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A two-dimensional lattice-gas model of a binary-ordering-alloy system was used to study the
phase transitions and the atomic configuration near a £=35 grain boundary. The cluster variation
method was used to study order-disorder and melting transitions in the bulk alloys. The complete
binary phase diagrams were constructed for two different sets of interaction-energy assumptions.
Simulations based on the same model were performed to study these transitions in the grain-
boundary region. In addition, the model also yields information on the segregation behavior of the

alloying elements in the grain-boundary region.

I. INTRODUCTION

In recent years there has been significant interest in the
development of ordered alloys as new materials for high-
temperature use. Particular interest has been devoted to
the grain-boundary region, since most of these materials
fail intergranularly. Furthermore, it has been shown that
minor changes in the chemistry of the grain-boundary re-
gion can dramatically change its mechanical properties.
It is therefore very important to theoretically understand
the particular features of the grain-boundary structure in
ordered alloys. However, most of the theoretical studies
of grain-boundary structure are performed using energy-
minimization techniques at absolute zero. In the few
high-temperature studies of pure materials there has been
some evidence of the possibility of melting transitions of
grain boundary at temperatures below the bulk melting
point.»>3 Other calculations show significant disorder-
ing and segregation effects near a free surface or an anti-
phase boundary.*® Monte Carlo calculations have been
carried out for grain boundaries’® showing significant
variation of the antisite defect near the grain-boundary
region. It may be expected that at high temperatures
these effects will be significant in controlling the grain-
boundary behavior. The purpose of the present work is
to study the possible disordering and segregation effects
near a £=35 grain boundary at high temperatures. In
particular, we are interested in studying the influence of
important features of the bulk behavior on the grain-
boundary structure, for example, the effects of a large
difference in the melting points of the two components of
the binary alloy. :

The model used is similar to that of Kikuchi and Cahn
for a pure material' and is extended by us for two com-
ponents. The model is very simple and two dimensional.
It can, nevertheless, yield general trends which are ex-
pected to be valid in a wide variety of cases. Although
two-dimensional results will not be necessary over to the
three-dimensional case, the simple model is particularly
useful in studying the relationship of the obtained results
to the energetic assumptions in the model.

Both disordering and segregation behavior will be
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strongly related to the energetic assumptions in the mod-
el. In Sec. IT A we discuss the assumptions chosen in the
present work. The cases studied are restricted to those
for which the low-temperature structure of the boundary
is perfectly solid and well ordered. These features, as
well as the low-temperature segregation behavior are dis-
cussed in Sec. IIB. As the temperature increases, the
boundary increasingly becomes both chemically and spa-
tially disordered. All cases studied are for an ordering al-
loy with a bulk order-disorder temperature lower than
the melting point, which means that the dominant type of
transition in the grain boundary will be chemical disor-
dering and segregation. One particular feature of the
structure of grain boundaries in ordered alloys is the fact
that different ordering configurations are possible. These
do not have necessarily the same energy. The present
model alloys the study of the different ordering
configurations in the grain-boundary region and their en-
ergy. We have restricted the present study to
configurations that are actually coincident-site structures.
In the nomenclature of Takasugi and Izumi® these are
called fully symmetrical boundaries, as opposed to what
they call pseudosymmetrical boundaries. Also, no rigid-
body translations of one crystal with respect to the other
were allowed. Transitions among the different structures
are observed in the calculations. These different types of
transitions are discussed in Sec. II C.

The study of the full phase diagrams corresponding to
each of the energy assumptions is essential to fully under-
stand the grain-boundary region and is undertaken first.
These results are reported in Sec. III A. Section III B in-
cludes the results for the grain-boundary ordering transi-
tions, and Sec. IITC describes the observed segregation
behavior.

II. THEORY

A. The model and interaction-energy assumptions

The present model is based on a two-dimensional lat-
tice gas with the same assumptions as in Ref. 1. The en-
ergy computation is performed on a pairwise basis, and
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only two possible interatomic distances are included.
One of these distances corresponds to the bulk nearest-
neighbor distance and the other is slightly larger. The
two distances are indicated in Fig. 1 as AB and AC, re-
spectively. The ratio of the interaction energies corre-
sponding to the two distances is a measure of the shape of
the interatomic potential and may influence the results.
In the present work we have used the same ratio as in
Ref. 1, namely 1.2, meaning that the interaction energy
for the larger distance is 20% smaller than the interac-
tion at nearest-neighbor distances. In the present work
this assumption is maintained for both components and
the cross interaction energies as well. Kikuchi and Cahn’
recently reported a study of the influence of varying this
assumption differently for the different types of interac-
tions. In the present work, we studied the effect of an
asymmetry in the phase diagram and therefore main-
tained other parameters constant. Interactions at dis-
tances lower than the nearest-neighbor distance are not
allowed, that is, they are strongly repulsive. Interactions
at distances larger than AC in Fig. 1 are taken as zero
and not included in the calculations.

In addition, we assume an ordering system with an or-
dering energy,

€44 TEpp
2

Two different cases were tested in the calculations cor-
responding to two different phase diagrams. The first one
is that of a completely symmetric phase diagram where
the melting points of the two components are the same.
The second one is that of an asymmetric diagram where
one of the components has a higher melting point than
the other. These cases correspond to two different values
of the energy parameter, defined as

V=¢e,p—

__ €44 " Epp
A___._______
|4

The value A=0 corresponds to a symmetric phase dia-
gram and the value A=1.33 corresponds to a phase dia-
gram that is asymmetric with a lower melting point of
component B. The ordering energy is maintained the
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FIG. 1. The structure of a two-dimensional £=35 grain

boundary and the nine-point basic cluster in the model.
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- TABLE 1. Summary of the assumptions used for the energy
calculation.

A V/go [,LA/E() #B/EO
Case 1? 0.00 0.45 —1.5 —1.5
Case 2° 1.33 0.45 —2.22 —0.78

2Stoichiometric alloy in a symmetric phase diagram.
bStoichiometric alloy in an asymmetric phase diagram.

same for both cases. Table I summarizes the assumptions
used for the energy calculation.

For the calculation of the entropy the cluster variation
method was used with a basic cluster of nine points.
Since distances lower than the nearest neighbor are not
allowed, at most two out of the nine points in the cluster
can be occupied. This reduces the number of possible
configurations of the cluster that have to be considered in
the calculation of the entropy. The total number is 59
configurations of the basic cluster. The geometry of this
cluster allows the calculation of the free energies for bulk
solid and liquid phases as well as for =35 grain bound-
ary. The minimization of the free energy is then carried
out for each of these cases with respect to the equilibrium
distribution of each of the possible configurations of the
basic cluster.

The different bulk phases and the grain boundary have
different symmetry constraints that have to be con-
sidered in the calculation. For all the bulk phases neither
cluster distributions nor chemical concentrations are
fixed. Rather the chemical potential of both species is
fixed, and the minimization process yields the equilibrium
configurational distribution and concentration. A num-
ber of lattice planes have to be considered for all phases.
For the solid phases, five points per plane are considered,
as shown in Fig. 1. The number of lattice planes is at
least 10 for the bulk solid phases. We used 15 for all bulk
phases. As the minimization proceeds, the configurations
in planes n and n +10 are maintained equal. For the
grain boundary the number of planes needs to be much
larger since the periodicity is broken in the direction per-
pendicular to the boundary. We used at least 37 planes in
this case. The configuration of the planes far from the
boundary is fixed and set equal to the bulk equilibrium
configuration at that temperature and for the same chem-
ical potentials. The numerical method used for the
minémization is natural iteration, as described by Kiku-
chi.

B. Low-temperature behavior

The low-temperature behavior of the system is readily
understood based on the energetic assumptions described
above. The stable bulk phase at low temperature will be
the ordered solid, and there are two equivalent variants
of this ordered solid which are the ones shown as upper
and lower crystals in Fig. 1.

The low-temperature structure of the boundary will be
determined by the fact that distances closer than nearest
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neighbor are not allowed. This means that one atom per
boundary period has to disappear. This will occur in the
two planes that are immediately adjacent to the grain-
boundary plane in both crystals giving rise to the W-
shaped density of the boundary found by Kikuchi in the
pure material. In the case of the ordered alloy with the
energetic assumptions discussed above the grain-
boundary region will be ordered at low temperatures.
There will be two possible configurations of this low-
temperature ordered boundary corresponding to the loca-
tion of the boundary plane at a plane of 4 or B atoms, re-
spectively. For the case of a symmetric phase diagram
these two configurations will be equivalent, not so in the
case where the two melting points differ. In this later
case the boundary located at a plane of (low-melting-
point) B atoms will be lower in energy.

The segregation behavior at low temperatures is deter-
mined by the shape of the potential, i.e., the assumption
that the interaction energies at distances AC of Fig. 1 is
20% lower than that of nearest neighbors, and the fact
that this assumption is also maintained for the cross in-
teractions in the ordering system. It can be shown easily
that for both pure A4 and pure B the other type of atom
present as impurities will be rejected from the boundary.
This is seen if the energies associated with a B impurity in
pure A are calculated for the different locations
of the impurity. These are as follows: (1) the B atom
located in the bulk consisting mainly of A4 atoms,
1.2X4(e 45 —€ 4 4); (2) the B atom located at sites 1 or 3
in the grain boundary, 1.2X3(e 45 —¢€ 44 ); (3) the B atom
located at grain boundary site 2, (1.2X3+1)e
—e 44 ); where sites 1, 2, and 3 refer to the ones indicated
in Fig. 1. For the symmetric energy parameter
(e 44 =€pp >€ 4p) it is clear that the bulk is the energeti-
cally most favorable location, and the impurity will there-
fore be rejected from the boundary. A similar reasoning
yields the conclusion that 4 impurities in pure B will also
be rejected from the boundary. Since in the
stoichiometric alloy of case 1 in Table I, A and B are
completely equivalent in this case, there will be no segre-
gation. On the other hand, in the stoichiometric alloy of
case 2 in Table I the boundary will be enriched in the
lower-melting-point element since € 4 , > €55 > € 45.

C. Types of transitions

The first type of transition that can be observed in the
present model is the order-disorder transitions in the bulk
and in the grain-boundary region. The order-disorder
transition in the two-dimensional model used here is of
second order for all compositions, since both ordered and
disordered phases will have very few vacancies at temper-
atures close to the transition. It is expected that the cal-
culated transition behavior for the bulk will be the same
as that predicted by a two-dimensional square Ising mod-
el in the pair approximation. The critical issue is the
order-disorder behavior in the grain-boundary region. It
is possible that this transition will be different from that
of the bulk. Previous work studying the order-disorder
phenomena near the surface region observed that the sur-
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face region is more disordered than the bulk.* Two types
of transitions have been observed.® The first one, called
ordinary, is one where the actual order-disorder tempera-
ture of the surface is the same as in the bulk, even if the
surface region is more disordered than the bulk at tem-
peratures below the transition. The second one is called
an extraordinary transition, where the temperatures are
different.

In addition to the order-disorder temperatures the
present model can study melting transitions. These are of
first order in the bulk and have been shown to occur in
the boundary region at temperatures lower than the melt-
ing point of the bulk. These types of transitions are clear-
ly evident in the density profiles of the boundary at high
temperatures, as shown by Kikuchi and Cahn! for a pure
material. In the present model it is important to note
that as we move in composition it is essential to maintain
constant pressure in the calculations, and since vacancies
are included in significant amounts close to the melting
point, this condition is not necessarily maintained. The
Gibbs-Duhem equation has to be satisfied as composition
changes, as described below in the calculation of the
phase diagrams.

Finally, it is interesting to study the transition that
occurs among the different possible grain-boundary struc-
tures. This is the case in the asymmetric phase diagram,
where the two possible locations of the grain-boundary
plane are not equivalent and a transition among them
may occur. For this transition to occur the boundary
plane has to shift a total of five planes to the next
coincident-site plane.

III. RESULTS

A. Phase-diagram calculation

The phase diagram for a pure component has already
been calculated using the present model by Kikuchi and
Cahn! and will not be reproduced here. We have calcu-
lated the binary diagrams corresponding to the two
different energetic assumptions listed in Table I. The dia-
grams were constructed as it is usually done in cluster-
variation calculations, that is calculating the grand po-
tential for the different phases. The difficulty in con-
structing binary diagrams with the present model is that
since vacancies are included, it is necessary to insure that
the coexistence temperatures for different compositions
are calculated at constant pressure. In order to do this
we started with the stoichiometric compound and moved
away from the equiatomic composition in small enough
steps so as to satisfy the Gibbs-Duhem equation at con-
stant pressure:

2 Xip;=0.
i

The size of the steps was found to be of a few percent,
and decreasing the steps further did not change the re-
sults. Figures 2 and 3 show the computed complete dia-
grams for both cases mentioned in Table I. For the
stoichiometric alloy of case 1 we used a chemical poten-
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FIG. 2. The complete binary phase diagram corresponding
to the symmetric energy assumption (case 1).

tial po/ep=—1.5 for both components. The melting
transitions are all of first order, and for the stoichiometric
alloy the melting temperature is kzT,, /e=1.23. The
order-disorder transitions are all of second order, and for
the stoichiometric alloy the transition temperature is
kpT,./eq=0.78. As expected from the small number of
vacancies at these temperatures this transition agrees
very well with the reported values from a square-lattice
Ising model in a pair approximation.

For the asymmetric phase diagram of Fig. 3 we started
from the stoichiometric alloy with values of the chemical
potentials:

Pa 1708, 2 =_1.114.
€44 €pp
1.3 T T T T T T T T 1
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1.0 |
k. T/€,
8 DISORDERED
0.9 -
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FIG. 3. The complete binary phase diagram corresponding
to the asymmetric energy assumption (case 2).
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This insured the stoichiometric composition for the
solid disordered phase. The parameters of the calculation
shown in Table I are such that the ordering energy is the
same as in the symmetric phase diagram, and therefore
the order-disorder temperature of the stoichiometric
composition is the same as in the diagram of Fig. 2. The
diagram is, of course, not symmetric about the equiatom-
ic composition in either the solidus, liquidus, or the
order-disorder boundaries. It is interesting to note how
similar these diagrams are to actual phase diagrams, in
spite of the simplicity of the model. This similarity illus-
trates how the general trends of the present results are
expected to have quite general validity in a qualitative
way. It is clear, for example, that the present model,
when applied to a segregating system instead of an order-
ing system, will yield a simple eutectic diagram.

B. Grain-boundary ordering transitions

The behavior of the grain-boundary region was studied
by computing the density, composition, and long-range
order parameter across the grain boundary. For case 1 of
a symmetric phase diagram, two types of phenomena
were observed as the temperature was increased, namely
the disordering of the boundary region and the transfor-
mation of the structure to one with increasingly liquidlike
properties. This liquidlike structure is shown in Fig. 4
for a stoichiometric alloy of case 1. Note that this behav-
ior is very similar to that obtained for a pure material.!
The order-disorder transition does not seem to affect this
transition significantly. The thickness of the region
affected by the presence of the boundary increases loga-
rithmically with temperature and diverges for the melting
temperature as discussed by Kikuchi and Cahn! for a
pure material. The ordering in the alloy is disturbed in
the grain-boundary region as shown in Fig. 5, where com-
position profiles are plotted for a boundary of the
stoichiometric alloy in case 1. The oscillations of the
composition plane by plane decrease in amplitude in the

1.1
1.0
0.9}
>» 0.8}
134
@ k. T/e, 1.053—
-
g o.7} B L 0.898—
= 0.802 —
- 0.695
0.6} - 0,596~
- 00297
0.5} ™~
0.4 \ A R . R A
1 3 5 7 9 1 13 15 17 19

LATTICE PLANE NUMBER

FIG. 4. Density profiles across the grain boundary for several
temperatures. The center of the grain boundary is the lattice
plane number 19, and the profiles for each temperature are re-
peated on the right side as a mirror image. The energy assump-
tions are those of case 1 in the text.
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FIG. 5. The composition profile across the grain boundary
for the stoichiometric alloy (case 1) at T /T, =0.765.

vicinity of the grain boundary, meaning significantly
more disorder. Figure 6 shows the long-range order pa-
rameter calculated plane by plane for the stoichiometric
alloy in cases 1 and 2. In this figure it can be seen that
the stoichiometric alloy disorders more in the case of the
symmetric phase diagram than in the asymmetric one.
Also the thickness of the disordered layer diverges loga-
rithmically as the order-disorder transition temperature
is approached. The present results indicate that although
the boundary region is significantly more disordered than
the bulk, the actual transition temperature for the bound-
ary is the same as that of the bulk. These results are very
similar to those obtained by Foiles for Ni;AL'®!! In par-
ticular, the calculated antisite defect energies for NijAl
follow the same behavior as the order parameter calculat-
ed in the present work in the vicinity of the grain bound-
ary.

In addition to the disordering transition, we observed
transitions among the different variants of the grain-
boundary structure. These variants correspond to the
two possible location types of the grain-boundary plane
and are not equivalent in case 2 of the asymmetric dia-
gram. In this case starting with a grain boundary located
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FIG. 6. Long-range order-parameter profiles across the grain
boundary for both stoichiometric alloy cases 1 and 2 at
T/T,=0.765.
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FIG. 7. Density profiles across the grain boundary. In the
case of the asymmetric energy assumption (case 2), the center of
the grain boundary shifts five planes from the original boundary
plane (from 19 to 24) for temperatures above the order-disorder
temperature kg T /g,=0.875.

at a plane rich in 4 atoms at temperatures below the
order-disorder temperature, the boundary shifts by five
planes to the next coincident plane which is rich in B
atoms. This structure has lower energy than the initial
location. The same starting configuration subject to the
minimization process at temperatures above the order-
disorder transition does not present any shift in the
boundary plane location. This is shown in the density
profiles of Fig. 7. These results indicate that at tempera-
tures higher than the order-disorder transition there is
only one variant of the grain boundary, which is a disor-
dered one.

C. Segregation behavior

In Fig. 5 the composition oscillations are such that

‘their average in the bulk is the equiatomic composition.

Even though they decrease in amplitude in the grain-
boundary region, the average composition is still main-
tained to be the same as in the bulk. That is, in the
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FIG. 8. The composition profile across the grain boundary
for the stoichiometric alloy (case 2) at T /T, =0.765.
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FIG. 9. The plot of the grain-boundary composition as a
function of the bulk composition for a £=5 boundary at
T/T,=0.765.

stoichiometric alloy for the symmetric phase diagram
there is no segregation of either component to the grain
boundary. This is not the case for the asymmetric phase
diagram or when the composition is varied away from
stoichiometry. Figure 8 shows composition profiles for a
stoichiometric alloy of type 2 (asymmetric phase diagram
case). The oscillations not only decrease but the average
is now enriched in the lower-melting-point component.
Similar effects can be seen if the composition changes, as
shown in Fig. 9. In this figure we plot the composition of
the grain boundary as a function of the bulk composition.
It is seen that the asymmetry in the phase diagram of the
alloys of type 2 is reflected in these results as well. It is
important to discuss how the composition of the grain
boundary is defined since there are several possible
definitions and they may yield different results. We used
the composition defined plane by plane, and then the
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composition of the grain boundary plane itself was aver-
aged with that of the two adjacent planes. Note that
when the boundary is located at planes of type A4, B
atoms are preferentially removed and vice versa.

IV. DISCUSSION

First we would like to point out that the simple model
used can yield complete phase diagrams that are quite
similar to actual ones. The model is also adequate to
study a variety of grain-boundary phenomena, particular-
ly the high-temperature chemical order and spatial struc-
ture.

We would also like to discuss the general implications
of the present results for the high-temperature behavior
that can be expected in grain boundaries in ordered al-
loys. It is clear that the results that have been found for
surfaces also apply to grain boundaries, that is, there will
be a region around the grain boundary more disordered
than the bulk. The thickness of this region diverges loga-
rithmically as the order-disorder temperature is ap-
proached. Also, segregation effects observed in the vicin-
ity of surfaces will appear in grain boundaries. The disor-
dering phenomenon does not seem to depend strongly on
the details of the atomic interaction energies used in the
simulation. On the other hand, the type of segregation
observed will depend on the phase diagram and therefore
the energetic assumptions used in the calculation. The
present results show that there will be segregation effects
and that they can be very significant. It appears that
when high-temperature properties of grain boundaries in
ordered alloys are studied, the segregation and disorder-
ing effects are essential features that have to be con-
sidered.
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