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We present and solve a continuum theory of vacancy-mediated diff(asoevidenced, for example, in the
vacancy driven motion of tracers in crystalgVe restrict our attention to ultralow vacancy densities, so that a
tracer only experiences a single vacancy over the time scales of interest. Results are obtained for all spatial
dimensions, and reveal the strongly non-Gaussian nature of the tracer fluctuations. In integer dimensions, our
results are in complete agreement with those from previous exact lattice calculations. We also extend our
model to describe the vacancy-driven fluctuations of a slaved flux[IB@&163-182099)02331-0

I. INTRODUCTION Gaussian in character. The crossover time scales involved
have been explicitly calculated in Ref. 8.

An interesting example of a nontrivial random walk prob- ~ Given that one is generally interested in the scaling be-
lem is that of vacancy-mediated diffusidiyMD).> This  havior of such systems, it is useful to have a more coarse-
has application to a crystal containing a low density of va-grained treatment on hand which allows one to access the
cancies; the question being, what are the fluctuations of éhopefully universal long-wavelength behavior directly,
tagged particlglor impurity) which moves only due to ex- without having to resort to a sophisticated lattice calculation.
change with wandering vacancies? Apart from its interest té\ well-known example of such a situation is the critical be-
workers in statistical mechanics, this diffusion mechanism ihavior of a ferromagnéf which may be studied within the
extremely important in solid-state physics. It is the dominantcontext of the latticélsing) model(where an exact treatment
means by which materidk.qg., tracers or impuritigsnay be is only possible in dimensiord=1,2), or at a more coarse-
transported within a solid; although other mechanisms, prigrained level via thep* field theory(where controlled cal-
marily diffusion via interstitials, can also be importdnt. culations can estimate the exponents in the most interesting
VMD is also used to enhance doping in semiconductors.cased=3) 1!

Radioactive tracers are commonly used to investigate the The purpose of this paper is to construct and analyze a
physics of VMD (such as the determination of an effective continuum (or coarse-grainedtheory of vacancy-mediated
diffusion constant* and the method is of contemporary im- diffusion. Fortunately the continuum theory is exactly solv-
portance in studying more complex materials, such as Fable in all dimensions, which allows a direct comparison
aluminides’ quasicrystal§,and glasses. with the previous lattice calculatiohs-complete agreement

This process has a more generic application as it is one a$ found. Given this situation, one has confidence in applying
the simplest “slaved diffusion processes.” It has been studthe continuum theory to situations where a lattice formula-
ied in various guises over the yeaend a lattice formulation tion would be more difficult, if not intractable. We consider
was solved exactly by Brummelhuis and Hilh8ristthe late  one such situation here; namely the motion of a directed
1980s. This solution was effected by considering a reducedflux) line under the action of diffusing vacancies.
distribution function for the tagged particle position, rather The outline of the paper is as follows. In the next section
than examining the master equation for the joint distributiorwe define the lattice model of vacancy-mediated diffusion
of the tag and vacancyThe statistics of the vacancy are more precisely, and, using this as a base, construct the con-
accounted for in terms of five independent quantities whichinuum theory. We then highlight the “mesoscopic” physics
encode the probabilities for the vacancy to strike the tagontained within this coarse-grained model. In Sec. Il we
from a direction opposite, equal, or perpendicular to the di-analyze the continuum model at the level of mean-field
rection of the vacancy'’s previous departure. Thus the calcutheory (MFT). The apparent physics within MFT is simple,
lations are particular to a two-dimensional lattjcEhe most  and the solutions of the mean-field equation yield results
revealing aspect of their solution is the stronghpn-  which contain some correct scaling informatidine., the
Gaussiannature of the tagged patrticle’s fluctuations, in thelength-time scaling but completely miss the more interest-
limit of low vacancy density. The same lattice model re-ing statistical aspects; namely the strongly non-Gaussian na-
ceived alternative exact treatments receftly. ture of the fluctuations as found from the lattice calculations.

An important point to clarify at the outset is the precise Thus we are led to attempt an exact solution of the con-
meaning of “low density of vacancies.” In the present work tinuum theory. This is made possible by formulating an
we are concerned with densities which are so low, that in thénfinite-order perturbation theory, as described in Sec. IV.
time regimes of interest, the tagged particle is affected byrhe results for various dimensions are derived and presented
only one vacancy—thus we shall model the system with onlyin Sec. V—the non-Gaussian statistics are seen to be com-
one vacancy. Naturally, for a nonzero density of vacancies, ipletely reproduced, with the added advantage that the results
one waits long enough the tagged particle will be affected byrom the continuum theory are valid for arbitrary dimension
other vacancies, and eventually its fluctuations will becomal. In Sec. VI we give an illustration of the utility of this
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coarse-grained approach. We formulate a continuum modc{E“(t)gﬂ(t’»:Déa,ﬁé(t—t’). (Henceforth angular brack-

for the transverse fluctuations ofda- 1 directed(flux) line ets denote an average over) Second, the spin variable

due to VMD of pinning centers. We end the paper with SecS;(t) will be replaced by a coarse-grained ‘“‘magnetization

VII which contains our conclusions, along with some sug-density,” or “order parameter”’(OP) denoted by the field

gested extensions of the present work. ¢(r,t). Expanding each term of Ed3) to first order, we
obtain

II. FORMULATION OF THE CONTINUUM THEORY
a8%r—R(t), (5

. . . . . dIp(R(1),1)
We first consider a simple lattice formulation of VMD dip(r,t)y=—N\| & W
with which we shall motivate our continuum theory. To be

specific, let us consider the following lattice model. Each sitayhere) is a phenomenological parameter with dimensions
r of a d-dimensional hypercubic lattice contains a S@n 9T, Thjs last equation represents our continuum theory of
which may take the values 1. [In the crystal lattice appli- \/MD. It looselyresembles a Langevin equation, but the im-
cation one would take all spins as “up,” thus referring to plicit appearances of the noisg throughout the equation
crystal atoms, except for the tagged particte impurity)  forbid such a simple designation. For instance, it is not clear
which would be assigned a “down” spihA spin may only  how one would write down a dynamical equation for the OP
alter its value when involved in an exchange with a singlepropability distribution P[ ¢,t]—it would certainly not fit
diffusing vacancy located at the positié¥(t). As only the  wjthin the standard Fokker-Planck category.
positionof the vacancy is relevant we may give the vacancy One may gain a clear physical understanding of each of
a spin +1 for notational convenience. There are variousthe two factors on the right-hand sidehs) of Eq. (5). As
ways to describe this model. For instance, one can define @gards the second of the two: it allows temporal change of
probablllty distribution for the vacancy pOSition and the PO-the OP on|y in the neighborhood of the vacancy position
sition of the up and down spins, and then write a masteR(t). The first factor guarantedsia the directional deriva-
equation for its evolution. Alternatively, one can regard thetjye) that the OP changes in time only when the vacancy
process as a stochastic cellular autont&@A), and attempt  moves through a region in which the OP has spatial varia-
to write explicit SCA rules for its operation. We shall follow tjgn. Furthermore, the amount of temporal variation is lin-
the latter approach. early coupled to the amount of spatial variationith a
The rule for updating the vacancy position is written as strength \). This appears reasonable with regard to the
hysical properties of VMD we wish to model.

R(t+ o) =R +I(1), @) P yl’he ggneealization of the continuum theory to multiple
wherel(t) is a unit lattice vector drawn with equal probabil- Vacancies is possible if one assumes that the vacancies are
ity from the 2d possible choices. The update of the spins isindependent from one another. In the case of low vacancy
written down as follows: a spin will remain unchanged un-density, this assumption should be valid, as vacancy colli-
less it is located either at the vacancy position at tine at ~ Sions will be rare, and will have no effect on the statistics of

the subsequent vacancy position at titrest. Thus we have the tag. With this independence assumption, one may simply
introduce a set of vacancy position vectd®s, wherei

Si(t+ ) =S/ (t) + 6 ry[ Skt + o0 (H) —SH(D) ] =1,... ,N,. with N denoting the total n_u_mber of va_cancies.
The equation of motion for each position vector is of the
+ 6 Rret+ o[ Srey (D = (D], (2 form (4) (with an independent Gaussian no&en the rh.
which may be re-arrangevith the help of Eq.(1)] in the  The coarse-grained O will now be a functional of theN
appealing form ][andom processd,; . Its equation of motion has the explicit
orm

Si(t+6t) = Si(t) = [Srty +1(t)(1) = Srey(D) ] N
X[ 6 ry = Or Rty +1(0)]- 3) 0t¢(r,t)=_)\;1

The factorization of the SCA update f& (t) gives us . . .
reason to hope that a simple Taylor expansion may be inHenceforth we will restrict our attention to the case of a

voked to yield an accurate continuum limit, since thesmgl_e vacancy. . .
leading-order terms will appear in a multiplicative fashion . I.t IS US?M to note that gna[yt_m progress on E5).is very
(as opposed to terms occurring in an additive fashion, i ifficult without f|r_st recasting itin Fourier s_pacﬁeo as to rid
which case one is unsure of their relative importandéus ourselves of the implicit nature ofjhe nojs@enoting the
we shall take the simplest continuum limit: First, the positionFourier transforn(FT) of the OP by¢(k,t) we have

of the vacancy is described by a real vedR{t) e R ¢ sat-

dp(Ri(1),1)

&- TR 2 8%(r—Ri(1)). (6)

isfying at?;a(k,t)=—>\é(k,t)f dk;G(ky,)* b(kq,t),  (7)
dR/dt=&(t), 4
where
which is the continuum equivalent of E¢l). The random
lattice vectorl has given way to a random vectgrwith an é(k t)= (& K)exdik-R(1)] (8)

implicit factor of \/6t) which is drawn from a Gaussian dis-
tribution P[£] with zero mean, and covariance anddk=d%/(27)q.
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We shall now discuss the initial conditions. As for the ~ AD ~
vacancy, we simply need to define its initial positi&y 5’tp(k-t)=—t—kaf dkikip(ky,t)
=R(t=0). The initial conditiongy(r) for the OP will vary 0
according to the physical system we are interested in model- ><e—(D/2)(k—k1)2t+i(k—k1)-Ro, (13

ing. As regards the case of a tagged partice impurity) o
being driven by the wandering vacancy, we take the initiaIWh<_are the momentum components are indicated by a super-
condition on the lattice to be all spins up, bar one down spirsCript for future notational convenience.

In the continuum, this may be described by ing form by inverse Fourier transforming the density. After

some rearranging, one has

bo(r)=A-B(r). ) \D

= — — an—iky 1 o pa

Alternative scenarios may be investigated by modifying the ap(r.t) to f dkikye p(kl't)f dk(k®+kp)
initial OP distribution. For instance, settinfy, to be a step

function would be appropriate for modeling the vacancy
mediated roughening of an initially straight domain wall.

Once the initial conditions are defined we may formally

integrate the equations of motion to give

Xe—(D/Z)kzt—ik-(r—Ro)_ (14)

Now the inner integral may be written asdf.+Kk7)g(r
—Rg,t). The Green function

g(r,t)=(27Dt) " ¥%exd —r?/2Dt]

t
R(t)=R0+f dt’ &(t') (10 is the probability density for the vacany other wordsg

0 is the solution of the Fokker-Planck equation corresponding
to Eq.(4)]. One may then manipulate the outer integral over
k, in terms of the inverse FT of the density to obtain the
following partial differential equation fop(r,t):

and

~ ~ t ~
Bk =B [ Bkt .
5192¥V'[9(f—Ro,t)V]P- (15
X | dkyG(kyq,t")* d(ky,t). 11 ,
f 1G(ke,t)" ik, t) (1 As a MFT, the above equation makes good sense. It con-
) i , tains the simple physical information that the OP density
This com_pletes our formulation of the model. The main 1Eo'undergoes a diffusion process, but with the twist that the
cus of this paper is to calculate the mean OP dens(ityt) ittusivity is not constant, but proportional to the probability
=(¢(r.1)), which is the quantity analogous to the taggedgensity of the wandering vacancy. One would have had little
particle distribution function calculated in previous lattice .o ple in writing down such a MFT using physical argu-
studies. In the next section, we shall present a brief meansants alone.
f@eld analysis ofp, While_ Secs. IV and V contain a descrip-  p complete analytic treatment of E(L5) is beyond our
tion of the exact solution fop from Egs.(10) and (11)  present purpose. However, the limi<Dt is trivially

above. solved, since to leading order the equation reduces to

IIl. MEAN-FIELD THEORY D
e()ap=5V?p, (16)

The purpose of this section is to indicate how much one
can learn about the system from a simple, yet uncontrolledyhere e(t) = (to/2\)(27Dt)%2. One may solve the above
mean-field theory(MFT). We shall find that MFT predicts equation using FT, and with the initial condition specified in
the correct length-time scaling, but misses the non-Gaussidgg. (9) we obtainp=A—-Bg(r,7(t)), where7(t) is the ef-
nature of the fluctuations in VMD. This error persists in all fective time scale of the tagged particle, and is given by
dimensiongbard=0). fr(t)zﬁodt’e(t’)*1 which, ignoring numerical prefactors,
We shall define the MFT to be used here in an operationglykes the form
sense. Namely, we perform the simplest possible average of

the OP equation of motiofi7), by replacing the average of [\
the right-hand side by the product of two separate averages. YT 0<d<2
Explicitly, we have (D)™ to
A
- - - - T(t)~ S D—In(t/to) d=2 . (17
ﬁtp(k,t)z—)\f dki(G(k,t)G(ky,t)*)p(ky,t). (12 to
A
We refer the reader to Appendix A for the evaluation of (Dtg)92 d>2
\

(é(k,t)é(kl,t)*>. The averaging necessarily introduces a

temporal cutofft, (which sets the implicit correlation scale  This solution firstly tells us that the OP density always has
of the white noise£). We shall only ever work to leading a Gaussian envelopéat least forr?<Dt, which encom-
order in 1t,. Eg. (12) now takes the form passes most of the physically interesting scales, dirca,
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but that the temporal spreading of the envelope is not that of ~ 5 o ~

a random walker &r ~ ), but much reduced. In two di- p(k,t)= ¢o(k)+ E A xn(k,1)). (22)

mensions the spreading increases only logarithmically in n=1

time (as the vacancy's random walk is only just recurjent Using the explicit form for theG functions as given in Eq.

and ford>2 the spreading halts altogether after some finite(g) we may write

time, which is accounted for by the vacancy having “fled the

scene,” never to return. _ t th 1
The main interest in VMD is not so much in the renor- <Xn(k,t)>=j dt;- - f dt k1

malized time scale, which one can argue for on simple physi- 0 0

cal grounds, but rather in the non-Gaussian nature of the OP

fluctuations. These non-Gaussian fluctuations were exactly X

calculated in lattice theories, and were generally found to

have tails which decaglowerthan a Gaussian. It is the aim

of the following two sections to reproduce these features xf dknkfnao(kn)Qn({kmitm;amrﬂm})r

from the continuum theory.

n-1
Bmj,¥m+
ngl j dkpkEmk 1}

(22)
IV. SOLUTION VIA PERTURBATION THEORY where the functiorQ, represents the following average:
We have seen the relative failure of MFT, which is essen- n

tially due to imposing a strict locality on the OP equation of . —(_ 1N ameB
mo'Ei/on. In fact,pthe gvolution of theyOP is nonlocqal as seen Qnl{km tm @tm Bm}) = (1) <rr£[l §imem
from Eg. (5). A more systematic treatment is required to
handle the subtle correlations between vacancy and OP. .
Given the functional nature of E@5), the most useful ana- X xR (tm) - (K1~ km)]>'
lytic technique would appear to be perturbation theory. Since
the equation of motion is linear, we shall not encounter an (23
exponentially divergent number of terms at higher ordersyith the time orderingt,>t,=---=t,, and the notation
rather, each order will contain only a single term. ko=K. At this stage of the calculation we can see clearly the

So referring to the time integrate@nd Fourier trans-  remaining steps. First, we must perform a multivariate aver-
formed evolution equation for the OP, namely Ed1), we 546 in order to determine the functi@),. Second, we must
make the substitution perform thenfold integral over the moment,,}. Third, we

must perform thenfold integral over the intermediate times

{tm}. Finally, we are left to resum the functions, which
will yield the FT of the mean OP density. In the absence of
hindsight, it is somewhat surprising that all these steps may
be performed exactly for arbitrary dimensidnThe remain-
der of this section will consist of the details of the first two
steps, whilst the third and fourth steps will be presented in
. the subsequent section as they are dimension specific.
Xn(k,t)= —f dt’é(k,t’)f dk G(K' ') * yn_1(K',t"). Henceforth we §h_al| take the !n|t|a] position of the vacancy
0 to be at the origin:Ry=0. This slight loss of generality
(19 (which is of no physical significance in the long-time re-
gime) is more than compensated by calculational simplicity.
This relation may be iterated to give the explicit solution for -~ \we begin with the first step; that of determiniqy,. We

?&<k,t>=n§0 Axn(k, ), (18)

whereyo(k,t) = $o(k). Equating powers of the coupling
yields (for n>0)

each order of perturbation theory as refer the reader to Appendix B in which this multivariate
average is evaluated. The result is
~ t th1 ~
Kok = (1" [ at - [ Bkt Qnfke st s B
n—1 pD\n."
~ ~ = — — _ am_ l%m Bm_ Bm
X ”1]_:[1 f dka(kmatm)*G(km,tm+1) ( to) Hl {[5amv:8m Dto(k km )(k km )]
D 2
8 f dknG (Kn to)* Bo(ke). (20) xexf — o (K=kn) (= tmsa) | . @4

where the symbadl,,, ;=0.

In principle, the solution given above may be used to To proceed with the momentum integrals, it is necessary
calculate a range of spatiotemporal OP correlation functiongo decide upon an initial condition. We shall use that given in
Our present aim is more modest—we shall perform a direcEq. (9), since our interest is presently focused on the
average of each term in the perturbation series in order tgacancy-driven diffusion of a tagged particle. The generic
obtain the OP densityg(r,t). We have momentum integraffor 1I<m=n—1) takes the form
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B o " s behavior of the vacancy’s random walk. In cdge the va-
f dknk k™18, g — Dto(km—kim) (kPm—k'm)] cancy will essentially “disappear” from the vicinity of the
tagged particle after a finite time. In caB, the vacancy’s

D ) walk is marginally recurrent and we expect a slow, but
Xexp - E(k_ Kin) “(tm = tme1) steady, evolution of the OP density for all times. In céBg,
L o the vacancy’s walk is “strongly” recurrent, and thus the
=[D(tm—tm+1)] 127D (t—tmi )] cross section of vacancy-tag collisions is always “large.” It
_ e m is the aim of this final stage of the calculation to replace
><[5"‘m""m+1+':)(tm tm 1)Kk 2], 29 these qualitative descriptions by precise results. We shall

where we have worked to leading order intgl/ The final ~ analyze the three cases in turn.

momentum integral involves the OP initial condition which

in Fourier space takes the forgy(k)=(27)?As%(k) —B. A d>2

Its evaluation yields . . .
y In this and the following two subsections we shall take

~ advantage of the smallness tgf Integrals which are appar-
f dky kfnd’O(kn)[&an,Bn_Dto(ka”_ks")(kﬁ"—kf”)] ently divergent will be regularized using, and only the
most singular contribution will be retained. We stress that
3 N a2 this form of regularization is not a mathematical manoeuvre,
=—Bk™n(27Dt,) "%, (26) but is entirely consistent with the physical meaning of white
noise; namely a noise process which is a limiting form of a
to leading order in (14). Collecting our results from Egs. microscopic process with a correlation tirhe

D
xexr{ - i(k—kn)ztn

(24), (25), and(26), and substituting back into Eq22), we Referring to Eq.(27) we adopt the following strategy to
have evaluate the integrals. First, we explicitly contract tifeld
. momentum product, which will yield 2! terms inn sets;
Yo(k.t))=—BD[ — (27D)t 7nJ' dt terms in themth set being characterized by a factor of
xn(kit) [=(27D)"t0] ot k2(M+1) (wherem counts from 0 tax—1). A term in themth

. set will also carry a string composed mfdifferent factors of
fldtz(tl—tz)*(“ﬂ - fthe form _(t,-—tj+1). For_ each term, we perform the time
0 integrals in order, starting frorty,, keeping only the most
singular contribution at each step, and being careful to in-
= clude the appropriate time-difference factors in the numera-
" tor (from the string. This procedure is fairly simple fod
>2, since the only integrals one encounters are

X

1 )@y
s ta(th-1—1tn)

n—1
xk%[[l[aa «
m=1 m'“m+1

t-to 1 1 1
ft ds (t—s)“’s’z;(t t)?’
+D(ty =t ) KK M 1]k, (27) 0 0

where we have introducegi=d/2. An important point must t—t 1 2 1
be mentioned at this stage. The intermediate time integrals J ds =D o1y
above appear to be divergent at one or both of their lower to (t-s)?s?  (y=1) 7't

and upper limits. This divergence is regularized by the exis-

tence of the microscopic time scalg As mentioned before,

this scale appears as an effective correlation time in the white ft—to 1 1 1
to

noise process. It may be taken to be arbitrarily smalth - (28)

| | rarily | v Dy
respect to any “experimental” time scale in which one is
interestedl Therefore any time integral limit is naturally
softened byt,. One finds that each term of a given set has the same value

We have now completed two of the four steps in the cal-after integration. In detail, theth set contain€* equal

culation ofp(k,t). To proceed further requires the evaluationterms of value
of the nfold integral over the intermediate times which is
sensitive to spatial dimension, and is presented in the next

N n-m—1 m
section. Dmk2(m+ 1) i 2 ! .
3 (y=Dt3 ) Lyt

V. MEAN OP DENSITY IN VARIOUS DIMENSIONS

As mentioned above, we must now specify the spatiallThus the series composed of theets is hothing more than
dimension of interest. In fact there are three cafgsi>2, a binomial series; which is trivially summed. The dominant
(i) d=2, and(iii) d<2. These cases were already apparentontribution from thenfold time integral may therefore be
within MFT, and arise because of the qualitatively differentcombined with the constant prefactor of E87) to give
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~ BDk? ~ _ ot ! 5
’ = _ __ nlK, - - 0 1 2(t1— 1 e
(Xn(k, 1)) (xn(k,1)) BD(—2xDty) dt dty(t;—t,)
(y=1)(27Dty)” 0 0
—_ t
1 2 n—-1 n-1 _ —ol.-1
ol - 12y Dkzto) _ XL dtp(ty—1—t) }tn
yto(27Dty)” (y—1)
n-1
(29) Xkal{ H [501 o
m=1 m'“m+
This ends the third stefnamely the intermediate time
integralg. The last step is to reconstrugtfrom the infinite _ e an
sum given in Eq(21), using Eq.(29) above. In the present Dt =ty g KAk Tk, (33)

case, this sum is seen to be simple, as the sérnigowers of ] ) ) )
\) is geometric. Explicitly evaluating the sum yields the final OUr strategy for evaluating the time integrals is the same as
result in the form before. We multiply out the integrand to form a total &f 2

terms arranged im sets. Each term is integrated over the
intermediate times, with only the most singular piece re-
>, (30)  tained from each integral. Care is taken to include the appro-
1+ (k/IA) priate factors, for a given term, in the numerator. The inte-
grals one encounters are given belowmith p=0):

IHO [In(s/te) P [In(t/to)]P
ds =
t

1+

5<k,t>=A<2w>dad<k>—§

where the momentum scale is given by

(y—1) (2mD1) "o 2 :
2= t—s)%s tot
A 2Dt X . (31) 0 (t—s) 0
_ p p+1
It is of interest to recast this result in real space. For instance, ft tods [In(s/to)] = (p+2) [In(t/to)] ’
in the physically pertinent case df=3 one has to (t—=s)s  (p+1) t
B A2 f [In(s/to) ] M
—A—— e A ds = In(t/te)]P". (34
pr=A- 2| 0t o] @ t = e P @4

As before, one finds that each term of a given set has the
same value after integration. In this case thib set contains
Gm * equal terms of value

Thus ford>2 we find that the initials function of the OP
density is evolved such that only half of its weight is
smeared. That half which is smeared attains a Lorentzia
profile in Fourier space, with a momentum scaleas given mL2(m+1 n—m-1 m+1
in Eq. (31). This scale is seen to be an effective UV cutoff DKM D(11o) LIn(t/to) 1"

(1/\/Dt,) renormalized by the vacancy-tag couplingNote ~ Then sets form a binomial series which is trivially summed.

that this scale is independent of time, in accordance with ouwe find

expectations. Note also that the smearing of the OP density is

strongly non-Gaussian. In real space, the smearing creates an ~ BDK?In(t/ty) 1

OP density which is exponential in form, as seen explicitly {(xn(k, )= 27Dt ( B 2
0 2wDtg

for d=3 above.

One final point: we expect that akincreases, less of the n-1
initial & function (in the OP densitywill be smeared, since X[1+ Dkztoln(t/to)]] . (35
the vacancy will disappear from its vicinity with increasing
efficiency. The fact that we find exactly half of ti&func-
tion to be smeared, for adl, is a consequence of starting the
vacancy’s walk precisely at the location of tldefunction.
Had we choserRy#0, the d dependence of the “smearing
fraction” would have been apparent.

The final step is to sum over the functio(rfsn) as prescribed
by Eg.(21). As before, this series is geometric and the sum
may be immediately performed to give

p(k,t)=A2m)4%k)—B

, (36
B. d=2 1+(k/A)2|n(t/to)) (39

We now turn to the marginal case df2. Within MFT ~ Where the momentum scale is given by
we found that the root-mean-square fluctuations of the tag

2

(i.e., the smearing of the initial function in the OP densily At 277Dt0> @7
grow as[In(t)]*2. We expect this slow growth to be retained Dto NS
within the exact solution. Our main interest is in how the ; : -
functional form of the OP density differs from the Gaussianmvertlng the FT yields our final result
found in MFT. BA2 Ar

In exactly two dimensions, theth-order contribution to p(rt)=A— Ko( ) , (398
the OP density, as given in E(R7), takes the form 2mIn(t/to) 7\ [In(t/tg) ]2
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whereK is the modified Bessel function of zeroth ord&r. returns to minus infinity below the real axis. Using this rep-
We see that the Gaussian envelope for the spreading oésentation for the Gamma function appearing in the denomi-
the OP densityas found in MFT, has given way to a com- nator of the summand of E¢40), we may explicitly perform
pletely different form, namely the Bessel functiig. Thisis  the (binomial) sum. Each functioy,) now takes the form
in complete agreement with the previous exact latticeof an integral overr, with n appearing only as a simple
calculations’ power in the integrand. Thus the sum over these functions
[as dictated by Eq(21)] is again geometric and may be
C.d<2 performed with ease. One then has the following integral
expression for the FT of the mean OP density, valid for

Finally we consider VMD ford<<2. Within lattice calcu 0<d<2 (ie., 0<y<1):

lations the case ofl=1 may be studied either within the
geometry of a chain, or within the geometry of a strip of

finite width. In the former case, the situation is trivial, since E(k,t)zA(Zw)déd(k)—Bl—f dr
the tag can only be moved back and forth to one of two sites 2mJc
as the vacancy passes by. In the latter, the smearing of the ,
tag distribution function is nontrivial, the Gaussian fluctua- xe—( 1 42
tions of MFT giving way to a stretched exponential. In this Y (KIA) 2t )Y ’
subsection, we shall see how to recover these results, along
with their generalization to arbitranye[0,2]. where the renormalized UV cutoff is given by

Our starting point is the expression fgr, given in Eq. (27Dty)t
(27). We shall adopt the same strategy as before to evaluate A2= ( L4 0 0) i (43
thenfold integral over the intermediate times. In this case we yI'(1-7)Dto A

encounter the following integralsvith p=0 _ . .
g gral p=0) We now wish to extract the scaling behavior of the mean

OP density from the above expression. For convenience we

jt_tods ! ~ 1 define 5p=A—p, which is initially a § function with ampli-

to (t=s)trsPrLY=P  ppap(prL)y=p’ tudeB. Let us first specialize td=1. In this case one may
simplify the above integral considerably, using a procedure
t—tg 1 B[1—7y,(p+1)(1—1v)] outlined in Appendix C. The result is the following scaling
fto 98 oy p . ey GeD function:
t=to 1 P+ Sp(r,t)= 5 EJ'WE exp( —s?—22/4s), (44)
fto S oy & mrlo s
_ 13 where the scaling variable is=r A/(4t/t,)Y* This integral
whereB(a,b) is the Beta functiort: is easily analyzed for botz<1 andz>1. In the former

In the two previous subsections, we were able to extractsse one finds
the most singular contributions from thé 2 terms in the ’

integrand of Eq(27), and we found that these contributions B £\ 14

formed a binomial series which was then easily summed. In §p(r,t)= A(—O) [F(1/4)—2\/7_-rz+ o(2%)],
the present case, this simple summability is lost, due to the 2\2m \t

presence of the Beta functions. However, we retain the fea- (45

n-1 L
ture that each of th€p, ~ terms within themth set are equal \\pije in the latter, a steepest descents analysis yields
in value. Thus, after some manipulations, we may reduce the

function (x,) to the form 3
Sp(r,t)~ —exd — (3/4)2*9]. (46)
- B Var
<Xn(kut)> == n : :
[— yto(27Dtg) ] Both of the above results are in complete agreement with the
1 scaling functions found by Brummelhuis and Hilhdtstom
[T (1= y)DK2tr gt an exact lattice calculation for VMD on an infinite strip. This
XmZ:O Cp [[1+(m+1)(1—y)] ° gives us strong confidence in the physical integrity of our
continuum theory of VMD.
(40) For completeness we briefly describe the form of the

mean OP density for arbitrary dimensidr: [ 0,2]. The scal-

In order to perform the summation oven, we introduce . X N : i
ing variable in this case is generalized to

Hankel’s representation of the Gamma functidn:

1 p—
I(z)

1—9\ @2 pp
(47)

L :(
271_deTe 7% (41 Z(y) 5 (t/tg) -2

where the contoulC runs from minus infinity above the Referring to Eq.(42), inverse FT and subsequent analysis
negative real axis, encircles the origin clockwise, and theryields the following results. Far(y)<1 we find
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F(l_’y) &I(ﬁ(rlzat)zvag(ﬁ(r!zvt)
P o Tyt (1= 7] JB(R(z1).2.0)
g o ME—rgn 0. 89r—R(z,1)],
X A y(?) [1+0(z* )], (48 (52)

while a steepest descents analysis#py)>1 reveals where v is an effective longitudinal elasticity. The above

equation is a valid description so long as the important flux-
Sp(r,t)~ exp{ _ (1+ 7)2( )2+ | (49) line configurations r*(z) are smooth, in the sense
’ 2 |d?r* /d 2| <(dr*/dz)2. As an initial condition, the simplest
choice is to take the flux line to be straight, and located at the
This completes our study of the simplest VMD scenario;origin ¢(r,z,0)=Ad8(r). Also, we could(artificially) start all
namely the effective diffusion of a tagged particle by a wan-the vacancies at the origir(z,0)=0.
dering vacancy. We have been able to give exact results for This model may now be analyzed in precisely the same
all dimensions. In the case of integer dimensions, our resultgay as our original VMD model; namely through an infinite
are found to be in complete agreement with previous exacérder perturbation expansion in powersXafOne must use

lattice studies. an additional longitudinal FT to diagonalize the elastic cou-
pling. The appearance of multiple longitudinal Green func-
VI. EXTENSION TO A SLAVED FLUX LINE tions makes the explicit evaluation of the functiog,)

In this penultimate section we shall consider a more com-more challe_nging than before. Ho_wever, analytig progress

licated VMD scenario, both as an illustration of the utility seems possible and is currently being pursued. It is certainly
gf the coarse-grained a’pproach and also as a physical mo fI mte_rest to calculate the. dependence.of the mean oP
' olution, to see how effectively the flux-line elasticity com-

forﬁ:&ggﬂi‘;gﬁ”&l;ﬁg“ﬁ :thlig(ea &ilgg%n of well se a_bats the driving forces of VMD. Preliminary results indicate
rated planein particular gne of the hiafi cgu rated?) P3ihat (i) for y— the line fluctuations become Gaussian and

ed p P ' it cup "/ . coincide exactly with the fluctuations of a single point within
Within each plane there exists a low density of wanderin

) i ; ) X MFT (as described in Sec. )Jlland (ii) for v—0 the line
vacancies. We now imagine a flux line directed perpen;

dicular to the planes, and strongly pinned by certain lattic fluctuations have aingular dependence on the elasticity

impurities2® If the binding energy is strong, thermal wander-e(and thus differ from the fluctuations of independent planar

ing of the line will be completely suppressed. However, atags as described in Secs. IV andl V

much weaker form of line wandering may be driven by

VMD of the pinning sites themselvddue to exchange with VII. CONCLUSIONS
the low-density planar vacancies, or vacancy aggregates ) _
Since each plane has its own stock of vacandighich we In this paper we have constructed and solved a continuum

disallow from hopping from plane to plajehe interactions theory of vacancy-mediated diffusion. Our main intention
between a given vacancy and the line are recurrent and wias been to test the theory against exact results known from
can expect slow and steady smearing of the mean density &tttice studieS:® In particular we have thoroughly examined
the flux line. The physical existence and/or relevance of thighe evolution of the mean OP density in the case of a single
mechanism deserves more detailed investigafifm in- ~ vacancy smearing an originally sharply-peaked OP fluctua-
stance, there are several competing pinning mechanisni$n (Wh_lch corresponds to_the lattice scenario of following
within the material, one of which is actually due to the oxy- the motion of a tagged particle due to vacancy exchamife

gen vacancies themselvEs. the level of mean-field theory, we found tfeorrecy length-

We shall describe this system by generalizing the contime scaling for the OP density, but no sign of the non-
tinuum theory of VMD outlined in Sec. II. First, we take for Gaussian fluctuations, which were the most interesting re-
simplicity one vacancy within each plane. In the continuum,Sults obtained from the lattice studies. Therefore we pursued
this is simply described by attaching a longitudinal coordi-& more systematic treatment, based on an infinite order per-
nate to the vacancy positidR. The equation of motion for turbation expansion. We presented an exact analysis of our

the vacancies is then given by theory in all dimensions, and complete agreement has been
found with the dynamical scaling results obtained from the
AR(z,t) =&z, 1), (50) lattice. In particular, we find that fat>2, the OP density is

smeared over a limited range and then freezes. The envelope
where the noise has zero mean and covariances a simple exponential. Id=2, the smearing is slow, but
(g”(z,t)gﬁ(z’,t’»:Déaﬁé(z—z’)é(t—t’). The OP ¢  continues indefinitely. The envelope is described by the
now describes the probability density of the flux line. It is amodified Bessel functiok . Finally, ford<2, a more chal-
function of a planar coordinate a longitudinal coordinate, lenging calculation revealed that the envelope of OP smear-
and timet. For a giverg, the evolution of the OP is given by ing is described by a stretched exponential. Our results have
Eqg. (5), in two dimensions. The simplest longitudinal cou- the advantage of being valid for arbitrary dimension, thus
pling shall be taken—namely, an elastic interactirhich  revealing more clearly their analytic structure. In the final
stems from the Josephson coupling between Cu-O pf3nes section we proposed an extension of simple VMD to the
Thus the equation of motion for the OP is diffusion of a pinned flux line, slaved to planar vacancy
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exchange. Analysis of this more challenging problem is in APPENDIX B
progress. . . . .
There are, needless to say, many other extensions to tqe In J.[h's appendix we outl_lne the evaluation Qf, as de-
current work. We mention the more obvious here. First, it ined in Eq.(23). The terms {n the exponent @, are of the
would be interesting to calculate higher-order OP correlafom R(tm) - (km-1—Km)=[g"dSn&(Sm) - (Km-1—km). We
tions. Throughout the present work, we have concentrated of¢Place the momenta appearing in the exponent with gener-
the mean OP density. However, there is much nontrivial inalized momentacy(sy,). After the averaging procedure we
formation hidden in the simplest spatiotemporal correlatiorS€tkin(Sm) =Km-1—Kkp,. This allows us to generate the noise
functions. Second, one can apply the continuum theory tdrefactors from functional differentiation. Thus we have
more complicatedsingle vacancyscenarios; mainly by ad-
justing the boundary and initial conditions. For instance, a Qn({&m tm:am,Bm})
step-function initial condition would correspond to the
vacancy-mediated roughening of an initially straight domain
wall. Third, one can study the case of a finite density of
vacancies using Ed6), in order to probe the crossover to
Gaussian fluctuations. Finally, one could investigate simple " tm
mechanisms whereby the random walk of the vacancy itself X ex;{i > f dsmé(Sm) - Km(Sm)
is weakly coupled to the OP, which is a physically relevant m=1J0

perturbation. The average appearing above is easily performed over the
The author would like to thank Z. Toroczkai and R. Zia multivariate Gaussian noise distribution, and yields
for bringing this problem to his attention, and B. Schmitt-

n

52
=1 Sk (L) S (tyn)

>. (B1)

mann and W. Triampo for useful discussions. The author "t
also thanks E. Lundell for a critical reading of the manu- exq i E f ds,&(sm) - Km(Sm)
script. The author gratefully acknowledges financial support m=1J0
from the Division of Materials Research of the National Sci- D . ; m 2
. m
ence Foundation. —expl — = > j ds| >, x(s)| |.
2 m=1 Jty,, |22

APPENDIX A (B2)

_In this appendix we explicitly evaluate the averagep given double functional derivative of the exponent gives:
(G(k,t)G(kq,t)*), where G is defined in Eq.(8). Aside

from momentum prefactors, we need to evaluate 52 t
- ex —(D/2)f dgK(s)+ (s)]2]
[t 5Kmm(tm) 5Kg]m(tm) p|’ tm+1 "
lap(ret)={ £ (Mexpi | dUEL)-w(t))] ).
D
(A1) == t_{éam,ﬁm_DtO[Kam(tm)+Kam(tm)]

0
We have generalized the momentum in the exponent to a
time-dependent form(t) for a reason soon to become clear. X[KPm(ty)  + kPm(ty) ]}
At the end of the averaging procedure we shall resek 0
—k; as required. Xexp[ —(D/2)f ds[K(s)+Km(s)]2]. (B3)

The average given above is most easily evaluated by gen- tmt1

erating the noise prefactors via functional differentiation

with respect tor(t). Thus We use this last result to perform tmedouble functional

derivatives in Eq(B1). We note that using our final replace-
ment for {«k,,} yields 2", =k—k,. Thus we reproduce

82 t
|, g(rct)=— ———( ex if dt’ &t')- w(t’ Eq. (24) as given in the main text.
et 6K“<t>6xﬂ<t>< p[ oI EE )D
52 APPENDIX C

t
= —(D/2 ’ "2
SKk(1) SkP(t) ex;{ (B! )fodt «(t') } In this appendix we give a brief analysis of the integral

5 appearing in Eq(42), specializing tod=1. In terms of the
_ t_[5a,,8_ Dty (t) k()] density difference, this has the form

0

~ [ e’
, (AZ) 5p(k,t):szchTT/2

1
Xexr{—(D/Z)JOtdt’ k(t")? 71’2+b(k,t))’ €y

wheret, is the implicit scale of the noise correlations. We where for convenience we have set (k/A)?(t/ty) Y2 First,
need only retain the first term, given the smallnesspf we change variables from to —x (which runs along the
Using this result with Eq(12) yields Eqg.(13) in the main  negative real axjsby integrating across the branch cut. This
text. yields
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B (~dx e P’ The integral ovely now resembles a Fourier transform, and
Spkt)=—| ———. Cc2 results in a simple exponential, so that
~ » ds
5p(k,t)=Bj g sP-20ls], (C4)
Next we change variables o= JX. Rewriting the exponen- ~enr

tial usin_g a Hubbard-Stratonovich transformation gives therne inverse Fourier transform frokito r is now easily per-
double integral formed resulting in Eq(44), as shown in the main text.

For generalde[0,2], the analysis is more difficult.
Progress is made by exponentiating the Lorentzian form in

573(k,t):Efx L - Eefszﬂibsx (C3) Eqg. (42) using an auxiliary integral, and then performing the
) —=(1+y?) T asymptotic expansions on the resulting double integral.
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