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Effects of translational symmetry breaking induced by the boundaries in a driven diffusive system
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We study the effects of the boundary conditions in a driven diffusive lattice-gas model which is
known to display kinetic phase transitions. We find, in the case of attractive interaction, that a
boundary-condition-induced symmetry breaking of the translational invariance, along the direction
of the external field, destroys the second-order kinetic phase transition. This feature is absent in
equilibrium systems. In the repulsive case, the phase diagram and critical properties are probably
unaltered.

Phase transitions and critical phenomena in systems in
nonequilibrium steady state have attracted much atten-
tion in recent years. ' ' The primary interest is to investi-
gate if and how the corresponding equilibrium properties
are affected. In particular, one of the fundamental issues
is to determine the quantities that are necessary and, if
possible, sufficient to extend the concept of universality to
systems in nonequilibrium steady states.

The major distinctive feature of a system in steady state
is the existence of transport phenomena; these could be
maintained by, for example, a temperature gradient, a
chemical-potential gradient, or an external (electric) field
in the respective cases of thermal, chemical, or electrical
transport. Recently a nonequilibrium model proposed by
Katz, Lebowitz, and Spohn has received extensive in-
terest. ' ' ' It is a stochastic lattice-gas model in which
particles are biased to hop along an external electric field
E (hereafter called the KLS model). Not surprisingly,
the critical behavior depends on the additional symmetry
properties introduced by E, besides the usual criteria such
as the symmetries of the order parameter and the spatial
dimensionality. Thus, for instance, the breaking of the
symmetry J —J, cr; ( —1)'a; (i.e., fiipping every
other spin) in the Ising Hamiltonian

P = g crt0'l
J
4 &I,j)

by E results, in the two cases of attractive (J)0, fer-
romagnetic) and repulsive' (J(0, antiferromagnetic)
interactions, in completely different phase diagrams and
critical exponents. The sum is over nearest neighbors, and
o=+ 1.

Along this line of thought, we investigate here by
Monte Carlo simulation the effects of symmetry breaking
by the boundaries in nonequilibrium steady state. This is
stimulated by very recent studies of a model (hereafter
called the boundary-driven model) in which the particles
are driven only through the boundaries. " In such a mod-
el, a nonequilibrium steady state is maintained provided
the system size is finite. The resulting bulk properties are

very different from their equilibrium counterparts. In
stark contrast to equilibrium systems, where the bulk be-
havior is independent of the boundary conditions in the
thermodynamic limit, we will see that the boundaries
(normal to the fiux direction) play a crucial role in deter-
mining the global, nonequilibrium steady-state properties.

It is not difficult to understand the importance of the
boundaries in steady-state systems. As a trivial example,
if we replace the periodic boundary conditions (PBC) in
the KLS model with attractive interactions by those of a
closed box, the system will simply settle into equilibrium
with E playing the equivalent role of gravity, and the flux
is zero. At a more subtle level, the replacement of PBC by
shifted (or screw) periodic boundary conditions in previ-
ous studies resulted in morphological transitions at low
temperature not seen in equilibrium systems. Therefore,
upon changing the boundary conditions, it is reasonable to
expect modifications in the steady-state bulk properties
that survive in the thermodynamic limit. The physical
origin of this effect is conjectured to arise from long-range
effects propagated into the bulk from the boundaries via
the flux.

MODEL

Our kinetic lattice-gas model on a two-dimensional
L x L lattice is defined by three elements: (i) The interac-
tion among the particles through the usual lattice-gas
Hamiltonian:

e= —Jg n, n, .
&i,j &

Here J is the nearest-neighbor-coupling constant, the oc-
cupation variable n; =0, 1. (ii) The transition probability
for going from one configuration to another, in which the
electric field is dynamically imposed:

P =min jl,exp[ —(h&'+ eE)/ktt TH,

where 8R is the energy difference between the two
configurations, E is the strength of the field which will be
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taken to be positive and uniform in the x direction, while
e = —1,0, 1, depending on whether the particle jumps
along, transverse to, or against the field direction. The dy-
namics we use is particle-hole exchange only between
nearest neighbors. The overall density p=(1/L )P;n; is
fixed at —, . (iii) The boundary conditions: In the direc-
tion transverse to E, PBC are used. The crucial physical
feature for our driven system comes in through the bound-
ary conditions at the two open boundaries at x-1 and
x L, transverse to the field. In order to conserve the to-
tal number of particles, a particle leaving the system
through one edge always enters through the other. This is
done without taking into account the E field in (2). This
treatment gives rise to a breaking in the translational in-
variance in the direction of the E field. Our model is an
extension of the boundary-driven model in Ref. 11, now
with an E field in the bulk. In the boundary-driven model,
a current was maintained by asymmetric chemical poten-
tials at two edges, corresponding to a local E field acting
between column 1,2 and between column (L —1),L. The
reason for introducing a bulk E field is to maintain a
current in the thermodynamic limit. Without the bulk
field, the current vanishes as L ', where L is the length
along the direction of the current. " We will see that the
steady-state properties are qualitatively different in the
two cases.

Alternatively, our model can also be regarded as a vari-
ant of the KLS model. The only difference is the afore-
mentioned boundary conditions along the E field, instead
of PBC used in the KLS model. The resultant weakening
of Aux across the boundaries as a result of the absence of
E is important, as we will see that it gives rise to dramatic
changes in the kinetic phase transitions as compared to
the KLS model.

RESULTS

To examine finite-size effects the Monte Carlo runs
were done on LxL =8x8, 16x16, 32x32, 64x64, and
128x128 lattices. The simulations were done with up to
10 Monte Carlo steps per site. The need for such long
runs is due to strong Auctuations in the order parameter
and energy, unseen in equivalent equilibrium systems. In
order to determine whether a phase transition takes place
in the driven system, we have calculated the specific heat
CL 8&uL)/BT,——uL being the energy per site of a system of
size L, and the order parameter for the two (J)O,J & 0)
cases. In the ferromagnetic case we define the order pa-
rameter to be the square root of the structure factor
P„~e' "~ ((2n„~ —1)(2no o

—1)), after properly normal-
izing to unity at complete phase separation. For the anti-
ferromagnetic case, the order parameter (staggered mag-
netization) is defined by (

~ p ~ ), where p = ( I /L )X,i
x ( —1)"+ (2n ~

—1). In equilibrium systems where one
has a fluctuation-dissipation theorem, the specific heat CL
can be calculated from the energy Auctuations (huL)
=(uL, ) —(uL), CL L (Aur ) /keT, and the susceptibil-
ity corresponding to the order parameter is given by
g= 8p/dH l H -o -L (Ap) /ke T—, where H is an appropri-
ate magnetic field that couples to the order parameter,
and (Ap) =(p ) —(~p~) is the Auctuations in the order

parameter. Even though we do not know if there is a
Auctuation-dissipation theorem for the driven system, we
find that in the case of repulsive interactions (J & 0)huL
and hp are useful indicators of where the phase transition
takes place.

0.8

0.6

0.4

0.2

0.4
I

0.6
i

0.8
I

'k@T/3

FIG. 1. Specific heat CL= 8&.uI.)/8T, obtained by nume—rical
differentation, vs temperature kqT/J, for E 0.5J. Five dif-
ferent system sizes L &L are shown: thick dots correspond to
SxS; thin line 16&16; thin dots 32X32; thick line 64X64; and
dashed line 128 x 128.

Ferromagnetic (J)0) case

We find in the case of attractive interactions, and at low
temperature T, a phase separation between a solid (densi-
ty p = 1) and a gas (p =0) phase with an interface per-
pendicular to the E field. This behavior is in analogy to
the boundary-driven model, but the current in our model
is sustained in the limit L ~. In the KLS model, the
phase separation takes place with the interface parallel to
the E field. Because of PBC there is no broken transla-
tional invariance in the direction of the field. The KLS
model undergoes a second-order phase transition and the
critical temperature T, increases and eventually saturates
with the field strength E.

The first diA'erence from the KLS model is that the en-
ergy Auctuations (huL) have a distinct maximum as a
function of temperature, whereas in the KLS model
(AuL) is a monotonic decreasing function of tempera-
ture, signaling a breakdown of the Auctuation-dissipation
theorem. Comparing (AuL) with 8(uL)/8T we find a
difference in the two curves, which is greater than the er-
ror bars can account for, around the temperature at which
the maximum occurs. This becomes more pronounced
with growing L. Thus we cannot claim that the Auctu-
ation-dissipation theorem is valid in our model. We have
no explanation for the diA'erent behavior of (d,uL) in
comparison to the KLS model.

Figure 1 shows the specific heat CL 8(uL)/8T, ob-
tained by numerical differentiation, as a function of tem-
perature for different lattice sizes L for E=0.SJ. The
data represents simulations of 10 Monte Carlo steps per
site. The behavior of the maximum of CL is in stark con-
trast to the exact results for the Ising equilibrium model
where the scaling relation CL =A +8 logL holds at
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FIG. 2. Cumulant Qi. (pt) j&pr. ) vs temperature keTIJ, for
E 0.5J. Different system sizes are as in Fig. 1.

Antiferromagnetic (J(0) case

For weak E, as in equilibrium, the system settles at low
temperature into a (2x2) ordering with particles prefer-
entially occupying one of the two sublattices. At high
temperature, the system is disordered. However, at
sufficiently strong E(~E,), the system becomes disor-
dered at any finite temperature. In the KLS model (i.e.,
with full PBC imposed), ' it has been shown that E, 2J.

Unlike the attractive case, we find that the system with
open boundaries still undergoes a kinetically driven phase
transition as reported in Ref. 10. Determining the critical
temperature as a function of the electric field E, we get a
phase diagram that, within statistical uncertainty, does
not diff'er from that of the KLS model. It remains to be
determined whether the two models have the same critical
behavior, such as the values of critical exponents.

T T, . For L) 16, Ct. seems to approach a limit in-
dependent of L, signaling a breakdown of scaling (in the
sense that the corresponding constant 8=0) and hence a
finite specific heat C limt. Ct, in the thermodynamic
limit, implying that no phase transition takes place. This
evidence of the absence of a phase transition is further-
more supported by the cumulant Qt, (pz, ) /(pi. ) plotted
in Fig. 2, again with E 0.5J. For equilibrium Ising mod-
els'"'s Q, 0.856 at the critical point, independent of L
for large L. Therefore an intersection of diff'erent Qt-
versus-T curves locates the critical point. Using this equi-
librium argument, the missing of the intersection of the
different Qt curves is further evidence that the system
does not undergo a phase transition. The same trend was
observed for larger values of the electric field E. Looking
at the specific heat Ct and cumulant Qt, we thus conclude
that in the ferromagnetic case the kinetic phase transition
reported in the KLS model is destroyed by a simple
changp in the boundary conditions, which induces a sym-
metry breaking in the translational invariance of the sys-
tem.

CONCLUSION

We have found that a simple change in the boundary
conditions in a driven diff'usive system destroys the sec-
ond-order kinetic phase transition, in the case of attractive
interaction. This eff'ect induced by the boundary condi-
tions has no analog in equilibrium systems. In the repul-
sive case the critical properties are probably unaltered. It
would be interesting to investigate how these can be ex-
plained in the context of the renormalization-group ap-
proach, in terms of the associated fixed-point topology.
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