockwise� vortex is
being shed from the bottom surface.
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FIG. 34. �Color online� Vorticity contours over one motion cycle for

SM /SK=1.81. The motion sequence is �i� �=0 and �̇ is maximum, �ii� � is

maximum and �̇=0, �iii� �=0 and �̇ is minimum, and �iv� � is minimum and

�̇=0. Positive �counterclockwise� vortex is being shed from the bottom
surface.
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FIG. 35. �Color online� Surface distribution of �CP	 for synchronous cases:
�i� SM /SK=1.81 and �ii� SM /SK=3. The angle � is 0 at the stagnation point
and 90° at the top point.
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case. However, this is counteracted to a large extent by a
reduction �more negative� in �CP	 over �=30° –90° and
270°–360°. Therefore, variations in �CD	 for the postsyn-
chronization cases are minimal.

To support and augment the above discussion on CL, CD,
and surface �CP	, we examine the surface distributions of CP

over one motion cycle for the postsynchronization case at
SM /SK=1.81 in Fig. 36. The surface CP is shown at four
equally spaced instants of time. The surface CP exhibits in-
stantaneous symmetry about the x-axis. This is due to the
instantaneous symmetry of the magnitude of the vorticity at
the surface. Because the peaks and valleys in CL�t� are
mainly due to the difference between CP at the top and bot-
tom parts of the surface, these peaks and valleys are reduced
in the postsynchronization cases due to the strong reduction
in the CP difference that contributes to �CL�. These CP snap-
shots also explain the increase in rms CD,osc with SM for the
postsynchronization cases even though �CD	 remains un-
changed. Because the surface distribution of �CP	 becomes
more distorted as SM increases �as in Fig. 35�, the distortion
in the instantaneous CP distributions is strengthened also.
The rms CD,osc depends on the instantaneous CP imbalance
between the upstream and downstream parts of the surface.
This imbalance increases steadily with SM as a result of the
intensified vorticity at the surface.

IV. CONCLUSIONS

We studied the dynamics of the loads on a cylinder un-
dergoing harmonic in-line motion in a uniform stream at dif-
ferent nondimensional mechanical frequencies SM and ampli-
tudes Ax using the computational fluid dynamics �CFD�
method. For a given Reynolds number Re, there exists a
curve in the Ax−SM plane above which synchronization oc-
curs. In the absence of synchronization, the lift and drag can
be periodic with large period, quasiperiodic, or chaotic. Syn-
chronization occurs at lower values of SM when either Ax or
Re increases. When synchronization takes place, the lift and
drag are both synchronous with SM, the lift has almost zero
amplitude, the mean drag drops and saturates at a constant
value regardless of SM, its rms grows quadratically with SM,

the wake structure and shedding change and become instan-
taneously symmetric, and the coupling between the lift and
drag changes. Whereas the linear coupling between the syn-
chronous lift and drag is similar for the in-line and cross-
flow motions, their quadratic coupling is different. The drag
has an exciting effect for all cases, synchronous or not, and
the mechanical work due to the drag and the motion is done
on the flow and not on the cylinder. The instantaneous sym-
metry in the vortex structure affects the surface distribution
of the pressure, which in turn explains the qualitative and
quantitative changes in the lift and drag when they become
synchronous.
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