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Energies of the staggered flux phase: A numerical study
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Kinetic and magnetic energies of the staggered flux phase, with a fictitious flux of equal magni-

tude but opposite direction in adjacent square plaquettes, and calculated for the two-dimensional
t-J model using the variational Monte Carlo method. They are compared to the energies of the
resonating-valence-bond state, the flux phase with half a quantum per plaquette, and the project-
ed Fermi-liquid state. For about 10% hole concentration the staggered Aux phase has the lowest

energy of the nonsuperconducting states but its energy is still higher than that of the supercon-
ducting d-wave state.

It is now generally accepted that the large-U Hubbard
model (frequently referred to as the t-J model)' for a
two-dimensional square lattice serves as a good starting
point to formulate a description of the high-temperature
superconductors. The ground state for this model at half
filling, where there is only one electron per site, is by now
fairly well understood. It turns out that there are several
equivalent ways of describing this ground state, all of
which become distinct when charge carriers are intro-
duced by doping. For example, Anderson and co-
workers" propose the resonating-valence-bond (RVB)
state as the ground state for this model. Numerical stud-
ies have indeed demonstrated that at half filling, the
RVB state has an energy very close to the long-range-
ordered antiferromagnetic (AFM) "ground" state. It is
possible to modify the RVB state slightly to become AFM
ordered. For a very small concentration of holes the
RVB state becomes more stable than the AFM state.

Alternatively, AflIeck and Marston (AM) propose the
flux phase for the ground state of the t-J model. At half
filling, the tightly bound electrons are moving under a
magnetic flux of half a quantum @ti per plaquett. In fact,
the flux phase can be shown to be equivalent to the RVB
state. The gap parameter in the RVB state is related to
the magnitude of the flux. Away from half filling, howev-
er, the relationship between the two becomes unclear.

The t Jmodel -Hamiltonian is manifestly invariant un-
der time-reversal transformation, and at half filling, both
of these wave functions respect this symmetry. But away
from half filling, while the RVB state would retain this
symmetry, by its very nature, the extension of the AM
state is expected to break time-reversal symmetry. Since
the RVB state has a BCS-like wave function, it is expect-
ed to become superconducting when there are doped
charge carriers. The extension of the AM state may be a
good description for the normal state away from half
filling.

There are at least two possible ways to generalize the
AM state away from half filling. The similarity of the
AM state to the states that occur in the Hofstadter prob-
lem of the motion of an electron in a magnetic field of
commensurate flux has prompted the proposal of the com-
mensurate flux phase (CFP) for the t-J model away
from half filling. The CFP is closely related to the anyon

state proposed by several groups. Another possibility is
to break the two-dimensional lattice up into two neighbor-
ing plaquettes (A, B), each of which encloses an equal but
oppositely directed flux. This is called the staggered flux
phase (SFP). ' " If the flux is not a half-integral or in-
tegral multiple of the basic quantum unit, time-reversal
symmetry will be broken.

Recently Liang and Trivedi' showed numerically that
in the presence of a finite amount of holes only for t (J,
the CFP has lower energy than the projected Fermi-liquid
state. Hence it becomes important to find out whether the
SFP has sufficiently lower energy to be used as a basis for
studying normal-state properties. Intuitively, the SFP is
expected to have better kinetic energy than the CFP. At a
given hole concentration the magnitude of the flux is a
variational parameter that varies between the CFP state
with half a flux per plaquette and the projected Fermi-
liquid state with no flux. The Fermi-liquid state has 20%
lower kinetic energy than the CFP. ' Further interest in
the SFP is enhanced by the result of Zhang's work'
showing that SFP is unstable with respect to d-wave su-
perconductivity.

To determine whether SFP is a reasonable normal state
of the t-J model, we need to evaluate its energy as com-
pared to other states. In order to take into account the
condition of rigorous exclusion of double occupancy at the
same site, we shall use the numerical variational Monte
Carlo method.

The t-J Hamiltonian we shall consider has two parts,
the kinetic term H, and the magnetic term H„

and

H( = —t g PdC( CJ Py+H. c.
(ij)cz

H, =JgS; S
(ij )

where (ij) is for nearest-neighbor pairs and Pd is the
Gutzwiller projection operator that excludes double occu-
pancy.

Following Poilblanc, the wave function of the SFP is
constructed by diagonalizing the effective Hamiltonian

He= —g e "C; C, +H.c. ,
(ij )a
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where the phase a;~ is chosen such that the total number
of phases around the A (8) site plaquette is 2M
( —2~). @ is in units of basic quantum flux C&o. Given
the Aux there is still the choice of gauge. The wave func-
tion constructed below and the calculated kinetic energy
will be gauge dependent. Similar situations occur in the
CFP. Readers are referred to Ref. 12 for extensive dis-
cussion. It turns out that the lowest energy is obtained by
simply taking all la;~l A&2, with A and 8 sites having
opposite sign. The Hamiltonian is easily diagonalized and
its quasiparticles are
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where the wave vector Q (x, tr),

l, l'--,' (1 —
g /E, )

and

IUkl'- -'(1+4/E ) .

The quasiparticle energy Ek = (gk+ dk ) ', where

gk
= (cosk„ +coskr)cos(x/2)4

and

dk = —(cosk„—cosk~)sin(z/2)4.

Now the trial wave function for SFP can be constructed,

ly)=~d H c'kIckilo),
k &kF

where kF represents the Fermi surface and is determined
by the number of particles present.

There is only one variational parameter 4 in the SFP
trial wave function. This is similar to the RVB wave func-
tion where the bond strength or the gap 6 is the only
variational parameter. At half filling, because of SU(2)
symmetry, the two wave functions are, in fact, the same
with the identification 6=2tan(z/2)4. We have calcu-
lated the magnetic energy per site for several values of 4
as shown by the open squares in Fig. 1. The dashed line is

—0.45
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FIG. 2. Same as Fig. 1, except now there is a finite hole con-
centration 8 g'2

a guide for the eye. It is quite surprising to find that
within the numerical accuracy, the energy is independent
of @ unless @& 0.1. It should be noted that the
equivalence of RVB states and SFP states also have been
verified numerically. In a semilogarithmic plot it would
seem there is a minimum as shown in Ref. 4. We believe
that the local time-reversal symmetry should not be bro-
ken at half filling because there is only the Heisenberg in-
teraction. Hence the SFP wave function has the right
symmetry for (H, ) to be independent of @.

We have also calculated the energy analytically by us-

ing the Gutzwiller approximation (GWA). In this ap-
proximation the SFP and RVB are again identical at half
filling. The details of the GWA for the RVB state can be
found in Ref. 4. The result of GWA is plotted as the solid
line in Fig. 1. Although the GWA produces the correct
lowest-energy state (4 —,

' ) that preserves time-reversal
symmetry, it cannot account for the 4 independence ob-
served in the numerical calculations of (H, ).

Away from half filling, the kinetic-energy term H, be-
comes very important for t » J. The average magnetic en-

ergy (H, ) and kinetic energy (H, ) are plotted (the open
squares) as a function of staggered flux 4 in Figs. 2 and 3,
respectively. The hole concentration is b'= —,', =0.1. As
expected, the kinetic energy favors zero flux while the
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FIG. 1. Magnetic energy per site &H»)lJ as a function of the
magnitude of staggered flux @ at half filling. Open squares are
the numerical result for a lattice of 82 sites, and the solid line is
the result using Gutzwiller approximation. The dashed line is a
guide for the eye.
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FIG. 3. The kinetic energy as a function of @for hole concen-
tration 8= —,', . Symbols have the same meaning as in Fig. l.
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120 TABLE II. Same as Table I, except 6= 82 .

100
l

2 e-0 RVB' 0.1

80C3

0 60

C/e =O1 t / J 2 —1.009(4) —1.250(4) —1.250(7)
t/J 5 —2.008(7) —2.875(7) —2.87(2)

'Numbers in this column are obtained from Ref. 4.
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FIG. 4. Density of states as a function for the quasiparticle of
energy EI, in the SFP. The magnitude of flux is 0.1.

TABLE I. Total energies for four diAerent states are com-

pared. The hole concentration is 6= —,', .
1

2 0 RVB

t / J-2 —0.882(3) —0.879(5) —0.961(6) —0.921(4)
t / J 5 —1.503 (4) —1.641(8) —1.692(10) —1.665 (7)

magnetic energy favors @ —,'. What is not expected is

the sharp rise of (H, ) near 4, =0.08. Because of this

sharp rise, the state with the lowest total energy
(H, )+&H, ) for 2 ~ t/J ~ 6 is around 4, . To understand
this result further, we have made an analytical calculation
using the GWA (Ref. 10) with the Gutzwiller projection
operator Pd replaced by the geometric factors g, 2b/
(1+6) and g, 4/(I+6) for the kinetic and magnetic
energies, respectively. The results are plotted as the solid

line in Figs. 2 and 3. The numerical result, which takes
into account the projection operator exactly, seems to
have more sharp features, such as steps and plateaus, then

the smooth variation of the result of the GWA, but the

rapid increase of (H, ) near 4, is still observed. The
significance of 4, is better understood by examining the
density of states of quasiparticle energy Et, of the SFP
state. The density of states plotted in Fig. 4 for 4 0.1

shows a very strong Van Hove singularity with logarith-
mic divergence. For this particular value of energy, the
equal-energy surface in the Brillouin zone is nested and

the nesting wave vectors are Q„ tr[l —4, + (1 —4)].
For a fixed concentration of holes, as the staggered flux 4
decreases from 2 to 0, the Van Hove singularity passes

through the Fermi surface at 4, =1 —v 1 —b and the
magnetic energy increases sharply.

For hole concentration b=0.2, the magnetic energy be-
comes relatively unimportant. The projected Fermi-liquid
state, @ 0, has the lowest total energy for t/J) 2. In
Tables I and II, where 8=0.1 and 0.2, respectively, total
energies of the @ & flux phase, @=0 state, the d-wave

RVB state, and the SFP state at 4=0.1 are compared for
t/J=2 and 5. Notice that the @=—,

' state is also the
lowest energy state of all the CFP states' for 8 & 0.2 and
t/J=2 Hence for phy. sically interesting parameter values

CFP seems to be unfavorable. For large doping (20% or
more), @ 0 or the projected Fermi-liquid state has the
lowest energy. Even the d-wave superconducting RVB
state is not superior. But for smaller doping concentra-
tion, SFP seems to be quite favorable as the normal state.

Since the d-wave RVB state has lower energy than the
SFP, it then becomes interesting to find out if there is

Cooper-pairing instability for the SFP. Recently Zhang
'

demonstrated this instability by using the GWA. Here we

shall examine this instability by directly evaluating the
energy of a BCS state formed by the quasiparticles of the
SFP. The wave function is of the form

I
V') =Pd II (uk+Pk C1'1C —kl ) 10),

k

where

EI —p
2

and

rtkPt =
2t.'p

ek =[(Et, —p)'+Aj]'"
Two different forms of the gap parameter hk have been

chosen: t4 5 for the s wave and Aq =A(cosk„cosk~)—
for the d wave. In the several cases we have studied where

0.1 and 0.3, the energies of the superconducting SFP
state ly') is always higher than the simple SFP state. In
this simple calculation only the lower quasiparticle band
in the SFP state is used and we do not find superconduct-
ing instability. On the other hand, if we use a more so-
phisticated wave function obtained by Zhang' that in-

cludes both quasiparticle bands, ' the d-wave supercon-
ducting instability is observed. But at 10% doping we
found pure d wave has the lowest energy and the super-
conducting state maintains time-reversal symmetry.

In summary, we have presented numerical results of
variational energies calculated for SFP, for 10% hole con-
centration and 2) t/J) 6. SFP, with a nested Fermi
surface, has lower energy than the projected Fermi liquid.
For 20% doping, the Fermi liquid would be more favor-
able. We also have not found any evidence for coexistence
of superconductivity and SFP in the hole concentration
range of 10% to 20%.

In concluding this paper we wish to point out that when
fluctuations are considered, the projected Fermi-liquid
state could be more favorable than the SFP even at a mere
10% doping. But the competitiveness between SFP and
the projected Fermi liquid indicates the importance of the
flux variables. This ~ould support the recent work of
Nagaosa and Lee. '
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