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The effect of spanwise wall oscillation on turbulent pipe flow structures
resulting in drag reduction
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Virginia 24061, USA

�Received 19 January 2007; accepted 12 November 2007; published online 26 December 2007�

The results of a comparative analysis based upon a Karhunen–Loève expansion of turbulent pipe
flow and drag reduced turbulent pipe flow by spanwise wall oscillation are presented. The turbulent
flow is generated by a direct numerical simulation at a Reynolds number Re�=150. The spanwise
wall oscillation is imposed as a velocity boundary condition with an amplitude of A+=20 and a
period of T +=50. The wall oscillation results in a 27% mean velocity increase when the flow is
driven by a constant pressure gradient. The peaks of the Reynolds stress and root-mean-squared
velocities shift away from the wall and the Karhunen–Loève dimension of the turbulent attractor is
reduced from 2763 to 1080. The coherent vorticity structures are pushed away from the wall into
higher speed flow, causing an increase of their advection speed of 34% as determined by a normal
speed locus. This increase in advection speed gives the propagating waves less time to interact with
the roll modes. This leads to less energy transfer and a shorter lifespan of the propagating structures,
and thus less Reynolds stress production which results in drag reduction. © 2007 American Institute
of Physics. �DOI: 10.1063/1.2825428�

I. INTRODUCTION

In the last decade a significant amount of work has been
performed investigating the structure of wall bounded turbu-
lence, with aims of understanding its self-sustaining nature
and discovering methods of control.1 One of the greatest po-
tential benefits for controlling turbulence is drag reduction.
As the mechanics of the different types of drag reduction are
studied, most explanations of the mechanism revolve around
controlling the streamwise vortices and low speed streaks.2,3

One such method of achieving drag reduction is spanwise
wall oscillation, first discovered by Jung et al.4 in 1992, and
later confirmed both numerically4–8 and experimentally,9–13

to reduce drag on the order of 45%. The prevalent theory of
the mechanism behind this was developed using direct nu-
merical simulation of a turbulent channel flow by Choi et al.6

and experimentally confirmed by Choi and Clayton,14 show-
ing that the spatial correlation between the streamwise vorti-
ces and the low speed streaks are modified so that high speed
fluid is ejected from the wall, and low speed fluid is swept
towards the wall. Even though this proposed mechanism de-
scribes the near-wall dynamics that govern the drag reduc-
tion, questions behind the global dynamics have not been
sufficiently resolved. What is the effect �if any� on the outer
region of the flow? How do the coherent structures of the
flow near the wall adjust with the spanwise oscillations?
What is the effect on the interactions between the inner and
outer layers?

One manner in which to address these questions is
through direct numerical simulation �DNS� of turbulence. As
supercomputing resources increase, DNS continues to pro-
vide an information rich testbed to investigate the dynamics

and mechanisms behind turbulence and turbulent drag reduc-
tion. DNS resolves all the scales of turbulence without the
need of a turbulent model and provides a three-dimensional
time history of the entire flow field. One of the methods used
for mining the information generated by DNS is the
Karhunen–Loève �KL� decomposition, which extracts coher-
ent structures from the eigenfunctions of the two-point spa-
tial correlation tensor. This allows a nonconditionally based
investigation that takes advantage of the richness of DNS.
The utility of this method is evident in the knowledge it has
produced so far, such as the discovery of propagating struc-
tures �traveling waves� of constant phase velocity that trigger
bursting and sweeping events.15–17 These studies in turn have
lead to a new class of methods for achieving drag reduction
through wall imposed traveling waves.2,18 Another study us-
ing KL decomposition examined the energy transfer path
from the applied pressure gradient to the flow through triad
interaction of structures,19,20 explaining the dynamical inter-
action between the KL modes. In the realm of control, KL
methods have been used to produce drag reduction in a tur-
bulent channel flow by phase randomization of the
structures21 and to understand the effect of drag reduction by
controlled wall normal suction and blowing.22 In the present
study, the KL framework is used to examine the differences
in the turbulent structures and dynamics between turbulent
pipe flow with and without spanwise wall oscillation.

For this comparative analysis, turbulent pipe flow was
chosen as opposed to turbulent channel flow because of its
industrial relevance and experimental accessibility. The main
difference between pipe and channel flows is that in turbu-
lent pipe flow the mean flow profile exhibits a logarithmic
profile that overshoots the theoretical profile at low Reynolds
numbers, whereas in turbulent channel flow it does not.23,24

Second, pipe flow differs from channel flow because pipea�Electronic mail: duggleby@vt.edu.
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flow is linearly stable to infinitesimal disturbances where
channel flow is linearly unstable above a critical Reynolds
number.25,26 A significant computational difference between
pipe and channel flow is the presence of a numerical diffi-
culty introduced by the singularity in polar-cylindrical coor-
dinates at the pipe centerline, which has limited the number
of DNS studies in turbulent pipe flow.27–32 Similarly, many
KL studies have been performed in a turbulent channel flow,
but to the best of our knowledge the work presented here is
the first to extend the KL method to spanwise wall oscillated
turbulent pipe flow.

In previous work a DNS of turbulent pipe flow for Re�

=150 was benchmarked and its KL expansion was reported,
forming the baseline for this study.33 Similar structures to
those of turbulent channel flow15–17 were found, including
the presence of propagating modes. These propagating
modes are characterized by a nearly constant phase speed
and are responsible for the Reynolds stress production as
they interact and draw energy from the roll modes �stream-
wise vortices�.15 Without this interaction and subsequent en-
ergy transfer, the propagating waves decay quickly, reducing
the total Reynolds stress of the flow.34 As shown by Sirovich
et al.,15,16 the interaction between the propagating waves and
the roll modes occurs as the propagating waves form a co-
herent wave packet. This wave packet interacts with the roll
modes, and when given enough interaction time, the roll
mode is destabilized eventually resulting in a bursting
event.15 It is in this bursting event that the energy is trans-
ferred from the rolls to the propagating waves.19 In this paper
we show that in the presence of spanwise wall oscillation
these propagating modes are pushed away from the wall into
higher speed flow. This causes the propagating modes to ad-
vect faster, giving them less time to interact with the roll
modes. This leads to reduced energy transfer that occurs less
often, and yields lower Reynolds stress production, which
ultimately results in drag reduction.

II. NUMERICAL METHODS

We use a globally high order spectral element Navier–
Stokes algorithm to generate turbulent data for pipe flow
driven by a mean streamwise pressure gradient.35,36 The non-
dimensional equations governing the fluid are

�tU + U · �U = − �P + Re�
−1 �2U , �1�

� · U = 0, �2�

where U is the velocity vector, Re� is the Reynolds number,
and P is the pressure. The velocity is nondimensionalized by

the wall shear velocity U�=��w /�, where �w is the wall shear
stress and � is the density. The Reynolds number is Re�

=U� R /�=150, where R is the radius of the pipe, and � is the
kinematic viscosity. When nondimensionalized with the cen-
terline velocity, the Reynolds number is Rec�4300. Two
simulations were performed, one with and one without span-
wise wall oscillation. In a pipe, the spanwise direction cor-
responds to the azimuthal direction, so the oscillation is
about the axis of the pipe. Each case was run for t+=U�

2 t /�

=16800 viscous time units. In the oscillated case, the simu-
lation was performed with an azimuthal velocity wall bound-
ary condition v��r=R ,� ,z�=A+ sin�2�t /T +� of amplitude
A+=A /U�=20 and period T +=U�

2T /�=50 with �r ,� ,z� being
the radial, azimuthal, and streamwise coordinates, respec-
tively. This is not intended to be a parametric study and the
amplitude and period were chosen to achieve maximum pos-
sible drag reduction before relaminarization occurred.

To solve Eqs. �1� and �2� we use a numerical algorithm
employing a geometrically flexible yet exponentially conver-
gent spectral element discretization in space. The spatial do-
main is subdivided into elements, each containing a high-
order �twelfth order� Legendre Lagrangian interpolant.37 The
spectral element algorithm elegantly avoids the numerical
singularity found in polar-cylindrical coordinates at the ori-
gin, as seen in Fig. 1. The streamwise direction contains 40
spectral elements over a length of 10 diameters. The effec-
tive resolution of the flow near the wall is �r+�0.78 and
�R���+�4.9, where the radius r+ and the arc length at the
wall �R���+ are normalized by wall units � /U� denoted by
the superscript �. Near the center of the pipe, the grid width
is �+�3.1. The grid spacing in the streamwise direction is a
constant �z+=6.25 throughout the domain. Further details
can be found in Duggleby et al.33

The flow is driven by a constant mean pressure gradient
to keep Re� constant. The spanwise wall oscillation results in
a mean flow rate increase, effectively changing the Reynolds
number based upon mean velocity �Rem� while keeping Re�

constant. This keeps the dominant structures of the flow
similar, as they are affected primarily by the inner layer wall
shear stress.7 The oscillations were started on a fully turbu-
lent pipe flow at Re�=150, and to avoid transient effects,

FIG. 1. A cross section of a spectral element grid used for the pipe flow
simulation. The arrow denotes the direction of the spanwise �azimuthal�
oscillation about the axis of the pipe.
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data were not taken until the mean flow rate had settled at its
new average value over a time interval of 1000t+.

In the Karhunen–Loève �KL� procedure, the eigenfunc-
tions of the two-point velocity correlation tensor, defined by

�
0

L �
0

2� �
0

R

K�x,x����x��r�dr�d��dz� = ���x� , �3�

K�x,x�� = �u�x,t� � u�x�,t�	t, �4�

are obtained, where x= �r ,� ,z� is the position vector, 	�x� is
the eigenfunction with associated eigenvalue �, K�x ,x�� is
the kernel, and � denotes an outer product. In order to focus
on the turbulent structures, the kernel is built using fluctuat-

ing velocities u=U− Ū. The mean velocity, Ū, is found by
averaging over all �, z, and time. The angle brackets in Eq.
�4� represent the time average using an evenly spaced time
interval over a total time period sufficient to sample the tur-
bulent attractor. In this study, the flow field was sampled
every 8t+ for a total time of 16800t+.

Since the azimuthal and streamwise directions are
periodic, the kernel in the azimuthal and streamwise direc-
tion is only a function of the distance between x and x� in
those respective directions. Therefore the kernel can be re-
written as

K�r,�,z,r�,��,z�� = K�r,r�,� − ��,z − z��

= K�m,n;r,r��ein��−���ei2�m�z−z��/L �5�

with azimuthal and streamwise wavenumbers n and m, re-
spectively, and the remaining two-point correlation in the
radial direction K�m ,n ;r ,r��. It can be shown that in this
form, Fourier series are the resulting KL eigenfunctions in
the streamwise and azimuthal direction.38 The resulting
eigenfunctions then take the form

��r,�,z� = ��m,n;r�ein�ei2�mz/L. �6�

Making use of this result, and noting that the two-point cor-
relation in a periodic direction is simply the Fourier trans-
form of the velocities, the azimuthal and streamwise contri-
butions to the eigenfunctions are extracted a priori by taking
the Fourier transform of the velocities u�r ,� ,z�
=
m,n=0


 û�m ,n ;r�ein�ei2�mz/L and forming the remaining ker-
nel K�m ,n ;r ,r�� for each wavenumber pair n and m. The
eigenfunction problem, with the orthogonality of the Fourier
series taken into account, is

�
0

R

K�m,n;r,r����m,n;r��r�dr� = �mn��m,n;r� , �7�

K�m,n;r,r�� = �û�m,n;r,t� � û��m,n;r�,t�	t, �8�

where � denotes the complex conjugate since the function is
now complex, and the weighting function r� is present be-
cause the inner product is evaluated in polar-cylindrical co-
ordinates. The final form is still Hermitian just as it was in
Eq. �3�. The discrete form of the integral equation �7� is kept
Hermitian by splitting the integrating weight and solving the
related eigenvalue problem

��rpKps�m,n;rp,rs��rs���rs�q�m,n;rs��

= �mnq��rp�q�m,n;rp�� , �9�

where Kps�m ,n ;rp ,rs� is the discretization of K�m ,n ;r ,r��
using a Q point quadrature to evaluate Eq. �7� with p ,s
=1,2 , . . . ,Q. Because the kernel is built with the two-point
correlation between all three coordinate velocities, its
solution has 3Q complex eigenfunctions �q and correspond-
ing eigenvalues, listed in decreasing order �mnq��mn�q+1� for
a given m and n, with quantum number q=1,2 , . . . ,3Q. As
shown, Eq. �9� is only valid for a trapezoidal integration
scheme with evenly spaced grid points as was used in this
study; a different quadrature and weight can be incorporated
in a similar fashion in order to keep the final matrix

Hermitian. It is also noted that the ��r� weight at r=0 is
singular, and so the value of �q�m ,n ;r=0� is found
by integrating Eq. �7� for r=0, �q�m ,n ;0�
=1 /�q�0

RK�m ,n ;0 ,r���q�m ,n ;r��r�dr� which can be evalu-
ated since the value of �q is known everywhere except for at
r�=0 where the r� weight makes its contribution zero.

The eigenfunctions �q�m ,n ;r� hold certain properties.
First, they are normalized to unit length �0

R�q�q�rdr=�qq�,
where � is the Kronecker delta. Second, since the eigenfunc-
tions represent a flow field,

�q�m,n;r� = �
q
r�m,n;r�,
q

��m,n;r�,
q
z�m,n;r��T �10�

with radial, azimuthal, and streamwise components

q

r�m ,n ;r�, 
q
��m ,n ;r�, and 
q

z�m ,n ;r�, respectively, con-
taining the properties of the flow field such as boundary con-
ditions �no slip� and continuity,

1

r

d

dr
�r
q

r�m,n;r�� +
in

r

q

��m,n;r� +
i2�m

L

q

z�m,n;r� = 0.

�11�

Third, the eigenvalues represent the average energy of the
flow contained in the eigenfunction �q�m ,n ;r�,

FIG. 2. Mean velocity fluctuations �solid� and the average velocity �dashed-
dotted� for the oscillated case vs time �t+�. The fluctuations are consistent
with turbulent flow, and the mean velocity is 26.9% greater than in the
nonoscillated pipe.

125107-3 The effect of spanwise wall oscillation Phys. Fluids 19, 125107 �2007�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Mon, 07 Apr 2014 14:25:20



�mnq = ���u�r,�,z�,�q�m,n;r�ein�ei2�mz/L��2	 , �12�

where �f ,g� denotes an inner product
�0

L�0
2��0

Rf�r ,� ,z� ·g��r ,� ,z�rdrd�dz, which is why it is nec-
essary that the discrete matrix in Eq. �9� be Hermitian to
yield real and positive eigenvalues. These three properties
allow the eigenfunctions to be tested for their validity.

In summary, the KL procedure yields an orthogonal set
of basis functions �modes� that are the most energetically
efficient expansion of the flow field. By studying the subset
that includes the largest energy modes, insight is gained as
this subset forms a low dimensional model of the given flow.
Examining the structure, dynamics, and interactions of this

low dimensional model yields important information that we
use to build a better understanding of the dynamics of the
entire system.

III. RESULTS

Spanwise wall oscillation results in four main effects on
the flow, its structures, and its dynamics. They are:

�1� An increase in flow rate and a shifting away from the
wall of the root-mean-squared velocities and Reynolds
stress peaks.

�2� A reduction in the dimension of the chaotic attractor
describing the turbulence.

�3� An increase in energy of the propagating modes respon-
sible for carrying energy away from the wall to the up-
per region, while the rest of the propagating modes ex-
hibit a decrease in energy.

FIG. 3. Mean velocity profile for a nonoscillated �solid� and oscillated
�dashed� turbulent pipe flow vs y+. Theoretical �dashed-dotted� includes the
sublayer �u+=y+� and the log layer �u+=log�y+� /0.41+5.5�. The mean pro-
file shows a log layer, but overshoots the theoretical value as expected for
pipe flow until a much higher Reynolds number.

FIG. 4. Mean velocity profile for nonoscillated �solid� and oscillated
�dashed� pipes with their respective bulk velocities �dashed-dotted and dots�
vs radius show an increase in bulk velocity of 26.9%.

FIG. 5. Root-mean-squared velocity fluctuations for the nonoscillated
�solid� and oscillated �dashed� case vs y+. The oscillated case shows a shift
away from the wall, except for the azimuthal rms which captures the Stokes
layer imposed by the wall oscillation.

FIG. 6. Reynolds stress uruz vs y+ for nonoscillated �solid� and oscillated
�dashed� cases. Similar to the rms velocities, the Reynolds stress shows a
shift away from the wall from y+=31 to y+=38.

125107-4 Duggleby, Ball, and Paul Phys. Fluids 19, 125107 �2007�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Mon, 07 Apr 2014 14:25:20



�4� An increase of the advection speed of the traveling wave
packet as determined by a normal speed locus.

First, surface oscillation has a major effect on the turbu-
lent statistics. The spanwise wall oscillation of amplitude
A+=20 and period T+=50 resulted in a flow rate increase of
26.9%, shown in Fig. 2. This combination of amplitude and
period was chosen because it provides the largest amount of
drag reduction while keeping the flow turbulent. Numerical
simulations with larger oscillations completely relaminarize
the flow. The comparison of the mean profiles in Figs. 3 and
4 show the higher velocity in the outer region, with the inner
region remaining the same, as expected by keeping a con-
stant mean pressure gradient across the pipe.

The comparison of the root-mean-square �rms� velocity
fluctuation profiles and the Reynolds stress profile in Figs. 5
and 6 show that the streamwise fluctuations decrease in in-
tensity by 7.5% from 2.68 to 2.48. Also, the change in peak
location from y+=16 to y+=22 away from the wall has the
same trend as the maximum Reynolds stress uruz, where y+

= �R−r�U� /� is the distance from the wall using normalized
wall units �� /U��. The azimuthal fluctuating velocities show
a slightly greater magnitude peak of 1.03 closer to the wall at
y+=29 versus 0.99 at y+=40 for the nonoscillated pipe. The
radial fluctuations remain almost unchanged, showing only a
slight decrease from the wall through the log layer �y+

�100�, resulting in the peak shifting from 0.81 at y+

=55–0.78 at y+=61. The Reynolds stress also shows a re-
duction in strength and a shift away from the wall. The peak
changes from 0.68 at y+=31–0.63 at y+=38. Thus, a major

TABLE I. The 25 most energetic modes; m is the streamwise wavenumber, n is the spanwise wavenumber, and
q is the eigenvalue quantum number.

Index

Nonoscillated Oscillated

m n q Energy % Total m n q Energy % Total

1 1 5 1 3.7 1.62% 0 0 1 216 46.42%

2 1 6 1 3.6 1.58% 0 0 2 34.7 7.46%

3 1 3 1 3.6 1.56% 1 2 1 9.88 2.12%

4 1 4 1 3.2 1.42% 0 3 1 4.6 0.99%

5 0 6 1 3.2 1.39% 0 1 1 4.54 0.98%

6 1 7 1 3.0 1.32% 0 2 1 4.4 0.95%

7 0 5 1 2.9 1.28% 1 3 1 4.36 0.94%

8 0 3 1 2.9 1.25% 1 1 1 3.812 0.82%

9 1 2 1 2.7 1.18% 1 4 1 3.088 0.66%

10 0 4 1 2.5 1.11% 0 4 1 2.98 0.64%

11 0 2 1 2.5 1.09% 1 5 1 2.328 0.50%

12 2 4 1 2.4 1.07% 1 6 1 2.168 0.47%

13 2 5 1 2.3 1.00% 0 5 1 2.08 0.45%

14 1 1 1 2.2 0.98% 2 3 1 1.96 0.42%

15 2 7 1 2.1 0.90% 2 4 1 1.872 0.40%

16 1 8 1 1.9 0.83% 2 5 1 1.776 0.38%

17 2 6 1 1.9 0.82% 1 7 1 1.492 0.32%

18 2 3 1 1.8 0.78% 2 6 1 1.384 0.30%

19 2 2 1 1.6 0.73% 2 2 1 1.348 0.29%

20 0 1 1 1.6 0.69% 0 6 1 1.306 0.28%

21 2 8 1 1.5 0.65% 3 5 1 1.268 0.27%

22 1 9 1 1.4 0.62% 3 3 1 1.16 0.25%

23 3 4 1 1.4 0.61% 2 7 1 1.116 0.24%

24 3 2 1 1.4 0.61% 3 4 1 1.112 0.24%

25 3 6 1 1.3 0.60% 2 1 1 1.1 0.24%

FIG. 7. Comparison of the running total energy retained in the KL expan-
sion for the nonoscillated �solid� and oscillated �dashed� cases. The 90%
crossover point is 2763 and 1080, respectively. This shows a drastic reduc-
tion in the dimension of the chaotic attractor.
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difference between the two flow cases, in addition to the
expected flow rate increase, is the shift of the rms velocity
and Reynolds stress peaks away from the wall.

The second major effect can be found by examining the
size of the chaotic attractor describing the turbulence. The
eigenvalues of the KL decomposition represent the energy of
each eigenfunction. By ordering the eigenvalues from largest
to smallest, the number of eigenfunctions needed to capture a
given percentage of energy of the flow is minimized. Table I
shows the 25 most energetic eigenfunctions, and Fig. 7
shows the running total of energy versus mode number. 90%
of the energy is reached with DKL=1080 compared to DKL

=2763 for the nonoscillated case. This mark, known as the
Karhunen–Loève dimension, is a measure of the intrinsic
dimension of the chaotic attractor of turbulence as discussed
by Sirovich39 and Zhou and Sirovich.40 By oscillating the
wall our results show that the size of the attractor is reduced,
and the system is less chaotic.

The third major effect is found by examining the energy
of the eigenfunctions, represented by their eigenvalues. The

25 most energetic are listed for each case in Table I. The top
ten modes with the largest change in energy are shown in
Table II. First, the order of the eigenfunctions remain rela-
tively unchanged, with a few notable differences. The �0,0,1�
and �0,0,3� shear modes represent the Stokes flow as seen in
Figs. 8�a� and 8�b�, and the �0,0,2� mode, shown in Fig. 8�c�,
represents the changing of the mean flow rate, similar to the
nonoscillated �0,0,1� mode. The �1,2,1� mode shows a large
increase in energy. Also of note is the reduction in energy of
the �0,6,1� mode, which is the largest streamwise roll in the
nonoscillated case.

In examining the energy content of the structure sub-
classes as a whole, a trend is discovered, shown in Table III.
Each of these subclasses, reported in Duggleby et al.,33 were
found to have similar qualitative coherent vorticity structure
associated with their streamwise and azimuthal wavenumber.
We use “coherent vorticity” to refer to the imaginary part of
the eigenvalues of the strain rate tensor �ui /�xj, following
the work of Chong et al.41 Based upon the qualitative struc-
ture, the propagating or traveling waves, described by non-

FIG. 8. �Color online� �a� �0,0,1� eigenfunction capturing the imposed velocity oscillations. The radial velocity is zero except near the wall, where a slight
nonzero component is evident, induced by the spanwise oscillation. �b� �0,0,3� eigenfunction capturing the secondary flow in the Stokes layer. This imposed
Stokes flow created by the oscillation dominates the near wall region of the oscillated pipe. �c� �0,0,2� eigenfunction, similar in structure to the nonoscillated
�0,0,1�.
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zero azimuthal wavenumber and nearly constant phase
speed, were found to have four subclasses: The wall, the lift,
the asymmetric, and the ring modes.

The wall modes are found when the spanwise wavenum-
ber is larger than the streamwise wavenumber. They possess
a qualitative structure having coherent vortex cores near
thewall, and they have their energy decreased by 20.63%
with the wall oscillation. Likewise, the ring modes, which
are found for nonzero streamwise wavenumber and zero
spanwise wavenumber with rings of coherent vorticity, have
their energy decreased by 5.21% with wall oscillation. The
asymmetric modes have nonzero streamwise wavenumber
and spanwise wavenumber n=1, which allows them to break
azimuthal symmetry. These modes undergo a decrease in en-
ergy of 2.33% with spanwise wall oscillation.

Conversely to the decrease in energy found in the other
three propagating modes, the lift modes, in the presence of
spanwise wall oscillation, increase their energy by 1.26%.
These modes are found with a streamwise wavenumber that
is greater than the spanwise wavenumber, and they display
coherent vortex structures that start near the wall and lift
away from the wall to the upper region. Combined, modes in

the four propagating subclasses lose 9.42% in energy,
whereas the nonpropagating modes �the modes with zero azi-
muthal wavenumber� gain 1003%.

Thus, the third major result is that the energy of the
propagating wall, ring, and asymmetric modes decreases
while the energy of the lift modes increases slightly. Follow-
ing the work of Sirovich et al.16 this shows that energy trans-
fer from the streamwise rolls to the traveling waves is re-
duced, and any energy that is transferred is quickly moved
away from the wall to the outer region �by lift modes�. The
energy spectra showing the change of energy by subclasses is
shown in Fig. 9.

The fourth and most important effect is that the propa-
gating modes advect faster in the oscillated case. The normal
speed locus of the 50 most energetic modes of both cases is
shown in Fig. 10. For this, the phase speed � / 
k
 is plotted
in the direction k / 
k
 with k= �m ,n�. A circular locus is
evidence that these structures propagate as a wave packet or
envelope that travels with a constant advection speed. The
advection speed is given by the intersection of the circle with

TABLE II. Ranking of eigenfunctions by energy change between the
nonoscillated and the oscillated cases. m is the streamwise wavenumber, n is
the spanwise wavenumber, and q is the eigenvalue quantum number.

Rank

Increase Decrease

��k m n q ��k m n q

1 215.71 0 0 1 −1.91 0 6 1

2 34.53 0 0 2 −1.56 1 7 1

3 7.15 1 2 1 −1.50 1 6 1

4 2.93 0 1 1 −1.42 1 5 1

5 1.88 0 2 1 −1.02 1 8 1

6 1.70 0 3 1 −0.98 2 7 1

7 1.54 1 1 1 −0.88 0 5 1

8 0.75 1 3 1 −0.88 2 8 1

9 0.53 0 1 2 −0.85 1 9 1

10 0.49 0 0 3 −0.76 0 8 1

TABLE III. Energy comparison of turbulent pipe flow structure subclasses
between nonoscillated and oscillated pipes. m is the streamwise wavenum-
ber, and n is the azimuthal �spanwise� wavenumber. All the propagating
modes decrease in energy, except the lift modes.

Structure

Energy

Nonoscillated Oscillated

Propagating modes �m�0� 207 187

�a� Wall �n�m� 94.1 74.7

�b� Lift �m�n� 79.3 80.3

�c� Asymmetric �n=1� 24.3 23.7

�d� Ring �n=0� 8.82 8.36

Nonpropagating modes �m=0� 25.2 278

�a� Roll mode �n�0� 24.5 26.4

�b� Shear mode �n=0� 0.72 252

FIG. 9. Comparison of energy spectra for nonoscillated �solid� and oscil-
lated �dashed� flows for the propagating mode subclasses. The total energy
of all of the propagating subclasses in the oscillated case decreases with
respect to the nonoscillated case, except for the lift mode, which increases
slightly.

FIG. 10. Comparison of the normal speed locus for the oscillated �·� and
nonoscillated ��� case. The solid and dashed lines represent a circle of
diameter 8.41 and 10.96, respectively, that intersect at the origin.
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the abscissa. By examining the normal speed locus of the
nonoscillated and oscillated pipe flow, the wave packet
shows an increase in advection speed from 8.41U� to
10.96U� , an increase of 30%. This is a result of the oscillat-
ing Stokes layer pushing the structures away from the wall
into a faster mean flow by creating a dominant near wall
Stokes layer where the turbulent structures cannot form. This
is confirmed by the shifting of the rms velocities and Rey-
nolds stresses away from the wall as reported earlier. In ad-
dition to a faster advection speed, the energy of the propa-
gating modes decays faster, resulting in bursting events with
a shorter lifespan. This is seen in Fig. 11, where the average
burst duration of the �1,5,1� mode is reduced from 106t+ in
the nonoscillated case to 65.3t+ in the oscillated case. The
burst duration is taken to be the average time of all events
where the square of the amplitude of the mode is more than
one standard deviation greater than the mean.

The shifting of the structures away from the wall is
shown for the most energetic modes for each propagating
subclass in Figs. 12–21. These structures, which represent
the coherent vorticity of the four subclasses of the propagat-
ing modes, are pushed towards the center of the pipe, where
the mean flow velocity is faster. The locations of the coher-
ent vortex cores for these eight modes are listed in Table IV,
showing a shift away from the wall. The only mode found
not to follow this trend is the �1,0,1� mode, which undergoes
a major restructuring resulting in its vortex core moving to-
wards the wall.

This faster advection explains the experimental results
found by Choi42 that showed a reduction in the duration and
strength of sweep events in a spanwise wall oscillated
boundary layer of 78% and 64%, respectively. For this ex-
periment, the flow rate was kept constant, so the energy was
reduced, whereas in our case the mean pressure gradient was
kept constant yielding virtually no change in the energy of

FIG. 11. A reduction in the burst duration of the �1,5,1� mode from 106t+ for
the nonoscillated case �top� to 65.3t+ in the oscillated case �bottom� shows a
faster decay of the bursting energy with spanwise wall oscillation. The burst
duration is the average time of all events where the square of the amplitude
��a�t��2� is more that one standard deviation greater than the mean. This
amplitude level is denoted by the dashed line.

FIG. 12. �Color online� Cross section of coherent vorticity of the �1,2,1�
wall mode. �a� Nonoscillated. �b� Oscillated. The vortex core shifts y+

=6.8 away from the wall.

FIG. 13. �Color online� Cross section of coherent vorticity of the �1,5,1�
wall mode. �a� Nonoscillated. �b� Oscillated. The vortex core shifts y+

=9.9 away from the wall.
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FIG. 14. �Color online� Cross section of coherent vorticity of the �2,2,1� lift
mode. �a� Nonoscillated. �b� Oscillated. The vortex core shifts y+=11.0
away from the wall.

FIG. 15. �Color online� Cross section of coherent vorticity of the �3,2,1� lift
mode. �a� Nonoscillated. �b� Oscillated. The vortex core shifts y+=11.2
away from the wall.

FIG. 16. �Color online� Cross section of coherent vorticity of the �1,1,1�
asymmetric mode. �a� Nonoscillated. �b� Oscillated. The vortex core shifts
y+=3.2 away from the wall.

FIG. 17. �Color online� Cross section of coherent vorticity of the �2,1,1�
asymmetric mode. �a� Nonoscillated. �b� Oscillated. The vortex core shifts
y+=45.9 away from the wall with a slight change in structure.
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the propagating structures. Also corroborating these results is
the work by Prabhu et al.22 that examined the KL decompo-
sition of controlled suction and blowing to reduce drag in a
channel. They, too, found that the structures were pushed
away from the wall and that they had higher phase velocities.
Third, the study by Zhou7 is also consistent with these re-
sults, as she found that any oscillation in the streamwise
direction reduces the effectiveness of the drag reduction. Any
streamwise oscillation, even though it would still push the
structures away from the wall, would adversely effect the
mean flow rate profile resulting in an advection speed of the
propagating waves that is less than in the purely spanwise
oscillated case.

Thus, faster advection can be interpreted in two fashions.
The first is in terms of the traveling wave. The shifting of the
structures away from the wall into higher velocity mean flow
causes these structures to travel faster, giving them less in-
teraction time with the roll modes. Less interaction time with
the roll modes means less energy transfer �less bursting�, and
due to their fast decaying nature, their lifetime is reduced.
This reduced lifetime means they have less time to generate
Reynolds stress, and therefore drag is reduced. The second
interpretation is in terms of the classically observed hairpin

and horseshoe vortices.43,44 The pushing of the KL structures
away from the wall is equivalent to the vortices lifting and
stretching away from the wall faster. This faster lifting and
stretching process means that their lifetime is shortened,
again resulting is less time to generate Reynolds stress, and
therefore drag reduction occurs.

IV. CONCLUSIONS

This work has shown, through a Karhunen–Loève analy-
sis, four major consequences of spanwise wall oscillation on
the turbulent pipe flow structures. They are: a shifting of rms
velocities and Reynolds stress away from the wall; a reduc-
tion in the dimension of the chaotic attractor describing the
turbulence; a decrease in the energy in the propagating
modes as a whole with an increase in modes that transfer
energy to the outside of the log layer; and a shifting of the
propagating structures away from the wall into higher speed
flow resulting in faster advection and shorter lifespans, pro-
viding less time to generate Reynolds stress and therefore
reducing drag.

FIG. 19. �Color online� Cross section
along the r-z plane of coherent vortic-
ity of the �2,0,1� ring mode. �a�
Nonoscillated. �b� Oscillated. The vor-
tex core shifts y+=7 away from the
wall.

FIG. 18. �Color online� Cross section
along the r-z plane of coherent vortic-
ity of the �1,0,1� ring mode. �a�
Nonoscillated. �b� Oscillated. The vor-
tex core shifts y+=13 towards the wall
with significant changes in structure.
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The strength of the KL method is that it yields global
detail and structure without conditional sampling. The en-
semble was created out of evenly spaced flow fields in time,
as opposed to conditional sampling of the flow field with
event detection such as bursts or sweeps, and the entire flow
field and time history was studied. Therefore, we argue that
the overall mechanism of drag reduction through spanwise
wall oscillation has been found. Although a result of drag
reduction is the decorrelation of the low speed streaks and
the streamwise vortices, as found by previous researchers,
this is an incomplete description of the dynamics. It is the
lifting of the turbulent structures away from the wall by the
Stokes flow induced by the spanwise wall oscillation that
causes the reduction in the time and duration of Reynolds
stress generating events, resulting in drag reduction. In addi-
tion, this dynamical description encompasses other methods
of drag reduction such as suction and blowing, active con-
trol, and riblets,22 establishing it as a contender for a com-
mon theory of drag reduction.
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