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Arrival times for dissipative, nonlinear second-sound waves in solids
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We extend our original analysis begun in Tarkenton et al. [Phys. Rev. B 49, 11794 (1994)] to include

dissipative effects that are important in real cryogenic systems where nonlinear second sound exists. We

present results concerning arrival times of thermal pulses propagated in cryogenic crystals, namely the
behavior of the arrival times as a function of pulse amplitude. These arrival times show some surprising

effects due to competing nonlinear terms: after decreasing with increasing amplitude, as one would ex-

pect, the arrival times start to lengthen due to nonlinear effects and finally saturate at a level slightly

above the shortest arrival times. All these surprising effects arise from competing nonlinear terms in the

expression for the wave speed. We finally relate these results to the experiment we proposed in our origi-
nal paper.

In our previous work, ' we calculated the nonlinear
corrections to the wave speed of a second-sound pulse in
cryogenic solids. We then analyzed the structure of the
resulting shock waves permitted by the theory and pro-
posed an experiment to investigate these nonlinear
effects. The experiment involved a crystal of length H
with a heater at one end and thermometer at the other
end; the heater is switched on at time 0 and set to a fixed
value of the heat Aux, which sends a thermal discontinui-
ty into the crystal. The measurement consists of timing
the pulse's journey across the crystal. We showed that
these arrival times should saturate for a large enough am-
plitude as a result of the strength-limiting (and hence
speed-limiting) eff'ects of the nonlinear terms. In that
analysis, we neglected the effects of dissipation and other
loss mechanisms. In Ref. 2 we outlined the effects of
such phenomena on the solutions to the governing
modified Burgers' equation. Here, we describe the
modifications introduced by dissipation to the arrival
times as a function of the initial amplitude of the pulse.

The speed of second-sound waves in cryogenic solids
has the form'

X= U„II+r,u+-,'Au'I,

where Uzo is the linear speed, I o=o(l ) and A=O(1) are
the quadratic and cubic nonlinearity parameters, respec-
tively, and u =0/00 —1 is the dimensionless temperature
perturbation, 0 being the absolute temperature and Oo be-
ing the absolute temperature of the undisturbed state.
(Note that in Ref. 1 what we call here I o was denoted
I Oo and A was AOo. )

Under the assumption that A & 0, which is true for the
materials Bi and NaF, we found three different possible

evolutions. Case I: I o & 0; the initial discontinuity
violates the admissibility condition and breaks up into a
centered fan configuration. The characteristics for this
case appear schematically in Fig. 1(a). If I o)0, two
different types of evolution are possible depending on the
size of the initial discontinuity. Case II: if the amplitude
of the initial heat pulse, A, is less than 3I 0/2~A~, then
the shock simply propagates through the sample subject
only to the exponential dissipative decay. The charac-
teristics for this case appear in Fig. 1(b). Case III: if
A 3I o/2~A~, the initial discontinuity is inadmissible
and breaks up into a centered fan-thermic shock
configuration; this configuration has the complicated
characteristic structure depicted in Fig. 1(c). This case
differs significantly irom the dissipationless case because,
with no dissipation, the shock and fan remain separate
entities. However, with dissipation, the shock immedi-
ately becomes nonthermic and slows down to run into the
fan. This shock-fan interaction is responsible for most of
the surprising physics we have found. From the charac-
teristic structures of these cases, we can construct the ar-
rival times for a pulse propagating in such a crystal.

In the zero-dissipation limit, we reported the arrival
time data in Ref. 1 using a set of universal variables that
were independent of any particular system. This follows
from simple dimensional analysis, since in this case there
are no natural scales in the problem. With dissipation in-
cluded, the length of the crystal becomes important be-
cause dissipation introduces a natural length scale, the
skin depth L4, into the problem. (Consult Ref. 1 to find
expressions for L& in terms of the linear wave speed and
the thermal conductivity. ) We can preserve the variables
used in the dissipationless case by introducing a dimen-
sionless dissipation parameter 6=L/Lz, where L is the
wavelength of the wave. Then we can write the arrival
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times in terms of their deviations from the linear result

UEor arr1—
H

where H is the length of the sample and t„, is the arrival
time; we measure the amplitude in units of I o/~A~ ~ Foi
case I, the leading edge of the pulse travels with the
linear speed' hence 6=0. For the positive I cases, we

.2can represent the arrival times as follows:

1 2case II: b, = (AE,~ —
—,'A E2H);

5H

case III: x, &H,
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[A(E,Ir+E, }—,'A (E2H+2E2, )];
5H

1 2case III: H &x, , 6= (2u~E, H 2—uHE») .
5H

Here E&8=1—e, E2H=1 —e, x, is the point
w ereh re the last characteristic of the fan intersects the

~

—5x /2
shock trajectory [see Fig. 1(c)],E„=1 —e ', E2, =1
—e ', UH is a measure of the amplitude of the shock
when it reaches the end of the sample (cf. Ref. 2 for
specific formulas), and the overbar indicates a dimension-
less quantity given by the corresponding length divided
by the wavelength. These expressions have been written
in order of increasing amplitude. Note that all three for-
mu aslas for 6 become independent of II as 5—+0, and

le-moreover, they all become the same, indicating the sca e-
invariant nature of the dissipationless case mentioned
above. Plots of 5 versus A appear in Fig. 2 for various
values of 5H =H/Ld.

Fi ure 2 shows some interesting features. The erstfigure
thing to notice is that dissipation slows the wave, since,
for fixed initial amplitude, b, is smaller for 5%0, as ex-
pected. The next feature is the saturation for large ampli-
tudes; this feature occurs in the 5=0 limit and persists
into the dissipative case. The saturation in both cases is
essentially a domain of dependence effects; the fan

revents the shock from "knowing" about any of thep
waves with amplitude greater than 31"o/2IA~. Thus the
speed and, therefore, the arrival times cannot depend on
the initial amplitude. Finally, in the intermediate regime,
we seesee the wave slow down to its final, asymptotic value.

theFor part of the pulse's journey across the crystal, t e
shock's speed is constant as a result of the interaction
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FIG. 1. Characteristic curves for the three cases outlined in
the text. (a) Case I: I p(0. The initial discontinuity violate
the admissibility conditions and decays into a centered fan. (b)
Case II: I o) 0, A ~ 31 rr/2~A~. The initial discontinuity propa-
gates as a shock wave into the crystal. {c) Case III: I p&0,
A )3I rr/2~A ~. The initial discontinuity violates the admissibili-
ty criterion and breaks up into a centered fan and thermic-
shock configuration. The point e indicates where and when the
last wave of the fan intersects the shock.
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FIG. 2. Scaled arrival times 6 versus the scaled incident am-
s ockplitude A. The initial rise comes from an increasing s oc

strength, while the eventual saturation is due to the shock
strength being limited, and the hump for small 58 arises from
the competition between the shock-fan interaction and overall
dissipation.
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with the fan. Qnce the shock passes x, (i.e., the fan
disappears), it begins receiving information from the
larger initial amplitudes; this causes the wave to slow, be-
cause the cubic nonlinear corrections now dominate.
This causes the arrival times to increase and. , hence, 6 to
shrink. Thus the interplay between the nonlinear dynam-
ics and linear dissipation creates the essential features of
Fig. 2.

In our original work, we considered two specific sys-
tems: NaF and Bi. Jackson and Walker analyze the

various types of dissipation mechanisms for NaF; they es-
timate that L&=1.5 —8.5 cm for NaF at Ho=12 K, de-
pending on the impurity levels. Kopylov and Mezhov-
Deglin perform similar estimates for Bi, finding that
L&=0.5 cm at Ho=2. 5 K. For a crystal of length H =1
cm, these values of L& imply that 6H & 1 for NaF, while
5H) 1 for Bi. Thus the actual behavior of the arrival
times for these two materials should be somewhat
different. This contrasts with the universal prediction the
dissipationless analysis provides.
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