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ABSTRACT 

Wireless sensor networks (WSNs) are frequently deployed unattended and 

can be easily captured or compromised. Once compromised, intrusion preven-

tion methods such as encryption can no longer provide any protection, as a com-

promised node is considered a legitimate node and possesses the secret key for 

decryption. Compromised nodes are essentially inside attackers and can perform 

various attacks to break the functionality of the system. Thus, for safety-critical 

WSNs, intrusion detection techniques must be used to detect and remove inside 

attackers and fault tolerance techniques must be used to tolerate inside attackers 

to prevent security failure.    

In this dissertation research, we develop a class of dynamic redundancy man-

agement algorithms for redundancy management of multisource multipath rout-

ing for fault and intrusion tolerance, and majority voting for intrusion detection, 

with the goal of maximizing the WSN lifetime while satisfying application quali-

ty-of-service and security requirements, for base station based WSNs, homoge-

neous clustered WSNs, and heterogeneous clustered WSNs. By means of a novel 

model-based analysis methodology based on probability theory, we model the 

tradeoff between energy consumption vs. reliability, timeliness and security gain, 

and identify the optimal multisource multipath redundancy level and intrusion 

detection settings for maximizing the lifetime of the WSN while satisfying appli-

cation quality-of-service requirements. A main contribution of our research dis-

sertation is that our dynamic redundancy management protocol design address-

es the issues of “how many paths to use” and “what paths to use” in multisource 

multipath routing for intrusion tolerance. Another contribution is that we take an 



integrated approach combining intrusion detection and tolerance in the protocol 

design to address the issue of “how much intrusion detection is enough” to pre-

vent security failure and prolong the WSN lifetime time. 

We demonstrate resiliency of our dynamic redundancy management protocol 

design for intrusion detection and tolerance against sophisticated attacker behav-

iors, including selective and random capture, as well as persistent, random, op-

portunistic and insidious attacks, by model-based performance analysis with re-

sults supported by extensive simulation based on ns3.  
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Chapter 1  

 

Introduction 

Advances in wireless sensor networks (WSNs) technology have made it an attractive 

choice for a wide variety of applications. WSNs can be deployed in military, civil, 

healthcare, and environmental applications [4, 74, 109, 118]. For security-critical applica-

tions such as homeland security and battlefield surveillance [46, 73, 88], security is a 

major concern especially since WSNs are usually deployed in unsupervised and hostile 

environments vulnerable to security compromise and susceptible to physical capture. 

Thus there is a need for efficient protocols to prevent, detect, and tolerate compromised 

nodes. Security design is especially challenging due to severe resource constraints in 

WSNs. 

WSNs can be classified from three perspectives: architecture, data flow, and applica-

tion. From the architecture perspective, WSNs can be classified as base station based 

(BS-based), or cluster based [4, 79]. BS-based WSNs rely on the existence of a BS or more 

to collect data from sensor nodes (SNs). The BS is powerful and is often assumed secure 

because of physical protection. A Cluster based WSNs consists of several clusters, 

where each cluster contains a cluster head (CH) responsible for collecting data from 

nearby sensor nodes Cluster based WSNs can be further differentiated based on if SNs 

are homogeneous or heterogeneous. In homogeneous clustered WSNs, all SNs are of the 

same capacity and serve as CHs on a rotational basis, so all SNs consume energy at 

about the same rate. In heterogeneous clustered WSNs, frequently two types of nodes 

exist: super SNs with more capacity and regular SNs with low capacity.  The more 

powerful super SNs often assume the role of CHs.  Figure 1-1 below shows the differ-

ence in topology between cluster Based and BS-Based WSN. 
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Figure 1-1: A Cluster-Based WSN (left) vs. A BS-Based WSN (right). 

From the data flow perspective, WSNs can be classified as source-driven or query-

based [38, 58]. In a source-driven WSN, SNs sense the environment at a fixed rate and 

periodically transmit sensing data to a sink node which can be a BS in a BS-based WSN 

or a CH in a clustered WSN. In query-based WSNs, a query is first received by a sink 

node, and then is sent to the feature areas to collect data requested. SNs in the feature 

areas collect data and forward data to the sink node in response to the query.  

From the application perspective, WSNs can be classified based on the application 

domain, purpose, capability and structure as summarized in Table 1-1. One can see that 

all applications listed in Table 1-1 use either BS-based or clustered WSNs.  

Our dissertation research addresses the security and dependability gain vs. energy 

consumption tradeoff issues for BS-based and clustered WSNs (from the architecture 

perspective) for maximizing the system lifetime, with the applicability and validity of 

our dissertation research focused on query-based WSN applications (from the data flow 

and application perspectives).  

 

 

 



3 

 

Table 1-1: Classifying WSNs based on Application Domain, Purpose, Capacity and 

Structure. 

Application 

Domain 

Purpose  Capability and Structure 

Oil and gas [3, 

127] 

Monitor pipelines and equip-

ment;  detect gas leaks; monitor 

operation performance; monitor 

resources (e.g. reservoir status) 

BS-based WSNs with homoge-

neous or heterogeneous sen-

sors monitoring noise, vibra-

tion, humidity, electrical char-

acteristics, temperature, radia-

tion, toxic gases, etc. 

Military [55, 

56] 

Monitor military infrastructure 

(both fixed/temporary); monitor 

battlefield  

Clustered WSNs with homo-

geneous or heterogeneous sen-

sors monitoring noise, vibra-

tion, temperature, radiation, 

toxic gases, speed, direction, 

size, location, etc. 

Nuclear pow-

er plants [90] 

Monitor equipment; monitor ra-

diation 

BS-based WSNs with homoge-

neous or heterogeneous sen-

sors monitoring noise, vibra-

tion, humidity, temperature, 

electrical characteristics, and 

radiation 

Forest [20, 92] Ecological monitoring; fire de-

tection 

Clustered WSNs often with 

homogeneous sensors only 

monitoring ecological such as 

temperature and humidity 

Smart City 

[95] 

Natural disaster monitoring; en-

vironment monitoring such as 

emission data 

A BS-based WSN with 

homogeneous or 

heterogeneous sensors 

monitoring motion, location, 

direction, size, temperature, 

humidity, radiation, etc.  
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Many WSNs are deployed in an unattended environment in which energy replen-

ishment is difficult if not impossible. Due to limited resources, a WSN must not only 

satisfy the application specific Quality of Service (QoS) requirements such as reliability, 

and timeliness, but also minimize energy consumption to prolong the system useful 

lifetime. The tradeoff between energy consumption vs. QoS gain with the goal to max-

imize the WSN system lifetime has been well explored in the literature. However, no 

prior work exists to consider the tradeoff in the presence of malicious attackers. 

The tradeoff issue between energy consumption vs. QoS gain becomes much more 

complicated when inside attackers are present as a path may be broken when a mali-

cious node is on the path. Thus, very likely the system must employ an intrusion detec-

tion system (IDS) with the goal to detect and remove malicious nodes. While the litera-

ture is abundant in intrusion detection techniques for WSNs [21, 46, 49, 84, 129], the is-

sue of how often intrusion detection should be invoked for energy reasons in order to 

remove potentially malicious nodes to prevent security failure (say to prevent a Byzan-

tine failure [85]) is largely unexplored. The issue is especially critical for energy-

constrained WSNs designed to stay alive for a long mission time.  

Multipath routing is considered an effective mechanism for fault and intrusion tol-

erance to improve data delivery in WSNs. The basic idea is that the probability of at 

least one path reaching the sink node increases as we have more paths doing data de-

livery. While most prior research focused on using multipath routing to improve relia-

bility [38, 58, 124], some attention has been paid to using multipath routing to tolerate 

insider attacks [54, 78, 93]. These studies, however, largely ignored the tradeoff between 

QoS gain vs. energy consumption which can adversely shorten the system lifetime. In 

the dissertation research, we leverage multipath routing as a form of redundancy con-

trol for achieving the desired level of fault and intrusion tolerance in WSNs. More im-

portantly, we aim to identify the best balance between energy consumption and fault 

and intrusion tolerance strength so that the WSN lifetime is maximized. 

It is well known that SNs close to the BS or CH are more critical in gathering and 

routing sensing data. The issue of protecting critical nodes against selective capture, i.e., 

critical SNs are targets of select capture attacks, is largely unexplored in the literature. 

We aim to design and validate multisource multipath routing protocols for intrusion 

tolerance as a countermeasure against selective capture.  

1.1 Problem Definition and Goals 

This dissertation research is motivated by the following research issues: 

1. Intrusion and Fault tolerance: Many WSNs are deployed unattended in hostile and 

harsh environmental conditions. This makes them susceptible to hardware faults, 
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physical capture, and malicious attacks by compromised SNs. Thus, designing a sys-

tem that tolerates faults and intrusions is important in WSNs. An algorithm for fault 

and intrusion tolerance must take into consideration the limited processing, storage, 

energy, and transmission capabilities of SNs. Moreover, it must also carry out its in-

tended function in the presence of compromised nodes, taking into consideration 

physical capture and smart insider attacks. The algorithm design must also be resili-

ent to single points of failures, which is a major threat to a safety critical WSN with 

high security demands. 

2. Intrusion Detection: In harsh environments, it is necessary to apply IDS design to 

complement passive intrusion tolerance to result in safety critical WSNs. The intru-

sion detection design must be light-weight so as not to unnecessarily consume ener-

gy yet effective in detecting and evicting compromised nodes with low false alarm 

probability. The issue of how often intrusion detection should be invoked to trade 

detection strength with energy consumption is largely unexplored in the literature. 

The IDS must also be highly resilient to attacks including node capture and insider 

attacks.  

3. Tradeoff between QoS vs. Security: A WSN often has stringent QoS requirements 

that must be maintained at all times such as timeliness and reliability of packet rout-

ing. However, there is often a tradeoff between QoS and security strength which ties 

to energy consumption. The issue of energy-aware redundancy management in 

WSNs for satisfying QoS requirements without excessive energy consumption re-

quires a holistic approach of exploiting the tradeoff between intrusion detec-

tion/tolerance strength vs. energy consumption. This dissertation research explores 

multisource multipath routing as a mechanism to satisfy QoS requirements while 

applying redundancy management to minimize energy consumption and maximize 

the WSN lifetime.  

4. Wireless Sensor Network Lifetime Maximization: Due to limited energy of WSNs, 

it is critical to implement energy-aware protocols that maximizes the WSN lifetime 

while satisfying the QoS requirements of the WSN. Energy consumption due to 

WSN functionality and security mechanisms could potentially decrease the system 

lifetime. Limited security might conserve energy but could result in a high density 

of compromised nodes breaking the basic functionality of the WSN and causing se-

curity failure. There is a tradeoff between energy conservation vs. QoS and security 

gain, and the system must find the best set of protocol settings to achieve QoS and 

security requirements and maximize lifetime. 

Addressing all issues in tandem is little explored in the literature. Part of the difficul-

ty comes from a lack of tradeoff analysis between energy consumption vs. QoS and se-
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curity satisfaction. This dissertation research takes a holistic approach and aims to ad-

dress all issues in tandem. Specifically, we aim to design and validate a class of multi-

source, multipath routing algorithms for fault and intrusion tolerance. We aim to identi-

fy the best way to combine it with IDS protocols for intrusion detection and eviction to 

satisfy QoS and security requirements and maintain basic functionality of the system, 

while maximizing the WSN lifetime. We aim to devise an analysis methodology allow-

ing us to derive optimal configurations that maximize the lifetime of the WSN under 

attack while achieving QoS and security requirements. The analysis methodology must 

be generally applicable to different types of WSNs, including BS-based WSNs, and ho-

mogeneous and heterogeneous clustered WSNs. Lastly, we aim to develop adaptive re-

dundancy engineering designs allowing the optimal configurations to be determined 

and applied dynamically at runtime in response to changing environment conditions 

including energy expenditure, capture and insider attacker behavior, and dynamic node 

behavior.  

1.2 Research Contribution 

We envision the following contributions from the dissertation research: 

1. Untreated in the literature, we explore the tradeoff between energy consumption vs. 

QoS and security gain with the goal to maximize the lifetime of WSNs while satisfy-

ing application QoS and security requirements in the context of multisource multi-

path routing for query-based WSNs. The approach can be easily extended to source-

driven WSNs. More specifically, we analyze the optimal amount of redundancy in 

terms of the number of source SNs sensing the same physical phenomena and the 

number of paths through which data are routed to the sink node in the presence of 

malicious nodes so that the query success probability is maximized while maximiz-

ing the WSN lifetime. We also consider an integrated approach for combining multi-

source multipath routing for intrusion tolerance with voting-based IDS for intrusion 

detection to remove malicious nodes from the WSN. Our contribution is to identify 

the optimal multisource multipath redundancy levels and intrusion detection set-

tings for maximizing the WSN lifetime while satisfying application QoS require-

ments. 

2. For the issue of intrusion tolerance through multisource multipath routing, there are 

two major problems to solve: (1) how many paths to use and (2) what paths to use. 

To the best of our knowledge, we are the first to address the “how many paths to 

use” problem. One main contribution of our research dissertation is that we decide 

“how many paths to use” in order to tolerate residual compromised nodes that sur-

vive intrusion detection, so as to maximize the WSN lifetime. For the “what paths to 



7 

 

use” problem, our approach is distinct from existing work in that we do not consider 

specific routing protocols (e.g., MDMP for WSNS [86] or AODV for MANETs [112]), 

nor the use of feedback information to solve the problem. Instead, for energy con-

servation, we employ distributed light-weight host-based and system-level IDS by 

which intrusion detection is performed locally. Nodes that are identified compro-

mised are removed from the WSN. Only compromised nodes that survive detection 

have the chance to participate in routing.  

3. We analyze the effect of selective capture on critical nodes in a WSN and develop and 

validate strategies for countering selective capture strategies by a smart attacker that 

targets critical nodes close to the BS or CHs to maximize the damage to a BS-based  

WSN. We analyze a protocol with 3 countermeasures in the protocol design: (1) dy-

namic radio range adjustment; (2) multisource multipath routing for intrusion toler-

ance; and (3) voting-based intrusion detection. We develop a probability model to 

reveal the tradeoff between energy consumption vs. reliability and security gain 

with the goal to maximize the lifetime of the WSN.  

4. We analyze the effect of various attack strategies performed by inside attackers on 

the WSN including random, opportunistic and insidious attacks. We also analyze the 

effect on system lifetime and identify the best settings to counter these attacks. 

5. We develop and validate the design notion of dynamic redundancy management to 

adaptively update the optimal settings of IDS (the trust/reputation update interval, 

number of voters, and IDS interval) and the optimal settings of multisource, multi-

path routing (how may paths and sources, and what paths to use) in response to dy-

namic condition changes such as query pattern, adversary behavior/status, node be-

havior/status, and energy status changes, to maximize lifetime while achieving secu-

rity, and QoS requirements.  

6. We develop a novel model-based analysis methodology based on probability model 

to analyze the best redundancy level to be applied for WSN lifetime maximization 

while best satisfying the application QoS requirements with simulation, using ns3, 

to support our analytical results. The analysis methodology is generic and applicable 

to a variety of WSNs including BS-based, and homogeneous and heterogeneous 

clustered WSNs. We also demonstrate the validity of our design by a comparative 

performance analysis with existing protocols through extensive simulation. 

1.3 Thesis Organization 

The rest of the dissertation is organized as follows. Chapter 2 provides a compre-

hensive survey of existing work related to the dissertation research. Chapter 3 presents 

the system model specifying the attack model, system assumptions, and applicability. 
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In Chapter 4 and Chapter 5, we develop analytical models based on probability theory 

for dynamic redundancy management of multisource multipath routing and intrusion 

detection for homogeneous clustered WSNs and heterogeneous clustered WSNs, re-

spectively. In Chapter 6 we analyze selective capture, smart attacks, and countermeas-

ures for BS-based WSNs with simulation to support our analytical results. Finally, 

Chapter 7 summarizes the dissertation research and outlines future research areas.  
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Chapter 2  

 

Related Work 

2.1 Intrusion Detection for WSNs 

Wireless sensors are frequently deployed unattended and can be easily captured or 

compromised. Once compromised, intrusion prevention methods such as encryption 

can no longer provide any protection, as a compromised node is considered a legitimate 

node and possesses the secret key for decryption. Compromised nodes are essentially 

inside attackers and can perform various attacks to break the functionality of the sys-

tem. Thus, intrusion detection techniques must be used to detect and remove inside at-

tackers to prevent security failure.   

Over the past few years, numerous protocols have been proposed to detect intrusion 

in WSNs. [21, 129] each provide an excellent survey of the subject. Existing IDS tech-

niques proposed for WSNs can be categorized as centralized where the detection is 

based on a single BS or CH making the detection decision, and cooperative (decentral-

ized) where many nodes collect information and reach a collective decision about a par-

ticular node. One advantage of cooperative IDS over centralized IDS is that there is no 

single point of failure. In cooperative IDS, many schemes are based on overhearing 

neighbor communication [49, 82, 96]. In [96] a watchdog scheme is proposed where the 

sender monitors the transmission of its next hop neighbor, and announces its mali-

ciousness if it drops or fails to relay packets towards the destination. DICAS [82] is a 

protocol that detects and isolates malicious nodes in WSNs. Guard nodes are responsi-

ble for monitoring the activity of neighboring nodes. Once a target node's negative be-

havior count exceeds a threshold, guard nodes inform all the neighboring nodes, which 

in turn mark the node as revoked. In [49], a decentralized rule-based intrusion detection 

system is proposed by which monitor nodes are responsible for monitoring neighboring 

nodes. Their algorithm consists of a data acquisition phase which consists of the moni-

tor nodes collecting messages from monitored neighbors, followed by a rule application 

phase where the stored messages are checked against predefined rules and failures are 
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raised if the messages fail the tests, and finally by an intrusion detection phase where 

the number of failures are examined and an alarm is raised if the number of failures ex-

ceeds a threshold value.  

In [84], a collaborative approach is proposed for intrusion detection where the deci-

sion is based on majority voting of monitoring nodes. The IDS system is based on speci-

fication-based detection and aims to detect blackhole and selective forwarding attacks. 

If the majority of the monitoring nodes raise an alert for a specific neighboring node, 

then that node is deemed compromised and the system either takes direct action and 

revokes its communication with neighboring nodes or informs the base station which 

indirectly cuts it off from the network by degrading its path reliability.  The authors in 

[120] define a framework for distributed cooperative failure detection, and specify 

methods with which the cooperating nodes can communicate effectively and efficiently. 

They rely on the creation of tree-based propagation-collection protocols. In [91], a vot-

ing-based distributed intrusion detection algorithm is proposed to detect insider attack-

ers. The algorithm is purely localized with each sensor monitoring its immediate neigh-

bors, and flagging abnormal behavior. Multiple features are examined and the final de-

cision is based on majority voting. The result of the evaluation can also be combined 

with routing to ensure reliable communication. The majority voting prolongs the sys-

tem lifetime since the energy consumption for intrusion detection is distributed among 

nodes. 

In the dissertation research, we consider two levels of intrusion detection: host IDS 

and system IDS. The host-level IDS is based on monitoring, as done in [49, 82, 96]. We 

model the flaws of host IDS by a false positive probability (Hpfp) and a false negative 

probability (Hpfn). The system-level IDS is based on majority voting, as done in [84, 91]. 

The reason for having system IDS in addition to host IDS is to prevent node collusion as 

host IDS alone would break down when the monitor node itself is malicious. Specifical-

ly, our voting-based IDS approach extends from [46] by employing a number of verifi-

ers randomly selected who cast their votes based on the host IDS results. The disserta-

tion research investigates the best intrusion detection strength to apply in terms of the 

detection frequency and the number of verifiers, with considerations given to the 

tradeoff between energy consumption vs. security gain due to employment of voting-

based IDS with the goal to prolong the WSN system lifetime.  

Recently we have seen trust-based or reputation-based approaches being proposed 

in the literature for intrusion detection  [13, 14, 23, 57, 61, 97, 98]. In [97], a mechanism to 

enforce node cooperation through collaborative monitoring is proposed. The reputation 

metrics are built based on observations and experiences of neighboring nodes. It is 

shown that denial of service attacks based on malicious broadcasting are prevented us-

ing this mechanism. The same authors propose a cooperative security scheme for de-
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tecting selfish nodes is evaluated over the DSR routing protocol in [98]. The authors 

show that collaboration between nodes is an efficient method for detecting misbehaving 

selfish nodes. In [23], a reputation-based approach to detecting and isolating misbehav-

ing nodes that refuse to cooperate with the network is proposed. Each node maintains 

information of neighboring nodes and their ratings based on own experiences, observa-

tions, and reported experiences. Each node contains a path manager component that is 

responsible for choosing secure paths based on available reputation information. The 

work uses the DSR routing protocol to illustrate their algorithm. Wang et al. [44] pro-

posed to use the evidence chain for detecting misbehaviors of a node, and the trust fluc-

tuation for reflecting the variability of a node’s trust value over a time window. Ebinger 

et al. [45] proposed to split the reputation information into trust and confidence for rep-

utation exchanges and then combined them into trustworthiness for intrusion detection. 

Our dissertation research lays the ground work to further extend prior work [13, 14] for 

trust-based intrusion detection at the host IDS level and for choosing trustworthy rout-

ing paths for multisource multipath routing.  

In [113], the authors considered a centralized approach for fault and intrusion detec-

tion, relying on a powerful BS to perform computation and trace the identity of faulty 

nodes based on the information provided by the sensors in the network. Similarly, [76] 

proposed a method to overcome the response implosion problem caused by using a 

central diagnosing node. The central node becomes a bottleneck, and the authors pro-

posed diffused computation mechanisms to address the problem. In the dissertation re-

search, our host IDS and system IDS designs are based on distributed intrusion detec-

tion to avoid a single point of failure and performance bottleneck.  

2.2 Capture and Attack Strategies in WSNs  
 

Capture attacks in WSNs can be classified as either random or selective [12-14]. Selec-

tive capture attacks maximize the attack strength by targeting nodes whose capture will 

result in a high possibility of compromising the WSN. An intelligent attacker can strate-

gically attack a specific area or a group of sensors to compromise the most number of 

keys that are not yet compromised [71, 72]. A clever adversary can strategically attack 

certain sensors so as to reveal the largest number of unknown pairwise keys [105]. In 

particular, [14] developed a framework to analyze the effect of selective attacks on per-

formance of key pre-distribution protocols. However, in [12-14] selective capture was 

about key compromises and the focus was on key pre-distribution protocol design for 

achieving resiliency against key compromise attacks.  Our dissertation research consid-

ers the presence of smart attackers capable of performing strategic capture of “critical 

nodes” near the BS to block data delivery. We note that in the literature, various ap-

proaches [52, 53] have been proposed to masquerade and hide CHs and critical SNs. 
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However, energy consumption is generally a concern for SNs in these approaches. Our 

approach is dynamic redundancy management of countermeasures. We demonstrate 

the effectiveness of our dynamic redundancy management protocol against selective 

capture of critical nodes to create black holes near the BS to maximize its attack 

strength.  

In [1], the authors utilized ARM TrustZone and ARM secure boot to provide a se-

cure boot process in which only secure system code is booted. The boot-up firmware 

cannot be modified or replaced, since it resides in a memory that is programmed only 

once. Keys and passwords are protected in memory locations which are secured from 

unauthorized access (on the processor chip itself). Hash values of images to be loaded 

are stored in secure memory for comparison at time of loading. While the authors ap-

proach seems promising, they do not assess the system against attacks that target vul-

nerabilities in the running code. The authors in [60] showed how permanent code injec-

tion attacks can be easily performed on Harvard-based architecture devices (e.g. Mica 

motes). The attacker can exploit vulnerabilities (e.g. buffer overflow) in the running 

code to run a sequence of instructions which in turn injects malicious code into the sen-

sor.  In [17] the authors classified attacks based on the time and resources needed by the 

attacker , ranging from minutes using plug-in connections to days using more invasive 

techniques to erase security bits using UV light and the usage of high cost equipment. 

The authors mentioned that long periods of inactivity are strong indications of tamper-

ing by an attacker, and suspicious nodes can be revoked by the network. While a secure 

boot process makes it harder for an attacker to compromise a node, a clever attacker can 

target a vulnerability which could lead to bypassing security measures. In this disserta-

tion, we assume that the attackers have access to advanced equipment which enables 

invasive attacks to be performed, and once a node is captured, it is compromised. Our 

analytical model, however, can be easily extended to the case in which tamper proof 

hardware can successful prevent the attacker from turning a captured node into a com-

promised inside attacker. 

Once a node is compromised (through capture) it becomes an inside attacker. A 

smart inside attacker can employ various attack strategies to maximize its attack 

strength [47]. In [10], the authors consider attackers that do not launch direct attacks in 

order to avoid detection. Instead, the captured nodes behave normally but aim to harm 

the network through injecting false data to the data collector.  In [121], the authors con-

sider the existence of malicious nodes that can decrease their attack rate in order to dis-

guise themselves and avoid being detected by intrusion detection. A malicious node can 

drop incoming packets with the risk of being identified. The impact of attacker behav-

iors on a behavior-rule based intrusion detection design for smart grids is investigated 

in [103]. The authors consider two attack behaviors; reckless (constantly attacking to 

impair the system) and random (attacking while avoiding intrusion detection). Similar 
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to [103], we consider inside attackers that can perform persistent and random attacks. 

Furthermore, we consider smart attackers that can  perform opportunistic attacks while 

perform random attacks to evade intrusion detection until a critical mass of compro-

mised node population is reached after which “all in” attacks are performed to cripple 

the system. In a BS-based WSN, because of selective capture, the inside attacker 

strength can be a function of both time and distance from the BS. 

2.3 Redundancy Management of Intrusion Detection in WSNs  

Intrusion detection protocols for WSNs must take into consideration the limited re-

source available to SNs including limited energy supply, processing, and communica-

tion capabilities. In the literature, several studies exist attempting to achieve energy-

efficient intrusion detection.  

Ling, et al. [123] proposed Intrusion Detection Optimal Scheduling (IDOS). Their 

proposed IDS system is composed of nodes that sense activity (called collecting nodes), 

and transmit suspicious events to sink nodes. The collecting nodes follow a sleep 

schedule to save energy. Their algorithm aims to find the best schedule to minimize en-

ergy and detection delay, but no consideration is given to minimizing the system life-

time. Our dissertation research aims to find the best IDS and redundancy management 

parameter settings that minimize energy usage while satisfying QoS and security re-

quirements to maximize the system lifetime.  

In [99], the authors proposed a self-learning system used by SNs to detect malicious 

packets. A SN follows a sampling rate to sample packets in an attempt to detect mali-

cious packets and drop them. The sampling rate is controlled such that it matches the 

level of compromise exhibited in the system, thus resulting in an energy-efficient sys-

tem. Our work also aims to determine the best rate at which to invoke intrusion detec-

tion; however, we aim to find the best balance of reliability and security gain vs. energy 

consumption to maximize the system lifetime. 

In [25], the authors proposed a hierarchal model for WSNs with cluster heads re-

sponsible for reporting intrusion related data to the BS, thus avoiding expensive trans-

mission from SNs to the BS. This approach however drains energy of CHs faster than 

SNs, thus may adversely shorten the lifetime span of CHs which are critical to the WSN.  

eHIP was proposed in [116] to combine intrusion prevention based on authentication 

with collaborative-based intrusion detection by which a CH monitors member SNs. A 

CH isolates SNs that behave suspiciously. CHs themselves are monitored by SN groups 

that accumulate suspicious activity up to a threshold, after which the CH is evicted. SN 

groups are formed on a rotating basis for energy conservation purposes. In [70], a pro-

tocol for optimal selection and activation of intrusion detection agents was proposed. 
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Every node is assigned a trust value by its CH. Only agents with sufficient trust are al-

lowed to activate the monitor agent and participate in the cooperative IDS by sending 

alerts to its CH. CHs enforce this rule and lower trust levels of misbehaving agents.  En-

ergy is conserved by limiting the number of active monitoring agents, and avoiding 

duplicate alerts to CHs, which in turn enhances the system lifetime. Bao, et al. [13, 14] 

also considered the use of trust in a hierarchically structured WSN such that a CH col-

lects trust evaluations of SNs toward their peer SNs in the same cluster for intrusion de-

tection in an effort to reduce energy consumption. 

Relative to the work cited above, our dissertation research takes a more holistic ap-

proach by considering energy consumption vs. security gain not only for intrusion de-

tection by means of adjusting IDS strength in response to attacker strength, but also for 

intrusion tolerance by means of redundancy management of multisource multipath 

routing with the goal to maximize the WSN lifetime. 

2.4 Multipath Routing for Intrusion and Fault Tolerance 

A common strategy to tolerate the compromise or failure of nodes in WSNs is the 

use of multiple paths to transmit packet to the intended destination. [114] provides an 

excellent survey in this topic. The use of single-path routing is highly susceptible to the 

single failure or compromise of a node on the path. Furthermore, once the path fails, the 

WSN needs to promptly expend energy to find a new path to maintain its operation. 

The use of multiple paths can further improve the WSN lifetime by avoiding the use of 

the same path during routing. 

In [78] multiple paths are used to route traffic to the destination using geographic 

routing, aiming to increase packet delivery ratio in the presence of packet dropping at-

tacks (through blackhole and selective forwarding). A trust based approach is taken by 

which a sender uses overhearing to monitor if the next nodes forward its packets. Simi-

larly in [80] the authors propose a probabilistic routing algorithm called ARRIVE that is 

robust to link failures and patterned node failures. The algorithm is based on localized 

information. For communication, multiple packets are transmitted over diverse paths to 

increase the end-to-end reliability. The algorithm uses link reliability and node reputa-

tion to determine the next hop in routing. However, no energy consideration is given. 

In [54] the authors considered a disjoint multipath routing protocol that aims to tolerate 

intrusion by using multiple redundant paths to send a message to a destination. It aims 

to operate correctly in the presence of undetected intruders. However, it relies on the 

existence of a powerful base station to plan multipath routing, which is normally not 

available in WSNs, or otherwise would be a single point of failure.  
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Lee and Choi [87] presented a secure alternate path routing protocol called SeRINS. 

The alternate paths formed make routing resilient to selective forwarding attacks. Sen-

sors are connected with parents in a tree-based formation, with every node having mul-

tiple parents which it utilizes for forwarding in a round robin manner. A malicious 

node that injects false routing information is identified by its neighbors which report 

the identity of the malicious node to the BS. The BS in turn revokes the malicious node’s 

keys and evicts it from the WSN. The proposed protocol, however, does not address 

how to detect malicious nodes for other types of attacks, nor does it give considerations 

to energy consumption and lifetime maximization. 

 In [110], packets are sent over randomized dispersive multipath routes with the aim 

to avoid black holes resulting from compromised nodes performing packet dropping 

and/or denial of service attacks. A packet is split into n shares based on coding theory 

so that if k out of n shares are received, then the packet can be reconstructed. The ran-

domized multipath routes generated are dispersive to avoid black holes and to enhance 

the probability of at least k out of n shares can reach the receiver. The approach, howev-

er, does not consider intrusion detection to detect compromised nodes, nor energy con-

sideration. H-SPREAD [93] is another multipath protocol that relies on splitting a mes-

sage into N shares using a secret sharing scheme, where each share is forwarded using a 

distinct path from source node to the base station. The base station can recover the mes-

sage if T out of N shares is successfully received.  

Relative to the work cited above, our dissertation research considers multipath mul-

tisource routing as well to circumvent black hole attacks for intrusion tolerance. In addi-

tion, we consider intrusion detection to detect and evict compromised nodes. More im-

portantly, we consider the best way to perform multipath routing and intrusion detec-

tion to best tradeoff energy consumption vs. security and reliability gain to maximize 

the WSN system lifetime. 

Geographic routing is the prevalent routing algorithm for WSNs due to its simplici-

ty in routing, and its independence of routing tables [78], [122] which makes it immune 

to routing table attacks. The authors in [122] proposed a family of secure protocols with 

varying security strengths at the expense of more shared states. The protocols are built 

on a base protocol, IGF, which depends on geographic routing and does not use routing 

tables. This prevents attacks such as state corruption, wormholes, and HELLO floods. 

Attacks such as black hole, selective forwarding, and Sybil are defended by the use of 

reputation and cryptography. The authors showed that there is a tradeoff between secu-

rity and shared states. We also adopt geographic routing for its desirable security prop-

erties. Further, we use multisource multipath routing for intrusion tolerance, and dis-

tributed IDS for intrusion detection against the above mentioned attacks plus collusion 

attacks with the goal to maximize the system lifetime.  
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Multipath routing has also been used for fault tolerance [9]. In [62], a multipath rout-

ing protocol based on Directed Diffusion [75] was proposed. The protocol maintains 

multiple paths between a source and a sink with one being primary and the remaining 

ones being backup alternative paths. The paths need not be disjoint; the authors consid-

ered the use of both disjoint and braided paths. The backup paths are kept alive by 

sending keep-alive messages. In the case of the primary path failing, a quick recovery is 

made to make one of the existing backup paths take over the primary path of communi-

cation. REAR [66] is another protocol that relies on maintaining a backup path and 

switching to it in the event of the primary path failure. This protocol differs in that 

nodes located on both paths reserve a fixed amount of energy for the communication 

between the source node and the sink node. The protocol takes into account the amount 

of energy reserved by nodes when allocating paths, in order to balance the energy con-

sumed by the paths in the WSN. Our work differs from the above work in that we do 

not rely on a recovery protocol involving switching of allocated paths. Instead, we 

adopt multisource multipath routing with dynamic redundancy management to best 

balance energy consumption vs. security gain. Additionally, we use multipath routing 

to deal for both fault and intrusion tolerance. 

2.5 Redundancy Management of Multipath Routing  

In this section, we survey redundancy management issues for multipath routing. 

Particularly, we survey existing work addressing the issues of “how many paths” and 

“what paths” should be used for multipath routing.  

SEEM [104] is a multipath routing protocol that relies on a powerful BS to perform 

route discovery, maintenance, and route selection. The BS takes into account the re-

maining energy of nodes when selecting routing paths between source and sink. SEEM 

shows improvement over directed diffusion in certain performance metrics such as 

network throughput, communication overhead, and network lifetime. Furthermore, it 

has some resistance against false routing path attacks since the routing paths are cen-

trally selected by the BS. However, it does not consider the existence of malicious nodes 

and there is no consideration given to detect attacks. In [24], a fault-tolerant algorithm 

for heterogeneous WSNs with super SNs and regular SNs was proposed. Every regular 

SN is connected to a set of super SNs through k-paths, while minimizing the transmis-

sion range (and thus the transmission power). This k-vertex super SN connectivity can 

tolerate the failure of up to k-1 super SNs, thus providing a fault-tolerant WSN. In [119], 

an energy efficient adaptive routing protocol was proposed. The protocol creates multi-

ple paths between a source and the sink node and chooses paths based on node energy 

levels and signal strengths. Furthermore, the protocol aims to provide an environment 

with high reliability and low energy consumption by efficiently balancing the total en-
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ergy consumption of the nodes, which in turn increases the WSN lifetime. In [38][6] the 

issue of how many paths for fault tolerance was addressed in the context of multipath 

routing from a source node to a sink node. The authors identified the best path redun-

dancy to apply to best trade energy consumption for reliability gain to maximize the 

system lifetime. However, no presence of malicious nodes was considered. This disser-

tation research is the first work that addresses the issue of “how many paths” to use for 

both intrusion tolerance and fault tolerance in the context of multisource multipath 

routing in WSNs.  

Relative to the work cited above, our dissertation work uses multiple paths for both 

fault tolerance and intrusion tolerance.  Further, we consider dynamic redundancy 

management to adaptively adjust the redundancy level for multisource multipath rout-

ing in response to changing environment conditions to trade reliability and security 

gain vs. energy consumption so as to maximize the WSN lifetime. Taking into consider-

ation of the attacker behavior, our redundancy management design considers not only 

redundancy management of multipath routing, but also redundancy management of 

intrusion detection strength to counter the attacker strength, so as to best balance securi-

ty gain vs. energy consumption to maximize the system lifetime. Unlike existing work, 

we address both “how many paths to use” and “what paths to use” issues. 

2.6 Lifetime Maximization of Wireless Sensor Networks 

Over the past few years, many protocols exploring the tradeoff between energy con-

sumption and QoS gain particularly in reliability gain in WSNs have been proposed. In 

[115], the optimal communication range and communication mode were derived to 

maximize the WSN lifetime. In [111], the authors devised intra-cluster scheduling and 

inter-cluster multi-hop routing schemes to maximize the network lifetime. They consid-

ered a hierarchal WSN with CH nodes having larger energy and processing capabilities 

than normal SNs. The solution is formulated as an optimization problem to balance en-

ergy consumption across all nodes with their roles. In [128], the authors investigated the 

tradeoff between reliability versus lifetime in heterogeneous WSNs. SNs are grouped 

into sleep sets, and follow a sleep schedule that enables them to conserve energy. They 

derived the lifetime of the WSN as a function of the number of sleep sets, and proved 

that an optimal number of sleep sets can be found given a failure rate as input. In [83] 

the tradeoff between using data redundancy and maintaining data accuracy was stud-

ied. The authors identified the best protocol parameter settings for data aggregation and 

estimation quality such that the WSN lifetime is maximized while satisfying the estima-

tion quality constraints. In [117], a strategy to minimize power consumption of queries 

and maximize the WSN system lifetime was proposed. The system considers queries 

with QOS requirements of power and accuracy, and finds the optimal sampling rate at 
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which the cost is minimized with the QOS requirements satisfied. The work however 

assumes fixed power transmission for nodes and does not consider radio range adjust-

ment to maintain connectivity. In [94], the authors considered a two-tier WSN with the 

objective of maximizing network lifetime while fulfilling power management and cov-

erage objectives. They determined the optimal density ratio of the SNs in the two tiers 

to maximize the system lifetime. Relative to the work cited above, we consider the pres-

ence of malicious nodes and explore the tradeoff between energy consumption vs. QoS 

and security gain to maximize the system lifetime.  

MMSPEED [58] is a multipath multispeed routing protocol that provides QOS guar-

antees in both timeliness and reliability domains. End-to-end requirements are guaran-

teed in a localized way without global network information or a priori path setup. It al-

so adopts geographic forwarding for packet delivery. However there is no considera-

tion given to the presence of compromised nodes. Our solution of satisfying timeliness 

and reliability requirements of a query is totally distributed, which in some sense fol-

lows the design principle of MMSPEED. Contrast to MMSPEED, our work considers 

not only timeliness and reliability but also security issues, with the multipath multi-

source routing problem being formulated as a WSN lifetime optimization problem.  

HEED [126] employs an energy-efficient distributed clustering approach for homo-

geneous clustered WSNs. The protocol aims to extend the lifetime of all the nodes in the 

network by distributing the energy consumption across the nodes. The role of cluster 

head is periodically changed based on residual energy and node proximity between 

sensor nodes such that energy consumption is distributed evenly among all sensors. 

Our dissertation research adopts HEED as the clustering algorithm for homogeneous 

clustered WSNs and extends it to addressing the issue of dynamic redundancy man-

agement for intrusion detection as well as fault and intrusion tolerance for system life-

time maximization. 
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Chapter 3  

 

System Model 

Our approach to maximizing lifetime using the proposed secure multipath routing 

protocol can be applied to a wide array of WSNs, including homogeneous clustered 

WSNs, heterogeneous clustered WSNs, and BS-based WSNs. Specific system models for 

these WSNs will be given in detail in Chapter 4, Chapter 5, and Chapter 6, respectively, 

where protocols and assumptions in each specific network system are discussed. In this 

chapter we discuss system assumptions generically applicable to all system models, in-

cluding the system failure definition, the attacker model, and the applicability.  

 

3.1 System Failure Definition 

Our target system is a query-based WSN. We define the total number of queries the 

system can answer correctly until it fails as the lifetime or the mean time to failure (the 

MTTF) of the system, which can be translated into the actual system lifetime span given 

the query arrival rate. A failure occurs when the system ceases to provide responses to a 

query.  

There are several causes for failing to provide response delivery. One cause is due to 

the lack of node availability (or connectivity). Nodes could cease to operate within the 

network due to either being evicted by the IDS (justly or unjustly), or due to energy ex-

haustion. This lack of connectivity could cut off the communication between sensor 

nodes that send query/response data to the final destination. While nodes can dynami-

cally increase their transmission range to maintain connectivity, there is a maximum 

range after which nodes can no longer communicate with each other.  

Another cause is due to the presence of inside attackers who could intentionally 

bring down the network by causing lack of connectivity between sensors and the 

BS/CH. It can perform slandering attacks by recommending a good node as a bad node, 

and a bad node as a good node when participating in intrusion detection activities. As a 
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result, slandering attacks can cause good nodes being misdiagnosed and evicted from 

the system, and bad nodes being missed and remained in the system. This effectively 

creates a ‘black hole’ area with a high concentration of bad nodes, especially for the crit-

ical SN area in a BS-based WSN with selective capture. Inside attackers can also per-

form packet dropping attacks, directly resulting in the loss of the data being forwarded 

toward the destination.  

Hardware failure and transmission failure due to noise and interference can also con-

tribute to loss of node availability or connectivity. Multipath routing is considered as an 

effective way to deal with transmission failure.   

3.2 Attacker Model 

3.2.1 Capture Attacks 

All sensors are subject to capture attacks, i.e., they are vulnerable to physical capture 

by the adversary (humans or robots) after which their code is compromised and they 

become inside attackers. In the literature, capture attacks in WSNs can be classified as 

either random or selective [71, 72, 105]. We consider both types of capture in this disser-

tation research. In random capture, there is no distinction between CHs and SNs. In this 

case, the adversary performs arbitrary capture compromising nodes at random and 

turning them into inside attackers. In selective capture, the adversary tends to strategi-

cally capture CHs and “critical” SNs (those SNs close to the CH or the BS) whenever it 

can. Selective capture attacks maximize the attack strength by targeting nodes whose 

capture will result in a high possibility of compromising the WSN. An intelligent at-

tacker can also strategically attack a specific area or a group of sensors to compromise 

the most number of keys that are not already compromised [71, 72]. Lastly, a clever ad-

versary can strategically attack certain sensors so as to reveal the largest number of un-

known pairwise keys [105]. 

In clustered WSNs, critical nodes are those SNs close to the CH because they are in 

the critical path to route packets to the CH. Therefore, capturing critical nodes will cre-

ate black holes around the CH and block all traffic to the CH. We consider the presence 

of a smart attacker capable of performing strategic capture of critical nodes to maximize 

the attack strength. Our countermeasure designs for defending against selective capture 

include (1) dynamic radio range adjustment; (2) multisource multipath routing for in-

trusion tolerance; and (3) voting-based intrusion detection. This subject is treated in 

Chapter 6. 
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3.2.2 Insider Attacks 

After a node is compromised it becomes an inside attacker. Inside attackers perform 

active attacks including packet dropping [81], packet modification, and bad-mouthing 

attacks to disrupt the operation of the network. A compromised node performs bad-

mouthing attacks by recommending a good node as a bad node, and a bad node as a 

good node when participating in the voting-based distributed IDS as a voter. As a re-

sult, bad-mouthing attacks can cause good nodes being misdiagnosed and evicted from 

the system, and bad nodes being missed and stayed in the system.  

Attacks in WSNs have been widely studied by the research community [49, 50, 81, 

122, 129]. Below we summarize insider attacks which can be dealt with by intrusion de-

tection and tolerance countermeasure designs proposed in the dissertation research.  

1. Blackhole/Selective forwarding 

A malicious node may refuse to forward a packet upon reception and drop it 

instead. Selective forwarding is when the malicious node drops some but not all 

the packets that pass it through routing. When an adversary drops all packets, it 

forms a black hole. A selective forwarding attack is harder to detect than a black  

hole attack as it could be mistaken for an occasional message loss. On the other 

hand, a message loss could be falsely identified as an intentional packet drop by 

an attacker. We rely on monitoring and overhearing techniques in host IDS de-

sign to identify black hole and selective forwarding attacks.  

2. Sybil attacks 

In a Sybil attack an adversary pretends to be multiple entities. To counteract a 

Sybil attack and prevent impersonation, we assume the use of cryptographic 

measures between sensor nodes, where nodes communicate with each other us-

ing pairwise keys. Furthermore, inconsistent information from the adversary per-

forming Sybil attacks can be identified by neighboring nodes participating in vot-

ing-based intrusion detection. Trust-based IDS can furthermore increase the de-

tection accuracy of multiple fake identities through the use of both local observa-

tions and recommendations. 

3. Flood attacks 

In a flood attack an adversary flood the network with multiple packets in or-

der to disrupt communication between nodes and deplete network resources of 

the WSN. This attack can be detected by monitoring and overhearing techniques 

in host IDS design. 

4. Bad-mouthing attacks 
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A good node could be recommended unjustly as a bad node. Similarly a bad 

node could be recommended as a good node. We rely on majority voting at the 

system IDS level to cope with bad-mouthing attacks by inside attacker. By com-

paring votes cast by a malicious node against those cast by good nodes, we can 

also detect a malicious node at the host IDS level.  A trust system can further 

help tolerate bad-mouthing attacks by imposing a trust threshold to filter out 

non-trustworthy voters. 

5. Routing state corruption 

Altering or replaying routing messages can corrupt the routing state of nodes 

and result in message loss and routing loops. We use geographic routing in our 

protocol design, where sensors send packets towards the direction of the final 

destination. There is no routing state to be shared by SNs, thus this attack is pre-

vented in our system. 

6. Wormhole attacks 

An adversary tunnels a message over a low latency link from one part of the 

network to another distant part of the network. Wormhole attacks can greatly 

disrupt the route discovery process, since routes will most likely be attracted to a 

wormhole that leads to a location close to the BS.  This attack can be detected in 

WSNs using geographic routing since neighboring nodes know the physical loca-

tions between them and can relate to the expected geographic distance. Addi-

tionally anomalous traffic toward a node can be detected by host IDS design to 

detect wormhole attacks. 

7. Sinkhole attack 

A sinkhole is similar to a wormhole in that they both aim to attract incoming 

traffic, except that a sinkhole aims to subsequently tamper with data or drop in-

coming packets (blackhole/selective forwarding). Sinkhole attacks are hard to 

carry out in a WSN using geographic routing for the same reasons as wormhole 

attacks. One can also detect sinkhole arracks by abnormal traffic directed to a 

node at the host IDS level.  

8. HELLO floods 

A HELLO flood attack is when a node uses long distance transmissions to 

trick a node into thinking that it is within close proximity to it. This attack is 

similar to wormhole in that it can be coped with in WSNs using geographic rout-

ing. 

At the host IDS level, most attacks such as blackhole and selective forwarding can be 

detected through monitoring and overhearing. More sophisticated attacks such as Sybil 
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and bad-mouthing attacks may not be easily detectable. We model the detection error 

by a false negative probability (missing a bad node as a good node) and a false positive 

probability (misidentifying a good node as a bad node). Inside attackers can be persis-

tent or random. A persistent attacker performs attacks at full force, and does not at-

tempt to conceal itself. A random attacker performs attacks only randomly to elude de-

tection. This dissertation research investigates the effect of inside attacker behavior on 

dynamic redundancy management of multisource multipath routing for intrusion toler-

ance and voting-based IDS for intrusion detection in WSNs. 
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Chapter 4  

 

Redundancy Management of Multisource Multipath 

Routing for Intrusion and Fault Tolerance in 

Homogeneous Clustered WSNs 

Multisource multipath data routing to a remote sink node is an effective way to cope 

with unreliable and malicious nodes in autonomous WSNs. In this chapter we analyze 

the optimal amount of redundancy in terms of the number of source SNs sensing the 

same physical phenomena and the number of paths through which data are routed to a 

remote sink node in the presence of unreliable and malicious nodes so that the query 

success probability is maximized while maximizing the WSN lifetime. Our dynamic 

multisource multipath routing algorithm design integrates with a voting-based distrib-

uted intrusion detection algorithm to remove malicious nodes from the WSN. By con-

trolling the redundancy level for multisource multipath and intrusion detection settings 

dynamically with energy considerations as prescribed by our algorithm, we demon-

strate that the lifetime of a query-based autonomous WSN is maximized in response to 

changing environment conditions including node density, radio range, and node cap-

ture rate. This chapter is based on our work published in [8].  

4.1 System Model 

We consider a WSN with low-power SNs distributed in a geographic area through 

air-drop. SNs are homogenous with the same initial energy (Eo). The deployment area of 

the WSN is of size A2. SNs are distributed according to a homogeneous spatial Poisson 

process with intensity λ. We assume the domain is relatively free of obstacles and the 

WSN is dense enough so that the length of a path connecting two SNs can be approxi-

mated by the straight line distance divided by r.  The transmission power is kept to a 

minimum such that one-hop radio range (r) is used for transmission. Thus, any com-

munication between two nodes with a distance greater than r between them would re-

quire a multi-hop. The one-hop radio range can be adjusted to maintain connectivity as 
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the network becomes less dense because of node failures at the expense of more energy 

consumption.  

Environment conditions which could cause a SN to fail with a certain probability in-

clude hardware failure (q), and transmission failure due to noise and interference (e). 

Moreover, the WSN is vulnerable to sensor captures, i.e., SNs may be captured and 

compromised. Because of random deployment of SNs (e.g., air drop), we assume all 

SNs have equal chances of capture with the capture time characterized by a distribution 

function Fc(t) based on historical data and knowledge about the application environ-

ment. 

The WSN we consider in this chapter is cluster-based, where CHs are elected period-

ically using an energy-saving clustering algorithm (e.g., [68, 81, 126]), and form clusters 

with non-CH nodes. Each node elects itself to become a tentative CH with probability  . 

If a node decides to become a CH it broadcasts its residual energy by a CH announce-

ment message. This happens in multiple iterations with every node doubling its    eve-

ry iteration if it is not a CH already, or it has received a message from a CH with a high-

er residual energy than itself. After a specified number of iterations, the cluster-join 

process occurs where every non-CH will send a message to a CH informing that it will 

join the cluster. The CH will send back an acknowledgement to the SN. This clustering 

algorithm ensures that the energy spent due to being the CH is distributed fairly evenly 

among nodes by performing a fair rotation of the CH role among SNs.  
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Figure 4-1: A Homogeneous Clustered WSN with Multisource Multipath Routing 

and Voting-based IDS. 

Queries can be issued by a mobile user (while moving) and can be issued anywhere 

in the WSN through a nearby CH. A CH which takes a query to process is called a que-

ry processing center (PC).  Each query has a strict timeliness requirement (Treq) before 

which the query must be delivered; otherwise, the query fails.  

Figure 4-1 (bottom middle) shows an example of multisource multipath routing 

with sensing data being relayed from 3 source SNs to the source CH (ms=3) and then 

from the source CH to the PC over 2 paths (mp =2). Each source SN forms a disjoint path 

to the source CH. That is, one SN is chosen to relay the sensing data in each hop. Thus, 

there are a total of ms paths from ms source SNs. The source CH in turn creates mp dis-

joint paths between the source CH and the PC. The mp disjoint paths are formed by ran-

domly choosing distinct mp SNs in the first hop and then randomly choosing only one 

SN in each of the subsequent hops. Each query has a unique id, so an intermediate SN 

selected for packet forwarding can check the query id associated with the packet rout-

ing request to ensure that it is only committed once for a query. It has been reported 

that the number of edge-disjoint paths between nodes is equal to the average node de-

gree with a very high probability [51]. Therefore, when the density is sufficiently high 

such that the average number of one-hop neighbors is sufficiently larger than mp and ms, 

we can effectively result in mp disjoint paths for path redundancy and ms disjoint paths 

from ms sensors for source redundancy. 
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Geographic forwarding is used to route the information between nodes; thus, no 

path information is maintained. Only the location of the destination SN needs to be 

known to correctly forward a packet. As part of clustering, a CH knows the locations of 

SNs within its cluster, and vice versa.  

We assume that the WSN executes a pairwise key establishment protocol (e.g., [65]) 

in a secure interval after deployment. Each node establishes pairwise keys with its k-

hop neighbors, where k is large enough to cover a cluster area. Thus, upon electing a 

new CH, the CH will have pairwise keys with the SNs joining its cluster. Since every SN 

shares a pairwise key with its CH, a SN can encrypt data sent to the CH for confidenti-

ality and authentication purposes.  

We assume that SNs operate in power saving mode (e.g. [22, 107]). Thus, a SN is ei-

ther active (transmitting or receiving) or in sleep mode. For the transmission and recep-

tion energy consumption of sensors, we adopt the energy model in [126]. 

Multisource multipath routing is achieved through two forms of redundancy: (a) 

source redundancy by which ms SNs sensing a physical phenomenon in the same fea-

ture zone are used to forward sensing data to their CH, referred to as a source CH; (b) 

path redundancy by which mp paths are used to relay packets from the source CH to the 

PC. It has been reported that the number of edge-disjoint paths between nodes is equal 

to the average node degree with a very high probability [19, 49, 108]. Therefore, when 

the density is sufficiently high such that the average number of one-hop neighbors is 

sufficiently larger than mp and ms, we can effectively result in mp redundant paths for 

path redundancy and ms distinct paths from ms sensors for source redundancy. 

Geographic forwarding is used to route the information between nodes; thus, no 

path information is maintained. Only the location of the destination SN needs to be 

known to correctly forward a packet. As part of clustering, a CH knows the locations of 

SNs within its cluster, and vice versa. We assume that SNs operate in power saving 

mode (e.g. [22, 107]). Thus, a SN is either active (transmitting or receiving) or in sleep 

mode. For the transmission and reception energy consumption of sensors, we adopt the 

energy model in [81]. 

We assume that the WSN executes a pairwise key establishment protocol (e.g., [65, 

130]) in a secure interval after deployment. Each node establishes pairwise keys with its 

k-hop neighbors, where k is large enough to cover a cluster area. Thus, upon electing a 

new CH, the CH will have pairwise keys with the SNs joining its cluster. Since every SN 

shares a pairwise key with its CH, a SN can encrypt data sent to the CH for confidenti-

ality and authentication purposes. Due to limited resources, we assume that when a 

node is compromised, it only performs two most energy conserving attacks, namely, 

bad-mouthing attacks (recommending a good node as a bad node and a bad node as a 
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good node) when serving as a recommender, and packet dropping attacks when per-

forming packet routing to disrupt the operation of the network.   

To detect and remove malicious nodes from the system, a voting-based system IDS 

is applied periodically in every      time interval. How often should      be is a design 

issue which we aim to identify in this paper. Every node runs a simple rule-based host 

IDS to detect if its neighbors exhibit suspicious behavior or comply with the prescribed 

protocol design, including the packet forwarding protocol, the voting-based system IDS 

protocol, and the clustering algorithm. An example is that when A selects B to forward 

a packet, A can monitor if B actually forwards the packet or not through overhearing 

based on the packet broadcast by B. If a neighbor node selected for packet forwarding 

does not forward as intended, then it is counted as a negative experience. Another ex-

ample is that when A and B are involved in a voting-based system IDS activity on C, if 

A is sure C is good but B insists on C being bad, then A can view it as a negative experi-

ence against B. To conserve energy, a node does not promiscuously monitor all neigh-

bors, but just uses packets received or overheard during protocol execution according to 

the rules defined in the host-IDS design (e.g., [19, 49]). The flaw of the host IDS is char-

acterized by a false positive probability (Hpfp) and a false negative probability (Hpfn), 

which are assumed known at deployment time. In each interval, m neighbor nodes 

around a target node will be chosen randomly as voters to decide if the target node is 

still a good node.  

Figure 4-1 (upper left) shows an example of voting-based intrusion detection with m 

= 3 voters. The m voters share their votes through secure transmission using their pair-

wise keys. How big should m be is another design issue which we aim to identify in this 

paper. When the majority of voters come to the conclusion that a target node is bad, 

then the target node is evicted. There is a system-level false positive probability (   ) 

that the voters can incorrectly identify a good node as a bad node. There is also a sys-

tem-level false negative probability (   ) that the voters can incorrectly misidentify a 

bad node as a good node. These two system-level IDS probabilities will be derived 

based on the attack model in the paper.  

To provide a unifying metric that considers the above two design tradeoffs, we de-

fine the total number of queries the system can answer correctly until it fails as the life-

time or the mean time to failure (MTTF) of the system which can be translated into the ac-

tual system lifetime span based on the query arrival rate. 

Figure 4-2 shows a scenario where the percentage of compromised nodes is low rela-

tive to that of Figure 4-3. In Figure 4-2 we illustrate that we only need to choose a source 

redundancy of 2 (ms = 2) and a path redundancy of 2 (mp = 2) to maintain the source-SN-

to-PC connectivity for query response delivery. As the bad node population increases as 
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in Figure 4-3, we need to use ms = 3 and mp = 3 to maintain the source-SN-to-PC connec-

tivity.  

 

Figure 4-2: Multisource Multipath Routing with a Low Population of Compromised 

Nodes. 

 

 

Figure 4-3: Multisource Multipath Routing with a High Population of Compromised 

Nodes. 

Here we note that increasing source or path redundancy enhances reliability and se-

curity of source-SN-to-PC connectivity. However, it also increases the energy consump-

tion, thus contributing to the decrease of the system lifetime. Thus, there is a tradeoff 

between reliability and security gain vs. energy consumption.  The distributed IDS de-

sign attempts to detect and evict compromised nodes from the network without unnec-

essarily wasting energy so as to maximize the query success probability and the system 

lifetime. The effectiveness of the IDS depends on its parameters (     and m). While a 

shorter      or a higher m can result in low     and      it also consumes more energy 

from the WSN nodes. Thus, this is another design tradeoff. To provide a unifying metric 

that considers the above two design tradeoffs, we define the total number of queries the 
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system can answer correctly until it fails as the lifetime or the mean time to failure (MTTF) 

of the system which can be translated into the actual system lifetime span based on the 

query arrival rate. A failure occurs when no response is received before the query dead-

line. The cause could be due to energy exhaustion, packet dropping by malicious nodes, 

channel/node failure, or insufficient transmission speed to meet the timeliness require-

ment. Our aim is to find both the optimal redundancy levels and IDS settings under 

which the MTTF is maximized, when given a set of parameters characterizing the oper-

ational and environment conditions. 

4.2 Probability Model 

Table 4-1: Parameter List. 

Parameter Meaning Type 

A Length of each side of a square sensor area (meter) input 

nb Size of a data packet (bit) input 

Eelec Energy dissipation to run the transmitter and receiver circuitry (J/bit) input 

Eamp Energy used by the transmit amplifier to achieve an acceptable signal to 

noise ratio (J/bit/m2) 

input 

Eo Initial energy per SN (Joule) input 

Einit Initial energy of the WSN (Joule) derived 

Eclustering(t) Energy consumed for executing the clustering algorithm at time t 

(Joule) 

derived 

EIDS(t) Energy consumed for executing the IDS algorithm at time t (Joule) input 

Eq(t) Energy consumed for executing a query at time t (Joule) derived 

Rq(t) Probability that a query reply at time t is delivered successfully by the 

deadline 

derived 

r Wireless radio communication range (meter) input 

p Probability of a SN becoming a CH derived 

q SN hardware failure probability input 

ej Transmission failure probability of SNj input 

N(t) Number of SNs in the WSN at time t input 

n(t)  Number of neighbor SNs at time t derived 

ngood(t) Number of good neighbor SNs at time t derived 

nbad(t) Number of bad neighbor SNs at time t derived 

Nq Maximum number of queries before energy exhaustion derived 

Niteration Number of iterations in clustering for CH election derived 

mp Path redundancy level: Number of paths from a source CH to the sink design 

ms Source redundancy level: Number of SNs per cluster in response to a 

query 

design 
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f Fraction of neighbor SNs that will forward data input 

λ(t) SN population density (nodes/meter2) at time t derived 

λ SN population density at deployment time input 

λq Query arrival rate (times/sec) input 

Sjk Progressive transmission speed between SNj and SNk (meter/sec) derived 

Tclustering Time interval for executing the clustering algorithm (sec) input 

Treq Query deadline requirement (sec) input 

λc Node capture rate input 

 Ratio of IDS execution rate to query arrival rate input 

 Ratio of clustering rate to query arrival rate input 

m Number of voters selected for executing distributed IDS design 

Hpfp Probability of host IDS false positive input 

Hpfn Probability of host IDS false negative input 

Pfp Probability of distributed IDS false positive derived 

Pfn Probability of distributed IDS false negative derived 

     IDS interval time (sec) design 

MTTF Lifetime of a query-based WSN output 

 

Table 4-1 lists the parameter list along with the physical meaning and range. To de-

tect and remove malicious nodes from the system, a voting-based distributed IDS is ap-

plied periodically in every      time interval. How often should      be is a design issue 

which we aim to identify in this dissertation research. Every node runs a simple host 

IDS using. In this section we develop a probability model to estimate the MTTF of an 

autonomous WSN using multisource multipath data forwarding to answer queries is-

sued from a mobile user roaming in the WSN area. The basic idea of our MTTF formu-

lation is that we first deduce the maximum number of queries, Nq, the system can possi-

ble handle before running into energy exhaustion for the best case in which all queries 

are processed successfully. Because the system evolves dynamically, the amount of en-

ergy spent per query also varies dynamically. Given the query arrival rate λq as input, 

we can reasonably estimate the amount of energy spent due to query processing and 

intrusion detection for query j based on the query arrival time      . Next we derive the 

corresponding query success probability         , that is, the probability that the re-

sponse to query j arriving at time      is delivered successfully before the query deadline 

expires. Finally, we compute MTTF as the probability-weighted average of the number 

of queries the system can handle without experiencing any deadline, transmission, or 

security failure. More specifically, the MTTF is given by: 
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Here           
 
                   accounts for the probability of the system being 

able to successfully execute i consecutive queries but failing the i+1th query. The second 

term is for the best case in which all queries are processed successfully without experi-

encing any failure for which the system will have the longest lifetime span. 

4.2.1 Network Dynamics 

Initially at deployment all SNs are good nodes. Assume that the capture time of a 

SN follows a distribution function Fc(t) which can be determined based on historical da-

ta and knowledge about the target application environment. Then, the probability that a 

SN is compromised at time t, given that it was a good node at time t-    , denoted by 

    is given by:  
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(4.2) 

We note that    is time dependent. For the special case in which the capture time is 

exponential distributed with rate λc,                 Recall that the voting-based dis-

tributed IDS executes periodically with      being the interval. At the ith IDS execution 

time (denoted by        a good node may have been compromised with 

ity     since the previous IDS execution time         . Let         and         denote the 

numbers of good and bad neighbor nodes at time t, respectively, with          

              Then, the population of good and bad neighbor nodes at time      just 

prior to IDS execution can be recursively estimated from the population of good and 

bad neighbor nodes at time        : 

                                            

 

                                          

(4.3) 
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With          and         in hand, the system-level false positive probability (   ) 

and false negative probability (   ) as a resulting of executing voting-based IDS are as 

follows: 

 (4.4) 

               

  
    

           
     

           

  
          

 
 

 

      

   

   
  

    
 
       

     
 

       
       
     

                
        

  
          

 
 

 

      

   

 

where      is the minimum majority of m, e.g., 3 is the minimum majority of 5, and   is 

     for calculating     and      for calculating    . We explain Equation 4.4 for the 

false positive probability at time t below. The explanation to the false negative probabil-

ity is similar. A false positive results when the majority of the voters vote against the 

target node (which is a good node) as compromised. The first term in Equation (4.4) ac-

counts for the case in which more than 1/2 of the voters selected from the target node’s 

neighbors are bad sensors who, as a result of performing bad-mouthing attacks, will 

always vote a good node as a bad node to break the functionality of the WSN. Here the 

denominator is the total number of combinations to select m voters out of all neighbor 

nodes, and the numerator is the total number of combinations to select at least mmaj bad 

voters out of nbad nodes and the remaining good voters out of ngood nodes. The second 

term accounts for the case in which more than 1/2 of the voters selected from the neigh-

bors are good nodes but unfortunately some of these good nodes mistakenly misidenti-

fy the target nodes as a bad node with probability Hpfp, resulting in more than 1/2 of the 

voters (some of those may be bad nodes) voting against the target node. Here the de-

nominator is again the total number of combinations to select m voters out of  all neigh-

bor nodes, and the numerator is the total number of combinations to select i bad voters 

not exceeding the majority mmaj, j good voters who diagnose incorrectly with i + j  ≥ mmaj, 

and the remaining m – i – j good voters who diagnose correctly. 

After the voting-based IDS is executed, some good nodes will be misidentified as 

bad nodes with probability     and will be mistakenly removed from the WSN. Conse-

quently, we need to adjust the population of good nodes after IDS execution. Let  
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                    be the number of good neighbor nodes at time t right after IDS execution. 

Then, 

           
                                          (4.5) 

On the other hand, some bad nodes will remain in the system because the voting-

based IDS fails to identify them with probability   . Let                   be the number of bad 

neighbor nodes at time t right after IDS execution. Then, 

          
                                           (4.6) 

As the capture attack is totally random, the probability that any neighbor node is a 

bad node at time t, denoted by        , thus is given by: 

           
          
            

          
                        

             
 (4.7) 

        derived above provides critical information as a bad node can perform packet 

dropping attacks if it is on a path from source SNs to the PC. Here we note that the 

node population density is evolving because of some nodes being compromised and 

some being detected and evicted by the IDS dynamically. The node population remains 

the same until the next IDS execution (after      seconds) because the IDS only detects 

and evicts nodes periodically (as typically node hardware/software failure happens less 

frequently than security failure). Denote the node population density at time t by      

with     =  . Then,      can be computed by: 

                   
                        

              (4.8) 

         
       

   
 (4.9) 

4.2.2 Query Success Probability 

There are three ways by which data forwarding from SNj to SNk could fail: (a) 

transmission speed violation; (b) sensor/channel failures; and (c) SNj is compromised. 
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The first source of failure, transmission speed violation, accounts for query deadline 

violation. To know the failure probability due to transmission speed violation, we first 

derive the minimum hop-by-hop transmission speed required to satisfy the query dead-

line       Let dSN-CH be the expected distance between a SN (selected to report sensor read-

ings) and its CH and dCH-PC be the expected distance between the source CH and the PC 

accepting the query result. Given a query deadline      as input, a data packet from a 

SN through its CH to the PC must reach the PC within     . Thus, the minimum hop-

by-hop transmission speed denoted by      is given by: 

req

PCCHCHSN
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S  

  (4.10) 

Since a SN becomes a CH with probability p and all the sensors are distributed in the 

area in accordance with a spatial Poisson process with intensity CHs and non-CH 

SNs will also be distributed in accordance with a spatial Poisson process with rates p 

and (1-p respectively. Non-CH SNs thus would join the closest CH to form a Voronoi 

cell [12] corresponding to a cluster in the WSN. It can be shown that the average num-

ber of non-CH SNs in each Voronoi cell is (1-p)/p and the expected distance from a SN to 

its CH is given by                  . On the other hand, since a query may be issued 

from anywhere by the mobile user to a CH (which serves as the PC) and the source CH 

requested by the query also can be anywhere in the WSN, dCH-PC essentially is the aver-

age distance between any two CHs in the WSN. Given location randomness of CHs in 

the square area A2, it can be shown geometrically that the average distance between any 

two CHs is dCH-PC =0.382A. With the knowledge of dSN-CH and dCH-PC, we can also estimate 

the average numbers of hops to forward data from a SN to the source CH, denoted by 

   
 , and the average numbers of hops to forward data from the source CH to the PC, 

denoted by     
 , by    

           and    
           where r is radio range. 

Let       denote the probability that the forwarding speed from SNj to SNk would vi-

olate the minimum speed requirement, thus leading to a query deadline violation fail-

ure. To calculate Qt,jk we need to know the transmission speed Sjk from SNj to SNk. This 

can be dynamically measured by SNj following the approach described in [58]. If Sjk is 

above Sreq then Qt,jk = 0; otherwise, Qt,jk = 1. In general Sjk is not known until runtime. If Sjk 

is uniformly distributed within a range [a, b], then Qt,jk can be computed as: 
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The second source of failure is due to sensor failure or channel failure. Let      de-

note the probability of failure due to sensor failure or channel failure. Since q is the 

hardware failure probability and ej is transmission failure probability of node j, given as 

input,      can be estimated by: 

)]1)(1[(1, jjr eqQ 
 (4.12) 

The third source of failure is due to node j being compromised and thus the packet 

is dropped. We make use of         derived earlier in Equation (4.7). By combining these 

three failure probabilities we obtain          the probability of SNj failing to relay a data 

packet to a one-hop neighbor SNk because of either speed violation, sensor/channel fail-

ure, or SNj being compromised, as: 

)]1)(1)(1[(1 ,,,, jcjktjrjkrtc QQQQ 
 (4.13) 

By using this one-hop failure probability, we next compute the success probability 

for SNj to transmit a packet to at least one next-hop SN neighbor along the direction of 

the destination node as: 
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where f =1/4 to account for the fact that only neighbor SNs in the quadrant toward the 

destination node can perform geographic forwarding; n is the number of neighbor SNs 

of node j as given in Equation (4.8).  

     Since on average there will be     
 hops on a path from the source CH to the PC, a 

data packet transmitted along the path is successfully delivered only if it is delivered 

successful hop-by-hop without experiencing any speed violation failure, hard-

ware/channel failure, or packet dropping failure, for    
  hops. Consequently, the prob-

ability of a single path between the source CH and the PC being able to deliver data 

successfully is given by: 
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For path redundancy, we create mp paths between the source CH and the PC. The mp 

paths are formed by choosing mp SNs in the first hop and then choosing only one SN in 

each of the subsequent hops. The source CH will fail to deliver data to the PC if one of 

the following happens: (a) none of the SNs in the first hop receives the message; (b) in 

the first hop, i (1≤ i<mp) SNs receive the message, and each of them attempts to form a 

path for data delivery; however, all i paths fail to deliver the message because the sub-

sequent hops fail to receive the broadcast message; (c) in the first hop, at least mp SNs 

receive the message from the source CH from which mp SNs are randomly selected to 

forward data, but all mp paths fail to deliver the message because the subsequent hops 

fail to receive the message.  Summarizing above, the probability of the source CH fail-

ing to deliver data to the PC is given by: 
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(4.16) 

Following the same derivation to Equation (4.15), the success probability of a single 

path from a SN to its CH is given by: 
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For source redundancy we use ms SNs to report query responses to their source CH. 

The probability that all ms SNs fail to deliver data to their CH is given by: 
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(4.18) 

Consequently, the failure probability of data delivery from ms SNs to the CH, and 

subsequently using mp paths to relay data from CH to PC, is given by:  
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Therefore, the query success probability is given by: 

fq QR 1
 (4.20) 

Note that in the above derivation we omit time for brevity. More precisely,    de-

rived above should be          since the query success probability is a function of time, 

depending on the node count (Equation (4.8)) and population density (Equation (4.9)) at 

the ith query’s execution time (i.e., at time     ). 

4.2.3 Energy Consumption 

We estimate the amounts of energy spent during a query interval [tQ, i, tQ, i+1],  an IDS 

interval [tI, i, tI, i+1], and a clustering interval [tc, i, tc, i+1], so as to estimate Nq, the maximum 

number of queries the system can possible handle before running into energy exhaus-

tion. Our energy model follows [126]. Because of the randomness introduced in our pro-

tocol in CH election, IDS detection, and query processing, all SNs consume energy at 

about the same rate. Hence it suffices to consider the overall system energy level instead 

of individual SN energy levels for calculating the amount of time it takes for the system 

to exhaust energy. To normalize energy consumption over Nq queries, let α be the ratio 

of the IDS execution rate to the query arrival rate and let β be the ratio of the clustering 

rate to the query arrival rate so that αNq  and βNq are the numbers of IDS cycles and 

clustering cycles, respectively, before system energy exhaustion. Then, we can estimate 

Nq by the fact that the total energy consumed due to intrusion detection, clustering and 

query processing is equal to the system energy as follows: 

                  

   

   

                   

   

   

         

  

   

 (4.21) 

Below we outline how to calculate           ,                   and         . We first es-

timate energy consumed by transmission and reception over wireless link. The energy 

spent by a SN to transmit an encrypted data packet of length nb bits over a distance r is 

estimated as [126]: 
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(4.22) 

Here Eelec is the energy dissipated to run the transmitter and receiver circuitry, Eamp   is 

the energy used by the transmit amplifier, and r is the transmission radio range. The 

energy spent by a SN to receive an encrypted message of length nb bits is given by: 

 (4.23) 

The energy consumed for processing the ith query,         , is the sum of the energy 

consumed through mp paths for the communication between CH and PC, denoted by 

         , and the energy consumed for the communication between ms source SNs and 

the CH, denoted by          , i.e.,  

)()()( ,,, iQSCiQCPiQq tEtEtE 
 (4.24) 

The energy consumed for the communication between CH and PC is due to setting 

up mp paths in the first hop and subsequently transmitting data over the mp paths, i.e., 

    RiQT

h
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 (4.25) 

Here the first term accounts for the transmission energy consumed by the source CH 

and the reception energy consumed by its 1-hop SNs for setting up the mp paths, and 

the second term accounts for the energy consumed for data transmission over the mp 

paths in the remaining    
    hops. We note that the number of neighbor SNs at time 

t, n(t) = λ(t) × pr2 by Equation (4.9), depends on the SN population density at time t, i.e., 

    .  

The energy consumed for the communication between source SNs and the CH is 

due to transmitting data over the ms paths each with    
  hops, i.e., 

 RiQT

h

SCsiQSC EtnENmtE )()( ,, 
 (4.26) 

For clustering, the system would consume energy for broadcasting the announce-

ment message and for the cluster-join process. Since p is the probability of a SN becom-

ing a CH, there will be p × N(tc,i) SNs that would be broadcasting the announcement 

message where N(tc,i) = λ(tc,i) × A2 is the number of SNs in the WSN at time tc,i. This an-

)( 2rEEnE ampelecbT 

elecbR EnE 
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nouncement message will be received and retransmitted by each SN to the next hop un-

til the TTL of the message reaches the value 0, i.e., the number of hops equals    
 . Thus, 

the energy required for broadcasting is             
                   The cluster-join 

process will require a SN to send a message to the CH informing that it will join the 

cluster and the CH to send an acknowledgement to the SN. Since there are p N(tc,i) CHs 

and (1– p) N(tc,i) SNs in the system, the energy for this is N(tc,i) (ET + ER). Let Niteration be the 

number of iteration required to execute the clustering algorithm. Then, the energy re-

quired for executing the clustering algorithm at time tc,i, Eclustering(tc,i), is given by: 

  ))(())(()()( ,,,, RTicRTic

h

SCiterationicicclustering EEtNEEtnNNtpNtE 
 (4.27) 

Lastly, for intrusion detection every node is evaluated by m voters in an IDS cycle, 

and each voter sends its vote to the other m -1 voters. Hence, the energy spent in each 

voting-based IDS cycle is given by: 

                                             (4.28) 

Once we obtain           ,                   and          from Equations (4.28), (4.27) 

and(4.24), respectively, we calculate    from Equation (4.21). The knowledge of 

   along with          in Equation (4.20) allows us to calculate the system MTTF given 

by Equation (4.1). 

4.3 Generalizations 

4.3.1 Coping with data modification attacks 

In this section, we extend our analytical model to the case in which data modifica-

tion attacks may occur. This is possible for homogeneous WSNs because any node can 

become a CH and a SN may be far away from the destination PC, thus making it infea-

sible to establish a pairwise key between a SN and the PC.  

To tolerate packet modification attacks, a majority of paths must return successfully 

to the PC. That is, unless a majority of paths return successfully with correct SN read-

ings, the packet modification attack will not be recognized by the PC. Thus, the proba-

bility of the source CH failing to deliver data to the PC taking into account data modifi-

cation attacks is given in Equation (4.29) below which replaces Equation (4.16). 
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(4.29) 

Following a similar derivation, Equation (4.30) below replaces Equation (4.18). 
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 (4.30) 

4.3.2 Fail-safe hardware 

In this section, we extend the analytical model to the case in which secure hardware 

can effectively prevent a captured node from turning into an inside attacker. To model 

the usage of tamper-proof fail-safe sensor nodes, we replace Equation (4.3) with Equa-

tion (4.31) below:  

                                            

 

                                             

(4.31) 

Here    is the probability of successful tampering. Tamper-proof-fail-safe sensors can be 

modeled by setting      . This will result in captured nodes being removed from the 

good SN population, but not being added into the bad SN population. Setting      

models the deployment of SNs without fail-safe capabilities. 
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4.4 Algorithm for Dynamic Multisource Multipath Routing 

The objective of dynamic multisource multipath routing is to dynamically identify 

and apply the best redundancy level in terms of path redundancy (mp) and source re-

dundancy (ms), as well as the best intrusion detection settings in terms of the number of 

voters (m) and the intrusion invocation interval (    ) to maximize MTTF, in response to 

environment changes including node density ( radio range (r), and node capture rate 

(λc). 

Our algorithm is distributed in nature. The algorithm specifies control actions taken 

by individual SNs and CHs in response to dynamically changing environments as fol-

lows: 

 
1:                
2:                 
3:                             

4:                                                    
5:                                                                                 

                                              
6:                                                                           

7:                                       
8:                                            

9:                                          

10:                     

11:                                   

12:                       
13:                               
14:                                           
15:                                       
16:                                                                    
17:   
18:                
19:                 
20:                             

21:                                                                     

22:                                                       
23:                                            

24:                                          

25:                     

26:                                   

27:                       
28:                               
29:                                          
30:                                       
31:                                                                    
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Figure 4-4: Algorithm for Dynamic Redundancy Management. 

 

All nodes in the system act periodically to a “   timer” event to adjust the optimal 

parameter setting in response to changing environments. This is indicated on line 3 for a 

CH and line 20 for a SN. The optimal design settings in terms of optimal 

                 are determined at static design time (described in Section 4.4) and 

pre-stored in a table over perceivable ranges of input parameter values. As there is no 

base station in the system, the duty of performing a table lookup operation with inter-

polation and/or extrapolation techniques applied to determine the optimal design pa-

rameter settings will be assumed by CHs. The action performed by a CH upon a    tim-

er event includes (a) adjusting radio range to maintain connectivity (line 4); (b) deter-

mining                   (line 5) based on the sensed environmental conditions at 

runtime; and (c) notifying SNs within the cluster of the new            settings. The ac-

tion performed by a SN upon this   timer event is to adjust its radio range to maintain 

connectivity within a cluster (line 21). The action taken upon receiving the control pack-

et from its CH is to update the new            settings (line 23) for intrusion detection. 

When the       timer event happens, each node in the system uses it current            

settings to perform intrusion detection. The      timer event and the action taken are 

specified on lines 11-14 for a CH and lines 26-29 for a SN. 

When a CH acting as a query processing center (PC) receives a query from a user, it 

triggers multisource multipath routing for intrusion tolerance using the current optimal 

          settings to prolong the system useful lifetime. This query arrival event and 

the action taken are specified on lines 7-8. When a data packet arrival event occurs, each 

node simply follows the prescribed multipath routing protocol to route the packet (lines 

15-16 for a CH and lines 30-31 for a SN). Finally each node periodically performs clus-

tering as prescribed by the cluster algorithm, i.e., when a             timer event occurs, 

each node executes clustering (lines 9-10 for a CH and lines 24-25 for a SN) for periodic 

cluster formation. 

4.5 Performance Evaluation 

In this section, we present numerical results obtained from the evaluation of our 

probability model given in Section 4.4. Without loss of generality, we consider an ex-

ample WSN consisting of 1500 nodes deployed in a square area of A2 (400m×400m). 

Nodes are distributed in the area following a Poisson process with density  =15 

nodes/(40×40 m2) at deployment time. The radio range r is 40m. So initially a SN has n= 

× r2=15 neighbor SNs. The probability of a SN becoming a CH is p=1%. So initially a 

cluster has 1/p=100 nodes and there are 15 clusters in the system. Each SN has an initial 
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energy level Eo = 10 Joules. The energy parameters used by the radio module are adopt-

ed from [68, 81, 126]. The energy dissipation Eelec to run the transmitter and receiver cir-

cuitry is 50 nJ/bit. The energy used by the transmit amplifier to achieve an acceptable 

signal to noise ratio (εamp) is 10 pJ/bit/m2. The query arrival rate λq is a variable and is set 

to 1 query/sec to reveal points of interest. The query deadline Treq is strict and set to be-

tween 0.3 and 1 sec. The inter-arrival time in between captures (     ) is between 4 and 

28 days, corresponding to a capture rate (λc) of once per 4 days to once per 28 days. The 

host IDS false positive probability and false negative probability (Hpfp and Hpfn) vary be-

tween 1% and 5% to reflect the host intrusion detection strength as in [49].  

The set of parameter values characterizing the operating and environment condi-

tions of our example WSN derives from prior works in the research community and re-

al world projects. Our model is a large scale deployment comparable to the GreenOrbs 

project [97] for ecological forest monitoring and the CitySee project [97] for city CO2 

monitoring with 1000+ and 4000+ sensor nodes respectively. The node density parame-

ter values follow the work of He, et al. [77] where routing performance of LEACH, 

BCDCP, and DMSTRP protocols were compared. Our energy, sensor transmission, and 

clustering parameter values follow those in HEED [66] and LEACH [68, 126] both of 

which have been exhaustively explored and well cited by the research community. The 

timeliness requirement (Treq) values follow those in MMSPEED [58]. We adopt the pa-

rameter value ranges for the hardware failure (q) and transmission failure (ej) from [38]. 

Finally, we follow [17] which concluded that an attacker could take days to reveal the 

secret keys of a captured node, depending on the node hardware and the tools needed 

by the attacker along with the strategy of attack. We therefore adopt the results and set 

the range of the compromise time parameter (     ) in the range of [4-28] days. 

We summarize our example WSN by a set of input parameter values/ranges listed in 

Table 4-2. Our objective is to identify the best setting in terms of mp (path redundancy), 

ms (source redundancy), m (the number of voters for intrusion detection) and      (the 

intrusion detection interval) to maximize MTTF.  

 

Table 4-2: Input Parameter Values Characterizing a Homogeneous Clustered WSN. 

Parameter Default Value 

N 1500 

p 0.01 

q 10-6 

ej [0.0001 –  0.1] 
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r 40 m 

f ¼ 

 15 nodes/(40 x 40 m2) 

λq 1 query/sec 

      (or 1/λc) [4-28] days 

A 400m 

nb 50 bits 

Eelec 50 nJ/bit 

εamp 10 pJ/bit/m2 

Eo 10 Joule 

Niteration 3 

Tclustering 60 sec 

Treq [0.3 – 1.0] sec 

Hpfp , Hpfn [0.01-0.05] 

 

Figure 4-5 shows a high level description of the computational procedure to deter-

mine the optimal redundancy level (mp, ms) for maximizing MTTF. The MTTF Equation 

(Equation (4.1) is embedded on lines 14-20 and 30-31 in Figure 4-5. The accumulation of 

queries is shown on line 12. The value of     is computed on line 32. The computational 

procedure essentially has a complexity of O(mp × ms) as it exhaustively searches for the 

best (mp, ms) pair, given a set of input parameter values as listed in Table 4-2 (above) as 

well as instance values of m (the number of voters for intrusion detection) and      (the 

intrusion detection interval) characterizing a query-based WSN. 
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return                                  

Figure 4-5: Computational Procedure to Determine Optimal (mp, ms) for Maximizing 

MTTF. 

In Figure 4-6, we show MTTF vs. (mp, ms) for three cases: (a) there are no malicious 

nodes and no intrusion detection (the top curve); (b) there are malicious nodes but there 

is no intrusion detection (the bottom curve); (c) there are malicious nodes and there is 

intrusion detection (the middle two curves). In each case we observe the existence of an 

optimal (mp, ms) value under which MTTF is maximized. When there are no malicious 

nodes (the top curve), the optimal (mp, ms) is (3,3). When there are malicious nodes, and 

no intrusion detection is used, the optimal (mp, ms) value becomes (7,7) because using 

higher redundancy in multisource multipath routing is necessary to cope with mali-

cious nodes. When intrusion detection is used (middle curves), there exists an optimal 
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m value to maximize MTTF. In Figure 4-6, m=5 yields a higher MTTF value than m=3 

because in this scenario the attack rate is relatively high (once a week), so a higher 

number of voters is needed to cope with and detect bad nodes more effectively. We ob-

serve that the maximum MTTF is sensitive to       and m. Table 4-3 below summarizes 

the effect of       and m on optimal (mp, ms) values under which MTTF is maximized. As 

the number of voters in intrusion detection (m) increases, the optimal (mp, ms) redundan-

cy level decreases. This is because increasing m has the effect of detecting and evicting 

bad nodes more effectively, thus requiring a lower level of redundancy in (mp, ms) to 

cope with packet dropping attacks by bad nodes. 

On the other hand, when given a       there exists an optimal m value that will 

maximize MTTF. Table 4-4 summarizes the effect of       on the optimal m value at 

which MTTF is maximized.  When the node capture rate increases from once per 3 

weeks (      = 3 weeks) to once a week (      = 1 week), the optimal m value goes from 

3 to 7. The reason is that as the capture rate increases, there are more and more mali-

cious nodes in the system, so using more voters (e.g. m =7) can help identify and evict 

malicious nodes, thus increasing the query success probability and consequently in-

creasing the MTTF value. Again the system is better off this way to cope with increasing 

malicious node population for lifetime maximization even though more energy is con-

sumed due to more voters being used. 

 

Figure 4-6: MTTF vs. (mp, ms): (3, 4) and (4, 4) are Optimal when m=5 and 3, 

Respectively. 

We run the computational procedure to analyze the effect of      , m and      on 

optimal (mp, ms).  Figure 4-7 shows MTTF vs. (mp, ms) with varying       and m values. 
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The left graph is for the case in which       is large while the right graph is for the case 

in which       is small. By comparing these two graphs, we observe a trend that as the 

capture rate increases (i.e., going from the left graph to the right graph), the optimal (mp, 

ms) redundancy level increases.  For instance, when the capture rate increases from once 

in three weeks (      = 3 weeks) to once a week (      = 1 week), the optimal (mp, ms) re-

dundancy level changes from (3, 3) to (4, 4). The reason behind this trend is that as more 

nodes are compromised in the system, a higher multisource multipath redundancy 

must be used to cope with packet dropping attacks. While increasing (mp, ms) consumes 

more energy, the gain towards increasing the query success probability (and thus to-

wards increasing MTTF) outweighs the loss of lifetime due to energy consumption. 

 

(a) Under Low Capture Rate 

 

(b) Under High Capture Rate 

Figure 4-7: Multisource Multipath Routing with a Low Population of Compromised 

Nodes. 

 

Table 4-3: Optimal (mp, ms) with varying Tcomp and m. 

 

 

 

 

 

 

2

4

61 2 3 4 5 6 7

0

2

4

6

8

10

x 10
5  

m
s

m
p

MTTF vs. (m
p
,m

s
) with T

comp
=3wks T

IDS
=14hrs H

pfp
=0.05

 

M
T

T
F

m=3

m=5

m=7

2

4

61 2 3 4 5 6 7

0

2

4

6

8

10

x 10
5  

m
s

m
p

MTTF vs. (m
p
,m

s
) with T

comp
=1wk T

IDS
=14hrs H

pfp
=0.05

 

M
T

T
F

m=3

m=5

m=7

 m=3 5 7 
     =4 days (mp, ms) =(5,7) (4,6) (4,5) 

1 week (4,4) (3,4) (3,3) 
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Table 4-4: Optimal m with varying Tcomp and TIDS. 

 

 

 

 

 

Next we analyze the effect of       on MTTF. Figure 4-8 and Figure 4-9 show MTTF 

vs.       with varying m under low capture rate (      = 3 weeks) and high capture rate 

(      = 1 week), respectively. We first observe that there exists an optimal       value 

under which MTTF is maximized. Furthermore, the optimal       value increases as m 

increases. For example, in Figure 4-8 as m increases from 3, 5 to 7 we see that corre-

spondingly the optimal      at which MTTF is maximized increases from 15, 32 to 46 

hours. The reason is that as the number of voters increases so the intrusion detection 

capability increases per invocation, there is no need to invoke intrusion detection too 

often so as not to waste energy and adversely shorten the system lifetime. We also ob-

serve two general trends. One trend is that as       increases, the optimal m value in-

creases. The reason is that when      is small so intrusion detection is invoked frequent-

ly, we don’t need many voters per invocation so as not to waste energy unnecessarily to 

adversely shorten the system lifetime. The second trend shown in Figure 4-8 and Figure 

4-9 is that as the node capture rate increases, the optimal m value increases in order to 

cope with more compromised nodes in the system. These two trends correlate well 

those summarized in Table 4-4 earlier. 

 

 TIDS=1hr 4hrs 14hrs 20hrs 24hrs 
Tcomp=4 days 5 7 7 7 7 

1 week 5 5 7 7 7 

2 weeks 5 5 5 5 7 

3 weeks 3 3 3 5 5 
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Figure 4-8: Effect of TIDS on MTTF with varying m under Low Capture Rate. 

 

 

Figure 4-9: Effect of TIDS on MTTF with varying m under High Capture Rate. 
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Figure 4-10: Effect of Capture Rate on MTTF. 

Lastly       is also a tunable parameter to maximize MTTF. Figure 4-10 shows MTTF 

vs.      with varying       values. It exhibits the trend that as the capture rate increases 

(a smaller       value), the optimal      at which MTTF is maximized must decrease to 

cope with malicious attacks. For example, in Figure 4-10 the optimal      is 20 hours 

when       = 4 weeks and reduces to 6 hours when       = 4 days. Furthermore, the op-

timal       value increases as m increases. The reason is that as the number of voters (m) 

increases so the intrusion detection capability increases per invocation, there is no need 

to invoke intrusion detection too often so as not to waste energy and adversely shorten 

the system lifetime.  

  

Table 4-5 summarizes the effect of       and m on the optimal       value at which 

MTTF is maximized.  

  

Table 4-5: Optimal TIDS with varying Tcomp and m. 
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Table 4-3, Table 4-4, and Table 4-5 presented above are numerical solutions generat-

ed from evaluating the analytical equations derived in Section 4.2, given node density , 

radio range r, and node capture rate λc as input. As the system evolves, all these input 

parameter values may change, that is, will decrease as described by Equation (4.9) , 

radio range r will increase to maintain connectivity as more nodes fail or are evicted 

from the system, and λc may evolve depending on the instantaneous attacker strength. 

Lookup tables such as Table 4-3, Table 4-4, and Table 4-5 are built at static time, cover-

ing a wide range of ( r, λc) values as input. Our dynamic multisource multipath rout-

ing algorithm then utilizes these lookup tables built at static time to perform a simple 

lookup operation to decide the optimal settings of (mp, ms, m,     ) to maximize MTTF at 

runtime. 

4.6 Comparative Performance Analysis  

We perform a comparative analysis of our dynamic redundancy management algo-

rithm against AFTQC [38]. AFTQC is capable of dynamically identifying and applying 

the best (mp, ms) setting for query processing to maximize the WSN lifetime. However, it 

is designed for fault/intrusion tolerance only with no consideration given to intrusion 

detection of compromised nodes. For fair comparison, we tailor the probability model 

developed in Section 4.2 without IDS for AFTQC to identify the optimal (mp, ms). In Fig-

ure 4-11, we show MTTF vs.    under our dynamic redundancy management algorithm 

against AFTQC, both operating at the optimal setting. The optimal setting in terms of 

the optimal (mp, ms) for each data point is labeled in the graph. 

 

Figure 4-11: Performance Comparison with AFTQC. 
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of MTTF obtainable under a wide range of capture rate values, the effect is especially 
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our dynamic redundancy management algorithm which considers both fault intrusion 

tolerance through multipath routing and intrusion detection through voting, as op-

posed to AFTQC which considers fault/intrusion tolerance only through multipath 

routing. 

Analyzing the optimal (mp, ms) settings reveals insight why our algorithm performs 

better than AFTQC. That is, the optimal (mp, ms) value under our algorithm is consist-

ently lower than that under AFTQC, given the same capture rate. The intrusion detec-

tion activity in our algorithm consumes extra energy. However the energy consumption 

is minimized as it operates under the identified best setting in terms of the detection in-

terval (    ) and the number of voters (m). Moreover, because bad nodes are removed 

effectively, the system does not need to use excessive redundancy in terms of (mp, ms) 

to cope with bad nodes performing packet dropping attacks. Consequently, the MTTF 

obtainable by our algorithm is substantially higher than that of AFTQC. 

4.7 Sensitivity Analysis  

In this section we perform sensitivity analysis of MTTF obtained with respect to a se-

lective set of input parameters, namely Treq, r, Eo ,           , p, Hpfp/Hpfn, , and      . Fig-

ure 4-12 (a)-(h) show unidimensional sensitivity analysis results by varying one param-

eter while keeping all the others fixed (as in Table 4.2).  
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(c) MTTF vs. Eo (d) MTTF vs.            

  

(e) MTTF vs. p (f) MTTF vs. Hpfp/Hpfn 

  

(g) MTTF vs.  (h) MTTF vs.       

Figure 4-12: Sensitivity Analysis of Input Parameters  

Figure 4-12 (a) shows the effect of Treq on MTTF. We see that increasing Treq relaxes 

the timeliness requirement of the queries which in turn increases the query reliability 

and thus increases MTTF.  
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The effect of the fixed radio range parameter r is shown in Figure 4-12 (b), where we 

observe that an optimal radio range exists that maximizes the system lifetime. While the 

radio range is considered as an input parameter in this study, it can be a design parame-

ter. That is, one can adjust the radio range dynamically to maintain network connectivi-

ty in response to attacks [5, 6]. We treat radio range as a design parameter in Chapter 6 

and use it as a counterattack against capture attacks to maximize MTTF. 

In Figure 4-12 (c) we observe that MTTF increases linearly with the initial energy 

given to nodes at deployment. This is expected as increasing node energy increases the 

ability a SN is able to handle clustering, IDS, and query events until it reaches energy 

exhaustion. 

Figure 4-12 (d) and (e) show the sensitivity of MTTF with respect to clustering pa-

rameters including the number of clustering iterations (          ) and the probability of 

a node becoming a CH ( ). Figure 4-12 (d) shows the effect of            on MTTF, given 

all other parameters fixed at their default values as in Table 4.2. We see that MTTF in 

general decreases linearly as the number of iterations needed increases for cluster elec-

tion. The reason is that energy consumption for clustering (Equation (4.27) is linearly 

proportional to             and hence the time at which the system exhausts its energy 

decreases approximately linearly with             Figure 4-12 (e) shows the effect of   on 

MTTF. We see that there exists an optimal value at which MTTF is maximized. This re-

sult correlates with that reported in [81]. The reason is that if the CH rotating probabil-

ity is too high then clusters tend to be too small and too much energy is consumed for 

inter-cluster communication. Furthermore, each SN has a high probability of being a 

CH and will consume much energy performing CH duties.  Conversely, if   is too low 

then clusters tend to be too large and too much energy is consumed for intra-cluster 

communication. As a result, an optimal   exists to best balance intra-cluster vs. inter-

cluster communication to maximize the system lifetime. 

The effect of the Hpfp/Hpfn is shown in Figure 4-12 (f) where we observe that increas-

ing the host false positive or false negative probability decreases the system lifetime. 

The reason behind this trend is that the higher the false positive and false negative 

probabilities, the more likely good nodes will be falsely evicted and bad nodes will be 

falsely missed by the IDS. This in turn increases the bad node population and decreases 

the good node population, causing a lower MTTF.  

Figure 4-12 (g) and (h) show MTTF increases with the increase of the node deploy-

ment density and node compromise interval, respectively. In Figure 4-12 (g), increasing 

the node population density (increases the query reliability as the number of neigh-

bors available for forwarding a query to the next hop increases. In Figure 4-12 (h), in-
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creasing the capture inter-arrival time (     ) results in a higher MTTF, as less nodes 

will turn into bad nodes, and thus less badmouthing and packet dropping attacks. 

In summary, MTTF is highly sensitive to r and  . This dictates a finer granularity be 

used for these two parameters when devising dynamic table lookup (to be discussed in 

Section 4.6 below). Furthermore, the capture inter-arrival time       and node energy Eo 

are central to our model, thus should always be taken as input when searching for the 

best setting of design parameters to maximize MTTF. 

4.8 Dynamic Table Lookup  

In this Section we discuss our dynamic table lookup approach. Our objective is to 

dynamically identify the best setting of design parameters to maximize MTTF based on 

sensed input parameter values from the sensor environment. The best design parameter 

values given a set of input parameter values as input are pre-computed at static time, 

thus avoiding the overhead of runtime calculation. The design parameters in this study 

include: path redundancy (mp), source redundancy (ms), the number of voters (m), and 

the intrusion invocation interval (    ). The input parameters in this study include:  Treq, 

r, Eo ,           , p, Hpfp/Hpfn, , and      .  

As all deployed sensors have limited memory, it is important to ensure the feasibil-

ity of storing and accessing such a lookup table. The lookup table would store key-value 

pairs where the keys are combinations of input parameter values, and the values are the 

design parameter values that maximize MTTF under the input parameter values. This is 

shown in Figure 4-13 below. There is a tradeoff between the size of the lookup table and 

the accuracy of the best set of design parameter values that maximize the system life-

time. From the sensitivity analysis performed in Section 4.7, we observe that MTTF is 

highly sensitive to r and p especially they are certain value areas at which MTTF is max-

imized. Such areas would demand the lookup table to be populated with finer granular-

ity input values (keys).  

 

Figure 4-13: Lookup Table Mechanism. 
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If we consider storing 4 representative values per input variable in the lookup table, 

then the total number of combinations is    or 64K can be represented with 16 bits. Sim-

ilarly our design parameter combinations for (ms, mp), m, and      have (7*7)*3*12 values 

which can be represented with 11 bits. Hence the memory storage requirement for the 

lookup table is 64k*11 bits, which is feasible with modern sensors in the market (e.g., 

CM5000 TelosB mote [2] has 1MB of Flash memory). An array, for example, can be used 

to implement the lookup table, by interpreting the key as an array index so that we can 

store the value associated with key i in array position i, which gives us O(1) lookup 

time. This is under the assumption that the nodes are homogeneous (as in Chapter 4), 

whereas in the case of heterogeneous WSNs (Chapter 5) or BS-Based WSNs (Chapter 6) 

the memory and processing limitation is less severe, as more capable nodes (e.g. CHs 

and BS) exist to hold the lookup table and be responsible to disseminate the best set of 

design parameters to less capable nodes in the network.  

When there is less memory limitation, the number of key combinations and associ-

ated values can increase in order to increase the accuracy of the retrieved design pa-

rameter values at runtime. Finally, in case a large block of memory is scarce, one can 

use multiple lookup tables spread across the network, each saving distinct key-value 

combinations, similar to distributed hash tables (DHTs) which have been proposed for 

routing and data management in WSNs [59]. 

4.9 Summary 

In this chapter we provided a solution to the issue of dynamic and adaptive multi-

source multipath routing for intrusion tolerance and lifetime maximization in autono-

mous homogeneous wireless sensor networks. We developed a novel probability model 

to analyze the best multisource multipath redundancy level in terms of path redundan-

cy (mp) and source redundancy (ms), as well as the best intrusion detection settings in 

terms of the number of voters (m) and the intrusion invocation interval      ) under 

which the lifetime of a query-based wireless sensor network may be maximized in the 

presence of unreliable wireless communication and malicious nodes. Our dynamic mul-

tisource multipath routing algorithm utilizes the analysis result to determine the opti-

mal system settings for redundancy and intrusion detection based on the sensed envi-

ronmental conditions at runtime, thus resulting in the system achieving its maximum 

lifetime.  
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Chapter 5  

 

Redundancy Management of Multisource Multipath 

Routing for Intrusion and Fault Tolerance in 

Heterogeneous Clustered WSNs 

In this chapter we propose and analyze redundancy management of heterogeneous 

clustered WSNs (HWSNs), utilizing multisource multipath routing to answer user que-

ries in the presence of unreliable and malicious nodes. The key concept of our redun-

dancy management is to exploit the tradeoff between energy consumption vs. the gain 

in reliability, timeliness, and security to maximize the system useful lifetime. We formu-

late the tradeoff as an optimization problem for dynamically determining the best re-

dundancy level to apply to multisource multipath routing for intrusion tolerance so that 

the query response success probability is maximized while prolonging the useful life-

time. Furthermore, we consider this optimization problem for the case in which a vot-

ing-based distributed intrusion detection algorithm is applied to detect and evict mali-

cious nodes in a HWSN. We develop a novel probability model to analyze the best re-

dundancy level in terms of path redundancy and source redundancy, as well as the best 

intrusion detection settings in terms of the number of voters and the intrusion invoca-

tion interval under which the lifetime of a HWSN is maximized, while satisfying the 

system reliability, timeliness and security requirements in the presence of unreliable 

wireless communication and malicious nodes. We then apply the analysis results ob-

tained to the design of a dynamic redundancy management algorithm to identify and 

apply the best design parameter settings at runtime in response to environment chang-

es, to maximize the HWSN lifetime. This chapter is based on our work published in [7] 

and [6]. 

5.1 System Model 

We consider a HWSN with low-power SNs distributed in a geographic area. The 

WSN is characterized by the following system model: 
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1. There are two types of sensor nodes, CHs and SNs. CHs are superior to SNs in en-

ergy and computational resources. We use      
   and      

  to denote the initial ener-

gy levels of CHs and SNs, respectively. 

2. The deployment area of the WSN is of size A2. 

3. CHs and SNs are deployed randomly and distributed according to homogeneous 

spatial Poisson processes with intensities     and    , respectively, with     

    . The radio ranges used by CH and SN transmission is denoted by     and      

respectively. The radio range and the transmission power of both CHs and SNs are 

dynamically adjusted throughout the system lifetime to maintain the connectivity 

between CHs and between SNs. Any communication between two nodes with a 

distance greater than single hop radio range between them would require a multi-

hop. Due to limited energy, a packet is sent hop by hop without using acknowl-

edgment or retransmission [58] 

4. All sensors are subject to capture attacks, i.e., they are vulnerable to physical cap-

ture by the adversary after which their code is compromised and they become in-

side attackers. Since all sensors are randomly located in the operational area, the 

same capture rate applies to both CHs and SNs, and the compromised nodes are 

also randomly distributed in the operation area. Due to limited resources, we as-

sume that when a node is compromised, it only performs two most energy con-

serving attacks, namely, bad-mouthing attacks (recommending a good node as a bad 

node and a bad node as a good node) when serving as a recommender, and packet 

dropping attacks [81] when performing packet routing to disrupt the operation of 

the network..  

5. Environment conditions which could cause a node to fail with a certain probability 

include hardware failure (q), and transmission failure due to noise and interference 

(e). Moreover, the hostility to the WSN is characterized by a per-node capture rate 

of λc which can be determined based on historical data and knowledge about the 

target application environment. These probabilities are assumed to be constant 

and known at deployment time. 

6. Queries can be issued by a mobile user (while moving) and can be issued any-

where in the WSN through a nearby CH. A CH which takes a query to process is 

called a query processing center (PC).  Each query has a strict timeliness require-

ment (Treq). The query must be delivered within Treq seconds; otherwise, the query 

fails.  

7. Redundancy management of multipath routing for intrusion tolerance is achieved 

through two forms of redundancy: (a) source redundancy by which ms SNs sens-

ing a physical phenomenon in the same feature zone are used to forward sensing 
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data to their CH (referred to as the source CH); (b) path redundancy by which mp 

paths are used to relay packets from the source CH to the PC through intermediate 

CHs. Figure 5-1 shows a scenario with a source redundancy of 3 (ms = 3) and a path 

redundancy of 2 (mp = 2). It has been reported that the number of edge-disjoint 

paths between nodes is equal to the average node degree with a very high proba-

bility [51]. Therefore, when the density is sufficiently high such that the average 

number of one-hop neighbors is sufficiently larger than mp and ms, we can effec-

tively result in mp redundant paths for path redundancy and ms distinct paths from 

ms sensors for source redundancy. 

8. Geographic forwarding is used to route the information between nodes; thus, no 

path information is maintained. The location of the destination node needs to be 

known to correctly forward a packet. As part of clustering, a CH knows the loca-

tions of SNs within its cluster, and vice versa. A CH also knows the location of 

neighbor CHs along the direction towards the processing center.  

9. We assume that sensors operate in power saving mode (e.g. [22, 107]). Thus, a sen-

sor is either active (transmitting or receiving) or in sleep mode. For the transmis-

sion and reception energy consumption of sensors, we adopt the energy model in 

[126] for both CHs and SNs. 

 

 

Figure 5-1: Source and Path redundancy for a Heterogeneous WSN 

 

10. We assume that the WSN executes a pairwise key establishment protocol (e.g., [65, 

130]) in a secure interval after deployment. Each node establishes pairwise keys 

with its k-hop neighbors, where k is large enough to cover a cluster area. Thus, 
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when SNs join a new cluster, the CH node will have pairwise keys with the SNs 

joining its cluster. Since every SN shares a pairwise key with its CH, a SN can en-

crypt data sent to the CH for confidentiality and authentication purposes. Every 

CH also creates a pairwise key with every other CH. Thus a pairwise key exists for 

secure communication between CHs. This mechanism is useful to prevent outside 

attackers, not inside attackers. 

11. To detect compromised nodes, every node runs a simple host IDS to assess its 

neighbors. Our host IDS is light-weight to conserve energy. It is also generic and 

does not rely on the feedback mechanism tied in with a specific routing protocol 

(e.g., MDMP for WSNS [86] or AODV for MANETs [112]). It is based on local mon-

itoring. That is, each node monitors its neighbor nodes only. Each node uses a set 

of anomaly detection rules such as a high discrepancy in the sensor reading or rec-

ommendation has been experienced, a packet is not forwarded as requested, as 

well as interval, retransmission, repetition, and delay rules as in [14, 19, 49, 108]. If 

the count exceeds a system-defined threshold, a neighbor node that is being moni-

tored is considered compromised. The imperfection of monitoring due to envi-

ronment noise or channel error is modeled by a “host” false positive probability 

(Hpfp) and a “host” false negative probability (Hpfn) which are assumed known at 

deployment time.  

12. To remove malicious nodes from the system, a voting-based distributed IDS is ap-

plied periodically in every      time interval. A CH is being assessed by its neigh-

bor CHs, and a SN is being assessed by its neighbor SNs. In each interval, m 

neighbor nodes (at the CH or SN level) around a target node will be chosen ran-

domly as voters and each cast their votes based on their host IDS results to collec-

tively decide if the target node is still a good node. The m voters share their votes 

through secure transmission using their pairwise keys. When the majority of vot-

ers come to the conclusion that a target node is bad, then the target node is evicted. 

For both CHs and SNs, there is a system-level false positive probability    that the 

voters can incorrectly identify a good node as a bad node. There is also a system-

level false negative probability    that the voters can incorrectly misidentify a bad 

node as a good node. These two system-level IDS probabilities will be derived 

based on the bad-mouthing attack model in this chapter. 

Here we note that increasing source or path redundancy enhances reliability and se-

curity. However, it also increases the energy consumption, thus contributing to the de-

crease of the system lifetime. Thus, there is a tradeoff between reliability/security gain 

vs. energy consumption.  The distributed IDS design attempts to detect and evict com-

promised nodes from the network without unnecessarily wasting energy so as to max-

imize the query success probability and the system lifetime. The effectiveness of the IDS 

depends on its parameters (     and m). While a shorter      or a higher m can result in 
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low     and      it also consumes more energy from the WSN nodes. Thus, this is an-

other design tradeoff.  

To provide a unifying metric that considers the above two design tradeoffs, we de-

fine the total number of queries the system can answer correctly until it fails as the life-

time or the mean time to failure (MTTF) of the system, which can be translated into the 

actual system lifetime span given the query arrival rate. A failure occurs when no re-

sponse is received before the query deadline. The cause could be due to energy exhaus-

tion, packet dropping by malicious nodes, channel/node failure, or insufficient trans-

mission speed to meet the timeliness requirement. Our aim is to find both the optimal 

redundancy levels and IDS settings under which the MTTF is maximized, when given a 

set of parameters characterizing the operational and environment conditions. 

5.2 Probability Model 

Table 5-1: Parameter List. 

Parameter Meaning Type 
A Length of each side of a square sensor area (meter) input 

nb Size of a data packet (bit) input 

Eelec Energy dissipation to run the transmitter and receiver circuitry (J/bit) input 

Eamp Energy used by the transmit amplifier to achieve an acceptable signal to 

noise ratio (J/bit/m2) 

input 

Eo Initial energy per node (Joule) input 

Einit Initial energy of the WSN (Joule) derived 

Eclustering(t) Energy consumed for executing the clustering algorithm at time t (Joule) derived 

EIDS(t) Energy consumed for executing the IDS algorithm at time t (Joule) input 

Eq(t) Energy consumed for executing a query at time t (Joule) derived 

Rq(t) Probability that a query reply at time t is delivered successfully by the 

deadline 

derived 

r Wireless radio communication range (meter) input 

q node hardware failure probability input 

ej Transmission failure probability of node j input 

N(t) Number of nodes in the WSN at time t input 

NCH(t) Number of CHs in the WSN at time t derived 

NSN(t) Number of SNs in the WSN at time t derived 
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n(t) Number of neighbor nodes at time t derived 

ngood(t) Number of good neighbor nodes at time t derived 

nbad(t) Number of bad neighbor nodes at time t derived 

Nq Maximum number of queries before energy exhaustion derived 

mp Path redundancy level: Number of paths from a source CH to the sink design 

ms Source redundancy level: Number of SNs per cluster in response to a 

query 

design 

f Fraction of neighbor nodes that will forward data input 

λ(t) Node population density (nodes/meter2) at time t derived 

λ Node population density at deployment time input 

λq Query arrival rate (times/sec) input 

Sjk Progressive transmission speed between node j and node k (meter/sec) derived 

Tclustering Time interval for executing the clustering algorithm (sec) input 

Treq Query deadline requirement (sec) input 

λc Node capture rate input 

α Ratio of IDS execution rate to query arrival rate input 

β Ratio of clustering rate to query arrival rate input 

m The query-based clustered WSN is characterized by a set of input pa-

rameter values as listed in Table 5.2 

design 

Hpfp Probability of host IDS false positive input 

Hpfn Probability of host IDS false negative input 

Pfp Probability of distributed IDS false positive derived 

Pfn Probability of distributed IDS false negative derived 

       IDS interval time (sec) design 

MTTF Lifetime of a heterogeneous WSN output 

 

In this section we develop a probability model to estimate the MTTF of a HWSN us-

ing multipath data forwarding to answer queries issued from a mobile user roaming in 

the WSN area. Table 5-1 provides the parameter list along with the physical meaning. 

We use the same notation for both CHs and SNs, e.g.,     and      When differentiating 

a CH from a SN is necessary, we use the superscripts or subscripts “CH” and “SN”, e.g., 

    
  and     

   for a CH, and     
  and     

   for a SN. A parameter is labeled as input, derived, 
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design or output. In particular, mp (path redundancy), ms (source redundancy), m (the 

number of voters for intrusion detection) and      (the intrusion detection interval) are 

design parameters whose values are to be identified to maximize MTTF, when given a 

set of input parameter values charactering the operational and environmental condi-

tions. Derived parameters are those deriving from input parameters. There is only one 

output parameter, namely, MTTF. Note that most derived parameters are dynamic, i.e., 

as a function of time. For example, node density denoted by λ(t) decreases over time 

because of node failure/eviction as time progresses. On the other hand, the radio ranges 

for CHs and SNs, denoted by     and      increase over time to maintain network con-

nectivity.  

The basic idea of our MTTF formulation is that we first deduce the maximum num-

ber of queries, Nq, the system can possible handle before running into energy exhaus-

tion for the best case in which all queries are processed successfully. Because the system 

evolves dynamically, the amount of energy spent per query also varies dynamically. 

Given the query arrival rate λq as input, the average interval between query arrivals is 

1/λq. So we can reasonably estimate the amount of energy spent due to query pro-

cessing and intrusion detection for query j based on the query arrival time      . Next we 

derive the corresponding query success probability         , that is, the probability that 

the response to query j arriving at time      is delivered successfully to the PC before the 

query deadline expires. Finally, we compute MTTF as the probability-weighted average 

of the number of queries the system can handle without experiencing any deadline, 

transmission, or security failure. More specifically, the MTTF is computed by: 

                 

 

   

               

    

   

            

  

   

 (5.1) 

Here           
 
                   accounts for the probability of the system being 

able to successfully execute i consecutive queries but failing the i+1th query. The second 

term is for the best case in which all queries are processed successfully without experi-

encing any failure for which the system will have the longest lifetime span. 

5.2.1 Network Dynamics 

Initially at deployment all SNs are good nodes. Assume that the capture time of a 

SN follows a distribution function Fc(t) which can be determined based on historical da-

ta and knowledge about the target application environment. Then, the probability that a 
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SN is compromised at time t, given that it was a good node at time t-    , denoted by 

    is given by:  

 

(5.2) 

We note that    is time dependent. For the special case in which the capture time is 

exponential distributed with rate λc,                 Recall that the voting-based dis-

tributed IDS executes periodically with      being the interval. At the ith IDS execution 

time (denoted by     ), a good node may have been compromised with 

ity     since the previous IDS execution time         . Let         and         denote the 

numbers of good and bad neighbor nodes at time t, respectively, with          

              Then, the population of good and bad neighbor nodes at time      just 

prior to IDS execution can be recursively estimated from the population of good and 

bad neighbor nodes at time         

                                            

 

                                          

(5.3) 

With          and         in hand, the system-level false positive probability (   ) and 

false negative probability (   ) as a resulting of executing voting-based IDS are as fol-

lows: 

 (5.4) 
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where      is the minimum majority of m, e.g., 3 is the minimum majority of 5, and 

  is      for calculating     and      for calculating    . We explain Equation (5.4) for 

the false positive probability at time t below. The explanation to the false negative prob-

ability is similar. A false positive results when the majority of the voters vote against the 

target node (which is a good node) as compromised. The first term in Equation (5.4) ac-

counts for the case in which more than 1/2 of the voters selected from the target node’s 

neighbors are bad sensors who, as a result of performing bad-mouthing attacks, will 

always vote a good node as a bad node to break the functionality of the WSN. Since 

more than 1/2 of the m voters vote no, the target node (which is a good node) is diag-

nosed as a bad node in this case, resulting in a false positive. Here the denominator is 

the total number of combinations to select m voters out of all neighbor nodes, and the 

numerator is the total number of combinations to select at least mmaj bad voters out of 

nbad nodes and the remaining good voters out of ngood nodes. The second term accounts 

for the case in which more than 1/2 of the voters selected from the neighbors are good 

nodes but unfortunately some of these good nodes mistakenly misidentify the target 

nodes as a bad node with host false positive probability Hpfp, resulting in more than 1/2 

of the voters (although some of those are good nodes) voting no against the target node. 

Since more than 1/2 of the m voters vote no, the target node (which is a good node) is 

also diagnosed as a bad node in this case, again resulting in a false positive. Here the 

denominator is again the total number of combinations to select m voters out of  all 

neighbor nodes, and the numerator is the total number of combinations to select i bad 

voters not exceeding the majority mmaj, j good voters who diagnose incorrectly with i + j  

≥ mmaj, and the remaining m – i – j good voters who diagnose correctly. We apply intru-

sion detection to both CHs and SNs, i.e., m CH voters would be used to asses a target 

CH and m SN voters will be used to assess a target SN node. Here we note that more 

voters do not necessarily provide better detection accuracy since it depends on the per-

centage of bad node population. That is, if more bad nodes exist than good nodes in the 

neighborhood, or good nodes have high host false positive probability (Hpfp) and host 

false negative probability (Hpfn), then more voters will provide less detection accuracy. 

After the voting-based IDS is executed, some good nodes will be misidentified as 

bad nodes with probability     and will be mistakenly removed from the WSN. Conse-

quently, we need to adjust the population of good nodes after IDS execution. Let  

                    be the number of good neighbor nodes at time t right after IDS execution. 

Then,  

           
                                          (5.5) 



67 

 

On the other hand, some bad nodes will remain in the system because the voting-

based IDS fails to identify them with probability   . Let                   be the number of bad 

neighbor nodes at time t right after IDS execution. Then, 

          
                                           (5.6) 

As the capture attack is totally random, the probability that any neighbor node is a 

bad node at time t, denoted by        , thus is given by: 

           
          
            

          
                        

             
 (5.7) 

        derived above provides critical information because a bad node can perform 

packet dropping attacks if it is on a path from source SNs to the PC. Here we note that 

the node population density is evolving because of some nodes being compromised and 

some being detected and evicted by the IDS dynamically. The node population remains 

the same until the next IDS execution (after      seconds) because the IDS only detects 

and evicts nodes periodically (as typically node hardware/software failure happens less 

frequently than security failure). The remaining nodes comprise both good nodes that 

pass the IDS evaluation and bad nodes that are undetected by the IDS. Denote the node 

population density at time t by      with     =  . Then,      can be computed by: 

                   
                        

              (5.8) 

         
       

   
 (5.9) 

With Equation 5.8 we compute the neighbor node populations for CHs and SNs, de-

noted by            and            respectively. With Equation (5.9) we derive the CH and 

SN node densities at time t,           and          , respectively. The total numbers of 

CHs and SNs in the system, denoted by            and            respectively, can be 

computed by: 

                        (5.10) 

                        (5.11) 
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We define the required network connectivity as the required redundancy level for 

effecting multipath routing defined by (mp, ms). Thus, the radio range at time      is ad-

justed by: 

           
   

           
              

   

           
 (5.12) 

5.2.2 Query Success Probability 

We will use the notation SNj to refer to SN j and CHj to refer to CH j. There are three 

ways by which data forwarding from CHj to CHk could fail: (a) transmission speed vio-

lation; (b) sensor/channel failures; and (c) CHj is compromised. The first source of fail-

ure, transmission speed violation, accounts for query deadline violation. To know the 

failure probability due to transmission speed violation, we first derive the minimum 

hop-by-hop transmission speed required to satisfy the query deadline       Let dSN-CH be 

the expected distance between a SN (selected to report sensor readings) and its CH and 

dCH-PC be the expected distance between the source CH and the PC accepting the query 

result. Given a query deadline      as input, a data packet from a SN through its CH to 

the PC must reach the PC within     . Thus, the minimum hop-by-hop transmission 

speed denoted by      is given by: 

req

PCCHCHSN
req

T

dd
S  

  (5.13) 

We follow the Voronoi theory [12] that during clustering SNs will join the closest 

CH to form a Voronoi cell and that the expected distance from a SN to its CH is given 

by                
     On the other hand, since a query may be issued from any-

where by the mobile user to a CH (which serves as the PC) and the source CH request-

ed by the query also can be anywhere in the WSN, dCH-PC essentially is the average dis-

tance between any two CHs in the WSN. Given location randomness of CHs in the 

square area A2, it can be shown geometrically that the average distance between any 

two CHs is dCH-PC =0.382A. With the knowledge of dSN-CH  and dCH-PC, we can estimate the 

average numbers of hops to forward data from a SN to the source CH, denoted by    
 , 

and the average numbers of hops to forward data from the source CH to the PC, denot-

ed by    
   Specifically, 
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            ;    

              (5.14) 

Let       denote the probability that the forwarding speed from CHj to CHk would 

violate the minimum speed requirement, thus leading to a query deadline violation 

failure. To calculate Qt,jk we need to know the transmission speed Sjk from CHj to CHk. 

This can be dynamically measured by CHj following the approach described in [58]. If 

Sjk is above Sreq then Qt,jk = 0; otherwise, Qt,jk = 1. In general Sjk is not known until runtime. 

If Sjk is uniformly distributed within a range [a, b], then Qt,jk can be computed as: 

ab

aS
SScdftQ

req

reqjk

SN

jkt 


 )()(

,
 (5.15) 

The second source of failure is due to node failure or channel failure. Let      denote 

the probability of failure due to node failure or channel failure. Since q is the hardware 

failure probability, given as input, and ej is the per-hop transmission failure probability 

of node j, measured by node j at runtime,      can be estimated by: 

)]1)(1[(1, j

CH

jr eqQ   (5.16) 

The third source of failure is due to node j being compromised and thus the packet 

is dropped. We make use of     
      derived earlier in Equation (5.7). By combining the-

se three failure probabilities we obtain        
        the probability of CHj failing to relay a 

data packet to a one-hop neighbor CHk because of either speed violation, sen-

sor/channel failure, or CHj being compromised, as: 

       
                 

           
             

        (5.17) 

By using this one-hop failure probability, we next compute the success probability 

for CHj to transmit a packet to at least one next-hop CH neighbor along the direction of 

the destination node as: 

  
             

     

     

   

 (5.18) 
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with f =1/4 to account for the fact that only neighbor CHs in the quadrant toward the 

destination node can perform geographic forwarding;     is the number of neighbor 

CHs of CHj as derived from Equation (5.8).  

Since on average there will be     
 hops on a path from the source CH to the PC, a 

data packet transmitted along the path is successfully delivered only if it is delivered 

successful hop-by-hop without experiencing any speed violation failure, hard-

ware/channel failure, or packet dropping failure, for    
  hops. Consequently, the prob-

ability of a single path between the source CH and the PC being able to deliver data 

successfully is given by: 

)]1)(1[(
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 (5.19) 

For redundancy management, we create mp paths between the source CH and the 

PC for path redundancy. The mp paths are formed by choosing mp CHs in the first hop 

and then choosing only one CH in each of the subsequent hops. The source CH will fail 

to deliver data to the PC if one of the following happens: (a) none of the CHs in the first 

hop receives the message; (b) in the first hop, i (1≤ i<mp) CHs receive the message, and 

each of them attempts to form a path for data delivery; however, all i paths fail to deliv-

er the message because the subsequent hops fail to receive the broadcast message; or (c) 

in the first hop, at least mp CHs receive the message from the source CH from which mp 

CHs are randomly selected to forward data, but all mp paths fail to deliver the message 

because the subsequent hops fail to receive the message.  Summarizing above, the prob-

ability of the source CH failing to deliver data to the PC is given by: 
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(5.20) 

Following the same derivation to Equation (5.19), the success probability of a single 

path from a SN to its CH is given by: 
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We use ms SNs to report query responses to their source CH for source redundancy. 

The probability that all ms SNs fail to deliver data to their CH is thus given by: 
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m
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  (5.22) 

Consequently, the failure probability of data delivery from ms SNs to the CH, and 

subsequently using mp paths to relay data from source CH to PC, is given by: 

)1)(1(1 sp m

fs

m

fpf
QQQ   (5.23) 

Therefore, the query success probability is given by: 

fq QR 1  (5.24) 

Note that in the above derivation we omit time for brevity. More precisely,    de-

rived above should be          since the query success probability is a function of time, 
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depending on the node count (Equation (5.8)) and population density (Equation (5.9)) at 

the ith query’s execution time (i.e., at time     ). 

5.2.3 Energy Consumption 

Now we estimate the amounts of energy spent during a query interval [            ],  

an IDS interval [    ,       ], and a clustering interval [            ], so as to estimate Nq, the 

maximum number of queries the system can possible handle before running into energy 

exhaustion. To normalize energy consumption over Nq queries, let α be the ratio of the 

IDS execution rate to the query arrival rate and let β be the ratio of the clustering rate to 

the query arrival rate so that αNq  and βNq are the numbers of IDS cycles and clustering 

cycles, respectively, before system energy exhaustion. Then, we can estimate Nq by the 

fact that the total energy consumed due to intrusion detection, clustering and query 

processing is equal to the system energy as follows: 

                  

   

   

                   

   

   

         

  

   

 (5.25) 

Below we outline how to calculate           ,                   and           We first es-

timate energy consumed by transmission and reception over wireless link. The energy 

spent by a SN to transmit an encrypted data packet of length nb bits over a distance r is 

estimated as [126]: 

                 
   (5.26) 

Here Eelec is the energy dissipated to run the transmitter and receiver circuitry, Eamp   is 

the energy used by the transmit amplifier, and r is the transmission radio range. We use 

the current    and     to derive   
   and   

  . We set     = 10 pJ/bit/m2 and     

when       and     = 0.0013 pJ/bit/m4  and      otherwise. The energy spent by a 

node to receive an encrypted message of length nb bits is given by: 

 (5.27) 

The energy consumed for processing the ith query,         , is the sum of the energy 

consumed through mp paths for the communication between CH and PC, denoted by 

  
        , and the energy consumed for the communication between ms source SNs and 

the source CH, denoted by   
        , i.e., 

elecbR EnE 
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        =  
           

         (5.28) 

The energy consumed for the communication between CH and PC is due to setting 

up mp paths in the first hop and subsequently transmitting data over the mp paths, i.e., 
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Here the first term accounts for the transmission energy consumed by the source CH 

and the reception energy consumed by its 1-hop CHs for setting up the mp paths, and 

the second term accounts for the energy consumed for data transmission over the mp 

paths in the remaining   
     hops. We note that the number of neighbor CHs at time 

t,                     
    by Equation (5.9), depends on the CH population density at 

time t, i.e.,       .  

The energy consumed for the communication between source SNs and the CH is 

due to transmitting data over the ms paths each with    
  hops, i.e., 

 SN

RiQSN

SN

T

h

SCsiQ

SN

q EtnENmtE )()( ,,   (5.30) 

For clustering, the system would consume energy for broadcasting the announce-

ment message and for the cluster-join process. There will be            CHs each broad-

casting the announcement message at time tc,i, for a total energy consumption of 

            
    There will be            SNs each on average receiving             an-

nouncement messages from CHs within radio broadcast range           at time tc,i, for a 

total energy consumption of                       
    The cluster-join process will re-

quire a SN to send a message to the CH through multi-hop routing informing that it 

will join the cluster. There will be            SNs each transmitting a join packet to the 

CH it selects to join, for a total energy consumption of             
   for packet recep-

tion by the selected CHs plus                
    

              
    for multi-hop routing 

to the selected CHs. Summarizing above, the energy consumed for executing the clus-

tering algorithm by CHs and SNs at time tc,i, denoted by                  , is given by: 

                              
                         

   

                                                    
                  

    
              

    
(5.31) 
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Lastly, for intrusion detection every node is evaluated by m voters in an IDS cycle, 

and each voter sends its vote to the other m - 1 voters. Hence, the energy spent in each 

voting-based IDS cycle, denoted by           , is given by: 

                
         +     

         

    
                               

                
    

    
                               

                
    

(5.32) 

After we obtain           ,                   and          from Equations (5.32), (5.31) 

and (5.28), respectively, we calculate    from Equation 5.25. The knowledge of    along 

with          in Equation (5.24) allows us to calculate the system MTTF given by Equa-

tion (5.1). 

5.3 Algorithm for Dynamic Multisource Multipath Routing 

 The objective of dynamic redundancy management is to dynamically identify and 

apply the best redundancy level in terms of path redundancy (mp) and source redun-

dancy (ms), as well as the best intrusion detection settings in terms of the number of vot-

ers (m) and the intrusion invocation interval (    ) to maximize MTTF, in response to 

environment changes to input parameters including SN/CH node density (   /   ),  

SN/CH radio range (   /   ), and SN/CH capture rate (λc). 

Our algorithm for dynamic redundancy management of multipath routing is dis-

tributed in nature. Figure 5-2 describes our dynamic redundancy management algo-

rithm for managing multipath routing for intrusion tolerance to maximize the system 

lifetime. The algorithm specifies control actions taken by individual SNs and CHs in re-

sponse to dynamically changing environments. 
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3:                             
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6:                                                                           
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13:                               
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14:                                           
15:                                       
16:                                                                    
17:   
18:                
19:                 
20:                             

21:                                                                     

22:                                                       
23:                                            

24:                                          

25:                     

26:                                   

27:                       
28:                               
29:                                          
30:                                       
31:                                                                    

Figure 5-2: Algorithm for Dynamic Redundancy Management. 

All nodes in the system act periodically to a “   timer” event to adjust the optimal 

parameter setting in response to changing environments. This is indicated on line 3 for a 

CH and line 20 for a SN. The optimal design settings in terms of optimal 

                 are determined at static design time (described in Section 5.3) and 

pre-stored in a table over perceivable ranges of input parameter values. As there is no 

base station in the system, the duty of performing a table lookup operation with inter-

polation and/or extrapolation techniques applied to determine the optimal design pa-

rameter settings will be assumed by CHs. The action performed by a CH upon a    tim-

er event includes (a) adjusting radio range to maintain connectivity (line 4); (b) deter-

mining                   (line 5) based on the sensed environmental conditions at 

runtime; and (c) notifying SNs within the cluster of the new            settings. The ac-

tion performed by a SN upon this   timer event is to adjust its radio range to maintain 

connectivity within a cluster (line 21). The action taken upon receiving the control pack-

et from its CH is to update the new            settings (line 23) for intrusion detection. 

When the       timer event happens, each node in the system uses it current            

settings to perform intrusion detection. The      timer event and the action taken are 

specified on lines 11-14 for a CH and lines 26-29 for a SN. 

When a CH acting as a query processing center (PC) receives a query from a user, it 

triggers multisource multipath routing for intrusion tolerance using the current optimal 

          settings to prolong the system useful lifetime. This query arrival event and 

the action taken are specified on lines 7-8. When a data packet arrival event occurs, each 

node simply follows the prescribed multipath routing protocol to route the packet (lines 
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15-16 for a CH and lines 30-31 for a SN). Finally each node periodically performs clus-

tering as prescribed by the cluster algorithm, i.e., when a             timer event occurs, 

each node executes clustering (lines 9-10 for a CH and lines 24-25 for a SN) for periodic 

cluster formation. 

The cost of executing the dynamic redundancy management algorithm described 

above, including periodic clustering, periodic intrusion detection, and query processing 

through multipath routing, in terms of energy consumption has been considered in Sec-

tion 5.2.3 Energy Consumption. The extra messaging overhead for each CH to notify 

SNs within its cluster of the new            settings (line 6) can be eliminated if the CH 

notifies the optimal settings to its SNs at the time periodic clustering is performed. 

5.4 Performance Evaluation 

In this section, we present numerical data obtained as a result of applying Equation 

(5.1). Table 5-2 lists the set of input parameter values characterizing a clustered HWSN.  

Our example HWSN consists of 3000 SN nodes and 100 CH nodes, deployed in a square 

area of A2 (200m×200m). Nodes are distributed in the area following a Poisson process 

with density     =30 nodes/(20×20 m2)  and     =1 nodes/(20×20 m2) at deployment 

time. The radio ranges     and     are dynamically adjusted between 5m to 25m and 

25m to 120m respectively to maintain network connectivity. The initial energy levels of 

SN and CH nodes are   
       Joules and   

      Joules so that they exhaust energy 

at about the same time. The energy parameters used by the radio module are adopted 

from [68, 126]. The energy dissipation Eelec to run the transmitter and receiver circuitry is 

50 nJ/bit. The energy used by the transmit amplifier to achieve an acceptable signal to 

noise ratio (    ) is 10 pJ/bit/m2 for transmitted distances less than the threshold dis-

tance    (75m) and 0.0013 pJ/bit/m4  for distances greater than   . The query arrival rate 

λq is a variable and is set to 1 query/sec to reveal points of interest. The query deadline 

Treq is strict and set to between 0.3 and 1 sec. The SN capture time is exponential distrib-

uted with rate λc such that                 We test the effect of λc by varying the in-

ter-arrival time in between attacks (     ) from 4 to 28 days, corresponding to an attack 

rate (λc) of once per 4 days to once per 28 days. The host IDS false positive probability 

and false negative probability (Hpfp and Hpfn) vary between 1% and 5% to reflect the host 

intrusion detection strength as in [49]. 
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Table 5-2: Input Parameter Values Characterizing a Heterogeneous Clustered WSN. 

Parameter Default Value 

    3000 

    100 

    30 nodes/(20 x 20 m
2
) 

    1 node/(20 x 20 m
2
) 

  
   0.8 Joules 

  
   10 Joules 

    [5-25] m 

    [25-120] m 

Tclustering 60 sec 

q 10
-6

 

ej [0.0001 –  0.1] 

f ¼ 

λq 1 query/sec 

      (or 1/λc) [4-28] days 

A 200m 

nb 50 bits 

Eelec 50 nJ/bit 

Eamp 10 pJ/bit/m
2
 

   75m 

Treq [0.3 – 1.0] sec 

Hpf , Hpfn [0.01-0.05] 

 

Figure 5-3 shows a high level description of the computational procedure to deter-

mine the optimal redundancy level (mp, ms) for maximizing MTTF. The MTTF Equation 

(Equation (5.1)) is embedded on lines 15-21 and 30-31 in Figure 5-3. The accumulation of 

queries is shown on line 13. The value of     is computed on line 32. Lines 7 and 8 con-

tain the conditions the system must hold to remain alive while computing an MTTF 

value for a specific redundancy level. The computational procedure essentially has a 

complexity of O(mp × ms) as it exhaustively searches for the best (mp, ms) pair, given a set 

of input parameter values as listed in Table 5-2 (above) as well as instance values of m 

(the number of voters for intrusion detection) and      (the intrusion detection interval) 

characterizing a HWSN. 
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Figure 5-3: Computational Procedure to Determine Optimal (mp, ms) for Maximizing 

MTTF.  
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A query response propagates over SNs for source redundancy (ms) and over CHs for 

path redundancy (mp). Hence, ms directly affects energy consumption of SNs and mp di-

rectly affects energy consumption of CHs. Figure 5-4 to Figure 5-6 summarize the effect 

of (mp, ms) on the CH/SN energy, query reliability, and CH/SN radio range, respectively, 

for the case in which       = 4 days and     = 10 hrs. In Figure 5-4, a relatively high mp 

leads to quick energy depletion of a CH node. Similarly, a relatively high ms leads to 

quick energy depletion of a SN. While energy determines the number of queries the sys-

tem is able to execute, the system lifetime largely depends on query reliability.  Figure 

5-5  shows the effect of (mp, ms) on query reliability. The combination of (4, 3) has the 

highest query reliability over other combinations of (2, 5) or (5, 2) in this test scenario.  

 

 

Figure 5-4: Effect of (mp, ms) on Energy of CHs and SNs. 

 

 

Figure 5-5: Effect of (mp, ms) on Query Reliability (Rq). 
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The system dynamically adjusts the radio range of CHs and SNs to maintain net-

work connectivity based on Equation (5.10) as nodes are being removed from the sys-

tem because of failure or eviction. Figure 5-6 shows that the rates at which radio ranges 

of CHs and SNs increase are highly sensitive to mp and ms, respectively. A sharp in-

crease of the radio range affects the energy consumption rate and thus the system life-

time. Overall, Figure 5-4 to Figure 5-6 indicate that there exist an optimal combination 

of (mp, ms) that will maximize the system lifetime. Figure 5-7 confirms that among three 

(mp, ms) combinations, (4, 3) results in the highest MTTF, since it has the highest query 

reliability without consuming too much energy per query execution. 

 

 

Figure 5-6: Effect of (mp, ms) on Radio Range of CHs and SNs. 

 

Figure 5-7: Effect of (mp, ms) on MTTF. 
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Next we analyze the effect of      , m and      on optimal (mp, ms). Figure 5-8 and 

Figure 5-9 show MTTF vs. (mp, ms) under low and high attack rates, respectively. First of 

all, in both graphs, we observe the existence of an optimal (mp, ms) value under which 

MTTF is maximized. Secondly, there exists an optimal m value (the number of voters) to 

maximize MTTF. In Figure 5-9, m=7 yields a higher MTTF value than m=3 because in 

this scenario the attack rate is relatively high (one in four days), so a higher number of 

voters is needed to cope with and detect bad nodes more effectively, to result in a high-

er query success rate and thus a higher MTTF. Comparing these two graphs, we ob-

serve a trend that as the capture rate increases (i.e., going from the left graph to the right 

graph), the optimal m value level increases. The reason is that as the capture rate in-

creases, there are more and more malicious nodes in the system, so using more voters 

(e.g. m=7) can help identify and evict malicious nodes more effectively, thus increasing 

the query success probability and consequently the MTTF value. The system is better off 

this way to cope with increasing malicious node population for lifetime maximization 

even though more energy is consumed due to more voters being used. By comparing 

these two graphs, we observe a trend that as the capture rate increases (i.e., going from 

Figure 5-8 to Figure 5-9), the optimal (mp, ms) redundancy level increases. When the cap-

ture rate increases from once in three weeks (      = 3 weeks) to once in four days 

(      = 4 days), the optimal m changes from m=3 to m=7. We also observe that the op-

timal (mp, ms) redundancy level changes from (3, 3) to (4, 4) when m=3. The reason be-

hind this trend is that as more nodes are compromised in the system, a higher redun-

dancy must be used to cope with packet dropping attacks. While increasing (mp, ms) con-

sumes more energy, the gain towards increasing the query success probability (and thus 

towards increasing MTTF) outweighs the loss of lifetime due to energy consumption. 
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Figure 5-8: MTTF vs. (mp, ms) under Low Capture Rate. 

 

Figure 5-9:  MTTF vs. (mp, ms) under High Capture Rate. 
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In Figure 5-10, we compare MTTF vs. (mp, ms) under three cases: (a) there are no ma-

licious nodes and no intrusion detection (the top curve); (b) there are malicious nodes 

but there is no intrusion detection (the bottom curve); (c) there are malicious nodes and 

there is intrusion detection (the middle two curves). First of all, in each case we observe 

the existence of an optimal (mp, ms) value under which MTTF is maximized. Secondly, 

for the special case in which there are no malicious nodes (the top curve), the optimal 

(mp, ms) is (3, 3). When there are malicious nodes, however, the optimal (mp, ms) value be-

comes (7, 7) because using higher redundancy in multisource multipath routing is nec-

essary to cope with malicious nodes that perform insider attacks. By applying intrusion 

detection, the MTTF value of the system under attack is increased. Figure 5-10 reflects 

the IDS case in Figure 5-8. 

 

 

Figure 5-10:  MTTF vs. (mp, ms) for Three Cases. 
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Table 5-3: Optimal (mp, ms) with varying Tcomp and m. 

 

 

 

 

 

 

Table 5-4: Optimal m with varying Tcomp and TIDS. 

 

 

 

 

 

 

 

 

Next we analyze the effect of       on MTTF. Figure 5-11 and Figure 5-12 show 

MTTF vs.       with varying m under low capture rate (      = 3 weeks) and high cap-

ture rate (      = 1 week), respectively. We first observe that there exists an optimal 

     value under which MTTF is maximized. Furthermore, the optimal       value in-

creases as m increases. For example, in Figure 5-12 as m increases from 3, 5 to 7 we see 

that correspondingly the optimal      at which MTTF is maximized increases from 8, 10 

to 16 hours. The reason is that as the number of voters increases so the intrusion detec-

tion capability increases per invocation, there is no need to invoke intrusion detection 

too often so as not to waste energy and adversely shorten the system lifetime. We also 

observe two general trends. One trend is that as       increases, the optimal m value in-

creases. The reason is that when      is small so intrusion detection is invoked frequent-

ly, we don’t need many voters per invocation so as not to waste energy unnecessarily to 

adversely shorten the system lifetime. The second trend shown in Figure 5-11 and Fig-

ure 5-12 is that as the node capture rate increases, the optimal m value increases in order 

      m=3 m=5 m=7 

4 days (5,4) (4,4) (4,4) 

1 week (4,4) (3,3) (3,3) 

3weeks (3,3) (3,3) (3,3) 

          =4hrs 8hrs 14hrs 18hrs 24hrs 

4 days 3 5 7 7 7 

1 week 3 5 5 7 7 

2 weeks 3 3 5 5 7 

3 weeks 3 3 5 5 5 
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to cope with more compromised nodes in the system. These two trends correlate well 

with those summarized in Table 5-4 earlier. 

 

 

Figure 5-11: Effect of TIDS on MTTF under Low Capture Rate. 

 

Figure 5-12: Effect of TIDS on MTTF under High Capture Rate. 

 

Figure 5-13: Effect of Capture Rate on Optimal TIDS. 
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Lastly, we examine the sensitivity of the optimal      to the capture rate. Figure 5-13 

shows MTTF vs.      with varying       values. It exhibits the trend that as the capture 

rate increases (a smaller       value), the optimal      at which MTTF is maximized 

must decrease to cope with malicious attacks. For example, in Figure 5-13 the optimal 

     is 24 hours when       = 4 weeks and reduces to 6 hours when       = 4 days. The 

reason is that when the capture rate is low and hence the malicious node population is 

low, the negative effects of wasting energy for IDS execution (through evicting falsely 

identified nodes and executing the voting mechanism) outweighs the gain in the query 

success probability, so the system is better off by executing intrusion detection less of-

ten. On the other hand, when the capture rate is high and the malicious node popula-

tion is high, the gain in the query success probability because of evicting malicious 

nodes often outweighs the energy wasted because of frequent IDS execution, so the sys-

tem is better off by executing intrusion detection often. Table 5-5 summarizes the effect 

of       and m on the optimal       value at which MTTF is maximized. Table 5-6 fur-

ther summarizes the effect of       on the maximum radio range required to maintain 

network connectivity in terms of the optimal redundancy level to prolong the system 

lifetime. 

Table 5-5:  Optimal TIDS with varying Tcomp and m. 

 

 

 

 

 

 

 

Table 5-6: Effect of Capture Rate on Maximum Radio Range to Maintain 

Connectivity. 

      m=3 m=5 m=7 

4 days 6 hrs 10 14 

1 week 8 10 16 

2 weeks 14 24 36 

3 weeks 24 40 52 

              

4 days 21.5m 117.7m 

1 week 15.9 82.2 

2 weeks 11.4 62.4 
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5.5 Summary 

In this chapter we performed a tradeoff analysis of energy consumption vs. QoS 

gain in reliability, timeliness, and security for redundancy management of heterogene-

ous clustered wireless sensor networks utilizing multipath routing to answer user que-

ries. We developed a novel probability model to analyze the best redundancy level in 

terms of path redundancy (mp) and source redundancy (ms), as well as the best intrusion 

detection settings in terms of the number of voters (m) and the intrusion invocation in-

terval (    ) under which the lifetime of a heterogeneous wireless sensor network is 

maximized while satisfying the reliability, timeliness and security requirements of que-

ry processing applications in the presence of unreliable wireless communication and 

malicious nodes. Finally, we applied our analysis results to the design of a dynamic re-

dundancy management algorithm to identify and apply the best design parameter set-

tings at runtime in response to environment changes to prolong the system lifetime. 

 

 

3 weeks 10.9 60 
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Chapter 6  

 

Adaptive Network Management for Countering 

Smart Attack and Selective Capture in Wireless 

Sensor Networks 

In this chapter we analyze adaptive network management for countering smart at-

tack and selective capture which aim to cripple the basic data delivery functionality of a 

wireless sensor network. We consider 3 countermeasures in the protocol design: (1) dy-

namic radio range adjustment; (2) multisource multipath routing for intrusion toler-

ance; and (3) voting-based intrusion detection. We identify the best protocol settings in 

terms of the best redundancy level used for multisource multipath routing, and the best 

number of voters and the intrusion invocation interval used for intrusion detection un-

der which the sensor network lifetime is maximized in the presence of selective capture 

which turns nodes into malicious nodes capable of performing random, opportunistic 

and insidious attacks to evade detection and maximize their chance of success. This 

chapter is based on our work published in [5].  

6.1 System Model 

6.1.1 WSN Environments 

We consider a base station (BS) based WSN with low-power SNs distributed in a ge-

ographic area. There is a base station assigned to the WSN that interconnects the WSN 

to the outside world and that fields queries from the outside world for sensing results. 

Queries arrive at the system following a Poisson process with rate   . A query failure is 

considered as a critical system failure. The initial energy of each SN is   
    The de-

ployment area of the WSN is assumed circular with radius    . We consider random 

deployment where SNs are deployed randomly (e.g., through air drop) and distributed 

according to homogeneous spatial Poisson processes with density   
    The total number 

of SNs initially in the system thus is   
      

         . 
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6.1.2 Selective Capture and Smart Attack Model  

All SNs are subject to capture attacks. With “selective capture,” the adversaries 

(humans or robots) strategically capture SNs and turn them into inside attackers. We 

represent the capture rate of a SN at a distance x away from the BS at time t by   
         

To test our idea of countermeasures against selective capture attacks, we consider a lin-

ear function form, i.e., the capture rate drops linearly as the SN is further away from the 

base station: 

  
          

    
 

    
   

      
     (6.1) 

where       is the maximum capture rate the adversary can possibly have; and       is the 

minimum capture rate. A baseline case against which this linear selective capture case 

will be compared is “random capture” by which the adversary, given the same energy 

and capacity, randomly performs capture attacks, i.e.,   
          

      
       at all 

distances. We note that these two capture models have the same overall capture rate ac-

counting for the overall capability of the capturers in the system. 

After a node is compromised it becomes an inside attacker. An inside attacker can 

perform packet dropping [81] to block data delivery. It can also perform slandering at-

tacks by recommending a good node as a bad node, and a bad node as a good node 

when participating in intrusion detection activities. As a result, slandering attacks can 

cause good nodes being misdiagnosed and evicted from the system, and bad nodes be-

ing missed and remained in the system. This effectively creates an area with a high con-

centration of bad nodes, especially for critical SN areas with a high capture rate under 

selective capture. 

In the literature it is often assumed that an inside attacker performs attacks constant-

ly, without giving consideration to evade intrusion detection. We characterize a smart 

attacker by its capability to perform random, opportunistic and insidious attacks. First of 

all, a smart attacker can perform random or on-off attacks, i.e., attacking with a random 

probability     to evade intrusion detection. Second, a smart attacker can perform op-

portunistic attacks, i.e., it attacks only when it sees opportunities which can lead to a 

successful attack while still eluding detection. Finally, it can perform insidious attacks, 

i.e., it can perform on-off attacks to evade intrusion detection until a critical mass of 

compromised node population is reached after which it performs “all in” attacks 

(    ) to cripple the system totally.  
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6.1.3 Countermeasures against Attacks 

Our first countermeasure against selective capture and smart attack is dynamic ra-

dio range adjustment. With random deployment, the initial radio range is denoted by 

  
  such that a SN is able to connect to    neighbors for maintaining network connectiv-

ity. A SN adjusts its radio range dynamically throughout its lifetime to maintain con-

nectivity such that the average number of 1-hop neighbor SNs remains at    Thus, SNs 

closer to the BS may have to increase radio range more than SNs away from the BS to 

counter selective capture. Any communication between two nodes with a distance 

greater than single hop radio range between them would require a multi-hop. 

Our second countermeasure is multipath routing for intrusion tolerance. This is 

achieved through two forms of redundancy: (a) source redundancy by which ms SNs 

sensing a physical phenomenon in the same feature zone are used to forward sensing 

data to the BS; (b) path redundancy by which mp paths are used to relay packets from a 

source SN to the BS. We assume geographic forwarding is being used to packet routing; 

thus, no path information is maintained.  

While data delivery could fail due to hardware failure and transmission failure be-

cause of noise and interference [10], we only consider failure caused by compromised 

nodes performing packet drop attacks and data modification attacks. We assume that 

SNs operate in power saving mode (e.g. [22, 107]). Thus, a SN is either active (transmit-

ting or receiving) or in sleep mode. For the transmission and reception energy con-

sumption of sensors, we adopt the energy model in [126] for SNs. We assume that the 

BS will have pairwise keys with the SNs. A SN also has a pairwise key with each of its 

neighbors, up to a few hops away for future expandability. Thus, a SN can encrypt data 

for confidentiality and authentication purposes.  

Our last countermeasure is voting-based intrusion detection system (IDS) mecha-

nisms to detect and evict compromised nodes. Every SN runs a simple host IDS to assess 

its neighbors. The host IDS is light-weight to conserve energy. It is also generic and does 

not rely on the feedback mechanism tied in with a specific routing protocol (e.g., 

MDMP for WSNS [86] or AODV for MANETs [112]). It is based on local monitoring. 

That is, each node monitors its neighbor nodes only. Each node uses a set of anomaly 

detection rules such as a high discrepancy in the sensor reading or recommendation has 

been experienced, a packet is not forwarded as requested, as well as interval, retrans-

mission, repetition, and delay rules as in [14, 19, 49, 108]. If the count exceeds a system-

defined threshold, a neighbor node that is being monitored is considered compromised.  

The imperfection of monitoring due to ambient noise and channel error is modeled 

by a monitoring error probability       The host IDS false positive probability         for 

misidentifying a good node as a bad node is due to this monitoring error, so             
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On the other hand, the host IDS false negative probability        for misidentifying a bad 

node as a good node is due to this monitoring error as well as how often a bad node 

performs attacks (with probability    . Hence,                  upper bounded by 

1. A voting-based distributed IDS is applied periodically in every      time interval. A 

SN is being assessed by its neighbor SNs. In each interval, m neighbor SNs around a 

target SN will be chosen randomly as voters and cast their votes based on their host IDS 

results to collectively decide if the target SN is still a good node. The m voters share 

their votes through secure transmission using their pairwise keys. When the majority of 

voters come to the conclusion that a target node is bad, then the target node is evicted. 

There is a system-level false positive probability    
  that the voters can incorrectly iden-

tify a good node as a bad node. There is also a system-level false negative probability 

   
  that the voters can incorrectly misidentify a bad node as a good node. In this chap-

ter, we will derive the two system-level IDS probabilities based on slandering attacks 

performed by smart attackers exhibiting random, opportunistic and insidious attack 

behaviors. Finally we note that the system’s intrusion detection strength is modeled by 

the detection interval      (the shorter the stronger) and the number of neighbor voters 

m (the more the stronger). 

6.1.4 Mean Time to Failure as the Performance Metric 

To provide a unifying metric that considers the above two design tradeoffs, we de-

fine the total number of queries the system can answer correctly until it fails as the life-

time or the mean time to failure (the MTTF) of the system, which can be translated into the 

actual system lifetime span given the query arrival rate. A failure occurs when no re-

sponse toward a query is received. The cause could be due to energy exhaustion, or 

packet dropping by malicious nodes. Our aim is to find both the optimal redundancy 

levels and IDS settings under which the MTTF is maximized. 

6.2 Problem Definition, Solution, and Adaptive Network 

Management Algorithm Description 

The problem we are solving is that given a set of input parameters values character-

izing the BS-based WSN operational environment, selective capture and smart attack 

behaviors as defined in Section 6.1, we want to dynamically apply the best decision var-

iable settings to maximize the lifetime of the WSN in terms of its MTTF. The decision 

variables are those defined for the 3 countermeasures against selective capture and 

smart attacks, namely, the connectivity degree parameter     for dynamic radio range 

adjustment, the path redundancy (mp) and source redundancy (ms) for multisource mul-

tipath routing, and the number of voters (m) and intrusion invocation interval (    ) for 
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voting-based intrusion detection. Our solution methodology is to model network dy-

namics by means stochastic processes (in Section 6.3) to yield a closed form solution for 

the MTTF as a function of these decision variables. The optimal decision variable set-

tings obtained at design time are stored in a table and then applied at runtime by means 

of O(1) table lookup to implement adaptive network management. 

  

Figure 6-1: Adaptive network management algorithm flowchart. 

We use a flowchart as shown in Figure 6-1 to describe our adaptive network man-

agement algorithm. All nodes in the system act periodically to a “   timer” event to ad-

just the optimal parameter setting in response to changing environments. This is indi-

cated by an “event is    timer” box. The optimal design settings in terms of optimal 

                    are determined at design time and pre-stored in a table over per-
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tings. The complexity is O(1) because of the table lookup technique employed. The ac-

tion performed by a BS upon a    timer event includes (a) determining 

                     based on runtime knowledge of node density and capture rate 

experienced; and (b) notifying SNs of the new                settings. The action per-

formed by a SN upon this   timer event is to adjust its radio range to maintain SN con-

nectivity and to update its               settings. These actions are specified in the two 

action boxes to the right of the “event is    timer” box, with “BS” and “SN” labeling the 

agents involved.  

When the       timer event happens (indicated by the “event is      timer” box), each 

SN uses it current            settings to perform intrusion detection. This action is spec-

ified in the single action box to the right of the “event is      timer” box, with “SN” la-

beling the agents involved.  

When a data packet arrival event occurs (indicated by the “event is packet routing” 

box), each SN simply follows the prescribed multipath routing protocol to route the 

packet. This action is specified in the single action box to the right of the “event is pack-

et routing” box, with “SN” labeling the agents involved. 

When the BS receives a query from a user (indicated by the “event is query arrival” 

box), it triggers multipath routing for intrusion tolerance using the current optimal 

        setting to prolong the system useful lifetime. The complexity is also O(1) for 

the BS. This action is specified in the single action box to the right of the “event is query 

arrival” box, with “BS” labeling the agent involved. 

6.3 Probability Model 

Table 6-1: Parameter List. 

Parameter Meaning Type 
  
    maximum capture rate the adversary can have input 

  
    minimum capture rate input 

  
       random capture rate derived 

  
        capture rate of a SN at a distance x away from the BS at time t derived 

     
           Density of good SNs at distance x from the BS at time t derived 

    
           Density of bad SNs at distance x from the BS at time t derived 

        Insidious behavior threshold percentage for “all-in” attacks input 

          the percentage of malicious nodes at location x and time   derived 
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   Probability of attack input 

     monitoring error prob. due to ambient noise and channel error input 

   neighbors for maintaining network connectivity input 

    Radius of circular sensor area (meter) input 

nb Size of a data packet (bit) input 

Eelec Energy dissipation to run the transmitter and receiver circuitry (J/bit) input 

Eamp Energy used by the transmit amplifier to achieve an acceptable signal 

to noise ratio (J/bit/m2) 
input 

  
   Initial energy per node (Joule) input 

    
           Energy consumed by a SN located at x in the ith IDS cycle (Joule) derived 

  
           Energy consumed for executing the ith query at time t (Joule) derived 

Rq(t) Probability that a query reply at time t is delivered successfully derived 

  
   initial Wireless radio communication range (meter) input 

         radio range of SN at distance x from its BS at time t derived 

         number of neighbors at distance x from BS at time t derived 

         number of forwarding neighbors at distance x from BS at time t derived 

     
        number of good neighbors at distance x from BS at time t derived 

    
        number of bad neighbors at distance x from BS at time t derived 

Nq Maximum number of queries before energy exhaustion derived 

mp Path redundancy level: Number of paths from a source SN to the sink design 

ms Source redundancy level: Number of source SNs per query response design 

f Fraction of neighbor nodes that will forward data input 

         the density of SNs at distance x from the BS at time t derived 
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λq Query arrival rate (times/sec) input 

α Ratio of IDS execution rate to query arrival rate input 

m The query-based clustered WSN is characterized by a set of input pa-

rameter values as listed in Table 5.2 
design 

Hpfp Probability of host IDS false positive input 

Hpfn Probability of host IDS false negative input 

Pfp system-level false positive probability derived 

Pfn system-level false negative probability derived 

     IDS interval time (sec) design 

MTTF Lifetime of a WSN output 

 

In this section we develop a probability model to estimate the MTTF of a query-

based WSN built with the three countermeasure mechanisms in the protocol design. 

The novelty lies in the way we estimate the densities of good nodes, “active” bad nodes, 

and “inactive” bad node as a function of location and time, given a set of input parame-

ter values charactering the operational and environmental conditions, and adversary 

behaviors. This allows us to estimate if a bad node is performing attacks or not at loca-

tion x and time t, and, consequently, if it will perform packet dropping and slandering 

attacks. Consequently, we can reasonably predict if data delivery through a node at lo-

cation x and time t will succeed or fail.  

Table 6-1 provides the parameters list along with the physical meaning. A model pa-

rameter in our formulation can be an input, derived, design or output parameter. Specifi-

cally, mp (path redundancy), ms (source redundancy), m (the number of voters for intru-

sion detection) and      (the intrusion detection interval) are design parameters whose 

values are to be identified to maximize the system MTTF. Derived parameters are those 

deriving from input parameters. There is only one output parameter, namely, the 

MTTF. Note that most derived parameters are dynamic, i.e., as a function of time. For 

example, SN density, denoted by           decreases over time because of node fail-

ure/eviction as time progresses. On the other hand, radio range, denoted by           

increases over time to maintain connectivity.  

The basic idea of our MTTF formulation is that we first deduce the maximum num-

ber of queries,     the system can possible handle before running into energy exhaus-

tion for the best case in which all queries are processed successfully. Because the system 

evolves dynamically, the amount of energy spent per query also varies dynamically. 

Given the average interval between query arrivals being 1/  , we can reasonably esti-
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mate the amount of energy spent due to query processing and intrusion detection for 

query j based on the query arrival time      . We then derive the corresponding query 

success probability         , that is, the probability that the response to query j arriving at 

time      is delivered successfully to the BS. Finally, we compute the MTTF as the prob-

ability-weighted average of the number of queries the system can handle without expe-

riencing any failure. More specifically, the MTTF is computed by: 

                 

 

   

               

    

   

            

  

   

 (6.2) 

Here           
 
                   accounts for the probability of the system being able 

to successfully execute i consecutive queries but failing the i+1th query. The second term 

is for the best case in which all queries are processed successfully without experiencing 

any failure for which the system will have the longest lifetime span. 

6.3.1 Modeling Network Dynamics due to Capture  

Let          represent the density of SNs at distance x from the BS at time t. Initially 

at deployment time all SNs are good nodes, so             
  

 for all x’s.  

As time progresses some SNs are captured and turned into compromised nodes. More-

over, some SNs may be diagnosed as bad nodes and get evicted from the system. Let T 

be the capture time of a SN following a distribution function Fc(t). Then, the probability 

that a SN at location x away from the BS is compromised at time t, given that it was a 

good node at time t-    , denoted by   
         is given by: 

  
                          

   
               

           
   

       

            
 

(6.3) 

In the special case in which the capture time is exponentially distributed,    
        

      
             for a SN at distance x from its BS. Recall that the voting-based distrib-

uted IDS executes periodically with      being the interval. At the ith IDS execution time 

(denoted by     ), a good SN at distance x from its BS may be compromised with proba-

bility             since the previous IDS execution time         . Let              and             de-

note the densities of good and bad SNs at distance x from the BS at time t, respectively.  

Then, the densities of good and bad SNs at time      just prior to IDS execution can be 

recursively estimated from the densities of good and bad SNs at time        by: 



97 

 

     
                

            

    
               

             

    
               

            

    
               

              
 

(6.4) 

The boundary conditions are                 
   and               for all x’s.  

As our first countermeasure design, every SN dynamically adjusts its radio range for 

maintaining connectivity with its peers such that on average the number of 1-hop 

neighbor nodes is    to support its intended functions including routing and participat-

ing in majority voting IDS as a verifier. In particular, critical SNs (i.e., nodes that are 

close to the BS) must increase radio range more due to more nodes being evicted as a 

result of more intensive capture and slandering attacks toward critical SNs. 

Let          denote the radio range of a SN at distance x from its BS at time t so it 

can find    SNs within radio range. Since the SN density is a function of the distance (x) 

away from the BS, we have to solve          by integration of the SN population from 

x-         to x+          Let X and Y be two variables denoting the X and Y coordinates 

in the X-Y coordinate system. Since                 and     
        

 
  gives the area of the 

upper semicircle, the expected number of SNs covered by radio range, denoted by 

          can be obtained by solving the following equation: 

                             
        

         

     (6.5) 

where the integral gives the expected number of SNs (accounting for density variation 

along X) located in the upper or lower half circle.  

For notational convenience, let          be the number of neighbor SNs of a SN locat-

ed at distance x from the BS at time t,          be the number of forwarding neighbors 

(with f=1/4 for geographical routing),              be the number of good neighbors, and 

    
        be the number of bad neighbors at time t. Since we know the densities of good 

and bad nodes at time      just prior to IDS execution, we have: 

                                         
        

         

 (6.6) 
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6.3.2 Modeling Insidious Attacks  

Under insidious attacks, when a malicious node at location x and time t sees more 

than a threshold percentage,          of its peers are malicious, it will perform “all-in” 

attacks. This is modeled by setting   =1. Let           be the percentage of malicious 

nodes at location x and time  , defined as follows: 

          
    
       

    
             

       
 (6.7) 

More specifically, under the insidious attack, if                  then        This 

affects the false positive probability, false negative probability and the probability that a 

node at location x and time t will perform packet dropping attacks, as derived below. 

6.3.3 Modeling Random Attacks  

We first derive the false positive probability     
   and false negative probability 

    
   at distance x and time t for this case in which bad nodes perform random attacks 

with probability     Later we extend the derivation to opportunistic attack behavior.  

Equation (6.8) provides the closed-form solutions for    
       and    

       (with x and t 

omitted for brevity) where       and     
  are the numbers of “active” and “inactive” bad 

nodes, given by     
           and     

                respectively;      is the mini-

mum majority of m, e.g., 3 is the minimum majority of 5; and   is      for calculating    
  

and      for calculating    
    

   
 
       

 
  (6.8) 
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Recall that the imperfection of monitoring due to ambient noise and channel error is 

modeled by a monitoring error probability       so           , and             

       

We explain Equation (6.8) for the false positive probability    
 at time t below. The 

explanation to the false negative probability    
 is similar. A false positive results when 

the majority of the voters vote against the target node (which is a good node) as com-

promised. The first term in Equation (6.8) accounts for the case in which more than 1/2 

of the voters selected from the target node’s neighbors are “active” bad nodes who, as a 

result of actively performing slandering attacks, will always vote a good node as a bad 

node. Since more than 1/2 of the m voters vote no, the target node (which is a good 

node) is diagnosed as a bad node in this case, resulting in a false positive. Here the de-

nominator is the total number of combinations to select m voters out of all neighbor 

nodes, and the numerator is the total number of combinations to select at least mmaj bad 

voters out of nbad nodes and the remaining good voters out of ngood nodes. The second 

term accounts for the case in which more than 1/2 of the voters selected from the neigh-

bors are good nodes but unfortunately some of these good nodes mistakenly misidenti-

fy the target nodes as a bad node with host IDS false positive probability       resulting 

in more than 1/2 of the voters (although some of those are good nodes) voting no 

against the target node. Since more than 1/2 of the m voters vote no, the target node 

(which is a good node) is also diagnosed as a bad node in this case, again resulting in a 

false positive. Here the denominator is again the total number of combinations to select 

m voters out of all neighbor nodes, and the numerator is the total number of combina-

tions to select i “active” bad voters not exceeding the majority mmaj, j good or “inactive” 

bad voters who diagnose incorrectly with i + j  ≥ mmaj, and the remaining m – i – j good 

or “inactive” voters who diagnose correctly. Here we note that an inactive “bad” voter 

acts as if it is a good node to evade detection. Also note that more voters do not neces-

sarily provide better detection accuracy since it depends on the percentage of bad node 

population. That is, if more bad nodes exist than good nodes in the neighborhood, or 

good nodes have high host false positive probability (     ) and host false negative prob-

ability (     ), then more voters actually will provide less detection accuracy. 

6.3.4 Modeling Opportunistic Attacks  
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Under opportunistic attacks, when a malicious voter sees that the majority of voters 

for intrusion detection of a target node at location x and time t being malicious nodes 

(active or inactive), it will collude with other malicious nodes and they together (active 

and inactive) will perform slandering attacks during voting, resulting in       and 

       On the other hand, if it does not see the majority being malicious nodes, it will 

just perform random attacks as usual, resulting in   
  and    

 as given in Equation (6.8). 

Summarizing above, the system-level false positive probability       and false negative 

probability       at time t under opportunistic attacks are given by: 

           
                                          

   
                                 

 

  

                  
                                          

   
                                 

 

  

(6.9) 

6.3.5 Modeling Network Dynamics due to Intrusion Detection  

Our 3rd countermeasure is voting-based IDS to detect and evict suspicious nodes. Af-

ter the voting-based IDS is executed, however, a good node may be misidentified as a 

bad node with probability     (Equation (6.9)) and mistakenly removed from the WSN. 

On the other hand, a bad node may be missed with probability    (Equation (6.9)) and 

remained in the system. Consequently, we need to adjust the population of good and 

bad nodes after IDS execution. Let                  
                 and                

                denote the densities of good 

and bad SN nodes located at distance x from the BS, respectively, after IDS execution at 

time t. Then: 

     
          
                      

                
                       

(6.10) 

    
          
                    

               
                           

Therefore, the probability that node j located at distance x from its BS is an “active” 

bad SN performing packet dropping attacks at time      denoted by                  is given by: 

    
             

    
          
               

    
          
                     

          
                

    (6.11) 
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The first term on the right hand side is the probability node j located at x is a bad 

node, and the 2nd term is the probability that it is performing attacks (  ).      derived 

above provides critical information because an “active” bad node can perform packet 

dropping attacks causing a path to be broken if it is on a path from source SNs to the BS.  

We note that the good/bad node density will remain the same until the next IDS exe-

cution (after      seconds) because the IDS only detects and evicts nodes periodically 

(given that typically node hardware/software failure happens less frequently than secu-

rity failure). The remaining nodes are good nodes that pass the IDS evaluation and bad 

nodes that are undetected by the IDS. Thus,                   
                   and                  

                   obtained at time 

       essentially become                   and                   respectively, for the next round of IDS 

execution at time       

We can also estimate the number of SNs in the WSN at time t as: 

                        
   

 

 (6.12) 

6.3.6 Query Success Probability  

We will use the notation SNj to refer to SN j responsible to relay the packet for the jth 

hop from the source SN to the BS. Also we will use the notation      to refer to the dis-

tance from SNj to its BS.  

Let DSN-BS be the distance between a SN (selected to report sensor readings) and its BS, 

which on average is      . Then the average numbers of hops to forward data from a 

source SN to the BS, denoted by     
  , can be estimated as follows: 

            

    
  

   

        (6.13) 

The equation above equates the sum of hop distances with the source-destination 

distance.  

The success probability for SNj to transmit a packet to at least p next-hop SN neigh-

bors (with indices k=1, 2, … p) along the direction of the destination node based on geo-

graphical routing is given by: 
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 (6.14) 

where                is the probability that SNk is compromised as derived in Equation 

(6.11), and             is the number of forwarding neighbor SNs for SNj as derived 

from Equation (6.6).  

A path starting at SNj to the BS is successful if in each hop there is at least one 

healthy next-hop SN neighbor found. Thus, the success probability of a path starting 

from SNj (a source node has index j=1) to the BS is given by: 

  
      

     

    
    

   

 (6.15) 

Our 2nd countermeasure is to create mp paths between a source SN and the BS for 

path redundancy. The mp paths are formed by choosing mp SNs in the first hop and then 

choosing only one SN in each of the subsequent hops. The source SN will fail to deliver 

data to the SN if one of the following happens: (a) none of the SNs in the first hop re-

ceives the message; (b) in the first hop, i (1≤ i<mp) SNs receive the message, and each of 

them attempts to form a path for data delivery; however, all i paths fail to deliver the 

message because the subsequent hops fail to receive the broadcast message; or (c) in the 

first hop, at least mp SNs receive the message from the source SN from which mp SNs are 

randomly selected to forward data, but all mp paths fail to deliver the message because 

the subsequent hops fail to receive the message.  Summarizing above, the probability of 

a source SN (with index j=1) failing to deliver data to the BS through multipath routing 

is given by: 

  
          

         
     

  

   

     
     (6.16) 

Consequently, the failure probability of data delivery to the BS from ms source SNs, 

each utilizing mp paths to relay data, is given by: 

           
                  

    
  

 (6.17) 
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Therefore, the query success probability is given by: 

        (6.18) 

Note that in the above derivation we omit time for brevity. More precisely,    de-

rived above should be          since the query success probability is a function of time, 

depending on the node count and population density at the ith query’s execution time 

(i.e., at time     ). 

6.3.7 Energy Consumption  

Now we estimate the amounts of energy spent by a SN located at distance x away from 

the BS during a query interval [            ] and an IDS interval [    ,       ] so as to esti-

mate Nq, the maximum number of queries this SN can possible handle before running 

into energy exhaustion. When all SNs at distance x consumes all their energy, a ‘black 

ring’ at distance x away from the BS is formed. Nodes at distance greater than x will 

have to increase their radio range in order to maintain connectivity with the BS but 

eventually the system ceases to function. When selective capture is in effect, one can see 

that a black ring can more easily develop for nodes close to the BS.  

To normalize energy consumption over Nq queries, let α be the ratio of the IDS exe-

cution rate to the query arrival rate so that αNq is the numbers of IDS cycles before SN 

energy exhaustion. Then, we can estimate Nq by the fact that the SN energy consumed 

due to intrusion detection, and query processing is equal to the initial SN energy as fol-

lows: 

  
      

           

  

   

     
          

   

   

 (6.19) 

Below we outline how to calculate   
           and     

            We first estimate en-

ergy consumed by transmission and reception over wireless link. The energy spent by a 

SN to transmit an encrypted data packet of length nb bits over a distance r is estimated 

as [126]: 

  
                    

   (6.20) 

Here Eelec is the energy dissipated to run the transmitter and receiver circuitry, Eamp   is 

the energy used by the transmit amplifier, and r is the transmission radio range. We use 

the current SN radio range to derive   
    We set     = 10 pJ/bit/m2 and     when the 
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radio range is less than a threshold distance    (75m) and     = 0.0013 pJ/bit/m4  and 

     otherwise[126]. The energy spent by a node to receive an encrypted message of 

length nb bits is given by: 

  
           (6.21) 

The energy consumed by a SN located at x for processing the ith query,   
            

conditioning on it is being a data delivery path with probability   
          is the energy 

consumed for reception (except when it is a source SN) and transmission, i.e., 

  
             

              
     

                 (6.22) 

Since source SNs are randomly picked to answer a query, the probability that a SN 

at distance x away from the BS is on the data path   
           is estimated as the proba-

bility of a SN at x is needed for data delivery, (            multiplied with the proba-

bility that this particular sensor is needed,       
             Here             calculated by 

                 
             

             
 is the total number of SNs within the radio range of SNs at dis-

tance x.  

For intrusion detection every node is evaluated by m voters in an IDS cycle, and 

each voter sends its vote to the other m - 1 voters. Hence, the energy spent by a SN lo-

cated at x in the ith IDS cycle,     
            conditioning on it serving as a voter with 

probability     
           for each of its             neighbors is the energy consumed for 

reception of m-1 votes and transmission of its vote to other m-1 voters, i.e., 

    
               

                                  
                 (6.23) 

Here the probability that a SN at distance x serves as a voter for a neighbor SN, 

  
            is estimated as                

The system fails when a SN at distance       
   (SN maximum radio range) de-

pletes its energy since there is no way to maintain connectivity even by dynamic range 

adjustment. That is, we set       
  to obtain           and            from Equation (6.22), 

and Equation (6.23), respectively, and then we calculate    from Equation (6.19). The 

knowledge of    along with          in Equation (6.18) allows us to calculate the system 

MTTF given by Equation (6.2). 

6.4 Performance Evaluation 
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Table 6-2: Input Parameter Values Characterizing a BS-Based WSN. 

Parameter Default Value Parameter Default Value 
    1500     300m 

  
   1500 nodes/(π×    ) nb 50 bits 

  
   2 Joules Eelec 50 nJ/bit 

     0.01 Eamp 10 pJ/bit/m
2 

   0.0-1.0    75m 

        0.0-0.3 f ¼ 

  
    28days λq 10-2 to 1 query/sec 

  
    0.5-14days    7 

 

In this section, we present numerical results. Our reference WSN consists of   
  = 

1500 SN nodes initially deployed with density   
  with the BS sitting at the center of a 

circular area with radius    =300m. The selective SN capture time is assumed to be ex-

ponentially distributed following the linear model described by Equation (6.1), with  

  
    being once per 4 weeks and   

    varying in the range of once per half day to once per 

2 weeks. The radio range     is dynamically adjusted to maintain network connectivity 

of    = 7 to support basic multipath routing and voting-based IDS functions. The initial 

energy level of a SN is   
     Joule. The energy parameters used by the radio module 

are adopted from [68, 126]. The energy dissipation Eelec to run the transmitter and re-

ceiver circuitry is 50 nJ/bit. The energy used by the transmit amplifier to achieve an ac-

ceptable signal to noise ratio (    ) is 10 pJ/bit/m2 for transmitted distances less than the 

threshold distance    (75m) and 0.0013 pJ/bit/m4 otherwise. The query arrival rate λq is a 

variable ranging from 10-2 to 1 query/sec to reveal points of interest. The imperfection of 

host IDS monitoring due to ambient noise and channel error is modeled by a monitor-

ing error probability     = 1%. 

6.4.1 Analyzing the Effect of Selective Capture on MTTF 

In this section we analyze the effects of selective capture on MTTF. To isolate out the 

effect of smart attack (which we will consider later), we only consider persistent attack-

ers that always attack with probability 1 (      ). Our objective is to identify the best 

protocol setting of our countermeasures against selective capture which converts good 

nodes into bad nodes. This includes the radio range to be adjusted dynamically by indi-
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vidual SNs, the best redundancy level used for multipath routing, as well as the best 

redundancy level in terms of the number of voters and the best intrusion invocation in-

terval used for intrusion detection to maximize the WSN lifetime. We use random cap-

ture as a baseline case for performance comparison. 

6.4.1.1 Countermeasures against Selective Capture 

We first examine the effect of the compromise rate and intrusion detection interval 

     on the optimal (mp, ms) to maximize the WSN lifetime. Tables I and II summarize the 

optimal (mp, ms) values to maximize the WSN lifetime under selective capture and ran-

dom capture attacks, respectively, with m fixed at 3 (i.e., the number of voters is 3). The 

maximum compromise rate   
    on the 1st column specifies the magnitude of the com-

promise rate (with   
    being fixed at once per 4 weeks). The intrusion detection interval 

     on the 1st row specifies the IDS interval. For example, when   
    1/(0.5 day)  and 

    =4hrs,  the optimal (mp, ms) is (2,5) under selective capture in Table 1 and is (1,5) un-

der random capture in Table 2.  

We first observe that there exists an optimal (mp, ms) setting under which the MTTF is 

maximized for either case. Furthermore, a higher (mp, ms) is needed when the capture 

strength   
    increases. Also under selective capture attacks, the system must use a 

higher redundancy level to maximize the MTTF. For example when      = 4 hrs and 

  
   = 1/(0.5 day), the optimal (mp, ms) setting is (2, 5) under selective capture (in Table 

6-3) but is only (1, 5) under random capture attacks (in Table 6-4). This is because selec-

tive capture requires the system to apply more redundancy to cope with more critical 

nodes being compromised. The system is better off in this case to use higher redundan-

cy to ensure secure routing at the expense of more energy consumption to maximize the 

system MTTF.  

We also observe from Table 6-3 and Table 6-4 that the optimal MTTF is more likely to 

be achieved using a redundancy setting with a high ms as opposed to a high mp. While 

the same number of total paths can be achieved using various (mp, ms) combinations, 

e.g., 6 paths can be achieved by (1, 6), (2, 3), (3, 2) or (6, 1), increasing ms rather than in-

creasing mp can more effectively increase the query success probability because the fail-

ure of a single source SN results in a system failure, even if the source SN is connected 

to the BS via mp paths. On the other hand, the failure of a single path is less damaging to 

query success. Furthermore, we expect little difference in terms of energy consumption 

when the number of paths is the same. As a result, the optimal (mp, ms) setting favors a 

high    over a high mp whenever possible. 
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Table 6-3: Optimal (mp, ms) under Selective Capture with varying λc
max 

and TIDS 

Values. 

  
        =1hr 2hrs 4hrs 6hrs 8hrs 

1/(8 hrs) (1,3) (1,4) (5,5) (5,5) (5,5) 

1/(0.5 day) (1,2) (1,4) (2,5) (2,5) (2,5) 

1/(0.75 days) (1,2) (1,2) (1,4) (2,5) (2,5) 

1/day (1,2) (1,2) (1,2) (1,4) (2,5) 

1/(2 days) (1,2) (1,2) (1,2) (1,2) (1,2) 

 

Table 6-4: Optimal (mp, ms) under Random Capture with varying λc
max 

and TIDS 

Values. 

  
        =1hr 2hrs 4hrs 6hrs 8hrs 

1/(8 hrs) (1,3) (1,4) (1,5) (5,5) (5,5) 

1/(0.5 day) (1,2) (1,2) (1,5) (1,5) (2,5) 

1/(0.75 days) (1,2) (1,2) (1,2) (1,5) (1,5) 

1/day (1,2) (1,2) (1,2) (1,2) (1,5) 

1/(2 days) (1,2) (1,2) (1,2) (1,2) (1,2) 

 

We next analyze the effect of the intrusion detection interval       (representing the 

intrusion detection strength) on the system MTTF.  Whether to use a small or large 

     depends on the capture strength   
   . When the capture strength is high (i.e., 

when   
     is high), as evidenced by the frequency at which bad nodes are detected by 

the IDS and evicted, we must counter it with high detection strength (a small        
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Conversely, when the capture strength is low, a large     could be used to save energy 

to maximize the MTTF.  

 Figure 6-2(a), Figure 6-2 (b), and Figure 6-2 (c) show MTTF vs. (mp, ms) under small 

(    =2 hrs), medium (    =3 hrs), and large (    =4 hrs) detection intervals, respective-

ly, for the case when the capture strength is high, i.e.,   
              . We again set 

m=3 to isolate its effect. We observe that at the optimal (mp, ms) setting, the MTTF under 

    =2 hrs (Figure 6-2 (a)) is much higher than the MTTF under     =4 hrs (Figure 6-2 

(c)). This is because when the system is subject to a high capture rate, the system is bet-

ter off to apply high detection strength (a small       at 2 hrs) at the expense of more en-

ergy consumption to quickly detect and evict compromised nodes, instead of applying 

low detection strength (a large      at 4 hrs), so as to increase the MTTF. This trend ap-

plies to both selective and random capture attacks. We also see that the MTTF under 

selective capture is much lower than that under random capture because with selective 

capture critical nodes are more easily compromised and black holes can more easily 

form near the BS to cause a system failure. Lastly we note that optimal (mp, ms) setting is 

highly situation dependent. The optimal (mp, ms) settings under random capture and se-

lective capture in Figure 6-2 (a), Figure 6-2 (b) and Figure 6-2 (c) are (1,4)(1,4), (1,5)(2,5), 

and (1,5)(5,5) respectively. 

 

 

(a) High detection strength (    = 2hr) 
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(b) Medium Detection strength (    = 3hrs) 

 

(c) Low detection strength (    = 4hrs) 

Figure 6-2: MTTF vs. (mp, ms) with varying Detection Strength in the presence of 

High Capture Strength. 
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Figure 6-3: Effect of TIDS on System MTTF under Random Capture vs. under Selective 

Capture. 

Figure 6-3 compares the effect of       on the MTTF under random capture vs. selec-

tive capture at the optimal (mp, ms) setting under random capture vs. selective capture. 

We again observe that there exists an optimal     value (marked by a black dot) at 

which the MTTF is maximized. Furthermore, the optimal     value under selective cap-

ture in general is smaller than that under random capture because the system has to in-

crease detection strength to cope with selective capture which creates more compro-

mised critical nodes.  

In Figure 6-4 we summarize the damaging effect of selective capture attacks com-

pared with random capture attacks. It shows that selective capture has a devastating 

effect on the MTTF compared with random capture. The effect is especially pronounced 

when the capture strength   
    is high (left end of the graph). The MTTF at the optimal 

(mp, ms) setting under selective capture is relatively low compared with that under ran-

dom capture because the success probability for a node to transmit a packet to at least p 

next-hop SN neighbors (Equation (6.13)) is low as the node is close to the BS, as many 

critical nodes are compromised due to selective capture.  
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Figure 6-4: WSN lifetime under Random Capture vs. under Selective Capture with 

varying λc
max

. 

Figure 6-5 vividly displays how the “good SN density”      
        evolves over time 

under selective capture vs. under random capture. It confirms that      
        decreases 

over time because of capture, and the rate at which      
        declines for SNs with x < 

1/2 under selective capture is higher than that under random capture. The effect of se-

lective capture on good node population is especially pronounced for critical nodes 

near the BS (i.e., when x=1/16 or 1/8).  

Figure 6-6 displays how a SN at distance x dynamically adjusts its radio range to 

counter selective capture so as to maintain sufficient network connectivity and improve 

packet delivery reliability. It confirms that with the “dynamic radio range adjustment” 

countermeasure, a SN increases its radio range over time to maintain network connec-

tivity. Further, under selective capture because critical nodes (i.e., when x is small) are 

more likely compromised, and subsequently detected and evicted from the system, a 

critical node must increase its radio range more rapidly to maintain network connectivi-

ty and improve packet delivery reliability to effectively counter selective capture. Fig-

ure 6-6 demonstrates that critical SNs (e.g., when x=1/16 or 1/8) are able to more rapidly 

adjust radio range to maximize the system MTTF. 
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Figure 6-5: Density of Good SNs at Distance x vs. Time. 

 

 

Figure 6-6: Adjusting Radio Range at Distance x vs. Time. 

6.4.1.2 Tradeoff Analysis between Energy and Reliability 

The optimal (mp, ms) setting identified to maximize MTTF is a result of the tradeoff be-

tween query success probability Equation (6.18) vs. energy consumption per second 

Equation (6.19). This is illustrated in Figure 6-7 for a selective capture case where Figure 

6-7(a) shows the average node energy consumption rate vs. (mp, ms) (for both query pro-

cessing and IDS execution), Figure 6-7 (b) correspondingly shows the query success 

probability (  ) vs. (mp, ms), and Figure 6-7(c) shows the MTTF vs. (mp, ms) as a result of 

this tradeoff. Here we take data collected over the lifetime for Figure 6-7 (a) and Figure 

6-7 (b), since the first two quantities are time dependent. While the query success prob-

ability is maximized with (mp, ms)=(5,5), this setting consumes the most energy which 

adversely shortens the system lifetime. As a result, the optimal (mp, ms) setting that max-

imizes MTTF in this example is (3,5).  
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(a) Node energy consumption rate vs. (mp, ms). 

 

 

(b) Query success probability vs. (mp, ms). 
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(c) MTTF vs. (mp, ms). 

 

Figure 6-7: An Example showing (a) Node Energy Consumption per second, (b) 

Query Success Probability, and (c) MTTF vs. (mp, ms). 

6.4.2 Analyzing the Effect of Smart attack on MTTF 

In this section, we analyze the effect of smart attack on MTTF. We consider 3 smart 

attack behavior models: (1) random, (2) random + opportunistic, and (3) random + op-

portunistic + insidious. We use persistent attacks as the baseline case for performance 

comparison. Also for each case, we differentiate selective capture from random capture 

as smart attack will very likely exploit environment vulnerability due to selective cap-

ture which creates more malicious nodes in areas nearer to the BS. 

6.4.2.1 Smart attack under Random Capture 

Figure 6-8(a)-(c) show MTTF vs. (mp, ms) for a WSN under smart attack and random 

capture when the detection strength goes from high to low (    = 1hr, 3hrs to 7hrs). For 

random attacks,        . For insidious attacks,                There are several general 

observations. First, we observe that there exists an optimal (mp, ms) setting under which 

the MTTF is maximized for each attack behavior model.  Further, more damaging at-

tacks in general require higher redundancy to achieve the optimal (mp, ms) setting. For 

example, in Figure 6-8(a), the optimal (mp, ms) settings for the persistent attack model 

         and the random + opportunistic + insidious attack model are (1,2) and (1,3), 

respectively. 
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(a) High detection strength (    = 1hr) 

 

(b) Medium Detection strength (    = 3hrs) 
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 (c) Low detection strength (    = 7hrs) 

Figure 6-8: MTTF vs. (mp, ms) under Smart attack and Random Capture. 

Second, we observe that smart attack that consider all strategies, i.e., random + op-

portunistic + insidious, are more damaging than those using random + opportunistic or 

just random attacks, because given the same level of hiddenness as provided by ran-

dom attacks, opportunistic and insidious attacks are “sure” and effective attacks. 

Third, from the smart attacker’s perspective, the best attack strategy depends on the 

defender’s detection strength. We observe that when the detection strength is high 

(Figure 6-8 (a)) the best adversary strategy is to attack randomly with a low random at-

tack probability so as to evade detection and wait opportunistically for the best chance 

to come by to attack. This is observed in Figure 6-8 (a) where we see that in this case at-

tacking persistently with      (the top curve) results in the attackers being detected 

and removed from the system, and consequently yields the highest MTTF among all 

cases. Conversely, when the detection strength is low (Figure 6-8 (c)) the best adversary 

strategy is to attack with a high random attack probability to maximize the damage. 

This is observe in Figure 6-8 (c) where we see that attacking with a low random attack 

probability         (the top curve) actually results in the highest MTTF among all, 

since in this case intrusion detection is ineffective; thus, attacking persistently (with 

    ) is more effective than random attacks with  a low random attack probability 
         

Lastly, we observe that the effect of insidious attacks is pronounced when the detec-

tion strength is low. In Figure 6-8 (a) where the detection strength is high, its effect is 

insignificant. This is evidenced in Figure 6-8 (a) that MTTF under the random + oppor-

tunistic + insidious attack model is almost the same as that under the random + oppor-

tunistic attack model (the bottom curve). However, when the detection strength de-
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creases, its effect becomes more manifested because of a much higher chance of many 

malicious nodes accumulated in the system due to weak detection. This is evidenced in 

Figure 6-8 (c) that MTTF under the random + opportunistic + insidious attack model 

(the bottom curve) is much lower than that under the random + opportunistic attack 

model (the 3rd bottom curve). 

 

(a) High detection strength (    = 1hr) 

 

 

(b) Medium detection strength (    = 3hrs) 

1

2

3

4

5

1
2

3
4

5

0

0.5

1

1.5

2

2.5

x 10
5

 

ms

MTTF vs. (m
p
,m

s
) with T

IDS
=1hrs 

c
max=1/day 

c
min=1/(4wks) m=3

mp

 

M
T

T
F

Random with p
a
=1.0

Random with p
a
=0.25

Random + Opportunistic with p
a
=0.25

Random + Opportunistic + Insidious 
 with p

a
=0.25, p

all-in
=0.25

1

2

3

4

5

1
2

3
4

5

0

0.5

1

1.5

2

2.5

x 10
5

 

ms

MTTF vs. (m
p
,m

s
) with T

IDS
=3hrs 

c
max=1/day 

c
min=1/(4wks) m=3

mp

 

M
T

T
F

Random with p
a
=1.0

Random with p
a
=0.25

Random + Opportunistic with p
a
=0.25

Random + Opportunistic + Insidious 
 with p

a
=0.25, p

all-in
=0.25



118 

 

 

(c) Low detection strength (    = 7hrs) 

Figure 6-9: MTTF vs. (mp, ms) under Smart attack and Selective Capture. 

 

6.4.2.2 Smart attack under Selective Capture 

We repeat the same analysis as Section 6.4.2.1 above except that we analyze the effect 

of smart attack on MTTF of a WSN with selective capture. We summarize the results by 

Figure 6-9(a)-(c) showing MTTF vs. (mp, ms) under smart attack and selective capture, 

with the detection strength going from high to low (    = 1hr, 3hrs to 7hrs), respective-

ly. Comparing Figure 6-8 and Figure 6-9, we see that the same general observations 

drawn from Figure 6-8 in Section V-B-(a) apply. However, there are two striking differ-

ences. First, the MTTF value obtained, given the same detection strength and attack be-

havior model under selective capture, is lower than that under random capture. Second, 

as the intrusion detection strength decreases, the difference in MTTF between random 

capture and selective capture widens (e.g., Figure 6-8(c) and Figure 6-9(c)) because of 

the damaging effect of selective capture which causes more malicious nodes accumulat-

ed near the BS. 

We further compare selective capture with random capture to examine the environ-

ment vulnerability created by selective capture. Figure 6-10 and Figure 6-11 compare 

MTTF obtainable under selective capture vs. that under random capture for high and 

low detection strengths, respectively, using the random + opportunistic + insidious at-

tack behavior model as the test case. The results demonstrate that selective capture has 

a far more damaging effect on MTTF because of its ability to create malicious nodes 

near the BS. The effect is especially pronounced when the detection strength is low. Ta-
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able under selective capture and random capture, respectively, with random + oppor-

tunistic + insidious attacks. We see that the system will have use higher redundancy in 

terms of (  ,  ) to cope with selective capture, when compared with random capture. 

 

Figure 6-10: Comparing MTTF obtainable under Selective Capture vs. Random Cap-

ture with Random + Opportunistic + Insidious Attacks (High Detection Strength). 

 

 

Figure 6-11: Comparing MTTF obtainable under Selective Capture vs. Random Cap-

ture with Random + Opportunistic + Insidious Attacks (Low Detection Strength). 
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Table 6-5: Optimal (mp, ms) under selective capture and Random + Opportunistic + 

Insidious attacker, with varying λc
max

 and TIDS . 

 TIDS=1hr 3hrs 5hrs 

  
   = 1/(0.5 day)  (2,4) (2,5) (3,5) 

  
   = 1/(1 day) (1,3) (1,5) (2,5) 

 

Table 6-6: Optimal (mp, ms) under random capture and Random + Opportunistic + 

Insidious attacker, with varying λc
max

 and TIDS . 

 TIDS=1hr 3hrs 5hrs 

  
   = 1/(0.5 day)  (1,4) (2,5) (2,5) 

  
   = 1/(1 day) (1,3) (1,4) (1,5) 

 

6.4.2.3 Analyzing Intrusion Detection Latency 

In this section we analyze intrusion detection latency, i.e. how long it takes for our 

voting-based IDS to detect a compromised node. The detection latency for a node com-

promised at time   depends on the detection probability (     ) in consecutive  intru-

sion detection intervals past t. The probability that the compromised node is detected at 

the ith intrusion detection interval past time t is given by                   

              
   
     This is so because it was not detected in the prior (i-1) intervals, 

the probability of which is               
   
    and it is then detected at the ith interval, 

the probability of which is                   Hence, the detection latency of a node 

compromised at time   can be computed by conditioning on the time (i.e., the ith IDS 

interval) at which the compromised node is detected, as follows: 
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 (6.24) 

Since the capture rate of a SN at a distance x away from the BS is   
      (defined in 

Equation 6.1 with t removed as the capture rate is time independent), the probability 

that a SN at x is compromised at time t is given by    
              

        assuming 

exponential distribution. Therefore, the average expected detection latency can be ob-

tained by weighting on the probability of the node being compromised at time t, i.e., 

        
                 

        

    
    
   

     
        

    
    
   

 (6.25) 

Equations (6.24) and (6.25) are applied to a compromised SN at distance x from the 

BS to calculate its expected detection latency. Since the IDS detection probability, i.e., 

       for detecting a compromised SN decreases as x decreases since there are more 

nodes captured and compromised near the BS due to selective capture, we expect a 

higher detection latency as x decreases.  

Figure 6-12 and Figure 6-13 demonstrate the effect of selective capture on detection 

latency. The two diagrams display the average detection latency obtained from Equa-

tion 6.25 vs. distance from BS (x) under   =1.0 and   =0.25, respectively. The parameter 

values are as given in Table 6-2 with      =3hrs and   
    1/(0.5 day). We see clearly 

that as x decreases (i.e., as a compromised SN is closer to the BS), the detection latency 

increases, because selective capture populates more bad nodes near the BS, thus affect-

ing the accuracy of voting IDS to detect a bad node.  We also observe that the detection 

latency under random attack behavior (Figure 6-13) is higher than that under persistent 

attack behavior (Figure 6-12), because the IDS can better detect and thus evict bad nodes 

that attack all the time. This prevents bad nodes from accumulating in the system and 

bad-mouthing good nodes in future voting IDS executions. 
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Figure 6-12: Detection Latency vs. Distance from BS under Pa=1.0, TIDS=3hrs and λc
max

 

=1/(0.5 day).   

 

 

Figure 6-13: Detection Latency vs. Distance from BS under Pa=0.25, TIDS=3hrs and 

λc
max

 =1/(0.5 day). 
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6.4.2.4 Countering Selective Capture and Smart attack 

Lastly we analyze the effectiveness of our countermeasures against selective capture 

with random + opportunistic + insidious attacks which we model by   
       

        and 

         Figure 6-14 shows the optimal      interval (representing detection strength) to 

counter such attackers with varying capture strengths    
     and random attack proba-

bility (   . In Figure 6-14, we fix    
    to once per 4 weeks and vary   

    in the range of 

once per half day to once per 2 weeks. We also fix              to isolate its effect.  

We observe from Figure 6-14 that a low   demands a high detection rate (i.e., a small 

     interval). The reason is that a low   will result in a high per-host false negative 

probability    . Consequently, to cope with many hidden bad nodes missed by intru-

sion detection, the system will have to use a small      interval for high detection 

strength. Another observation is that as   
   increases,     decreases (or the detection 

strength increases) to counter the increasing capture rate. 

 

 

Figure 6-14: Countering Selective Capture with Random + Opportunistic + Insidious 

Attacks with varying λc
max

 and Pa by Adjusting Detection Strength Parameter TIDS. 
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Table 6-7: Optimal (mp, ms) under low Pa (0.25), with varying λc
max

 and TIDS  

 
TIDS= 

0.25hr 

0.5hrs 1hr 2hrs 4hrs 

  
   = 1/(0.5 day)  (1,3) (1,4) (2,4) (2,5) (3,5) 

  
   = 1/(1 day) (1,3) (1,3) (1,3) (1,5) (2,4) 

  
   = 1/(7 days) (1,2) (1,2) (1,2) (1,3) (1,3) 

  
   = 1/(14 days) (1,2) (1,2) (1,2) (1,2) (1,3) 

 

Table 6-7 and Table 6-8 summarize the optimal (  ,  ) settings (representing multipath 

multisource redundancy for intrusion tolerance) to maximize MTTF obtainable under 

selective capture with random + opportunistic + insidious attacks, for low and high 

  settings respectively. We observe that the more hidden the inside attackers are, that 

is, as   decreases, the more (mp, ms) redundancy is required to cope with the bad node 

population accumulated due to misses in intrusion detection. This is evidenced by 

comparing optimal (  ,  ) settings listed in 

Table 6-7 and Table 6-8 for the same   
   and       

 

Table 6-8: Optimal (mp, ms) under high Pa (0.75) with varying λc
max 

and TIDS. 

 
TIDS= 

0.25hr 

0.5hrs 1hr 2hrs 4hrs 

  
   = 1/(0.5 day) (1,3) (1,3) (1,3) (1,5) (2,5) 

  
   = 1/(1 day) (1,2) (1,2) (1,3) (1,3) (1,5) 

  
   = 1/(7 days) (1,2) (1,2) (1,2) (1,2) (1,2) 
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   = 1/(14 days) (1,2) (1,2) (1,2) (1,2) (1,2) 

 

Lastly we analyze the effect of        (the all-in attack percentage population thresh-

old) on MTTF of a WSN subject to selective capture with random + opportunistic + in-

sidious attacks. We first note that a small         means that malicious nodes will per-

form all-in attacks early on (i.e., setting   =1) as soon as it senses the small percentage 

population threshold is reached. On the other hand, a large        means that malicious 

nodes will stay hidden until the large percentage population threshold is reached. 

Figure 6-15 shows the optimal      interval (representing detection strength) to coun-

ter selective capture with random + opportunistic + insidious attacks with varying cap-

ture strengths    
     and all-in attack percentage population threshold (           We fix 

    0.1 to isolate out its effect. Figure 6-15 (a) is for the case in which   
    

              while Figure 6-15 (b) is for the case in which   
                     These 

two diagrams exhibit the same trend, namely, as        initially increases, the optimal 

     setting (at which MTTF is maximized) decreases. However, as        continues to 

increase past a high threshold, the optimal      setting increases again.  

Table 6-9 summarizes this trend, covering a wider range of   
   values. This seem-

ingly odd trend has a logical explanation. That is, when        is very small (say 0-10%), 

  will be set to 1 early on for all-in attacks, so malicious nodes can be easily detected 

and the system should just use moderate detection strength to balance energy consump-

tion with detection rate. As        increases further (say 10-20%), malicious nodes stay 

hidden until the all-in attack percentage population threshold is reached, so the system 

should use high detection strength to remove malicious nodes to prevent a critical mass 

from being formed. Finally as        continues to increase past a high threshold (say 

>25%), insidious attacks will be ineffective since it is unlikely such a high critical mass 

can be reached. The system in this case is better off using just moderate detection 

strength to balance energy consumption with detection rate.  
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(a) High compromise rate (λc
max

= once per day). 

 

(b) Lower compromise rate (λc
max

= once per 2 days). 

Figure 6-15: Countering Selective Capture with Random + Opportunistic + Insidious 

Attacks with varying λc
max 

and Pall-in by Adjusting Detection Strength Parameter TIDS. 

 

Table 6-9: Optimal TIDS under varying λc
max

 and Pall-in. 

         0.0 0.1 0.15 0.2 0.25 

  
   = 1/(0.5 day) 0.75 hrs 0.75 0.25 0.125 0.5 

5.00E+04

7.00E+04

9.00E+04

1.10E+05

1.30E+05

1.50E+05

1.70E+05

1.90E+05

2.10E+05

0 0.5 1 1.5 2 2.5 3 3.5 4

MTTF

TIDS (hrs)

once per day,  0.1

once per day,  0.15

once per day,  0.2

once per day,  0.25

High IDS 
execuion rate

Low IDS 
execuion rate

λc       , Pall-in
max

8.00E+04

1.00E+05

1.20E+05

1.40E+05

1.60E+05

1.80E+05

2.00E+05

2.20E+05

2.40E+05

2.60E+05

0 0.5 1 1.5 2 2.5 3 3.5 4

MTTF

TIDS (hrs)

once per 2days, 0.1

once per 2days, 0.15

once per 2days, 0.2

once per 2days, 0.25

λc           , Pall-in

max

Low IDS 
execuion rate

High IDS 
execuion rate
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   = 1/(1 day) 1 1 0.5 0.25 0.5 

  
   = 1/(2 days) 2 2 0.75 0.25 1 

  
   = 1/(3 days) 3 3 0.5 0.25 3 

 

Table 6-10: Optimal (mp, ms) under varying λc
max 

and Pall-in with fixed TIDS (0.5hr) 

         0.0 0.1 0.2 0.3 

  
   = 1/(0.5 day) (1,2) (1,3) (1,3) (2,4) 

  
   = 1/(1 day) (1,2) (1,2) (1,3) (1,5) 

  
   = 1/(2 days) (1,2) (1,2) (1,2) (2,2) 

  
   = 1/(3 days) (1,2) (1,2) (1,2) (2,2) 

 

Finally, Table 6-10 summarizes the optimal (  ,  ) settings (representing multipath 

multisource redundancy for intrusion tolerance) to maximize MTTF obtainable under 

varying        settings. We fix      to 0.5 hrs to isolate its effect. We can see from Table 

VIII that as         increases attackers become more hidden, and, consequently, a higher 

level of (  ,  ) redundancy is required to cope with the bad node population accumu-

lated due to misses in intrusion detection. This finding is consistent with that drawn 

from Table 6-7 and Table 6-8. 

6.5 Simulation 

In this section, we conduct a simulation study to support the trends predicted by the 

analytical model. We use the ns-3 discrete-event network simulator [69] as our simula-

tion framework.  
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The ns-3 implementation of a BS-based WSN closely follows our analytical model in 

Sections 6.1-6.3 except that we allow backtracking. Backtracking is difficult to model 

analytically, yet it is an important feature for a real world deployment that can be more 

easily modeled using simulation. That is, in case a forwarding node that can bring the 

packet nearer to the BS cannot be found, the packet may be routed to a node that is far-

ther away from the BS, in the hope that a path will eventually be found to reach the BS. 

In the simulation, we limit backtracking to go backward for a maximum of 3 hops after 

which the path is considered failed.  

 

Figure 6-16: Multisource multipath routing in a BS-based WSN. 

We illustrate how we simulate backtracking by Figure 6-16 for a case in which   =2 

and   =2. In this figure, the left path of the left source SN backtracks 2 hops and even-

tually the packet reaches the BS using a total of 6 hops. All other paths fail due to the 

presence of malicious nodes on the path performing packet dropping with probability 

    The query response is still delivered successfully since one path still successfully 

reaches the BS. The figure illustrates how backtracking could help finding a path to the 

BS at the expense of more energy consumption.  

Below we report simulation results. Each data point (MTTF) is generated from 100 

simulation runs. In each run, an observation of MTTF is collected when a system failure 

condition defined in Section 6.1.4 is satisfied.  

Figure 6-17 and 6-16 compare simulation results with analytical results for MTTF vs. 

(  ,   ) under random and selective capture attacks, respectively. We see that there is a 

remarkable match between simulation and analytical results, both showing the same 

optimal (  ,   ) under which MTTF is maximized.  The MTTF values generated from 
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the analytical model are consistently higher than those generated from simulation. We 

attribute this discrepancy to two reasons. The first reason is that a path in simulation in 

general has a longer overall length than that in the analytical model which assumes a 

straight line distance from the source SN to the BS. Consequently there are more inter-

mediate nodes on a path and the path failure probability is higher. The second reason is 

due to the assumption of disjoint paths in the analytical model. This assumption in gen-

eral is justified when there are sufficient nodes. However as nodes are evicted because 

of intrusion detection, it may not be justified. While the analytical model continues to 

use disjoint path assumption to do MTTF calculation, the simulation must use back-

tracking to cope with lack of nodes for forming    paths, especially when the frontier 

of a path is close to the BS which is affected the most by selective capture. This increases 

the path length and, consequently, reduces the path reliability.  Despite these two fac-

tors contributing to a shorter MTTF value compared with the counterpart analytical 

MTTF value, we see that analytical model still accurately predicts the best (  ,   ) un-

der which MTTF is maximized. 

 

 

Figure 6-17: Simulation vs. Analytical Results under Random Capture.  
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Figure 6-18: Simulation vs. Analytical under Selective Capture. 

Figure 6-19 compares simulations results (case a on the left) vs. analytical results 

(case b on the right) for MTTF vs. (  ,   ) with high detection strength in the presence 

of high capture strength. We again see a remarkable match in trend between simulation 

and analytical results, both showing the same optimal (  ,   ) under which MTTF is 

maximized. We conclude that simulation results support the trends predicted by the 

analytical model. 

  

(a) Simulation Results (b) Analytical Results 

Figure 6-19: Comparing MTTF vs. (mp, ms) with High Detection Strength in the Pres-

ence of High Capture Strength: (a) Simulation Results and (b) Analytical Results. 
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6.6 Analyzing Distance-based Intrusion Detection and Distance-

based Attacks 

In this section we analyze adaptive distance-based intrusion detection (from the system 

defense perspective) by which the intrusion detection interval (      is dependent on 

the distance (x) away from the BS. As a preliminary study, given that the selective cap-

ture rate increases linearly with decreasing x, we adjust      such that it decreases line-

arly with decreasing x (thus increasing the IDS detection rate) so as to counter selective 

capture. This “distance-based” IDS rate strategy is to be contrasted with the “fixed” IDS 

rate strategy.  

We also analyze adaptive distance-based attack (from the adversary perspective) by 

which malicious nodes can make adaptive attacks to gain maximum benefit, given 

knowledge of intrusion detection/tolerance strength detected at runtime through broad-

casting control messages in the WSN at runtime. The parameter which the adversary 

can control is the random attack probability (   . This “distance-based” random attack 

probability strategy is to be contrasted with the “fixed” random attack probability strat-

egy.  

 

 

Figure 6-20: Effect of Distance-based Intrusion Detection and Distance-based Attack.  

Figure 6-20 shows ns3 simulation results averaged from 100 simulation runs in a BS-

based WSN characterized by a set of parameter values as given in Table 6-2. The 4 

curves from top to bottom are for the distance-based IDS + fixed random attack proba-
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bility (     , fixed IDS + fixed random attack probability (     , distance-based IDS 

+ fixed random attack probability (       , and distance-based IDS + distance-based 

random attack, respectively. The X coordinate is the fixed     value for the fixed IDS 

case, and is the average      value at x=1/2 from the BS for the distance-based IDS case.  

The effect of using distance-based IDS vs. fixed IDS against fixed random attack 

probability on MTTF can be seen by comparing the top two curves. First we observe 

that the optimal MTTF achieved under distance-based IDS (top curve) is greater than 

the optimal MTTF under fixed IDS (second top curve), since increasing the IDS rate near 

the BS effectively detect and evict highly populated compromised insiders near the BS. 

This effectively counters selective capture which quickly populates compromised nodes 

near the BS. Second, we observe that distance-based IDS may produce a lower MTTF 

than that by fixed IDS. This is especially true when the detection rate is excessively high 

such that the loss in excessive energy consumption of the critical nodes outweighs the 

gain in detecting and evicting compromised critical nodes.  

From the adversary perspective, we observe in Figure 6-20 that using a low random 

attack probability (         is more effective in this environment setting, since it can 

cause more damage to the system while avoiding detection. This is shown by compar-

ing the top curve (        with the third curve (        . Hence the adversary can 

counter distance-based IDS by adjusting    based on the distance x to the BS. The effect 

of using distance-based attack to counter distance-based IDS on MTTF can be seen by 

comparing the bottom two curves. Here we see that the bottom curve with distance-

based attack with         at x=1/2 from the BS can significantly reduce the MTTF of 

the system compared with fixed attack with          throughout. The reason is that 

distance-based attack can effectively counter distance-based IDS to result in a low detec-

tion rate throughout. Especially, composed nods near the BS will use a very low attack 

probability to counter the very high intrusion detection rate being applied to critical 

nodes near the BS. As a result, the system will waste energy of critical nodes but miss 

detecting hidden compromised nodes. 

For the defense perspective, nevertheless, dynamically adjusting the detection 

strength in term of the intrusion detection interval (      as in this study and the num-

ber of verifiers (m) is the best defense mechanism that the system can leverage to max-

imize the system MTTF. Figure 6-20 clearly demonstrates that there exists an optimal 

detection strength setting under which the system MTTF is maximized, given some 

knowledge of the attacker strategies such as the fixed or distance-based random attack 

probability. 
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6.7 Summary 

In this chapter we proposed and analyzed adaptive network management with 

three countermeasures for coping with selective capture and smart attack aiming to cre-

ate holes near the base station in a wireless sensor network to block data delivery. We 

demonstrated that our countermeasures are effective against selective capture and 

smart attack. There exist best protocol settings in terms of the best radio adjustment, the 

best redundancy level for multipath routing, the best number of voters, and the best in-

trusion invocation interval used for intrusion detection to maximize the system lifetime. 

Leveraging the analysis techniques proposed in this chapter, one can obtain optimal 

protocol settings at static time, store them in a table, and apply a simple table lookup 

operation at runtime as discussed in Section 4.6 to determine optimal settings for adap-

tive network management to maximize the BS-based WSN lifetime without high 

runtime complexity. 
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Chapter 7  

 

Conclusion 

7.1 Completed Work 

In this dissertation research, we have developed a class of dynamic redundancy 

management algorithms for redundancy management of multisource multipath routing 

for fault and intrusion tolerance, and voting-based IDS for intrusion detection, with the 

goal of maximizing the WSN lifetime while satisfying application QoS and security re-

quirements, for homogeneous clustered WSNs (Chapter 4), heterogeneous clustered 

WSNs (Chapter 5), and BS-based WSNs (Chapter 6). By means of a novel analytical 

models based on probability theory, we explored the tradeoff between energy con-

sumption vs. reliability, timeliness and security gain and identified the optimal multi-

source multipath redundancy level and intrusion detection settings for satisfying appli-

cation QoS requirements while maximizing the lifetime of the WSN. We have addressed 

the design issue of “how many paths to use” to tolerate residual compromised nodes 

that survive our IDS, so as to maximize the WSN lifetime. We have also modeled smart 

attack behaviors and selective capture and investigated dynamic radio range adjust-

ment, multisource multipath routing, and voting-based intrusion detection as counter-

measure designs with ns-3 simulation. The dissertation work thus far has resulted in 

three conference publications, one journal publication, and two journal submissions 

listed below. 

Papers Published: 

 H. Al-Hamadi and I. R. Chen, “Dynamic Multisource Multipath Routing for Intru-

sion Tolerance and Lifetime Maximization of Autonomous Wireless Sensor Net-

works,” IEEE 11th International Symposium on Autonomous Decentralized Systems, 

Mexico City, Mexico, pp. 10-16, March 2013. (Chapter 4.) 
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 H. Al-Hamadi and I. R. Chen, "Energy vs. QoS Tradeoff Analysis of Multipath Rout-

ing Protocols for Intrusion Tolerance in Heterogeneous Wireless Sensor Networks," 

IEEE 10th International Symposium on Parallel and Distributed Processing with Applica-

tions, Madrid, Spain, pp. 387-394, July 2012. (Chapter 5.) 

 H. Al-Hamadi and I. R. Chen, "Redundancy Management of Multipath Routing for 

Intrusion Tolerance in Heterogeneous Wireless Sensor Networks," IEEE Transactions 

on Network and Service Management, vol. 10, no. 2, pp. 189-203, 2013. (Chapter 5.) 

 H. Al-Hamadi and I. R. Chen, "Adaptive Network Management for Countering Se-

lective Capture in Wireless Sensor Networks," 9th International Conference on Network 

and Service Management, Zurich, Switzerland, pp. 203-210, October 2013. (Chapter 6.) 

Papers Submitted: 

 H. Al-Hamadi, and I. R. Chen, “Dynamic Redundancy Management of Integrated 

Intrusion Detection and Tolerance in Homogeneous Clustered Sensor Networks,” 

submitted to ACM Transactions on Sensor Networks (TOSN), June 2013 and revised 

Dec. 2013. (Chapter 4.) 

 H. Al-Hamadi, and I. R. Chen, “Adaptive Network Management for Countering 

Smart Attack and Selective Capture in Wireless Sensor Networks,” submitted to 

IEEE Transactions on Computers, February 2014. (Chapter 6.) 

7.2 Future Work 

There are several future research directions that can be extended further from this dis-

sertation research: 

1. Developing Trust-Based Intrusion Detection: The proposed WSN in this disserta-

tion can leverage trust management for WSNs [13, 14] to implement IDS functions 

with the goal to reduce false positive rate and increase detection rate without exces-

sively waste energy. The effect of trust-based IDS designs on false positive rate, de-

tection rate, and system lifetime, by exploiting the tradeoff between energy con-

sumption vs. security gain for using trust-based IDS can be further analyzed utiliz-

ing more sophisticated techniques such as stochastic Petri nets [16, 30-33, 37, 40, 41, 

46, 63, 64, 89]. Finally, performance enhancement of trust-based IDS vs. voting-based 

IDS against more sophisticated attacks can be explored.  

2. Developing Trust-Based Multipath Routing: Developing and analyzing trust-based 

multipath routing algorithms to solve the “what paths to use” research issue can be 

further investigated. A SN can leverage its trust knowledge toward neighbors to se-

lect the most trustworthy carriers for packet forwarding in multisource multipath 
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routing. This will complement our solution toward the “how many paths to use” 

problem into a complete solution for multisource multipath routing for intrusion 

tolerance in WSNs. In the future, we plan to explore trust management in other 

fields such as [26, 27, 35, 45, 47, 48] for performing intrusion detection to address the 

issue of what paths one should use to avoid untrustworthy, malicious nodes to fur-

ther enhance WSN survivability. This may involve the use of trust-based admission 

control strategies [36, 42-44, 125] to increase the probability of path success probabil-

ity for data delivery. Further, we plan to consider fuzzy failure criteria [15, 28, 29] 

such that the WSN system fails after suffering a number of query failures instead of 

the binary failure criterion considered in the dissertation research. 

3. Malicious Node Behavior Modeling: This dissertation research scratches the sur-

face of malicious node behavior modeling by considering random, opportunistic and 

insidious attack behaviors by inside attackers in a wireless sensor network. In the fu-

ture we plan to consider more sophisticated attacker models, e.g., a smart adversary 

that can perform more targeted attacks, capture certain strategic nodes with higher 

probability, alternate between benign and malicious behavior and collude with oth-

er attackers to avoid intrusion detection. In particular, we plan to investigate possi-

ble attacker strategies from the attacker perspective when given knowledge of intru-

sion detection/tolerance strength detected at runtime which is readily obtainable by 

insiders. The preliminary result performed in the dissertation research (in Section 

6.6) sets the stage for more future research in this area. 

4. Extension to Sensor-Enriched Service-Oriented Systems: The design principles de-

veloped and research outcomes discovered in the dissertation research can be ap-

plied to next-generation sensor-enriched service-oriented systems such as applica-

tion-specific cyber physical systems [100-103]  and the social Internet of things (IoT) 

systems [11, 34, 106]. In such systems every device is sensor-enriched and thus be-

haves similar to a sensor in a WSN. The same design issue regarding the tradeoff be-

tween energy consumption vs. reliability, timeliness and security gain remains the 

same. New design issues arise because every device may be mobile [39, 106] and can 

dynamically join and leave the network. A future research direction is to apply de-

sign principles developed in the dissertation research to these systems for dealing 

with smart adversary, with the objective to prolong the system lifetime while satisfy-

ing the system service goals. 
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Appendix – Notation and Acronym 

Notations 

 

A Length of each side of a square sensor area (meter) 

nb Size of a data packet (bit) 

Eelec 
Energy dissipation to run the transmitter and receiver circuitry 

(J/bit) 

Eamp 
Energy used by the transmit amplifier to achieve an acceptable 

signal to noise ratio (J/bit/m2) 

Eo Initial energy per node (Joule) 

Einit Initial energy of the WSN (Joule) 

Eclustering(t) 
Energy consumed for executing the clustering algorithm at time t 

(Joule) 

EIDS(t) Energy consumed for executing the IDS algorithm at time t (Joule) 

Eq(t) Energy consumed for executing a query at time t (Joule) 

Rq(t) 
Probability that a query reply at time t is delivered successfully by 

the deadline 

r Wireless radio communication range (meter) 

q node hardware failure probability 

ej Transmission failure probability of node j 

N(t) Number of nodes in the WSN at time t 
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NCH(t) Number of CHs in the WSN at time t 

NSN(t) Number of SNs in the WSN at time t 

n(t) Number of neighbor nodes at time t 

ngood(t) Number of good neighbor nodes at time t 

nbad(t) Number of bad neighbor nodes at time t 

Nq Maximum number of queries before energy exhaustion 

Niteration Number of iterations in clustering for CH election 

mp 
Path redundancy level: Number of paths from a source CH to the 

sink 

ms 
Source redundancy level: Number of SNs per cluster in response 

to a query 

f Fraction of neighbor nodes that will forward data 

λ(t) Node population density (nodes/meter2) at time t 

λ Node population density at deployment time 

λq Query arrival rate (times/sec) 

Sjk 
Progressive transmission speed between node j and node k (me-

ter/sec) 

Tclustering Time interval for executing the clustering algorithm (sec) 

Treq Query deadline requirement (sec) 

λc Node capture rate 

α Ratio of IDS execution rate to query arrival rate 

β Ratio of clustering rate to query arrival rate 

m Number of voters selected for executing distributed IDS 

Hpfp Probability of host IDS false positive 

Hpfn Probability of host IDS false negative 
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Pfp Probability of distributed IDS false positive 

Pfn Probability of distributed IDS false negative 

             IDS interval time (sec) 

      Lifetime of a WSN 

Acronyms 

 

BS Base Station 

CH Cluster Head 

IDS Intrusion Detection System 

MANET Mobile Ad-Hoc Network 

MTTF Mean Time To Failure 

PC Processing Center 

QoS Quality of Service 

SN Sensor Node 

WSN Wireless Sensor Network 
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