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A driven diftusive lattice gas is studied in a rectangular geometry: particles are fed in at one side
and extracted at the other, after being swept through the system by a uniform driving field. Being
periodic in the transverse direction, the lattice lies on the surface of a cylinder. The resulting none-
quilibrium steady state depends strongly on this choice of boundary conditions. Both Monte Carlo
and analytic techniques are employed to investigate the structure of typical configurations, the den-

sity profile, the steady-state current, and the nearest-neighbor correlations. As the temperature is
lowered in a finite system, the simulations indicate a crossover from a disordered to an ordered state

that is characterized by a backgammonlike pattern of alternating high- and low-density regions
("fingers"). For fixed strengths of the field and interparticle attraction, the average number of
fingers is controlled by the ratio of the transverse to the longitudinal system size. Whether the

crossover corresponds to an actual phase transition, where typical thermodynamic observables be-

come singular, remains to be determined.

I. INTRODUCTION

Our understanding of nonequilibrium phenomena in
even the simplest interacting many-particle systems is
still very far from complete. Over the past years, consid-
erable effort' has been devoted to the study of various
nonequilibrium steady states in stochastic lattice gases.
In these simple model systems, particles hop to empty
nearest-neighbor sites under the infIuence of a short-
ranged, Ising-like interaction between the particles, and a
simulated thermal bath. Nonequilibrium steady states
are easily established, and maintained, by suitable choices
of boundary conditions or driving forces.

Our interest in this type of model system is threefold.
First, it offers wide-ranging applications to real materials,
such as binary mixtures, ' fast ionic conductors, " and
hydrogen in metals. ' Second, its static equilibrium prop-
erties are very well understood: they are described by the
canonical, or the grand-canonical ensemble, depending
on whether the system is coupled to a particle reservoir
or not. Third, its dynamics around equilibrium can be
cast in terms of well-established Langevin equations for
the slow variables, ' which are accessible by methods of
renormalized field theory. ' In particular, the equilibri-
um systems are known to undergo a second-order transi-
tion, whose static universality class is that of the Ising
model, for spatial dimensions below 4. The dynamical
universal behavior is described by model 8 if the

particle-particle interactions are attractive, and by model
3 in the repulsive case. Thus, our analysis starts from
well-explored ground.

In order to drive the system out of equilibrium, two
major scenarios have been considered so far. In the first
one, ' a nonequilibrium state is established by imposing a
density, or chemical potential, gradient, in a rectangular
geometry: particles are inserted at one edge, and extract-
ed at the opposite edge, according to specified rates, thus
fixing the boundary densities. Since the external driving
forces act only at the surface, the steady-state current
vanishes in the thermodynamic limit, so that the dom-
inant characteristics of the system are equilibriumlike.
This does not imply, however, that nonequilibrium effects
occur only in a boundary layer. Rather, these efFects
must be uniformly present in the bulk, but with vanishing
amplitudes.

In contrast, the second scenario ' involves external
drives acting in the bulk and provides nonequilibrium
effects in the thermodynamic limit. Typically, the driv-
ing field is chosen to point along one of the lattice axes
and introduces an anisotropic bias into the hopping rates:
jumps along (against) the field direction are favored
(suppressed) while transverse jumps remain unaffected.
One might think of the particles as carrying "electric"
charge, driven by an external "electric" field. With fully
periodic boundary conditions, the system settles into a
steady state characterized by a nonzero current.
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In this paper, we analyze a third scenario, which is a
combination of the two described above: we study the
usual driven diffusive lattice gas in a rectangular
geometry, with different densities imposed at the bottom
and the top edge. For simplicity, we consider only the
case in which the bottom edge is always fully occupied
while the top edge is completely empty, with the driving
field directed from bottom to top. In the directions or-
thogonal to the field, we choose periodic boundary condi-
tions. Also, our study is restricted to attractive particle-
particle interactions.

It is to be expected that this choice of boundary condi-
tions will generate a new type of nonequilibrium steady
state, different from both the purely field and purely
chemically driven systems. Our goal is to explore, and
understand, the phenomenology of the associated steady-
state configurations, as temperature and field strength are
varied.

This paper is organized as follows. In Sec. II, we de-
scribe our model in more detail, and discuss its realiza-
tion for Monte Carlo studies. In Sec. III, we present the
simulation results. Our analytic and intuitive under-
standing, together with some open questions, are given in
Sec. IV. Section V contains concluding remarks.

II. MODEL

We start from the familiar Ising lattice gas, defined on
a two-dimensional square lattice. Each lattice site can be
either vacant or occupied by a single particle, which
models a hard-core exclusion. Different configurations
are labeled by a set of occupation variables In I, with

n, =0 or 1, depending on occupancy. The indices
x =1,2, . . . , 8 and y =1,2, . . . , L refer to the x and the
y axis, respectively. The energy of a specific
configuration is given by the "Hamiltonian"

low us to write a "Hamiltonian" like (2.1). However, we
stress that it merely provides a convenient way to express
transition rates. Most importantly, exp( —f3&) must not
be confused with the steady-state distribution, which is
determined entirely by the dynamics.

Simulations have been performed for system sizes
100~L ~200 and 8'=50 or 100. Both the coupling con-
stant J and the driving field E are measured in units of P.
Thus, small values of J correspond to high temperatures,
and vice versa. We investigated 0~ J~2.5 and 1~E~5.

A sweep across the X particles occupying the lattice is
defined as a total of N trial moves on the particle ensem-
ble. The particles are chosen randomly, so that in any
given sweep some particles may be moved more than
once and some not at all. We have also implemented an
algorithm in which particles are moved sequentially by
label and found that the calling sequence does not affect
the results.

At the beginning of each run, the lattice is completely
empty. It gradually fills up, as particles diffuse from the
boundary into the bulk. Eventually, the particle density
approaches its steady-state value of —,', which may be ex-

pected since the dynamics is symmetric under CP trans-
formations (defined by particle hole and y ~ —y).
The time it takes to reach steady state, i.e., the "filling
time, " increases with J and decreases with E. In Fig. 1,
we show three sample results of the filling of a lattice
with L =200 (the largest L used in our simulations). For
ease of comparison, the field has been fixed at E=5,
while the exchange constant J is varied. One can see that

6000

P&= —J g n ~n„~ Egyn„~— (2.1)
5000

with the first summation over nearest-neighbor pairs
only. The exchange constant J is positive, corresponding
to attraction between particles (i.e., a "ferromagnetic" in-
teraction, if the lattice gas is phrased in terms of Ising
spins). The driving field E points along the y axis and
specifies the "parallel" direction. The inverse tempera-
ture of the heat bath is denoted by I3.

Next, we need to specify the transition rates according
to which a given configuration evolves into a new one.
For simplicity, we only allow for particle jumps to
nearest-neighbor empty sites. We choose the usual
Metropolis rates, ' with the following modification in or-
der to incorporate the boundary densities: Particles
diffuse into the system from row y =0, which is always
fully occupied, and leave through row y =L + 1, which is
always completely empty. At the beginning of each
sweep through the lattice, an attempt is made to fill each
of the empty sites in row 1 by moving a particle from row
0. The associated change in energy is calculated without
reference to row 0. Also, when particles leave through
row L, row L + 1 does not enter into the energy.

These boundary conditions, unlike toroidal ones, al-
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FIG. 1. Number of particles in a 50X200 lattice as a func-
tion of the number of sweeps. Initially the lattice is empty. Re-
sults are shown for J=1.5, 2.5, and 3.5 and fixed E=5. (See
text for the definition of a sweep. )
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the filling time for J=3.5 is about three times larger than
that for J=1.5. Similarly, if J is fixed at 2.5, it takes
several times longer to fill the lattice with E =1 than it
does with E =5.

The filling times are of importance to the simulations
because we wish to study steady-state phenomena. Bar-
ring unexpected long-time tails, we may assume that the
system is in steady state by allowing it to evolve for
Monte Carlo times long compared to the filling time.
From Fig. 1, this implies that systems must evolve for at
least 100000 Monte Carlo steps. Another quantity pro-
viding a time scale is the current, defined as the number
of particles leaving the lattice per sweep, divided by 8'.
Typical currents may be down to 0.005, which implies a
transit time of 20000 sweeps for a half-occupied lattice of
length L =200. Hence, for most parameter combina-
tions, we choose to run the simulation for 200 000
sweeps. For J=1.5 and 2.0 at E =1, the samples are
taken after 400000 and 800000 sweeps, respectively, be-
cause of the long transit times. The ensemble averages
discussed in the following sections are made with ten
configurations, each generated from a different initializa-
tion run for 200000 sweeps or more.
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III. SIMULATION RESULTS

We begin this section with a qualitative discussion of
typical configurations, for different system sizes, ex-
change constants, and fields. In general, at fixed E we
find that the system changes from a disordered state for
J ~ 1 to an ordered state for J ~ 2. The nature of the or-
dering is illustrated in Fig. 2, which shows steady-state
configurations in a 50 X 200 lattice as observed after
200000 sweeps. The field is fixed at E=5, while the ex-
change constant takes the values J=1.0, 1.5, and 1.7. At
J=1.0, the steady state is disordered, but around J=1.5,
the system is beginning to order, and we can see three
"fingers" forming. For large values of J, these fingers be-
come very sharp, thus reminding us of the pattern on a
backgammon board.

Clearly one needs to test whether the finger formation
is a true steady-state effect rather than a transient, or
metastable, phenomenon. To do so, we have run simula-
tions at strong attraction J =2.5 and E =5, starting from
an initial configuration consisting of a half-filled lattice
occupied by a single finger. For both 100X100 and
100X 200 lattices, after 50 000 sweeps, this finger breaks
up into the same fingering pattern as obtained from an in-
itially empty lattice. Hence we may conclude that the
finger pattern corresponds to a generic steady-state
feature.

If both J and E are kept fixed, the number of fingers
decreases with the ratio 8'/L, as demonstrated in Fig. 3.
In this sequence, 8' is held constant at 100, while J in-
creases from 100 via 140 to 200. The number of fingers,
N&, is observed to decrease from eight to six and then
down to four. For fixed J, E, and 8'/L, there are small
fluctuations in the number of fingers: the latter may
differ by one between different configurations. However,
the average number of fingers (N& }, formed in a se-
quence of runs starting from an empty lattice, varies
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FIG. 3. Typical configurations in the low-temperature phase,
with J=2.5, and E=S, taken after 200000 sweeps. Lattices
with fixed 8' and varying L are chosen: (a) 100X 100, (b)
100X 140, and (c) 100X200.

FIT+. 2. Typical configurations on a 50X200 lattice, taken
after 200000 sweeps, with J=(a) 1.0, (b) 1.5, and (c) 1.7, and
E=5.
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p(y)= y (n„)/W . (3.1)

10

smoothly with W/L, as shown in Fig. 4. The angle
formed by the individual interfaces with the parallel
direction, defined via tan8= ( W/2LNf ), is relatively
constant as a function of W/L. We also detect a small,
systematic finite-size effect, due to the length of the
fingers not being exactly L. For the range of parameters
in Fig. 4, a linear form (a+&/L) fits tan8 quite well,
with a =0.038+0.004.

It is interesting to compare our results for this angle
with data obtained for shifted periodic boundary condi-
tions along the field direction. In the latter case, typical
low-temperature configurations at small shifts are single
strips that break up into multiple strips as the shift is in-
creased. As a check, we repeated simulations of this
model, also for E =5 and J =2.5, on a 100X100 lattice.
We find that the (critical) angle for multiple-strip forma-
tion is roughly twice as large as the fingering angle. Since
the physics of the bulk ordering associated with these an-
gles is quite distinct, quantitative comparisons will not be
given.

Finally, note that, at fixed W/L and F, the number of
fingers decreases with increasing J. This behavior might
be expected from a system with larger J to favor smaller
total interface length.

Next, we turn to a discussion of the density profile,

Figure 5 indicates that the crossover from random occu-
pation to fingering is accompanied by a change in the
shape of p(y): For J = 1, p(y) varies strongly at the boun-
daries, while remaining fairly constant, with a small nega-
tive slope, through the rest of the lattice. As J increases,
the profile gradually crosses over to a linearly decreasing
function of y. The latter corresponds to a perfect "back-
gammon" pattern of fingers. Figure 5 also shows that the
density profile is antisymmetric around y =L/2, apart
from an overall average density —,', as expected from CP
symmetry.

The average number CNN of nearest-neighbor bonds
per occupied site is shown in Fig. 6. For a system of free
particles (J =0), the configurations are completely ran-
dom, corresponding to an average of two neighbors per
particle. As J becomes larger, CNN increases, due to the
stronger attraction between the particles. Note that the
total number of occupied sites does not change appreci-
ably, due to CP symmetry. Since CNN and the average
"internal" energy per site differ only by a (temperature-
independent) factor, CNN can be used to extract the
specific heat, defined as the temperature derivative of
—Jg(n n ~ ). From Fig. 6, we might expect a peak in
the specific heat, located around J=1.7, for E=5, and
possibly at a slightly smaller value of J for E=3 and 1.
However, more data and detailed finite-size analysis are
needed before we can be certain of the existence or ab-
sence of a true singularity. Only then could a reliable
picture of a phase transition emerge.

Finally, we comment on j, the average current through

1.0

100 x L LATTICE
J=2.5 E=5

0.8

50 x 200 LATTICE
J=O.O E=5
J=1.0 E=5
J=1.5 E=5
J=1.7 E=5
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2
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FIG. 4. Average number of fingers, Nf, as a function of L for
a 100XL lattice, with J=2.5 and E=5. The average is taken
over ten configurations, each being the result of different initial-
izations run for 200000 sweeps.

FIG. 5. Density profile p as a function of y, the distance from
the row of particle entry into the lattice, for four values ofJ =0,
1.0, 1.5, and 1.7, and fixed E=5. The averaging procedure is
the same as in Fig. 4.
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FIG. 6. Average number of nearest neighbors per particle,
CNN, on a 50X200 lattice shown as a function of J, for three
values of E= 1, 3, and 5.

L

FIG. 8. Lattice size (1.) dependence of j, the current at fixed
J, E=5, and 8'=100. Two cases are shown: J=0 (no fingers)
and J=2.5 (fingers).

the lattice. It can be measured very simply as 1/W times
the number of particles that leave the system through
row L +1 during each sweep. Figure 7 shows the behav-
ior of the current at fixed lattice parameters W and L:
The current increases with E and decreases with J. At
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E

FIG. 7. Dependence of j, the particle current, on J and E for
fixed lattice size. The current is defined as the number of parti-
cles leaving the top row per sweep, divided by 8, the number of
sites in a row.

fixed J, it will saturate for su%ciently large fields, similar
to the behavior of the standard driven diftusive systems
(DDS) (Refs. 2 and 3) with periodic boundary conditions
(PBC).

The L dependence of the current is of some interest.
Unlike a model without drive, ' our current should be
finite in the L ~ ~ limit. We illustrate this dependence
in Fig. 8, using samples with fixed width ( &=100) and
field (E =5). The two values of the exchange constant
chosen correspond to disordered (J=O) and ordered
phases (J=2.5). For J =0, the current displays little or
no lattice size dependence for the range of L shown. In
contrast, at J=2.5, the current shows a weak depen-
dence on L, decreasing from 0.021 to 0.015. This behav-
ior might be related to the L dependence of the number
of fingers, which drops from 7.5 to 4.8 over the same
range of L. For later reference, we wish to compare these
results to the PBC model. For J =0, we find the currents
to be the same for both cases. However, for J=2.5, our
model carries much more current than the PBC model.
We will return to these observations in the following sec-
tion.

IV. ANALYTIC RESULTS AND DISCUSSIGN

In this section, we present our analytic understanding
of the steady-state configurations. To begin with, we
need an analytic formulation of the simulation dynamics.
While the latter can, in principle, be cast in terms of a
master equation with suitably chosen transition rates, this
description is not very successful in practice. Very rarely
is it possible to determine the exact steady-state distribu-
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tion in this way. Instead, we proceed along the route
proven extremely useful for predicting universal behavior
in critical dynamics. ' The starting point is a set of
Langevin equations of motion for macroscopic, slowly
varying degrees of freedom, with noise terms modeling
the effects of the fast degrees of freedom. Such equations
are sometimes derived. ' However, more often, they are
postulated, taking into account the symmetries and con-
servation laws of the microscopic dynamics.

In this spirit, we analyze our model in terms of an
equation of motion for the local density p(v, t ). First, we
discuss the dynamics for the noninteracting gas (J=O),
since this case can be exactly solved. Next, we establish
the equation of motion for finite J, governing the dynam-
ics of both the ordered and disordered phase. In a small-
J expansion, we compute the first-order corrections to the
"free" solution. The results agree well with the simula-
tions of the density profile. The analysis of the low-
temperature phase is much more complicated since the
profile should be inhomogeneous in both spatial vari-
ables. Such analytic solutions to nonlinear partial
differential equations are hard to find, so that we are re-
stricted to a discussion of the mechanism that we believe
to be responsible for the formation of fingers.

A. The noninteracting case

with the microscopic E that appears in the preceding sec-
tions. In particular, even if the microscopic E is infinite,
the total current saturates at a finite value, so that E here
is also finite.

In the transverse subspace, the system is translation in-
variant, due to the periodic boundary conditions. We
therefore seek a stationary solution to Eq. (4.1) that de-
pends on the parallel coordinate y only. After some trivi-
al rescalings, the (stationary) local "magnetization, "
P(y) —=2p(y) —1, obeys the equation

Po(z)= —A tan(pz),

where

and z:—2p 2y
I.E

(4.3)

(4.4)

The subscript on P is a remainder of J =0. Imposing the
boundary conditions gives an equation for fixing the un-
known p:

(4.2)

with the boundary conditions P(+L /2 ) = + 1. Note that
we have shifted the origin y =0 to the center of the sys-
tem for convenience. For vanishing E, the solution is the
well-known P= —2y/L. For EXO, the density profile
can no longer be linear. Instead, we find

At J =0, the usual driven system reduces to a model of
biased hopping, or diffusion: ptanp= —,'IE . (4.5)

8 p("' ) D V p+ IIB p EBp(1—p—) . (4.1)

Here, Vi (8) denotes the gradient with respect to the
coordinates transverse (parallel) to the field. The corre-
sponding diffusion coefficients are denoted by D~ and D~~,
while EWO introduces a bias in the parallel direction. To
account for the particle sources and sinks at the edges of
our system, this equation must be supplemented with a
boundary condition on p(r, t): we require p(x, y=0, t)
=1 and p(x, y=L, t)=0 for all y and t The s.tochastic
version of this equation, in the absence of boundary con-
ditions, has been studied, ' with the focus on anomalous
long-time, long-wavelength behavior, in dimensions less
than 2.

The origin of Eq. (4.1) can be understood as follows.
First, in the absence of the bias, the usual diffusion equa-
tion can be rewritten as B,p=V D(p)V(5&0/5p), where
V is the full gradient operator. Here we must consider a
density-dependent transport coefficient D(p) and a "free"
Hamiltonian ~0, which comes from the entropy of a sys-
tem of Np particles distributed over X sites. To lowest
order in p, D(p) =Dop(1 —p), to account for the fact that
the (local) current is zero in an environment that is either
fully occupied or empty. This effect is clearly crucial at
both boundaries of the system. Second, a nonzero bias
induces an extra contribution to the diffusion current.
We write it in the form j=o.(p)E, where E is a measure
for the bias, and the conductivity cr depends on the (local)
density via cr(p)=crop(l —p), in analogy to D(p). The
anisotropy of the bias then generates effective anisotropic
diffusion constants D~~ and Dj, while cro is absorbed into
E. We caution that the E here should not be confused

Po(z) = —z+ ,'LE (z —z )/3+ —0(z ~, (LE )2) . (4.6)

The linear profile is recovered at E=O while the first-
order term provides curvature. On the other hand, if we
take L~oo first, we have p=ir/2. In this limit, $0 is
essentially zero (with vanishing slope = vr /EL at-
y =0), except near the boundaries. This behavior agrees
well with that in the simulations (cf. Fig. 5). Keeping in
mind that we are considering the disordered phase, these
features are expected since the effects of the sources and
sinks on the bulk should vanish in the thermodynamic
limit. The sharp rise in $0 near either edge is reminiscent
of a boundary layer. However, our profile does not decay
exponentially into the bulk. In the thermodynamic limit,
it decays inuersely with distance. For example, if g is the

Note that the profile (4.3) has a curvature opposite to
the more familiar tanh-like ones, which appear in sys-
tems' with J&0 but E=O. This difference is expected,
because J tends to gather particles at, while E drives
them away from, the high-density edge. Since the effect
of J on a totally free system is opposite to that of E, it is
natural to ask whether they might cancel each other and
lead to a lineav density profile for finite J and E. As we
will see, this conjecture is confirmed to first order, in a
perturbative treatment of J.

In this theory, 1/E provides a length scale and $0(z)
depends on the system size and the field strength through
the combination —,'LE only. Thus, the zero-drive limit
and the thermodynamic limit are not interchangeable. If
we take the former first, p will vanish according to
p = ,'LE(1 —,'LE/3)+O—((LE—)), so that
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distance from the lower edge, go= I/(1+gE). Such a
slow decay might be related to the slow power-law decays
of correlation functions observed in DDS.

The steady-state current through the system is the first
integral of Eq. (4.2), given by jo=E(l+ 3 ). It also
shows the crossover from one limit to the other. For
L ~~, we have simply jo =E, independent of L. On the
other hand, when E vanishes we are left with j 0 =2/L, as
expected.

B. The disordered phase

Next, we turn to the effect of interparticle interactions
and study J)O. In the absence of the driving force, the
equation of motion should still be well modeled by
d,p=V.D(p)V(o&/5p), with the same transport
coefficient D(p). But now, & should include interaction
terms, in addition to the free &0. These terms may be
obtained in the usual way by taking the continuum limit
of the microscopic Jgn, —n, , ~ and coarse graining n„~
to p(x, y). We keep only the lowest-order terms and
recognize that they would provide an effective Hamiltoni-
an, appropriate for the mesoscopic description. Thus we
write —Kp(1+a V )p, where a is essentially the lattice
spacing and J| denotes an effective coupling, vanishing
when J~O. We remark that the resultant equation of
motion, to lowest order in P and V, is just
B,P(r, t) ~ V [(I—K)V/+K/ VP —Ka VV P], which
successfully describes the critical dynamics of a con-
served order parameter. ' ' Finally, including the
current due to E, i.e., E(1—P ), should induce anisotrop-
ic transport coefficients as in (4.1).

If we add a conserved noise term to the right-hand side
of such an equation, it becomes the basis for the field-
theory analysis of critical behavior in the usual DDS.
Unlike that case, we are now interested in the inhuence of
specific boundary densities on the structure of steady
states. Thus, we propose the same equation of motion (all
anisotropies suppressed, for simplicity),

B,P(r, t)=V [DVP+gP VP ~VV (5 E(1—P )],—
(4.7a)

in the form of small K expansions around Po. Though the
first-order correction is easily found by quadrature, its
lengthy form offers little transparent insight and will not
be explicitly quoted here. Instead we give only the
change in the current,

6jo/jo= 2KA —( ,'joL —1—)l(,'joL+—1). (4.9)

The combination —,joL is actually the ratio of jo to the
current in an E=O system, so that it is always greater
than unity. Thus 6jo is always negative, agreeing with in-
tuitive assessments that attractive interactions reduce the
current. More accurate data will be needed to check (4.9)
quantitatively.

This perturbative solution provides an answer to a
question raised above, i.e., do the opposing effects of J
and E on the curvature of P(y) cancel? It is clear that a
single parameter like K cannot cancel every effect of E by
changing (4.3) back to a linear form. However, if E is
also small, so that its effects appear simply [cf. (4.5)], the
cancellation is possible. Thus, the density profile, to first
order in K and E, takes the form

P(z)= —z+( ,'LE —K)(z——z )/3+O(z, (LE),K ),
(4.10)

which becomes Iinear for K =
—,'LE.

This study of the disordered phase shows that we can
expect the thermodynamic limit of the bulk properties of
this model to be identical to those in a driven system with
PBC. Nevertheless, there are interesting questions con-
cerning the slow decay of the boundary effects yet to be
investigated.

able to find analytic stationary solutions to (4.7a) and
(4.7b). However, we may consider small J (and so, K),
treated as perturbations to the free system, in analogy to
high-temperature expansions for equilibrium systems.
Using the continuum version, we may also neglect the
Ka VV P term compared to KVP, in this (far above T, )

regime. Thus, we seek solutions to

(4.8)

with, however, a different boundary condition, i.e.,

P(+L/2)=+1 . (4.7b)

We believe that these equations contain all the essential
features to provide an adequate phenomenological
description of our system, in the same spirit that a
Landau-Ginzburg Hamiltonian represents the Ising sys-
tem. Thus (4.7a) and (4.7b) could be regarded as a mean-
field theory, with fluctuations (and noise) ignored, valid
for both high and low temperatures. We stress that the
parameters here are (in principle known) functions of the
microscopic J, E, and T. As in the Landau-Ginzburg
theory, the disordered and ordered phases are modeled
by positive and negative signs of the (transverse)
coefficient D. Thus, in the crudest approximation, the
transition occurs for K = 1.

In the disordered phase, we may again assume homo-
geneity in the transverse subspace. Even then, we are un-

C. The low-temperature regime

Finally, we comment ori the low-temperature phase of
our model. First, we should expect the coexistence of re-
gions of high and low density, based on the display of
spontaneous symmetry breaking and long-range order in
the usual DDS. Unfortunately, the long-range order
makes it difficult to build an intuitive picture of how the
bulk might be affected by the particle sources and sinks at
the boundaries. On the other hand, to find fully inhomo-
geneous steady-state solutions to (4.7a) and (4.7b), with a
negative Dj, is far from easy. We intend to pursue nu-
merical solutions, although they usually offer little physi-
cal insight into whether these equations indeed capture
the essence of the system. Until we develop more power-
ful analytical tools, we can only present a qualitative un-
derstanding of mechanisms that might be responsible for
the formation of the backgammonlike pattern.
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For low temperatures, the driven system with periodic
boundary conditions orders into a single (say, high-
density) strip oriented parallel to the field. Multiple
strips do form, but with time they merge into a single
one. However, configurations with strips orthogonal to E
are highly unstable, especially for large E. In other
words, the steady state is always homogeneous in y. At
half filling, ordering appears by phase separation into a
state inhomogeneous in x. Our boundary conditions, in
contrast, force precisely the opposite distribution.
Indeed, in systems without drive, ' the sources and sinks
do select configurations phase separated in y. The com-
petition between E and the boundary conditions leads
naturally to states inhomogeneous in both directions.

Given that J is large, we may expect the system to min-
imize interfacial tension by having a single high-density
region, separated from a similar low-density region. For
equilibrium Ising systems, this expectation alone is
enough to predict the pattern at low temperatures. For
our system, the simplest geometrical pattern, which ac-
counts for the competing forces aligning the interface
with x versus y, would be just a single finger, with inter-
faces making an angle arctan( ,' WL ) wit—h respect to the
field direction. However, the field will destroy such
configurations if the "tilt" angle is too large, leading to a
multifinger pattern. On the other hand, this angle cannot
be arbitrarily small, since that would require many more
fingers and much larger interface "area, " a situation not
favored by large J. Based on these arguments, we con-
clude that some nontrivial angle exists and the backgam-
mon configuration emerges as the stable pattern in the
low-temperature phase.

We end with some remarks on the current. In the
steady state, it is proportional to the number of broken
bonds (or particle-hole pairs), oriented along the field
direction. In the continuum theory, this fact is modeled
by the factor p(1 —p) in the transport coefficient. Thus,
in the phase-separated regime of a system with PBC, the
current is carried mainly in the interfacial region, where
the number of broken bonds is maximal. With the intro-
duction of particle sources and sinks, we electively im-
pose an extra density gradient on the system, so that the
current should be larger than in the PBC case (at the
same J, T, and F). Indeed, as reported above, the data
show a substantial increase in the current. This may be
traced to the tilting of the orientation of the interface, so
that there are many more broken bonds in the field grec
tion. When a clearer picture of the stationary state densi-
ty emerges, we will arrive presumably at a quantitative
understanding of the current.

V. CONCLUDING REMARKS

Our theoretical pursuits, by no means complete, lead
instead to a host of open questions, some of which are in-
timately related to each other. We close by presenting a
partial list.

(a) Is there a thermodynamic limit of the low-
temperature phase? Indeed, we may expect many stable
phases, depending on how this limit is taken, i.e., L ~ ~
first, W~ oe first, or L /W fixe.

(b) Will the boundary effects disappear inversely with
distance for the low-temperature phase? If so, we should
see a single strip parallel to E when L is sufficiently large.
In that case, how do E and 8' control this crossover
length? If not, and a single finger remains for any L, how
does tanO cross over from being a constant to being pro-
portional to 1/L?

(c) For most values of L/W, typical runs show one or
another number of fingers. We may ask if our system
displays true bistability or if the data reAect metastability
typical of a first-order transition (in L/W). Since we
have a nonequilibrium system, it is possible for the form-
er to exist in finite regions of phase space. ' Work is in
progress to clarify this question.

(d) Obviously, we should investigate systems of higher
dimensions. Since geometric factors like L/8' seem to
control the ordered phases, the possibilities seem even
more limitless there.

In conclusion, we have investigated only a small por-
tion of the phase space in what appears to be an extreme-
ly rich system. Many questions remain, ready for ex-
plorations by various techniques, e.g., Monte Carlo, nu-
merical, and analytic. Finally, being a system with open
boundary conditions, it should be much easier to realize
in the laboratory. We look forward to experimental evi-
dence for the phenomena we have discovered here.
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