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Continuum theory of vacancy-mediated diffusion

T. J. Newman
Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

~Received 24 June 1998; revised manuscript received 8 December 1998!

We present and solve a continuum theory of vacancy-mediated diffusion~as evidenced, for example, in the
vacancy driven motion of tracers in crystals!. We restrict our attention to ultralow vacancy densities, so that a
tracer only experiences a single vacancy over the time scales of interest. Results are obtained for all spatial
dimensions, and reveal the strongly non-Gaussian nature of the tracer fluctuations. In integer dimensions, our
results are in complete agreement with those from previous exact lattice calculations. We also extend our
model to describe the vacancy-driven fluctuations of a slaved flux line.@S0163-1829~99!02331-0#
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I. INTRODUCTION

An interesting example of a nontrivial random walk pro
lem is that of vacancy-mediated diffusion~VMD !.1,2 This
has application to a crystal containing a low density of v
cancies; the question being, what are the fluctuations o
tagged particle~or impurity! which moves only due to ex
change with wandering vacancies? Apart from its interes
workers in statistical mechanics, this diffusion mechanism
extremely important in solid-state physics. It is the domin
means by which material~e.g., tracers or impurities! may be
transported within a solid; although other mechanisms,
marily diffusion via interstitials, can also be importan3

VMD is also used to enhance doping in semiconducto3

Radioactive tracers are commonly used to investigate
physics of VMD ~such as the determination of an effecti
diffusion constant!,4 and the method is of contemporary im
portance in studying more complex materials, such as
aluminides,5 quasicrystals,6 and glasses.7

This process has a more generic application as it is on
the simplest ‘‘slaved diffusion processes.’’ It has been st
ied in various guises over the years2 and a lattice formulation
was solved exactly by Brummelhuis and Hilhorst8 in the late
1980s. This solution was effected by considering a redu
distribution function for the tagged particle position, rath
than examining the master equation for the joint distribut
of the tag and vacancy.~The statistics of the vacancy ar
accounted for in terms of five independent quantities wh
encode the probabilities for the vacancy to strike the
from a direction opposite, equal, or perpendicular to the
rection of the vacancy’s previous departure. Thus the ca
lations are particular to a two-dimensional lattice.! The most
revealing aspect of their solution is the stronglynon-
Gaussiannature of the tagged particle’s fluctuations, in t
limit of low vacancy density. The same lattice model r
ceived alternative exact treatments recently.9

An important point to clarify at the outset is the preci
meaning of ‘‘low density of vacancies.’’ In the present wo
we are concerned with densities which are so low, that in
time regimes of interest, the tagged particle is affected
only one vacancy—thus we shall model the system with o
one vacancy. Naturally, for a nonzero density of vacancie
one waits long enough the tagged particle will be affected
other vacancies, and eventually its fluctuations will beco
PRB 590163-1829/99/59~21!/13754~10!/$15.00
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Gaussian in character. The crossover time scales invo
have been explicitly calculated in Ref. 8.

Given that one is generally interested in the scaling
havior of such systems, it is useful to have a more coa
grained treatment on hand which allows one to access
~hopefully universal! long-wavelength behavior directly
without having to resort to a sophisticated lattice calculati
A well-known example of such a situation is the critical b
havior of a ferromagnet,10 which may be studied within the
context of the lattice~Ising! model~where an exact treatmen
is only possible in dimensionsd51,2), or at a more coarse
grained level via thef4 field theory~where controlled cal-
culations can estimate the exponents in the most interes
cased53).11

The purpose of this paper is to construct and analyz
continuum ~or coarse-grained! theory of vacancy-mediated
diffusion. Fortunately the continuum theory is exactly so
able in all dimensions, which allows a direct comparis
with the previous lattice calculations8—complete agreemen
is found. Given this situation, one has confidence in apply
the continuum theory to situations where a lattice formu
tion would be more difficult, if not intractable. We consid
one such situation here; namely the motion of a direc
~flux! line under the action of diffusing vacancies.

The outline of the paper is as follows. In the next secti
we define the lattice model of vacancy-mediated diffus
more precisely, and, using this as a base, construct the
tinuum theory. We then highlight the ‘‘mesoscopic’’ physic
contained within this coarse-grained model. In Sec. III
analyze the continuum model at the level of mean-fi
theory ~MFT!. The apparent physics within MFT is simple
and the solutions of the mean-field equation yield resu
which contain some correct scaling information~i.e., the
length-time scaling!, but completely miss the more interes
ing statistical aspects; namely the strongly non-Gaussian
ture of the fluctuations as found from the lattice calculatio
Thus we are led to attempt an exact solution of the c
tinuum theory. This is made possible by formulating
infinite-order perturbation theory, as described in Sec.
The results for various dimensions are derived and prese
in Sec. V—the non-Gaussian statistics are seen to be c
pletely reproduced, with the added advantage that the res
from the continuum theory are valid for arbitrary dimensi
d. In Sec. VI we give an illustration of the utility of this
13 754 ©1999 The American Physical Society
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PRB 59 13 755CONTINUUM THEORY OF VACANCY-MEDIATED DIFFUSION
coarse-grained approach. We formulate a continuum mo
for the transverse fluctuations of ad11 directed~flux! line
due to VMD of pinning centers. We end the paper with S
VII which contains our conclusions, along with some su
gested extensions of the present work.

II. FORMULATION OF THE CONTINUUM THEORY

We first consider a simple lattice formulation of VMD
with which we shall motivate our continuum theory. To b
specific, let us consider the following lattice model. Each s
r of a d-dimensional hypercubic lattice contains a spinSr
which may take the values61. @In the crystal lattice appli-
cation one would take all spins as ‘‘up,’’ thus referring
crystal atoms, except for the tagged particle~or impurity!
which would be assigned a ‘‘down’’ spin.# A spin may only
alter its value when involved in an exchange with a sin
diffusing vacancy located at the positionR(t). As only the
positionof the vacancy is relevant we may give the vacan
a spin 11 for notational convenience. There are vario
ways to describe this model. For instance, one can defin
probability distribution for the vacancy position and the p
sition of the up and down spins, and then write a mas
equation for its evolution. Alternatively, one can regard t
process as a stochastic cellular automata~SCA!, and attempt
to write explicit SCA rules for its operation. We shall follow
the latter approach.

The rule for updating the vacancy position is written a

R~ t1dt !5R~ t !1 l~ t !, ~1!

wherel(t) is a unit lattice vector drawn with equal probab
ity from the 2d possible choices. The update of the spins
written down as follows: a spin will remain unchanged u
less it is located either at the vacancy position at timet, or at
the subsequent vacancy position at timet1dt. Thus we have

Sr~ t1dt !5Sr~ t !1d r ,R(t)@SR(t1dt)~ t !2Sr~ t !#

1d r ,R(t1dt)@SR(t)~ t !2Sr~ t !#, ~2!

which may be re-arranged@with the help of Eq.~1!# in the
appealing form

Sr~ t1dt !2Sr~ t !5@SR(t)1 l(t)~ t !2SR(t)~ t !#

3@d r ,R(t)2d r ,R(t)1 l(t)#. ~3!

The factorization of the SCA update forSr(t) gives us
reason to hope that a simple Taylor expansion may be
voked to yield an accurate continuum limit, since t
leading-order terms will appear in a multiplicative fashi
~as opposed to terms occurring in an additive fashion
which case one is unsure of their relative importance!. Thus
we shall take the simplest continuum limit: First, the positi
of the vacancy is described by a real vectorR(t)PR d sat-
isfying

dR/dt5j~ t !, ~4!

which is the continuum equivalent of Eq.~1!. The random
lattice vectorl has given way to a random vectorj ~with an
implicit factor of Adt) which is drawn from a Gaussian dis
tribution P@j# with zero mean, and covarianc
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^ja(t)jb(t8)&5Dda,bd(t2t8). ~Henceforth angular brack
ets denote an average overP.! Second, the spin variable
Sr(t) will be replaced by a coarse-grained ‘‘magnetizati
density,’’ or ‘‘order parameter’’~OP! denoted by the field
f(r ,t). Expanding each term of Eq.~3! to first order, we
obtain

] tf~r ,t !52lFj•
]f„R~ t !,t…

]R~ t ! G] td
d
„r2R~ t !…, ~5!

wherel is a phenomenological parameter with dimensio
LdT. This last equation represents our continuum theory
VMD. It looselyresembles a Langevin equation, but the im
plicit appearances of the noisej throughout the equation
forbid such a simple designation. For instance, it is not cl
how one would write down a dynamical equation for the O
probability distributionP@f,t#—it would certainly not fit
within the standard Fokker-Planck category.

One may gain a clear physical understanding of each
the two factors on the right-hand side~rhs! of Eq. ~5!. As
regards the second of the two: it allows temporal change
the OP only in the neighborhood of the vacancy posit
R(t). The first factor guarantees~via the directional deriva-
tive! that the OP changes in time only when the vacan
moves through a region in which the OP has spatial va
tion. Furthermore, the amount of temporal variation is l
early coupled to the amount of spatial variation~with a
strength l). This appears reasonable with regard to t
physical properties of VMD we wish to model.

The generalization of the continuum theory to multip
vacancies is possible if one assumes that the vacancie
independent from one another. In the case of low vaca
density, this assumption should be valid, as vacancy co
sions will be rare, and will have no effect on the statistics
the tag. With this independence assumption, one may sim
introduce a set of vacancy position vectorsRi , where i
51, . . . ,N, with N denoting the total number of vacancie
The equation of motion for each position vector is of t
form ~4! ~with an independent Gaussian noiseji on the rhs!.
The coarse-grained OPf will now be a functional of theN
random processesRi . Its equation of motion has the explic
form

] tf~r ,t !52l(
i 51

N Fji•
]f„Ri~ t !,t…

]Ri~ t ! G] td
d
„r2Ri~ t !…. ~6!

Henceforth we will restrict our attention to the case of
single vacancy.

It is useful to note that analytic progress on Eq.~5! is very
difficult without first recasting it in Fourier space~so as to rid
ourselves of the implicit nature of the noise!. Denoting the
Fourier transform~FT! of the OP byf̃(k,t) we have

] tf̃~k,t !52lG̃~k,t !E dk1G̃~k1 ,t !* f̃~k1 ,t !, ~7!

where

G̃~k,t !5~j•k!exp@ ik•R~ t !#, ~8!

anddk[ddk/(2p)d.
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13 756 PRB 59T. J. NEWMAN
We shall now discuss the initial conditions. As for th
vacancy, we simply need to define its initial positionR0
[R(t50). The initial conditionf0(r ) for the OP will vary
according to the physical system we are interested in mo
ing. As regards the case of a tagged particle~or impurity!
being driven by the wandering vacancy, we take the ini
condition on the lattice to be all spins up, bar one down s
~representing the tag! located at some point~the origin, say!.
In the continuum, this may be described by

f0~r !5A2Bdd~r !. ~9!

Alternative scenarios may be investigated by modifying
initial OP distribution. For instance, settingf0 to be a step
function would be appropriate for modeling the vacan
mediated roughening of an initially straight domain wall.12

Once the initial conditions are defined we may forma
integrate the equations of motion to give

R~ t !5R01E
0

t

dt8j~ t8! ~10!

and

f̃~k,t !5f̃0~k!2lE
0

t

dt8G̃~k,t8!

3E dk1G̃~k1 ,t8!* f̃~k1 ,t8!. ~11!

This completes our formulation of the model. The main
cus of this paper is to calculate the mean OP densityr(r ,t)
5^f(r ,t)&, which is the quantity analogous to the tagg
particle distribution function calculated in previous latti
studies. In the next section, we shall present a brief me
field analysis ofr, while Secs. IV and V contain a descrip
tion of the exact solution forr from Eqs. ~10! and ~11!
above.

III. MEAN-FIELD THEORY

The purpose of this section is to indicate how much o
can learn about the system from a simple, yet uncontrol
mean-field theory~MFT!. We shall find that MFT predicts
the correct length-time scaling, but misses the non-Gaus
nature of the fluctuations in VMD. This error persists in
dimensions~bar d50).

We shall define the MFT to be used here in an operatio
sense. Namely, we perform the simplest possible averag
the OP equation of motion~7!, by replacing the average o
the right-hand side by the product of two separate avera
Explicitly, we have

] tr̃~k,t !52lE dk1^G̃~k,t !G̃~k1 ,t !* &r̃~k1 ,t !. ~12!

We refer the reader to Appendix A for the evaluation

^G̃(k,t)G̃(k1 ,t)* &. The averaging necessarily introduces
temporal cutofft0 ~which sets the implicit correlation scal
of the white noisej). We shall only ever work to leading
order in 1/t0. Eq. ~12! now takes the form
l-

l
n

e
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l
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] tr̃~k,t !52
lD

t0
kaE dk1k1

ar̃~k1 ,t !

3e2(D/2)(k2k1)2t1 i (k2k1)•R0, ~13!

where the momentum components are indicated by a su
script for future notational convenience.

This integral equation may be recast in a more illumin
ing form by inverse Fourier transforming the density. Aft
some rearranging, one has

] tr~r ,t !52
lD

t0
E dk1k1

ae2 ik1•r r̃~k1 ,t !E dk~ka1k1
a!

3e2(D/2)k2t2 ik•(r2R0). ~14!

Now the inner integral may be written as (i ] r a1k1
a)g(r

2R0 ,t). The Green function

g~r ,t !5~2pDt !2d/2exp@2r 2/2Dt#

is the probability density for the vacancy@in other words,g
is the solution of the Fokker-Planck equation correspond
to Eq. ~4!#. One may then manipulate the outer integral ov
k1 in terms of the inverse FT of the density to obtain t
following partial differential equation forr(r ,t):

] tr5
lD

t0
¹•@g~r2R0 ,t !¹#r. ~15!

As a MFT, the above equation makes good sense. It c
tains the simple physical information that the OP dens
undergoes a diffusion process, but with the twist that
diffusivity is not constant, but proportional to the probabili
density of the wandering vacancy. One would have had li
trouble in writing down such a MFT using physical arg
ments alone.

A complete analytic treatment of Eq.~15! is beyond our
present purpose. However, the limitr 2!Dt is trivially
solved, since to leading order the equation reduces to

e~ t !] tr5
D

2
¹2r, ~16!

where e(t)5(t0/2l)(2pDt)d/2. One may solve the abov
equation using FT, and with the initial condition specified
Eq. ~9! we obtainr5A2Bg„r ,t(t)…, wheret(t) is the ef-
fective time scale of the tagged particle, and is given
t(t)5* t0

t dt8e(t8)21 which, ignoring numerical prefactors

takes the form

t~ t !;5
l

~Dt !d/2

t

t0
0,d,2

l

Dt0
ln~ t/t0! d52

l

~Dt0!d/2
d.2

. ~17!

This solution firstly tells us that the OP density always h
a Gaussian envelope~at least for r 2!Dt, which encom-
passes most of the physically interesting scales, sincet@t),
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but that the temporal spreading of the envelope is not tha
a random walker (Dr;At), but much reduced. In two di
mensions the spreading increases only logarithmically
time ~as the vacancy’s random walk is only just recurren!,
and ford.2 the spreading halts altogether after some fin
time, which is accounted for by the vacancy having ‘‘fled t
scene,’’ never to return.

The main interest in VMD is not so much in the reno
malized time scale, which one can argue for on simple ph
cal grounds, but rather in the non-Gaussian nature of the
fluctuations. These non-Gaussian fluctuations were exa
calculated in lattice theories, and were generally found
have tails which decayslower than a Gaussian. It is the aim
of the following two sections to reproduce these featu
from the continuum theory.

IV. SOLUTION VIA PERTURBATION THEORY

We have seen the relative failure of MFT, which is ess
tially due to imposing a strict locality on the OP equation
motion. In fact, the evolution of the OP is nonlocal as se
from Eq. ~5!. A more systematic treatment is required
handle the subtle correlations between vacancy and
Given the functional nature of Eq.~5!, the most useful ana
lytic technique would appear to be perturbation theory. Si
the equation of motion is linear, we shall not encounter
exponentially divergent number of terms at higher orde
rather, each order will contain only a single term.

So referring to the time integrated~and Fourier trans-
formed! evolution equation for the OP, namely Eq.~11!, we
make the substitution

f̃~k,t !5 (
n50

`

lnx̃n~k,t !, ~18!

where x̃0(k,t)5f̃0(k). Equating powers of the couplingl
yields ~for n.0)

x̃n~k,t !52E
0

t

dt8G̃~k,t8!E dk8G̃~k8,t8!* x̃n21~k8,t8!.

~19!

This relation may be iterated to give the explicit solution f
each order of perturbation theory as

x̃n~k,t !5~21!nE
0

t

dt1•••E
0

tn21
dtnG̃~k,t1!

3F )
m51

n21 E dkmG̃~km ,tm!* G̃~km ,tm11!G
3E dknG̃~kn ,tn!* f̃0~kn!. ~20!

In principle, the solution given above may be used
calculate a range of spatiotemporal OP correlation functio
Our present aim is more modest—we shall perform a dir
average of each term in the perturbation series in orde
obtain the OP densityr(r ,t). We have
of

n

e

i-
P

tly
o

s

-
f
n

P.

e
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ct
to

r̃~k,t !5f̃0~k!1 (
n51

`

ln^x̃n~k,t !&. ~21!

Using the explicit form for theG̃ functions as given in Eq.
~8! we may write

^x̃n~k,t !&5E
0

t

dt1•••E
0

tn21
dtnka1

3F )
m51

n21 E dkmkm
bmkm

am11G
3E dknkn

bnf̃0~kn!Qn~$km ,tm ;am ,bm%!,

~22!

where the functionQn represents the following average:

Qn~$km ,tm ;am ,bm%!5~21!nK )
m51

n

jamjbm

3exp@ iR~ tm!•~km212km!#L ,

~23!

with the time orderingt1>t2>•••>tn , and the notation
k0[k. At this stage of the calculation we can see clearly
remaining steps. First, we must perform a multivariate av
age in order to determine the functionQn . Second, we mus
perform thenfold integral over the momenta$km%. Third, we
must perform thenfold integral over the intermediate time

$tm%. Finally, we are left to resum the functionsx̃n which
will yield the FT of the mean OP density. In the absence
hindsight, it is somewhat surprising that all these steps m
be performed exactly for arbitrary dimensiond. The remain-
der of this section will consist of the details of the first tw
steps, whilst the third and fourth steps will be presented
the subsequent section as they are dimension spec
Henceforth we shall take the initial position of the vacan
to be at the origin:R050. This slight loss of generality
~which is of no physical significance in the long-time r
gime! is more than compensated by calculational simplici

We begin with the first step; that of determiningQn . We
refer the reader to Appendix B in which this multivaria
average is evaluated. The result is

Qn~$km ,tm ;am ,bm%!

5S 2
D

t0
D n

)
m51

n H @dam ,bm
2Dt0~kam2km

am!~kbm2km
bm!#

3expF2
D

2
~k2km!2~ tm2tm11!G J , ~24!

where the symboltn11[0.
To proceed with the momentum integrals, it is necess

to decide upon an initial condition. We shall use that given
Eq. ~9!, since our interest is presently focused on t
vacancy-driven diffusion of a tagged particle. The gene
momentum integral~for 1<m<n21) takes the form
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E dkmkm
bmkm

am11@dam ,bm
2Dt0~kam2km

am!~kbm2km
bm!#

3expF2
D

2
~k2km!2~ tm2tm11!G

5@D~ tm2tm11!#21@2pD~ tm2tm11!#2d/2

3@dam ,am11
1D~ tm2tm11!kamkam11#, ~25!

where we have worked to leading order in (1/t0). The final
momentum integral involves the OP initial condition whic
in Fourier space takes the formf̃0(k)5(2p)dAdd(k)2B.
Its evaluation yields

E dkn kn
bnf̃0~kn!@dan ,bn

2Dt0~kan2kn
an!~kbn2kn

bn!#

3expF2
D

2
~k2kn!2tnG52Bkan~2pDtn!2d/2, ~26!

to leading order in (1/t0). Collecting our results from Eqs
~24!, ~25!, and~26!, and substituting back into Eq.~22!, we
have

^x̃n~k,t !&52BD@2~2pD !gt0#2nE
0

t

dt1

3F E
0

t1
dt2~ t12t2!2(11g)

•••

3E
0

tn21
dtn~ tn212tn!2(11g)G tn

2g

3ka1H )
m51

n21

@dam ,am11

1D~ tm2tm11!kamkam11#J kan, ~27!

where we have introducedg[d/2. An important point must
be mentioned at this stage. The intermediate time integ
above appear to be divergent at one or both of their lo
and upper limits. This divergence is regularized by the ex
tence of the microscopic time scalet0. As mentioned before
this scale appears as an effective correlation time in the w
noise process. It may be taken to be arbitrarily small~with
respect to any ‘‘experimental’’ time scale in which one
interested!. Therefore any time integral limit is naturall
softened byt0.

We have now completed two of the four steps in the c
culation ofr̃(k,t). To proceed further requires the evaluati
of the nfold integral over the intermediate times which
sensitive to spatial dimension, and is presented in the n
section.

V. MEAN OP DENSITY IN VARIOUS DIMENSIONS

As mentioned above, we must now specify the spa
dimension of interest. In fact there are three cases:~i! d.2,
~ii ! d52, and~iii ! d,2. These cases were already appar
within MFT, and arise because of the qualitatively differe
ls
r
-

ite

l-

xt

l

t
t

behavior of the vacancy’s random walk. In case~i!, the va-
cancy will essentially ‘‘disappear’’ from the vicinity of the
tagged particle after a finite time. In case~ii !, the vacancy’s
walk is marginally recurrent and we expect a slow, b
steady, evolution of the OP density for all times. In case~iii !,
the vacancy’s walk is ‘‘strongly’’ recurrent, and thus th
cross section of vacancy-tag collisions is always ‘‘large.’’
is the aim of this final stage of the calculation to repla
these qualitative descriptions by precise results. We s
analyze the three cases in turn.

A. d>2

In this and the following two subsections we shall ta
advantage of the smallness oft0. Integrals which are appar
ently divergent will be regularized usingt0, and only the
most singular contribution will be retained. We stress th
this form of regularization is not a mathematical manoeuv
but is entirely consistent with the physical meaning of wh
noise; namely a noise process which is a limiting form o
microscopic process with a correlation timet0.

Referring to Eq.~27! we adopt the following strategy to
evaluate the integrals. First, we explicitly contract thenfold
momentum product, which will yield 2n21 terms inn sets;
terms in themth set being characterized by a factor
k2(m11) ~wherem counts from 0 ton21). A term in themth
set will also carry a string composed ofm different factors of
the form (t j2t j 11). For each term, we perform the tim
integrals in order, starting fromtn , keeping only the most
singular contribution at each step, and being careful to
clude the appropriate time-difference factors in the nume
tor ~from the string!. This procedure is fairly simple ford
.2, since the only integrals one encounters are

E
t0

t2t0
ds

1

~ t2s!11gsg
.

1

g

1

~ t0t !g
,

E
t0

t2t0
ds

1

~ t2s!gsg
.

2

~g21!

1

t0
g21tg

,

E
t0

t2t0
ds

1

sg
.

1

~g21!

1

t0
g21

. ~28!

One finds that each term of a given set has the same v
after integration. In detail, themth set containsCm

n21 equal
terms of value

Dmk2(m11)S 1

gt0
gD n2m21S 2

~g21!t0
g21D mS 1

~g21!t0
g21D .

Thus the series composed of then sets is nothing more than
a binomial series; which is trivially summed. The domina
contribution from thenfold time integral may therefore be
combined with the constant prefactor of Eq.~27! to give
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^x̃n~k,t !&5
BDk2

~g21!~2pDt0!g

3F2
1

gt0~2pDt0!g S 11
2g

~g21!
Dk2t0D G n21

.

~29!

This ends the third step~namely the intermediate tim
integrals!. The last step is to reconstructr̃ from the infinite
sum given in Eq.~21!, using Eq.~29! above. In the presen
case, this sum is seen to be simple, as the series~in powers of
l) is geometric. Explicitly evaluating the sum yields the fin
result in the form

r̃~k,t !5A~2p!ddd~k!2
B

2 S 11
1

11~k/L!2D , ~30!

where the momentum scale is given by

L25
~g21!

2Dt0
S 11

~2pDt0!gt0

l D . ~31!

It is of interest to recast this result in real space. For instan
in the physically pertinent case ofd53 one has

r~r ,t !5A2
B

2 S d3~r !1
L2

4pr
e2Lr D . ~32!

Thus ford.2 we find that the initiald function of the OP
density is evolved such that only half of its weight
smeared. That half which is smeared attains a Lorentz
profile in Fourier space, with a momentum scaleL as given
in Eq. ~31!. This scale is seen to be an effective UV cuto
(1/ADt0) renormalized by the vacancy-tag couplingl. Note
that this scale is independent of time, in accordance with
expectations. Note also that the smearing of the OP dens
strongly non-Gaussian. In real space, the smearing create
OP density which is exponential in form, as seen explic
for d53 above.

One final point: we expect that asd increases, less of th
initial d function ~in the OP density! will be smeared, since
the vacancy will disappear from its vicinity with increasin
efficiency. The fact that we find exactly half of thed func-
tion to be smeared, for alld, is a consequence of starting th
vacancy’s walk precisely at the location of thed function.
Had we chosenR0Þ0, the d dependence of the ‘‘smearin
fraction’’ would have been apparent.

B. d52

We now turn to the marginal case ofd52. Within MFT
we found that the root-mean-square fluctuations of the
~i.e., the smearing of the initiald function in the OP density!
grow as@ ln(t)#1/2. We expect this slow growth to be retaine
within the exact solution. Our main interest is in how t
functional form of the OP density differs from the Gaussi
found in MFT.

In exactly two dimensions, thenth-order contribution to
the OP density, as given in Eq.~27!, takes the form
l

e,

n

ur
is
an

g

^x̃n~k,t !&52BD~22pDt0!2nE
0

t

dt1F E
0

t1
dt2~ t12t2!22

•••

3E
0

tn21
dtn~ tn212tn!22G tn

21

3ka1H )
m51

n21

@dam ,am11

1D~ tm2tm11!kamkam11#J kan. ~33!

Our strategy for evaluating the time integrals is the same
before. We multiply out the integrand to form a total of 2n21

terms arranged inn sets. Each term is integrated over then
intermediate times, with only the most singular piece
tained from each integral. Care is taken to include the app
priate factors, for a given term, in the numerator. The in
grals one encounters are given below~with p>0):

E
t0

t2t0
ds

@ ln~s/t0!#p

~ t2s!2s
.

@ ln~ t/t0!#p

t0t
,

E
t0

t2t0
ds

@ ln~s/t0!#p

~ t2s!s
.

~p12!

~p11!

@ ln~ t/t0!#p11

t
,

E
t0

t2t0
ds

@ ln~s/t0!#p

s
.

1

~p11!
@ ln~ t/t0!#p11. ~34!

As before, one finds that each term of a given set has
same value after integration. In this case themth set contains
Cm

n21 equal terms of value

Dmk2(m11)~1/t0!n2m21@ ln~ t/t0!#m11.

Then sets form a binomial series which is trivially summe
We find

^x̃n~k,t !&5
BDk2 ln~ t/t0!

2pDt0
H 2

1

2pDt0
2

3@11Dk2t0 ln~ t/t0!#J n21

. ~35!

The final step is to sum over the functions^x̃n& as prescribed
by Eq. ~21!. As before, this series is geometric and the s
may be immediately performed to give

r̃~k,t !5A~2p!ddd~k!2BS 1

11~k/L!2 ln~ t/t0!
D , ~36!

where the momentum scale is given by

L25
1

Dt0
S 11

2pDt0
2

l D . ~37!

Inverting the FT yields our final result

r~r ,t !5A2
BL2

2p ln~ t/t0!
K0S Lr

@ ln~ t/t0!#1/2D , ~38!
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whereK0 is the modified Bessel function of zeroth order.13

We see that the Gaussian envelope for the spreadin
the OP density~as found in MFT!, has given way to a com
pletely different form, namely the Bessel functionK0. This is
in complete agreement with the previous exact latt
calculations.8

C. d<2

Finally we consider VMD ford,2. Within lattice calcu-
lations the case ofd51 may be studied either within th
geometry of a chain, or within the geometry of a strip
finite width. In the former case, the situation is trivial, sin
the tag can only be moved back and forth to one of two s
as the vacancy passes by. In the latter, the smearing o
tag distribution function is nontrivial; the Gaussian fluctu
tions of MFT giving way to a stretched exponential. In th
subsection, we shall see how to recover these results, a
with their generalization to arbitrarydP@0,2#.

Our starting point is the expression forx̃n given in Eq.
~27!. We shall adopt the same strategy as before to eval
thenfold integral over the intermediate times. In this case
encounter the following integrals~with p>0)

E
t0

t2t0
ds

1

~ t2s!11gs(p11)g2p
.

1

gt0
gt (p11)g2p

,

E
t0

t2t0
ds

1

~ t2s!gs(p11)g2p
.

B@12g,~p11!~12g!#

t (p12)g2(p11)
,

E
t0

t2t0
ds

1

s(p11)g2p
.

t (p11)(12g)

~p11!~12g!
, ~39!

whereB(a,b) is the Beta function.13

In the two previous subsections, we were able to extr
the most singular contributions from the 2n21 terms in the
integrand of Eq.~27!, and we found that these contribution
formed a binomial series which was then easily summed
the present case, this simple summability is lost, due to
presence of the Beta functions. However, we retain the
ture that each of theCm

n21 terms within themth set are equa
in value. Thus, after some manipulations, we may reduce
function ^x̃n& to the form

^x̃n~k,t !&52
B

@2gt0~2pDt0!g#n

3 (
m50

n21

Cp
n21

@gG~12g!Dk2t12gt0
g#m11

G@11~m11!~12g!#
.

~40!

In order to perform the summation overm, we introduce
Hankel’s representation of the Gamma function:13

1

G~z!
5

i

2pEC
dtett2z, ~41!

where the contourC runs from minus infinity above the
negative real axis, encircles the origin clockwise, and th
of

e

f

s
he
-

ng

te
e

ct

In
e

a-

e

n

returns to minus infinity below the real axis. Using this re
resentation for the Gamma function appearing in the deno
nator of the summand of Eq.~40!, we may explicitly perform
the ~binomial! sum. Each function̂x̃n& now takes the form
of an integral overt, with n appearing only as a simpl
power in the integrand. Thus the sum over these functi
@as dictated by Eq.~21!# is again geometric and may b
performed with ease. One then has the following integ
expression for the FT of the mean OP density, valid
0,d,2 ~i.e., 0,g,1):

r̃~k,t !5A~2p!ddd~k!2B
i

2pEC
dt

3
et

tg S 1

t12g1~k/L!2~ t/t0!12gD , ~42!

where the renormalized UV cutoff is given by

L25
1

gG~12g!Dt0
S 11

g~2pDt0!gt0

l D . ~43!

We now wish to extract the scaling behavior of the me
OP density from the above expression. For convenience
definedr5A2r, which is initially ad function with ampli-
tudeB. Let us first specialize tod51. In this case one may
simplify the above integral considerably, using a proced
outlined in Appendix C. The result is the following scalin
function:

dr~r ,t !5
B

p

z

r E0

` ds

As
exp~2s22z2/4s!, ~44!

where the scaling variable isz5rL/(4t/t0)1/4. This integral
is easily analyzed for bothz!1 and z@1. In the former
case, one finds

dr~r ,t !5
B

2A2p
LS t0

t D 1/4

@G~1/4!22Apz1O~z2!#,

~45!

while in the latter, a steepest descents analysis yields

dr~r ,t !;
Bz2/3

Apr
exp@2~3/4!z4/3#. ~46!

Both of the above results are in complete agreement with
scaling functions found by Brummelhuis and Hilhorst,8 from
an exact lattice calculation for VMD on an infinite strip. Th
gives us strong confidence in the physical integrity of o
continuum theory of VMD.

For completeness we briefly describe the form of t
mean OP density for arbitrary dimensiondP@0,2#. The scal-
ing variable in this case is generalized to

z~g!5S 12g

2 D (12g)/2 rL

~ t/t0!(12g)/2
. ~47!

Referring to Eq.~42!, inverse FT and subsequent analys
yields the following results. Forz(g)!1 we find
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dr~r ,t !5
B

~4p!g

G~12g!

G@g1~12g!2#

3L2gS t0

t D g(12g)

@11O~z2(12g)!#, ~48!

while a steepest descents analysis forz(g)@1 reveals

dr~r ,t !; expS 2
~11g!

2
z~g!2/(11g)D . ~49!

This completes our study of the simplest VMD scenar
namely the effective diffusion of a tagged particle by a wa
dering vacancy. We have been able to give exact results
all dimensions. In the case of integer dimensions, our res
are found to be in complete agreement with previous ex
lattice studies.

VI. EXTENSION TO A SLAVED FLUX LINE

In this penultimate section we shall consider a more co
plicated VMD scenario, both as an illustration of the utili
of the coarse-grained approach, and also as a physical m
for a VMD mechanism of flux lattice melting.

We consider an anisotropic lattice consisting of well se
rated planes~in particular, one of the high-Tc cuprates.14!
Within each plane there exists a low density of wander
vacancies. We now imagine a flux line directed perp
dicular to the planes, and strongly pinned by certain latt
impurities.15 If the binding energy is strong, thermal wande
ing of the line will be completely suppressed. However
much weaker form of line wandering may be driven
VMD of the pinning sites themselves~due to exchange with
the low-density planar vacancies, or vacancy aggrega!.
Since each plane has its own stock of vacancies,~which we
disallow from hopping from plane to plane!, the interactions
between a given vacancy and the line are recurrent and
can expect slow and steady smearing of the mean densi
the flux line. The physical existence and/or relevance of
mechanism deserves more detailed investigation~for in-
stance, there are several competing pinning mechan
within the material, one of which is actually due to the ox
gen vacancies themselves.15!

We shall describe this system by generalizing the c
tinuum theory of VMD outlined in Sec. II. First, we take fo
simplicity one vacancy within each plane. In the continuu
this is simply described by attaching a longitudinal coor
nate to the vacancy positionR. The equation of motion for
the vacancies is then given by

] tR~z,t !5j~z,t !, ~50!

where the noise has zero mean and covaria
^ja(z,t)jb(z8,t8)&5Dda,bd(z2z8)d(t2t8). The OP f
now describes the probability density of the flux line. It is
function of a planar coordinater , a longitudinal coordinatez,
and timet. For a givenz, the evolution of the OP is given b
Eq. ~5!, in two dimensions. The simplest longitudinal co
pling shall be taken—namely, an elastic interaction~which
stems from the Josephson coupling between Cu-O plane16!.
Thus the equation of motion for the OP is
;
-
or
lts
ct

-

del

-

g
-
e

s

e
of

is

s

-

,
-

e

] tf~r ,z,t !5n]z
2f~r ,z,t !

2lS j•
]f„R~z,t !,z,t…

]R~z,t ! D ] td
d@r2R~z,t !#,

~51!

where n is an effective longitudinal elasticity. The abov
equation is a valid description so long as the important fl
line configurations r* (z) are smooth, in the sens
ud2r* /dz2u!(dr* /dz)2. As an initial condition, the simples
choice is to take the flux line to be straight, and located at
origin f(r ,z,0)5Ad(r ). Also, we could~artificially! start all
the vacancies at the originR(z,0)50.

This model may now be analyzed in precisely the sa
way as our original VMD model; namely through an infini
order perturbation expansion in powers ofl. One must use
an additional longitudinal FT to diagonalize the elastic co
pling. The appearance of multiple longitudinal Green fun
tions makes the explicit evaluation of the functions^x̃n&
more challenging than before. However, analytic progr
seems possible and is currently being pursued. It is certa
of interest to calculate then dependence of the mean O
evolution, to see how effectively the flux-line elasticity com
bats the driving forces of VMD. Preliminary results indica
that ~i! for n→` the line fluctuations become Gaussian a
coincide exactly with the fluctuations of a single point with
MFT ~as described in Sec. III!, and ~ii ! for n→0 the line
fluctuations have asingular dependence on the elasticit
~and thus differ from the fluctuations of independent plan
tags as described in Secs. IV and V!.

VII. CONCLUSIONS

In this paper we have constructed and solved a continu
theory of vacancy-mediated diffusion. Our main intenti
has been to test the theory against exact results known f
lattice studies.8,9 In particular we have thoroughly examine
the evolution of the mean OP density in the case of a sin
vacancy smearing an originally sharply-peaked OP fluct
tion ~which corresponds to the lattice scenario of followin
the motion of a tagged particle due to vacancy exchange!. At
the level of mean-field theory, we found the~correct! length-
time scaling for the OP density, but no sign of the no
Gaussian fluctuations, which were the most interesting
sults obtained from the lattice studies. Therefore we purs
a more systematic treatment, based on an infinite order
turbation expansion. We presented an exact analysis of
theory in all dimensions, and complete agreement has b
found with the dynamical scaling results obtained from t
lattice. In particular, we find that ford.2, the OP density is
smeared over a limited range and then freezes. The enve
is a simple exponential. Ind52, the smearing is slow, bu
continues indefinitely. The envelope is described by
modified Bessel functionK0. Finally, for d,2, a more chal-
lenging calculation revealed that the envelope of OP sm
ing is described by a stretched exponential. Our results h
the advantage of being valid for arbitrary dimension, th
revealing more clearly their analytic structure. In the fin
section we proposed an extension of simple VMD to t
diffusion of a pinned flux line, slaved to planar vacan
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exchange. Analysis of this more challenging problem is
progress.

There are, needless to say, many other extensions to
current work. We mention the more obvious here. First
would be interesting to calculate higher-order OP corre
tions. Throughout the present work, we have concentrate
the mean OP density. However, there is much nontrivial
formation hidden in the simplest spatiotemporal correlat
functions. Second, one can apply the continuum theory
more complicated~single vacancy! scenarios; mainly by ad
justing the boundary and initial conditions. For instance
step-function initial condition would correspond to th
vacancy-mediated roughening of an initially straight dom
wall. Third, one can study the case of a finite density
vacancies using Eq.~6!, in order to probe the crossover t
Gaussian fluctuations. Finally, one could investigate sim
mechanisms whereby the random walk of the vacancy it
is weakly coupled to the OP, which is a physically releva
perturbation.

The author would like to thank Z. Toroczkai and R. Z
for bringing this problem to his attention, and B. Schmi
mann and W. Triampo for useful discussions. The aut
also thanks E. Lundell for a critical reading of the man
script. The author gratefully acknowledges financial supp
from the Division of Materials Research of the National S
ence Foundation.

APPENDIX A

In this appendix we explicitly evaluate the avera

^G̃(k,t)G̃(k1 ,t)* &, where G is defined in Eq.~8!. Aside
from momentum prefactors, we need to evaluate

I a,b~k,t !5K ja~ t !jb~ t !expF i E
0

t

dt8j~ t8!•k~ t8!G L .

~A1!

We have generalized the momentum in the exponent
time-dependent formk(t) for a reason soon to become clea
At the end of the averaging procedure we shall resetk5k
2k1 as required.

The average given above is most easily evaluated by g
erating the noise prefactors via functional differentiati
with respect tok(t). Thus

I a,b~k,t !52
d2

dka~ t !dkb~ t !
K expF i E

0

t

dt8j~ t8!•k~ t8!G L
52

d2

dka~ t !dkb~ t !
expF2~D/2!E

0

t

dt8k~ t8!2G
5

D

t0
@da,b2Dt0ka~ t !kb~ t !#

3expF2~D/2!E
0

t

dt8 k~ t8!2G , ~A2!

where t0 is the implicit scale of the noise correlations. W
need only retain the first term, given the smallness oft0.
Using this result with Eq.~12! yields Eq.~13! in the main
text.
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APPENDIX B

In this appendix we outline the evaluation ofQn as de-
fined in Eq.~23!. The terms in the exponent ofQn are of the
form R(tm)•(km212km)5*0

tmdsmj(sm)•(km212km). We
replace the momenta appearing in the exponent with ge
alized momentakm(sm). After the averaging procedure w
setkm(sm)5km212km . This allows us to generate the nois
prefactors from functional differentiation. Thus we have

Qn~$km ,tm ;am ,bm%!

5F )
m51

n
d2

dkm
am~ tm!dkm

bm~ tm!
G

3K expF i (
m51

n E
0

tm
dsmj~sm!•km~sm!G L . ~B1!

The average appearing above is easily performed over
multivariate Gaussian noise distribution, and yields

K expF i (
m51

n E
0

tm
dsmj~sm!•km~sm!G L

5expH 2
D

2 (
m51

n E
tm11

tm
dsF(

l 51

m

k l~s!G2J .

~B2!

A given double functional derivative of the exponent give

d2

dkm
am~ tm!dkm

bm~ tm!
expH 2~D/2!E

tm11

tm
ds@K ~s!1km~s!#2J

52
D

t0
$dam ,bm

2Dt0@Kam~ tm!1kam~ tm!#

3@Kbm~ tm! 1kbm~ tm!#%

3expH 2~D/2!E
tm11

tm
ds@K ~s!1km~s!#2J . ~B3!

We use this last result to perform then double functional
derivatives in Eq.~B1!. We note that using our final replace
ment for $km% yields ( l 51

m kl5k2km . Thus we reproduce
Eq. ~24! as given in the main text.

APPENDIX C

In this appendix we give a brief analysis of the integ
appearing in Eq.~42!, specializing tod51. In terms of the
density difference, this has the form

dr̃~k,t !5B
i

2pEC
dt

et

t1/2S 1

t1/21b~k,t !
D , ~C1!

where for convenience we have setb5(k/L)2(t/t0)1/2. First,
we change variables fromt to 2x ~which runs along the
negative real axis! by integrating across the branch cut. Th
yields
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dr̃~k,t !5
B

pE0

` dx

Ax

e2b2x

~11x!
. ~C2!

Next we change variables toy5Ax. Rewriting the exponen-
tial using a Hubbard-Stratonovich transformation gives
double integral

dr̃~k,t !5
B

pE2`

` dy

~11y2!
E

2`

` ds

Ap
e2s212ibsy. ~C3!
an

r-
e

The integral overy now resembles a Fourier transform, an
results in a simple exponential, so that

dr̃~k,t !5BE
2`

` ds

Ap
e2s222busu. ~C4!

The inverse Fourier transform fromk to r is now easily per-
formed resulting in Eq.~44!, as shown in the main text.

For general dP@0,2#, the analysis is more difficult
Progress is made by exponentiating the Lorentzian form
Eq. ~42! using an auxiliary integral, and then performing th
asymptotic expansions on the resulting double integral.
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