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The effect of thermal expansion on nonlinear first and second sound
in the whole temperature region of He II
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We consider one-dimensional, weakly nonlinear first and second sound waves in He II. The first
correction to the shock speed is computed for each sound mode. The expressions obtained are exact
with respect to the coefficient of thermal expansionb. It is shown that the commonly made
assumption of negligibleb can lead to significant error in the shock speeds for first sound away
from the lambda-line. This contrasts with the calculation of the linear sound speeds and the shock
speed for second sound where theb50 approximation yields accurate results. Near the lambda-line,
the exact expressions for both modes are seen to contain fundamentally different singularities than
those found in the commonly employedb50 theory. © 1996 American Institute of Physics.
@S1070-6631~96!02009-0#

I. INTRODUCTION

At ordinary pressures the transition from ordinary liquid
helium ~He I! to superfluid helium~He II! occurs at approxi-
mately 2.17 K. The remarkable properties of He II include
the existence of quantized vorticity, the ability to flow
through microscopic passages with virtually no resistance
and the existence of multiple sound modes. The primary fo-
cus of the present investigation is the influence of the coef-
ficient of thermal expansion,

b:52
1

r

]r

]T U
p,w2

, ~1!

on the first and second sound modes. Herer is the mass
density of He II, T is the absolute temperature,p is the
pressure andw is the counterflow or slip velocity. First
sound is the direct analog of ordinary sound in any liquid or
gas in that it carries nearly isentropic perturbations in the
density and particle velocity. Second sound has no analog in
ordinary fluids and carries perturbations in the temperature,
entropy and counterflow velocity; in second sound both the
pressure and bulk velocity of the fluid are nearly constant.

A commonly made simplification in the study of sound
waves in superfluid helium is the assumption that the thermal
expansion coefficient~1! is negligibly small. As pointed out
by Putterman,1 such an assumption would seem reasonable
because the size ofb is on the order of2(102321022)
K21 at pressures and temperatures of practical interest. In
fact, if one simply neglectsb everywhere it appears, the
resultant linearized sound speeds agree well with the exact,
i.e., bÞ0, versions; further discussion of this point can be
found in Ref. 1 and in Section III of the present study. How-
ever, a recent study by Cramer and Kluwick11 reveals that
theb50 approximation leads to significant error in the cal-
culation of many of the properties of fourth sound. The latter

sound mode occurs in clamped He II, i.e., that where the
velocity of the normal component is rendered stationary in
flows through densely packed powders or narrow capillaries.
In particular, Cramer and Kluwick demonstrated that the ex-
pressions for the Doppler shifts and the nonlinear wave
speed are inaccurate when theb50 condition is used indis-
criminately. As one might expect, the accuracy of theb50
assumption was seen to depend on the size of the terms pre-
multiplying b. In both the present case and that of fourth
soundb tends to appear in the nondimensional combinations

bT and G:5
ba2

cp
, ~2!

whereG is the well-known Gru¨neisen parameter,

a:5S ]p

]r U
s,w2

D 1/2 and cp :5T
]s

]T U
p,w2

are theb50 versions of the linearized speed of first sound
and the specific heat at constant pressure. The quantitys is
the fluid entropy. The first quantity in~2! was found to be
relatively small at most temperatures and pressures. How-
ever, because the size ofa andcp are of the order of~200–
300! m•s21 and 103 m2

•s22
•K21, the Grüneisen parameter

G can be of order one at many pressures and temperatures.
For example, if we use the data of Maynard,9 we find that
bT'20.03 andG'21.05 at a temperature of 1.6 K and a
pressure of 20 bar. Thus, at this temperature and pressure,
the assumption of negligibleb is by no means obvious and
the purpose of the present investigation is to re-examine its
validity for first and second sound with particular attention
being paid to nonlinear effects.

In the present study we focus on small disturbances in
the form of simple right-running waves. Nonlinear effects
will be taken into account by applying the well-known mul-
tiple scales technique of Taniuti and Wei.3 The governing
equations will be taken to be the Landau two-fluid equations,
the exact form of which are given in Section II. The general

a!Telephone:143 1 58801 4505; Fax:143 1 5878904; Electronic mail:
akluwick@hp.fluid.tuwien.ac.at
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multiple-scales approach is described in Section III A and
the linear theory is examined in Sections III B–III C. In Sec-
tion III C we show that even the linear theory is inaccurate if
the b50 approximation is applied universally to problems
involving first sound. In particular, first sound cannot be re-
garded as isothermal if the Gru¨neisen parameter~2! is of
order one.

In Section III D, we go on to compute the quadratic
steepening coefficients for first and second sound. There it is
shown that nonlinear second sound is accurately modeled by
the commonly madeb50 approximation, at least away from
thel-line. On the other hand, when first sound is considered,
noticeable numerical differences between the exact values of
the steepening parameter and that obtained in the full
b→0 limit were found. As in the case of fourth sound these
differences are small at low pressures but become more pro-
nounced as the pressure increases or thel-line is ap-
proached.

We complete our analysis of the influence of thermal
expansion on the nonlinear sound modes by examining the
limiting behaviours at thel-line and as the temperature ap-
proaches absolute zero; this is carried out in Sections IV and
V, respectively. The results of our analysis are that the as-
ymptotic behaviour predicted by theb50 theory is incorrect
for both first and second sound as either thel-line or abso-
lute zero is approached.

In Section VI, we point out an error in the fourth sound
l-line analysis of Cramer and Kluwick.11 In this section we
provide the correction along with the limiting results for the
fourth sound steepening parameter as the absolute tempera-
ture approaches zero.

II. FORMULATION

We take the governing equations of the superfluid He II
to be inviscid, unsteady and one dimensional. For the present
purposes it is convenient to use the densityr5rn1rs , the
bulk velocity v5(rn /r)vn1(rs /r)vs , the entropys and
the slip or counterflow velocity between the normal and su-
perfluid componentw5vn2vs as dependent variables. If we
use the thermodynamic relation for the chemical potential
m:

dm5
dp

r
2sdT1

1

2
~a21!dw2, ~3!

where p5p(r,s,w2) is the pressure,T5T(r,s,w2) is the
absolute temperature anda:5rs /r is the superfluid mass
fraction. If we further take into account that

rn5r~12a!, rs5ra,

vn5v1aw, vs5v1~a21!w,

the exact two-fluid equations according to Putterman1 in di-
mensional form are

r t1vrx1rvx50, ~4!

v t1
rx
r

$pr1w2@rar~122a!1a~12a!#%1vvx

1sxFpsr 1w2as~122a!G
12wwxFpwr 1w2aw~122a!1a~12a!G50, ~5!

st1
rx
r

~rswar1saw!1sx~v1aw1swas!

1wx~2sw
2aw1sa!50, ~6!

wt@~a21!12w2aw#1rxH 2sTr1w2Far ~a21!

2ar~223a1sas!2
saas

r G J 1vxw@~a21!2rar#

1sx@2sTs1w2as~2a222sas!#

1wx$v~a2112w2aw!1w@3a~a21!

22w2aw~223a1sas!2s~aas12Tw!#%50, ~7!

where the subscriptst,x,r,s and w denote differentation
with respect to time, propagation distance, density, entropy
and the square of the counterflow velocity, i.e.,w2. Equa-
tions ~4!–~6! are the mass, momentum and entropy balance.
Equation~7! will be referred to as the slip equation.

The knowledge of the constitutive relations,

a5a~r,s,w2!, p5p~r,s,w2!, T5T~r,s,w2!,

is necessary to close the system~4!–~7!. For the present cal-
culations, the following differential relations~Cramer and
Sen2! will be useful:

dp5
bTra2

cp
ds1a2dr

1
bTra2

2cp S ]a

]T U
p,w2

1
cpr

bT

]a

]p U
T,w2

D dw2, ~8!

dT5
T

cv
ds1

bTa2

rcp
dr

1
T

2cv
S ]a

]T U
p,w2

1
ba2r

g

]a

]p U
T,w2

D dw2, ~9!

where

b:52
1

r

]r

]T U
p,w2

, a:5S ]p

]r U
s,w2

D 1/2,
~10!

cv :5T
]s

]T U
r,w2

, cp :5T
]s

]T U
p,w2

,

and

g:5
cp
cv

511
b2Ta2

cp
~11!
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is the ratio of the specific heats. The quantitiesb, a, cv and
cp are referred to as the coefficient of thermal expansion, the
first sound speed, the specific heat at constant volume and
the specific heat at constant pressure, respectively.

The nonlinear hyperbolic system of conservation equa-
tions can be written in the compact matrix-vector notation
~the Einstein summation convention is used!

]ui
]t

1Ai j ~uk!
]uj
]x

50 ~ i , j ,k51,2,3,4!, ~12!

where the dependent variables are

u15r, u25v, u35s, u45w

and the components of the speed matrixAi j are given by

A115v, A125r, A1350, A1450,

A215
pr

r
1
w2

r
@rar~122a!1a~12a!#,

A225v, A235
ps
r

1w2~122a!as ,

A2452wFa~12a!1
pw
r

1~122a!aww
2G ,

A315
sw

r
~a1rar!, A3250, ~13!

A335v1w~sa!s , A345s~a12aww
2!,

A415
1

Z F sTr

12a
1
w2

r S a1
saas

12a
1rar

21sas23a

12a D G ,
A425

w

Z S 11
rar

12a D ,
A435

1

Z F sTs12a
1w2asS sas

12a
22D G ,

A445v1
w

Z S 3a1s
2Tw1aas

12a
12w2aw

sas23a12

12a D ,
with the abbreviation

Z:512
2w2aw

12a
.

III. NONLINEAR EVOLUTION EQUATIONS

A. Outline of derivation

We study the long-time evolution of small but finite am-
plitude waves governed by the quasilinear system~12!,
where phenomena such as wave steepening can be observed.
To this end the solutionui is assumed to have an asymptotic
expansion of the form

ui5ui
~0!1dui

~1!1d2ui
~2!1O~d3!, ~14!

whered!1 is a small perturbation parameter and the uni-
form base stateui

(0) is given by

u1
~0!5ro , u2

~0!50, u3
~0!5so , u4

~0!50.

To derive the evolution equation we follow the reductive
perturbation method introduced by Taniuti and Wei,3 assum-
ing that cumulative nonlinear effects are of importance at
times ofO(1/d). Transformation from (x,t) to a wave coor-
dinateX5x2lt, wherel is the linear sound speed of the
propagation mode under consideration, and a slow time scale
t5dt then finally shows that the evolution of small distur-
bances is governed by an inviscid Burgers equation:

]U

]t
1GU

]U

]X
50, ~15!

where the shape functionU is related to the original vari-
ables by

ui
~1!5r iU~X,t! ~16!

andG is the quadratic nonlinearity coefficient given by

G5
1

l mrm
l i

]Ai j

]uk
~un

~0!!r j r k , ~17!

which is required to be ofO(1). Thederivatives ofAi j are to
be evaluated at the undisturbed stateui

(0) and the quantities
r i and l i are the right and left eigenvectors of the speed
matrix Ai j

(0)[Ai j (uk
(0)) with the linear sound speedsl as

eigenvalues, i.e.

Aim
~0!rm5lr i , l mAmi

~0!5l l i . ~18!

Using the method of characteristics, the formal solution to
equation~15! can be written in the form

U5const on
dx

dt
[c*5l1dGU1O~d2!, ~19!

wherec* is the convected sound speed.
In the following, the computations will be carried out

simultaneously for both first and second sound. Solving the
eigenvalue problem~18! one obtains the right and left eigen-
vectors,

rW5S r 1r 2r 3
r 4

D 5r 1S 1

l

ro

cpo
boToao

2ro
~l22ao

2!

lcpo
boToao

2rosoao
~l22ao

2!

D ~20!

and

lW5S l 1l 2l 3
l 4

D T

5 l 1S 1

ro
l

boToao
2ro

cpo~l22uT
2!

boToao
2rosoao

lcpo~l22uT
2!

D T

, ~21!

wherer 1and l 1 are arbitrary constants.

2515Phys. Fluids, Vol. 8, No. 9, September 1996 Braun, Kluwick, and Cramer
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Tue, 08 Apr 2014 15:07:14



B. Linear wave speeds

Taking the choices

r 1[ro ~first sound!,

r 1[2
boTorosoao

cpo
~second sound!,

the common results for the nondimensional nonlinearity pa-
rameters are recovered in the limitbo[0. In this connection
it is interesting to note that it is not necessary to specifyl 1
explicitly, at least for the purposes of computingG, equation
~17!. Furthermore, the eigenvaluesl6 corresponding to first
and second soundwaves are found to be

~l6!25
ao
21uT

2

2
6
ao
22uT

2

2 F114S uTaoD
2boToGo

go

3
1

~12~uT /ao!
2!2G

1/2

, ~22!

in complete agreement with relationship~7-14! given by
Putterman,1 where

uT :5S so
2Toao

cvo~12ao!
D 1/2 ~23!

is thebo50 version of the linear second sound speed and
Go :5boao

2/cpo is the Grüneisen parameter. The subscript
o denotes the values of the field quantities in the unperturbed
state. Expansion of~22! for smallboTo leads to

l156aoF11
1

2

~uT /ao!
2

12~uT /ao!
2

boToGo

go

1OS S uTaoD
4

bo
2To

2D G , ~24!

l256uTF12
1

2

1

12~uT /ao!
2

boToGo

go
1O~bo

2To
2!G .

~25!

The 6 signs on the right-hand sides now denote right and
left running waves. SinceboTo tends to be small for most
temperatures and pressures, the approximationsl1'ao ,
l2'uT are commonly~and reasonably! made. One should
note, however, that the approximation forl1 is expected to
be more accurate than that forl2 because
uT /ao5O(1021) for most pressures and temperatures.

Before closing this section we briefly discuss how the
results for the eigenvaluesl have to be modified if the mean
flow velocityv or the counterflow velocity are nonzero in the
unperturbed state. Ifvo Þ 0 andwo50 the Doppler-shifted
wave speeds, e.g. the eigenvalues of the modified speed ma-
trix Ai j ds

(0) , are given by

~lds
62vo!

25
ao
21uT

2

2
6
ao
22uT

2

2 F114S uTaoD
2boToGo

go

3
1

~12~uT /ao!
2!2G

1/2

. ~26!

The fact thatl seen in equation~22! has simply to be re-
placed by (l2vo) is, of course, a direct consequence of the
frame invariance of the governing equations. If on the other
hand we allow for a small counterflow velocitywo /ao!1
but no bulk velocityvo50 the results for first and second
sound can be written in the form

lds
1'aoF11

wo

ao

boToso
cpo

S roao
2ap

~12ao!
12aoD 1•••G , ~27!

lds
2'uTF11

wo

uT
S 2ao1

TosoaT

cvo~12ao!
D1••• G , ~28!

where only terms linear inwo have been retained. These
relationships are seen to be completely consistent with the
bo50 approximation, e.g. Putterman.1

C. Perturbation relations

Next let us investigate how the relationships between the
disturbances of the various field quantities caused by first
and second sound waves are affected by small but finite val-
ues ofboTo .

According to equations~14!, ~16! and~20! the perturba-
tions of the density, velocity, entropy and counterflow veloc-
ity are related toU by

r2ro
ro

5
v
l

5
s2so
so

boToao
2so

cpo~l22ao
2!

5
w

l

boToao
2soao

cpo~l22ao
2!

5dU~X,t! 5o~1!.
~29!

If the general results~29! are specialized for first sound,
l5l1, we see that

v
l1 5

r2ro
ro

, ~30!

s2so
so

5
w

l1 ao5
~r2ro!

ro

cpoGo

sogo

~uT /ao!
2

12~uT /ao!
2

3H 11OF S uTaoD
2

boToG J . ~31!

Since cpoGo /so is typically of order one it follows that
(s2so)/so andw/l are small compared to (r2ro)/ro pri-
marily because ofuT!ao . This indicates that the usually
adopted assumption that the counterfloww is negligible in
first sound should be thought of as a smalluT /ao approxi-
mation rather than a smallbo approximation.

Similarly, evaluation of the results for second sound
waves yields

v
l2 5

r2ro
ro

'2
boToso
cpo

s2so
so

, ~32!

w

l2 5
s2so
aoso

. ~33!
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Inspection of these expressions shows that bothv/l2 and
(r2ro)/ro are small in comparison to (s2so)/so provided
thatboTo is small.

These results are in general agreement with the conven-
tional picture that (i ) first sound waves are associated prima-
rily with perturbations inv andr with w'0 ands'so and
( i i ) that second sound waves predominantly carry perturba-
tions inw ands while v'0 andr'ro .

In order to determine the temperature and pressure per-
turbations caused by first and second sound waves it is useful
to write ~8! and ~9! in the small disturbance form, which
reads as

p2po
roao

2 5
boToso
cpo

s2so
so

1
r2ro

ro
, ~34!

T2To
To

5
so
cvo

s2so
so

1Go

r2ro
ro

, ~35!

to lowest order. By substitution of the general relations~34!,
~35! in ~29! one finds

p2po
rao

2 5S l

ao
D 2 r2ro

ro
52

~l/ao!
2

12~l/ao!
2

boToso
cpo

s2so
so

,

~36!

T2To
To

5H go

boTo
F S l

ao
D 221G1GoJ S r2ro

ro
D

5
so
cpo

S go2
boToGo

12~l/ao!
2D s2so

so
. ~37!

Here the expressions involving the density and entropy per-
turbations are most convenient for the investigation of first
and second sound waves, respectively. Specialization of
these general relations for first sound yields the expressions

p2po
roao

2 '
r2ro

ro
, ~38!

T2To
To

'GoH 1

12~uT /ao!
2 1OF S uTaoD

4

boToG J r2ro
ro

,

~39!

which in the limitboTo→0 reduce to

T2To
To
→

Go

12~uT /ao!
2

r2ro
ro

'
Go

12~uT /ao!
2

p2po
roao

2 .

~40!

The main fact to be noticed here is that the temperature per-
turbations are non-negligible wheneverGo5O(1). This is in
sharp contrast with thebo50 approximation which is based
on the implicit assumptionGo5O(boTo) and thus treats
first sound waves as anisothermaldisturbance. Temperature
perturbations then represent a higher order effect, Putterman
and Garrett.4 As an numerical example note that
Go521.05 at 1.6 K and 20 bar. Clearly, therefore,Go is not
necessarily small and consequently (T2To)/To is not negli-
gible in the moderate and high pressure regime.

The results for second sound can be expressed in the
form

p2po
roao

2 '2
~uT /ao!

2

12~uT /ao!
2

boToso
cpo

s2so
so

, ~41!

T2To
To

'
so
cvo

S 12
Go

go

boTo
12~uT /ao!

2D s2so
so

'
so
cvo

s2so
so

,

~42!

which show that the pressure perturbations are negligible in
the limit boTo→0 in complete agreement with thebo50
predictions, i.e.,

T2To
To

'
s2so
cvo

'
soaow

cvouT
, ~43!

andp,r' constant withv'0.

D. Evaluation of the nonlinearity coefficients

We now complete our analysis by determining the effect
of the thermal expansion coefficient on the quadratic nonlin-
earity parametersG1, G2 for first and second sound waves.
Evaluation of equation~17! taking into account equations
~20!, ~21!, ~13!, ~24! and ~25! leads to

G1

l1 5
1

2~11A! F21
roprr

~l1!2
1

2prsuT
2bo

~l1!2go~12~uT /ao!
2!

1
uT
4b0

2

r0go
2~12~uT /ao!

2!2 S pss
~l1!2

1
2ro~12ao!

so
2ao

1
2pw
so
2ao

2D
1AS 41

roar~22ao!

ao~12ao!
D 1A

uT
2bo~5ao12soas!

soaogo~12~uT /ao!
2!

1
boToao

2ro
2so

2ao

~l1!2cpo~~l1!22uT
2!

Trr~12ao!1Trar

~12ao!
2

1A
soaoro
~l1!2

Tr~12ao!1soTrs~22ao!1soTras1soTsar

~12ao!
2

1A
bouT

2soao

~l1!2go~12~uT /ao!
2!

~Ts1soTss!~12ao!1soTsas

~12ao!
2 1A

bouT
2

go~12~uT /ao!
2!

2Tw1aoas

ao~12ao!
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and
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HereinA, B denote the abbreviations
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G ,

and the derivatives ofa, cv anda are evaluated at the unperturbed state.
For practical applications it is convenient to express these results also in a different form which takes into account that the

constitutive equations are frequently expressed in terms ofp, T, w rather thanr, s, w. Applying the relationships,
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]

]sU
r,w2

5
bTra2

cp

]

]p U
T,w2

1
T

cv

]

]T U
p,w2

, ~48!

one then obtains
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The commonly used results~in the following indicated
by the indexc) are obtained by settingbo[0 and therefore
also go51, l15ao , l25uT , A50, B51 and, following
Torczynski,5 uT /ao50 and ]a/]Tup,w250. Relationship
~49! then reduces to
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ao
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]r U
s,w2

,

~51!

which is equal to the well-known fundamental derivative in
ordinary gas dynamics, see, e.g. Hayes6 or Thompson.7 For
second sound one obtains
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in complete agreement with Khalatnikov’s form of the steep-
ening parameter, see, e.g. Ref. 8.

The exact results~49!, ~50! for G1 and G2 are rather
lengthy and involve a number of terms the contributions of
which are insignificant for most practical purposes. Similar
to the investigation of fourth sound waves by Cramer and

Kluwick11 it is possible, therefore, to derive a simple but
accurate approximation breaking down in the immediate
neighbourhood ofT50 only which has to be treated sepa-
rately. To this end we set

uT
ao

>0,
ao
l1 >1,

uT
l2 >1, A>0, B>1,

and neglect terms ofO(boTo) except where multiplied by
derivatives ofa, cv anda with respect top or T. We also
anticipate that the simplificationgo51 is not accurate near
thel-line as a result of the singularity ofcp . Consequently,
equations~49! and ~50! can be approximated by
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Numerical computations of the exact, thebo50 and the sim-
plified versions of the exact nonlinearity parameters were
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performed using the tabular data given by Maynard9 in the
pressure range~0–25! bar and the temperature range above
1.2 K up to the vicinity of thel-line. The calculations
showed that the numerical differences between the exact and
approximate expressions for the steepening parameter of sec-
ond sound were of the same order as the uncertainties in the
differenceuT

22so
2Toao /(cvo(12ao)), when the data for all

quantities are taken from Maynard. As a consequence the
final results depend on the choice of variables taken from
Maynard’s data base. In order to be consistent, therefore, the
same choice was adopted for all evaluations by eliminating
uT in favour of so

2Toao /(cvo(12ao)).
Furthermore, the pressure and temperature derivatives

were approximated by means of a second order accurate dif-
ferencing scheme. The results are summarized in Fig. 1 for
first sound and in Fig. 2 for second sound, respectively. In
addition, Fig. 2 includes the experimental data obtained by
Dessler and Fairbank.10

Inspection of Figs. 1 and 2 shows excellent agreement
between the exact results~49!, ~50! and the simplified rela-
tionships~53!, ~54! for the nonlinearity parameters. Further-
more, it is seen that the influence of the thermal expansion
coefficient on the nonlinearity parameter for second sound is
very weak even at larger pressures. Taking into account also
the results for the perturbations of the various field quantities
summarized in Section III C we, therefore, conclude that the
bo50 approximation is a valid approximation for second
sound waves.

In contrast, the total neglect of effects associated with
the thermal expansion coefficient is found to lead to signifi-
cant errors in the prediction ofG1. The discrepancies from
thebo50 results grow rapidly with increasing pressures and
are most pronounced in the neighbourhood of thel-line.

Included in Fig. 2 are also the~smoothed! experimental
data reported in Dessler and Fairbank.10 It is seen that the
calculated and measured values ofG2 are practically identi-
cal for T>1.8 K. Larger discrepancies which reach a maxi-
mum value of about 14% atT51.2 K, however, occur at
smaller temperatures. A comparison between theory and ex-
periment has been carried out also in the original paper by
Dessler and Fairbank. This comparison yielded slightly
smaller discrepancies at moderate temperatures (T'1.4 K!
but significantly larger ones in the higher temperature range.
When comparing these observations it should be noted, how-
ever, that the accuracy of the experimentally determined val-
ues of the steepening parameter is about610% and, further-
more, that the evaluation of the theoretical results is based on
completely different procedures. While in the study of
Dessler and Fairbank the exactbo50 result ofG2 was ap-
proximated by a power law the data base provided by
Maynard which is thought to be the most accurate available
at present~the accuracy of the sound speed measurements is
about60.2%! was used here to evaluate the Khalatnikov
expression. Evaluation of the power law approximation and
the full Khalatnikov expression produces differences ranging
between 2% atT51.4 K and 46% atT52 K.

IV. BEHAVIOUR AT THE PHASE TRANSITION LINE
(l-LINE)

As mentioned already, the effect of the thermal expan-
sion coefficient on the nonlinearity parameters is most pro-
nounced in the vicinity of thel-line whereb diverges. It is
important, therefore, to study the asymptotic behaviour of
these quantities in the limitT→Tl . To this end it was nec-
essary first to derive a self-consistent set of asymptotic ex-
pansions for the various thermodynamic quantities. Using
these results~see the Appendix! one then obtains the limiting
expressions for both thebo50 and the exact forms of the
steepening parameters. The limiting values of thebo50 re-
sults are obtained immediately from~51! and ~52!
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Here the indexl denotes values at thel-line ~see the Ap-
pendix! and the parameter« is the relative temperature dis-
tance from the phase transition, i.e.,«512T/Tl .

The analysis starting from the exact results is more
subtle. For example, investigation of~49! reveals that the
correct behaviour ofG1 near thel-line is given by the two
term expansion
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1
boToao

3

~l1!2cpo
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to leading order which reduces to thebo50 result if the
second term is neglected. Using the Maxwell relation~A5!
the expression forG1 can be written in the equivalent form
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G .
Insertion of the limiting relationships forap , aT and sp
given in the Appendix then leads to
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G1
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Inspection of this expression yields the suprising result that
the leading order term of thebo50 approximation is exactly
cancelled by the leading order term containing the thermal
expansion coefficient. Consequently,G1/l1 is of order
O(« ln3 «)21 rather thanO(« ln2 «)21 as predicted by~55!.

For second sound one obtains in quite a similar way
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2 F2
bo
2Toao

2uT
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gosoaocpo
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Summarizing, we conclude that taking into account the ther-
mal expansion coefficient leaves the signs of the limiting
values ofG1 andG2 unchanged but reduces the strength of
the singularities which form in the limitT→Tl . As a result,
these singularities make themselves felt in a smaller neigh-
bourhood of thel-line than according to thebo50 theory.
This is seen to be in qualitative agreement with the results
plotted in Fig. 1 and Fig. 2 although the available data are
not sufficient to resolve these singularities.

Finally it should be noted that the limiting behaviour of
G1 points to the existence of a region in the vicinity of the
l-line whereG1 is negative, e.g. where first sound waves
exhibit the phenomena associated with negative and mixed
nonlinearity.

FIG. 1. Computed values of the quadratic steepening parameter for first
sound. The solid lines denote the exact expression~49! and the dashed lines
the results corresponding to thebo50 theory~51!. The open circles denote
the values obtained from the simplified expression~53!. Small vertical lines
on theT-axis indicate the phase transition temperaturesTl (dTl /dp,0).

FIG. 2. Computed values of the quadratic steepening parameter for second
sound. The solid lines denote the exact expression~50! and the dashed lines
the results corresponding to thebo50 theory~52!. The open circles denote
the values obtained from the simplified expression~54!. Closed circles rep-
resent the experimental data taken from Dessler and Fairbank.10 Small ver-
tical lines on the T-axis indicate the phase transition temperatures
Tl (dTl /dp,0).
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V. BEHAVIOUR AT ABSOLUTE ZERO

As pointed out earlier it is necessary to study the behav-
iour of the steepening parameters forT→0 separately. In a
Bose-fluid, such as He II, the elementary excitations with
small momentum are phonons, i.e. the energy of these quasi-
particles is a linear function of their momentum. This linear
law holds as long as the wavelength of the phonons is large
compared to the intermolecular distances of the helium at-
oms. Near absolute zero we take He II to be an ideal Bose-
gas and therefore the Bose–Einstein statistics are applied to
derive a consistent set of formulas for each thermodynamic
quantity~see the Appendix!. It is remarkable that onecannot
deducern50 and thereforea51 atT50 from the third law
of thermodynamics, but it is reasonable to make the assump-
tion a[1 at absolute zero~see Ref. 1!. In the following
analysis we will use a tilde to denote quantities at absolute
zero.

First we consider thebo50 versions of the nonlinearity
parameters~51! and ~52!, which are easily shown to remain
finite for T→0; these are
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Note, that the result~60! is independent of the pressure.
Evaluation of the exact formulas~49!, ~50! in the limit
T→0 leads to the limiting expressions
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dã

dpD
3

~61!

and
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, ~62!

which are fundamentally different from those of thebo50
theory, e.g.~59! and ~60!.

VI. COMMENTS ON NONLINEAR FOURTH SOUND

It is interesting to apply the sets of asymptotic formulas
derived in the Appendix which describe the properties of
various thermodynamic quantities in the vicinity of the
l-line and nearT50 also to the steepening parameter of the
so-called fourth sound.

Starting from the bo50 approximation given by
Torczynski5 one deduces that its behaviour in the neighbour-
hood of thel-line is given by
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The limiting behaviour of the exact form of the nonlinearity
parameter has been investigated first by Cramer and
Kluwick.11 Owing to the fact that the expansions of the rel-
evant thermodynamic quantities were limited to the leading
order terms listed in the paper of Maynard9 a cancellation
effect similar to that occurring in first and second sound
waves remained unnoticed. As a consequence the calcula-
tions predicted a positive singularity in contrast to the
present analysis which yields
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~64!

As in the case of first and second sound waves the effects
caused by the thermal expansion leave the sign of the steep-
ening parameters unchanged but weaken the strength of the
singularity.

Evaluation of the fourth sound nonlinearity parameter
for bo50 near absolute zero leads to the expression

D;11roao
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]p U
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→11ã r̃
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dp
. ~65!

The exact steepening parameter of fourth sound behaves like

G

l
;
ao
2ao

l2 S 11roao
]a

]p U
T,w2

D→11ã r̃
dã

dp
. ~66!

Equation~66! is seen to be equal to the expression for the
bo50 case.

VII. SUMMARY

The main objective of the present study was the deter-
mination of the effect of thermal expansion on nonlinear first
and second sound. The quadratic steepening parameters for
arbitrary values of the coefficient of thermal expansion~1!
were derived through use of the multiple scales technique of
Taniuti and Wei.3 The exact results for first and second
sound are given in equations~49! and~50!, respectively. The
corresponding results in terms of density and entropy~rather
than pressure and temperature! derivatives are given in~44!
and ~45!. It was found that the commonly appliedbo50
approximation is an accurate estimate for second sound ex-
cept in the neighbourhood of thel-line. However, we found
significant differences between thebo50 and exact expres-
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sions in the case of first sound. These differences are small at
low pressures but increase with pressure and as thel-line is
approached.

We have also analyzed the behaviour of the exact ex-
pressions~49! and ~50! in the limits T→Tl and T→0. In
each limit the asymptotic behaviour of both first and second
sound was found to differ from thebo50 approximation. As
the l-line is approached, the resultant singularities for each
mode was found to be weaker than those of thebo50 theory
by a factor ln«.

Both the exact andbo50 theories reveal that
G1→2` as the l-line is approached. Thus, backward
steepening first sound fronts which form first sound expan-
sion shocks are expected to occur in the vicinity of the
l-line, even at low pressures. At undisturbed states where
G1 changes sign, the approximation scheme of Taniuti and
Wei3 breaks down and the scheme of Cramer and Sen18 pro-
vides the appropriate extension of the Burgers equation~15!.
Physically, the evolution will be characterized by both back-
ward and forward steepening~mixed nonlinearity!. First
sound double shock configurations analogous to those seen
in the second sound experiments of Turner19 and Torczynski
et al.20 are then expected to be observed.

APPENDIX

1. Derivation of a set of self-consistent asymptotic
formulas for the thermodynamic quantities at
the l-line

A second order phase transition, such as that between He
II and He I, involves discontinuous changes of the second
order derivatives of the Gibbs free energyg, e.g. the specific
heat at constant pressurecp52T(]2g/]T2)up and the coef-
ficient of thermal expansionb5r(]2g/]p]T), whereasg
and its first order derivatives~the entropys and the density
r) vary smoothly when crossing thel-curve. To derive con-
sistent expansions for all thermodynamic quantities in the
vicinity of the l-line used in our analysis, we take the sin-
gularity law for the specific heat at constant pressurecp and
the power law for the superfluid fractiona5rs /r given by
Ahlers and co-workers12–14as fundamental equations and, in
addition, definitions and thermodynamic cross relations of
the quantities we are interested in. These laws are in agree-
ment with the predictions of the renormalization group
theory, an exact theory of critical phenomena. In the follow-
ing treatment the indexl denotes values at thel-line and
« is the relative temperature distance to thel-line in the He
II region defined by

«~p,T!:512
T

Tl~p!
→0, ~A1!

and it should be noted that the corresponding expansions are
valid for the range«,O(1022). Following Refs. 12, 13 and
14 the asymptotic behaviour ofcp anda in the limit «→0 is
assumed to be given by

cp~p,«!;2A~p!ln «1B~p!1O~« ln «!→`, ~A2!

a~p,«!;k~p!«2/3~11b~p!«1/2!1O~«5/3!→0, ~A3!

with the pressure dependent coefficientsA(p).0, B(p),
k(p).0 andb(p) given in Refs. 12, 13 and 14. The cross
relations between all other thermodynamic quantities are the
definition of the specific heat,

cp :5T
]s

]T U
p,w2

, ~A4!

the Maxwell relation,

]s

]p U
T,w2

52
]

]T S 1r D U
p,w2

, ~A5!

and an equation obtained by combining the definition of the
thermal expansion coefficient~10! and the Maxwell relation
~A5!,

b52r
]s

]p U
T,w2

. ~A6!

Furthermore equation~11! and the definition~10! can be
combined to yield

a25
cp

cp ~]r/]p! uT,w22b2T
~A7!

and

g5a2
]r

]p U
T,w2

. ~A8!

Finally we use the definition of the specific heat ratio to
obtain an equation forcv ,

cv5
cp
g
, ~A9!

and the definition of theb50 version of the linear wave
speed of second sound~23!,

uT
2 :5

s2Ta

cv~12a!
. ~A10!

Taking the singularity law forcp , ~A2! and definition
~A4!, one obtains

s~p,«!;sl~p!1A« ln «2~A1B!«1O~«2 ln «!

→sl , ~A11!

for the entropy by integration. Integrating~A5! after inser-
tion of ~A11! leads to the expansion for the density,

r~p,«!;rl~p!1G 1« ln «1G 2«1O~«2 ln2 «!→rl .
~A12!

The definition of the pressure dependent coefficients is given
in the next section, here we simply note thatG 1 is equal to
R, the corresponding coefficient in the paper of Maynard.9

Computation of~A6! under consideration of the expression
for s andr yields

b~p,«!;C 1 ln «1C 21C 3« ln2 «1C 4« ln «1C 5«

1O~«2 ln3 «!→2`, ~A13!
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for the thermal expansion coefficient. Application of~A2!,
~A13!, and ~A12! to the equation for the linear wave speed
for first sound~A7! leads to

a2~p,«!;~C1
l!21

k1
ln «

1
k2
ln2 «

1OS 1

ln3 « D→~C1
l!2

~A14!

and

a~p,«!;C1
l1

j 1
ln «

1
j 2
ln2 «

1OS 1

ln3 « D→C1
l .

~A15!

The specific heat ratio, calculated from~A8! is given by

g~p,«!;m1 ln «1m21
m3

ln «
1OS 1

ln2 « D→`.

~A16!

Further evaluation of~A9! yields

cv~p,«!;cv
l1

n1
ln «

1
n2
ln2 «

1OS 1

ln3 « D→cv
l .

~A17!

And, finally expression~A10! leads to the expansion for the
linear wave speed for second sound:

uT
2~p,«!;h1«

2/31
h2«

2/3

ln «
1
h3«

2/3

ln2 «
1OS «2/3

ln3 « D→0.

~A18!

The derivatives ofa, cv anda with respect top andT can
be written as

]a

]p U
T,w2

~p,«!;2
j 1

Tl« ln2 «

dTl

dp
2

2 j 2
Tl« ln3 «

dTl

dp

1OS 1

« ln4 « D→2`, ~A19!

]a

]T U
p,w2

~p,«!;
j 1

Tl« ln2 «
1

2 j 2
Tl« ln3 «

1OS 1

« ln4 « D
→2`, ~A20!

]cv
]p U

T,w2
~p,«!;2

n1
Tl« ln2 «

dTl

dp
2

2n2
Tl« ln3 «

dTl

dp

1OS 1

« ln4 « D→`, ~A21!

]cv
]T U

p,w2
~p,«!;

n1
Tl« ln2 «

1
2n2

Tl« ln3 «
1OS 1

« ln4 « D
→`, ~A22!

]a

]p U
T,w2

~p,«!;
2k

3Tl«1/3
dTl

dp
1O~«1/6!→2`, ~A23!

]a

]T U
p,w2

~p,«!;2
2k

3Tl«1/3
1O~«1/6!→2`. ~A24!

To complete the description of the behaviour at thel-line,
the following expressions for the sound speed ratio, the ei-
genvalues~22! and the abbreviations~46! are useful:

S uTaoD
2

~p,«!;
h1«

2/3

~C1
l!2

1OS «2/3

ln « D→0, ~A25!

~l1!2~p,«!;~C1
l!21O~«2/3!→~C1

l!2, ~A26!

~l2!2~p,«!;O~«2/3!→0, ~A27!

A~p,«!;O~«2/3!→0, ~A28!

B~p,«!;11O~«2/3!→1. ~A29!

2. Coefficients

The pressure dependent coefficientsA, B, and k, b
have to be determined from experimental data, values can be
found in Refs. 12, 13, and 14, respectively. Furthermore, the
integration constantsl(p) is obtained from a relation given
by Ahlers12 andrl(p) is evaluated using an expression from
Kierstead.15 The l-line is represented through a polynomial
fit for pl(Tl), also given by Kierstead. All other coefficients
are links betweenA, B, k, b, sl , rl , Tl(p), and deriva-
tives of them.

G 1~p!52Arl
2 dTl

dp
,

G 2~p!52Tlrl
2S dsl

dp
2

~A1B!

Tl

dTl

dp D ,
C 1~p!52

Arl

Tl

dTl

dp
,

C 2~p!5
Brl

Tl

dTl

dp
2rl

dsl

dp
,

C 3~p!52
AG 1

Tl

dTl

dp
,

C 4~p!5G 1

dsl

dp
2rl

dA

dp
1

1

Tl

dTl

dp
~Arl1BG 1

2AG 2!,

C 5~p!52G 2

dsl

dp
1rl

d~A1B!

dp
1
B

Tl

dTl

dp
~G 22rl!,

C1
l~p!5S drl

dp
1
dsl

dp

dTl

dp
rl
2D 21/2

,

k1~p!52
~C1

l!4

A
S dsl

dp D 2rl
2Tl ,

k2~p!5
~C1

l!4

A2 S dsl

dp D 2rl
2TlF ~C1

l!2S dsl

dp D 2rl
2Tl2BG ,

j 1~p!5
k1
2C1

l 52
~C1

l!3rl
2Tl

2A S dsl

dp D 2,
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j 2~p!5
k2
2C1

l 2
k1
2

8~C1
l!3

5
~C1

l!3

8A2 S dsl

dp D 2rl
2TlF3~C1

l!2S dsl

dp D 2rl
2Tl24BG ,

m1~p!52
A

Tl
~C1

l!2S dTl

dp D 2rl
2,

m2~p!5~C1
l!2FBTl

S dTl

dp D 2rl
21~C1

l!2S drl

dp D 2G ,
m3~p!52

~C1
l!6

A
S drl

dp D 2S dsl

dp D 2rl
2Tl ,

cv
l~p!5

Tl

~C1
l!2rl

2 S dTl

dp D 22

52
A

m1
,

n1~p!5
Tl
2

Arl
4 S drl

dp D 2S dTl

dp D 24

,

n2~p!5
Tl
2

A2rl
6 S drl

dp D 2S dTl

dp D 26FBS dTl

dp D 2rl
21

drl

dp
Tl

2
dsl

dp

dTl

dp
rl
2TlG ,

h1~p!5
ksl

2Tl

cv
l 5ksl

2~C1
l!2rl

2S dTl

dp D 2,
h2~p!5

k

A
~C1

l!4sl
2TlS drl

dp D 2,
h3~p!5

k

A2 ~C1
l!6sl

2TlS drl

dp D 2F S dsl

dp D 2rl
2Tl2

B

~C1
l!2G .

3. Derivation of a set of self-consistent asymptotic
formulas for the thermodynamic quantities at absolute
zero

From the third law of thermodynamics, which usually is
expressed in the form

lim
T→0

s~p,T,w2!5 lim
T→0

s~r,T,w2!50, ~A30!

it is clear, that in the limitT→0 the entropys depends on
T only. Therefore we can write

lim
T→0

]s

]p U
T,w2

5 lim
T→0

]s

]r U
T,w2

5 lim
T→0

]s

]w2 U
p,T

5 lim
T→0

]s

]w2 U
r,T

50. ~A31!

After some basic manipulations equations~A31! and ~3!
leads to the well-known relations

lim
T→0

]r

]T U
p,w2

50 ~A32!

and

lim
T→0

]a

]T U
p,w2

50. ~A33!

Following Landau and Lifschitz,16 the phonon contribution
to the specific heat of He II forT→0 can be written in the
form

c~p,T![cp5cv;
K

ã 3r̃
T3→0, ~A34!

whereK is a constant and the tilde denotes quantities evalu-
ated atT50. For small temperatures the first sound speed
and the density depend on the pressurep only. From
c5T]s/]T one then obtains

s~p,T!;
K

3ã 3r̃
T35

c

3
→0. ~A35!

The integration constants(p,T50) was chosen to be zero in
order to satisfy the third law of thermodynamics. Equation
~A5! leads to

r~p,T!;r̃1
K r̃ 2

12

d

dp S 1

ã 3r̃
D T41O~T8!→ r̃. ~A36!

Evaluation of~A6! yields

b~p,T!;2
K r̃

3

d

dp S 1

ã 3r̃
D T3→0, ~A37!

in agreement with equation~A32!. From ~A7! and ~A8! it
follows that

a2~p,T!;
dp

dr̃
1O~T4!5ã 21O~T4!→ã 2 ~A38!

and

g~p,T!;11O~T4!→1. ~A39!

Taking the density of the normal component in the form
given in Ref. 16,

rn~p,T!;
K

3ã 5
T4→0, ~A40!

we obtain

rs~p,T!;r̃1
K

3 F r̃ 2

4

d

dp S 1

ã 3r̃
D 2

1

ã 5GT4→ r̃ ~A41!

and

a~p,T!;12
K

3ã 5r̃
T41O~T8!→1. ~A42!

The second sound speed, calculated from~A10!, is given by

uT
2~p,T!;

ã 2

3 S 12
K

3ã 5r̃
T4D→ ã 2

3
. ~A43!

For a thorough discussion of the result~A43! and its experi-
mental verification the reader is refered to Atkins.17 Using
equations~A34!, ~A38! and~A42! the derivatives ofa, c and
a with respect top andT can be written in the form

]a

]p U
T,w2

~p,T!;
dã

dp
1O~T4!→

dã

dp
, ~A44!
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]a

]T U
p,w2

~p,T!;O~T3!→0, ~A45!

]c

]p U
T,w2

~p,T!;K
d

dp S 1

ã 3r̃
D T3→0, ~A46!

]c

]T U
p,w2

~p,T!;
3K

ã 3r̃
T2→0, ~A47!

]a

]p U
T,w2

~p,T!;2
K

3

d

dp S 1

ã 5r̃
D T4→0, ~A48!

]a

]T U
p,w2

~p,T!;2
4K

3ã 5r̃
T3→0. ~A49!

Equation ~A49! satisfies the prediction of equation~A33!.
Finally, the abbreviations~46! take the form

A;
Kã 5r̃ 3

12 F ddp S 1

ã 3r̃
D G 2T4→0, ~A50!

B;
2

3
1O~T4!→

2

3
. ~A51!
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