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The vertex function of the SU(N) Anderson lattice model is calculated by treating the intersite cou-
pling perturbatively. There are two different scattering processes that contribute to the effective in-

teractions. In one process the low-frequency Kondo resonance dominates and the effective interac-
tion between quasiparticles is favorable for p-wave Cooper pairing at small values of kFR. In the oth-
er process all frequencies contribute and the effective interaction is against p-wave pairing for small
kFR. This latter interaction is antiferromagnetic in nature.

I. INTRODUCTION

Recently heavy-fermion systems have attracted many
physicists because of their exotic properties. ' One of the
most important and interesting puzzles is the mechanism
causing the attractive interaction and hence the symmetry
property of Cooper pairs.

The similarity between various properties of heavy-
fermion superconductors and He has produced a number
of conjectures ' that a nonconventional attractive interac-
tion may be responsible for the Cooper pairing. On the
other hand, Razafimandimby et al. have proposed the
conventional electron-phonon mechanism for the heavy-
fermion superconductor CeCu2Si2.

During the last year several groups have started to
calculate the effective interaction between electrons based
on the SU(N) Anderson lattice model. In this model both
the conduction electron and f electron are assumed to
have the same spin degeneracy N. So far two different ap-
proaches have been adopted. In Refs. 7 and 8 the
Kondo-boson approach is used while the Goldstone-
Feynman diagrammatic method is used in Ref. 6.

With the use of the result of the mean-field treatment in
the Kondo-boson approach, the effective interaction or the
vertex function between quasiparticles is calculated. It is
found that the coupling constants are repulsive for s-wave
and p-wave pairings but attractive for d-wave pairing. '

Several other groups' have proposed d-wave pairing as a
possible candidate for heavy-fermion superconductivity.
An argument against d-wave pairing is put forward by
two of the present authors (F.C.Z. and T.K.L.) in a recent
paper. "

In this paper we shall use the diagrammatic approach
to calculate the effective interaction between conduction
electrons in the SU(N) Anderson lattice model. The re-
sult of the single-Kondo-impurity system is used as a
basis to treat the intersite coupling due to the virtual ex-

change of conduction electrons in the perturbative series.
A preliminary derivation was given in Ref. 6. Besides the
well-know repulsion between electrons in different spin
states scattered from a single magnetic ion, we show that
there are two different contributions to the effective in-
teraction coupling. One of the interactions favors p-wave
pairing of electrons with parallel spins, while the other
one is against parallel-spin correlation between electrons
on two sites.

The interaction that favors p-wave pairing at values of
kFR & 2, is an oscillatory function of k+R, where kF is the
Fermi momentum and R is the separation between two
magnetic ions. Depending on the explicit lattice struc-
ture, it is possible to have an attractive p-wave coupling
constant. When this interaction, obtained via virtual ex-
change of low-frequency quasiparticles, is evaluated in
wave-vector space using the jellium approximation, it
agrees with the Kondo-boson approach ' where the p-
wave pairing is found to be unfavorable and independent
of the underlying lattice structure. The discrepancy be-
tween the results using and not using the jellium approxi-
mation indicates that the assumption of a uniform back-
ground in the jellium approximation is inappropriate for
the Kondo lattice. We expect this because the quasiparti-
cles have strong f-electron character, and f electrons are
localized at the magnetic ion site. We find that the break-
down of Galilean invariance is one of the important
difI'erences between heavy-fermion superconductors and
other superconductors.

The interaction that impedes parallel-spin correlation is
obtained by virtual exchange of electrons at all frequen-
cies, not just at low frequencies as is usually considered.
This high-frequency contribution has been completely
neglected in earlier works. We find that this interac-
tion may be responsible for antiferromagnetic correlation
in heavy-fermion systems.

The paper is organized as follows. In Sec. II, the per-
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turbative methods and results for the single Kondo im-
purity are briefly reviewed. The Green's functions for
quasiparticles are introduced. The on-site vertex function
is derived in Sec. III. In Sec. IIIA, the low-frequency
contribution to the vertex function is calculated in both
wave-vector space (using the jellium approximation) and
the real space. The contribution of this interaction to p-
wave pairing is discussed. In Sec. III B, the high-
frequency contribution is shown to produce a repulsive in-
teraction for p-wave pairing. In real space this effective
interaction is shown to be antiferromagnetic in nature.
Finally in Sec. IV, we summarize the results and examine
the approximations used.

II. REVIEW OF THE PERTURBATION METHODS
AND ITS RESULTS

+ g (V$ C|, X i+H. c.), (2.1)

The dense Kondo system is best described by the An-
derson lattice model. The Hamiltonian is given by

H = g ckCk C|, +sf gX,X j
k, m

ied in the last couple of years. ' Very accurate results
have been obtained for the single-impurity problem. Us-
ing Grewe and Keiter's approach, we can calculate the
vertex functions in series of intersite coupling. Based on
the 1/N expansion idea, we shall only include the lowest-
order single-site self-energy for the f hole (singlet state).
This self-energy is of the form

(2.2)

where fq is the Fermi distribution function. The reason
for using only the lowest-order self-energies in this paper
is that analytical results can be obtained easily. These re-
sults will have the same qualitative behavior as found
from using higher-order corrections. One of the authors
(T.K.L.) has calculated the vertex functions using the ap-
proximate spectral density obtained from the noncrossing
approximation, ' and the result is in good agreement with
the results given below.

In the Kondo regime and at zero temperature, the func-
tion [z —So(z)] ', which will appear quite often, can be
approximately written in the form

k, m, j
where the projection operator on site j, X j, changes the
localized f configuration from

~ f ', m ) to
~ f ) . There is

a total of N=2J +1 degenerate
~ f ', m ) states (the angu-

lar momentum m runs from —J to J). In the Kondo lim-
it, the bare f-level energy ef (0, and the on-site Coulomb
repulsion has been set infinite. The hybridization matrix

1

z —So(z)
ao 1 —ao

+
z —Ep z

with ao ——Tp/NA ~~1, and

2 I
Vk

I

'&(~—sk) =po V' .
Ns

(2.3)

V$ = Vg exp(ik R, ),1

QN,

with N, the number of lattice sites. For simplicity the
crystal symmetry shall be neglected here. Equation (2.1)
is the popular SU(N) Anderson lattice model, ' where the
conduction electrons have N degenerate spin states as do
the f electrons. Each band is assumed to have a constant
density of states po

——n, /ND where D is the half band-
width and n, is the density of conduction electrons.

The Anderson lattice model has been recently studied
by Brandow' using a variational wave function, and by
Rice and Ueda' using the Gutzwiller variational approxi-
mation. Various groups have studied the model by using
mean-field theory in the Kondo-boson method. ' ' ' '
Here we take a different approach. We assume that the
system is basically a collection of uncorrelated Kondo im-
purities above the Kondo temperature. As the tempera-
ture decreases, the intersite coupling turns on. Thus we
shall use the result of a single-Kondo-impurity model as a
basis to understand the lattice model and to treat the in-
tersite coupling perturbatively.

We shall briefly review the results for the single-
impurity model. Details are to be found in Ref. 17. The
perturbative technique used to study the Anderson lattice
model was previously developed by Grewe and Keiter
and involves combination of Goldstone and Feynman dia-
grams. The Goldstone diagrammatic rule is used for pro-
cesses occurred on a single site. The Feynman rule is
used to connect diagrams on different sites. Self-energies
that only involve a single site have been extensively stud-

In Eq. (2.3), the lifetime broadening has been neglected
for simplicity. Eo is the energy of the Kondo singlet
state, and is given by the equation:

To —Ff Ep —D exp( ef /Nb. ) (2.4)

l CO —Tp
g, (k,ice) =

(i~ Ek )(iso —E|, )— (2.5)

where D is the half bandwidth, and To is the familiar
definition of the Kondo temperature.

The spectral density obtained' for a single impurity
consists of a low-frequency "spin" excitation peak and a
high-frequency "charge" excitation peak. The first and
second terms of Eq. (2.3) are related to the low- and
high-frequency excitations respectively. Hence different
contributions to the vertex function are expected from
these two terms.

So far we have only discussed the result for the single-
impurity model. For the lattice, as temperature falls
below the Kondo temperature To, the conduction elec-
trons interact with local f electrons coherently. A quasi-
particle band with a very heavy efFective mass is formed.
This coherent quasiparticle band has been obtained by
several workers' ' ' using different approaches.

In Refs. 26 and 27, the coherent quasiparticle bands for
the periodic Anderson model in the Kondo regime were
derived. Although the result presented there uses more
realistic hybridization matrix elements, it is easy to gen-
eralize that result to the present SU(N) model of Eq. (2.1).
The Green's function for the renormalized conduction
electrons is of the form
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where

Ek ———,'(Ek+ Tp) —,'[(Ek —Tp) +4V Tp/Nb ]' (2.6)

conduction electrons at the Fermi level is given by
(M/M*)'i .

BE (c) 1=P ~po=
&poTO

(2.7)

Here p* is the quasiparticle density of states per spin.
The Fermi velocity UF ——UF(M/M*) is greatly reduced.
Thus these quasiparticles near the Fermi level are essen-
tially f-like. The wave function renormalization for the

The + ( —) label refers to the upper (lower) hybridized
band. Identical results are obtained in the mean-field
treatment ' ' of the Kondo-boson approach. Assuming
the Fermi level, where we have E (kF ) =0 and
E(kF)=1/Npp, is near the top of the lower bands, one
finds the mass enhancement to be

III. THE VERTEX FUNCTION AND
THE p-WAVE COUPLING CONSTANT

The Fourier transform of the conduction-electron ver-
tex function, defined by

( —T,Ck, m (7I )Ck2m (72)Ck, m (73)Ck4m (74)),
is evaluated in this section. Its zeroth order (in the spirit
of the 1/N expansion) is the on-site vertex, and is plotted
diagrammatically in Fig. 1 with momenta and energies
PL ——(kL, icpL), l= 1, 2, 3, and 4. Notice that in Fig. 1(a)
the wiggly, dashed, and solid lines represent the
configurations

~ f ', m ),
~ f ), and the conduction elec-

trons, respectively. Using the contour integral representa-
tion, the on-site vertex I '

~ can be easily written down:

I I I
rmm'(pI p2 p3JL4) g [rj(p I 72~%3 JL4 ) fromm'rj(p I p2 p4 p3 )]

J

in which

r,'(P, ,P, ,P, ,P, )=Vj, Vk, .Vk,
*

Vj N,

1
y

dze
—I'

Zp 27TL [z —Sp(Z)](Z +LCpI —Ef )[2 +LCOI LCp4 Sp(Z +LCpI LCp4)](Z +LCO3 Ef )

(3.1)

(3.2)

and Zo is the partition function of one single site. In the
present approximation, Zp ——exp( PEp ). —

At zero temperature, the contour integral in Eq. (3.2)
can be carried out by taking into account the pole contri-
butions only. After the contour integration is done, we
make the analytic continuation: i su& ~cot +i 6 and let
6~0 in the end. The momentum and energy transfers
are q=k4 —k& and v=co4 —co&, respectively. By making

v~0, then cu&~c&, and cu2~ck, , we obtain the on-site

vertex at the Fermi surface

1 ' (k, , k2;q)

(1+Nfl /Ef )
fromm') VkIm Vk2m' Vk3m' Vk4m

Tp(NE)

m'l po

pfrn l

I

km
I

This result is in agreement with Noziere's result ob-
tained from the Fermi-liquid description of the Kondo
problem. It also agrees with the result in Ref. 6, where
the approximate form of higher-order self-energies were
used in the calculation.

Equation (3.3) shows that the electrons with different
spins are repulsive and the interaction between two elec-
trons with spins parallel is zero to this order. The strong
repulsive interaction between different spins makes s-wave
pairing very unlikely in this model.

Taking the hybridization as constant,
~

V
~

~b, /pp, we
obtain

I' =(1—5 )
Top plV

(3.4)

FIG. 1. (a) The Goldstone diagrammatic representation for
the on-site (at site i ) Landau vertex function. The wiggly,
dashed, and solid lines represent the configuration

~ f ', m ),
~ f ), and the conduction electron, respectively. Each dashed

line includes the lowest order self-energy (in 1//N expansion),
whose irreducible diagram is shown in (b).

where we have dropped the small correction term
Nb, /

~ Ef ~, since it is much smaller than 1 in the Kondo
limit. Notice that I is the vertex function for the con-
duction electrons. Since the vertex function is evaluated
at the Fermi surface, we can use the quasiparticle picture
discussed at the end of Sec. II. In the quasiparticle pic-
ture the vertex function is renormalized, and becomes
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2

I' =(1—5 )T (3.5)
~ p4m

This result agrees with leading term in the Kondo-boson
approach. ' The next leading term in the Kondo-boson
approach is shown to equal to the low-frequency vertex
function evaluated below.

The nonvanishing lowest-order vertex function for elec-
trons with parallel spins involves the intersite coupling.
The diagrammatic representation of which is shown in
Fig. 2. The three diagrams in Fig. 2 have different outgo-
ing external lines, and describe different scattering pro-
cesses. Diagram I in Fig. 2 represents the fluctuations in
which the low frequency, namely, the anomalous Kondo
resonance or Abrikosov-Suhl resonance portion of the f
Green s function is dominant. More specifically, it is the
first term on the right-hand side (rhs) of Eq. (2.3) that
contributes most. Diagram H represents the fluctuations
in which the higher-frequency process [or the second term
on the rhs of Eq. (2.3)] is dominant. In fact this diagram
represents the familiar Ruderman-Kittel-Kasuya- Yosida
(RKKY) interaction. Diagram C gives correction to the
low-frequency fluctuation. It is of a factor 1/N less than
the results given by diagram L, and will be neglected in
the rest of the paper. The lowest-order intersite vertex
function can thus be written as

l p+m

(P P'P P )=I +I (3.6) (c)
where the subindices L and 0 indicate the low- and high-
frequency contribution from the spectral density of the f
electron. We shall consider these two terms separately.

A. Low-frequency contribution

Using I
&

of Eq. (3.2), the vertex function of diagram L
in Fig. 2 is

FIG. 2. Diagrammatic representation for the vertex function
with the lowest-order intersite coupling (between site i and j).
The wiggly line (f electron) and the solid lines (conduction elec-
trons) connected with it have the same spin index. The three di-
agrams represent different scattering processes as explained in
the text.

I L, (pt, pp', p3,P4)=&,&T y y y I,'(pt, p5,P6,P4)1,"(P2,P6,P5,P3)g, (itu5, k5)g, (itu6, k6)
ct)5, ~6 k5 k6 ij

(&+Jj

X|3(tu2+~u6~c33+M4)fi(~1+n~5~~6+&4) —(p3 p4) . (3.7)

The second term on the rhs of Eq. (3.7) is simply the first
term by interchanging p 3~p 4, and appears only for
m =m '. g, (i ru, k) in Eq. (3.7) is the renormalized
conduction-electron Green's function given by Eq. (2.5).

By making the same analytic continuation discussed for
the on-site vertex function we obtain I L (k&, k2,.q) in the
static limit, f'L

(its�)

= 1 To

(XA) (ice To)— (3.10)

where f'I (ice„) is the contour integral in Eq. (3.2), and it
is obtained by taking the limits that iv=i~4 —I.cu&~0
first, then co]~0 and icu2~ico„. One finds only the first
term on the rhs of Eq. (2.3) is important, and the result is

I L(kt, kz, q)= I'To[EL(k —k2+q) —Xi. (q)], The intersite Green's function is defined by
(3.8

where I is given by Eq. (3.4). The static susceptibility
XL (q) defined as the bubble diagram using Fig. 2 (L) as
vertex, is

(3.11)

X, (q)= N'b, ' g e'q "Tg [f', (im—„)]'
R(~0) ICOg

X [6 (R, in'„)] (3.9)

Equation (3.8) is of similar form to the result for the
paramagnon model ' in He if we identify TOX(q) as the
product of the paramagnon interaction constant and the
Lindhard function.
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The susceptibility XL(q) may be evaluated in two ways,
either by examining it in the real space numerically, or by
treating the system as a jellium to evaluate PL(q) analyti-
cally. We shall consider the latter case first.

Under the jellium approximation, the summation over
R and ice„ in Eq. (3.9) can be carried out. We obtain

o. 1 1
xl (q) = f (q /2kF )+—

0
(3.12)

where the function f (x) is defined by

and

f (x)= —ln
1 1+x
x

i

1 —x
(3.13)

a = ( NpokF /2m ) (3.14)

We have used ek ——(k —kz)/2m+1/Npo in deriving Eq.
(3.12). The constant, a/NTo, in Lz (q) is obtained from
R =0 term in Eq. (3.9) under the assumption of small a.

Because of the factor ice„—To in the denominator of
f't (ice„), only conduction electrons near the Fermi sur-
face within an energy scale of To contribute to XL (q).
The anomalous Abrikosov-Suhl resonance is dominant,
and Xl (q) describes the low-frequency spin fluctuation.

The vertex function I L obtained from XL(q) of Eq.
(3.12) agrees exactly with the result of Refs. 7 and 8, al-
though their result is derived in a completely different ap-
proach. They have used +L(q) to calculate the Fermi-
liquid parameters and found out that p-wave coupling is
repulsive while d-wave coupling is attractive. %'e shall
adopt a different approach below.

We believe that XL(q) of Eq. (3.12) obtained by using
the jellium approximation does not properly include the
lattice effects. These lattice effects cannot be neglected in
Eq. (3.9). A more accurate approach of making the fre-
quency summation first and then examining XL(q) in real
space is given below.

The intersite Green's function G (R,ice) can be evalu-
ated analytically only if we assume the zone boundary or
cutoff wave vector k, ~~1/R. In this case

M*/M &&1, we can eas&ly show that, for kFR ~~1,

~ cos(2k~R)
VL (k~R) =-

(k~R )
(3.18)

V (R)=(M/M*) I'—V (k R)X
-r1 To=I" '—Vl (kpR)= VL (kpR) .X X (3.19)

In Fig. 3 we have plotted VL (k+R) as a function of
k+8 for two different values of a. Instead of using the
approximate form of G given by Eq. (3.15) for k, R &&1,
we have used a finite value of k„k, /kz ——1.5, to calculate
the integral of Eq. (3.17) numerically. We have assumed
a quadratic conduction band. The results are not very
sensitive to a, as long as u ~1. The magnitude is doubled
for k, = 100k&. The oscillation of VI (k~R) is not

Thus VL(kj;R) has the familiar form of the RKKY in-
teraction. It is well known that the Fourier transform or
the lattice sum of the RKKY interaction is an oscillating
function of kza, where a is the lattice constant. This
property is completely lost in the uniform-jellium approxi-
mation given by Eq. (3.12).

The importance of background lattice structure, or the
breakdown of Galilean invariance is one of the major
differences between heavy-fermion systems and He or
other conventional Bardeen-Cooper-Schrieffer (BCS) su-
perconductors. In the Anderson lattice model, the Kondo
effect occurred only at the magnetic ion site. The effective
potential is between electrons that are screening magnetic
ions on two particular sites. We cannot treat this effect
by assuming a uniform background as in the jellium ap-
proximation. While in the BCS theory, the efFective in-
teraction between electrons is through virtual exchange of
phonons that are not localized. Hence the jellium approx-
imation is fairly accurate for BCS superconductivity.

Accordingly, the efFective potential in real space be-
tween quasiparticles at site separation 8, represented by
diagram L, in Fig. 2, is given by

A
G (R,i cu ) = — exp ik~R (sgnx) 1 —a+

k~8 1 —tx
0.4—

M+ ~ 7

(3.15)

where x =co/To, and a is defined by Eq. (3.14).
The static susceptibility XL(q) is rewritten in the form

IX
LL

) —0.4—

—O. B—

Xl (q) = — g e'q VL (kFR),
&T~ ~(~o)

(3.16)

where at zero temperature

VL (k~R) =—I dx
(1—ix)

G (R,ix)
(3.17)

Substituting Eq. (3.15) into (3.17) and assuming

FIG. 3. The function VL(kFR), which is proportional to the
eftective potential induced by the process represented by diagram
L in Fig. 2, is plotted as a function of kFR for a= & (dashed
line) and a=& (solid line). The cuto8 wave vector k, =1.5kF,
and M /M=200.
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changed qualitatively by varying k, . The fact that
VL (kFR) is negative at small values of kFR surely would
favor parallel spins. Electrons with unparallel spins will
have to compensate for the strong hard-core repulsion
given by I '. It is intuitively natural that a repulsive core
potential between unparallel spins should favor a parallel
spin correlation. Hence we expect VI (R) to provide an
attractive p-wave coupling constant for the quasiparticles.

The superconductivity instability due to the low-
frequency excitation can be studied by summing up the
corresponding ladder diagrams in diagram I. of Fig. 2.
The p-wave coupling constant obtained is of the form

Al = ——,'p*(M/M*) [I L(p)]1 (3.20)

where M/M comes from the wave-function renormal-
ization of the quasiparticles. The quantity [I I (P)]I &

is
given by

[11(P)], , =—,'1 "desi nP cosP I L(P),
0

where cosP=k. f. ' and

(3.21)

(3.22)

In the presence of the lattice I L (k, —k;k' —k') is not only
a function of k —k' but also depends on the direction of k
with respect to the lattice vectors. To simplify matters we
shall average over the direction of R and just find out the
coupling constant as a function of the distance R, i.e., we
define

Al (R)
R(~0)

(3.23)

and. A,L(R) is evaluated by substituting Eq. (3.16) into
Eqs. (3.8) and (3.20) —(3.22). Averaging AL(R) over the
direction of R, we obtain

dQR 2 VL (u)
XL(R)= A,L(R)=- cosQ—

4m N u

sinQ
2

p. 1 5—

P 1P—
lk

p. 05
Z

(3.24)

where u =kFR. In Fig. 4, we plot A, l (R)N as a function

of k+R for a= —,
' and a= —,'. The positive value of A,I cor-

responds to the attractive interaction of l=1 component
of Cooper pair. The superconducting transition tempera-
ture is T, —Toexp( —1/XL ) for XL &0. We note that
A,L (R) is positive for kFR 1 8,. thus it is possible to have
a p-wave attractive interaction for magnetic ion separation

1.8/kF. This is in sharp disagreement with the results
obtained using the jellium approximation, Eq. (3.12),
where the p-wave coupling is always repulsive. The
reason for the inaccuracy of the jellium approximation
was discussed below Eq. (3.18). We emphasize that Fig. 4
is not intended to be a quantitative proof that p-wave at-
tractive interaction exists in the Kondo lattice. It mainly
indicates that the possibility for p-wave pairing exists as
contrary to the conclusion of Refs. 7 and 8. Because of
the oscillatory nature of the potential VL (R), the lattice
structure, band structure, and spin-orbit coupling are im-
portant in determining quantitatively the value of cou-
pling constant.

B. High-frequency contribution

We now calculate the vertex function of the diagram
represented by diagram H in Fig. 2. Here we shall con-
sider the case where all the spins are parallel. In analogy
with I I, we have

I (k„k;q) =I'To[EH(k& —k2+q) —XH(q)],

~here

XH(q)= Nb, g e'~' T—g [f'H(ice„)]
R(~0) l &rt

(3.25)

)& [G (MR,ice„)] (3.26)

Note that the N factor in XH of Eq. (3.26) is one order
less than that in XL of Eq. (3.9). I H(ice„) is obtained
from the contour integral in Eq. (3.2) by taking the limits
i v =i co3 —i ~&~0, and ice]~0, ico2~i co„. Thus the
second term on the rhs of Eq. (2.3) becomes important
and we obtain

1
(3.27)

TONA Ef —)co

A term similar to f'I (ice) but smaller by a factor of
Nh/

~ Ef ~

is neglected in deriving f'H(ice)
Just as we did for XL (q), XH(q) will be evaluated in two

ways, either by using the jellium approximation or by tak-
ing the frequency sum and examining the result in real
space. We shall consider the former approach first. Sub-
stitution of Eqs. (3.11) and (3.27) into (3.26) yields

XH(q) =—V T g g g, (k,ice)g, (k+q, ice} .
To ird k (~~ ef )

—p. p5 I

2
k R

FIG. 4. X kL(R), where XL(R) is the contribution to the p-
wave coupling constant represented by diagram L in Fig. 2, is
plotted as a function of k~R. The parameters are the same as in
Fig. 3. Positive values of kL(R) means favorable p-wave pairing.

(3.28)

A constant, originated from R=O term in Eq. (3.25), has
been neglected in XH(q). We notice that in the Kondo
limit

~ ef ~

~D, not only the low frequencies but all fre-
quencies contribute to the sum in Eq. (3.26). Hence we
can replace the renormalized conduction electron Green's
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function g, by the unrenormalized form (ice —Ez) ' as
they only differ within the frequency range V(To/Nb )'~ .
Using this approximation we obtain

2

Xo(q), (3.29)
1

XH(q) =
(PoTo) Ef

where Xo(q) is the familiar Lindhard function given by

fk+q fk-
Xoq =

El —rt+q

Comparing XH(q) with XL(q) of Eq. (3.9), we notice
that the factor (ice To)— in XL(q) makes the low-
frequency part of the spectrum to be important. As this is
not the case in XH(q) where all frequencies contribute.
Usually we would neglect XH(q) with respect to .XL (q),
which is due to the low-frequency Kondo peak. But the
ratio

1.2—
LL

)

k P

FIG. 5. The function VH(k~R), which is proportional to the
effective potential induced by the process represented by diagram
0 in Fig. 2, is plotted as a function of k~R. The parameters are
the same as in Fig. 3. We have chosen Ãpo

~
Ef

~

= l.

XH(q =0)/XL(q =0)=
6N (k~/2M)

To Cf

XH(q) = — y y e' VH(ky R),
XT0 R( 0)

(3.30)

depending on the parameters, could be greater than one.
The reason is that although the Kondo resonance peak is
near the Fermi surface, it has a very small weight and
only a very small portion of the spectrum (poTo « 1) con-
tributes, although the contribution of the high-frequency
excitation is usually smaller by a factor of (6/sf ), it in-

cludes all the spectrum. Thus the ratio (b, /e/) (1/poTo)
determines the relative importance of gH and XL.

Just as XL (q), using the jellium approximation to calcu-
late XH(q) is inappropriate, the lattice structure cannot be
neglected. Follow the discussion given in Sec. IIIA, we
shall rewrite XH(q) in the form

XH = g XH(R),
R(~0)

and the angular average of A, H(R) is given by

dO, ~X„(R)= f X„(R)

(3.34)

VH(R) =(M/M*) I '—y VH(kJ;R) = y V~(kFR),

(3.33)
where VH (k&R ) similar to VL (k&R ) is an oscillatory func-
tion of k+R. But contrary to VL, VH(k+R) is repulsive for
kFR 52.

Thus this effective potential VH(R) is against parallel
spin correlation. To demonstrate it quantitatively we
shall calculate the p-wave coupling constant contributed
by VH. Following the derivation of Eqs. (3.20) —(3.23), we
obtain

where
VH(u)

y cosu—
cV u

sinu
(3.35)

and

poTo

VH(k~R) = —f"
2 oo

co M =%poco

—1
Nppcf

2

(3.31)

26 (R, iy)

(3.32)

where u =k~R In Fig. 6, (.N2/y)XH(R) is plotted as a

o. q8—

O O9

0

in Eq. (3.32). Substituting Eq. (3.11) into (3.32), we calcu-
late VH(k~R) numerically for a finite cutoff' wave vector
k, =1.5kF. The results are plotted in Fig. 5 for two
values of a: a= —,

' (dashed line) and a= —,
' (solid line).

The other two parameters are M */M =200 and
Np,

~
cf

~

=1.
The effective potential in real space between quasiparti-

cles separated by R, represented by diagram H in Fig. 2,
is given by

—O. O9

kpR

FIR. 6. y 'N A.H(R), where A.H(R) is the contribution to the
p-wave coupling constant calculated from diagram H in Fig. 2, is
plotted as a function of k~R. The parameters are the same as in
Fig. 5.
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H'"
~ = VL (R)a t (R)a (R)a+ (0)a (0) (3.36)

and

H' '
~ = VH(R)a (R)a (R)a (0}a (0), (3.37)

where a (R) is the Fourier transform of the annihilation
operator ak of the quasiparticle in coherent band Ek of
Eq. (2.6). VL (R) and VH(R} are defined by Eqs. (3.19)
and (3.33). Due to the strong repulsion given by I of
Eq. (3.5), VL (R), hence H'", is unlikely to be important.
But H' '

~ of Eq. (3.36) represents a new kind of spin
correlation between quasiparticles. As shown in Fig. 5,
VH(R) ~ VH(kFR) is positive for kFR 5 1.5. For the spin
—,
' case, VH(R) gives us the antiferromagnetic correlation.

As discussed below in Eq. (3.35), if y or VH(R) is not
very small compared to VL (R), then p-wave Cooper pair-
ing may be unlikely. But antiferromagnetic instability
due to 0' '

~ may be possible. In any case, we would anti-
cipate that H' '

~ will induce antiferromagnetic Auctua-
tions. Quantitative evidence will have to wait for the cal-
culation of dynamic magnetic susceptibility.

IV. CONCLUSIONS

Using our knowledge of the single Kondo impurity
model, we calculate the vertex functions between conduc-
tion electrons for the SU(N) Anderson lattice model. The

function of kFR for a= —,
' (dashed) and a= —,

' (solid). All
other parameters are the same as in Fig. 5. Comparing
Figs. 4 and 6, we see that A.L(R) favors p-wave pairing as
it is positive for kFR 1.8, but XH(R) provides a repulsive
p-wave coupling constant. The ratio of the magnitudes of

~
XH(R)

~

/
~

A,L (R)
~

is of order y. Thus unless y is very
small, the total p-wave coupling constant A, =A,0+A.l
may not be large enough for Cooper pairing.

Here we notice that y defined by Eq. (3.31) is in fact
the ratio of RKKY interaction, which is of order
(1/po)(b, /Ef ), and the Kondo temperature To. It is ar-
gued by many groups' ' ' ' ' that this ratio y deter-
mines whether the ground state of the Kondo lattice is
magnetic or singlet. In this paper we have assumed y ~ 1

so that the Kondo screening effect is dominant.
But the magnetic state mentioned above is referring to

the usual RKKY interaction between the magnetic ions or
localized f electrons without including Kondo renormal-
ization. Here I H or VH (R ) is the effective interaction be-
tween quasiparticles not between localized f electrons.
Since the quasiparticle has f character it retained part of
this interaction. We should not confuse VH(R) with the
usual RKKY interaction. Incidentally, this relation be-
tween VH(R) and the usual RKKY interaction shows a
possible link between localized and itinerant magnetism.

So far we have only looked at the vertex functions [Eq.
(3.6)] for parallel spins, i.e., spins in Fig. 2 are all parallel.
For electrons with unparallel spins, where m&

——m& ——m
and mz ——m3 ——m'&m, the vertex functions for diagrams
L and H in Fig. 2 have the form —I 'TOXL (q) and
I 'TOXH ( ki —k2+ q), respectively. The corresponding
effective potentials between quasiparticles in real space are
then given by

effective interactions between quasiparticles are directly
proportional to these vertex functions evaluated on the
Fermi surface.

Without including the intersite coupling, our result for
the vertex function is in agreement with Noziere's result
derived for the single Kondo impurity model using
Fermi-liquid theory. It is also in agreement with the re-
sult of Kondo-boson approach. '

There are two kinds of processes that contribute to the
lowest-order intersite coupling. In both processes the
quasiparticles are exchanged virtually. These two
different processes occur because the f electron spectral
density has two peaks: a low-frequency peak centered at
Kondo temperature and a high-frequency peak centered at
the f electron energy level. Although the effective interac-
tion is calculated between electrons on the Fermi surface,
the high-frequency peak makes substantial contribution.
The reason is that even though the Kondo peak is at low
frequency it only involves a very small portion, poTo of
the spectrum. Although the contribution of the high-
frequency peak is smaller by a factor of (b, /ef ), it in-
cludes all the spectrum. We found that the ratio of this
high-frequency and low-frequency processes is roughly

1

poTo

The low-frequency contribution to the vertex function
I L, evaluated in the wave-vector space by using the jelli-
um approximation, agrees with the result of Kondo-boson
approach. ' The p-wave Cooper pairing is found to be
unfavorable. But we argue that neglect of the lattice
structure is not appropriate for. the Kondo lattice. The
breakdown of Galilean invariance is one of the major
differences between the Kondo lattice and He or other
BCS superconductors. We show by direct numerical cal-
culation that the effective interation in real space is an os-
cillatory function of kFR. It favors p-wave Cooper pair-
ing at values of kFR 51.8. This oscillatory nature of the
interaction, similar to the famous RKKY interaction,
makes the jellium approximation of neglecting the discrete
lattice sum inappropriate.

Contrary to I L, the high-frequency contribution to the
vertex function, I ~, evaluated in the real space provides a
repulsive p-wave coupling constant at small k+R. We also
argue that this interaction, in fact, favors antiparallel spin
correlation between quasiparticles. The ratio of the mag-
nitude of I H and I I depends on y =(1/poTp)(5/sf )

and the detailed information of the lattice and band struc-
ture.

In summary, we found two competing effective interac-
tions between quasiparticles. One interaction favors p-
wave Cooper pairing while the other one against it. The
latter seems to favor antiferromagnetic correlation. Quali-
tatively this result is certainly very appealing as it is com-
pared with the experimental findings' of the three possible
ground state, the superconductor, the Fermi liquid and
the antiferromagnetic, for the heavy fermion systems.

Here we like to emphasize that although the numerical
values of the effective interactions seem to be a little small
for %=6, we do not believe that this is a serious problem.
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In fact we advise against using the results of this paper
quantitatively.

A more realistic model ' including the spin-orbit. cou-
pling for the hybridization matrix element is needed to
obtain quantitative results. In the SU(N) model con-
sidered in this paper, the intersite coupling is always
smaller by at least a factor of 1/N. In a more realistic
model this is changed. Another important effect is that
the anisotropic nature of the effective interaction is com-
pletely lost in the SU(N) model. Thus our I I and I H
are both isotropic. But in a realistic model the effective
interactions, I L and I 0, will both be anisotropic. Due to
different kinds of matrix elements involved in I I and I"H,
they will be anisotropic in different directions. The com-
petition between them should give many interesting possi-
bilities.

Before we conclude this paper it is important to point
out our assumption that the intersite interaction is always

much smaller than the Kondo temperature. As a conse-
quence, the quasiparticle bands are derived without in-
cluding the self-energy due to intersite coupling. And it is
enough to calculate the effective interactions to lowest or-
der of intersite coupling. This assumption is supported by
the agreement between our approach and Kondo-boson
approach, ' where the Gaussian fluctuation or the bubble
diagrams are included to infinite order.
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