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By the use of an effective Hamiltonian which takes into account the constraint on the motion of
holes in a quantum antiferromagnet, the dynamics of holes is investigated. It is found that there
is a quasiparticle band whose width is of order J at the bottom of the hole spectrum. The
effective hole-hole interaction mediated by spin fluctuations is derived and the attraction between
holes in the d-wave channel is obtained. The results suggest that a d-wave-pairing condensation

in a quantum antiferromagnet is very possible.

The discovery of high-temperature superconductors has
led to a revival of interest in two-dimensional (2D) strong-
ly correlated electron systems. Anderson' has suggested
that the physics of these materials is contained in a 2D,
large-U, single-band Hubbard model. In the large-U lim-
it, the Hubbard model can be transformed into the ¢-J
model Hamiltonian?
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where n,~¢,=C,-’;C,-C,. The Ci are the usual electron-
creation operators and the rest of the notation is standard.
At half-filling, Hamiltonian (1) reduces to the antiferro-
magnetic Heisenberg model H; which develops long-
range Néel order at zero temperature.

Away from half filling, in order to study the dynamics
of holes in a doped antiferromagnet (AF), numerous ap-
proximation methods3~® have been proposed. They re-
vealed that the characteristic energy describing the
coherent motion of the quasiparticle holes is J and not ¢
(for t > J). The reason is that the hole motion is strongly
coupled to the spin dynamics. Above the quasiparticle
band there exists an incoherent band whose width is of or-
der z. The possible existence of a Fermi surface for the
holes is currently actively debated. In particular, the loca-
tions of the hole-band minimum are of general concern.
Two possibilities have been considered so far: the hole
could be located in momentum space (i) at (z/2,7/2) or
(ii) in the corners of the square defining the pseudo-Fermi
surface, i.e., (x,0) or (0,7). Such a result would imply
that at low temperatures when holes are added to the sys-
tem they will populate the region near that momentum,
thus creating a pocketlike Fermi surface. Recent numeri-
cal studies for small clusters®'? do not seem to find evi-
dence of pockets in the Fermi surface. These interesting
results may indicate that the difference in energy between
(n/2,7/2) and (0,n) is very small, i.e., the energy of a hole
at these different momenta is almost degenerate. Thus,
with respect to a possible location of the band minimum
for an antiferromagnetic (AF) system with one hole, the
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results from different approaches have failed to arrive at a
definite conclusion.

Recently, Dagotto, Riera, and Young'' calculated nu-
merically the dynamical-pairing susceptibility predicting
a large low-energy spectral weight of the pair-pair corre-
lation function in the d-wave channel, which suggests that
the ground state of holes more likely behaves like a quasi-
particle state at (x,0) or (0,7) rather than at (x/2,7/2).
Very recently, Poilblanc and Dagotto'? investigated the
spectral function by exact diagonalization of a small clus-
ter with two holes; they found indications of a hole-
quasiparticle state with minimum energy at (z,0) and
(0,7) momenta, in agreement with pairing-susceptibility
results.'®!" Here we wish to address this question within
the framework of an effective-Hamiltonian approach. We
shall show that a hole in the 2D AF background can be
described by a narrow quasiparticle band whose width is
of order J. The band minimum of the single hole seems to
be located in the corners of the pseudo-Fermi surface, but
the energy at (x,0) and (#/2,7/2) is almost degenerate.
In addition, we also derive the effective interaction be-
tween holes mediated by the spin fluctuations and find
that the quasiparticle-pair interaction is always attractive
in the d-wave channel. We claim that the d-wave super-
conductivity in the system is consistent with both the
quasiparticle property and the type of the pair potential.
The present results are consistent with the recent numeri-
cal calculations. 10712

Let us look at the first term H, in Eq. (1) that describes
the hopping of holes from site to site under the constraint
that no double occupancy of sites is allowed. Although
different analytical methods have been prc:‘,sented,S—8 the
difficulty associated with the treatment of the constraint
still remains to be resolved. Here we will give a different
treatment to the hopping Hamiltonian H,. We note from
Eq. (1) that H, can be rewritten exactly in the following
form:

11

H, = —z()j) (stchc; s +simchcpsit+He), ()
ij
where S;* =C}{C;; and S;” =C/C;;. Now there is a

different interpration for H, in the above equation: the
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holes in an AF background cannot move freely but couple
strongly with the spin background, i.e., the motion of the
holes in an AF background is always accompanied with
absorption and emission. of spin waves. So, H, in Eq. (2)
can be regarded as properly describing the alteration of
spin conﬁgurations as the hole moves. To elucidate this
point clearly, in the followmg, we shall employ a crucial
approx1mat10n to the spin operators S;* and S, in Eq.
(2), i.e., we replace them by the bosonic spin-wave opera-
tors a; and a; defined on each sublattice through the usual
Holstein-Primakoff transformation. We now rewrite H,
in Eq. (2) in terms of spin-wave operators and keep only
the leading terms in 1/S, the Hamiltonian H, becomes

H,= —t(z> (C,-'ﬁCjTa;"a]+C,-§Cj1a,~aj+H.c.) s 3)
ij

where the factor of 25 is absorbed into z. Comparing with
the original Hamiltonian (1), H, in Eq. (3) should act on
the space with no doubly occupied sites, which can be es-
tablished by introducing a constraint:

20 a; + [1 -y cit,c,a] =25 (4)

Equations (3) and (4) describe both the hole hopping
and hole interaction with the spin background.

At half filling (when there are no free fermions) and be-
cause X ,CilCis=1, the problem is then to solve the
Heisenberg model H; under the constraint S, =S —ala;
=0, which is equivalent to Takahashi’s and Hirsch and
Tang’s recent modified spin-wave (MSW) theory for the
2D antiferromagnet,'>'* and closely related to the
Schwinger-boson theory.'>!¢ Based upon the MSW
theory, diagonalization of H; yields the following re-
sults: 1314

Hj=const+ Y, wialax , (5)
K

2S (1 —prypy 2, 6)

with yx =2 sexp(ik- 8)/z, where & are the vectors to the z
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nearest-neighbor sites. 7=1/(1+u/2z8J), and u is the
Lagrange multiplier determined by the constraint. a is
the spin-wave operator, ay =ayxcoshfy+a T sinh@, with
tanh26y =nyx. For the 2D square Heisenberg model,
both the MSW and the conventional spin-wave theories
give a ground state with long-range Néel order. For finite
temperatures, the MSW theory can give a gap in the
spin-excitation spectrum, which is consistent with the
Monte Carlo calculations!” and renormalization-group
theory. '8

Next, we consider the hole dynamics. If holes are add-
ed to the system, we can see from Eq. (3) that each hole
couples with two spin waves when it hops. The mean-field
theory will yield a bare-hopping term in which holes
can hop from one site to another w1thout changing the
spin conﬁguratlon Re?lacmg c'ca'a' in Eq. (3) by

Cc'clata+(C'C)ata’, and similarly for the other
terms, the bare hopping term can be easily obtained from
a mean-field theory:

ef=—2zt yx—psinh20, = —0.58ztyy . )]
)

Based on this mean-field theory we would expect a hole
bandwidth of order ¢. Indeed, the reason that this solution
is favored in the mean-field theory is that it has the large
bare hopping term so that the hole may acquire a large ki-
netic energy. The Schwinger-boson approach based upon
the mean-field theory!®?° also predicted a similar result
that there exists a coherent hole band whose width is of
order . However, since the holes are strongly coupled to
the spin waves, it is important to consider the quasiparti-
cle holes, which are dressed by a cloud of spin excitations.
The true hole propagator G (i, j,®) is defined by

Gl = _dte™(TICL()C;(@]). @®)

We consider a self-consistent perturbation theory in
which vertex correlations are ignored. At zero tempera-
ture, the self-consistent integral equation for the hole
propagator is given by

]
Glk,w)= ® —ef—zZtZZﬂz—pf(p,(i)G(k—q,w —wp—wp—q) ©
where a
f(p,q) = (coshBpcoshb, —q —sinhB,sinhfp —g) 2. 10)
The dispersion of the quasiparticle band is given by
ek=e|{’+z2t22yf-,,f(p,q)G(k—q,sk—-wp—wp.—q). 1)

The qualitative mformatmn about the low-energy structure of the hole spectrum can be obtained by using the dominant-
pole approximation.® In this case, we may write the mass at the bottom of the band as
1 92

= = aZ B 2,2 2 —_ 0
" keok, ~Rearan [sk +2 Lt/ (k)G (o) |, 12)

where Ry is the quasiparticle residue, and G °(q,wo) = — 1/t is the J =0 limit with band edge at wo. Employing the dom-
inant pole approximation we found that Ry is of order J/¢. Thus, both the bare-hopping term and the self-energy term
are renormalized by the quasiparticle residue, leading to an effective mass which is enhanced by ¢/J. Under the
effective-mass approximation, we conclude that the dispersion of the quasiparticle g ~J near the bottom of the band. In
the J =0 limit, Rx =0 and the hole spectrum becomes completely incoherent.
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The position of the band minimum can be identified
from Eq. (12). Although we do not know the precise form
of G%q,wo), we know that G%q,w) = —1/f and is a
smooth function of g since there are no poles at the J=0
limit. Within this limit, we have performed the numerical
calculation for Eq. (12) and found that the band mini-
mum is located at (x,0) and (0, ).

Now let us consider the behavior of the spectral func-
tion at energy higher than the lowest pole. We can ex-
press the spectral function in the following form:

- I'(k,w)

Alk.0) (0 —EYRE+THk,0) ’ 13
with
rk,o)=22Y y2-pf(p,q) Ak —q,0 — wp—wp—q)

p.q

(14)

where Ey denotes the position of the lowest pole. Thus,
for w — E < J, we find I'(k,w) <t 2(R /I ) (w—E)3. If
we extrapolate this expression to w—Ex=J, we find
I'k,Ex+J)=t. In this limit, the spectral function
A(k,w) < 1/t. This result indicates that the incoherent
part of the spectral function is a constant of order 1/¢
above the pole. This picture is consistent with the previ-
ous calculations.® ™8

At small doping, we can calculate the effective interac-
tion between the quasiparticle holes by using the effective
Hamiltonian (3) in the AF background. According to the
above calculations, the energy spectrum of the quasiparti-
cle holes g(~J) has the minimum occurring at k =ko.
At small but finite doping, a small Fermi surface of the
quasiparticles is created around ko. From the second-
order perturbation, we can obtain the effective interaction
between holes mediated by the spin fluctuations

Heﬂ=k2£’ V(ko,k,k')CIo+k,CIO_k1Cko_kquo+y1 y (15)

with

2(wk+ + o+ )g(k k'q)
V(ko,k,k') =222 3 92"
° ?,3 (e — &) * — (Ok+q+ 0K +q)>

X Ykg+k+k'+qVko—k—K' —q » (16)
where

g(k,k',q) =(coshBy+qcoshBy +q+sinhBy+qsinhO+4) 2.
17

Equations (15) and (16) have the same form as the
original phonon-mediated interaction between electrons.
Thus, if the interaction is attractive, the condensation of
hole pairs will occur. It is interesting to note that the pair
potential V' (ko,k,k') is repulsive for ko =(z/2,7/2), while
it is attractive for ko=(x,0) or (0,7). This result implies
that, for the finite-doping system, the holes in the corners
of the pseudo-Fermi surface should have lower energy
than those at (#/2,r/2), i.e., for the system with more
than one hole, the holes will favor quasiparticle states at
(x,0) and (0,7) momenta in agreement with the numeri-
cal simulations of small clusters with two holes.!%!! Near
the Fermi surface, e~ &y, the attractive pair potential at

ko =(x,0) or (0,7) is given by
/ 2
VikK) = — 2522y —Thterd)”
q Ok+qtor+q
where yx=(cosk, —cosk,)/2. This result suggests that
the pair potential has its largest attractive component in
the d-wave channel. So we expect that a d-wave pairing
of the quasiparticle holes in a quantum AF background is
most probable. In our analysis, the extended s-wave and
p-wave states are suppressed. The reason is that with two
holes having momenta ko = (x,0) or (0,7), we cannot con-
struct the s-wave and p-wave states with zero total
momentum. Recently, Shimahara, Misawa, and Taka-
da?' studied the possibility of superconductivity in the ¢-J
model by using the improved Hubbard-III approxima-
tion.?2 They also concluded that d-wave superconductivi-
ty is more favorable than s-wave superconductivity in the
t-J model. But, differing from the present work, in their
consideration the superconductivity is induced by the J
term in Eq. (1).

Since the system undergoes d-wave superconducting
condensation and the coherent phenomenon of the holes
involves an energy of order 6J with & as the doping con-
centration, we expect the transition temperature 7. will
be of order 8J, which brings the T, scale much closer to
the experimentally observed transition temperature.

In the above calculation for the pair potential, the effect
of the holes on the spin background beyond the mean-field
theory has been neglected. It is well known that doping
will destroy the AF Néel order, which also destroys the
present mechanism for pairing. However, for the small
doping, if the Néel state or the short-range Néel state
with large coherent length still persists, the present mech-
anism should survive.

In conclusion, we have presented an effective Hamil-
tonian to study hole dynamics and the interaction in a
doped 2D quantum antiferromagnet. The advantage of
our approach is that one can study the property of holes
directly from the true particle operators. This is quite
different from the slave-boson and the slave-fermion
methods. The spectral function of holes based on our
effective Hamiltonian approach is investigated and we
found a quasiparticle band with a quasiparticle residue of
order J/t and a bandwidth of order J. Above the quasi-
particle band is an incoherent band whose width is of or-
der z. An attractive pair potential in the d-wave channel
has also been obtained. This result suggests that the 2D
t-J model by itself could lead to d-wave superconductivity
provided that the approximations we made within the
effective Hamiltonian are sufficiently accurate for the
Hubbard model in the large-U limit.

gk,k',q), (18)
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