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The effect of thermal expansion on nonlinear first and second sound
in the whole temperature region of He I
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Institut fir Stromungslehre und Wemelbertragung, Technische Universitdvien, Vienna, Austria

M. S. Cramer
Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061-0219

(Received 17 January 1996; accepted 20 May 1996

We consider one-dimensional, weakly nonlinear first and second sound waves in He Il. The first
correction to the shock speed is computed for each sound mode. The expressions obtained are exact
with respect to the coefficient of thermal expansién It is shown that the commonly made
assumption of negligiblgg can lead to significant error in the shock speeds for first sound away
from the lambda-line. This contrasts with the calculation of the linear sound speeds and the shock
speed for second sound where e 0 approximation yields accurate results. Near the lambda-line,

the exact expressions for both modes are seen to contain fundamentally different singularities than
those found in the commonly employgg=0 theory. © 1996 American Institute of Physics.
[S1070-663(196)02009-7

I. INTRODUCTION sound mode occurs in clamped He Il, i.e., that where the
velocity of the normal component is rendered stationary in
flows through densely packed powders or narrow capillaries.
In particular, Cramer and Kluwick demonstrated that the ex-
pressions for the Doppler shifts and the nonlinear wave

At ordinary pressures the transition from ordinary liquid
helium (He I) to superfluid heliun{He Il) occurs at approxi-
mately 2.17 K. The remarkable properties of He Il include

the existence of quantized vorticity, the ability to flow eed are inaccurate when te 0 condition is used indis
through microscopic passages with virtually no resistanc&P S . 8
criminately. As one might expect, the accuracy of gre 0

and the existence of multiple sound modes. The primary foéssum tion was seen to depend on the size of the terms pre-
cus of the present investigation is the influence of the coef- """ P P P
. . multiplying 8. In both the present case and that of fourth
ficient of thermal expansion, . ) . oo
soundg tends to appear in the nondimensional combinations

p=—- D pa’
paT|, e BT and G:=-—, 2

p

on the first and second sound modes. Heres the mass . .
whereG is the well-known Graeisen parameter,

density of He I, T is the absolute temperaturp, is the
pressure andv is the counterflow or slip velocity. First ap
sound is the direct analog of ordinary sound in any liquid or  &: :(%
gas in that it carries nearly isentropic perturbations in the
density and particle velocity. Second sound has no analog iare the=0 versions of the linearized speed of first sound
ordinary fluids and carries perturbations in the temperatureand the specific heat at constant pressure. The quaniity
entropy and counterflow velocity; in second sound both thehe fluid entropy. The first quantity it2) was found to be
pressure and bulk velocity of the fluid are nearly constant. relatively small at most temperatures and pressures. How-
A commonly made simplification in the study of sound ever, because the size afandc, are of the order 0f200—
waves in superfluid helium is the assumption that the thermasog) m-s™* and 16 m?-s™2.K ™%, the Grineisen parameter
expansion coefficientl) is negligibly small. As pointed out G can be of order one at many pressures and temperatures.
by Puttermart, such an assumption would seem reasonableor example, if we use the data of Mayndrdie find that
because the size g8 is on the order of—(10°*~10"%)  gT~—0.03 andG~ —1.05 at a temperature of 1.6 K and a
K~1! at pressures and temperatures of practical interest. Ipressure of 20 bar. Thus, at this temperature and pressure,
fact, if one simply neglect$? everywhere it appears, the the assumption of negligiblg is by no means obvious and
resultant linearized sound speeds agree well with the exadhe purpose of the present investigation is to re-examine its
i.e., B#0, versions; further discussion of this point can bevalidity for first and second sound with particular attention
found in Ref. 1 and in Section Ill of the present study. How-peing paid to nonlinear effects.
ever, a recent study by Cramer and Kluwitkeveals that In the present study we focus on small disturbances in
the B=0 approximation leads to significant error in the cal-the form of simple right-running waves. Nonlinear effects
culation of many of the properties of fourth sound. The latterwill be taken into account by applying the well-known mul-
tiple scales technique of Taniuti and WeThe governing
aTelephone:+43 1 58801 4505; Fax:+43 1 5878904; Electronic mail: €duations will be taken to be the Landau two-fluid equations,
akluwick@hp.fluid.tuwien.ac.at the exact form of which are given in Section Il. The general

1/2 d T S
ndec,:=T—
s,w2 o a2

p,w?

Phys. Fluids 8 (9), September 1996 1070-6631/96/8(9)/2513/14/$10.00 © 1996 American Institute of Physics 2513


borrego
Typewritten Text
Copyright by the AIP Publishing. Braun, S; Kluwick, A; Cramer, MS, "the effect of thermal expansion on nonlinear first and second sound in the whole temperature region of He II," Phys. Fluids 8, 2513 (1996); http://dx.doi.org/10.1063/1.869034


multiple-scales approach is described in Section A and o )
the linear theory is examined in Sections Il B=III C. In Sec- v+ —{p,+ W pa,(1-2a)+a(l-a)]}+vvy
tion 1l C we show that even the linear theory is inaccurate if

the B=0 approximation is applied universally to problems Ps
involving first sound. In particular, first sound cannot be re- + S ?J’W as(1-2a)
garded as isothermal if the Greisen paramete?) is of
order one. Pw
. . +2ww,| — +w 1-2a)+a(l— =0, 5
In Section 1l D, we go on to compute the quadratic X p aw( @) ta(l-a) ®
steepening coefficients for first and second sound. There it is
shown that nonlinear second so_und_ls accurately modeled b§+ &(pSWap-f—SaW)-f-Sx(v + W+ sway)
the commonly mad@ =0 approximation, at least away from p
the\-line. On the other hand, when first sound is considered, _
noticeable numerical differences between the exact values of Wy (25W ary + ) =0, ©)
the steepening parameter and that obtained in the full a
B—0 limit were found. As in the case of fourth sound thesewy[ (a— 1) +2w?a, ]+ p,j —sT,+W? —(a—1)
differences are small at low pressures but become more pro- p
nounced as the pressure increases or xhéne is ap- Saag
proached. —a,(2-3a+sas)— +to,W[(e—1)=pa,]

We complete our analysis of the influence of thermal
expansion on the nonlinear sound modes by examining the +Sy —STs+W?ay(2a—2—say)]
limiting behaviours at tha -line and as the temperature ap-
proaches absolute zero; this is carried out in Sections IV and
V, respectively. The results of our analysis are that the as- —2w?a,(2—3a+ Sag) —s(aas+2T,)]}=0, (7
ymptotic behaviour predicted by th&= 0 theory is incorrect
for both first and second sound as either ¥héne or abso-

+wdv(a—1+2w?a,)+W[3a(a—1)

where the subscript$, x,p,s and w denote differentation

lute zero is approached. with respect to time, propagation distanqe, Qerlzsity, entropy
In Section VI, we point out an error in the fourth sound @nd the square of the counterflow velocity, i, Equa-

\-line analysis of Cramer and Kluwicd®.In this section we ~ tons (4)—(6) are the mass, momentum and entropy balance.

provide the correction along with the limiting results for the EAuation(7) will be referred to as the slip equation.

fourth sound steepening parameter as the absolute tempera- | n€ knowledge of the constitutive relations,

ture approaches Zero. a= a(p,S,WZ), p= p(p,S,Wz), T=T(p,S,W2),

is necessary to close the systédin—(7). For the present cal-
culations, the following differential relation€ramer and

Il. FORMULATION Serf) will be useful:

We take the governing equations of the superfluid He I BTpa?
to be inviscid, unsteady and one dimensional. For the present dp= ds+a’dp
purposes it is convenient to use the dengityp,+ ps, the p
bulk velocity v=(p,/p)va+(ps/p)vs, the entropys and BTpa? | da Cpp dax
the slip or counterflow velocity between the normal and su- e |77 T BT op dw?, (8)
perfluid componemv=v,— v as dependent variables. If we P p.w? T,w2
use the thermodynamic relation for the chemical potential T sTa?
M dT=—ds+ dp
Cy PCp
d 1 2
du= " —sdT+ = (a—1)dw?, 3 T (oa|  paPpoal )
P 2 o\ T 7 W ©)
v pyWZ ’y p T,W2
where p=p(p,s,w?) is the pressureT=T(p,s,w?) is the  \here
absolute temperature anet =ps/p is the superfluid mass "
fraction. If we further take into account that _ 1dp [ dp
B =—- - _T H a =\ - il
pd w2 ap sw?2
pn=p(l=a), ps=pa, (10)
_ Js _ Js
vh=vtaw, vg=v+(a—1)w, Co = aT ) Cp'_Ta_T )
p,W! p,w
the exact two-fluid equations according to Puttermandi-  and
mensional form are 9 2
Cp BTa
yi=—=1 (11
prtupxtpvy=0, (4 C, Cp
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is the ratio of the specific heats. The quantifgsa, ¢, and To derive the evolution equation we follow the reductive

cp are referred to as the coefficient of thermal expansion, theerturbation method introduced by Taniuti and Waksum-

first sound speed, the specific heat at constant volume andg that cumulative nonlinear effects are of importance at

the specific heat at constant pressure, respectively. times ofO(1/8). Transformation fromxX,t) to a wave coor-
The nonlinear hyperbolic system of conservation equadinate X=x—A\t, where\ is the linear sound speed of the

tions can be written in the compact matrix-vector notationpropagation mode under consideration, and a slow time scale

(the Einstein summation convention is used 7= 6t then finally shows that the evolution of small distur-
U U, bances is governed by an inviscid Burgers equation:
—CFAU)— =0 (i,jk=1.234, (12) 2U 5U

—+T'U—=0, (15
aT oX

where the dependent variables are

where the shape functiod is related to the original vari-

Up=p, Up=v, U3=S, Uy=W
=P T2 3 4 ables by

and the components of the speed makijxare given by
Au=v, Ap=p, A13=0, Ap=0,

2

uM=r;u(X,7) (16)

andI" is the quadratic nonlinearity coefficient given by

P, W
Ap=—+— 1-2a)+a(l—a)], 1 oA
21 p p [pap( a) a( a)] = |i ij (ugo))r_rk, (17)
Imrm &Uk )
A=, A23:I0_s +wWi(1-2a)as, which is required to be dD(1). Thederivatives ofA;; are to
P

be evaluated at the undisturbed staf®) and the quantities
Pu r; andl; are the right and left eigenvectors of the speed
a(l—a)+—+(1—2a)awW2}, matrix AD=A;;(u?)) with the linear sound speeds as
P eigenvalues, i.e.

A24: 2w

SW
A31:?(a+pap)y Asz2=0, (13 ARTm=NT, AR =M (18)

Using the method of characteristics, the formal solution to

— — 2
Agg=vtW(sa)s, Ag=s(at2a,w?), equation(15) can be written in the form

1| sT w? Saag 2+sags—3a dx
n=5| ==+ —|at——+pa,————— U=const on—=c*=A+6I'U+O( 5 19
Z|1-a p 1 ’ol-a | =const on-gp=¢"= (69, (19
A _w 14 P% wherec* is the convected sound speed.
277 1—al’ In the following, the computations will be carried out
simultaneously for both first and second sound. Solving the
_1|sTs w2 ( Sas eigenvalue probleril8) one obtains the right and left eigen-
4375 |7 TWiag| o —— 2 ’
Z|1- 1 vectors,
A +W 3ut 2T+ aas+2 , Sas—3a+2
44=0U Z a+s 11— W*=a,y, 1—w s N
rq —
with the abbreviation ; Po
N 2
2W2ay, r= =r Cpo 2_ .2 (20
e r ———(\"—a))
Zi=1- 7" r3 BoTolPo °
’ ACpo 2.2
Tz < (\M-ay)
I1I. NONLINEAR EVOLUTION EQUATIONS BoTo@500S0%
A. Outline of derivation and
We study the long-time evolution of small but finite am- 1 T
plitude waves governed by the quasilinear systétd),
where phenomena such as wave steepening can be observed. AT Po
To this end the solution; is assumed to have an asymptotic Il A
expansion of the form - 2
P |= | =1, BoToazz)Po , (21
u=u®+ suV+ s2u? +0( 8%, (14) |3 Cpo(N2—UF)
where §<1 is a small perturbation parameter and the uni- 4 /BOToaﬁposan
0) ; : P —
form base state(® is given by NCpo( A= U2)
u®=p,, uy'=0, U(SO):SO! ui?=0. wherer,andl, are arbitrary constants.
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B. Linear wave speeds The fact that\ seen in equatiori22) has simply to be re-
placed by § —v,) is, of course, a direct consequence of the

Taking the choices . ! . :
frame invariance of the governing equations. If on the other

ri=p, (first sound, hand we allow fo_r a small counterflow ve_IocitlyO/aO<1
ut no bulk velocityv,= e results for first and secon
but bulk velocit 0 th Its for first and d
T 0-S-a sound can be written in the form
ry=-— @ (second sound
po Wo BoToSo [ Podla
+ o Po'o%0 0% o“%p
the common results for the nondimensional nonlinearity pa- ~ *ds™8 1+ - Coo | (1—ao) +t2a0|+-], (27)
rameters are recovered in the lingit=0. In this connection
it is interesting to note that it is not necessary to spekify W, ToSott
explicitly, at least for the purposes of computifig equation Agge~Uur| 1+ - 2a,+ m) e (28
(17). Furthermore, the eigenvaluas corresponding to first T ve ©
and second soundwaves are found to be where only terms linear iw, have been retained. These
T, relationships are seen to be completely consistent with the
()\t)zzaﬁ Ut  a;—ur 4(&)2B0T0G0 B,=0 approximation, e.g. Putterman.
2 - 2 ao Yo

1 1/2
} , (220 C. Perturbation relations

(T2,

Next let us investigate how the relationships between the
disturbances of the various field quantities caused by first
and second sound waves are affected by small but finite val-
)1/2 ues of B, T, .

in complete agreement with relationshi@-14) given by
Puttermart, where

(23 According to equation§l4), (16) and(20) the perturba-
tions of the density, velocity, entropy and counterflow veloc-
is the B,=0 version of the linear second sound speed andty are related tdJ by
G0:=,80a§/cpo is the Gruneisen parameter. The subscript
i ities i - s—s, BoToas W BoToa2s,a
o denotes the values of the field quantities in the unperturbed P~ Po _ U _ o Poloqo5 0! 080S0%0

. sgToao
0T oI —ay)

state. Expansion of22) for small 8, T, leads to Po N So Cp(\2—a)) Y Cpo(A2—a))
1 (uTlao)2 BoToGo =o0U(X,7) =0(1)
+_ + _ ’ .
Nt M T e (29)
ur|? s If the general result§29) are specialized for first sound,
+0 (a_) OTO) : (24 \x=\", we see that
0
11 BTGo . 5o, R (30
== — = + ’
A TUur 1 2 1_(UT/a.0)2 Yo +O(:80T0) ' A Po
(25)
$S—=S, W _(P_Po) CpoGo (UT/ao)2

The = signs on the right-hand sides now denote right and

left running waves. Sinc@,T, tends to be small for most

temperatures and pressures, the approximatiohs-a,, ur)?

A" =~u; are commonly(and reasonabjymade. One should a_o BoTo

note, however, that the approximation fof is expected to

be more accurate than that forh~ because SiNce CyoG,/S, is typically of order one it follows that

ur/a,=0(10™ ) for most pressures and temperatures. (s—S0)/s, andw/\ are small compared top(-po)/p, pri-
Before closing this section we briefly discuss how theMarily because ofir<a,. This indicates that the usually

results for the eigenvalueshave to be modified if the mean 2dopted assumption that the counterflawis negligible in

flow velocity v or the counterflow velocity are nonzero in the first sound should be thought of as a smajl'a, approxi-

unperturbed state. if, # 0 andw,=0 the Doppler-shifted Mation rather than a smafi, approximation.

wave speeds, e.g. the eigenvalues of the modified speed ma- Similarly, evaluation of the results for second sound

)\ o

So Po So%o 1_(UT/ao)2

Xi11+0

] . (3D

trix A);, are given by waves yields
., atui aj-uf b 2 B,ToGo Y _ PP BoloS S”So. @2
(AdS_UO) - 2 — 2 a_o Yo N Po Cpo So
Se=T rz @9 s 33)
1—(u-Ta)2)2 —= .
(1—(ut/ay)?) A @Sy
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Inspection of these expressions shows that gth™ and  which in the limit 8,T,—0 reduce to
(p—po) po are small in comparison tos¢s,)/s, provided

that 8,T, is small. T_To_> Go P~ Po _ Go P—Po
These results are in general agreement with the conven- T, 1—(ur/ag)® po 1—(ur/ag)? peaz "
tional picture that i) first sound waves are associated prima- (40

rily with perturbations inv andp with w~0 ands~s, and
(i) that second sound waves predominantly carry perturbat-urbations are non-negligible whenev@s=O(1). This is in

tions inw ands while v~0 andp~p, . : & 0 o
In order to determine the temperature and pressure pe?—harp contrast with thg, =0 approximation which is based

turbations caused by first and second sound waves it is usefﬁl1 the implicit assumpnorGO:O(ﬂoTo) and thus treats
. . . . Irst sound waves as asothermaldisturbance. Temperature
to write (8) and (9) in the small disturbance form, which

reads as perturbations then represent a higher order effect, Putterman
and Garrett As an numerical example note that
G,=—1.05at 1.6 K and 20 bar. Clearly, therefo@, is not
, (34  necessarily small and consequently{T,)/T, is not negli-
gible in the moderate and high pressure regime.
The results for second sound can be expressed in the

The main fact to be noticed here is that the temperature per-

P—Po BoToSo S—So n P~ Po
5=
Pody Cpo So Po

T-T, iS—SO P~ Po

= +G , (35  form
To Cho So ° Po
to lowest order. By substitution of the general relati¢34), P=Po_ (Ur/ag)?  BoToSo S—So 1)
(35) in (29) one finds pod’ 1-(ur/a)? cpo  So
2 2
p_Fz)O: l P_Po:_ (Ma,) 2BoToSo S_Soy T_Tomi _% BT, S—somis—so
Pao o Po 1=(Ma,) Cpo So (36) To Co Yo 1_(UT/ao)2 So Cuo 3542;
T-T, Yo [[ N2 P—Po which show that the pressure perturbations are negligible in
T, = BoT, a_o —1|+G, o the limit B8,T,—0 in complete agreement with the,=0
predictions, i.e.,
:i( _ ﬁoToGo S$—S, (37)
Cpo Yo 1_(7\/3-0)2 So T;TO% 5 SO~ SOaOW, (43
Here the expressions involving the density and entropy per- ° Coo Coollr
turbations are most convenient for the investigation of firstandp,p~ constant withv~0.
and second sound waves, respectively. Specialization of
these general relations for first sound yields the expressions
P—Po P~ Po D. Evaluation of the nonlinearity coefficients
~ , 38 . -
poag Po 38) We now complete our analysis by determining the effect
of the thermal expansion coefficient on the quadratic nonlin-
T-T, -G 40 ur N T P~ Po earity parameters *, I' ™ for first and second sound waves.
T, °l1—(ui/ay)? a, BoTo ' Evaluation of equatior(17) taking into account equations

39 (20, (21, (13), (24) and (25) leads to

z _ o PoPpp " prsu‘zl'ﬁo n U#BCZ) Pss 2po(1—ay)  2py
AT2(1+A) (A2 (M) 2ye(1=(ur/as)®)  pove (1= (ur/ag)?)*| (A F)? S5 soard
wAlas Poap(z_ @o) U12—,30(5a’0+ 2s,as) n ﬁoToangSgao Tpp(l_ @) +T,a,
ao(1—ay) Soa070(1_(uT/ao)2) ()\+)2Cpo(()\+)2_u‘2r) (1_a0)2
So@oPo Tp(l—ag) +SeT ps(2—ap) +SeT s+ S, Tsa,,
(AF)? (1-a,)?
‘A ﬁou‘zl'soa'o (TstSoTsg(1—ag) +5,Tsas ﬁou'zl' 2T+ apas (44)
()\+)270(1_(UT/3-0)2) (1_a0)2 70(1_(UT/a0)2) ag(l—ay)
and
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F__ _ 1 _ BoToSoo _ pppBoToPoSoao n 2ppSU$B§TOSOaO _ u%ﬂosoao Pss
AT 2(1+A) Cpo ()\7)2Cpo (Ai)zyocpo(l_(uT/ao)z) po?’o(l_(uT/ao)z) ()\7)2
J2eol1ma0) 20y ) BaToSol,  poty2-a0)) oo oo o L BeTorasatta Topl1= @)+ T,
soag soal Cpo °1 (1-ay) 0TS B (N )%y, (1— a,)?
BoToSoas To(1— ag) + 50T ps(2— o) + ST, astSoTe,  Seats (Tt S,Tsd (1= )+ S, Tseks
()\7)2Cpo (:l-_ao)2 ()\7)2 (:I-_a'o)2
2T+ apaq
+Bs,——@|. 45
* ag(1- o) (45)
HereinA, B denote the abbreviations
_ YoCpol 1~ (Ur/a5)?)?] uiBsT,
A:1+ Y = 22+...,
LITIBOTO yocpo(l_(uT/ao) )
2 2 2 (46)
B'Z[l— ﬁ UTBOTO }
. 3, '}’ocpo(l_(uT/ao)z)z ,

and the derivatives od, c, and « are evaluated at the unperturbed state.
For practical applications it is convenient to express these results also in a different form which takes into account that the
constitutive equations are frequently expressed in terms df, w rather tharp, s, w. Applying the relationships,

d , 0 BTa? g
—| =a’— —=| (47)
ap sw2 ap w2z PCp aT P2
9 Tpa? ¢ T 9
S AL (48
as w2 C, Ip Tw2 Co oT o2
one then obtains
rt 1 uTBaT ol 203657, u?B,
F = 2+ 7, 2 IV 72 T4A+3A 2
A 2(1+A) (A7) '}’ocpo(l_(uT/ao) ) '}’ocpo(l_(uT/ao) ) SoYo(1—(ur/as)?)
B 2U%3§Toa§ YA u%ﬁoag FA u%ﬁoaﬁ(z—ao) n U#Bo
(N2 ¥0Cpol (N T1a0)° = (Ur/85)%) T (NT)?%680  — (AT)%Cpo(l—ag)  — (NT)?yo(1—(ur/ag)?)
R I 2pal uzpcT, 2 . 1 L 2B,Tal
So Cpo/ IP|1,e(N) YoCpo | 1= (Ur/ao)®  (N"/ag)*—(ur/ag)?| |~ dT| »(N")%Chq
o P 1 _de, | Uipeds] (2 ao) uTBaTo
a,) \1=(ur/ag)®  (N'fag)*—(urfag)?| | ap |, . (N7 | epo(l=ao) - cpo(1-(ur/ag)®)?
LA UBTe | | UtBoTods|  (2-ao) uzBoTo uf
Coo(1—(Ur/ag)®) | dT | o (N)7Ch0| " Croll=aro)  Cpo(1—(Ur/ag)®)? " cyoa(1—(Ur/ag)?)
R utB5as ag(2— a) UTB3Tod5
P12 @2y2s 1= (Ur/ag?)?  ag(1=ao)  * ao¥oCpol1— (Ur/ag)?)
uTBoT o5 uTBoTods uTas
RNERY: 1= Tla i (uJa0d TA2 T—a) TATZ1Z
(A7) ')’ocpo( ao)((N"1a,)*—(ur/a,)?) (A7) Vocpo( @o) (A @o)

A utB5T 685 LA UEATeA(1F ao)
(7\+)2')’0Cpo(1_ ay)(1— (UT/ao)z) CVO’)’ono(l_ ao)(1— (UT/ao)Z)

Jda
oT

utplal al(2— a,) uf
asyssa(l—(ur/ag)?)? ag(1-ay) ao(1—(ur/ay)?)

BoTo

pw2 Cpo
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2 n2 4
usBsToea,

uia? up

+ +2A +A
()\Jr)zyocpo(l_ao)(()\+/ao)2_(uT/ao)2) ()\+)2(l_a’o) ()\+)2(1_ao)(1_(uT/ao)2)
2
Ur(1+ o)
+A 49
o 1= ag) (1 (Ur/ag)?) 49
and
F__ . 1 _ BoToSoao _ u‘?’B(z)Tosoa'oag . BoToSoao _ 4BoToSoo Ba
AT 2(1+A) Cpo (A7) %ho(1—(ur/ag)®)  ~ Cpo(1—(Ur/ap)?) Cpo °
_ E U12— ngsoaoag _ u12' gToaoag _ U%ﬁﬁTosoaoag(Z— @) +Ba u‘2|' n u‘2r50010
B (M)%96Che  (AN)¥Cpo (M)ZC54(1—ap) (N2 T (M) %0
L 2B, TopoSecods| U2BET, 2 . 1 , % 282T2s, 02, 2, 2u2
p T,w2 ()\_)ZC;Z)O YoCpo ]—_(UT/ao)2 B aT p,w2 ()\_)ch,o ]—_(UT/ao)2
i u_'zl' ac, U%BOToPoSoaoai B " 2= ay Bl+ & u%Tosoao BiToag B
B &p T,w2 (Ai)chocvo 1_(UT/ao)2 1_0’0 aT p,w2 (Ai)zcvo C’Z)o :I-_(UT/ao)2
2—a, B da ) u% ToSo
- +— a B(ltay)— 77— (2—a,) | +2B
1-a,] Cupo| P vazlgopo °| @0Y0So ( o 1—(ur/ap)? ( 2 po
uTBaTeds (1 uz u7BoToRs B 2ufa,
~—37 7. - |o —————(1-B)|+—= - s+ (2—ay)+ —3
(A7) YoCpoSo B (A7) Y0So aT p.w2 @5Y0CpoSo 1_(UT/ao) (A7)
ToSo U# U%(l-f- a,) 1 u#ﬁﬁth)aﬁ
+ZB +B =2 e —N2_.2.2 . (50)
Cuo (A7) ®0So B(\7) YoCpoSo

The commonly used resultin the following indicated
by the indexc) are obtained by setting,=0 and therefore
also y,=1, \"=a,, A" =ur, A=0, B=1 and, following
Torczynski® ur/a,=0 and aa/aT|p,Wz=0. Relationship
(49) then reduces to

* re e
F(BOZO): a = 1+a090%

(o]

po da
a, dp

T,w2

1
s,w2

(59)

Kluwick! it is possible, therefore, to derive a simple but
accurate approximation breaking down in the immediate
neighbourhood off =0 only which has to be treated sepa-
rately. To this end we set

ur a,

ur
a—0=0, )\—+=1, —=1, A=0, B=1,

N

and neglect terms oD(B,T,) except where multiplied by
derivatives ofa, ¢, and « with respect top or T. We also

which is equal to the well-known fundamental derivative in @nticipate that the simplificatior,=1 is not accurate near

ordinary gas dynamics, see, e.g. H&yes Thompsor. For
second sound one obtains

r- T, 3u? Ja S
E— = = —_——= + ——
N (Bo=0)= - =3aot 5 - o7 owz 2Cu0
ToSee, dC,
oo
2c,, dT o2
ToSotto uc,
= Coa ﬁ In T 2, (52)
p,w

in complete agreement with Khalatnikov’s form of the steep-

ening parameter, see, e.g. Ref. 8.
The exact result$49), (50) for 't andI'~ are rather

lengthy and involve a number of terms the contributions of

the \-line as a result of the singularity af,. Consequently,
equationg49) and(50) can be approximated by

EQE BOTOaO(?_a (53
N a, Coo T, 2
and
F;N e GoTopoSoas (2—ap) &
N ur T 260 (mag) Py
BoGngsoao (3—2a,) dc,
2CpoCpo  (L—ay) dT o2
2
us BoGoTo da
+ - +ag) | ==
Dsua 3 e (3+ayp) 0T (54)

p,w?2

which are insignificant for most practical purposes. SimilarNumerical computations of the exact, tAg=0 and the sim-
to the investigation of fourth sound waves by Cramer andlified versions of the exact nonlinearity parameters were
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performed using the tabular data given by Mayfardthe  IV. BEHAVIOUR AT THE PHASE TRANSITION LINE
pressure rangéd—25 bar and the temperature range above(A-LINE)

1.2 K up to the vicinity of thex-line. The calculations _

showed that the numerical differences between the exact ang S mentioned already, the effect of the thermal expan-
approximate expressions for the steepening parameter of segon coefficient on the nonlinearity parameters is most pro-

ond sound were of the same order as the uncertainties in thneounced in the vicinity of tha.-line where diverges. It is

. 2 2 B Important, therefore, to study the asymptotic behaviour of
differenceut =S, Toto/(C,o(1~ o)), when the data for all these quantities in the limf—T, . To this end it was nec-

quantities are taken from Maynard. As a consequence thgssary first to derive a self-consistent set of asymptotic ex-

final results depend on the choice of variables taken fronbansions for the various thermodynamic quantities. Using

Maynard's data base. In order to be consistent, therefore, th@ese resultésee the Appendixone then obtains the limiting

same choice was adopted for all evaluations by eliminatingxpressions for both th8,=0 and the exact forms of the

ut in favour ofsﬁToaO/(cvo(l—ao)). steepening parameters. The limiting values of ge=0 re-
Furthermore, the pressure and temperature derivativesults are obtained immediately fro(61) and (52)

were approximated by means of a second order accurate dif-

ferencing scheme. The results are summarized in Fig. 1 for

first sound and in Fig. 2 for second sound, respectively. In rs Ja

addition, Fig. 2 includes the experimental data obtained by a_"'aopo%

Dessler and Fairbari. ° T.w?
Inspection of Figs. 1 and 2 shows excellent agreement (CH%p3[ds,|2dT, 1 1

between the exact resul(49), (50) and the simplified rela- ”T(d_p) dp e In?¢ +O<8 In3 8)

tionships(53), (54) for the nonlinearity parameters. Further-

more, it is seen that the influence of the thermal expansion - (55

coefficient on the nonlinearity parameter for second sound is

very weak even at larger pressures. Taking into account also

the results for the perturbations of the various field quantities 1", 3u$ da

summarized in Section Il C we, therefore, conclude that the 'y 2S00 IT|

Bo,=0 approximation is a valid approximation for second pw

sound waves. LS PN ) . (56
In contrast, the total neglect of effects associated with A eB e

the thermal expansion coefficient is found to lead to signifi-
cant errors in the prediction df*. The discrepancies from

the 8,=0 results grow rapidly with increasing pressures antHere the indexx denotes values at the-line (see the Ap-

are most pronounced in the neighbourhood of Xhine. pendi¥ and the parameter is the relative temperature dis-
Included in Fig. 2 are also themoothedl experimental tance from the phase transition, i.es1—T/T, .
data reported in Dessler and Fairbdfikt is seen that the The analysis starting from the exact results is more

calculated and measured valued6f are practically identi- subtle. For example, investigation ¢49) reveals that the
cal for T=1.8 K. Larger discrepancies which reach a maxi-correct behaviour of * near the\-line is given by the two
mum value of about 14% af=1.2 K, however, occur at term expansion

smaller temperatures. A comparison between theory and ex-

periment has been carried out also in the original paper by

Dessler and Fairbank. This comparison yielded slighty T+ pgad sa BoToad da

smaller discrepancies at moderate temperatufes1(4 K) )\_+~()\T)2% TW2+ m aT|

but significantly larger ones in the higher temperature range. ’ P

When comparing these observations it should be noted, how-

ever, that the accuracy of the exp.erlmentally determined val,[—0 leading order which reduces to th&—0 result if the
ues of the steepening parameter is abod0% and, further- : )

. . . second term is neglected. Using the Maxwell relatii)
more, that the_ evaluation of the theoretl_cal _results is based e expression fof * can be written in the equivalent form
completely different procedures. While in the study of
Dessler and Fairbank the exg@{=0 result of['~ was ap-
proximated by a power law the data base provided by I ad

oo
T,W2:|
about =0.2% was used here to evaluate the Khalatnikov
expression. Evaluation of the power law approximation and
the full Khalatnikov expression produces differences rangingnsertion of the limiting relationships foa,, ar and s,

Maynard which is thought to be the most accurate available ~—__ __ oa
between 2% aT=1.4 K and 46% af =2 K. given in the Appendix then leads to

CaT

oJa

T, ds
ap

p.w2 Cpo ap

i T 2
at presenfthe accuracy of the sound speed measurements is A (") T.w2
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0.5 ————7——— —t—t—1
1.2 1.4 1.6

T (K)

-2 T T T
1.2 1.4 1.6 1.8 2

T (K)

FIG. 1. Computed values of the quadratic steepening parameter for firdtlG. 2. Computed values of the quadratic steepening parameter for second

sound. The solid lines denote the exact expres@li®nand the dashed lines
the results corresponding to tifig=0 theory(51). The open circles denote
the values obtained from the simplified expresqi68). Small vertical lines
on theT-axis indicate the phase transition temperatdregdT, /dp<0).

r+ i1 dT,
—_— e~ x — —— —
AT (Ciont )[ T,e In? ¢ dp
2], dTy j1
Tye In° ¢ dp Tye In“ e

2j5 T, (14 ...) ds,
T,elnfe (= Zlne+...)\dp
m/édTAl
+T)\d_p ne+ ...

_j1ds Clipy

A d_p eln®e
__(©DTds | 1 1
2.4? d_p gInde - elnte
— —0, (57)

sound. The solid lines denote the exact expresOnhand the dashed lines
the results corresponding to tiig =0 theory(52). The open circles denote
the values obtained from the simplified expresdi64). Closed circles rep-
resent the experimental data taken from Dessler and Faiff3&all ver-
tical lines on the T-axis indicate the phase transition temperatures
T, (dT, /dp<0).

r- 1{ B2T,a2u3(3+ ay)  3u2|Ja
N2 Y0S0@6Cpo Soq|dT o2
3u2  Ja
250070 IT|
ks, 1 1
N781/3|n8+o<81/3 In? s)ﬁ_oo' (58)

Summarizing, we conclude that taking into account the ther-
mal expansion coefficient leaves the signs of the limiting
values of'* andI’~ unchanged but reduces the strength of
the singularities which form in the limif—T, . As a result,
these singularities make themselves felt in a smaller neigh-
bourhood of thex-line than according to th@,=0 theory.
This is seen to be in qualitative agreement with the results
plotted in Fig. 1 and Fig. 2 although the available data are

Inspection of this expression yields the suprising result thanot sufficient to resolve these singularities.

the leading order term of theé,= 0 approximation is exactly

Finally it should be noted that the limiting behaviour of

cancelled by the leading order term containing the thermal' * points to the existence of a region in the vicinity of the

expansion coefficient. Consequentllyy,*/\* is of order
O(e In®¢) ! rather tharO(e In? &) ! as predicted by55).
For second sound one obtains in quite a similar way

Phys. Fluids, Vol. 8, No. 9, September 1996

N-line wherel'* is negative, e.g. where first sound waves
exhibit the phenomena associated with negative and mixed
nonlinearity.
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V. BEHAVIOUR AT ABSOLUTE ZERO r 3p0a§ da

As pointed out earlier it is necessary to study the behav- A (Bo=0)=D 20 9P T2
iour of the steepening parameters for-0 separately. In a din T, 1 1
Bose-fluid, such as He II, the elementary excitations with Np)\(cg)z_ﬂ_jLo( )
small momentum are phonons, i.e. the energy of these quasi- dp ¢ elne
particles is a linear function of their momentum. This linear oo (63)

law holds as long as the wavelength of the phonons is large

compared to the intermolecular distances of the helium at?he limiting behaviour of the exact form of the nonlinearity
oms. Near absolute zero we take He Il to be an ideal Bosetarameter has been investigated first by Cramer and
gas and therefore the Bose—Einstein statistics are applied tguwick.™* Owing to the fact that the expansions of the rel-
derive a consistent set of formulas for each thermodynami€vant thermodynamic quantities were limited to the leading
quantity(see the Appendix It is remarkable that oneannot ~ order terms listed in the paper of Maynarl cancellation
deducep,=0 and thereforer=1 atT=0 from the third law effect similar to that occurring in first and second sound
of thermodynamics, but it is reasonable to make the assumpvaves remained unnoticed. As a consequence the calcula-
tion «=1 at absolute zergsee Ref. 1 In the following tions predicted a positive singularity in contrast to the
analysis we will use a tilde to denote quantities at absolut@resent analysis which yields

Z€ro.. , , o I 332/ Jda BoTo da
First we consider th@,=0 versions of the nonlinearity X 2a | Poag + o1
parameterg51) and (52), which are easily shown to remain %o Plrwz  Cpo p.w?
finite for T—O0; these are 3s,T, da s ,da
o | Yo T Poly -
I‘; la — da ZQ’OCPO °JT p,w2 orere ap T,wW2
a—~1+aopo{9— —1l+a pd—, (59 \
o Plrwe P o (CH%d(s,py) 1 ( 1 )_}_w
_ A [ In?
I'. 3 +Soa0 u3(1+2a,) da 60 dp elne eine
[ A T SR NP R (64

o As in the case of first and second sound waves the effects
Note, that the result60) is independent of the pressure. caysed by the thermal expansion leave the sign of the steep-
Evaluation of the exact formulag49), (50) in the limit  ening parameters unchanged but weaken the strength of the
T—0 leads to the limiting expressions singularity.
I TY ARBL(2— ay) Evaluation of the fourth sound nonlinearity p_arameter
c  TTFo\® ol for B,=0 near absolute zero leads to the expression

M a, | 2cp0(1—ap)

Ja _.da
—.da 1 _.da\3 D~1+p0a0&— _’1+apd_- (65)
—1+a pd—p+7—2 1+3a pd—p (62 P T,w? P
The exact steepening parameter of fourth sound behaves like
and 2 =
I aja, 4 a 1+~~da (66)
_ _ -~ Ay —l+ap——.
r I'e B ﬁgToSoaoag(z_ao) A \° Po °dp Tw2 pdp
T 2
A Ur 2Cpo(1—ao) Equation(66) is seen to be equal to the expression for the
7 1 da\ 2 B.=0 case.
—>§—1—8(1+3apd—p , (62)

which are fundamentally different from those of tBg=0 VII. SUMMARY

theory, e.9(59) and(60). The main objective of the present study was the deter-
mination of the effect of thermal expansion on nonlinear first
and second sound. The quadratic steepening parameters for
VI. COMMENTS ON NONLINEAR FOURTH SOUND arbitrary values of the coefficient of thermal expans{&ln
were derived through use of the multiple scales technique of
It is interesting to apply the sets of asymptotic formulasTaniuti and Wef The exact results for first and second
derived in the Appendix which describe the properties ofsound are given in equatiof$9) and(50), respectively. The
various thermodynamic quantities in the vicinity of the corresponding results in terms of density and entr@pther
\-line and neaim =0 also to the steepening parameter of thethan pressure and temperafuderivatives are given i44)
so-called fourth sound. and (45). It was found that the commonly appliegl,=0
Starting from the B,=0 approximation given by approximation is an accurate estimate for second sound ex-
Torczynsk? one deduces that its behaviour in the neighbour-cept in the neighbourhood of theline. However, we found
hood of the\-line is given by significant differences between tits =0 and exact expres-
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sions in the case of first sound. These differences are small aiith the pressure dependent coefficientqp)>0, .7(p),
low pressures but increase with pressure and aa#lee is  k(p)>0 andb(p) given in Refs. 12, 13 and 14. The cross
approached. relations between all other thermodynamic quantities are the

- = , (A5)
ap T,w2 p,w2

(A6)

We have also analyzed the behaviour of the exact exdefinition of the specific heat,
pressions(49) and (50) in the limits T—T, and T—0. In
each limit the asymptotic behaviour of both first and second . ._ 12> (A4)
sound was found to differ from th@,=0 approximation. As P aT ’
the N -line is approached, the resultant singularities for each _
mode was found to be weaker than those offge0 theory ~ the Maxwell relation,
by a factor Ine. 91

Both the exact andB,=0 theories reveal that - —(—
I'*——o as the \-line is approached. Thus, backward aT\p
steepening first sound fronts which form first sound expang g 4 equation obtained by combining the definition of the
sion shocks are expected to occur in the vicinity of theyerma| expansion coefficieit0) and the Maxwell relation
\-line, even at low pressures. At undisturbed states wher AB)
I'* changes sign, the approximation scheme of Taniuti an '
Wei® breaks down and the scheme of Cramer and%eno- s
vides the appropriate extension of the Burgers equdfién B=-= pl.
Physically, the evolution will be characterized by both back- w
ward and forward steepeningmixed nonlinearity. First  Furthermore equatiorill) and the definition(10) can be
sound double shock configurations analogous to those seeombined to yield
in the second sound experiments of Tuffi@nd Torczynski

et al?® are then expected to be observed. 22— Cp A7)
= 2
Cp (9plp) |7 w2— BT
and
APPENDIX
dp
1. Derivation of a set of self-consistent asymptotic y= azﬁ— . (A8)
formulas for the thermodynamic quantities at Plr w2
the N-line

Finally we use the definition of the specific heat ratio to
A second order phase transition, such as that between Hgbtain an equation foc,, ,

Il and He I, involves discontinuous changes of the second

order derivatives of the Gibbs free enermgye.g. the specific c _% (A9)

heat at constant pressutg= —T(5g/dT?)|, and the coef- oy’

ficient of thermal expansio=p(d°g/dpdT), whereasg

and its first order derivativeghe entropys and the density

p) vary smoothly when crossing thecurve. To derive con-

and the definition of the8=0 version of the linear wave
speed of second souri@3),

sistent expansions for all thermodynamic quantities in the ) SLTa

vicinity of the \-line used in our analysis, we take the sin- U= c(l——a) (A10)
gularity law for the specific heat at constant pressyyand Y

the power law for the superfluid fractiam=p./p given by Taking the singularity law forc,, (A2) and definition

Ahlers and co-workef8~**as fundamental equations and, in (A4), one obtains
addition, definitions and thermodynamic cross relations of o )
the quantities we are interested in. These laws are in agree- S(P:&)~S\(P)+.7e Ine=(~2+.2)e+0(e” In¢)
ment with the predictions of the renormalization group =S, (A11)
theory, an exact theory of critical phenomena. In the follow-

ing treatment the index denotes values at the-line and  for the entropy by integration. Integratin@5) after inser-
¢ is the relative temperature distance to tine in the He  tion of (All) leads to the expansion for the density,

Il region defined by p(pe)~pr(P)+ Zye In s+ Zre+0(s2 I £)—py .

(A12)

T
- ———0,
T\(p) The definition of the pressure dependent coefficients is given

and it should be noted that the corresponding expansions ai@ the next section, here we simply note that is equal to
valid for the ranges<O(10 2). Following Refs. 12, 13 and R, the corresponding coefficient in the paper of Mayr%rd-
14 the asymptotic behaviour of, and« in the limite—0 is ~ Computation of(A6) under consideration of the expression

e(p,T):=1 (A1)

assumed to be given by for s andp yields
Cp(p,e)~—.Z(p)In e+.4(p)+O(e In ), (A2) B(p,e)~Z1INe+ %o+ %36 In e+ %46 In e+ e
a(p,e)~k(p)e?((1+b(p)e¥?)+0(£%%—0, (A3) +0(e?In® g)— —, (A13)
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for the thermal expansion coefficient. Application @?2), = To complete the description of the behaviour at ihéne,
(A13), and(A12) to the equation for the linear wave speed the following expressions for the sound speed ratio, the ei-

for first sound(A7) leads to genvalueg22) and the abbreviationgl6) are useful:
k k 1 u 2 h 82/3 82/3
2 N2 1 2 N2 T 1
a (pvs) (Cl) + In € + |n2 e +O |n3 )_>(C1) ao (p-s) (C)jt)z +O( In 8>_)0, (A25)
(A14)
and (A )(p,e)~(C1)*+O(e*9)—(C?, (A26)
- - (A )2(p,e)~0(e?¥%—0, (A27)
ape)~Cle i J2 o 1 | o
P.e Wne Ine In® & 1 A(p,e)~0(e?®—0, (A28)
(A15)
B(p,e)~1+0(e?®¥)—1. (A29)

The specific heat ratio, calculated fra@8) is given by

2. Coefficients

ms 1
v(p,e)~my In s+m2+—+0(—r
! In & In The pressure dependent coefficients %, andk, b

(A16) have to be determined from experimental data, values can be
Further evaluation ofA9) yields found in Refs. 12, 13, and 14, respectively. Furthermore, the
integration constang, (p) is obtained from a relation given
N by Ahlers? andp, (p) is evaluated using an expression from
In3 s) —C- Kierstead:® The \-line is represented through a polynomial
(A17)  fitfor p,(T,), also given by Kierstead. All other coefficients
are links between7, .%, k, b, s,, p\, Ty(p), and deriva-
tives of them.

A n; ny
c,(p,e)~c,+ ne + 2 s +0

And, finally expressiorfA10) leads to the expansion for the
linear wave speed for second sound:

,dT,

2/3
/l(p)__ //p)\ dp

h28 h382/3 82/3
Ine * In? & +O< In3 8>_>0.
(A18) (, L(ds,  (A4+.7) dT,
Z2(p)=—Typx dp T, dp)’

ué(p,e)~h;e?3+

The derivatives of, ¢, anda with respect top andT can
be written as

= ”/Px dT,
da i1 dT, 2j, dT, Z1(p)=— =, dp’
2P T TeTe dp The e dp pan,
_ 7py dly S\
+0| | == (A19) v ap P
o) 2%, dT,
Ja ' 2] 1 Z3(p)=— -,
T (pvs)N L 2 + 123 T)\ dp
aT| Ty,eln“e T,elng eIn® ¢
i _ ds, dz 14T
— — o, (A20) 5’4(p)=-§1d—p—md—p+.r dp(f%ppL By
ac, ( ) ny dT)\ 2[’]2 dT)\ _.’///!();2)'
)~ e — 3 — —
U P TyeIn“e dp T,elIn®e dp ds)\ St pdT
A+ o
/5(p)_ /2 dp +p dp +T dp §2 Px):
+O e In* s)ﬁoo' (A21)
A dp)\ dS)\ dT}\ 2 -1z
Jc, N2y 1 CP=gp T ap ap P
aT pwz(p’s)Nsz e Tyeln®e gIn*e (CY [ds |2
’ 1 S\
o, (A22) ki(p)=—— (d_p> PATy
da 2k dT)\ 6 ( 1) dS)\ ds, |2
Ja 2k k (CH)%p2T, [ds, |2
- — U6y, _ . _ K NEYESEN
iT| P T T T e O e (A WP= o=~ 2 (dp) ’
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2
1

JZ(p) ZC)\ 8(C )3
(C1)7[ds 2 ,
S%Z(dg) Pf x[ 3(C 1) <_> P)%R“LW}’

A dT,\?
mi(p) =~ 3-(C1 2(—”) P,

Mzl a3
ma(p)=(CD* | | ek (e o] |,

(chHe/d ds,\?
my(p)=—— (d%) (—”) piTL,

dp
T dT,\\ 2 .7
N _ A A __
(P =z, (dp) “Tmy
_ T [dp,|?(dT,|
A T T
T2 [(dpy|\?(dTy |~ dT, dpy
nP)= 728 ap ) | dp ﬁ dp)” Tap ™
ds, dT, ,
T
ks2T, dT,\?
hy(p)= — =ks§<cm2pi(d—;),

dp
h(p)= /<c D’ ZTA<dp) ,

k dp)\ 2 dS)\ 2 y}j
hs(p)= —5(C))®s2T (—) —| p2T\— —x|
3(p ?2( TS dp px (C>1\)2
3. Derivation of a set of self-consistent asymptotic
formulas for the thermodynamic quantities at absolute
zero

Following Landau and Lifschit® the phonon contribution
to the specific heat of He 1l fof —0 can be written in the
form

K
=c —C ~_— T3
c(p,T)=cp=c, '535T —0, (A34)
whereK is a constant and the tilde denotes quantities evalu-
ated atT=0. For small temperatures the first sound speed
and the density depend on the pressgreonly. From
c=Tgs/JT one then obtains

T2 0
=—— .
3@™p 3
The integration constais{p, T=0) was chosen to be zero in
order to satisfy the third law of thermodynamics. Equation

(A5) leads to

s(p,T)~ (A35)

~2
~ Kp” d 4 8y_ .~

p(p,T) P"’?d—p '5_3” T*+0O(T®)—p. (A36)

p

Evaluation of(A6) yields

Kp d[ 1 3

BP.D~~ 345 =T 0 (A37)
P

in agreement with equatiofA32). From (A7) and (A8) it
follows that

az(p,T)~g,—§+O(T4)='52+ o(TH—2a? (A38)
and
y(p,T)~1+0(TH)—1. (A39)

Taking the density of the normal component in the form
given in Ref. 16,

From the third law of thermodynamics, which usually is we obtain

expressed in the form

lims(p,T,w?)= lims(p,T,w?)=0,
T—0 T—0

(A30)

it is clear, that in the limitT—0 the entropys depends on
T only. Therefore we can write

— i S
Im-—;
p,T T*»O(?W

Js
=lim——

i Js
=1lm—
w2 T 0W?

T w2 T_09P

S
Im-—
Tﬂoa

p, T
=0. (A31)

After some basic manipulations equatio(%31) and (3)
leads to the well-known relations

dp
lim— =0 (A32)
TﬁOaT p’WZ
and
I oa =0 A33
im m ST =0 (A33)
(AW
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K
pn(p1T)~TT4_)O! (A40)
3a°s
_ K|p?d[ 1 1], ~
ps(p,T)~p+§ 7 dp ~a—35 ~s TP (A4
and
a(p,T)~1— T4+0O(T8—1. (A42)

35
The second sound speed, calculated ffém0), is given by

K _,| a?
~5~T —>?

a 2(
uT(p T)~ 1- (A43)
For a thorough discussion of the res(#43) and its experi-
mental verification the reader is refered to AtkifdUsing
equationgA34), (A38) and(A42) the derivatives o&, ¢ and
a with respect tgp and T can be written in the form

o (p,T) da +0(T% da (A44)
P12 PP dp dp’
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oa

aT

Jc

p

Jdc

aT

Jda
ap

Jda
oT

(p,T)~O(T*)—0,

p,w?2

(p,T) Kd( ! )T3 0
1 -~ N ~,_ *)l
T,W2p dp agﬁ
(p,T) 3KT2 0
p’ 53.5 L]

p,w?2

T K d
2(D, )~_§d_p

T,w

(A45)

(A46)

(A47)

(A48)

(A49)

Equation (A49) satisfies the prediction of equatiqA33).
Finally, the abbreviation§46) take the form

K353 d( 1

2
—| = T4-0,

B 2+0T4 2
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